WorldWideScience

Sample records for great basin ecosystem

  1. Great Basin Factsheet Series 2016 - Information and tools to restore and conserve Great Basin ecosystems

    Science.gov (United States)

    Jeanne C. Chambers

    2016-01-01

    Land managers are responsible for developing effective strategies for conserving and restoring Great Basin ecosystems in the face of invasive species, conifer expansion, and altered fire regimes. A warming climate is magnifying the effects of these threats and adding urgency to implementation of management practices that will maintain or improve ecosystem...

  2. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows comprise a very small percentage of the total landscape of the mountain ranges in the central Great Basin however, they represent important ecological environments. We have used s...

  3. An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem

    International Nuclear Information System (INIS)

    Gilbertson, Michael; Carpenter, D.O.

    2004-01-01

    New concerns about the global presence and human health significance of mercury have arisen as a result of recent epidemiological data demonstrating subtle neurological effects from consumption of mercury-contaminated fish. In the Great Lakes Basin, the complexity of the diverse sources, pools, and sinks of mercury and of the pathways of distribution, fate, and biotransformation requires an ecosystem approach to the assessment of exposures of Great Lakes' human populations. Further epidemiological research is needed to verify preliminary indications of harmful effects in people living near the Great Lakes. Great Lakes fish are valuable resources for subsistence nutrition, recreation, and commerce, but the benefits of fish consumption must be balanced by concern for the hazards from the contaminants that they may contain. The efficacy of fish consumption advisories in reducing exposures should continue to be evaluated while planning continues for remedial actions on contaminated sediments from historic industrial activities and for regulatory action to control sources

  4. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Science.gov (United States)

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  5. Integrated scientific assessment for ecosystem management in the interior Columbia Basin and portions of the Klamath and Great Basins.

    Science.gov (United States)

    Thomas M. Quigley; Richard W Haynes; Russell T. Graham

    1996-01-01

    The Integrated Scientific Assessment for Ecosystem Management for the Interior Columbia Basin links landscape, aquatic, terrestrial, social, and economic characterizations to describe biophysical and social systems. Integration was achieved through a framework built around six goals for ecosystem management and three different views of the future. These goals are:...

  6. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems

    Science.gov (United States)

    Knutson, Kevin C.; Pyke, David A.; Wirth, Troy A.; Arkle, Robert S.; Pilliod, David S.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.

    2014-01-01

    1. Invasive annual grasses alter fire regimes in shrubland ecosystems of the western USA, threatening ecosystem function and fragmenting habitats necessary for shrub-obligate species such as greater sage-grouse. Post-fire stabilization and rehabilitation treatments have been administered to stabilize soils, reduce invasive species spread and restore or establish sustainable ecosystems in which native species are well represented. Long-term effectiveness of these treatments has rarely been evaluated. 2. We studied vegetation at 88 sites where aerial or drill seeding was implemented following fires between 1990 and 2003 in Great Basin (USA) shrublands. We examined sites on loamy soils that burned only once since 1970 to eliminate confounding effects of recurrent fire and to assess soils most conducive to establishment of seeded species. We evaluated whether seeding provided greater cover of perennial seeded species than burned–unseeded and unburned–unseeded sites, while also accounting for environmental variation. 3. Post-fire seeding of native perennial grasses generally did not increase cover relative to burned–unseeded areas. Native perennial grass cover did, however, increase after drill seeding when competitive non-natives were not included in mixes. Seeding non-native perennial grasses and the shrub Bassia prostrata resulted in more vegetative cover in aerial and drill seeding, with non-native perennial grass cover increasing with annual precipitation. Seeding native shrubs, particularly Artemisia tridentata, did not increase shrub cover or density in burned areas. Cover of undesirable, non-native annual grasses was lower in drill seeded relative to unseeded areas, but only at higher elevations. 4. Synthesis and applications. Management objectives are more likely to be met in high-elevation or precipitation locations where establishment of perennial grasses occurred. On lower and drier sites, management objectives are unlikely to be met with seeding alone

  7. Deep Microbial Ecosystems in the U.S. Great Basin: A Second Home for Desulforudis audaxviator?

    Science.gov (United States)

    Moser, D. P.

    2012-12-01

    Deep subsurface microbial ecosystems have attracted scientific and public interest in recent years. Of deep habitats so far investigated, continental hard rock environments may be the least understood. Our Census of Deep Life (CoDL) project targets deep microbial ecosystems of three little explored (for microbiology), North American geological provinces: the Basin and Range, Black Hills, and Canadian Shield. Here we focus on the Basin and Range, specifically radioactive fluids from nuclear device test cavities (U12N.10 tunnel and ER-EC-11) at the Nevada National Security Site (NNSS) and non-radioactive samples from a deep dolomite aquifer associated with Death Valley, CA (BLM-1 and Nevares Deep Well 2). Six pyrotag sequencing runs were attempted at the Marine Biology Lab (MBL) (bacterial v6v4 amplification for all sites and archaeal v6v4 amplification for BLM-1 and Nevares DW2). Of these, DNA extracts from five samples (all but Nevares DW2 Arch) successfully amplified. Bacterial libraries were generally dominated by Proteobacteria, Firmicutes, and Nitrospirae (ER-EC-11: Proteobacteria (45%), Deinococcus-Thermus (35%), Firmicutes (15%); U12N.10: Proteobacteria (37%), Firmicutes (32%), Nitrospirae (15%), Bacteroidetes (11%); BLM-1 (Bact): Firmicutes (93%); and Nevares DW2: Firmicutes (51%), Proteobacteria (16%), Nitrospirae (15%)). The BLM-1 (Arch) library contained >99% Euryarchaeota, with 98% of sequences represented by a single uncharacterized species of Methanothermobacter. Alpha diversity was calculated using the MBL VAMPS (Visualization and Analysis of Microbial Population Structures) system; showing the highest richness at both the phylum and genus levels in U12N.10 (Sp = 42; Sg = 341), and the lowest (Sp = 3; Sg = 11) in the BLM-1(Arch) library. Diversity was covered well at this depth of sequencing (~20,000 reads per sample) based on rarefaction analysis. One Firmicute lineage, candidatus D. audaxviator, has been shown to dominate microbial communities from

  8. Ecosystem services in the Great Lakes

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  9. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    Science.gov (United States)

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  10. Integrated monitoring of hydrogeomorphic, vegetative, and edaphic conditions in riparian ecosystems of Great Basin National Park, Nevada

    Science.gov (United States)

    Beever, Erik A.; Pyke, D.A.

    2004-01-01

    In semiarid regions such as the Great Basin, riparian areas function as oases of cooler and more stable microclimates, greater relative humidity, greater structural complexity, and a steady flow of water and nutrients relative to upland areas. These qualities make riparian areaʼs attractive not only to resident and migratory wildlife, but also to visitors in recreation areas such as Great Basin National Park in the Snake Range, east-central Nevada. To expand upon the system of ten permanent plots sampled in 1992 (Smith et al. 1994) and 2001 (Beever et al. in press), we established a collection of 31 cross-sectional transects of 50-m width across the mainstems of Strawberry, Lehman, Baker, and Snake creeks. Our aims in this research were threefold: a) map riparian vegetative communities in greater detail than had been done by past efforts; b) provide a monitoring baseline of hydrogeomorphology; structure, composition, and function of upland- and riparianassociated vegetation; and edaphic properties potentially sensitive to management; and c) test whether instream conditions or physiographic variables predicted vegetation patterns across the four target streams.

  11. Alien invasive species and biological pollution of the Great Lakes Basin ecosystem[Great Lakes Water Quality Board : Report to the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The displacement of important native species in the Great Lakes is a result of an invasion by a succession of non indigenous aquatic species. These invasion also resulted in interference with the proper human water uses and cost billions of dollars. The problem was considered serious enough that the International Joint Commission asked the Great Lakes Water Quality Board in 1999 to review the regulations in place and make recommendations, if necessary, for the implementation of additional measures that could be considered to keep control over the introduction of alien invasive species. Escapes from aquaria, aquaculture, research and educational facilities, canal and diversion water flows, and release of live bait are all sources of this invasion. The effectiveness of alternative technologies to control the invasion was to be examined by the Board. Other efforts taking place to address the situation in the basin are being complemented by the publication of this report. It is considered that the most important source of alien invasive species (AIS) to the Great Lakes is the discharge of ballast water from shipping vessels coming from outside the United States and Canada. A major concern is the role played by vessels reporting no ballast on board (NOBOB) upon entering the basin. A number of recommendations were made concerning: (1) implementation and enforcement of the ballast water discharge standards agreed upon by both countries, (2) the evaluation of the effectiveness of alternative technologies to achieve ballast water discharge standards over the long term, combined with the use of chemical treatment while the evaluation is being performed, (3) the implementation of optimal management practices to control sediments in shipping vessels, (4) modifications to the design of shipping vessels, and (5) the monitoring and contingency plans in the event of a repeat scenario in the future. Composed of an equal number representatives from the United States and Canada, at

  12. Long-term effects of wildfire on greater sage-grouse - integrating population and ecosystem concepts for management in the Great Basin

    Science.gov (United States)

    Coates, Peter S.; Ricca, Mark A.; Prochazka, Brian G.; Doherty, Kevin E.; Brooks, Matthew L.; Casazza, Michael L.

    2015-09-10

    Greater sage-grouse (Centrocercus urophasianus; hereinafter, sage-grouse) are a sagebrush obligate species that has declined concomitantly with the loss and fragmentation of sagebrush ecosystems across most of its geographical range. The species currently is listed as a candidate for federal protection under the Endangered Species Act (ESA). Increasing wildfire frequency and changing climate frequently are identified as two environmental drivers that contribute to the decline of sage-grouse populations, yet few studies have rigorously quantified their effects on sage-grouse populations across broad spatial scales and long time periods. To help inform a threat assessment within the Great Basin for listing sage-grouse in 2015 under the ESA, we conducted an extensive analysis of wildfire and climatic effects on sage-grouse population growth derived from 30 years of lek-count data collected across the hydrographic Great Basin of Western North America. Annual (1984–2013) patterns of wildfire were derived from an extensive dataset of remotely sensed 30-meter imagery and precipitation derived from locally downscaled spatially explicit data. In the sagebrush ecosystem, underlying soil conditions also contribute strongly to variation in resilience to disturbance and resistance to plant community changes (R&R). Thus, we developed predictions from models of post-wildfire recovery and chronic effects of wildfire based on three spatially explicit R&R classes derived from soil moisture and temperature regimes. We found evidence of an interaction between the effects of wildfire (chronically affected burned area within 5 kilometers of a lek) and climatic conditions (spring through fall precipitation) after accounting for a consistent density-dependent effect. Specifically, burned areas near leks nullifies population growth that normally follows years with relatively high precipitation. In models, this effect results in long-term population declines for sage-grouse despite cyclic

  13. The Interior Columbia Basin Ecosystem Management Project: scientific assessment.

    Science.gov (United States)

    1999-01-01

    This CD-ROM contains digital versions (PDF) of the major scientific documents prepared for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). "A Framework for Ecosystem Management in the Interior Columbia Basin and Portions of the Klamath and Great Basins" describes a general planning model for ecosystem management. The "Highlighted...

  14. Great Basin Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Bryce A. Richardson; Stanley G. Kitchen

    2013-01-01

    This annotated bibliography documents the research that has been conducted on the Great Basin Experimental Range (GBER, also known as the Utah Experiment Station, Great Basin Station, the Great Basin Branch Experiment Station, Great Basin Experimental Center, and other similar name variants) over the 102 years of its existence. Entries were drawn from the original...

  15. Great Basin paleoenvironmental studies project

    International Nuclear Information System (INIS)

    1993-01-01

    Project goals, project tasks, progress on tasks, and problems encountered are described and discussed for each of the studies that make up the Great Basin Paleoenvironmental Studies Project for Yucca Mountain. These studies are: Paleobotany, Paleofauna, Geomorphology, and Transportation. Budget summaries are also given for each of the studies and for the overall project

  16. Great Basin wildlife disease concerns

    Science.gov (United States)

    Russ Mason

    2008-01-01

    In the Great Basin, wildlife diseases have always represented a significant challenge to wildlife managers, agricultural production, and human health and safety. One of the first priorities of the U.S. Department of Agriculture, Division of Fish and Wildlife Services was Congressionally directed action to eradicate vectors for zoonotic disease, particularly rabies, in...

  17. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  18. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  19. Quantifying phenology metrics from Great Basin plant communities and their relationship to seasonal water availability

    Science.gov (United States)

    Background/Question/Methods Sagebrush steppe is critical habitat in the Great Basin for wildlife and provides important ecosystem goods and services. Expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) in the Great Basin has reduced the extent of sagebrush steppe causing habitat, fire, and...

  20. Geomorphic controls on Great Basin riparian vegetation at the watershed and process zone scales

    Science.gov (United States)

    Blake Meneken Engelhardt

    2009-01-01

    Riparian ecosystems supply valuable resources in all landscapes, but especially in semiarid regions such as the Great Basin of the western United States. Over half of Great Basin streams are thought to be in poor ecological condition and further deterioration is of significant concern to stakeholders. A thorough understanding of how physical processes acting at...

  1. Ecosystem Services in the Great Lakes – Results of a Summit

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  2. MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Riparian meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision, due to natural and anth...

  3. Adventures in holistic ecosystem modelling: the cumberland basin ecosystem model

    Science.gov (United States)

    Gordon, D. C.; Keizer, P. D.; Daborn, G. R.; Schwinghamer, P.; Silvert, W. L.

    A holistic ecosystem model has been developed for the Cumberland Basin, a turbid macrotidal estuary at the head of Canada's Bay of Fundy. The model was constructed as a group exercise involving several dozen scientists. Philosophy of approach and methods were patterned after the BOEDE Ems-Dollard modelling project. The model is one-dimensional, has 3 compartments and 3 boundaries, and is composed of 3 separate submodels (physical, pelagic and benthic). The 28 biological state variables cover the complete estuarine ecosystem and represent broad functional groups of organisms based on trophic relationships. Although still under development and not yet validated, the model has been verified and has reached the stage where most state variables provide reasonable output. The modelling process has stimulated interdisciplinary discussion, identified important data gaps and produced a quantitative tool which can be used to examine ecological hypotheses and determine critical environmental processes. As a result, Canadian scientists have a much better understanding of the Cumberland Basin ecosystem and are better able to provide competent advice on environmental management.

  4. Milankovitch Modulation of the Ecosystem Dynamics of Fossil Great Lakes

    Science.gov (United States)

    Whiteside, J. H.; Olsen, P. E.; Eglinton, T. I.; Cornet, B.; Huber, P.; McDonald, N. G.

    2008-12-01

    Triassic and Early Jurassic lacustrine deposits of eastern North American rift basins preserve a spectacular record of precession-related Milankovitch forcing in the Pangean tropics. The abundant and well-preserved fossil fish assemblages from these great lakes demonstrate a sequence of cyclical changes that track the permeating hierarchy of climatic cycles. To detail ecosystem processes correlating with succession of fish communities, we measured bulk δ13Corg through a 100 ky series of Early Jurassic climatic precession-forced lake level cycles in the lower Shuttle Meadow Formation of the Hartford rift basin, CT. The deep-water phase of one of these cycles, the Bluff Head bed, has produced thousands of articulated fish. We observe fluctuations in the bulk δ13Corg of the cyclical strata that reflect differing degrees of lake water stratification, nutrient levels, and relative proportion of algal vs. plant derived organic matter that trace fish community changes. We can exclude extrinsic changes in the global exchangeable reservoirs as an origin of this variability because molecule-level δ13C of n-alkanes of plant leaf waxes from the same strata show no such variability. While at higher taxonomic levels the fish communities responded largely by sorting of taxa by environmental forcing, at the species level the holostean genus Semionotus responded by in situ evolution, and ultimately extinction, of a species flock. Fluctuations at the higher frequency, climatic precessional scale are mirrored at lower frequency, eccentricity modulated, scales, all following the lake-level hierarchical pattern. Thus, lacustrine isotopic ratios amplify the Milankovitch climate signal that was already intensified by sequelae of the end-Triassic extinctions. The degree to which the ecological structure of modern lakes responds to similar environmental cyclicity is largely unknown, but we suspect similar patterns and processes within the Neogene history of the East African great lakes

  5. Priority research and management issues for the imperiled Great Basin of the western United States

    Science.gov (United States)

    Jeanne C. Chambers; Michael J. Wisdom

    2009-01-01

    Like many arid and semiarid regions, the Great Basin of the western United States is undergoing major ecological, social, and economic changes that are having widespread detrimental effects on the structure, composition, and function of native ecosystems. The causes of change are highly interactive and include urban, suburban, and exurban growth, past and present land...

  6. Geomorphology, hydrology, and ecology of Great Basin meadow complexes - implications for management and restoration

    Science.gov (United States)

    Jeanne C. Chambers; Jerry R. Miller

    2011-01-01

    This report contains the results of a 6-year project conducted by the U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station and U.S. Environmental Protection Agency, Office of Research and Development on stream incision and meadow ecosystem degradation in the central Great Basin. The project included a coarse-scale assessment of 56 different...

  7. Highly calcareous lacustrine soils in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Meester, de T.

    1971-01-01

    The Great Konya Basin is in the south of the Central Anatolian Plateau in Turkey. It is a depression without outlet to the sea. The central part of the Basin is the floor of a former Pleistocene lake, the Ancient Konya Lake. This area, called the Lacustrine
    Plain, has highly calcareous

  8. Geology of photo linear elements, Great Divide Basin, Wyoming

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  9. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  10. AN INTEGRATED, SCIENCE-BASED APPROACH TO MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE GREAT BASIN OF CENTRAL NEVADA

    Science.gov (United States)

    Riparian corridor and meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision is a major ...

  11. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.

    The Great

  12. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  13. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...

  14. MODELING ECONOMIC AND ECOLOGICAL BENEFITS OF POST-FIRE REVEGETATION IN THE GREAT BASIN

    OpenAIRE

    Niell, Rebecca; Englin, Jeffrey E.; Nalle, Darek

    2004-01-01

    This study employs a Markov chain model of vegetation dynamics to examine the economic and ecological benefits of post-fire revegetation in the Great Basin sagebrush steppe. The analysis is important because synergies between wildland fire and invasive weeds in this ecosystem are likely to result in the loss of native biodiversity, less predictable forage availability for livestock and wildlife, reduced watershed stability and water quality, and increased costs and risk associated with firefi...

  15. Environmental drivers of cambial phenology in Great Basin bristlecone pine.

    Science.gov (United States)

    Ziaco, Emanuele; Biondi, Franco; Rossi, Sergio; Deslauriers, Annie

    2016-07-01

    The timing of wood formation is crucial to determine how environmental factors affect tree growth. The long-lived bristlecone pine (Pinus longaeva D. K. Bailey) is a foundation treeline species in the Great Basin of North America reaching stem ages of about 5000 years. We investigated stem cambial phenology and radial size variability to quantify the relative influence of environmental variables on bristlecone pine growth. Repeated cellular measurements and half-hourly dendrometer records were obtained during 2013 and 2014 for two high-elevation stands included in the Nevada Climate-ecohydrological Assessment Network. Daily time series of stem radial variations showed rehydration and expansion starting in late April-early May, prior to the onset of wood formation at breast height. Formation of new xylem started in June and lasted until mid-September. There were no differences in phenological timing between the two stands, or in the air and soil temperature thresholds for the onset of xylogenesis. A multiple logistic regression model highlighted a separate effect of air and soil temperature on xylogenesis, the relevance of which was modulated by the interaction with vapor pressure and soil water content. While air temperature plays a key role in cambial resumption after winter dormancy, soil thermal conditions coupled with snowpack dynamics also influence the onset of wood formation by regulating plant-soil water exchanges. Our results help build a physiological understanding of climate-growth relationships in P. longaeva, the importance of which for dendroclimatic reconstructions can hardly be overstated. In addition, environmental drivers of xylogenesis at the treeline ecotone, by controlling the growth of dominant species, ultimately determine ecosystem responses to climatic change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    Science.gov (United States)

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  17. Germination phenology of some Great Basin native annual forb species

    Science.gov (United States)

    Tara A. Forbis

    2010-01-01

    Great Basin native plant communities are being replaced by the annual invasive cheatgrass Bromus tectorum. Cheatgrass exhibits a germination syndrome that is characteristic of facultative winter annuals. Although perennials dominate these communities, native annuals are present at many sites. Germination timing is often an important predictor of competitive...

  18. Soil fertility in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Janssen, B.H.

    1970-01-01

    Soil fertility was studied in the Great Konya Basin, as part of the study carried out by the Department of Tropical Soil Science of the Agricultural University at Wageningen.

    The purpose was to find the agricultural value of the soils, to learn about the main factors governing soil fertility,

  19. Great Basin land managers provide detailed feedback about usefulness of two climate information web applications

    Directory of Open Access Journals (Sweden)

    Chad Zanocco

    Full Text Available Land managers in the Great Basin are working to maintain or restore sagebrush ecosystems as climate change exacerbates existing threats. Web applications delivering climate change and climate impacts information have the potential to assist their efforts. Although many web applications containing climate information currently exist, few have been co-produced with land managers or have incorporated information specifically focused on land managers’ needs. Through surveys and interviews, we gathered detailed feedback from federal, state, and tribal sagebrush land managers in the Great Basin on climate information web applications targeting land management. We found that a managers are searching for weather and climate information they can incorporate into their current management strategies and plans; b they are willing to be educated on how to find and understand climate related web applications; c both field and administrative-type managers want data for timescales ranging from seasonal to decadal; d managers want multiple levels of climate information, from simple summaries, to detailed descriptions accessible through the application; and e managers are interested in applications that evaluate uncertainty and provide projected climate impacts. Keywords: Great Basin, Sagebrush, Land management, Climate change, Web application, Co-production

  20. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  1. Climate change and water quality in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Great Lakes Basin is subjected to several stresses, such as land use changes, chemical contamination, nutrient over-enrichment, alien invasive species, and acid precipitation. Climate change is now added to this list. The Water Quality Board was asked to provide advice concerning the impacts of climate change on the water quality of the Great Lakes and on how to address the issue. A White Paper was commissioned by the Board to address four key questions: (1) what are the Great Lakes water quality issues associated with climate change, (2) what are potential impacts of climate change on beneficial uses, (3) how might impacts vary across the Great Lakes region, and (4) what are the implications for decision making. The conclusions and findings of the White Paper were then discussed at a workshop held in May 2003. Part 1 of the document provides an executive summary. The advice of the Water Quality Board was based on the findings of the White Paper and presented in Part 2. Part 3 presented the White Paper, while a summary of the workshop was provided in Part 4. A presentation on cross border tools and strategies was also presented by a workshop participant.

  2. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  3. Degradation and damages from utilizing ecosystem services in a river basin

    Science.gov (United States)

    Travis W. Warziniack

    2012-01-01

    We examine the tradeoffs between utilizing multiple ecosystem services in an economic model of the Lower Mississippi-Atchafalaya River Basin. We show how economic development in the basin degraded the ecosystem, but diversified the economy. A degraded ecosystem and more employment opportunities elsewhere reduced the region's reliance on agriculture and other...

  4. Collaboration in River Basin Management: The Great Rivers Project

    Science.gov (United States)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or

  5. Quantifying cambial activity of high-elevation conifers in the Great Basin, Nevada, USA

    Science.gov (United States)

    Ziaco, E.; Biondi, F.; Rossi, S.; Deslauriers, A.

    2013-12-01

    Understanding the physiological mechanisms that control the formation of tree rings provides the necessary biological basis for developing dendroclimatic reconstructions and dendroecological histories. Studies of wood formation in the Great Basin are now being conducted in connection with the Nevada Climate-ecohydrological Assessment Network (NevCAN), a recently established transect of valley-to-mountaintop instrumented stations in the Snake and Sheep Ranges of the Great Basin. Automated sensors record meteorological, soil, and vegetational variables at these sites, providing unique opportunities for ecosystem science, and are being used to investigate the ecological implications of xylogenesis. We present here an initial study based on microcores collected during summer 2013 from mountain and subalpine conifers (including Great Basin bristlecone pine, Pinus longaeva) growing on the west slope of Mt. Washington. Samples were taken from the mountain west (SM; 2810 m elevation) and the subalpine west (SS, 3355 m elevation) NevCAN sites on June 16th and 27th, 2013. The SS site was further subdivided in a high (SSH) and a low (SSL) group of trees, separated by about 10 m in elevation. Microscopic analyses showed the effect of elevation on cambial activity, as annual ring formation was more advanced at the lower (mountain) site compared to the higher (subalpine) one. At all sites cambium size showed little variations between the two sampling dates. The number of xylem cells in the radial enlargement phase decreased between the two sampling dates at the mountain site but increased at the subalpine site, confirming a delayed formation of wood at the higher elevations. Despite relatively high within-site variability, a general trend of increasing number of cells in the lignification phase was found at all sites. Mature cells were present only at the mountain site on June 27th. Spatial differences in the xylem formation process emerged at the species level and, within

  6. Native plant development and restoration program for the Great Basin, USA

    Science.gov (United States)

    N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur

    2008-01-01

    The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...

  7. Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty

    Observation of climate and ecohydrological variables in mountain systems is a necessary (if challenging) endeavor for modern society. Water resources are often intimately tied to mountains, and high elevation environments are frequently home to unique landscapes and biota with limited geographical distributions. This is especially true in the temperate and semi-arid mountains of the western United States, and specifically the Great Basin. Stark contrasts in annual water balance and ecological populations are visible across steep elevational gradients in the region; and yet the bulk of our historical knowledge of climate and related processes comes from lowland observations. Interpolative models that strive to estimate conditions in mountains using existing datasets are often found to be inaccurate, making future projections of mountain climate and ecosystem response suspect. This study details the results of high-resolution topographically-diverse ecohydrological monitoring, and describes the character and seasonality of basic climatic variables such as temperature and precipitation as well as their impact on soil moisture and vegetation during the 2012-2015 drought sequence. Relationships of topography (elevation/aspect) to daily and seasonal temperatures are shown. Tests of the PRISM temperature model are performed at the large watershed scale, revealing magnitudes, modes, and potential sources of bias that could dramatically affect derivative scientific conclusions. A new method of precipitation phase partitioning to detect and quantify frozen precipitation on a sub-daily basis is described. Character of precipitation from sub-daily to annual scales is quantified across all major Great Basin vegetation/elevation zones, and the relationship of elevation to precipitation phase, intensity, and amount is explored. Water-stress responses of Great Basin conifers including Pinus flexilis, Pinus longaeva, and Pinus ponderosa are directly observed, showing potential

  8. Fire rehabilitation effectiveness: a chronosequence approach for the Great Basin

    Science.gov (United States)

    Pyke, David A.; Pilliod, David S.; Chambers, Jeanne C.; Brooks, Matthew L.; Grace, James

    2009-01-01

    Federal land management agencies have invested heavily in seeding vegetation for emergency stabilization and rehabilitation (ES&R) of non-forested lands. ES&R projects are implemented to reduce post-fire dominance of non-native annual grasses, minimize probability of recurrent fire, quickly recover lost habitat for sensitive species, and ultimately result in plant communities with desirable characteristics including resistance to invasive species and resilience or ability to recover following disturbance. Land managers lack scientific evidence to verify whether seeding non-forested lands achieves their desired long-term ES&R objectives. The overall objective of our investigation is to determine if ES&R projects increase perennial plant cover, improve community composition, decrease invasive annual plant cover and result in a more desirable fuel structure relative to no treatment following fires while potentially providing habitat for Greater Sage-Grouse, a species of management concern. In addition, we provide the locations and baseline vegetation data for further studies relating to ES&R project impacts. We examined effects of seeding treatments (drill and broadcast) vs. no seeding on biotic and abiotic (bare ground and litter) variables for the dominant climate regimes and ecological types within the Great Basin. We attempted to determine seeding effectiveness to provide desired plant species cover while restricting non-native annual grass cover relative to post-treatment precipitation, post-treatment grazing level and time-since-seeding. Seedings were randomly sampled from all known post-fire seedings that occurred in the four-state area of Idaho, Nevada, Oregon and Utah. Sampling locations were stratified by major land resource area, precipitation, and loam-dominated soils to ensure an adequate spread of locations to provide inference of our findings to similar lands throughout the Great Basin. Nearly 100 sites were located that contained an ES&R project. Of

  9. Modelling the Congo basin ecosystems with a dynamic vegetation model

    Science.gov (United States)

    Dury, Marie; Hambuckers, Alain; Trolliet, Franck; Huynen, Marie-Claude; Haineaux, Damien; Fontaine, Corentin M.; Fayolle, Adeline; François, Louis

    2014-05-01

    The scarcity of field observations in some parts of the world makes difficult a deep understanding of some ecosystems such as humid tropical forests in Central Africa. Therefore, modelling tools are interesting alternatives to study those regions even if the lack of data often prevents sharp calibration and validation of the model projections. Dynamic vegetation models (DVMs) are process-based models that simulate shifts in potential vegetation and its associated biogeochemical and hydrological cycles in response to climate. Initially run at the global scale, DVMs can be run at any spatial scale provided that climate and soil data are available. In the framework of the BIOSERF project ("Sustainability of tropical forest biodiversity and services under climate and human pressure"), we use and adapt the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) to study the Congo basin vegetation dynamics. The field campaigns have notably allowed the refinement of the vegetation representation from plant functional types (PFTs) to individual species through the collection of parameters such as the specific leaf area or the leaf C:N ratio of common tropical tree species and the location of their present-day occurrences from literature and available database. Here, we test the model ability to reproduce the present spatial and temporal variations of carbon stocks (e.g. biomass, soil carbon) and fluxes (e.g. gross and net primary productivities (GPP and NPP), net ecosystem production (NEP)) as well as the observed distribution of the studied species over the Congo basin. In the lack of abundant and long-term measurements, we compare model results with time series of remote sensing products (e.g. vegetation leaf area index (LAI), GPP and NPP). Several sensitivity tests are presented: we assess consecutively the impacts of the level at which the vegetation is simulated (PFTs or species), the spatial resolution and the initial land

  10. Hydrologic Vulnerability and Risk Assessment Associated With the Increased Role of Fire on Western Landscapes, Great Basin, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.

    2010-12-01

    Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.

  11. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    Science.gov (United States)

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  12. Toward Integrated Resource Management: Lessons About the EcosystemApproach from the Laurentian Great Lakes

    Science.gov (United States)

    MACKENZIE

    1997-03-01

    / The ecosystem approach is an innovative tool for integratedresource management. Its goal is to restore, enhance, and protect ecosystemintegrity through a holistic and integrated mode of planning. Under thisapproach, the ecosystem itself becomes the unit of analysis and organizingprinciple for environmental management. Utilizing the ecosystem approachchallenges the prevailing structure and function of contemporary resourcemanagement agencies. This paper explores a number of important policy andmanagement issues in the context of a ten-year initiative to remediate theLaurentian Great Lakes using the ecosystem approach. The lessons gleaned fromthe Great Lakes experience are relevant to other areas in North America andabroad where resource management responsibilities are held by multiple andsometimes overlapping jurisdictions.KEY WORDS: Integrated resource management; Ecosystem approach; Watershedmanagement; Great Lakes

  13. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    Science.gov (United States)

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  14. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    Science.gov (United States)

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  15. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  16. Mapping ecosystem services in a Great Lakes estuary supports local decision-making

    Science.gov (United States)

    Estuaries of the Laurentian Great Lakes provide a concentrated supply of ecosystem goods and services from which humans benefit. As long-term centers of human activity, most estuaries of the Great Lakes and have a legacy of chemical contamination, degraded habitats, and non-point...

  17. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.

    Science.gov (United States)

    Klecka, Gary; Persoon, Carolyn; Currie, Rebecca

    2010-01-01

    This review and statistical analysis was conducted to better understand the nature and significance of environmental exposures in the Great Lakes Basin and watershed to a variety of environmental contaminants. These contaminants of interest included current-use pesticides, pharmaceuticals, organic wastewater contaminants, alkylphenol ethoxylates, perfluorinated surfactants, flame retardants, and chlorinated paraffins. The available literature was critically reviewed and used to develop a database containing 19,611 residue values for 326 substances. In many papers, sampling locations were characterized as being downstream from municipal wastewater discharges, receiving waters for industrial facilities, areas susceptible to agricultural or urban contamination, or harbors and ports. To develop an initial assessment of their potential ecological significance, the contamination levels found were compared with currently available regulatory standards, guidelines, or criteria. This review was prepared for the IJC multi-board work group, and served as background material for an expert consultation, held in March, 2009, in which the significance of the contaminants found was discussed. Moreover, the consultation attempted to identify and assess opportunities for strengthening future actions that will protect the Great Lakes. Based on the findings and conclusions of the expert consultation, it is apparent that a wide variety of chemicals of emerging concern have been detected in environmental media (air, water, sediment, biota) from the Great Lakes Basin, although many are present at only trace levels. Although the presence of these contaminants raises concerns in the public and among the scientific community, the findings must be placed in context. Significant scientific interpretation is required to understand the extent to which these chemicals may pose a threat to the ecosystem and to human health. The ability to detect chemicals in environmental media greatly surpasses

  18. A new framework to evaluate ecosystem health: a case study in the Wei River basin, China.

    Science.gov (United States)

    Wu, Wei; Xu, Zongxue; Zhan, Chesheng; Yin, Xuwang; Yu, Songyan

    2015-07-01

    Due to the rapid growth of the population and the development of economies in the Guanzhong district, central China, the river ecosystem is gradually deteriorating, which makes it important to assess the aquatic ecosystem health and take measures to restore the damaged ecosystem. An index of catchment ecosystem health has been developed to assist large-scale management of watersheds by providing an integrated measure of ecosystem health, including aquatic and terrestrial ecosystem. Most researches focus on aquatic ecosystem or terrestrial ecosystem, but little research integrates both of them to assess the catchment ecosystem health. In this paper, we combine these two aspects into catchment ecosystem health. Ecosystem indicators derived from field samples and modeling are identified to integrate into ecosystem health. These included indicators of ecological landscape pattern (based on normalized difference vegetation index (NDVI), vegetation cover, dominance index, Shannon's diversity index, Shannon's evenness index, and fragmentation index), hydrology regime (based on 33 hydrological parameters), physical form condition (based on substrate, habitat complexity, velocity/depth regimes, bank stability, channel alteration), water quality (based on electrical conductivity (Cond), dissolved oxygen (DO), NH3_N, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand-permanganate (CODMn)), and biological quality (based on fish abundance). The index of ecosystem health is applied in the Guanzhong district, and the ecosystem health was fair. The ecosystem health in the upstream to Linjiacun (U-L) and Linjiacun to Weijiabao (L-W) reaches was in good situation, while that in Weijiabao to Xianyang (W-X), Xianyang-Weijiabao (X-W), and Weijiabao to Tongguan (W-T) reaches was in fair situation. There is a trend that the ecosystem health in the upstream was better than that in the downstream. The ecosystem health assessment is expected to play a key role in future

  19. Mapping ecosystem service indicators in a Great Lakes estuarine Area of Concern

    Science.gov (United States)

    Estuaries provide multiple ecosystem services from which humans benefit. Currently, thirty-six Great Lakes estuaries in the United States and Canada are designated as Areas of Concern (AOCs) due to a legacy of chemical contamination, degraded habitat, and non-point-source polluti...

  20. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.

    Science.gov (United States)

    Arkle, Robert S; Pilliod, David S

    2015-09-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species' range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  1. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.

    Science.gov (United States)

    Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E

    2015-03-01

    The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the

  2. Valuing tradeoffs between agricultural production and ecosystem services in the Heihe River Basin

    Science.gov (United States)

    Li, Z.; Deng, X.; Wu, F.

    2017-12-01

    Ecosystem services are faced with multiple stress from complex driving factors, such as climate change and human interventions. The Heihe River Basin (HRB), as the second largest inland river basin in China, is a typical semi-arid and arid region with fragile and sensitive ecological environment. For the past decades, agricultural production activities in the basin has affected ecosystem services in different degrees, leading to complex relations among "water-land-climate-ecology-human", in which hydrological process and water resource management is the key. In this context, managing trade-offs among water uses in the river basin to sustain multiple ecosystem services is crucial for healthy ecosystem and sustainable socioeconomic development. In this study, we analyze the trade-offs between different water uses in agricultural production and key ecosystem services in the HRB by applying production frontier analysis, with the aim to explore the potential for managing them. This method traces out joint production frontiers showing the combinations of ecosystem services and agricultural production that can be generated in a given area, and it deals with the economic problem of the allocation of scarce water resources under presumed objective, which aims to highlight synergies and reduce trade-offs between alternative water uses. Thus, management schemes that targets to both sustain agricultural production and increase the provision of key ecosystem services have to consider not only the technological or biological nature of interrelationships, but also the economic interdependencies among them.

  3. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders.

    Science.gov (United States)

    Cuhel, Russell L; Aguilar, Carmen

    2013-01-01

    Lake Michigan, a 58,000-km(2) freshwater inland sea, is large enough to have persistent basin-scale circulation yet small enough to enable development of approximately balanced budgets for water, energy, and elements including carbon and silicon. Introduction of nonindigenous species-whether through invasion, intentional stocking, or accidental transplantation-has transformed the lake's ecosystem function and habitat structure. Of the 79 nonindigenous species known to have established reproductive populations in the lake, only a few have brought considerable ecological pressure to bear. Four of these were chosen for this review to exemplify top-down (sea lamprey, Petromyzon marinus), middle-out (alewife, Alosa pseudoharengus), and bottom-up (the dreissenid zebra and quagga mussels, Dreissena polymorpha and Dreissena rostriformis bugensis, respectively) transformations of Lake Michigan ecology, habitability, and ultimately physical environment. Lampreys attacked and extirpated indigenous lake trout, the top predator. Alewives outcompeted native planktivorous fish and curtailed invertebrate populations. Dreissenid mussels-especially quagga mussels, which have had a much greater impact than the preceding zebra mussels-moved ecosystem metabolism basin-wide from water column to bottom dominance and engineered structures throughout the lake. Each of these non indigenous species exerted devastating effects on commercial and sport fisheries through ecosystem structure modification.

  4. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: introduction.

    Science.gov (United States)

    Chris Maser; Jack Ward. Thomas

    1983-01-01

    The need for a way by which rangeland managers can account for wildlife in land-use planning, in on-the-ground management actions, and in preparation of environmental impact statements is discussed. Principles of range-land-wildlife interactions and management are described along with management systems. The Great Basin of southeastern Oregon was selected as a well-...

  5. New records of marginal locations for American pika (Ochotona princeps) in the Western Great Basin

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Diane L. Delany

    2013-01-01

    We describe 46 new site records documenting occupancy by American pika (Ochotona princeps) at 21 locations from 8 mountain regions in the western Great Basin, California, and Nevada. These locations comprise a subset of sites selected from regional surveys to represent marginal, isolated, or otherwise atypical pika locations, and to provide...

  6. Reconsidering the process for bow-stave removal from juniper trees in the Great Basin

    Science.gov (United States)

    Constance I. Millar; Kevin T. Smith

    2017-01-01

    We question the growth arrestment hypothesis for bow stave removal used by indigenous people in the western Great Basin. Using modern understanding of tree growth and wound response, we suggest that growth would not be arrested by one or two transverse notches along a juniper stem. Rather these would trigger compartmentalization, which limits cambial death to within 10...

  7. The Role of Credit in Native Adaptation to the Great Basin Ranching Economy.

    Science.gov (United States)

    Knack, Martha C.

    1987-01-01

    Examines Nevada rancher's account books to explain details of relationship between Great Basin Indian laborers and White employers during the late 19th century. Describes Indians' work, pay rates, purchases, seasonal food availability, and credit arrangements. Examines Indians' social, economic lives and their incorporation into debt/wage system.…

  8. Genecology and seed zones for tapertip onion in the US Great Basin

    Science.gov (United States)

    R. C. Johnson; Barbara C. Hellier; Ken W. Vance-Borland

    2013-01-01

    The choice of germplasm is critical for sustainable restoration, yet seed transfer guidelines are lacking for all but a few herbaceous species. Seed transfer zones based on genetic variability and climate were developed using tapertip onion (Allium acuminatum Hook.) collected in the Great Basin and surrounding areas in the United States. Bulbs from 53 locations were...

  9. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    Science.gov (United States)

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  10. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  11. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  12. Birds of a Great Basin Sagebrush Habitat in East-Central Nevada

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Breeding bird populations ranged from 3.35 to 3.48 individuals/ha over a 3-year study conducted from 1981 to 1983. Brewer's sparrows, sage sparrows, sage thrashers, and black-throated sparrows were numerically dominant. Horned larks and western meadowlarks were less common. Results are compared with bird populations in Great Basin sagebrush habitats elsewhere in the United States.

  13. GEOMORPHIC AND HYDROGEOLOGICAL CONTROLS ON THE DISTRIBUTION OF WET MEADOWS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    The Great Basin is an arid landscape dominated by dryland vegetation such as big sage and xeric grasses. Meadow complexes occur in mountain drainages and consist of discrete parcels of land up to several hectares in area that are characterized by high water tables and that primar...

  14. Biological soil crust response to late season prescribed fire in a Great Basin juniper woodland

    Science.gov (United States)

    Steven D. Warren; Larry L. St.Clair; Jeffrey R. Johansen; Paul Kugrens; L. Scott Baggett; Benjamin J. Bird

    2015-01-01

    Expansion of juniper on U.S. rangelands is a significant environmental concern. Prescribed fire is often recommended to control juniper. To that end, a prescribed burn was conducted in a Great Basin juniper woodland. Conditions were suboptimal; fire did not encroach into mid- or late-seral stages and was patchy in the early-seral stage. This study evaluated the effects...

  15. Evaluation of thermal, chemical, and mechanical seed scarification methods for 4 Great Basin lupine species

    Science.gov (United States)

    Covy D. Jones; Mikel R. Stevens; Von D. Jolley; Bryan G. Hopkins; Scott L. Jensen; Dave Turner; Jason M. Stettler

    2016-01-01

    Seeds of most Great Basin lupine (Lupinus spp. [Fabaceae]) species are physically dormant and thus, difficult to establish in uniform stands in seed production fields. We designed this study to examine 5 seed scarification techniques, each with 11 levels of application (including a non-scarified control), to reduce the physical seed dormancy of longspur lupine...

  16. A landscape approach for ecologically based management of Great Basin shrublands

    Science.gov (United States)

    Michael J. Wisdom; Jeanne C. Chambers

    2009-01-01

    Native shrublands dominate the Great Basin of western of North America, and most of these communities are at moderate or high risk of loss from non-native grass invasion and woodland expansion. Landscape-scale management based on differences in ecological resistance and resilience of shrublands can reduce these risks. We demonstrate this approach with an example that...

  17. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    Science.gov (United States)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability

  18. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    Science.gov (United States)

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  19. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence

    Science.gov (United States)

    Brodie, Jon; Pearson, Richard G.

    2016-12-01

    The Great Barrier Reef (GBR) is a World Heritage site off the north-eastern coast of Australia. The GBR is worth A 15-20 billion/year to the Australian economy and provides approximately 64,000 full time jobs. Many of the species and ecosystems of the GBR are in poor condition and continue to decline. The principal causes of the decline are catchment pollutant runoff associated with agricultural and urban land uses, climate change impacts and the effects of fishing. Many important ecosystems of the GBR region are not included inside the boundaries of the World Heritage Area. The current management regime for catchment pollutant runoff and climate change is clearly inadequate to prevent further decline. We propose a refocus of management on a "Greater GBR" (containing not only the major ecosystems and species of the GBR, but also its catchment) and on a set of management actions to halt the decline of the GBR. Proposed actions include: (1) Strengthen management in the areas of the Greater GBR where ecosystems are in good condition, with Torres Strait, northern Cape York and Hervey Bay being the systems with highest current integrity; (2) Investigate methods of cross-boundary management to achieve simultaneous cost-effective terrestrial, freshwater and marine ecosystem protection in the Greater GBR; (3) Develop a detailed, comprehensive, costed water quality management plan for the Greater GBR; (4) Use the Great Barrier Reef Marine Park Act and the Environment Protection and Biodiversity Conservation Act to regulate catchment activities that lead to damage to the Greater GBR, in conjunction with the relevant Queensland legislation; (5) Fund catchment and coastal management to the required level to solve pollution issues for the Greater GBR by 2025, before climate change impacts on Greater GBR ecosystems become overwhelming; (6) Continue enforcement of the zoning plan; (7) Australia to show commitment to protecting the Greater GBR through greenhouse gas emissions

  20. A synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin

    International Nuclear Information System (INIS)

    Denkenberger, Joseph S.; Driscoll, Charles T.; Branfireun, Brian A.; Eckley, Chris S.; Cohen, Mark; Selvendiran, Pranesh

    2012-01-01

    Rates of surface-air elemental mercury (Hg 0 ) fluxes in the literature were synthesized for the Great Lakes Basin (GLB). For the majority of surfaces, fluxes were net positive (evasion). Digital land-cover data were combined with representative evasion rates and used to estimate annual Hg 0 evasion for the GLB (7.7 Mg/yr). This value is less than our estimate of total Hg deposition to the area (15.9 Mg/yr), suggesting the GLB is a net sink for atmospheric Hg. The greatest contributors to annual evasion for the basin are agricultural (∼55%) and forest (∼25%) land cover types, and the open water of the Great Lakes (∼15%). Areal evasion rates were similar across most land cover types (range: 7.0–21.0 μg/m 2 -yr), with higher rates associated with urban (12.6 μg/m 2 -yr) and agricultural (21.0 μg/m 2 -yr) lands. Uncertainty in these estimates could be partially remedied through a unified methodological approach to estimating Hg 0 fluxes. - Highlights: ► Considerable variability exists across spatial/temporal scales in Hg 0 evasion rates. ► Methodological approaches vary for estimating and reporting gaseous Hg 0 fluxes. ► Hg 0 evasion from the Great Lakes Basin is estimated at 7.7 Mg/yr (10.2 μg/m 2 -yr). ► Hg flux estimates suggest region is a net sink for atmospheric Hg. ► 95% of Hg 0 evasion in the region is from agriculture, forest, and the Great Lakes. - A synthesis of Hg evasion was conducted and this information was used to develop an estimate of Hg evasion for the Great Lakes Basin.

  1. Potential effects of climate change on aquatic ecosystems of the Great Plains of North America

    Science.gov (United States)

    Covich, A.P.; Fritz, S.C.; Lamb, P.J.; Marzolf, R.D.; Matthews, W.J.; Poiani, K.A.; Prepas, E.E.; Richman, M.B.; Winter, T.C.

    1997-01-01

    The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north-south differences in summer temperatures and east-west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. ?? 1997 by John Wiley & Sons, Ltd.

  2. Tackling soil degradation and environmental changes in Lake Manyara Basin, Tanzania to support sustainable landscape/ecosystem management.

    Science.gov (United States)

    Munishi, Linus; Mtei, Kelvin; Bode, Samuel; Dume, Bayu; Navas, Ana; Nebiyu, Amsalu; Semmens, Brice; Smith, Hugh; Stock, Brian; Boeckx, Pascal; Blake, Will

    2017-04-01

    The Lake Manyara Basin (LMB), which encompasses Lake Manyara National Park a world ranking World Biosphere Reserve, is of great ecological and socio-economic value because it hosts a small-holder rain fed and extensive irrigation agriculture, grazing grounds for pastoralists, terrestrial and aquatic habitat for wildlife and tourism business contributing to poverty alleviation. Despite these multiple ecosystem services that support the local communities, the LMB is threatened by; (a) siltation from eroded soil fed from the wider catchment and rift escarpment of the basin and (b) declining water levels due to water capture by agriculture and possibly climate change. These threats to the ecosystem and its services are augmented by increasing human population, pollution by agricultural pesticides, poaching, human encroachment and infrastructure development, and illegal fisheries. Despite these challenges, here is a dearth of information on erosion hotspots and to date soil erosion and siltation problems in LMB have been interpreted largely in qualitative terms, and no coherent interpretative framework of these records exists. Despite concerns that modern sediment fluxes to the Lake may exceed long-term fluxes, little is known about erosion sources, how erosion rates and processes vary across the landscape and how erosion rates are influenced by the strong climate gradients in the basin. This contribution describes a soil erosion and sediment management project that aims to deliver a demonstration dataset generated from inter-disciplinary sediment-source tracing technologies and approaches to assess erosion hotspots, processes and spatial patterns of erosion in the area. The work focuses on a sub basin, the Monduli Sub catchment, located within the greater LMB. This is part of efforts to establish an understanding of soil erosion and landscape degradation in the basin as a pathway for generating and developing knowledge, building capacity to assist conservationists

  3. Implications of climate change for water resources in the Great Lakes basin

    International Nuclear Information System (INIS)

    Clamen, M.

    1990-01-01

    Several authors have suggested the following impacts of global warming for the Great Lakes region. The average annual warming is predicted by one model to be ca 4.5 degree C, slightly more in winter and slightly less in summer. Annual precipitation is projected to increase by ca 8% for points in the central and western basin, but to decrease by 3-6% for the eastern basin. Basin snowpack could be reduced by up to 100% and the snow season shortened by 2-4 weeks, resulting in a reduction of more than 50% in available soil moisture. Buoyancy-driven turnovers of the water column on four of the six lakes may not occur at all. Presently the phenomena occurs twice per year on all the lakes. Ice formation would be greatly reduced. Maximum ice cover may decline from 72-0% for Lake Superior, 38-0% for Lake Michigan, 65-0% for Lake Huron, 90-50% for Lake Erie and 33-0% for Lake Ontario. Net basin supplies would be reduced probably in the range 15-25% below the current mean value. Possible responses include integrated studies and research, better and continually updated information, assessment of public policies in the U.S. and Canada, enhanced private planning efforts, and increased global cooperation

  4. Bi-national Great Lakes-St. Lawrence Basin climate change and hydrologic scenarios report

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, B.; Smith, J.V.; Koshida, G.; Mortsch, L.D. [eds.

    1998-09-01

    Climate experts in government, industry and academic institutions have put together a national assessment of how climate change will affect Canadians and their social, biological and economic environment over the next century. This volume documents the impacts and implications of climate change on the Great Lakes-St. Lawrence Basin, and provides an analysis and assessment of various climate and hydrologic scenarios used for the Great Lakes - St. Lawrence Basin Project. As part of the analysis and assessment, results from the Canadian Climate Centre second-generation General Circulation Model and four transposition scenarios for both climate and hydrological resources are reviewed. The objective is to provide an indication of sensitivities and vulnerabilities of the region to climate, with a view to improve adaptation to potential climate changes. 25 tabs., 26 figs. figs.

  5. Flow velocities estimated from chlorine-36 in the South-West Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Herczeg, A.L.; Love, A.J.; Sampson, L.; Cresswell, R.G.; Fifield, L.K.

    1999-01-01

    The Great Artesian Basin (GAB) is the largest groundwater basin in the world and is the lifeline for water resources in a large proportion of the arid interior of the Australian continent. Despite its obvious importance, there is a great deal of uncertainty in the estimates of horizontal groundwater flow velocities and recharge rates. We report the first reliable estimates of these sustainability indicators in the south west segment of the GAB. Groundwater was sampled from 23 wells along two transects parallel to the W-E hydraulic gradient for 36 Cl, 14 C, stable isotopes (δ 13 C, δ 18 O, δ 2 H) and major ion chemistry. The groundwater collected was from the undifferentiated Jurassic and Cretaceous (J and K) aquifer. These new data potentially contribute to the resolution of the interpretation of 36 Cl derived ages in a very large slow moving groundwater system and to the overall conceptual understanding of flow systems of the GAB

  6. Gardening guide for high-desert urban landscapes of Great Basin regions in Nevada and Utah

    Science.gov (United States)

    Heidi Kratsch; Rick Heflebower

    2013-01-01

    Some Great Basin urban areas in Utah and Nevada exhibit climatic conditions that make it difficult for all but the toughest landscape plants to thrive without providing supplemental water. These areas are found at elevations from 4,000 feet to 6,000 feet in USDA cold-hardiness zones 6 and 7. Soils are often poor and gravelly, containing less than 1 percent organic...

  7. 76 FR 17347 - Revision to the California State Implementation Plan, Great Basin Unified Air Pollution Control...

    Science.gov (United States)

    2011-03-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revision to the California State Implementation Plan, Great Basin Unified Air Pollution Control District CFR Correction In Title 40 of the Code of Federal Regulations, Part 52 (Sec. Sec. 52.01 to 52.1018), revised as of July 1, 2010, on page 252, in Sec. 52.220, paragraph (c)(345)(i)(D) is added to...

  8. Digital Soil Mapping Using Landscape Stratification for Arid Rangelands in the Eastern Great Basin, Central Utah

    OpenAIRE

    Fonnesbeck, Brook B.

    2015-01-01

    Digital soil mapping typically involves inputs of digital elevation models, remotely sensed imagery, and other spatially explicit digital data as environmental covariates to predict soil classes and attributes over a landscape using statistical models. Digital imagery from Landsat 5, a digital elevation model, and a digital geology map were used as environmental covariates in a 67,000-ha study area of the Great Basin west of Fillmore, UT. A “pre-map” was created for selecting sampling locatio...

  9. Soil Preferences in Germination and Survival of Limber Pine in the Great Basin White Mountains

    Directory of Open Access Journals (Sweden)

    Brian V. Smithers

    2017-11-01

    Full Text Available In the Great Basin, limber pine is a sub-alpine tree species that is colonizing newly available habitat above treeline in greater numbers than treeline-dominating Great Basin bristlecone pine, especially on dolomite soil, where few plants are able to grow and where limber pine adults are rare. To examine the role of soil type on germination and establishment of limber pine, I sowed limber pine seeds in containers of the three main White Mountains soil types in one location while measuring soil moisture and temperature. I found that dolomite soil retains water longer, and has higher soil water content, than quartzite and granite soils and has the coolest maximum growing season temperatures. Limber pine germination and survival were highest in dolomite soil relative to quartzite and granite where limber pine adults are more common. While adult limber pines are rare on dolomite soils, young limber pines appear to prefer them. This indicates that limber pine either has only recently been able to survive in treeline climate on dolomite or that bristlecone pine has some long-term competitive advantage on dolomite making limber pine, a species with 1500 year old individuals, an early succession species in Great Basin sub-alpine forests.

  10. Monitoring species richness and abundance of shorebirds in the western Great Basin

    Science.gov (United States)

    Warnock, Nils; Haig, Susan M.; Oring, Lewis W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inaccessibility of sites, and few ornithologists. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted in the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determine species diversity. Aerial surveys of three large alkali lakes in Oregon (Goose, Summer, and Abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebird sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of S-10% negative declines in populations of these birds would take a minimum of 7-23 years of comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  11. Highlighted scientific findings of the Interior Columbia Basin Ecosystem Management Project.

    Science.gov (United States)

    Thomas M. Quigley; Heidi. Bigler Cole

    1997-01-01

    Decisions regarding 72 million acres of Forest Service- and Bureau of Land Management- administered lands will be based on scientific findings brought forth in the Interior Columbia Basin Ecosystem Management Project. Some highlights of the scientific findings are presented here. Project scientists drew three general conclusions: (1) Conditions and trends differ widely...

  12. Forest changes since Euro-American settlement and ecosystem restoration in the Lake Tahoe Basin, USA

    Science.gov (United States)

    Alan H. Taylor

    2007-01-01

    Pre Euro-American settlement forest structure and fire regimes for Jeffrey pine-white fir, red fir-western white pine, and lodgepole pine forests were quantified using stumps from trees cut in the 19th century to establish a baseline reference for ecosystem management in the Lake Tahoe Basin. Contemporary forests varied in different ways compared...

  13. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems.

    Science.gov (United States)

    Guiot, Joel; Cramer, Wolfgang

    2016-10-28

    The United Nations Framework Convention on Climate Change Paris Agreement of December 2015 aims to maintain the global average warming well below 2°C above the preindustrial level. In the Mediterranean basin, recent pollen-based reconstructions of climate and ecosystem variability over the past 10,000 years provide insights regarding the implications of warming thresholds for biodiversity and land-use potential. We compare scenarios of climate-driven future change in land ecosystems with reconstructed ecosystem dynamics during the past 10,000 years. Only a 1.5°C warming scenario permits ecosystems to remain within the Holocene variability. At or above 2°C of warming, climatic change will generate Mediterranean land ecosystem changes that are unmatched in the Holocene, a period characterized by recurring precipitation deficits rather than temperature anomalies. Copyright © 2016, American Association for the Advancement of Science.

  14. The biotest basin of the Forsmark nuclear power plant, Sweden. An experiment on the ecosystem level

    International Nuclear Information System (INIS)

    Grimaas, U.

    1979-01-01

    Biotope models of various sizes and enclosed waters in connection with radionuclide release constitute important tools for radioecological experiments, representing an intermediate step between field and laboratory conditions. The biotest basin at Forsmark is especially constructed for investigations on the effects of radioactivity and heat on a brackish water ecosystem. The basin encloses a water area of 1km 2 in the outer archipelago of the region and is fed with cooling water and released radionuclides by a discharge tunnel. The quantities of the discharges into the basin are adjustable. The biotest experiment permits a quantification of the retention and transport of radionuclides at the various trophic levels. Of special value is the possibility to work with known populations of fish. The approach has the advantage of experimental ecology - the control of important parameters - under the impact of all environmental factors in a complete ecosystem. (author)

  15. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, southwest China.

    Science.gov (United States)

    Hu, Yi'na; Peng, Jian; Liu, Yanxu; Tian, Lu

    2018-06-01

    Ecosystem services are the benefits people obtain from ecosystems, and ecosystem services trade-offs have been widely applied to the development of land-use policy. Although previous studies have focused on trade-offs of ecosystem services, a scenario approach has been seldom used. The scenario approach can reveal the changes of ecosystem services for different land-use patterns in the future, and is of great significance for land-use decisions and ecosystem management. Based on the actual situation of deteriorating water quality and dwindling water supply in the Erhai Lake Basin of southwest China, this study put forward to convert paddy land to dry land (PLDL) in the basin, and simulated its potential impact on ecosystem services. Taking environmental pollution, social impact, economic benefit and residential participation into consideration, four scenarios of PLDL were designed. Then, four ecosystem services (water purification, water yield, soil conservation and rice production) were calculated for each scenario. The optimal scenario of PLDL in the Erhai Lake Basin was identified by trade-offs of the four ecosystem services. The results showed that the total nitrogen export could be reduced by 42.07% and water yield can be increased by 5.61% after converting 100% of paddy lands to dry land, thereby greatly improving the water quality and increasing the water yield of Erhai Lake. However, PLDL involving 100% of paddy lands also increased the sediment export by 17.22%, and eliminated rice production in the region. By comparing the four PLDL scenarios for converting just 50% of paddy lands, the residential participation scenario was identified to be the best choice for PLDL implementation because it achieved the best level of water purification and had the smallest negative effect on other ecosystem services. The optimal scenario for each township showed spatial differentiation, and there were conflicts between the optimal scenarios at basin scale and township

  16. Three-Dimensional Geologic Characterization of a Great Basin Geothermal System: Astor Pass, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mayhew, Brett; Siler, Drew L; Faulds, James E

    2013-09-30

    The Great Basin, western USA, exhibits anomalously high heat flow (~75±5 mWm-2) and active faulting and extension, resulting in ~430 known geothermal systems. Recent studies have shown that steeply dipping normal faults in transtensional pull-aparts are a common structural control of these Great Basin geothermal systems. The Astor Pass blind (no surface expression) geothermal system, Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Across this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range, resulting in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and northerly striking normal faults. Previous studies indicate that Astor Pass was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal-dextral fault bounding the western side of the Terraced Hills. Drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming a blind geothermal system. Expanding upon previous work and employing interpretation of 2D seismic reflection data, additional detailed geologic mapping, and well cuttings analysis, a 3-dimensional geologic model of the Astor Pass geothermal system was constructed. The 3D model indicates a complex interaction/intersection area of three discrete fault zones: a northwest-striking dextral-normal fault, a north-northwest-striking normal-dextral fault, and a north-striking west-dipping normal fault. These two discrete, critically-stressed intersection areas plunge moderately to steeply to the NW-NNW and probably act as conduits for upwelling geothermal fluids.

  17. Characterizing isotopic variability of primary production and consumers in Great Plains ecosystems during protracted regional drought

    Science.gov (United States)

    Haveles, A. W.; Fox-Dobbs, K.; Talmadge, K. A.; Fetrow, A.; Fox, D. L.

    2012-12-01

    Over the last few years (2010-2012), the Great Plains of the central USA experienced protracted drought conditions, including historically severe drought during Summer, 2011. Drought severity in the region generally decreases with increasing latitude, but episodic drought is a fundamental trait of grassland ecosystems. Documenting above ground energy and nutrient flow with current drought is critical to understanding responses of grassland ecosystems in the region to predicted increased episodicity of rainfall and recurrence of drought due to anthropogenic climate change. Characterization of biogeochemical variability of modern ecosystems at the microhabitat, local landscape, and regional scales is also necessary to interpret biogeochemical records of ancient grasslands based on paleosols and fossil mammals. Here, we characterize three grassland ecosystems that span the drought gradient in the Great Plains (sites in the Texas panhandle, southwest Kansas, and northwest Nebraska). We measured δ13C and δ15N values of plants and consumers to characterize the biogeochemical variability within each ecosystem. Vegetation at each site is a mix of trees, shrubs, herbs, and cool- and warm-growing season grasses (C3 and C4, respectively). Thus, consumers have access to isotopically distinct sources of forage that vary in abundance with microhabitat (e.g., open grassland, shrub thicket, riparian woodland). Observations indicate herbivorous arthropod (grasshoppers and crickets) abundance follows drought severity, with high abundance of many species in Texas, and low abundance of few species in Nebraska. Small mammal (rodents) abundance follows the inverse pattern with 0.8%, 3.2% and 17.2% capture success in Texas, Kansas and Nebraska, respectively. The inverse abundance patterns of consumer groups may result from greater sensitivity of small mammal consumers with high metabolic needs to lower local net primary productivity and forage quality under drought conditions. As a

  18. 3D characterization of a Great Basin geothermal system: Astor Pass, NV

    Science.gov (United States)

    Siler, D. L.; Mayhew, B.; Faulds, J. E.

    2012-12-01

    The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault and fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings, a 3

  19. Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Sanchez-Canales, María; Terrado, Marta; López, Alfredo; Elorza, F Javier; Ziv, Guy; Acuña, Vicenç; Schuhmacher, Marta

    2013-08-01

    The Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and such changes impact the capacity of ecosystems to provide goods and services to human society. The predicted future scenarios for this region present an increased frequency of floods and extended droughts, especially at the Iberian Peninsula. This paper evaluates the impacts of climate change on the water provisioning and erosion control services in the densely populated Mediterranean Llobregat river basin of. The assessment of ecosystem services and their mapping at the basin scale identify the current pressures on the river basin including the source area in the Pyrenees Mountains. Drinking water provisioning is expected to decrease between 3 and 49%, while total hydropower production will decrease between 5 and 43%. Erosion control will be reduced by up to 23%, indicating that costs for dredging the reservoirs as well as for treating drinking water will also increase. Based on these data, the concept for an appropriate quantification and related spatial visualization of ecosystem service is elaborated and discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  1. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    Science.gov (United States)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  2. Ground Motion Prediction for Great Interplate Earthquakes in Kanto Basin Considering Variation of Source Parameters

    Science.gov (United States)

    Sekiguchi, H.; Yoshimi, M.; Horikawa, H.

    2011-12-01

    Broadband ground motions are estimated in the Kanto sedimentary basin which holds Tokyo metropolitan area inside for anticipated great interplate earthquakes along surrounding plate boundaries. Possible scenarios of great earthquakes along Sagami trough are modeled combining characteristic properties of the source area and adequate variation in source parameters in order to evaluate possible ground motion variation due to next Kanto earthquake. South to the rupture area of the 2011 Tohoku earthquake along the Japan trench, we consider possible M8 earthquake. The ground motions are computed with a four-step hybrid technique. We first calculate low-frequency ground motions at the engineering basement. We then calculate higher-frequency ground motions at the same position, and combine the lower- and higher-frequency motions using a matched filter. We finally calculate ground motions at the surface by computing the response of the alluvium-diluvium layers to the combined motions at the engineering basement.

  3. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  4. Possible extrinsic controls on the Ordovician radiation: Stratigraphic evidence from the Great Basin, western USA

    Energy Technology Data Exchange (ETDEWEB)

    Droser, M.L. (Univ. of California, Riverside, CA (United States). Dept. of Earth Sciences); Fortey, R.A. (Natural History Museum, London (United Kingdom). Dept. of Palaeontology)

    1993-04-01

    The Ordovician radiation has been previously examined by looking at 1/analyses of patterns of diversification within small clades, 2/analyses of large databases to elucidate large-scale paleoecological patterns such as increased tiering and onshore-offshore shifts associated with this radiation. In order to resolve the relationships between these two scales of analysis there is critical need to examine in detail the paleoecology and possible biofacies shifts associated with the Ordovician radiation. The authors have examined the base of the Whiterock Series (Lower-Middle Ordovician) in the Great Basin as it represents one of the most complete records of the Ordovician radiation on the North American continent. Detailed field evidence suggests that the base of the Whiterock does not represent a simple faunal turnover but corresponds with the first occurrences in the region of groups that come to dominate the rest of the Paleozoic. Among the trilobites, this includes the lichides, calymenids, proetides, and phacopides. Similar patterns are found among the dominate Paleozoic bivalve, cephalopod, brachiopod and graptolite clades. Global correlation of this time interval suggests that this pattern of first broad geographic occurrences is not unique to North America. This boundary corresponds with a globally recognized sea level lowstand. In the Great Basin, significant facies shifts are present in shallow and deep water settings. While extrinsic controls are commonly reserved for extinctions, these data suggest that extrinsic factors may have been significant in the timing of the Paleozoic fauna rose to dominance.

  5. Evaluating connection of aquifers to springs and streams, Great Basin National Park and vicinity, Nevada

    Science.gov (United States)

    Prudic, David E.; Sweetkind, Donald S.; Jackson, Tracie R.; Dotson, K. Elaine; Plume, Russell W.; Hatch, Christine E.; Halford, Keith J.

    2015-12-22

    Federal agencies that oversee land management for much of the Snake Range in eastern Nevada, including the management of Great Basin National Park by the National Park Service, need to understand the potential extent of adverse effects to federally managed lands from nearby groundwater development. As a result, this study was developed (1) to attain a better understanding of aquifers controlling groundwater flow on the eastern side of the southern part of the Snake Range and their connection with aquifers in the valleys, (2) to evaluate the relation between surface water and groundwater along the piedmont slopes, (3) to evaluate sources for Big Springs and Rowland Spring, and (4) to assess groundwater flow from southern Spring Valley into northern Hamlin Valley. The study focused on two areas—the first, a northern area along the east side of Great Basin National Park that included Baker, Lehman, and Snake Creeks, and a second southern area that is the potential source area for Big Springs. Data collected specifically for this study included the following: (1) geologic field mapping; (2) drilling, testing, and water quality sampling from 7 test wells; (3) measuring discharge and water chemistry of selected creeks and springs; (4) measuring streambed hydraulic gradients and seepage rates from 18 shallow piezometers installed into the creeks; and (5) monitoring stream temperature along selected reaches to identify places of groundwater inflow.

  6. Natural resource mitigation, adaptation and research needs related to climate change in the Great Basin and Mojave Desert

    Science.gov (United States)

    Hughson, Debra L.; Busch, David E.; Davis, Scott; Finn, Sean P.; Caicco, Steve; Verburg, Paul S.J.

    2011-01-01

    This report synthesizes the knowledge, opinions, and concerns of many Federal and State land managers, scientists, stakeholders, and partners from a workshop, held at the University of Nevada, Las Vegas, on April 20-22, 2010. Land managers, research scientists, and resource specialists identified common concerns regarding the potential effects of climate change on public lands and natural resources in the Great Basin and Mojave Desert and developed recommendations for mitigation, adaptation, and research needs. Water and, conversely, the effects of drought emerged as a common theme in all breakout sessions on terrestrial and aquatic species at risk, managing across boundaries, monitoring, and ecosystem services. Climate change models for the southwestern deserts predict general warming and drying with increasing precipitation variability year to year. Scientists noted that under these changing conditions the past may no longer be a guide to the future in which managers envision increasing conflicts between human water uses and sustaining ecosystems. Increasing environmental stress also is expected as a consequence of shifting ecosystem boundaries and species distributions, expansion of non-native species, and decoupling of biotic mutualisms, leading to increasingly unstable biologic communities. Managers uniformly expressed a desire to work across management and agency boundaries at a landscape scale but conceded that conflicting agency missions and budgetary constraints often impede collaboration. More and better science is needed to cope with the effects of climate change but, perhaps even more important is the application of science to management issues using the methods of adaptive management based on long-term monitoring to assess the merits of management actions. Access to data is essential for science-based land management. Basic inventories, spatial databases, baseline condition assessments, data quality assurance, and data sharing were identified as top

  7. Basin-wide impacts of climate change on ecosystem services in the Lower Mekong Basin

    Science.gov (United States)

    Water resources support more than 60 million people in the Lower Mekong Basin (LMB) and are important for food security—especially rice production—and economic security. This study aims to quantify water yield under near- and long-term climate scenarios and assess the...

  8. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    Science.gov (United States)

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the associated impacts on the freshwater ecosystem. A water accounting framework that combines water consumption data and economic data from input output tables is applied to quantify localized virtual water imports and exports in the Kalamazoo watershed which comprises ten counties. Water using economic activities at the county level are conformed to watershed boundaries through land use-water use relationships. The counties are part of a region implementing the Michigan Water Withdrawal Assessment Process, including new regulatory approaches for adaptive water resources management under a riparian water rights framework. The results show that at local level, there exists considerable water use intensity and virtual water trade balance disparity among the counties and between water use sectors in this watershed. The watershed is a net virtual water importer, with some counties outsourcing nearly half of their water resource impacts, and some outsourcing nearly all water resource impacts. The largest virtual water imports are associated with agriculture, thermoelectric power generation and industry, while the bulk of the exports are associated with thermoelectric power generation and commercial activities. The methodology is applicable to various spatial levels ranging from the micro sub-watershed level to the macro Great Lakes watershed region, subject to the availability of reliable water use and economic data.

  9. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin

    Science.gov (United States)

    Davis, John M.; Ekman, Drew R.; Teng, Quincy; Ankley, Gerald T.; Berninger, Jason P.; Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Schroeder, Anthony L.; Villeneuve, Daniel L.; Jorgenson, Zachary G.; Lee, Kathy E.; Collette, Timothy W.

    2016-01-01

    The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants. Environ Toxicol Chem 2016;35:2493–2502.

  10. Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia's Great Artesian Basin.

    Science.gov (United States)

    Murphy, Nicholas P; Adams, Mark; Austin, Andrew D

    2009-01-01

    The groundwater-dependent springs of the Great Artesian Basin (GAB) in arid inland Australia represent a unique and threatened ecosystem. These incredibly isolated springs support a diverse array of endemic flora and fauna. One of the common faunal groups in the GAB springs is the freshwater amphipods of the family Chiltoniidae. The morphological conservatism and taxonomic uncertainty associated with these amphipods has ensured their true biodiversity, phylogeographical history and evolutionary affinities have remained unknown. We have used mitochondrial DNA and allozyme data to unravel a complicated history of isolation, extinction and dispersal among spring amphipod populations across the GAB. The results provide evidence for multiple independent colonizations in the GAB springs, particularly within the Lake Eyre group of springs. The inclusion of a group of Western Australian (WA) stygobitic amphipods from populations up to 1500 km away found surprising evidence for a shared evolutionary history between stygobitic and GAB spring amphipods. Approximate dating of the diversity found between major clades suggests the majority of lineages originated in the late Miocene, around the time of the aridification of inland Australia. The large number of independent lineages and the close connection between GAB spring and WA stygobitic amphipods suggest that a significantly rich amphipod fauna existed in the much wetter environment that once existed in inland Australia. The results also provide evidence for a gross underestimation of the species diversity within the springs, with 12 putative species identified, a conclusion with significant implications for the ongoing conservation of the GAB springs.

  11. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA

    Science.gov (United States)

    Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra

    2018-01-01

    Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.

  12. Freshwater Ecosystem Services and Hydrologic Alteration in the Lower Mississippi River Basin

    Science.gov (United States)

    Yasarer, L.; Taylor, J.; Rigby, J.; Locke, M. A.

    2017-12-01

    Flowing freshwater ecosystems provide a variety of essential ecosystem services including: consumptive water for domestic, industrial, and agricultural use; transportation of goods; maintenance of aquatic biodiversity and water quality; and recreation. However, freshwater ecosystem services can oftentimes be at odds with each other. For example, the over-consumption of water for agricultural production or domestic use may alter hydrologic patterns and diminish the ability of flowing waters to sustain healthy aquatic ecosystems. In the Lower Mississippi River Basin there has been a substantial increase in groundwater-irrigated cropland acreage over the past several decades and subsequent declines in regional aquifer levels. Changes in aquifer levels potentially impact surface water hydrology throughout the region. This study tests the hypothesis that flowing water systems in lowland agricultural watersheds within the Lower Mississippi River Basin have greater hydrologic alteration compared to upland non-agricultural watersheds, particularly with declines in base flow and an increase in extreme low flows. Long-term streamflow records from USGS gauges located in predominantly agricultural and non-agricultural watersheds in Arkansas, Louisiana, Mississippi, and Tennessee were evaluated from 1969 -2016 using the Indicators of Hydrologic Alteration (IHA) software. Preliminary results from 8 non-agricultural and 5 agricultural watersheds demonstrate a substantial decline in base flow in the agricultural watersheds, which is not apparent in the non-agricultural watersheds. This exploratory study will analyze the trade-off between gains in agricultural productivity and changes in ecohydrological indicators over the last half century in diverse watersheds across the Lower Mississippi River Basin. By quantifying the changes in ecosystem services provided by flowing waters in the past, we can inform sustainable management pathways to better balance services in the future.

  13. 75 FR 26786 - Notice of Public Meeting: Sierra Front-Northwestern Great Basin Resource Advisory Council, NV

    Science.gov (United States)

    2010-05-12

    ... 261A; 10-08807; MO 4500012081; TAS: 14X1109] Notice of Public Meeting: Sierra Front-Northwestern Great..., Bureau of Land Management (BLM) Sierra Front-Northwestern Great Basin Resource Advisory Council (RAC... discussion will include, but are not limited to: District Manager's reports on current program of work, Draft...

  14. Records of millennial-scale climate change from the Great Basin of the Western United States

    Science.gov (United States)

    Benson, Larry

    High-resolution (decadal) records of climate change from the Owens, Mono, and Pyramid Lake basins of California and Nevada indicate that millennialscale oscillations in climate of the Great Basin occurred between 52.6 and 9.2 14C ka. Climate records from the Owens and Pyramid Lake basins indicate that most, but not all, glacier advances (stades) between 52.6 and ˜15.0 14C ka occurred during relatively dry times. During the last alpine glacial period (˜60.0 to ˜14.0 14C ka), stadial/interstadial oscillations were recorded in Owens and Pyramid Lake sediments by the negative response of phytoplankton productivity to the influx of glacially derived silicates. During glacier advances, rock flour diluted the TOC fraction of lake sediments and introduction of glacially derived suspended sediment also increased the turbidity of lake water, decreasing light penetration and photosynthetic production of organic carbon. It is not possible to correlate objectively peaks in the Owens and Pyramid Lake TOC records (interstades) with Dansgaard-Oeschger interstades in the GISP2 ice-core δ18O record given uncertainties in age control and difference in the shapes of the OL90, PLC92 and GISP2 records. In the North Atlantic region, some climate records have clearly defined variability/cyclicity with periodicities of 102 to 103 yr; these records are correlatable over several thousand km. In the Great Basin, climate proxies also have clearly defined variability with similar time constants, but the distance over which this variability can be correlated remains unknown. Globally, there may be minimal spatial scales (domains) within which climate varies coherently on centennial and millennial scales, but it is likely that the sizes of these domains vary with geographic setting and time. A more comprehensive understanding of the mechanisms of climate forcing and the physical linkages between climate forcing and system response is needed in order to predict the spatial scale(s) over which

  15. Water environments: anthropogenic pressures and ecosystem changes in the Atlantic drainage basins of Brazil.

    Science.gov (United States)

    Marques, Marcia; da Costa, Monica F; Mayorga, Maria Irles de O; Pinheiro, Patrícia R

    2004-02-01

    Densely occupied drainage basins and coastal zones in developing countries that are facing economic growth are likely to suffer from moderate to severe environmental impacts regarding different issues. The catchment basins draining towards the Atlantic coast from northeastern to southern Brazil include a wide range of climatic zones and diverse ecosystems. Within its borders lies the Atlantic rain forest, significant extensions of semiarid thorn forests (caatinga), vast tree and scrub woodlands (cerrado) and most of the 6670 km of the Brazilian coast and its marine ecosystems. In recent decades, human activities have increasingly advanced over these natural resources. Littoralization has imposed a burden on coastal habitats and communities. Most of the native vegetation of the cerrado and caatinga was removed and only 7% of the original Atlantic rainforest still exists. Estuaries, bays and coastal lagoons have been irreversibly damaged. Land uses, damming and water diversion have become the major driving forces for habitat loss and aquatic ecosystem modification. Regardless of the contrast between the drought-affected northeastern Brazil and the much more prosperous and industrialized southeastern/southern Brazil, the impacts on habitat and communities were found equally severe in both cases. Attempts to halt environmental degradation have not been effective. Instead of focusing on natural resources separately, it is suggested that more integrated environmental policies that focus on aquatic ecosystems integrity are introduced.

  16. First evidence of grass carp recruitment in the Great Lakes Basin

    Science.gov (United States)

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  17. Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins

    International Nuclear Information System (INIS)

    1993-08-01

    The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R ampersand D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ''typical'' well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic

  18. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  19. Anoxia pre-dates Frasnian–Famennian boundary mass extinction horizon in the Great Basin, USA

    Science.gov (United States)

    Bratton, John F.; Berry, William B.N.; Morrow, Jared R.

    1999-01-01

    Major and trace metal results from three Great Basin stratigraphic sections with strong conodont biostratigraphy identify a distinct anoxic interval that precedes, but ends approximately 100 kyr before, the Frasnian–Famennian (F–F, mid-Late Devonian) boundary mass extinction horizon. This horizon corresponds to the final and most severe step of a more protracted extinction period. These results are inconsistent with data reported by others from the upper Kellwasser horizon in Europe, which show anoxia persisting up to the F–F boundary in most sections. Conditions returned to fully oxygenated prior to the F–F boundary in the study area. These data indicate that the worst part of the F–F extinction was not related directly to oceanic anoxia in this region and potentially globally.

  20. Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park

    Science.gov (United States)

    Volk, J. M.

    2013-12-01

    Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.

  1. The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Julienne J. eParaiso

    2013-08-01

    Full Text Available Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs are core membrane lipids of many archaea that enhance the integrity of cytoplasmic membranes in extreme environments. We examined the iGDGT profiles and corresponding aqueous geochemistry in 40 hot spring sediment and microbial mat samples from the U.S. Great Basin with temperatures ranging from 31 to 95°C and pH ranging from 6.8 to 10.7. The absolute abundance of iGDGTs correlated negatively with pH and positively with temperature. High lipid concentrations, distinct lipid profiles, and a strong relationship between polar and core lipids in hot spring samples suggested in situ production of most iGDGTs rather than contamination from local soils. Two-way cluster analysis and non-metric multidimensional scaling (NMS of polar iGDGTs indicated that the relative abundance of individual lipids was most strongly related to temperature (r2 = 0.546, with moderate correlations with pH (r2 = 0.359, nitrite (r2 = 0.286, oxygen (r2 = 0.259, and nitrate (r2 = 0.215. Relative abundance profiles of individual polar iGDGTs indicated potential temperature optima for iGDGT-0 (≤70°C, iGDGT-3 (≥55°C, and iGDGT -4 (≥60°C. These relationships likely reflect both physiological adaptations and community-level population shifts in response to temperature differences, such as a shift from cooler samples with more abundant methanogens to higher-temperature samples with more abundant Crenarchaeota. Crenarchaeol was widely distributed across the temperature gradient, which is consistent with other reports of abundant crenarchaeol in Great Basin hot springs and suggests a wide distribution for thermophilic ammonia-oxidizing archaea (AOA.

  2. Ecosystem based river basin management planning in critical water catchment in Mongolia

    Science.gov (United States)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  3. Spatio-temporal evolution of water-related ecosystem services: Taihu Basin, China

    Directory of Open Access Journals (Sweden)

    Junyu Chen

    2018-06-01

    Full Text Available Water-related ecosystem services (WESs arise from the interaction between water ecosystems and their surrounding terrestrial ecosystems. They are critical for human well-being as well as for the whole ecological circle. An urgent service-oriented reform for the utilization and supervision of WESs can assist in avoiding ecological risks and achieving a more sustainable development in the Taihu Basin, China (THB. Spatially distributed models allow the multiple impacts of land use/land cover conversion and climate variation on WESs to be estimated and visualized efficiently, and such models can form a useful component in the toolbox for integrated water ecosystem management. The Integrated Valuation of Ecosystem Services and Tradeoffs model is used here to evaluate and visualize the spatio-temporal evolution of WESs in the THB from 2000 to 2010. Results indicate that water retention service experienced a decline from 2000 to 2005 with a recovery after 2005, while there was ongoing water scarcity in urban areas. Both the water purification service and the soil retention service underwent a slight decrease over the study period. Nutrients export mainly came from developed land and cultivated land, with the hilly areas in the south of the THB forming the primary area for soil loss. The quantity and distribution of WESs were impacted significantly by the shrinkage of cultivated land and the expansion of developed land. These findings will lay a foundation for a service-oriented management of WESs in the THB and support evidence-based decision making.

  4. QUALITY ASSURANCE/QUALITY CONTROL OF A PROJECT INVOLVING COOPERATIVE AGREEMENTS, INTRA-AGENCY AGREEMENTS, AGENCY STAFF AND CONTRACTS TO CONDUCT RESEARCH: ECOLOGICAL MONITORING AND ASSESSMENT OF THE GREAT RIVERS ECOSYSTEMS IN THE CENTRAL BASIN OF THE UNITED STATES (EMAP-GRE)

    Science.gov (United States)

    While condition reports are useful to managers, demonstrating how to implement a monitoring and assessment program in the future is also an important project goal. Better monitoring methods will make more information more widely available to better manage the nation's great rive...

  5. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    Science.gov (United States)

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  6. Mapping Ecosystem Service Bundles to Detect Distinct Types of Multifunctionality within the Diverse Landscape of the Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Lingqiao Kong

    2018-03-01

    Full Text Available The tradeoffs and synergies of ecosystem services are widely discussed and recognized. However, explicit information for understanding and managing the complex relationships of multiple ecosystem services at regional scales is still lacking, which often leads to the degradation of important ecosystem services due to one ecosystem service being enhanced over another. We assessed the biodiversity and the production of nine ESs (ecosystem services across 779 counties in the Yangtze River Basin, the largest basin in China. Then, we mapped the distribution of ES for each county and used correlations and “partitioning around medoids” clustering analysis to assess the existence of ES bundles. We found five distinct types of bundles of ecosystem services spatially agglomerated in the landscape, which could be mainly explained by land use, slope and altitude gradients. Our results also show landscape-scale tradeoffs between provisioning and almost all regulating services (and biodiversity, and synergies among almost all regulating services (and biodiversity. Mapping ecosystem service bundles can identify areas in a landscape where ecosystem management has produced exceptionally desirable or undesirable sets of ecosystem services, and can also provide explicit, tailored information on landscape planning for ecosystem service conservation and the design of payment policies for ecosystem services within diverse landscapes at watershed scales.

  7. Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020.

    Science.gov (United States)

    Xu, Xibao; Yang, Guishan; Tan, Yan; Zhuang, Qianlai; Li, Hengpeng; Wan, Rongrong; Su, Weizhong; Zhang, Jian

    2016-06-01

    There are tremendous theoretical, methodological and policy challenges in evaluating the impact of land-use change on the degradation of ecosystem services (ES) at the regional scale. This study addresses these challenges by developing an interdisciplinary methodology based on the Procedure for Ecological Tiered Assessment of Risk (PETAR). This novel methodology integrates ecological models with a land-use change model. This study quantifies the multi-dimensional degradation risks of ES in the Taihu Lake Basin (TLB) of China from 1985 to 2020. Four key ES related to water purification, water quantity adjustment, carbon sequestration and grain production are selected. The study employs models of Denitrification-Decomposition (DNDC), Soil-Water-Atmosphere-Plant (SWAP), Biome-BGC and Agro-ecological Zoning (AEZ) for assimilations. Land-use changes by 2020 were projected using a geographically weighted multinomial logit-cellular automata (GWML-CA) model. The results show that rapid land-use change has posed a great degradation risk of ES in the region in 1985-2020. Slightly less than two-thirds of the basin experienced degradation of ES over the 1985-2010 period, and about 12% of the basin will continue to experience degradation until 2020. Hot spots with severe deterioration in 2010-2020 are projected to be centered around some small and less developed cities in the region. Regulating accelerated urban sprawl and population growth, reinforcing current environmental programs, and establishing monitoring systems for observing dynamics of regional ES are suggested as practical counter-measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Young (gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    Science.gov (United States)

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  9. Sustainability of Water Resources in Arid Ecosystems: A View from Hei River Basin, China (Invited)

    Science.gov (United States)

    Zheng, C.; Cheng, G.; Xiao, H.; Ma, R.

    2009-12-01

    The northwest of China is characterized by an arid climate and fragile ecosystems. With irrigated agriculture, the region is a prolific producer of cotton, wheat, and maize with some of the highest output per acre in the country. The region is also rich in ore deposits, with the reserves of numerous minerals ranked at or near the top in the country. However, the sustainability of irrigated agriculture and economic development in the region is threaten by severe eco-environmental problems resulting from both global changes and human activities, such as desertification, salinization, groundwater depletion, and dust storms. All these problems are a direct consequence of water scarcity. As global warming accelerates and rapid economic growth continues, the water shortage crisis is expected to worsen. To improve the bleak outlook for the health of ecosystem and environment in northwest China, the Chinese government has invested heavily in ecosystem restoration and watershed management in recent years. However, the effectiveness of such measures and actions depends on scientific understanding of the complex interplays among ecological, hydrological and socioeconomic factors. This presentation is intended to provide an overview of a major new research initiative supported by the National Natural Science Foundation of China to study the integration of ecological principles, hydrological processes and socioeconomic considerations toward more sustainable exploitation of surface water and groundwater resources in the Hei River Basin in northwest China. The Hei River Basin is an inland watershed located at the center of the arid region in East Asia, stretching from Qilianshan Mountains in the south to the desert in the north bordering China’s Inner Mongolia Autonomous Region and Mongolia. The total area of Hei River Basin is approximately 130,000 km2. The research initiative builds on existing research infrastructure and ecohydrological data and seeks to reveal complex

  10. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    Science.gov (United States)

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  11. Chlorine stable isotope studies of old groundwater, southwestern Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Zhang Min; Frape, Shaun K.; Love, Andrew J.; Herczeg, Andrew L.; Lehmann, B.E.; Beyerle, U.; Purtschert, R.

    2007-01-01

    Stable Cl isotope ratios ( 37 Cl/ 35 Cl) were measured in groundwater samples from the southwestern flow system of the Great Artesian Basin, Australia to gain a better understanding of the Cl - sources and transport mechanisms. δ 37 Cl values range from 0 per mille to -2.5 per mille (SMOC), and are inversely correlated with Cl - concentration along the inferred flow direction. The Cl isotopic compositions, in conjunction with other geochemical parameters, suggest that Cl - in groundwaters is not derived from salt dissolution. Mixing of the recharge water with saline groundwater cannot explain the relationship between δ 37 Cl and Cl - concentration measured. Marine aerosols deposited via rainfall and subsequent evapotranspiration appear to be responsible for the Cl - concentrations observed in wells that are close to the recharge area, and in groundwaters sampled along the southern transect. δ 37 Cl values measured in the leachate of the Bulldog shale suggest that the aquitard is the subsurface source of Cl - for the majority of groundwater samples studied. Diffusion is likely the mechanism through which Cl - is transported from the pore water of the Bulldog shale to the aquifer. However, a more detailed study of the aquitard rocks is required to verify this hypothesis

  12. The Great Basin Canada goose in southcentral Washington: A 40-year nesting history

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Rickard, W.H.; Eberhardt, L.E.; Gray, R.H.

    1991-04-01

    Overall, the nesting population of Great Basin Canada geese (Branta canadensis moffitti) on the Hanford Site in southcentral Washington State is doing well and appears to be increasing. The average annual total nests for the period 1981 through 1990 was 215 nests, which is slightly above the average reported for the period 1950 through 1970. The nesting population has shifted its nucleus from upriver islands (1--10) to the lower river islands (11--20) with over 70% of the present-day nesting occurring on Islands 17, 18, 19, 20. The annual percent-successful nests from 1981 through 1990 was 80%. This is above the 71% reported for 1950 to 1970, but is below the 82% reported for 1971 to 1980. Average annual clutch size for 1981 to 1990 was 6.05, which is above the 1971-to-1980 average of 5.6 and the 1950-to-70 average of 5.5. Next desertions for 1981 to 1990 averaged 8%. This rate is well below the 14% reported for 1950 to 1970. Predators were responsible for an annual predation rate of 9% from 1981 to 1990. This is below the 1950-to-1970 annual average predation rate of 14%. Flooding losses to nests were low during the 1980s, except for 1989 and 1990 when 6% and 9% of the total nests, respectively, were destroyed by flooding. 9 refs., 4 figs., 1 tab

  13. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    Science.gov (United States)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  14. Advances in Hydrogeochemical Indicators for the Discovery of New Geothermal Resources in the Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart F. [Colorado School of Mines, Golden, CO (United States). Geology and Geological Engineering; Spycher, Nicolas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2013-05-20

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  15. Extraction of uranium low-grade ores from Great Divide Basin, Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Judd, J.C.; Nichols, I.L.; Huiatt, J.L.

    1983-04-01

    The US Bureau of Mines is investigating the leachability of carbonaceous uranium ore samples submitted by the DOE under an Interagency Agreement. Studies on eight samples from the Great Divide Basin, Wyoming, are the basis of this report. The uranium content of the eight ore samples ranged from 0.003 to 0.03% U 3 O 8 and contained 0.7 to 45% organic carbon. Experiments were performed to determine the feasibility of extracting uranium using acid leaching, roast-acid leaching and pressure leaching techniques. Acid leaching with 600 lb/ton H 2 SO 4 plus 10 lb/ton NaClO 3 for 18 h at 70 0 C extracted 65 to 83% of the uranium. One sample responded best to a roast-leach treatment. When roasting for 4 h at 500 0 C followed by acid leaching of the calcine using 600 lb/ton H 2 SO 4 , the uranium extraction was 82%. Two of the samples responded best to an oxidative pressure leach for 3 h at 200 0 C under a total pressure of 260 psig; uranium extractions were 78 and 82%

  16. Three-Dimensional Geothermal Fairway Mapping: Examples From the Western Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Siler, Drew L. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology; Faulds, James E. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology

    2013-09-29

    Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal ‘fairways’, areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

  17. Aspects of the isotope hydrology of the Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Airey, P.L.; Calf, G.E.; Campbell, B.L.; Hartley, P.E.; Roman, D.

    1978-01-01

    A study has been made of the isotope hydrology of the principal Jurassic aquifer of the Queensland portion of the Great Artesian Basin down-gradient of the recharge area. Much of the data have been interpreted in terms of the residence times of the groundwater samples which were up to 350,000 years. It is postulated that the observed systematic variations in the chloride levels reflect variations in the rate of infiltration of recycled salt throughout the late Quaternary. The minimum and maximum in the chloride curve correlate with the last glacial and interglacial period respectively. The bicarbonate ion levels are perturbed by the dissolution of carbonate minerals. About 0.1 per cent of the aquifer materia would have been dissolved since the mid-tertiary when the present hydrodynamic conditions were established if dissolution rates calculated from the geochemical model are representative. The D/H ratios were found to be extremely constant. The 46 wells sited away from the recharge area have a mean of delta D of -41.8 per mille and a standard deviation of 1.1. There was no isotopic evidence for exchange of oxygen between water and the host rock despite the long contact periods, sometimes at elevated temperatures. A 226 Ra, 238 U survey showed that radium is frequently in excess despite extensive leaching since the Tertiary times and the fact that the time scales associated with the transport of water are large compared with the half life of 226 Ra. (orig.) [de

  18. Aspects of the isotope hydrology of the Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Airey, P.L.; Calf, G.E.; Campbell, B.L.; Hartley, P.E.; Roman, D.

    1979-01-01

    A study has been made of the isotope hydrology of the principal Jurassic aquifer of the Queensland portion of the Great Artesian Basin down-gradient of the recharge area. Much of the data have been interpreted in terms of the residence times of the groundwater samples which were up to 350,000 years. It is postulated that the observed systematic variations in the chloride levels reflect variations in the rate of infiltration of recycled salt throughout the late Quaternary. The minimum and maximum in the chloride curve correlate with the last glacial and interglacial period respectively. The bicarbonate ion levels are perturbed by the dissolution of carbonate minerals. About 0.1% of the aquifer material would have been dissolved since the mid-Tertiary when the present hydrodynamic conditions were established if dissolution rates calculated from the geochemical model are representative. The D/H ratios were found to be extremely constant. The 46 wells sited away from the recharge area have a mean deltaD of -41.8 per mille and a standard deviation of 1.1. There was no isotopic evidence for exchange of oxygen between water and the host rock despite the long contact periods, sometimes at elevated temperatures. A 226 Ra, 238 U survey showed that radium is frequently in excess despite extensive leaching since the Tertiary times and the fact that the time scales associated with the transport of water are large compared with the half life of 226 Ra. (author)

  19. Ammonia emissions from Swine waste lagoons in the Utah great basin.

    Science.gov (United States)

    Harper, Lowry A; Weaver, Kim H; Dotson, Richard A

    2006-01-01

    In animal production systems (poultry, beef, and swine), current production, storage, and disposal techniques present a challenge to manage wastes to minimize the emissions of trace gases within relatively small geographical areas. Physical and chemical parameters were measured on primary and secondary lagoons on three different swine farming systems, three replicates each, in the Central Great Basin of the United States to determine ammonia (NH3) emissions. Nutrient concentrations, lagoon water temperature, and micrometeorological data from these measurements were used with a published process model to calculate emissions. Annual cycling of emissions was determined in relation to climatic factors and wind speed was found the predominating factor when the lagoon temperatures were above about 3 degrees C. Total NH3 emissions increased in the order of smallest to largest: nursery, sow, and finisher farms. However, emissions on an animal basis increased from nursery animals being lowest to sow animals being highest. When emissions were compared to the amount of nitrogen (N) fed to the animals, NH3 emissions from sows were lowest with emissions from finisher animals highest. Ammonia emissions were compared to similar farm production systems in the humid East of the United States and found to be similar for finisher animals but had much lower emissions than comparable humid East sow production. Published estimates of NH3 emissions from lagoons ranged from 36 to 70% of feed input (no error range) compared to our emissions determined from a process model of 9.8% with an estimated range of +/-4%.

  20. Losses of ecosystem service values in the Taihu Lake Basin from 1979 to 2010

    Science.gov (United States)

    Zhang, Hui; Wang, Qiao; Li, Guangyu; Zhang, Hanpei; Zhang, Jue

    2017-06-01

    The Taihu Lake Basin, an east-coastal developed area, is one of the fastest-growing metropolitan areas in China. Ecosystem services in the Taihu Lake Basin have been overexploited and jeopardized. Based on land-use and land-cover change (LUCC) data from 1979, 1984, 2000, and 2010, in conjunction with the adjusted ecosystem service values (ESV), changes in ESV were analyzed in detail. Results revealed that LUCC resulted in a substantial decrease in total ESV from 3.92 billion in 1979 to 2.98 billion in 2010. The ESV of cropland decreased from 1.64 billion in 1979 to 1.34 billion in 2010, which represented a 20.28% reduction. The ESV of water areas decreased from 1.08 billion in 1979 to 0.36 billion in 2010, which represented a 65.62% reduction mainly because of a decline in water quality. In terms of annual change rate, cropland and water areas showed a sustained downward trend. Spatially, ESV declines were mainly observed in Suzhou, Wuxi, Changzhou, and Shanghai, probably due to a combination of economic progress, population growth, and rapid urbanization. The research results can be a useful reference for policymakers in mitigating ESV decline.

  1. Environmental Setting and Effects on Water Quality in the Great and Little Miami River Basins, Ohio and Indiana

    Science.gov (United States)

    Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.

    2000-01-01

    The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and

  2. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    Science.gov (United States)

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated

  3. Assessing potential impacts of climate change and variability on the Great Lakes-St. Lawrence Basin: A binational approach

    International Nuclear Information System (INIS)

    Quinn, F.H.; Mortsch, L.D.

    1997-01-01

    The potential impacts of climate change and variability on the Great Lakes environment are serious and complex. The Great Lakes-St. Lawrence Basin is home to 42.5 million US and Canadian citizens and is the industrial and commercial heartland of both nations. The region is rich in human and natural resources, with diverse economic activities and substantial infrastructure which would be affected by major shifts in climate. For example, water level changes could affect wetland distribution and functioning; reductions in streamflow would alter assimilative capacities while warmer water temperatures would influence spring and fall turnover and incidence of anoxia. A binational program has been initiated to conduct interdisciplinary, integrated impact assessments for the Great Lakes-St. Lawrence River Basin. The goal of this program is to undertake interdisciplinary, integrated studies to improve the understanding of the complex interactions between climate, the environment, and socioeconomic systems in order to develop informed regional adaptation responses

  4. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals

    International Nuclear Information System (INIS)

    Balčiauskas, Linas; Skipitytė, Raminta; Jasiulionis, Marius; Trakimas, Giedrius; Balčiauskienė, Laima; Remeikis, Vidmantas

    2016-01-01

    Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ"1"3C and δ"1"5N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ"1"3C and δ"1"5N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ"1"5N (16.31 ± 3.01‰ and 17.86 ± 2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ"1"5N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ"1"3C values, age-dependent differences were not registered. δ"1"5N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories. - Highlights: • Cormorants transport nutrients from water to land ecosystems and pollute biogenically. • We studied stable isotope composition of small mammal hair in 3 cormorant colonies. • δ"1"3C and δ"1"5N were measured using elemental analyzer–isotope ratio mass spectrometer. • δ"1"3C and δ"1"5N values were higher in rodents inhabiting

  5. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals

    Energy Technology Data Exchange (ETDEWEB)

    Balčiauskas, Linas, E-mail: linasbal@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Skipitytė, Raminta, E-mail: raminta.skipityte@ftmc.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius (Lithuania); Jasiulionis, Marius, E-mail: mjasiulionis@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Trakimas, Giedrius, E-mail: giedrius.trakimas@gf.vu.lt [Center for Ecology and Environmental Research, Vilnius University, Vilnius (Lithuania); Institute of Life Sciences and Technology, Daugavpils University, Parades Str. 1a, Daugavpils, LV-5401 (Latvia); Balčiauskienė, Laima, E-mail: laiba@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Remeikis, Vidmantas, E-mail: vidrem@fi.lt [Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius (Lithuania)

    2016-09-15

    Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ{sup 13}C and δ{sup 15}N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ{sup 13}C and δ{sup 15}N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ{sup 15}N (16.31 ± 3.01‰ and 17.86 ± 2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ{sup 15}N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ{sup 13}C values, age-dependent differences were not registered. δ{sup 15}N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories. - Highlights: • Cormorants transport nutrients from water to land ecosystems and pollute biogenically. • We studied stable isotope composition of small mammal hair in 3 cormorant colonies. • δ{sup 13}C and δ{sup 15}N were measured using elemental analyzer–isotope ratio mass spectrometer. • δ{sup 13}C and

  6. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    Science.gov (United States)

    Hollingsworth, Jeffery L.

    2016-01-01

    ' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  7. Nitrogen cycle and ecosystem services in the Brazilian La Plata Basin: anthropogenic influence and climate change

    Directory of Open Access Journals (Sweden)

    M Watanabe

    Full Text Available The increasing human demand for food, raw material and energy has radically modified both the landscape and biogeochemical cycles in many river basins in the world. The interference of human activities on the Biosphere is so significant that it has doubled the amount of reactive nitrogen due to industrial fertiliser production (Haber-Bosch, fossil fuel burning and land-use change over the last century. In this context, the Brazilian La Plata Basin contributes to the alteration of the nitrogen cycle in South America because of its huge agricultural and grazing area that meets the demands of its large urban centres - Sao Paulo, for instance - and also external markets abroad. In this paper, we estimate the current inputs and outputs of anthropogenic nitrogen (in kg N.km-2.yr-1 in the basin. In the results, we observe that soybean plays a very important role in the Brazilian La Plata, since it contributes with an annual entrance of about 1.8 TgN due to biological nitrogen fixation. Moreover, our estimate indicates that the export of soybean products accounts for roughly 1.0 TgN which is greater than the annual nitrogen riverine exports from Brazilian Parana, Paraguay and Uruguay rivers together. Complimentarily, we built future scenarios representing changes in the nitrogen cycle profile considering two scenarios of climate change for 2070-2100 (based on IPCC's A2 and B2 that will affect land-use, nitrogen inputs, and loss of such nutrients in the basin. Finally, we discuss how both scenarios will affect human well-being since there is a connection between nitrogen cycle and ecosystem services that affect local and global populations, such as food and fibre production and climate regulation.

  8. Nitrogen cycle and ecosystem services in the Brazilian La Plata Basin: anthropogenic influence and climate change.

    Science.gov (United States)

    Watanabe, M; Ortega, E; Bergier, I; Silva, J S V

    2012-08-01

    The increasing human demand for food, raw material and energy has radically modified both the landscape and biogeochemical cycles in many river basins in the world. The interference of human activities on the Biosphere is so significant that it has doubled the amount of reactive nitrogen due to industrial fertiliser production (Haber-Bosch), fossil fuel burning and land-use change over the last century. In this context, the Brazilian La Plata Basin contributes to the alteration of the nitrogen cycle in South America because of its huge agricultural and grazing area that meets the demands of its large urban centres - Sao Paulo, for instance - and also external markets abroad. In this paper, we estimate the current inputs and outputs of anthropogenic nitrogen (in kg N.km(-2).yr(-1)) in the basin. In the results, we observe that soybean plays a very important role in the Brazilian La Plata, since it contributes with an annual entrance of about 1.8 TgN due to biological nitrogen fixation. Moreover, our estimate indicates that the export of soybean products accounts for roughly 1.0 TgN which is greater than the annual nitrogen riverine exports from Brazilian Parana, Paraguay and Uruguay rivers together. Complimentarily, we built future scenarios representing changes in the nitrogen cycle profile considering two scenarios of climate change for 2070-2100 (based on IPCC's A2 and B2) that will affect land-use, nitrogen inputs, and loss of such nutrients in the basin. Finally, we discuss how both scenarios will affect human well-being since there is a connection between nitrogen cycle and ecosystem services that affect local and global populations, such as food and fibre production and climate regulation.

  9. Regional evaluation and primary geological structural and metallogenical research of great Kavir basin as view of possibility formation of sedimentary-surficial Uranium mineralization

    International Nuclear Information System (INIS)

    Kamali Sadr, S.

    2006-01-01

    Great Kavir basin is the largest inner basin in Iran that extended about 90000 km 2. This basin is situated in the centre of lran , to the south from Alborz mountain range and elongated in the sub- latitudinal trend and its construction is asymmetric. The basin cover consists generally of complicated sequence of continental - marine Oligocene - Miocene molasses. According to drainage systems - conditions, molassoid cycles, alluvial, alluvial - deltaic and lacustrine sediments, climate, morphological conditions and metallogenic and structural features, Great Kavir depression generally is favorable for exigence and surficial uranium deposits (vally - fill, flood plain, deltaic and playa). Uranium occurrences that are Known in the southern and north eastern part of the margent Great Kavir basin, are Arosan, Irekan and Mohammad Abad. Similar geological - structural conditions for uranium mineralization is possible in the margent of Great Kavir basin

  10. Cyberinfrastructure for remote environmental observatories: a model homogeneous sensor network in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty; Slater, David; Fritzinger, Eric; Lyles, Bradley; Kent, Graham; Smith, Kenneth; Dascalu, Sergiu; Harris, Frederick

    2017-04-01

    Sensor-based data collection has changed the potential scale and resolution of in-situ environmental studies by orders of magnitude, increasing expertise and management requirements accordingly. Cost-effective management of these observing systems is possible by leveraging cyberinfrastructure resources. Presented is a case study environmental observation network in the Great Basin region, USA, the Nevada Climate-ecohydrological Assessment Network (NevCAN). NevCAN stretches hundreds of kilometers across several mountain ranges and monitors climate and ecohydrological conditions from low desert (900 m ASL) to high subalpine treeline (3360 m ASL) down to 1-minute timescales. The network has been operating continuously since 2010, collecting billions of sensor data points and millions of camera images that record hourly conditions at each site, despite requiring relatively low annual maintenance expenditure. These data have provided unique insight into fine-scale processes across mountain gradients, which is crucial scientific information for a water-scarce region. The key to maintaining data continuity for these remotely-located study sites has been use of uniform data transport and management systems, coupled with high-reliability power system designs. Enabling non-proprietary digital communication paths to all study sites and sensors allows the research team to acquire data in near-real-time, troubleshoot problems, and diversify sensor hardware. A wide-area network design based on common Internet Protocols (IP) has been extended into each study site, providing production bandwidth of between 2 Mbps and 60 Mbps, depending on local conditions. The network architecture and site-level support systems (such as power generation) have been implemented with the core objectives of capacity, redundancy, and modularity. NevCAN demonstrates that by following simple but uniform "best practices", the next generation of regionally-specific environmental observatories can evolve to

  11. WOOD CELLULAR DENDROCLIMATOLOGY: TESTING NEW PROXIES IN GREAT BASIN BRISTLECONE PINE

    Directory of Open Access Journals (Sweden)

    Emanuele Ziaco

    2016-10-01

    Full Text Available Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870-2013 time series of anatomical parameters were developed for Great Basin bristlecone pine (Pinus longaeva D.K. Bailey by capturing strongly contrasted microscopic images through a Confocal Laser Scanning Microscope. Environmental information embedded in wood anatomical series was analyzed in comparison with ring-width series using measures of empirical signal strength. Response functions were calculated against monthly climatic variables to evaluate climate sensitivity of cellular features (e.g. lumen area; lumen diameter for the period 1950-2013. Calibration-verification tests were used to determine the potential to generate long climate reconstructions from these anatomical proxies. A total of eight tree-ring parameters (two ring-width and six chronologies of xylem anatomical parameters were analyzed. Synchronous variability among samples varied among tree-ring parameters, usually decreasing from ring width to anatomical features. Cellular parameters linked to plant hydraulic performance (e.g. tracheid lumen area and radial lumen diameter showed empirical signal strength similar to ring-width series, while noise was predominant in chronologies of lumen tangential width and cell-wall thickness. Climatic signals were different between anatomical and ring-width chronologies, revealing a positive and temporally stable correlation of tracheid size (i.e. lumen and cell diameter with monthly (i.e. March and seasonal precipitation. In particular, tracheid lumen diameter emerged as a reliable moisture indicator and was then used to reconstruct total March-August precipitation from 1870 to 2013. Wood anatomy holds great potential to refine and expand dendroclimatic records by allowing estimates of plant physiological

  12. Ecosystem Services Mapping Uncertainty Assessment: A Case Study in the Fitzroy Basin Mining Region

    Directory of Open Access Journals (Sweden)

    Zhenyu Wang

    2018-01-01

    Full Text Available Ecosystem services mapping is becoming increasingly popular through the use of various readily available mapping tools, however, uncertainties in assessment outputs are commonly ignored. Uncertainties from different sources have the potential to lower the accuracy of mapping outputs and reduce their reliability for decision-making. Using a case study in an Australian mining region, this paper assessed the impact of uncertainties on the modelling of the hydrological ecosystem service, water provision. Three types of uncertainty were modelled using multiple uncertainty scenarios: (1 spatial data sources; (2 modelling scales (temporal and spatial and (3 parameterization and model selection. We found that the mapping scales can induce significant changes to the spatial pattern of outputs and annual totals of water provision. In addition, differences in parameterization using differing sources from the literature also led to obvious differences in base flow. However, the impact of each uncertainty associated with differences in spatial data sources were not so great. The results of this study demonstrate the importance of uncertainty assessment and highlight that any conclusions drawn from ecosystem services mapping, such as the impacts of mining, are likely to also be a property of the uncertainty in ecosystem services mapping methods.

  13. Retention efficiencies of halogenated and non-halogenated hydrocarbons in selected wetland ecosystem in Lake Victoria Basin

    Directory of Open Access Journals (Sweden)

    Shadrack Mule

    2015-06-01

    Full Text Available The determination of retention efficiencies of halogenated and non-halogenated hydrocarbon in selected wetland ecosystems in Lake Victoria basin was carried out. Qualitative and quantitative determination of the presence of residual hydrocarbons in Kigwal/Kimondi, Nyando and Nzoia wetland ecosystems using Gas Chromatography - Mass Spectrometer (GC-MS instrument indicated the presence of residual organochlorines, organophosphorus, carbamates and synthetic pyrethroid hydrocarbons in water, sediment and plant materials. In order to compare the retention efficiencies of the wetlands, the wetland ecosystems were divided into three different sections, namely: inlet, mid and outlet. Calculations of mass balances of residual halogenated and non-halogenated hydrocarbons at the respective sections was done taking into account the partition of the studied compounds in samples of water, sediments and papyrus reed plant materials and analyzed using validated Gas Chromatography - Mass Spectrometer (GC-MS method. From the analysis, several residual hydrocarbons namely: bendiocarb, benzene hexachloride (BHC, carbaryl, cypermethrin, decis, deltamethrin, diazinon, dieldrin, DDT, DDD, DDE, malathion, propoxur, sumithion, 5-phenylrhodanine, 1,3,5-trichlorobenzene, 1-(2-phenoxybenzylhydrazine were detected and quantified. The levels of the selected residual hydrocarbons in water samples were used to calculate the retention efficiencies of a specific hydrocarbon and the values recorded. Generally, River Nyando wetland recorded mean percentage retention efficiencies of 76 and 94% for dry and rainy seasons respectively; Kigwal/Kimondi wetland had seasonal mean percentage retention efficiencies of 63 to 78%. River Nzoia also had calculated seasonal mean percentage retention efficiencies of between 56 to 88%. Dry season had lower mean percentages retention efficiencies as compared to rainy season in the three wetlands of interest during the period of study. The study

  14. Use of the GREAT-ER model to estimate mass fluxes of chemicals, carried into the Western Scheldt estuary from the Rupel basin

    OpenAIRE

    Schowanek, D.

    2002-01-01

    The poster illustrates the application of the GREAT-ER model to estimate the mass flux of chemicals carried from a river basin into an estuary. GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) is a newly developed model (1999) for management and risk assessment of chemicals in river basins (see www.great-er.org). Recently the Rupel basin has been made available for use within GREAT-ER. This now allows to make a reliable estimation of the contribution of pollu...

  15. Social network analysis on mangrove ecosystem management of Welu Basin, Thailand

    Directory of Open Access Journals (Sweden)

    Thak Thongphubate

    2016-06-01

    Full Text Available The use of social network for support mangrove ecosystem management in terms of proposed policy was studied. The results show that most samples, live in Baan Si Lamtian and Baan Paaknam Welu. Majorities of samples are women in the age range of 51-60 years old and they are fishery and have own business, respectively. The social network characteristics are the center person of the network who is the mainstay of Baan Nagoong and close-by the person on a network cultivating farmers group of Baan Si Lamtian. Two main proposed policies are hastening to the control of encroach on forests, fishing gears uses and illegal germinate aquatic animals. In addition, information including coincide planning with fishermen who set the fish traps and specify Tambon Bangchan to be the special area for aquatics management were proposed by setting the measurement with community for farm control and cultivate plot which caused shallow in the basin.

  16. Hydrologic variability in the Red River of the North basin at the eastern margin of the northern Great Plains

    International Nuclear Information System (INIS)

    Wiche, G.J.

    1991-01-01

    The temporal and spatial variations in streamflow in the Red River of the North basin on the eastern margin of the Great Plains are described and related to the various climatic conditions associated with the flows. The Red River drains about 290,000 square kilometers in parts of Minnesota, South Dakota, North Dakota, Saskatchewan and Manitoba, and a 200 year flood history is available from documents of fur traders, explorers and missionaries, as well as from gauging-station records. The coefficient of variation of mean annual streamflow ranges from ca 110% for streams in the southern and western parts of the Assiniboine River basin to ca 50% for streams along the eastern margin of the Red River of the North basin. Decadal streamflow variability is great in the Red River of the North basin, with mean annual streamflow for the 10 years ending 1940 of 489 cubic hectometers and for the 10 years ending 1975 of 3,670 cubic hectometers. Construction of the Rafferty Reservoir on the Souris River and the Almeda Reservoir on Moose Mountain Creek will cause changes in water quality in the Souris River, with most problems occurring during protracted low flow conditions

  17. Preliminary assessment of the risk of volcanism at a proposed nuclear-waste repository in the southern Great Basin

    International Nuclear Information System (INIS)

    Crowe, B.M.; Carr, W.J.

    1980-01-01

    Volcanic hazard studies of the southern Great Basin are being conducted on behalf of the Nevada Nuclear Waste Storage Investigations program. Current work is chiefly concerned with characterizing the geology, chronology, and tectonic setting of Pliocene and Quaternary volcanism in the Nevada Test Site region, and assessing volcanic risk through consequence and probability studies, particularly with respect to a potential site in the southwestern Nevada Test Site. Young ( - 6 volcanic events per year. Based on this rate, the annual probability of disruption of a 10-km 2 repository located within a 25-km radius circle centered at Yucca Mountain, southwestern Nevada Test Site, is 10 - 8 . A larger area, 50-km radius, yields a disruption probability of 10 - 9 per year. Current tectonic zonation studies of the southern Great Basin will reduce the calculated probabilities of basaltic eruption for certain areas. 21 references, 3 figures

  18. Preliminary evaluation of the radioactive waste isolation potential of the alluvium-filled valleys of the Great Basin

    International Nuclear Information System (INIS)

    Smyth, J.R.; Crowe, B.M.; Halleck, P.M.; Reed, A.W.

    1979-08-01

    The occurrences, geologic features, hydrology, and thermal, mechanical, and mineralogical properties of the alluvium-filled valleys are compared with those of other media within the Great Basin. Computer modeling of heat conduction indicates that heat generated by the radioactive waste can be dissipated through the alluvium in a manner that will not threaten the integrity of the repository, although waste emplacement densities will be lower than for other media available. This investigation has not revealed any failure mechanism by which one can rule out alluvium as a primary waste isolation medium. However, the alluvium appears to rank behind one or more other possible media in all properties examined except, perhaps, in sorption properties. It is therefore recommended that alluvium be considered as a secondary isolation medium unless primary sites in other rock types in the Great Basin are eliminated from consideration on grounds other than those considered here

  19. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    Science.gov (United States)

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability

  20. Social-ecological drivers of multiple ecosystem services: what variables explain patterns of ecosystem services across the Norrström drainage basin?

    Directory of Open Access Journals (Sweden)

    Megan Meacham

    2016-03-01

    Full Text Available In human dominated landscapes many diverse, and often antagonistic, human activities are intentionally and inadvertently determining the supply of various ecosystem services. Understanding how different social and ecological factors shape the availability of ecosystem services is essential for fair and effective policy and management. In this paper, we evaluate how well alternative social-ecological models of human impact on ecosystems explain patterns of 16 ecosystem services (ES across the 62 municipalities of the Norrström drainage basin in Sweden. We test four models of human impact on ecosystems, land use, ecological modernization, ecological footprint, and location theory, and test their ability to predict both individual ES and bundles of ES. We find that different models do best to predict different types of individual ES. Land use is the best model for predicting provisioning services, standing water quality, biodiversity appreciation, and cross-country skiing, while other models work better for the remaining services. However, this range of models is not able to predict some of the cultural ES. ES bundles are predicted worse than individual ES by these models, but provide a clear picture of variation in multiple ecosystem services based on limited information. Based on our results, we offer suggestions on how social-ecological modeling and assessments of ecosystems can be further developed.

  1. Prescribed fire, soil, and plants: burn effects and interactions in the central Great Basin

    Science.gov (United States)

    Benjamin M. Rau; Jeanne C. Chambers; Robert R. Blank; Dale W. Johnson

    2008-01-01

    Pinyon and juniper expansion into sagebrush ecosystems results in decreased cover and biomass of perennial grasses and forbs. We examine the effectiveness of spring prescribed fire on restoration of sagebrush ecosystems by documenting burn effects on soil nutrients, herbaceous aboveground biomass, and tissue nutrient concentrations. This study was conducted in a...

  2. Geochemistry and travertine dating provide new insights into the hydrogeology of the Great Artesian Basin, South Australia

    International Nuclear Information System (INIS)

    Love, A.J.; Rousseau-Gueutin, P.; Priestley, S.; Keppel, M.; Shand, P.; Karlstrom, K.; Crossey, L.; Wholing, D.; Fulton, S.

    2013-01-01

    While of great national and societal significance, and importance in its own right, the Great Artesian Basin of Australia is an iconic example of a continental scale artesian groundwater system. New geochemical, hydrological, and neo-tectonic data suggests that existing models that involve recharge in eastern Australia, relatively simple flow paths and discharge in springs in the western margin require modification. New geochemical data indicate a small volume flux of deeply derived (endogenic) fluids mixing into the aquifer system at a continental scale. Neotectonic data indicates active tectonism today that provides a fluid pathway through faults for the deeply sourced endogenic fluids to discharge in GAB travertine depositing springs. (authors)

  3. Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin

    International Nuclear Information System (INIS)

    Aldekoa, Joana; Medici, Chiara; Osorio, Victoria; Pérez, Sandra; Marcé, Rafael; Barceló, Damià; Francés, Félix

    2013-01-01

    Highlights: • Diclofenac levels were measured in 14 sampling sites of the Llobregat River (Spain). • GREAT-ER model was used to simulate diclofenac concentrations in the Llobregat River. • Deterministic and stochastic modelling approaches were contrasted. • Diclofenac discharge into the basin was estimated for the studied period. • Consistent degradation rates were predicted and compared with literature values. -- Abstract: The present research aims at giving an insight into the increasingly important issue of water pollution due to emerging contaminants. In particular, the source and fate of the non-steroidal anti-inflammatory drug diclofenac have been analyzed at catchment scale for the Llobregat River in Catalonia (Spain). In fact, water from the Llobregat River is used to supply a significant part of the Metropolitan Area of Barcelona. At the same time, 59 wastewater treatment plants discharge into this basin. GREAT-ER model has been implemented in this basin in order to reproduce a static balance for this pollutant for two field campaigns data set. The results highlighted the ability of GREAT-ER to simulate the diclofenac concentrations in the Llobregat Catchment; however, this study also pointed out the urgent need for longer time series of observed data and a better knowledge of wastewater plants outputs and their parameterization in order to obtain more reliable results

  4. Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Aldekoa, Joana, E-mail: joaalma2@cam.upv.es [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Medici, Chiara [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Osorio, Victoria; Pérez, Sandra [Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona (Spain); Marcé, Rafael [Catalan Institute for Water Research, Emili Grahit 101, 17003 Girona (Spain); Barceló, Damià [Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona (Spain); Francés, Félix [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain)

    2013-12-15

    Highlights: • Diclofenac levels were measured in 14 sampling sites of the Llobregat River (Spain). • GREAT-ER model was used to simulate diclofenac concentrations in the Llobregat River. • Deterministic and stochastic modelling approaches were contrasted. • Diclofenac discharge into the basin was estimated for the studied period. • Consistent degradation rates were predicted and compared with literature values. -- Abstract: The present research aims at giving an insight into the increasingly important issue of water pollution due to emerging contaminants. In particular, the source and fate of the non-steroidal anti-inflammatory drug diclofenac have been analyzed at catchment scale for the Llobregat River in Catalonia (Spain). In fact, water from the Llobregat River is used to supply a significant part of the Metropolitan Area of Barcelona. At the same time, 59 wastewater treatment plants discharge into this basin. GREAT-ER model has been implemented in this basin in order to reproduce a static balance for this pollutant for two field campaigns data set. The results highlighted the ability of GREAT-ER to simulate the diclofenac concentrations in the Llobregat Catchment; however, this study also pointed out the urgent need for longer time series of observed data and a better knowledge of wastewater plants outputs and their parameterization in order to obtain more reliable results.

  5. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    Science.gov (United States)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  6. A high 87Sr 86Sr mantle source for low alkali tholeiite, northern Great Basin

    Science.gov (United States)

    Mark, R.K.; Lee, Hu C.; Bowman, H.R.; Asaro, F.; McKee, E.H.; Coats, R.R.

    1975-01-01

    Olivine tholeiites, the youngest Tertiary units (about 8-11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250-3350 ppm), Rb (1??9-6??2 ppm) and Sr (140-240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100-780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0??7052-0??7076, considerably higher than MORB (~0??702-0??703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0??02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0??04. A significant decrease in Rb/Sr of the source material (a factor 2??) thus most probably occurred in the relatively recent (1??09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr 86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history. ?? 1975.

  7. Evaluating Hydrologic Transience in Watershed Delineation, Numerical Modeling and Solute Transport in the Great Basin. Clayton Valley, Nevada

    Science.gov (United States)

    Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.

    2017-12-01

    Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute transport, a refined (transient) version of the USGS steady-state groundwater flow model of the Great Basin is evaluated. This model is used to assess transient changes in contributing area for Clayton Valley, a lithium-brine producing endorheic basin in southwestern Nevada. Model runs of various recharge, discharge and storage bounds are created from conceptual models based upon historical climate data. Comparing results of the refined model to USGS groundwater observations allows for model validation and comparison against the USGS steady-state model. The transient contributing area to Clayton Valley is 85% smaller than that calculated from the steady-state solution, however several long flow paths important to both water and solute budgets at Clayton Valley

  8. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    Science.gov (United States)

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  9. Mapping Ecological Processes and Ecosystem Services for Prioritizing Restoration Efforts in a Semi-arid Mediterranean River Basin

    Science.gov (United States)

    Trabucchi, Mattia; O'Farrell, Patrick J.; Notivol, Eduardo; Comín, Francisco A.

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  10. Mapping ecological processes and ecosystem services for prioritizing restoration efforts in a semi-arid Mediterranean river basin.

    Science.gov (United States)

    Trabucchi, Mattia; O'Farrell, Patrick J; Notivol, Eduardo; Comín, Francisco A

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  11. Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake

    Science.gov (United States)

    Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.

    2014-12-01

    Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion

  12. Generating daily weather data for ecosystem modelling in the Congo River Basin

    Science.gov (United States)

    Petritsch, Richard; Pietsch, Stephan A.

    2010-05-01

    Daily weather data are an important constraint for diverse applications in ecosystem research. In particular, temperature and precipitation are the main drivers for forest ecosystem productivity. Mechanistic modelling theory heavily relies on daily values for minimum and maximum temperatures, precipitation, incident solar radiation and vapour pressure deficit. Although the number of climate measurement stations increased during the last centuries, there are still regions with limited climate data. For example, in the WMO database there are only 16 stations located in Gabon with daily weather measurements. Additionally, the available time series are heavily affected by measurement errors or missing values. In the WMO record for Gabon, on average every second day is missing. Monthly means are more robust and may be estimated over larger areas. Therefore, a good alternative is to interpolate monthly mean values using a sparse network of measurement stations, and based on these monthly data generate daily weather data with defined characteristics. The weather generator MarkSim was developed to produce climatological time series for crop modelling in the tropics. It provides daily values for maximum and minimum temperature, precipitation and solar radiation. The monthly means can either be derived from the internal climate surfaces or prescribed as additional inputs. We compared the generated outputs observations from three climate stations in Gabon (Lastourville, Moanda and Mouilla) and found that maximum temperature and solar radiation were heavily overestimated during the long dry season. This is due to the internal dependency of the solar radiation estimates to precipitation. With no precipitation a cloudless sky is assumed and thus high incident solar radiation and a large diurnal temperature range. However, in reality it is cloudy in the Congo River Basin during the long dry season. Therefore, we applied a correction factor to solar radiation and temperature range

  13. Assessing the changes in land use and ecosystem services in an oasis agricultural region of Yanqi Basin, Northwest China.

    Science.gov (United States)

    Wang, Shuixian; Wu, Bin; Yang, Pengnian

    2014-12-01

    The Yanqi Basin, one of the most productive agricultural areas, has a high population density in Xinjiang, Northwest China. Land use changes, mainly driven by oasis expansion, significantly impact ecosystem services and functions, but these effects are difficult to quantify. The valuation of ecosystem services is important to clarify the ecological and environmental changes caused by agriculturalization of oasis. This study aimed to investigate variations in ecosystem services in response to land use changes during oasis agricultural expansion activities in the Yanqi Basin from 1964 to 2009. The methods used were based on formula of ecosystem service value (ESV) and ESV coefficients. Satellite data were combined with the ESV coefficients to quantify land use changes and ecosystem service changes in the study area. Sensitivity analysis determined the effect of manipulating the coefficients on the estimated values. The results show that the total ESVs in the Yanqi Basin were $1,674, $1,692, $1,471, $1,732, and $1,603 million in 1964, 1973, 1989, 1999, and 2009, respectively. The net deline in ESV was $71 million in the past 46 years, but the ESVs of each types of landscape changed significantly. The aggregated ESVs of water areas and wetlands were approximately 80 % of the total ESV. Water supply and waste treatment were the two largest service functions and contributed approximately 65 % of the total ESV. The estimated ESVs in this study were elastic with respect to the value coefficients. Therefore, the estimations were robust in spite of uncertainties on the value coefficients. These significant changes in land use occur within the entire basin over the study period. These changes cause environmental problems, such as land degradation, vegetation degeneracy, and changes in aquatic environment.

  14. Assessment of goods and valuation of ecosystem services (AGAVES) San Pedro River Basin, United States and Mexico

    Science.gov (United States)

    Semmens, Darius; Kepner, William; Goodrich, David

    2010-01-01

    A consortium of federal, academic, and nongovernment organization (NGO) partners have established a collaborative research enterprise in the San Pedro River Basin to develop methods, standards, and tools to assess and value ecosystem goods and services. The central premise of ecosystem services research is that human condition is intrinsically linked to the environment. Human health and well-being (including economic prosperity) depend on important supporting, regulating, provisioning, and cultural services that we derive from our surrounding ecosystems. The AGAVES project is intended as a demonstration study for incorporating ecosystem services information into resource management policy and decisionmaking. Accordingly, a nested, multiscale project design has been adopted to address a range of stakeholder information requirements. This design will further facilitate an evaluation of how well methods developed in this project can be transferred to other areas.

  15. Accounting for ecosystem assets using remote sensing in the Colombian Orinoco River basin lowlands

    NARCIS (Netherlands)

    Vargas Barbosa, Leonardo; Hein, Lars; Remme, Roy P.

    2016-01-01

    In many parts of the world, ecosystems change compromises the supply of ecosystem services (ES). Better ecosystem management requires detailed and structured information. Ecosystem accounting has been developed as an information system for ecosystems, using concepts and valuation approaches that

  16. HYDROGEOMORPHIC SETTING, CHARACTERISTICS, AND RESPONSE TO STREAM INCISION OF MONTANA RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN--IMPLICATIONS FOR RESTORATION

    Science.gov (United States)

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...

  17. Estimating root biomass and distribution after fire in a Great Basin woodland using cores and pits

    Science.gov (United States)

    Benjamin M. Rau; Dale W. Johnson; Jeanne C. Chambers; Robert R. Blank; Annmarie Lucchesi

    2009-01-01

    Quantifying root biomass is critical to an estimation and understanding of ecosystem net primary production, biomass partitioning, and belowground competition. We compared 2 methods for determining root biomass: a new soil-coring technique and traditional excavation of quantitative pits. We conducted the study in an existing Joint Fire Sciences demonstration area in...

  18. Variation in sagebrush communities historically seeded with crested wheatgrass in the eastern great basin

    Science.gov (United States)

    Although crested wheatgrass (CWG; Agropyron cristatum [L.] Gaertn.) has been one of the most commonly seeded exotic species in the western United States, long-term successional trajectories of seeded sites are poorly characterized, especially for big sagebrush (Artemisia tridentana Nutt.) ecosystems...

  19. Cheatgrass percent cover change: Comparing recent estimates to climate change − Driven predictions in the Northern Great Basin

    Science.gov (United States)

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and

  20. Exposure of great egret (Ardea albus) nestlings to mercury through diet in the Everglades ecosystem

    Science.gov (United States)

    Frederick, Peter C; Spalding, Marilyn G.; Sepalveda, Maria S.; Williams, Gary E.; Nico, Leo G.; Robins, Robert H.

    1999-01-01

    We estimated exposure of great egret (Ardea albus) nestlings to mercury in food in the Florida Everglades, USA, by collecting regurgitated food samples during the 1993 to 1996 breeding seasons and during 1995 measured concentrations of mercury in individual prey items from those samples. Great egret nestlings had a diet composed predominantly of fish (>95% of biomass), though the species composition of fish in the diet fluctuated considerably among years. Great egrets concentrated on the larger fish available in the marsh, especially members of the Centrarchidae. The importance of all nonnative fish fluctuated from 0 to 32% of the diet by biomass and was dominated by pike killifish (Belonesox belizanus) and cichlids (Cichlidae). Total mercury concentrations in prey fish ranged from 0.04 to 1.40 mg/kg wet weight, and we found a significant relationship between mass of individual fish and mercury concentration. We estimated the concentration of total mercury in the diet as a whole by weighting the mercury concentration in a given fish species by the proportion of that species in the diet. We estimate that total mercury concentrations in the diets ranged among years from 0.37 to 0.47 mg/kg fish (4-year mean = 0.41 mg/kg). We estimated total mercury exposure in great egret nestlings by combining these mercury concentrations with measurements of food intake rate, as measured over the course of the nestling period in both lab and field situations. We estimate that, at the 0.41 mg/kg level, nestlings would ingest 4.32 mg total mercury during an 80-day nestling period. Captive feeding studies reported elsewhere suggest that this level of exposure in the wild could be associated with reduced fledging mass, increased lethargy, decreased appetite, and, possibly, poor health and juvenile survival.

  1. Analyzing the spatial patterns and drivers of ecosystem services in rapidly urbanizing Taihu Lake Basin of China

    Science.gov (United States)

    Ai, Junyong; Sun, Xiang; Feng, Lan; Li, Yangfan; Zhu, Xiaodong

    2015-09-01

    Quantifying and mapping the distribution patterns of ecosystem services can help to ascertain which services should be protected and where investments should be directed to improve synergies and reduce tradeoffs. Moreover, the indicators of urbanization that affect the provision of ecosystem services must be identified to determine which approach to adopt in formulating policies related to these services. This paper presents a case study that maps the distribution of multiple ecosystem services and analyzes the ways in which they interact. The relationship between the supply of ecosystem services and the socio-economic development in the Taihu Lake Basin of eastern China is also revealed. Results show a significant negative relationship between crop production and tourism income ( p<0.005) and a positive relationship between crop production, nutrient retention, and carbon sequestration ( p<0.005). The negative effects of the urbanization process on providing and regulating services are also identified through a comparison of the ecosystem services in large and small cities. Regression analysis was used to compare and elucidate the relative significance of the selected urbanization factors to ecosystem services. The results indicate that urbanization level is the most substantial factor inversely correlated with crop production ( R 2 = 0.414) and nutrient retention services ( R 2 = 0.572). Population density is the most important factor that negatively affects carbon sequestration ( R 2 = 0.447). The findings of this study suggest the potential relevance of ecosystem service dynamics to urbanization management and decision making.

  2. Preliminary seismicity and focal mechanisms for the southern Great Basin of Nevada and California: January 1992 through September 1992

    International Nuclear Information System (INIS)

    Harmsen, S.C.

    1994-01-01

    The telemetered southern Great Basin seismic network (SGBSN) is operated for the Department of Energy's Yucca Mountain Project (YMP). The US Geological Survey, Branch of Earthquake and Landslide Hazards, maintained this network until September 30, 1992, at which time all operational and analysis responsibilities were transferred to the University of Nevada at Reno Seismological Laboratory (UNRSL). This report contains preliminary earthquake and chemical explosion hypocenter listings and preliminary earthquake focal mechanism solutions for USGS/SGBSN data for the period January 1, 1992 through September 30, 1992, 15:00 UTC

  3. Partitioning Evapotranspiration for Three Typical Ecosystems in the Heihe River Basin, Northwestern China

    Science.gov (United States)

    Zhou, S.; Yu, B.; Zhang, Y.; Huang, Y.; Wang, G.

    2017-12-01

    It is crucial to improve water use efficiency (WUE) and the transpiration fraction of evapotranspiration (T/ET) for water conservation in arid regions. As a link between carbon and water cycling, WUE is defined as the ratio of gross primary productivity (GPP) and ET at the ecosystem scale. By incorporating the effect of vapor pressure deficit (VPD), two underlying WUE (uWUE) formulations, i.e. a potential uWUE (uWUEp=GPP·VPD0.5/T) and an apparent uWUE (uWUEa=GPP·VPD0.5/ET), were proposed. uWUEp is nearly constant for a given vegetation type, while uWUEa varies with T/ET. The ratio of uWUEa and uWUEp was then used to estimate T/ET. This new method for ET partitioning was applied to three typical ecosystems in the Heihe River Basin. Growing season T/ET at the Daman site (0.63) was higher than that at the Arou and Huyanglin sites (0.55) due to the application of plastic film mulching. The effect of leaf area index (LAI) on seasonal variations in T/ET was strong for Arou (R2=0.74) and Daman (R2=0.76) sites, but weak for Huyanglin (R2=0.44) site. Daily T/ET derived using the uWUE method agreed with that using the isotope and lysimeter/eddy covariance methods during the peak growth season at the Daman site. The estimated T using the uWUE method showed consistent seasonal and diurnal patterns and magnitudes with that using the sap flow method at the Huyanglin site. In addition, the uWUE method is scale-independent, and can effectively capture T/ET variations in relation to LAI changes and the abrupt T/ET changes in response to individual irrigation events. These advantages make the uWUE method more effective for ET partitioning at the ecosystem scale, and can be used for water resources management by predicting seasonal pattern of irrigation water requirements in arid regions.

  4. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    Science.gov (United States)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  5. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  6. Impacts of CO/sub 2/-induced climatic change on water resources in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S J

    1986-01-01

    Scenarios of CO/sub 2/-induced climatic change, based on models produced by the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Lab (GFDL), were used to estimate future changes in water supply in the Great Lakes Basin. The major components of annual Net Basin Supply, surface runoff and lake evaporation, were estimated using the Thornthwaite water balance model and the mass transfer approach, respectively. Two scenarios were derived from each climatic change model, one based on present normal winds, the other assuming reduced wind speeds. A third scenario was derived from GFDL, using wind speeds generated by the GFDL model. Results varied from a decrease in Net Basin Supply of 28.9% for GISS-normal winds, to a decrease of 11.7% for GFDL-reduced wind speeds. All five scenarios projected decreases. These differences in projection will have to be considered when performing climate impact studies, since economic activities affected by lake levels would probably experience different impacts under these scenarios.

  7. Water towers of the Great Basin: climatic and hydrologic change at watershed scales in a mountainous arid region

    Science.gov (United States)

    Weiss, S. B.

    2017-12-01

    Impacts of climate change in the Great Basin will manifest through changes in the hydrologic cycle. Downscaled climate data and projections run through the Basin Characterization Model (BCM) produce time series of hydrologic response - recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) - that directly affect water resources and vegetation. More than 50 climate projections from CMIP5 were screened using a cluster analysis of end-century (2077-2099) seasonal precipitation and annual temperature to produce a reduced subset of 12 climate futures that cover a wide range of macroclimate response. Importantly, variations among GCMs in summer precipitation produced by the SW monsoon are captured. Data were averaged within 84 HUC8 watersheds with widley varying climate, topography, and geology. Resultant time series allow for multivariate analysis of hydrologic response, especially partitioning between snowpack, recharge, runoff, and actual evapotranspiration. Because the bulk of snowpack accumulation is restricted to small areas of isolated mountain ranges, losses of snowpack can be extreme as snowline moves up the mountains with warming. Loss of snowpack also affects recharge and runoff rates, and importantly, the recharge/runoff ratio - as snowpacks fade, recharge tends to increase relative to runoff. Thresholds for regime shifts can be identified, but the unique topography and geology of each basin must be considered in assessing hydrologic response.

  8. River basins as social-ecological systems: linking levels of societal and ecosystem water metabolism in a semiarid watershed

    Directory of Open Access Journals (Sweden)

    Violeta Cabello

    2015-09-01

    Full Text Available River basin modeling under complexity requires analytical frameworks capable of dealing with the multiple scales and dimensions of environmental problems as well as uncertainty in the evolution of social systems. Conceptual and methodological developments can now be framed using the wide socio-eco-hydrological approach. We add hierarchy theory into the mix to discuss the conceptualization of river basins as complex, holarchic social-ecological systems. We operationalize the social-ecological systems water metabolism framework in a semiarid watershed in Spain, and add the governance dimension that shapes human-environment reciprocity. To this purpose, we integrate an eco-hydrological model with the societal metabolism accounting scheme for land use, human activity, and water use. We explore four types of interactions: between societal organization and water uses/demands, between ecosystem organization and their water requirements/supplies, between societal metabolism and aquatic ecosystem health, and between water demand and availability. Our results reveal a metabolic pattern of a high mountain rural system striving to face exodus and agricultural land abandonment with a multifunctional economy. Centuries of social-ecological evolution shaping waterscapes through traditional water management practices have influenced the eco-hydrological functioning of the basin, enabling adaptation to aridity. We found a marked spatial gradient on water supply, use pattern, and impact on water bodies from the head to the mouth of the basin. Management challenges posed by the European water regulatory framework as a new driver of social-ecological change are highlighted.

  9. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    Science.gov (United States)

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  10. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.

    Science.gov (United States)

    Hahnenberger, Maura; Nicoll, Kathleen

    2014-01-01

    This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern

  11. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    Science.gov (United States)

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  12. The management of water providing strategic ecosystems. The case of the basins that supply Medellin and Bogota in Colombia

    International Nuclear Information System (INIS)

    Cardenas Agudelo, Maria Fernanda

    2013-01-01

    The population growth and the urban concentration involve a sustained increment in water demand, which requires an adequate effort and management of the ecosystems that provide the liquid to guarantee a plenty future offer. The performance of the entities in charge of the management of such ecosystems and the results obtained in the basins that supply drinkable water to two cities in Colombia are analyzed; financial topics and their relation with the local community are considered. Management is delegated to governmental entities, whose work is insufficient and unsatisfactory. Thus, application of economical, legal and social tools is proposed in order to improve ecosystem's conservation and life quality of farmers that inhabit in their influence areas, partially transferring management to the local community's orbit.

  13. Real-Time Monitoring of Mountain Conifer Growth Response to Seasonal Climate and the Summer Monsoon in the Great Basin of North America

    Science.gov (United States)

    Strachan, S.; Biondi, F.

    2013-12-01

    Tree rings in the American intermountain west are often used for palaeoclimatic purposes, including reconstructions of precipitation, temperature, and drought. Specific seasonal phenomena such as the North American Monsoon (NAM) are also being identified in tree-ring studies as being related to certain growth features in the rings (such as early-onset 'false' latewood). These relationships have historically been developed using statistical relationships between tree-ring chronologies and regional weather observations. In zones near the periphery of the NAM, summertime precipitation may be more sporadic, yet localized vegetation assemblages in the northern Mojave desert and Great Basin regions indicate that these events are still important for some ecosystems which have established in areas where NAM activity is present. Major shifts in NAM behavior in the past may have been recorded by tree rings, and identifying the specific mechanisms/circumstances by which this occurs is critical for efforts seeking to model ecosystem response to climate changes. By establishing in-situ monitoring of climate/weather, soils, and tree-growth variables in Pinus ponderosa scopulorum and Pinus monophylla zones at study sites in eastern/southern Nevada, we are able to address these issues at very fine spatial and temporal scales. Data from two seasons of monitoring precipitation, solar radiation, air temperature, soil temperature, soil water content, tree sap flow, tree radial distance increment, and hourly imagery are presented. Point dendrometers along with sap flow sensors monitor growth in these ponderosa pine around the clock to help researchers understand tree-ring/climate relationships.

  14. River basin management and estuarine needs: the Great Brak case study

    CSIR Research Space (South Africa)

    Huizinga, P

    1995-01-01

    Full Text Available The study of the effect of the Wolwedans Dam on the Great Brak Estuary and the development of the management plan to maintain a healthy environment yielded many interesting results. The general conclusion is that developments in a catchment...

  15. Recruitment patterns and growth of high-elevation pines in response to climatic variability (1883–2013), in the western Great Basin, USA

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Diane L. Delany; Alan L. Flint; Lorraine E. Flint

    2015-01-01

    Over the period 1883–2013, recruitment of subalpine limber pine (Pinus flexilis E. James) and Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) above the upper tree line, below the lower tree line, and across middle-elevation forest borders occurred at localized sites across four mountain ranges in the western Great...

  16. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    Science.gov (United States)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter

  17. Towards Mapping the Provision of Ecosystem Services from Headwater Wetlands in the Susquehanna River Basin

    Science.gov (United States)

    Headwater wetlands provide a range of ecosystem services including habitat provisioning and flood retention. Following the River Ecosystem Synthesis framework we identified and assessed not only headwater wetlands, but unconstrained reaches with the potential to support diverse s...

  18. Ecosystem effects in the Lower Mississippi River Basin: Chapter L in 2011 Floods of the Central United States

    Science.gov (United States)

    Turnipseed, D. Phil; Allen, Yvonne C.; Couvillion, Brady R.; McKee, Karen L.; Vervaeke, William C.

    2014-01-01

    The 2011 Mississippi River flood in the Lower Mississippi River Basin was one of the largest flood events in recorded history, producing the largest or next to largest peak streamflow for the period of record at a number of streamgages on the lower Mississippi River. Ecosystem effects include changes to wetlands, nutrient transport, and land accretion and sediment deposition changes. Direct effects to the wetland ecosystems in the Lower Mississippi River Basin were minimized because of the expansive levee system built to pass floodwaters. Nutrients carried by the Mississippi River affect water quality in the Lower Mississippi River Basin. During 2011, nutrient fluxes in the lower Mississippi River were about average. Generally, nutrient delivery of the Mississippi and Atchafalaya Rivers contributes to the size of the hypoxic zone in the Gulf of Mexico. Based on available limited post-flood satellite imagery, some land expansion in both the Wax Lake and Atchafalaya River Deltas was observed. A wetland sediment survey completed in June 2011 indicated that recent sediment deposits were relatively thicker in the Atchafalaya and Mississippi River (Birdsfoot) Delta marshes compared to marshes farther from these rivers.

  19. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    Science.gov (United States)

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  20. Detecting ecosystem performance anomalies for land management in the upper colorado river basin using satellite observations, climate data, and ecosystem models

    Science.gov (United States)

    Gu, Yingxin; Wylie, B.K.

    2010-01-01

    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005-2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using "percentage of bare soil" ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005-2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions. ?? 2010 by the authors.

  1. Geographic variability in elevation and topographic constraints on the distribution of native and nonnative trout in the Great Basin

    Science.gov (United States)

    Warren, Dana R.; Dunham, Jason B.; Hockman-Wert, David

    2014-01-01

    Understanding local and geographic factors influencing species distributions is a prerequisite for conservation planning. Our objective in this study was to model local and geographic variability in elevations occupied by native and nonnative trout in the northwestern Great Basin, USA. To this end, we analyzed a large existing data set of trout presence (5,156 observations) to evaluate two fundamental factors influencing occupied elevations: climate-related gradients in geography and local constraints imposed by topography. We applied quantile regression to model upstream and downstream distribution elevation limits for each trout species commonly found in the region (two native and two nonnative species). With these models in hand, we simulated an upstream shift in elevation limits of trout distributions to evaluate potential consequences of habitat loss. Downstream elevation limits were inversely associated with latitude, reflecting regional gradients in temperature. Upstream limits were positively related to maximum stream elevation as expected. Downstream elevation limits were constrained topographically by valley bottom elevations in northern streams but not in southern streams, where limits began well above valley bottoms. Elevation limits were similar among species. Upstream shifts in elevation limits for trout would lead to more habitat loss in the north than in the south, a result attributable to differences in topography. Because downstream distributions of trout in the north extend into valley bottoms with reduced topographic relief, trout in more northerly latitudes are more likely to experience habitat loss associated with an upstream shift in lower elevation limits. By applying quantile regression to relatively simple information (species presence, elevation, geography, topography), we were able to identify elevation limits for trout in the Great Basin and explore the effects of potential shifts in these limits that could occur in response to changing

  2. Integrating Environmental and Human Health Databases in the Great Lakes Basin: Themes, Challenges and Future Directions

    Directory of Open Access Journals (Sweden)

    Kate L. Bassil

    2015-03-01

    Full Text Available Many government, academic and research institutions collect environmental data that are relevant to understanding the relationship between environmental exposures and human health. Integrating these data with health outcome data presents new challenges that are important to consider to improve our effective use of environmental health information. Our objective was to identify the common themes related to the integration of environmental and health data, and suggest ways to address the challenges and make progress toward more effective use of data already collected, to further our understanding of environmental health associations in the Great Lakes region. Environmental and human health databases were identified and reviewed using literature searches and a series of one-on-one and group expert consultations. Databases identified were predominantly environmental stressors databases, with fewer found for health outcomes and human exposure. Nine themes or factors that impact integration were identified: data availability, accessibility, harmonization, stakeholder collaboration, policy and strategic alignment, resource adequacy, environmental health indicators, and data exchange networks. The use and cost effectiveness of data currently collected could be improved by strategic changes to data collection and access systems to provide better opportunities to identify and study environmental exposures that may impact human health.

  3. Money, management, and manipulation: Environmental mobilization in the Great Lakes basin

    International Nuclear Information System (INIS)

    Gould, K.A.

    1991-01-01

    This document examines variations in the responses of communities to local pollution problems affecting Great Lakes water quality. The study is based on research conducted at six such communities, at sites that have been designated as 'Areas of Concern' by the International Joint Commission. The roles of economic dependency or diversity, access to scientific and political resources, community size, social visibility of pollution, and consciousness- and unconsciousness-making activities are examined as they relate to grass roots political mobilization in response to local, lake-related environmental issues. Of particular interest is the participation of national and regional environmental social movement organizations, Federal, State/Provincial and local governments, and local industry. National and regional environmental social movement organizations appear to have a greater mobilizing impact on communities that are closest to the urban centers in which these organizations are based. State and Provincial environmental agencies play a centrist role in promoting minimal remediation. Local governments typically oppose the definition of local environmental disorganization as a problem

  4. Determining preferences for ecosystem benefits in Great Lakes Areas of Concern from photographs posted to social media

    Science.gov (United States)

    Relative valuation of potentially affected ecosystem benefits can increase the legitimacy and social acceptance of ecosystem restoration projects. As an alternative or supplement to traditional methods of deriving beneficiary preference, we downloaded from social media and classi...

  5. Determining preferences for ecosystem benefits in Great Lakes Areas of Concern from photographs posted to social media (presentation)

    Science.gov (United States)

    Relative valuation of potentially affected ecosystem benefits can increase the legitimacy and social acceptance of ecosystem restoration projects. As an alternative or supplement to traditional methods of deriving beneficiary preference, we downloaded from social media and classi...

  6. Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin.

    Science.gov (United States)

    Li, Ping; Omani, Nina; Chaubey, Indrajeet; Wei, Xiaomei

    2017-05-08

    Drought is one of the most widespread extreme climate events with a potential to alter freshwater availability and related ecosystem services. Given the interconnectedness between freshwater availability and many ecosystem services, including food provisioning, it is important to evaluate the drought implications on freshwater provisioning and food provisioning services. Studies about drought implications on streamflow, nutrient loads, and crop yields have been increased and these variables are all process-based model outputs that could represent ecosystem functions that contribute to the ecosystem services. However, few studies evaluate drought effects on ecosystem services such as freshwater and food provisioning and quantify these services using an index-based ecosystem service approach. In this study, the drought implications on freshwater and food provisioning services were evaluated for 14 four-digit HUC (Hydrological Unit Codes) subbasins in the Upper Mississippi River Basin (UMRB), using three drought indices: standardized precipitation index ( SPI ), standardized soil water content index ( SSWI ), and standardized streamflow index ( SSI ). The results showed that the seasonal freshwater provisioning was highly affected by the precipitation deficits and/or surpluses in summer and autumn. A greater importance of hydrological drought than meteorological drought implications on freshwater provisioning was evident for the majority of the subbasins, as evidenced by higher correlations between freshwater provisioning and SSI 12 than SPI 12. Food provisioning was substantially affected by the precipitation and soil water deficits during summer and early autumn, with relatively less effect observed in winter. A greater importance of agricultural drought effects on food provisioning was evident for most of the subbasins during crop reproductive stages. Results from this study may provide insights to help make effective land management decisions in responding to

  7. The environmental fate of polybrominated diphenyl ethers in the Great Lakes Basin

    Science.gov (United States)

    Gouin, Todd William

    Semi-volatile organic compounds, such as the polybrominated diphenyl ethers (PBDEs) have the potential to undergo long-range atmospheric transport (LRAT) to remote locations, which can increase the exposure of sensitive ecosystems to potentially harmful substances. Regulatory instruments, such as the Stockholm Convention on persistent organic pollutants (POPs), have been implemented to limit and/or prevent this exposure. Through the acquisition of scientific data, knowledge can be gained about the environmental fate and human exposure of chemical substances, and the risks associated with using those substances assessed. PBDEs are a class of flame retardants that are used in a wide range of commercial products. In response to growing concern over the detection of PBDEs in remote regions, a number of regulatory bodies have implemented measures to restrict the use of PBDEs. Using a suite of environmental fate models it is shown that PBDEs will most likely partition to organic carbon in soil and sediment, and that their persistence in the environment will be strongly influenced by their reactivity in those compartments. The transport potential of the PBDEs is investigated using the transport and persistence level III model TaPL3, using model environments with and without vegetation. It is suggested that the LRAT potential of the PBDEs is likely to be greater for the more volatile lower brominated congeners than for the higher brominated congeners, and that the LRAT may be sensitive to seasonal changes in the environment, such as temperature, vegetation and changes in precipitation. Furthermore, model results suggest that the PBDEs may be subject to a "spring pulse" effect, whereby concentrations are elevated in air during the early spring. Field studies support the theory of a "spring pulse" effect, where concentrations were observed to be five times greater during the period between snowmelt and bud burst than the average concentration before and after, but conclude

  8. Scytonemin and Photosynthetic Pigment Proxies for Late Pleistocene/Holocene Environmental Change in the Eastern Great Basin

    Science.gov (United States)

    Fulton, J. M.; Van Mooy, B. A. S.

    2015-12-01

    Sedimentary pigments are biomarkers of photosynthetic organisms, most commonly derived from aquatic bacteria and algae but also with potential terrigenous sources. We detected a diverse pigment assemblage with variable down-core distributions in Great Salt Lake (GSL) sediments deposited since ca. 280 ka (GLAD1-GSL00, core 4). The most abundant pigments included derivatives of chlorophyll a, most likely from algae or cyanobacteria, bacteriochlorophyll c from green sulfur bacteria, okenone from purple sulfur bacteria, and scytonemin from UV-exposed cyanobacteria. Scytonemin is a biomarker for colonial cyanobacteria exposed to UV-radiation. In GSL it has potential sources from bioherms on the shoreline or microbiotic soil crusts from the adjacent Great Basin Desert. Scytonemin concentration was highest in the Upper Salt and Sapropel (USS) unit, deposited between 11.5-10 ka in shallow water (ca. 10 m), following deep pluvial Lake Bonneville (30-18 cal ka), the Provo lake level (ca. 18-15 cal ka), and the Gilbert transgression (11.6 cal ka). Scytonemin concentration was very low in sediments deposited during the deep lake phases, even though bioherms were prominent shoreline features. The USS was deposited under hypersaline waters and contained remarkably low concentrations of photosynthetic pigment derivatives that would be expected in organic-matter-rich sediments deposited under productive surface waters or anoxic bottom waters. Stable carbon and nitrogen isotopic data point toward a desert soil crust source for scytonemin in the USS, similar to what we previously observed in the Holocene Black Sea sapropel. We propose that increased aridity supported the widespread occurrence and erosion of microbiotic soil crusts during deposition of the USS. This is consistent with interpretations of Great Salt Lake hydrology, pointing toward a broader regional aridity event. Holocene sediments above the USS also contain scytonemin at relatively high concentration, consistent with

  9. Benefits of the fire mitigation ecosystem service in the Great Dismal Swamp National Wildlife Refuge, Virginia, USA

    Science.gov (United States)

    Parthum, Bryan M.; Pindilli, Emily J.; Hogan, Dianna

    2017-01-01

     The Great Dismal Swamp (GDS) National Wildlife Refuge delivers multiple ecosystem services, including air quality and human health via fire mitigation. Our analysis estimates benefits of this service through its potential to reduce catastrophic wildfire related impacts on the health of nearby human populations. We used a combination of high-frequency satellite data, ground sensors, and air quality indices to determine periods of public exposure to dense emissions from a wildfire within the GDS. We examined emergency department (ED) visitation in seven Virginia counties during these periods, applied measures of cumulative Relative Risk to derive the effects of wildfire smoke exposure on ED visitation rates, and estimated economic losses using regional Cost of Illness values established within the US Environmental Protection Agency BenMAP framework. Our results estimated the value of one avoided catastrophic wildfire in the refuge to be \\$3.69 million (2015 USD), or \\$306 per hectare of burn. Reducing the frequency or severity of extensive, deep burning peatland wildfire events has additional benefits not included in this estimate, including avoided costs related to fire suppression during a burn, carbon dioxide emissions, impacts to wildlife, and negative outcomes associated with recreation and regional tourism. We suggest the societal value of the public health benefits alone provides a significant incentive for refuge mangers to implement strategies that will reduce the severity of catastrophic wildfires.

  10. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  11. Evaluation of Weights of Evidence to Predict Epithermal-Gold Deposits in the Great Basin of the Western United States

    International Nuclear Information System (INIS)

    Raines, Gary L.

    1999-01-01

    The weights-of-evidence method provides a simple approach to the integration of diverse geologic information. The application addressed is to construct a model that predicts the locations of epithermal-gold mineral deposits in the Great Basin of the western United States. Weights of evidence is a data-driven method requiring known deposits and occurrences that are used as training sites in the evaluated area. Four hundred and fifteen known hot spring gold-silver, Comstock vein, hot spring mercury, epithermal manganese, and volcanogenic uranium deposits and occurrences in Nevada were used to define an area of 327.4 km 2 as training sites to develop the model. The model consists of nine weighted-map patterns that are combined to produce a favorability map predicting the distribution of epithermal-gold deposits. Using a measure of the association of training sites with predictor features (or patterns), the patterns can be ranked from best to worst predictors. Based on proximity analysis, the strongest predictor is the area within 8 km of volcanic rocks younger than 43 Ma. Being close to volcanic rocks is not highly weighted, but being far from volcanic rocks causes a strong negative weight. These weights suggest that proximity to volcanic rocks define where deposits do not occur. The second best pattern is the area within 1 km of hydrothermally altered areas. The next best pattern is the area within 1 km of known placer-gold sites. The proximity analysis for gold placers weights this pattern as useful when close to known placer sites, but unimportant where placers do not exist. The remaining patterns are significantly weaker predictors. In order of decreasing correlation, they are: proximity to volcanic vents, proximity to east-west to northwest faults, elevated airborne radiometric uranium, proximity to northwest to west and north-northwest linear features, elevated aeromagnetics, and anomalous geochemistry. This ordering of the patterns is a function of the quality

  12. Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs.

    Science.gov (United States)

    Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J

    2015-06-01

    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.

  13. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs

    Science.gov (United States)

    Hedlund, Brian P.; Paraiso, Julienne J.; Williams, Amanda J.; Huang, Qiuyuan; Wei, Yuli; Dijkstra, Paul; Hungate, Bruce A.; Dong, Hailiang; Zhang, Chuanlun L.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31–95°C; pH: 6.8–10.7). bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal). The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS−) and positively with properties of oxygenated, low temperature sites (O2, NO−3). Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤70°C). PMID:23964271

  14. 8000 yr of vegetation reconstruction from the Great Basin (Nevada, USA): the contribution of Non-Pollen Palynomorphs.

    Science.gov (United States)

    Tunno, I.; Mensing, S. A.

    2017-12-01

    Multiproxy records from the Great Basin showed that a severe drought occurred in the area between 3000-1850 BP (Mensing et al., 2013). The pollen analysis on a 7m sediment core from Stonehouse Meadow revealed that during this period arboreal pollen dropped abruptly, reaching the lowest percentage ( 10%) around 2500 BP. At the same time, grass and herbs increased significantly ( 60%) together with the total carbonate percentage (TC%). To better understand this dramatic event, the analysis of Non-Pollen Palynomorphs (NPPs) was conducted. NPPs are microfossils that survive the chemical treatment during pollen extraction and appear in pollen slides. They are valuable indicators of climate- and human-induced changes, and due to their different origin, NPPs can be integrated with pollen analysis to corroborate and improve the information provided by pollen records. To obtain more reliable information, fossil NPPs from the sediment core were compared to modern NPPs and the pollen records. Modern samples, represented by mineral soil and sediment specimens, were collected around the meadow in 2015. Fossil NPPs were counted from the same sediment core subsamples previously analyzed for pollen records. A total of 64 different NPPs were identified from both modern and fossil samples, 33 of which were identified as unknowns and given an identification code. While several of the known NPPs were consistent with the data provided by pollen record, the most crucial information was provided by some of the unknown NPPs, such as PLN-01, PLN-20 and PLN-11. The presence of PLN-01 and PLN-20 on the edge of the meadow in the modern samples and right before and after the driest period in the core, supports the evidence of a drought, when the meadow was likely shrinking during the transition from a wetter to a drier period and expanding once again after the drought. PLN-11 appears to be related to the drought as well, occurring exclusively during the driest period. However, this NPP was not

  15. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Brian P. Hedlund

    2013-08-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31-95°C; pH: 6.8-10.7. bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal. The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤ 70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS- and positively with properties of oxygenated, low temperature sites (O2, NO3-. Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤ 70°C.

  16. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.

    Directory of Open Access Journals (Sweden)

    Maike F Holthuijzen

    Full Text Available As environmental stress increases positive (facilitative plant interactions often predominate. Plant-plant associations (or lack thereof can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces and can provide valuable insights into whether "nurse plants" will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis, and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata, representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220-350 mm in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25-33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial

  17. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    Science.gov (United States)

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies

  18. Communication in ecosystem management: a case study of cross-disciplinary integration in the assessment phase of the interior Columbia Basin Ecosystem Management Project.

    Science.gov (United States)

    Jakobsen, Christine Haugaard; McLaughlin, William J

    2004-05-01

    Effective communication is essential to the success of collaborative ecosystem management projects. In this paper, we investigated the dynamics of the Interior Columbia Basin Ecosystem Management Project's (ICBEMP) cross-disciplinary integration process in the assessment phase. Using a case study research design, we captured the rich trail of experience through conducting in-depth interviews and collecting information from internal and public documents, videos, and meetings related to the ICBEMP. Coding and analysis was facilitated by a qualitative analysis software, NVivo. Results include the range of internal perspectives on barriers and facilitators of cross-disciplinary integration in the Science Integration Team (SIT). These are arrayed in terms of discipline-based differences, organizational structures and activities, individual traits of scientists, and previous working relationships. The ICBEMP organization included a team of communication staffs (CT), and the data described the CT as a mixed group in terms of qualifications and educational backgrounds that played a major role in communication with actors external to the ICBEMP organization but a minor one in terms of internal communication. The data indicated that the CT-SIT communication was influenced by characteristics of actors and structures related to organizations and their cultures. We conclude that the ICBEMP members may not have had a sufficient level of shared understanding of central domains, such as the task at hand and ways and timing of information sharing. The paper concludes by suggesting that future ecosystem management assessment teams use qualified communications specialists to design and monitor the development of shared cognition among organization members in order to improve the effectiveness of communication and cross-disciplinary integration.

  19. Impacts of land use changes on net ecosystem production in the Taihu Lake Basin of China from 1985 to 2010

    Science.gov (United States)

    Xu, Xibao; Yang, Guishan; Tan, Yan; Tang, Xuguang; Jiang, Hong; Sun, Xiaoxiang; Zhuang, Qianlai; Li, Hengpeng

    2017-03-01

    Land use changes play a major role in determining sources and sinks of carbon at regional and global scales. This study employs a modified Global biome model-biogeochemical cycle model to examine the changes in the spatiotemporal pattern of net ecosystem production (NEP) in the Taihu Lake Basin of China during 1985-2010 and the extent to which land use change impacted NEP. The model is calibrated with observed NEP at three flux sites for three dominant land use types in the basin including cropland, evergreen needleleaf forest, and mixed forest. Two simulations are conducted to distinguish the net effects of land use change and increasing atmospheric concentrations of CO2 and nitrogen deposition on NEP. The study estimates that NEP in the basin decreased by 9.8% (1.57 Tg C) from 1985 to 2010, showing an overall downward trend. The NEP distribution exhibits an apparent spatial heterogeneity at the municipal level. Land use changes during 1985-2010 reduced the regional NEP (3.21 Tg C in year 2010) by 19.9% compared to its 1985 level, while the increasing atmospheric CO2 concentrations and nitrogen deposition compensated for a half of the total carbon loss. Critical measures for regulating rapid urban expansion and population growth and reinforcing environment protection programs are recommended to increase the regional carbon sink.

  20. Earth observation based assessment of the water production and water consumption of Nile Basin agro-ecosystems

    Science.gov (United States)

    Bastiaanssen, Wim G.M.; Karimi, Poolad; Rebelo, Lisa-Maria; Duan, Zheng; Senay, Gabriel; Muthuwatte, Lal; Smakhtin, Vladimir

    2014-01-01

    The increasing competition for water resources requires a better understanding of flows, fluxes, stocks, and the services and benefits related to water consumption. This paper explains how public domain Earth Observation data based on Moderate Resolution Imaging Spectroradiometer (MODIS), Second Generation Meteosat (MSG), Tropical Rainfall Measurement Mission (TRMM) and various altimeter measurements can be used to estimate net water production (rainfall (P) > evapotranspiration (ET)) and net water consumption (ET > P) of Nile Basin agro-ecosystems. Rainfall data from TRMM and the Famine Early Warning System Network (FEWS-NET) RainFall Estimates (RFE) products were used in conjunction with actual evapotranspiration from the Operational Simplified Surface Energy Balance (SSEBop) and ETLook models. Water flows laterally between net water production and net water consumption areas as a result of runoff and withdrawals. This lateral flow between the 15 sub-basins of the Nile was estimated, and partitioned into stream flow and non-stream flow using the discharge data. A series of essential water metrics necessary for successful integrated water management are explained and computed. Net water withdrawal estimates (natural and humanly instigated) were assumed to be the difference between net rainfall (Pnet) and actual evapotranspiration (ET) and some first estimates of withdrawals—without flow meters—are provided. Groundwater-dependent ecosystems withdraw large volumes of groundwater, which exceed water withdrawals for the irrigation sector. There is a strong need for the development of more open-access Earth Observation databases, especially for information related to actual ET. The fluxes, flows and storage changes presented form the basis for a global framework to describe monthly and annual water accounts in ungauged river basins.

  1. [Modeling of Processes of Migration and Accumulation of Radionuclides in Freshwater Ecosystems by the Example of the Samson, Lev, Vandras Rivers Related to the Ob-Irtysh River Basin].

    Science.gov (United States)

    Trapeznikov, A V; Korzhavin, A V; Trapeznikova, V N; Nikolkin, V N

    2016-01-01

    Mathematical models of horizontal distribution and migration of radionuclides are presented in water and floodplain soils of the Samson-Lev-Vandras river system related to the Ob-Irtysh river basin. Integral inventory of radionuclides in the main components of the river ecosystems is calculated. The estimated annual discharge of radionuclides from the Vandras river to the Great Salym river is given. The effect of the removal of man-made radionuclides in the Samson, Lev, Vandras rivers on radioactive contamination of the Ob-Irtysh river system is shown in comparison with the Techa river, that also belongs to the Ob-Irtysh river basin. Despite the presence of an additional radioactive contamination of the Samson floodplain, the transfer of radioactive substances in the Samson, Lev, Vandras rivers has a much smaller impact on the contamination of the Ob-Irtysh river system, compared to the Techa river, prone to a large-scale radioactive contamination.

  2. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    Science.gov (United States)

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  3. Influence of domestic livestock grazing on American Pika (Ochotona princeps) forage and haypiling behavior in the Great Basin. Western North American Naturalist.

    Science.gov (United States)

    Constance I. Millar

    2011-01-01

    In a pilot study, I observed a relationship between domestic livestock grazing and location of American pika (Ochotona princeps) haypiles in the eastern Sierra Nevada and several Great Basin mountain ranges. Where vegetation communities adjacent to talus bases (forefields) were grazed, mean distance from the talus borders to the closest fresh...

  4. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 1).

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. The paper does not provide guidelines but rather...

  5. Beginnings of range management: an anthology of the Sampson-Ellison photo plots (1913 to 2003) and a short history of the Great Basin Experiment Station

    Science.gov (United States)

    David A. Prevedel; E. Durant McArthur; Curtis M. Johnson

    2005-01-01

    High-elevation watersheds on the Wasatch Plateau in central Utah were severely overgrazed in the late 1800s, resulting in catastrophic flooding and mudflows through adjacent communities. Affected citizens petitioned the Federal government to establish a Forest Reserve (1902), and the Manti National Forest was established by the Transfer Act of 1905. The Great Basin...

  6. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 2).

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described in a series of appendices. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. ...

  7. Modeling and dynamic monitoring of ecosystem performance in the Yukon River Basin

    Science.gov (United States)

    Wylie, Bruce K.; Zhang, L.; Ji, Lei; Tieszen, Larry L.; Bliss, N.B.

    2008-01-01

    Central Alaska is ecologically sensitive and experiencing stress in response to marked regional warming. Resource managers would benefit from an improved ability to monitor ecosystem processes in response to climate change, fire, insect damage, and management policies and to predict responses to future climate scenarios. We have developed a method for analyzing ecosystem performance as represented by the growing season integral of normalized difference vegetation index (NDVI), which is a measure of greenness that can be interpreted in terms of plant growth or photosynthetic activity (gross primary productivity). The approach illustrates the status and trends of ecosystem changes and separates the influences of climate and local site conditions from the influences of disturbances and land management.We emphasize the ability to quantify ecosystem processes, not simply changes in land cover, across the entire period of the remote sensing archive (Wylie and others, 2008). The method builds upon remotely sensed measures of vegetation greenness for each growing season. By itself, however, a time series of greenness often reflects annual climate variations in temperature and precipitation. Our method seeks to remove the influence of climate so that changes in underlying ecological conditions are identified and quantified. We define an "expected ecosystem performance" to represent the greenness response expected in a particular year given the climate of that year. We distinguish "performance anomalies" as cases where the ecosystem response is significantly different from the expected ecosystem performance. Maps of the performance anomalies (fig. 1) and trends in the anomalies give valuable information on the ecosystems for land managers and policy makers at a resolution of 1 km to 250 m.

  8. Economic Evaluation of Hydrological Ecosystem Services in Mediterranean River Basins Applied to a Case Study in Southern Italy

    Directory of Open Access Journals (Sweden)

    Marcello Mastrorilli

    2018-02-01

    Full Text Available Land use affects eco-hydrological processes with consequences for floods and droughts. Changes in land use affect ecosystems and hydrological services. The objective of this study is the analysis of hydrological services through the quantification of water resources, pollutant loads, land retention capacity and soil erosion. On the basis of a quantitative evaluation, the economic values of the ecosystem services are estimated. By assigning an economic value to the natural resources and to the hydraulic system, the hydrological services can be computed at the scale of catchment ecosystem. The proposed methodology was applied to the basin “Bonis” (Calabria Region, Italy. The study analyses four land use scenarios: (i forest cover with good vegetative status (baseline scenario; (ii modification of the forest canopy; (iii variation in forest and cultivated surfaces; (iv insertion of impermeable areas. The simulations prove that the variations of the state of forest areas has considerable influence on the water balance, and then on the provided economic value. Small economic changes derive from reducing the impermeable areas. Increasing the agricultural area to 50% of the total, and reducing the forest surface, affects soil erosion, reduces the storage capacity of the water, and consequently the water harvesting. The suggested methodology can be considered a suitable tool for land planning.

  9. Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia's Great Artesian Basin

    Science.gov (United States)

    Smerdon, Brian D.; Turnadge, Chris

    2015-08-01

    Hydraulic head measurements in the Great Artesian Basin (GAB), Australia, began in the early 20th century, and despite subsequent decades of data collection, a well-accepted smoothed potentiometric surface has continually assumed a contiguous aquifer system. Numerical modeling was used to produce alternative potentiometric surfaces for the Cadna-owie-Hooray aquifers with and without the effect of major faults. Where a fault created a vertical offset between the aquifers and was juxtaposed with an aquitard, it was assumed to act as a lateral barrier to flow. Results demonstrate notable differences in the central portion of the study area between potentiometric surfaces including faults and those without faults. Explicitly considering faults results in a 25-50 m difference where faults are perpendicular to the regional flow path, compared to disregarding faults. These potential barriers create semi-isolated compartments where lateral groundwater flow may be diminished or absent. Groundwater management in the GAB relies on maintaining certain hydraulic head conditions and, hence, a potentiometric surface. The presence of faulting has two implications for management: (1) a change in the inferred hydraulic heads (and associated fluxes) at the boundaries of regulatory jurisdictions; and (2) assessment of large-scale extractions occurring at different locations within the GAB.

  10. Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah

    Directory of Open Access Journals (Sweden)

    Meredith C. Schuman

    2013-01-01

    Full Text Available Big-eyed bugs (Geocoris spp. Fallén, Hemiptera: Lygaeidae are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stål and G. punctipes (Say native to the Great Basin Desert of southwestern Utah, including observations of their life histories and color morphs, dynamics of their predatory feeding behavior and prey choice over space and time, and novel aspects of Geocoris spp.’s relationships to their host plants. These observations open up new areas to be explored regarding the behavior of Geocoris spp. and their interactions with plant and herbivore populations.

  11. Hunter-gatherer adaptations and environmental change in the southern Great Basin: The evidence from Pahute and Rainier mesas

    Energy Technology Data Exchange (ETDEWEB)

    Pippin, L.C.

    1998-06-01

    This paper reviews the evidence for fluctuations in past environments in the southern Great Basin and examines how these changes may have affected the strategies followed by past hunter and gatherers in their utilization of the resources available on a highland in this region. The evidence used to reconstruct past environments for the region include botanical remains from packrat middens, pollen spectra from lake and spring deposits, faunal remains recovered from archaeological and geologic contexts, tree-ring indices from trees located in sensitive (tree-line) environments, and eolian, alluvial and fluvial sediments deposited in a variety of contexts. Interpretations of past hunter and gatherer adaptive strategies are based on a sample of 1,311 archaeological sites recorded during preconstruction surveys on Pahute and Rainier mesas in advance of the US Department of Energy`s nuclear weapons testing program. Projectile point chronologies and available tree-ring, radiocarbon, thermoluminescence and obsidian hydration dates were used to assign these archaeological sites to specific periods of use.

  12. Upper Ordovician-Lower Silurian shelf sequences of the Eastern Great Basin: Barn Hills and Lakeside Mountains, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.T. (Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Geosciences); Sheehan, P.M. (Milwaukee Public Museum, WI (United States). Dept of Geology)

    1993-04-01

    Detailed stratigraphic sections through Upper Ordovician-Lower Silurian shelf strata of the Eastern Great Basin were measured in two Utah localities, Barn Hills (Confusion Range) and Lakeside Mountains. Six major subfacies occur in these strata: mud-cracked and crinkly laminated subfacies, Laminated mudstone subfacies, cross-bedded grainstone subfacies, cross-laminated packstone subfacies, grainy bioturbated subfacies, muddy bioturbated subfacies, and thalassinoides burrowed subfacies. These occur in 1--10 m thick cycles in three facies: muddy cyclic laminite facies (tidal flats), cross-bedded facies (subtidal shoals), and bioturbated facies (moderate to low-energy shelf). The vertical facies succession, stacking patterns of meter-scale cycles, and exposure surfaces define correlatable sequences. The authors recognize four Upper Ordovician sequences (Mayvillian to Richmondian). An uppermost Ordovician (Hirnantian) sequence is missing in these sections but occurs basinward. Lower Silurian sequences are of early Llandoverian (A), middle Llandoverian (B), early late Llandoverian (C1--C3), late late Llandoverian (C4--C5), latest Llandoverian (C6) to early Wenlock age. In general, Upper Ordovician and latest Llandoverian-Wenlockian facies are muddier than intervening Llandoverian facies. The shift to muddier shelf facies in latest Llandoverian probably corresponds to the development of a rimmed shelf. The sequence framework improves correlation of these strata by combining sedimentologic patterns with the biostratigraphic data. For example, in the Lakesides, the Ordovician-Silurian boundary is shifted 37 m downward from recent suggestions. In addition, the sequence approach highlights intervals for which additional biostratigraphic information is needed.

  13. Chapter B: Regional Geologic Setting of Late Cenozoic Lacustrine Diatomite Deposits, Great Basin and Surrounding Region: Overview and Plans for Investigation

    Science.gov (United States)

    Wallace, Alan R.

    2003-01-01

    Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional

  14. The use of process models to inform and improve statistical models of nitrate occurrence, Great Miami River Basin, southwestern Ohio

    Science.gov (United States)

    Walter, Donald A.; Starn, J. Jeffrey

    2013-01-01

    in estimated variables for circular buffers and contributing recharge areas of existing public-supply and network wells in the Great Miami River Basin. Large differences in areaweighted mean environmental variables are observed at the basin scale, determined by using the network of uniformly spaced hypothetical wells; the differences have a spatial pattern that generally is similar to spatial patterns in the underlying STATSGO data. Generally, the largest differences were observed for area-weighted nitrogen-application rate from county and national land-use data; the basin-scale differences ranged from -1,600 (indicating a larger value from within the volume-equivalent contributing recharge area) to 1,900 kilograms per year (kg/yr); the range in the underlying spatial data was from 0 to 2,200 kg/yr. Silt content, alfisol content, and nitrogen-application rate are defined by the underlying spatial data and are external to the groundwater system; however, depth to water is an environmental variable that can be estimated in more detail and, presumably, in a more physically based manner using a groundwater-flow model than using the spatial data. Model-calculated depths to water within circular buffers in the Great Miami River Basin differed substantially from values derived from the spatial data and had a much larger range. Differences in estimates of area-weighted spatial variables result in corresponding differences in predictions of nitrate occurrence in the aquifer. In addition to the factors affecting contributing recharge areas and estimated explanatory variables, differences in predictions also are a function of the specific set of explanatory variables used and the fitted slope coefficients in a given model. For models that predicted the probability of exceeding 1 and 4 milligrams per liter as nitrogen (mg/L as N), predicted probabilities using variables estimated from circular buffers and contributing recharge areas generally were correlated but differed

  15. Assessment of general health of fishes collected at selected sites in the Great Lakes Basin In 2012

    Science.gov (United States)

    Mazik, Patricia M.; Braham, Ryan P.; Hahn, Cassidy M.; Blazer, Vicki

    2015-01-01

    During the past decade, there has been a substantive increase in the detection of “emerging contaminants”, defined as a new substance, chemical, or metabolite in the environment; or a legacy substance with a newly expanded distribution, altered release, or a newly recognized effect (such as endocrine disruption). Emerging contaminants include substances such as biogenic hormones (human and animal), brominated flame retardants, pharmaceuticals, personal care products, plasticizers, current use pesticides, detergents, and nanoparticles. These contaminants are frequently not regulated or inadequately regulated by state or Federal water quality programs. Information about the toxicity of these substances to fish and wildlife resources is generally limited, compared to more highly regulated contaminants, and some classes have been shown to cause affects (for example feminization of male fish, immunomodulation) that are not evaluated via traditional toxicity testing protocols. As a result, these compounds may pose a substantial, but currently poorly documented threat to aquatic ecosystems. Failure to identify and understand the impacts of these emerging contaminants on fish and wildlife resources may result in deleterious impacts to Great Lakes resources that can result in adverse ecological, economic and recreational consequences.

  16. Ecosystem Resilience to Drought and Temperature Anomalies in the Mekong River Basin

    DEFF Research Database (Denmark)

    Na-U-Dom, T.; Garcia, Monica; Mo, X.

    2017-01-01

    to the temperate and wet/dry anomalies events than other regions in the basin. Drought reduced green biomass in north Laos, northeast Thailand and Myanmar, but in these tropical climate regions' the vegetation biomass was also more responsive by higher temperatures. Vegetation in northeast Thailand, Cambodia...

  17. AGRO-ECOSYSTEMS AND SUSTAINABLE DEVELOPMENT OF WATER RESOURCES IN ARGES RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Tatiana Diaconu

    2010-01-01

    Full Text Available Lotic ecosystems, part of the Natural Capital, is one of the key factors functioning of socio - economic development andtheir support. An important role in their sustainable development, is the retention and recycling of nutrients, especiallyN, P and their compounds. The nutrients in lotic and lentic ecosystems are either due to natural biochemical processesor by human impact of pollution or broadcast process and characterize the ecological status of water bodies and thuscan determine the quality of services provided. A special importance have agro-ecosystems, particularly multifunctionallivestock farms. Pathways by which pollutants (especially nutrients and pesticides, and other pollutants to reach bodiesof water are different (surface drainage, percolation, etc..To ensure sustainable development of water resources is necessary for agricultural development to take place in termsof minimizing waste streams and not affect the production and support of NC.

  18. Quantifying and valuing ecosystem services: An application of ARIES to the San Pedro River basin, USA

    Science.gov (United States)

    Bagstad, Kenneth J.; Semmens, Darius J.; Villa, Ferdinando; Johnson, Gary

    2014-01-01

    A large body of research exists that identifies and values ecosystem services - the benefits that ecosystems provide to humans (MA, 2005) - and their underlying ecological processes. However, the development of software decision support tools that integrate ecology, economics and geography that can be independently used within the public, private, academic and NGO sectors is a more recent phenomenon (Ruhl et al., 2007; Daily et al., 2009). Spurred by growing demand for more sophisticated analysis of the social and economic consequences of land management decisions, the US Department of Interior - Bureau of Land Management (BLM) launched a pilot project with the US Geological Survey (USGS) to assess the usefulness and feasibility of ecosystem service assessment and valuation tools to provide inputs to decision-making. The project analysed ecosystem services in the US portion of the San Pedro River watershed, which includes the BLM-managed San Pedro Riparian National Conservation Area (SPRNCA), to improve the understanding of complex social and ecological relationships that transcend administrative divisions. The BLM manages some 99 million hectares, primarily in the western United States, and 283 million hectares of sub-surface mineral estate. BLM's multiple-use mission requires that it appropriately balance non-extractive uses such as habitat conservation, recreation and archaeological heritage protection and the extractive use of resources such as timber, oil and gas, coal, uranium, and other minerals.

  19. A general equilibrium model of ecosystem services in a river basin

    Science.gov (United States)

    Travis Warziniack

    2014-01-01

    This study builds a general equilibrium model of ecosystem services, with sectors of the economy competing for use of the environment. The model recognizes that production processes in the real world require a combination of natural and human inputs, and understanding the value of these inputs and their competing uses is necessary when considering policies of resource...

  20. Extensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs.

    Science.gov (United States)

    Snyder, K A; Donovan, L A; James, J J; Tiller, R L; Richards, J H

    2004-10-01

    Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, delta15N, delta13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of

  1. Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records

    Science.gov (United States)

    Biondi, Franco; Rossi, Sergio

    2015-08-01

    Water is the main limiting resource for natural and human systems, but the effect of hydroclimatic variability on woody species in water-limited environments at sub-monthly time scales is not fully understood. Plant-water relationships of single-leaf pinyon pine ( Pinus monophylla) were investigated using hourly dendrometer and environmental data from May 2006 to October 2011 in the Great Basin Desert, one of the driest regions of North America. Average radial stem increments showed an annual range of variation below 1.0 mm, with a monotonic steep increase from May to July that yielded a stem enlargement of about 0.5 mm. Stem shrinkage up to 0.2 mm occurred in late summer, followed by an abrupt expansion of up to 0.5 mm in the fall, at the arrival of the new water year precipitation. Subsequent winter shrinkage and enlargement were less than 0.3 mm each. Based on 4 years with continuous data, diel cycles varied in both timing and amplitude between months and years. Phase shifts in circadian stem changes were observed between the growing season and the dormant one, with stem size being linked to precipitation more than to other water-related indices, such as relative humidity or soil moisture. During May-October, the amplitude of the phases of stem contraction, expansion, and increment was positively related to their duration in a nonlinear fashion. Changes in precipitation regime, which affected the diel phases especially when lasting more than 5-6 h, could substantially influence the dynamics of water depletion and replenishment in single-leaf pinyon pine.

  2. Let's jump in: A phylogenetic study of the great basin springfishes and poolfishes, Crenichthys and Empetrichthys (Cyprinodontiformes: Goodeidae.

    Directory of Open Access Journals (Sweden)

    D Cooper Campbell

    Full Text Available North America's Great Basin has long been of interest to biologists due to its high level of organismal endemicity throughout its endorheic watersheds. One example of such a group is the subfamily Empetricthyinae. In this paper, we analyzed the relationships of the Empetrichtyinae and assessed the validity of the subspecies designations given by Williams and Wilde within the group using concatenated phylogenetic tree estimation and species tree estimation. Samples from 19 populations were included covering the entire distribution of the three extant species of Empetricthyinae-Crenichthys nevadae, Crenichthys baileyi and Empetricthys latos. Three nuclear introns (S8 intron 4, S7 intron 1, and P0 intron 1 and one mitochondrial gene (Cytb were sequenced for phylogenetic analysis. Using these sequences, we generated two separate hypotheses of the evolutionary relationships of Empetrichtyinae- one based on the mitochondrial data and one based on the nuclear data using Bayesian phylogenetics. Haplotype networks were also generated to look at the relationships of the populations within Empetrichthyinae. After comparing the two phylogenetic hypotheses, species trees were generated using *BEAST with the nuclear data to further test the validity of the subspecies within Empetrichthyinae. The mitochondrial analyses supported four lineages within C. baileyi and 2 within C. nevadae. The concatenated nuclear tree was more conserved, supporting one clade and an unresolved polytomy in both species. The species tree analysis supported the presence of two species within both C. baileyi and C. nevadae. Based on the results of these analyses, the subspecies designations of Williams and Wilde are not valid, rather a conservative approach suggests there are two species within C. nevadae and two species within C. baileyi. No structure was found for E. latos or the populations of Empetricthyinae. This study represents one of many demonstrating the invalidity of

  3. A population model of the impact of a rodenticide containing strychnine on Great Basin Gophersnakes (Pituophis catenifer deserticola).

    Science.gov (United States)

    Bishop, Christine A; Williams, Kathleen E; Kirk, David A; Nantel, Patrick; Reed, Eric; Elliott, John E

    2016-09-01

    Strychnine is a neurotoxin and an active ingredient in some rodenticides which are placed in burrows to suppress pocket gopher (Thomomys talpoides) populations in range and crop land in western North America. The population level impact was modelled of the use of strychnine-based rodenticides on a non-target snake species, the Great Basin Gophersnake (Pituophis catenifer deserticola), which is a predator of pocket gopher and a Species at Risk in Canada. Using information on population density, demographics, and movement and habitat suitability for the Gophersnake living in an agricultural valley in BC, Canada, we estimated the impact of the poisoning of adult snakes on the long-term population size. To determine the area where Gophersnakes could be exposed to strychnine, we used vendor records of a rodenticide, and quantified the landcover areas of orchards and vineyards where the compound was most commonly applied. GIS analysis determined the areas of overlap between those agricultural lands and suitable habitats used by Gophersnakes. Stage-based population matrix models revealed that in a low density (0.1/ha) population scenario, a diet of one pocket gopher per year wherein 10 % of them carried enough strychnine to kill an adult snake could cause the loss of 2 females annually from the population and this would reduce the population by 35.3 % in 25 years. Under the same dietary exposure, up to 35 females could die per year in a high density (0.4/ha) population which would result in a loss of 50 % of adults in 25 years.

  4. Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia.

    Science.gov (United States)

    Edwards, Tara A; Calica, Nicole A; Huang, Dolores A; Manoharan, Namritha; Hou, Weiguo; Huang, Liuqin; Panosyan, Hovik; Dong, Hailiang; Hedlund, Brian P

    2013-08-01

    Despite its importance in the nitrogen cycle, little is known about nitrite oxidation at high temperatures. To bridge this gap, enrichment cultures were inoculated with sediment slurries from a variety of geothermal springs. While nitrite-oxidizing bacteria (NOB) were successfully enriched from seven hot springs located in US Great Basin, south-western China, and Armenia at ≤ 57.9 °C, all attempts to enrich NOB from > 10 hot springs at ≥ 61 °C failed. The stoichiometric conversion of nitrite to nitrate, chlorate sensitivity, and sensitivity to autoclaving all confirmed biological nitrite oxidation. Regardless of origin, all successful enrichments contained organisms with high 16S rRNA gene sequence identity (≥ 97%) with Nitrospira calida. In addition, Armenian enrichments also contained close relatives of Nitrospira moscoviensis. Physiological properties of all enrichments were similar, with a temperature optimum of 45-50 °C, yielding nitrite oxidation rates of 7.53 ± 1.20 to 23.0 ± 2.73 fmoles cell(-1) h(-1), and an upper temperature limit between 60 and 65 °C. The highest rates of NOB activity occurred with initial NO2 - concentrations of 0.5-0.75 mM; however, lower initial nitrite concentrations resulted in shorter lag times. The results presented here suggest a possible upper temperature limit of 60-65 °C for Nitrospira and demonstrate the wide geographic range of Nitrospira species in geothermal environments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Empirical assessment of effects of urbanization on event flow hydrology in watersheds of Canada's Great Lakes-St Lawrence basin

    Science.gov (United States)

    Trudeau, M. P.; Richardson, Murray

    2016-10-01

    We conducted an empirical hydrological analysis of high-temporal resolution streamflow records for 27 watersheds within 11 river systems in the Greater Toronto Region of the Canadian Great Lakes basin. Our objectives were to model the event-scale flow response of watersheds to urbanization and to test for scale and threshold effects. Watershed areas ranged from 37.5 km2 to 806 km2 and urban percent land cover ranged from less than 0.1-87.6%. Flow records had a resolution of 15-min increments and were available over a 42-year period, allowing for detailed assessment of changes in event-scale flow response with increasing urban land use during the post-freshet period (May 26 to November 15). Empirical statistical models were developed for flow characteristics including total runoff, runoff coefficient, eightieth and ninety-fifth percentile rising limb event runoff and mean rising limb event acceleration. Changes in some of these runoff metrics began at very low urban land use (acceleration increased with increasing urban cover, thus causing 80th percentile runoff depths to be reached sooner. These results indicate the potential for compromised water balance when cumulative changes are considered at the watershed scale. No abrupt or threshold changes in hydrologic characteristics were identified along the urban land use gradient. A positive interaction of urban percent land use and watershed size indicated a scale effect on total runoff. Overall, the results document compromised hydrologic stability attributable to urbanization during a period with no detectable change in rainfall patterns. They also corroborate literature recommendations for spatially distributed low impact urban development techniques; measures would be needed throughout the urbanized area of a watershed to dampen event-scale hydrologic responses to urbanization. Additional research is warranted into event-scale hydrologic trends with urbanization in other regions, in particular rising limb event

  6. A simple prioritization tool to diagnose impairment of stream temperature for coldwater fishes in the Great Basin

    Science.gov (United States)

    Falke, Jeffrey A.; Dunham, Jason B.; Hockman-Wert, David; Pahl, Randy

    2016-01-01

    We provide a simple framework for diagnosing the impairment of stream water temperature for coldwater fishes across broad spatial extents based on a weight-of-evidence approach that integrates biological criteria, species distribution models, and geostatistical models of stream temperature. As a test case, we applied our approach to identify stream reaches most likely to be thermally impaired for Lahontan Cutthroat Trout Oncorhynchus clarkii henshawi in the upper Reese River, located in the northern Great Basin, Nevada. We first evaluated the capability of stream thermal regime descriptors to explain variation across 170 sites, and we found that the 7-d moving average of daily maximum stream temperatures (7DADM) provided minimal among-descriptor redundancy and, based on an upper threshold of 20°C, was also a good indicator of acute and chronic thermal stress. Next, we quantified the range of Lahontan Cutthroat Trout within our study area using a geographic distribution model. Finally, we used a geostatistical model to assess spatial variation in 7DADM and predict potential thermal impairment at the stream reach scale. We found that whereas 38% of reaches in our study area exceeded a 7DADM of 20°C and 35% were significantly warmer than predicted, only 17% both exceeded the biological criterion and were significantly warmer than predicted. This filtering allowed us to identify locations where physical and biological impairment were most likely within the network and that would represent the highest management priorities. Although our approach lacks the precision of more comprehensive approaches, it provides a broader context for diagnosing impairment and is a useful means of identifying priorities for more detailed evaluations across broad and heterogeneous stream networks.

  7. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    Science.gov (United States)

    Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphael; Gebelin, Aude; Chamberlain, C. Page

    2015-01-01

    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (−90‰ to −154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ −154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ −125‰), where 40Ar/39Ar geochronological data indicate Miocene (18–15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.

  8. Interpreting the Value of Ecosystem Services in a Great Lakes Estuary from the Behavior of Individuals and Communities

    Science.gov (United States)

    Fundamentally, economists study human behavior. Financial and political investments are justified in terms of the real, perceived, or potential value of benefits. Unlike economic systems, investments in and benefits from ecosystems are difficult to monetize. We are applying alter...

  9. Ecosystem services of runoff marshes in urban lowland basins: proposals for their management and conservation

    Directory of Open Access Journals (Sweden)

    Armendáriz Laura C.

    2017-01-01

    Full Text Available The city of La Plata, Argentina, is situated in a low alluvial zone, with streams having insufficient drainage into the Río de la Plata estuary. In April 2013, a prodigious storm front caused unprecedented flooding in the city and environs that resulted in extensive loss of life and property, especially in the Del Gato stream basin. Through an analysis of water quality and the conditions of the habitat on the basis of the macroinvertebrates present as bioindicators of environmental quality, this work aims to contribute to a reevaluation of the role of the marshes adjacent to the stream as flood-alleviation elements, and then propose alternatives for flooding management in the basin. Consequently, quantitative seasonal samples of vegetation, sediments, and benthic organic matter were taken and limnologic parameters measured in three sectors of the basin having different land uses: rural, periurban, and urban-industrial. The macroinvertebrate assemblages, as analyzed through the application of ecological indices, exhibited a marked decline in richness and in the Pampean Biotic Index towards the low-lying basin. Principal-components analysis associated Site 1 with the dissolved-oxygen concentration, Site 2 with high nitrate values, and Site 3 with oxygen demands. Redundancy analysis indicated a positive relationship between Baetidae and Aeolosomatidae with the dissolved-oxygen concentration and between Enchytraeidae and Stratiomyidae with the conductivity. These marshes are fundamental in maintaining good environmental conditions and attenuating the effects of the flooding that is predicted to become increasingly catastrophic in this region as the climate changes.

  10. Greenhouse gas emissions from agro-ecosystems and their contribution to environmental change in the Indus Basin of Pakistan

    Science.gov (United States)

    Iqbal, M. Mohsin; Goheer, M. Arif

    2008-11-01

    There is growing concern that increasing concentrations of greenhouse gases in the atmosphere have been responsible for global warming through their effect on radiation balance and temperature. The magnitude of emissions and the relative importance of different sources vary widely, regionally and locally. The Indus Basin of Pakistan is the food basket of the country and agricultural activities are vulnerable to the effects of global warming due to accelerated emissions of GHGs. Many developments have taken place in the agricultural sector of Pakistan in recent decades in the background of the changing role of the government and the encouragement of the private sector for investment in new ventures. These interventions have considerable GHG emission potential. Unfortunately, no published information is currently available on GHG concentrations in the Indus Basin to assess their magnitude and emission trends. The present study is an attempt to estimate GHG (CO2, CH4 and N2O) emissions arising from different agro-ecosystems of Indus Basin. The GHGs were estimated mostly using the IPCC Guidelines and data from the published literature. The results showed that CH4 emissions were the highest (4.126 Tg yr-1) followed by N2O (0.265 Tg yr-1) and CO2 (52.6 Tg yr-1). The sources of CH4 are enteric fermentation, rice cultivation and cultivation of other crops. N2O is formed by microbial denitrification of NO3 produced from applied fertilizer-N on cropped soils or by mineralization of native organic matter on fallow soils. CO2 is formed by the burning of plant residue and by soil respiration due to the decomposition of soil organic matter.

  11. Towards an integrated flood management approach to address trade-offs between ecosystem services: Insights from the Dutch and German Rhine, Hungarian Tisza, and Chinese Yangtze basins

    Science.gov (United States)

    Halbe, Johannes; Knüppe, Kathrin; Knieper, Christian; Pahl-Wostl, Claudia

    2018-04-01

    The utilization of ecosystem services in flood management is challenged by the complexity of human-nature interactions and practical implementation barriers towards more ecosystem-based solutions, such as riverine urban areas or technical infrastructure. This paper analyses how flood management has dealt with trade-offs between ecosystem services and practical constrains towards more ecosystem-based solutions. To this end, we study the evolution of flood management in four case studies in the Dutch and German Rhine, the Hungarian Tisza, and the Chinese Yangtze basins during the last decades, focusing on the development and implementation of institutions and their link to ecosystem services. The complexity of human-nature interactions is addressed by exploring the impacts on ecosystem services through the lens of three management paradigms: (1) the control paradigm, (2) the ecosystem-based paradigm, and (3) the stakeholder involvement paradigm. Case study data from expert interviews and a literature search were structured using a database approach prior to qualitative interpretation. Results show the growing importance of the ecosystem-based and stakeholder involvement paradigms which has led to the consideration of a range of regulating and cultural ecosystem services that had previously been neglected. We detected a trend in flood management practice towards the combination of the different paradigms under the umbrella of integrated flood management, which aims at finding the most suitable solution depending on the respective regional conditions.

  12. Water-ecosystem-economy nexus under human intervention and climate change: a study in the Heihe River Basin (China)

    Science.gov (United States)

    Zheng, Y.; Tian, Y.; Wu, X.; Feng, D.

    2017-12-01

    Recently, "One Belt and One Road" initiative, namely, building the "Silk Road Economic Belt" and "21st Century Maritime Silk Road", has become a global strategy of China and has been discussed as China's "Marshall Plan". The overland route of "One Belt" comes across vast arid lands, where the local population and ecosystem compete keenly for limited water resources. Water and environmental securities represent an important constraint of the "One Belt" development, and therefore understanding the complex water-ecosystem-economy nexus in the arid inland areas is very important. One typical case is Heihe River Basin (HRB), the second largest inland river basin of China, where the croplands in its middle part sucked up the river flow and groundwater, causing serious ecological problems in its lower part (Gobi Desert). We have developed an integrated hydrological-ecological model for the middle and lower HRB (the modeling domain has an area of 90,589 km2), which served as a platform to fuse multi-source data and provided a coherent understanding on the regional water cycle. With this physically based model, we quantitatively investigated how the nexus would be impacted by human intervention, mainly the existing and potential water regulations, and what would be the uncertainty of the nexus under the climate change. In studying the impact of human intervention, simulation-optimization analyses based on surrogate modeling were performed. In studying the uncertainty resulted from the climate change, outputs of multiple GCMs were downscaled for this river basin to drive ecohydrological simulations. Our studies have demonstrated the significant tradeoffs among the crop production in the middle HRB, the water and environmental securities of the middle HRB, and the ecological health of the lower HRB. The underlying mechanisms of the tradeoffs were also systematically addressed. The climate change would cause notable uncertainty of the nexus, which makes the water resources

  13. Quantification of Environmental Flow Requirements to Support Ecosystem Services of Oasis Areas: A Case Study in Tarim Basin, Northwest China

    Directory of Open Access Journals (Sweden)

    Jie Xue

    2015-10-01

    Full Text Available Recently, a wide range of quantitative research on the identification of environmental flow requirements (EFRs has been conducted. However, little focus is given to EFRs to maintain multiple ecosystem services in oasis areas. The present study quantifies the EFRs in oasis areas of Tarim Basin, Xinjiang, Northwest China on the basis of three ecosystem services: (1 maintenance of riverine ecosystem health, (2 assurance of the stability of oasis–desert ecotone and riparian (Tugai forests, and (3 restoration of oasis–desert ecotone groundwater. The identified consumptive and non-consumptive water requirements are used to quantify and determine the EFRs in Qira oasis by employing the summation and compatibility rules (maximum principle. Results indicate that the annual maximum, medium, and minimum EFRs are 0.752 × 108, 0.619 × 108, and 0.516 × 108 m3, respectively, which account for 58.75%, 48.36%, and 40.29% of the natural river runoff. The months between April and October are identified as the most important periods to maintain the EFRs. Moreover, the water requirement for groundwater restoration of the oasis–desert ecotone accounts for a large proportion, representing 48.27%, 42.32%, and 37.03% of the total EFRs at maximum, medium, and minimum levels, respectively. Therefore, to allocate the integrated EFRs, focus should be placed on the water demand of the desert vegetation’s groundwater restoration, which is crucial for maintaining desert vegetation to prevent sandstorms and soil erosion. This work provides a reference to quantify the EFRs of oasis areas in arid regions.

  14. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  15. [US Geological Survey research in radioactive waste disposal, fiscal year 1980:] Tectonics, seismicity, volcanism, and erosion rates in the southern Great Basin

    International Nuclear Information System (INIS)

    Carr, W.J.; Rogers, A.M.

    1982-01-01

    The objective is to assess the potential for faulting, damaging earthquakes, recurrence of volcanism, and local acceleration of erosion in parts of the southern Great Basin. The following approaches are being used: (1) investigating the rate, intensity, and distribution of faulting during approximately the last 25 m.y., with emphasis on the last 10 m.y.; (2) monitoring and interpreting present seismicity; (3) studying the history of volcanism; and (4) evaluating past rates of erosion and deposition. Progress is reported

  16. Late holocene climate derived from vegetation history and plant cellulose stable isotope records from the Great Basin of western North America

    International Nuclear Information System (INIS)

    Wigand, P.E.; Hemphill, M.L.; Patra, S.M.

    1994-01-01

    Integration of pollen records, and fossil woodrat midden data recovered from multiple strata of fossil woodrat (Neotoma spp.) dens (middens) in both northern and southern Nevada reveal a detailed paleoclimatic proxy record for the Great Basin during the last 45,000 years in growing detail. Clear, late Holocene climate-linked elevational depressions of plant species' distributions have occurred throughout the Great Basin of up to 200 m below today's and by as much as 1000 m below what they were during the middle Holocene. Horizontal plant range extentions during the Holocene reflecting the final northern most adjustments to Holocene climates range up to several hundred kilometers in the Great Basin. Well documented lags evidenced in the late Holocene response of vegetation communities to increased precipitation indicate reduced effectiveness in the ability of plant communities to assimilate excess precipitation. This resulted in significant runoff that was available for recharge. These responses, although indicating both rapid and dramatic fluctuations of climate for the Holocene, fall far short of the scale of such changes during the late Pleistocene. Extension of these results to Pleistocene woodrat den and pollen data evidence spans lasting several hundred to a thousand or more years during which significantly greater amounts of precipitation would have been available for runnoff or recharge

  17. Encounters with Pinyon-Juniper influence riskier movements in Greater Sage-Grouse across the Great Basin

    Science.gov (United States)

    Prochazka, Brian; Coates, Peter S.; Ricca, Mark; Casazza, Michael L.; Gustafson, K. Ben; Hull, Josh M.

    2016-01-01

    Fine-scale spatiotemporal studies can better identify relationships between individual survival and habitat fragmentation so that mechanistic interpretations can be made at the population level. Recent advances in Global Positioning System (GPS) technology and statistical models capable of deconstructing high-frequency location data have facilitated interpretation of animal movement within a behaviorally mechanistic framework. Habitat fragmentation due to singleleaf pinyon (Pinus monophylla; hereafter pinyon) and Utah juniper (Juniperus osteosperma; hereafter juniper) encroachment into sagebrush (Artemisia spp.) communities is a commonly implicated perturbation that can adversely influence greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) demographic rates. Using an extensive GPS data set (233 birds and 282,954 locations) across 12 study sites within the Great Basin, we conducted a behavioral change point analysis and subsequently constructed Brownian bridge movement models from each behaviorally homogenous section. We found a positive relationship between modeled movement rate and probability of encountering pinyon-juniper with significant variation among age classes. The probability of encountering pinyon-juniper among adults was two and three times greater than that of yearlings and juveniles, respectively. However, the movement rate in response to the probability of encountering pinyon-juniper trees was 1.5 times greater for juveniles. We then assessed the risk of mortality associated with an interaction between movement rate and the probability of encountering pinyon-juniper using shared frailty models. During pinyon-juniper encounters, on average, juvenile, yearling, and adult birds experienced a 10.4%, 0.2%, and 0.3% reduction in annual survival probabilities. Populations that used pinyon-juniper habitats with a frequency ≥ 3.8 times the overall mean experienced decreases in annual survival probabilities of 71.1%, 0.9%, and 0.9%. This

  18. Black Mats, Spring-Fed Streams, and Late-Glacial-Age Recharge in the Southern Great Basin

    Science.gov (United States)

    Quade, Jay; Forester, R.M.; Pratt, W.L.; Carter, C.

    1998-01-01

    Black mats are prominent features of the late Pleistocene and Holocene stratigraphic record in the southern Great Basin. Faunal, geochemical, and sedimentological evidence shows that the black mats formed in several microenvironments related to spring discharge, ranging from wet meadows to shallow ponds. Small land snails such as Gastrocopta tappaniana and Vertigo berryi are the most common mollusk taxa present. Semiaquatic and aquatic taxa are less abundant and include Catinellids, Fossaria parva, Gyraulus parvus, and others living today in and around perennial seeps and ponds. The ostracodes Cypridopsis okeechobi and Scottia tumida, typical of seeps and low-discharge springs today, as well as other taxa typical of springs and wetlands, are common in the black mats. Several new species that lived in the saturated subsurface also are present, but lacustrine ostracodes are absent. The ??13C values of organic matter in the black mats range from -12 to -26???, reflecting contributions of tissue from both C3 (sedges, most shrubs and trees) and C4 (saltbush, saltgrass) plants. Carbon-14 dates on the humate fraction of 55 black mats fall between 11,800 to 6300 and 2300 14C yr B.P. to modern. The total absence of mats in our sample between 6300 and 2300 14C yr B.P. likely reflects increased aridity associated with the mid-Holocene Altithermal. The oldest black mats date to 11,800-11,600 14C yr B.P., and the peak in the 14C black mat distribution falls at ???10,000 14C yr B.P. As the formation of black mats is spring related, their abundance reflects refilling of valley aquifers starting no later than 11,800 and peaking after 11,000 14C yrB.P. Reactivation of spring-fed channels shortly before 11,200 14C yr B.P. is also apparent in the stratigraphic records from the Las Vegas and Pahrump Valleys. This age distribution suggests that black mats and related spring-fed channels in part may have formed in response to Younger Dryas (YD)-age recharge in the region. However, the

  19. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Science.gov (United States)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  20. The Cadmium Isotope Record of the Great Oxidation Event from the Turee Creek Group, Hamersley Basin, Australia

    Science.gov (United States)

    Abouchami, W.; Busigny, V.; Philippot, P.; Galer, S. J. G.; Cheng, C.; Pecoits, E.

    2016-12-01

    The evolution of the ocean, atmosphere and biosphere throughout Earth's history has impacted on the biogeochemistry of some key trace metals that are of particular importance in regulating the exchange between Earth's reservoirs. Several geochemical proxies exhibit isotopic shifts that have been linked to major changes in the oxygenation levels of the ancient oceans during the Great Oxygenation Event (GOE) between 2.45 and 2.2 Ga and the Neoproterozoic Oxygenation Event at ca. 0.6 Ga. Studies of the modern marine biogeochemical cycle of the transition metal Cadmium have shown that stable Cd isotope fractionation is mainly driven by biological uptake of light Cd into marine phytoplankton in surface waters leaving behind the seawater enriched in the heavy Cd isotopes. Here we use of the potential of this novel proxy to trace ancient biological productivity which remains an enigma, particularly during the early stages of Earth history. The Turee Creek Group in the Hamersley Basin, Australia, provides a continuous stratigraphic sedimentary section covering the GOE and at least two glacial events, offering a unique opportunity to examine the changes that took place during these periods and possibly constrain the evolution, timing and onset of oxygenic photosynthesis. Stable Cd isotope data were obtained on samples from the Boolgeeda Iron Fm. (BIFs), the siliciclastic and carbonate successions of Kungara (including the Meteorite Bore Member) and the Kazputt Fm., using a double spike technique by TIMS (ThermoFisher Triton) and Cd concentrations were determined by isotope dilution. The Boolgeeda BIFs have generally low Cd concentrations varying between 8 and 50ppb, with two major excursions marked by an increase in Cd content, reaching similar levels to those in the overlying Kungarra Fm. (≥150 ppb). These variations are associated with a large range in ɛ112/110Cd values (-2 to +2), with the most negative values typically found in the organic and Cd-rich shales and

  1. Penicillium excelsum sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin'.

    Science.gov (United States)

    Taniwaki, Marta Hiromi; Pitt, John I; Iamanaka, Beatriz T; Massi, Fernanda P; Fungaro, Maria Helena P; Frisvad, Jens C

    2015-01-01

    A new Penicillium species, P. excelsum, is described here using morphological characters, extrolite and partial sequence data from the ITS, β-tubulin and calmodulin genes. It was isolated repeatedly using samples of nut shells and flowers from the brazil nut tree, Bertolletia excelsa, as well as bees and ants from the tree ecosystem in the Amazon rainforest. The species produces andrastin A, curvulic acid, penicillic acid and xanthoepocin, and has unique partial β-tubulin and calmodulin gene sequences. The holotype of P. excelsum is CCT 7772, while ITAL 7572 and IBT 31516 are cultures derived from the holotype.

  2. Future ecosystem services in a Southern African river basin: a scenario planning approach to uncertainty

    CSIR Research Space (South Africa)

    Bohensky, EL

    2006-08-01

    Full Text Available and the economy are strong and civil society plays a minor role. Fortress world is a scenario about a collapse of national governance struc- tures, a faltering economy, and a fragmented civil soci- ety. In local resources, a strong, self-reliant civil society..., between ecosystem ser- vices and biodiversity are a major conservation concern. The maintenance of some services, such as nature-based tourism, medicinal plants, and crop pollination, has a clear link to biodiversity and provides a strong economic...

  3. The Human Threat to River Ecosystems at the Watershed Scale: An Ecological Security Assessment of the Songhua River Basin, Northeast China

    Directory of Open Access Journals (Sweden)

    Yuan Shen

    2017-03-01

    Full Text Available Human disturbances impact river basins by reducing the quality of, and services provided by, aquatic ecosystems. Conducting quantitative assessments of ecological security at the watershed scale is important for enhancing the water quality of river basins and promoting environmental management. In this study, China’s Songhua River Basin was divided into 204 assessment units by combining watershed and administrative boundaries. Ten human threat factors were identified based on their significant influence on the river ecosystem. A modified ecological threat index was used to synthetically evaluate the ecological security, where frequency was weighted by flow length from the grids to the main rivers, while severity was weighted by the potential hazard of the factors on variables of river ecosystem integrity. The results showed that individual factors related to urbanization, agricultural development and facility construction presented different spatial distribution characteristics. At the center of the plain area, the provincial capital cities posed the highest level of threat, as did the municipal districts of prefecture-level cities. The spatial relationships between hot spot locations of the ecological threat index and water quality, as well as the distribution areas of critically endangered species, were analyzed. The sensitivity analysis illustrated that alteration of agricultural development largely changed the ecological security level of the basin. By offering a reference for assessing ecological security, this study can enhance water environmental planning and management.

  4. Macroecology, paleoecology, and ecological integrity of terrestrial species and communities of the interior Columbia basin and northern portions of the Klamath and Great Basins.

    Science.gov (United States)

    Bruce G. Marcot; L.K. Croft; J.F. Lehmkuhl; R.H. Naney; C.G. Niwa; W.R. Owen; R.E. Sandquist

    1998-01-01

    This report present information on biogeography and broad-scale ecology (macroecology) of selected fungi, lichens, bryophytes, vascular plants, invertebrates, and vertebrates of the interior Columbia River basin and adjacent areas. Rareplants include many endemics associated with local conditions. Potential plant and invertebrate bioindicators are identified. Species...

  5. Impacts of insect biological control on soil N transformations in Tamarix-invaded ecosystems in the Great Basin

    Science.gov (United States)

    Understanding the impacts of insect biological control of Tamarix spp. on soil nitrogen (N) transformations is important because changes to N supply could alter plant community succession. We investigated short-term and longer-term impacts of herbivory by the northern tamarisk beetle (Diorhabda cari...

  6. Can migration mitigate the effects of ecosystem change? Patterns of dispersal, energy acquisition and allocation in Great Lakes lake whitefish (Coregonus clupeaformis)

    Science.gov (United States)

    Rennie, Michael D.; Ebener, Mark P.; Wagner, Tyler

    2012-01-01

    Migration can be a behavioural response to poor or declining home range habitat quality and can occur when the costs of migration are overcome by the benefi ts of encountering higher-quality resources elsewhere. Despite dramatic ecosystem-level changes in the benthic food web of the Laurentian Great Lakes since the colonization of dreissenid mussels, coincident changes in condition and growth rates among benthivorous lake whitefi sh populations have been variable. We hypothesized that this variation could be in part mitigated by differences in migratory habits among populations, where increased migration distance can result in an increased probability of encountering high-quality habitat (relative to the home range). Results from four Great Lakes populations support this hypothesis; relative growth rates increased regularly with migration distance. The population with the largest average migration distance also had the least reduction in size-at-age during a period of signifi cant ecosystem change and among the highest estimated consumption and activity rates. In comparison, the population with the greatest declines in size-at-age was among the least mobile, demonstrating only moderate rates of consumption and activity. The least mobile population of lake whitefi sh was supported by a remnant Diporeia population and has experienced only moderate temporal growth declines. Our study provides evidence for the potential role of migration in mitigating the effects of ecosystem change on lake whitefi sh populations.

  7. Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China.

    Science.gov (United States)

    Cheng, Xian; Chen, Liding; Sun, Ranhao; Kong, Peiru

    2018-03-01

    It is important to assess river ecosystem health in large-scale basins when considering the complex influence of anthropogenic activities on these ecosystems. This study investigated the river ecosystem health in the Haihe River Basin (HRB) by sampling 148 river sites during the pre- and post-rainy seasons in 2013. A model was established to assess the river ecosystem health based on water physicochemical, nutrient, and macroinvertebrate indices, and the health level was divided into "very poor," "poor," "fair," "good," and "excellent" according to the health score calculated from the assessment model. The assessment results demonstrated that the river ecosystem health of the HRB was "poor" overall, and no catchments were labeled "excellent." The percentages of catchments deemed to have "very poor," "poor," "fair," or "good" river ecosystem health were 12.88%, 40.91%, 40.15%, and 6.06%, respectively. From the pre- to the post-rainy season, the macroinvertebrate health levels improved from "poor" to "fair." The results of a redundancy analysis (RDA), path analysis of the structural equation model (SEM), and X-Y plots indicated that the land use types of forest land and grassland had positive relationships with river ecosystem health, whereas arable land, urban land, gross domestic product (GDP) per capita, and population density had negative relationships with river ecosystem health. The variance partitioning (VP) results showed that anthropogenic activities (including land use and socio-economy) together explained 30.9% of the variations in river ecosystem health in the pre-rainy season, and this value increased to 35.9% in the post-rainy season. Land use intensity was the first driver of river ecosystem health, and socio-economic activities was the second driver. Land use variables explained 20.5% and 25.7% of the variations in river ecosystem health in the pre- and post-rainy season samples, respectively, and socio-economic variables explained 12.3% and 17.2% of

  8. The influence of oceanic basins on drought and ecosystem dynamics in Northeast Brazil

    International Nuclear Information System (INIS)

    Pereira, Marcos Paulo Santos; Justino, Flavio; Malhado, Ana Claudia Mendes; Barbosa, Humberto; Marengo, José

    2014-01-01

    The 2012 drought in Northeast Brazil was the harshest in decades, with potentially significant impacts on the vegetation of the unique semi-arid caatinga biome and on local livelihoods. Here, we use a coupled climate–vegetation model (CCM3-IBIS) to: (1) investigate the role of the Pacific and Atlantic oceans in the 2012 drought, and; (2) evaluate the response of the caatinga vegetation to the 2012 climate extreme. Our results indicate that anomalous sea surface temperatures (SSTs) in the Atlantic Ocean were the primary factor forcing the 2012 drought, with Pacific Ocean SST having a larger role in sustaining typical climatic conditions in the region. The drought strongly influenced net primary production in the caatinga, causing a reduction in annual net ecosystem exchange indicating a reduction in amount of CO 2 released to the atmosphere. (letter)

  9. Impacts of Land Use Change on Net Ecosystem Production in China's Taihu Lake Basin in 1985-2010

    Science.gov (United States)

    Xu, X.; Yang, G.

    2017-12-01

    Land use change play a major role in determining sources and sinks of carbon at regional and global scales. This study employs a modified BIOME-BGC model to examine the changes in the spatio-temporal pattern of net ecosystem production (NEP) in China's Taihu Lake Basin in 1985-2010 and the extent to which land use change impacted NEP. The BIOME-BGC model was calibrated with observed NEP at three open-path eddy covariance flux sites for three dominant land-use types in the Basin including cropland, evergreen needleleaf forest, and mixed forest. Land use data were interpreted from Landsat TM images in 1985, 2000, 2005 and 2010 at the scale of 1:100,000 based on a decision tree method. Two simulations are conducted to distinguish the net effects of land use change and increasing atmospheric concentrations of CO2 and nitrogen deposition on NEP. S1 deals with the actual outcomes of NEP under the interactions between land use change and increasing atmospheric concentration of CO2 and N deposition. S2 assumes that atmospheric CO2 concentration and N deposition remain unchanged at their 1985 levels: 338.32 ppm and 0.0005 kg m-2, respectively. The study estimates that NEP in the Basin showed an overall downward trend, decreasing by 9.8% (1.57 TgC) and 3.21 TgC (or 20.9%) from 1985 to 2010 under situation S1 and S2, respectively. The NEP distribution exhibits an apparent spatial heterogeneity at the municipal level. Land use changesin 1985-2010 reduced the regional NEP (3.21 Tg C in year 2010) by 19.9% compared to its 1985 level, while the increasing atmospheric CO2 concentrations and nitrogen deposition compensated for a half of the total carbon loss. Critical measures for regulating rapid urban expansion and population growth and reinforcing environment protection programs are recommended to increase the regional carbon sink.

  10. The late Holocene dry period: multiproxy evidence for an extended drought between 2800 and 1850 cal yr BP across the central Great Basin, USA

    Science.gov (United States)

    Mensing, Scott A.; Sharpe, Saxon E.; Tunno, Irene; Sada, Don W.; Thomas, Jim M.; Starratt, Scott W.; Smith, Jeremy

    2013-01-01

    Evidence of a multi-centennial scale dry period between ∼2800 and 1850 cal yr BP is documented by pollen, mollusks, diatoms, and sediment in spring sediments from Stonehouse Meadow in Spring Valley, eastern central Nevada, U.S. We refer to this period as the Late Holocene Dry Period. Based on sediment recovered, Stonehouse Meadow was either absent or severely restricted in size at ∼8000 cal yr BP. Beginning ∼7500 cal yr BP, the meadow became established and persisted to ∼3000 cal yr BP when it began to dry. Comparison of the timing of this late Holocene drought record to multiple records extending from the eastern Sierra Nevada across the central Great Basin to the Great Salt Lake support the interpretation that this dry period was regional. The beginning and ending dates vary among sites, but all sites record multiple centuries of dry climate between 2500 and 1900 cal yr BP. This duration makes it the longest persistent dry period within the late Holocene. In contrast, sites in the northern Great Basin record either no clear evidence of drought, or have wetter than average climate during this period, suggesting that the northern boundary between wet and dry climates may have been between about 40° and 42° N latitude. This dry in the southwest and wet in the northwest precipitation pattern across the Great Basin is supported by large-scale spatial climate pattern hypotheses involving ENSO, PDO, AMO, and the position of the Aleutian Low and North Pacific High, particularly during winter.

  11. Epidemiology of viruses causing chronic hepatitis among populations from the Amazon Basin and related ecosystems

    Directory of Open Access Journals (Sweden)

    Echevarría José M.

    2003-01-01

    Full Text Available On the last twenty years, viral hepatitis has emerged as a serious problem in almost all the Amerindian communities studied in the Amazon Basin and in other Amazon-related ecological systems from the North and Center of South America. Studies performed on communities from Bolivia, Brazil, Colombia, Peru and Venezuela have shown a high endemicity of the hepatitis B virus (HBV infection all over the region, which is frequently associated to a high prevalence of infection by hepatitis D virus among the chronic HBV carriers. Circulation of both agents responds mainly to horizontal virus transmission during childhood through mechanisms that are not fully understood. By contrast, infection by hepatitis C virus (HCV, which is present in all the urban areas of South America, is still very uncommon among them. At the moment, there is not data enough to evaluate properly the true incidence that such endemicity may have on the health of the populations affected. Since viral transmission might be operated by mechanisms that could not be acting in other areas of the World, it seems essential to investigate such mechanisms and to prevent the introduction of HCV into these populations, which consequences for health could be very serious.

  12. Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia

    Science.gov (United States)

    van Emmerik, Tim; Sivapalan, Murugesu; Li, Zheng; Pande, Saket; Savenije, Hubert

    2014-05-01

    Around the world the demand for water resources is growing in order to satisfy rapidly increasing human populations, leading to competition for water between humans and ecosystems. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development and evaluation of effective mediation strategies. We present a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water resources management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resources development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health, which are all connected by feedback mechanisms. The model is used to generate insights into the dominant controls of the trajectory of

  13. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raúl; Munzi, Silvana; Alonso, Rocío; Arróniz-Crespo, María; Avila, Anna; Bermejo, Victoria; Bobbink, Roland; Branquinho, Cristina; Concostrina-Zubiri, Laura; Cruz, Cristina; Cruz de Carvalho, Ricardo; De Marco, Alessandra; Dias, Teresa; Elustondo, David

    2017-01-01

    Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O 3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin. - Highlights: • Mediterranean Basin ecosystems are at risk due to air pollution and climate change. • A more robust monitoring network in conjunction with modelling estimates is crucial. • Monitoring networks should

  14. Ecosystem studies, endangered species survey - Gibson Dome and Elk Ridge study areas, Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report is published as a product of the National Waste Terminal Storage (NWTS) Program. The objective of this program is the development of terminal waste storage facilities in deep stable geologic formations for high-level nuclear wastes, including spent fuel elements from commercial power reactors and transuranic nuclear waste for which the federal government is responsible. This report is part of the location and site characterization phase and contains threatened and endangered species information for the Gibson Dome and Elk Ridge study areas of the Paradox Region. The threatened and endangered species information was obtained through site surveys designed and implemented by area experts. The site surveys were performed during the period late summer 1981 - spring 1982 in the Gibson Dome and Elk Ridge Study Areas. No threatened or endangered species were identified in either Lavender or Davis canyons. Additional studies at the borehole locations in Beef Basin did identify the nearest occurrence of a species proposed for endangered status (Astragalus monumentalis, a monument milkvetch, member of the legume family). The species was identified approximately 160 to 300 m (500 to 1000 ft) from a hydro testing drill site. Consequently, construction and operation activity should not cause any adverse impacts. This report will be used to satisfy Section 7 requirements of the Endangered Species Act (PL 93-205 as amended) and to allow the United States Fish and Wildlife Service to verify that no protected species are subject to disturbance as the result of project activities occurring in the Gibson Dome and Elk Ridge study areas

  15. Plant responses to an edaphic gradient across an active sand dune/desert boundary in the great basin desert.

    NARCIS (Netherlands)

    Rosenthal, D.M.; Ludwig, F.; Donovan, L.A.

    2005-01-01

    In arid ecosystems, variation in precipitation causes broad-scale spatial heterogeneity in soil moisture, but differences in soil texture, development, and plant cover can also create substantial local soil moisture heterogeneity. The boundary between inland desert sand dunes and adjacent desert

  16. Leap frog in slow motion: Divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests.

    Science.gov (United States)

    Smithers, Brian V; North, Malcolm P; Millar, Constance I; Latimer, Andrew M

    2018-02-01

    In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will colonize newly available habitat first, potentially excluding species that have slower establishment rates. Using a network of plots across five mountain ranges, we described patterns of upslope elevational range shift for the two dominant Great Basin subalpine species, limber pine and Great Basin bristlecone pine. We found that the Great Basin treeline for these species is expanding upslope with a mean vertical elevation shift of 19.1 m since 1950, which is lower than what we might expect based on temperature increases alone. The largest advances were on limber pine-dominated granitic soils, on west aspects, and at lower latitudes. Bristlecone pine juveniles establishing above treeline share some environmental associations with bristlecone adults. Limber pine above-treeline juveniles, in contrast, are prevalent across environmental conditions and share few environmental associations with limber pine adults. Strikingly, limber pine is establishing above treeline throughout the region without regard to site characteristic such as soil type, slope, aspect, or soil texture. Although limber pine is often rare at treeline where it coexists with bristlecone pine, limber pine juveniles dominate above treeline even on calcareous soils that are core bristlecone pine habitat. Limber pine is successfully "leap-frogging" over bristlecone pine, probably because of its strong dispersal advantage and broader tolerances for establishment. This early-stage dominance indicates the potential for the species composition of treeline to change in response to climate change. More broadly, it shows how species differences in dispersal

  17. Recovery act. Characterizing structural controls of EGS-candidate and conventional geothermal reservoirs in the Great Basin. Developing successful exploration strategies in extended terranes

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James [Univ. of Nevada, Reno, NV (United States)

    2015-06-25

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites.

  18. A Comparison of the Impacts of Wind Energy and Unconventional Gas Development on Land-use and Ecosystem Services: An Example from the Anadarko Basin of Oklahoma, USA.

    Science.gov (United States)

    Davis, Kendall M; Nguyen, Michael N; McClung, Maureen R; Moran, Matthew D

    2018-05-01

    The United States energy industry is transforming with the rapid development of alternative energy sources and technological advancements in fossil fuels. Two major changes include the growth of wind turbines and unconventional oil and gas. We measured land-use impacts and associated ecosystem services costs of unconventional gas and wind energy development within the Anadarko Basin of the Oklahoma Woodford Shale, an area that has experienced large increases in both energy sectors. Unconventional gas wells developed three times as much land compared to wind turbines (on a per unit basis), resulting in higher ecosystem services costs for gas. Gas wells had higher impacts on intensive agricultural lands (i.e., row crops) compared to wind turbines that had higher impacts on natural grasslands/pastures. Because wind turbines produced on average less energy compared to gas wells, the average land-use-related ecosystem cost per gigajoule of energy produced was almost the same. Our results demonstrate that both unconventional gas and wind energy have substantial impacts on land use, which likely affect wildlife populations and land-use-related ecosystem services. Although wind energy does not have the associated greenhouse gas emissions, we suggest that the direct impacts on ecosystems in terms of land use are similar to unconventional fossil fuels. Considering the expected rapid global expansion of these two forms of energy production, many ecosystems are likely to be at risk.

  19. Mapping the Wetland Vegetation Communities of the Australian Great Artesian Basin Springs Using SAM, Mtmf and Spectrally Segmented PCA Hyperspectral Analyses

    Science.gov (United States)

    White, D. C.; Lewis, M. M.

    2012-07-01

    The Australian Great Artesian Basin (GAB) supports a unique and diverse range of groundwater dependent wetland ecosystems termed GAB springs. In recent decades the ecological sustainability of the springs has become uncertain as demands on this iconic groundwater resource increase. The impacts of existing water extractions for mining and pastoral activities are unknown. This situation is compounded by the likelihood of future increasing demand for extractions. Hyperspectral remote sensing provides the necessary spectral and spatial detail to discriminate wetland vegetation communities. Therefore the objectives of this paper are to discriminate the spatial extent and distribution of key spring wetland vegetation communities associated with the GAB springs evaluating three hyperspectral techniques: Spectral Angle Mapper (SAM), Mixture Tuned Matched Filtering (MTMF) and Spectrally Segmented PCA. In addition, to determine if the hyperspectral techniques developed can be applied at a number of sites representative of the range of spring formations and geomorphic settings and at two temporal intervals. Two epochs of HyMap airborne hyperspectral imagery were captured for this research in March 2009 and April 2011 at a number of sites representative of the floristic and geomorphic diversity of GAB spring groups/complexes within South Australia. Colour digital aerial photography at 30 cm GSD was acquired concurrently with the HyMap imagery. The image acquisition coincided with a field campaign of spectroradiometry measurements and a botanical survey. To identify key wavebands which have the greatest capability to discriminate vegetation communities of the GAB springs and surrounding area three hyperspectral data reduction techniques were employed: (i) Spectrally Segmented PCA (SSPCA); (ii) the Minimum Noise Transform (MNF); and (iii) the Pixel Purity Index (PPI). SSPCA was applied to NDVI-masked vegetation portions of the HyMap imagery with wavelength regions spectrally

  20. Characterization of habitat and biological communities at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2001

    Science.gov (United States)

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested.High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites.Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species.Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  1. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  2. Instrumenting the Conifers: A Look at Daily Tree Growth and Locally Observed Environmental Conditions Across Four Mountain Sites in the Central Great Basin, USA

    Science.gov (United States)

    Strachan, S.; Biondi, F.; Johnson, B. G.

    2012-12-01

    Tree growth is often used as a proxy for past environmental conditions or as an indicator of developing trends. Reconstructions of drought, precipitation, temperature, and other phenomena derived from tree-growth indices abound in scientific literature aimed at informing policy makers. Observations of tree recruitment or death in treeline populations are frequently tied to climatic fluctuation in cause-effect hypotheses. Very often these hypotheses are based on statistical relationships between annual-to-seasonal tree growth measurements and some environmental parameter measured or modeled off-site. Observation of daily tree growth in conjunction with in-situ environmental measurements at similar timescales takes us one step closer to quantifying the uncertainty in reconstruction or predictive studies. In four separate sites in two different mountain ranges in the central Great Basin, co-located observations of conifer growth activity and local atmospheric and soils conditions have been initiated. Species include Pinus longaeva (Great Basin bristlecone pine), Pinus flexilis (limber pine), Picea engelmannii (Engelmann spruce), Pinus monophylla (singleleaf pinyon pine), Pinus ponderosa (ponderosa pine), Abies concolor (white fir), and Pseudotsuga menziesii (Douglas-fir). Measurements of sub-hourly tree radial length change and sap flow activity are compared with a suite of in-situ observations including air temperature, precipitation, photosynthetically-active radiation (PAR), relative humidity, soil temperature, and soil moisture/water content. Subalpine study site located at 3360 m elevation in the Snake Range, Nevada

  3. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  4. Effects of Land-use/Land-cover and Climate Changes on Water Quantity and Quality in Sub-basins near Major US Cities in the Great Lakes Region

    Science.gov (United States)

    Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.

    2017-12-01

    Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the

  5. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions.

    Science.gov (United States)

    Ochoa-Hueso, Raúl; Munzi, Silvana; Alonso, Rocío; Arróniz-Crespo, María; Avila, Anna; Bermejo, Victoria; Bobbink, Roland; Branquinho, Cristina; Concostrina-Zubiri, Laura; Cruz, Cristina; Cruz de Carvalho, Ricardo; De Marco, Alessandra; Dias, Teresa; Elustondo, David; Elvira, Susana; Estébanez, Belén; Fusaro, Lina; Gerosa, Giacomo; Izquieta-Rojano, Sheila; Lo Cascio, Mauro; Marzuoli, Riccardo; Matos, Paula; Mereu, Simone; Merino, José; Morillas, Lourdes; Nunes, Alice; Paoletti, Elena; Paoli, Luca; Pinho, Pedro; Rogers, Isabel B; Santos, Arthur; Sicard, Pierre; Stevens, Carly J; Theobald, Mark R

    2017-08-01

    Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O 3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Long-period Ground Motion Characteristics Inside and Outside of the Osaka Basin during the 2011 Great Tohoku Earthquake and Its Largest Aftershock

    Science.gov (United States)

    Sato, K.; Iwata, T.; Asano, K.; Kubo, H.; Aoi, S.

    2013-12-01

    The 2011 great Tohoku earthquake (Mw 9.0) occurred on March 11, 2011, and the largest aftershock (Mw 7.7) at the region adjacent to south boundary of the mainshock's source region. Long-period ground motions (1-10s) of large amplitude were observed in the Osaka sedimentary basin about 550-800km away from the source regions during both events. We studied propagation and site characteristics of these ground motions, and found some common features between these two events in the Osaka basin. (1) The amplitude of horizontal components of the ground motion at the site-specific period is amplified at each sedimentary station. The predominant period is around 7s in the bayside area where the largest pSv were observed. (2) The velocity Fourier spectra have their peak values around 7s at the bedrock sites surrounding the Osaka basin. (3) Two remarkable wave packets separated by 30s propagating from stations around the Nobi plain to the bedrock sites near the Osaka basin were seen in the pasted-up velocity waveforms from the source regions to the Osaka basin for both events (Sato et al., 2012). Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. Firstly, we simulate ground motions due to the largest aftershock using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). The reason we focus on the largest aftershock is that this event has a relatively small rupture area and simple rupture process compared to the mainshock. The source model is based on the model estimated by Kubo et al. (2013). The velocity structure model is a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012) and the layer of Vs 350m/s in this model is replaced with one of Vs 500m/s. The minimum effective period in this computation is 3s. Then, we compare synthetic waveforms with observed ones. At CHBH14, the nearest station to the source and 60km away from the

  7. Climate and human influences on historical fire regimes (AD 1400-1900) in the eastern Great Basin (USA)

    Science.gov (United States)

    Stanley G. Kitchen

    2015-01-01

    High fire activity in western North America is associated with drought. Drought and fire prevail under negative El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) phases in the Southwest and with positive phases in the Northwest. Here, I infer climate effects on historic fire patterns in the geographically intermediate, eastern Great...

  8. The Role of Created and Restored Wetlands in Mitigating N and P Pollutants in Agricultural Landscapes: Case Studies in the Florida Everglades, Mississippi-Ohio-Missouri Basin, and Laurentian Great Lakes

    Science.gov (United States)

    Mitsch, W. J.

    2016-12-01

    On a global scale, we have lost half of our original wetlands to our current extent of 8 to 12 million km2, with most of that loss in the 20th century. In the United States, we lost 50% of our wetlands by the beginning of the 1970s. I am proposing here a sizeable increase in our wetland resources for solving the diminishing wetland habitat problem, but with the strategic purpose of minimizing the excess phosphorus and nitrogen in our aquatic ecosystems, with the added benefit of sometimes sequesting carbon from the atmosphere, in our rural, urban, and coastal landscapes in a sustainable fashion. Examples include attempts to minimize phosphorus inflows to the Florida Everglades with wetlands to quite low concentrations and a proposal to restore parts of the Black Swamp in NW Ohio to minimize eutrophication of Lake Erie in the Laurentian Great Lakes. Nitrogen retention by wetlands and riparian forests in the Mississippi-Ohio-Missouri Basin, especially in Midwestern USA, has been proposed for 15 years as a solution and endorsed by the Federal government to solve the seasonal hypoxia in the northern portion of the Gulf of Mexico, but there has been little if any progress over those 15 years. Solutions to recycle the nutrients retained in the wetlands back to agriculture to decrease fertilizer use will be presented as a solution to the multiple problems of wetland habitat loss, downstream lake, reservoir, river, and coastal nutrient pollution, diminishing supplies of phosphorus fertilizer, and fertilizer costs.

  9. Tapping soil survey information for rapid assessment of sagebrush ecosystem resilience and resistance

    Science.gov (United States)

    Jeremy D. Maestas; Steven B. Campbell; Jeanne C. Chambers; Mike Pellant; Richard F. Miller

    2016-01-01

    A new ecologically-based approach to risk abatement has emerged that can aid land managers in grappling with escalating impacts of large-scale wildfire and invasive annual grasses in sagebrush ecosystems, particularly in the Great Basin. Specifically, ecosystem resilience and resistance (R&R) concepts have been more fully operationalized from regional...

  10. [Response of water yield function of ecosystem to land use change in Nansi Lake Basin based on CLUE-S model and InVEST model .

    Science.gov (United States)

    Guo, Hong Wei; Sun, Xiao Yin; Lian, Li Shu; Zhang, Da Zhi; Xu, Yan

    2016-09-01

    Land use change has an important role in hydrological processes and utilization of water resources, and is the main driving force of water yield function of ecosystem. This paper analyzed the change of land use from 1990 to 2013 in Nansi Lake Basin, Shandong Province. The future land use in 2030 was also predicted and simulated by CLUE-S model. Based on land use scenarios, we analyzed the influence of land use change on ecosystem function of water yield in nearly 25 years through InVEST water yield model and spatial mapping. The results showed that the area of construction land increased by 3.5% in 2013 because of burgeoning urbanization process, but farmland area decreased by 2.4% which was conversed to construction land mostly. The simulated result of InVEST model suggested that water yield level of whole basin decreased firstly and increased subsequently during last 25 years and peaked at 232.1 mm in 2013. The construction land area would increase by 6.7% in 2030 based on the land use scenarios of fast urbanization, which would lead to a remarkable growth for water yield and risk of flowing flooding. However, the water yield level of whole basin would decrease by 1.2 % in 2013 if 300 meter-wide forest buffer strips around Nansi Lake were built up.

  11. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future

    Science.gov (United States)

    Coles, Robert G.; Rasheed, Michael A.; McKenzie, Len J.; Grech, Alana; York, Paul H.; Sheaves, Marcus; McKenna, Skye; Bryant, Catherine

    2015-02-01

    The Great Barrier Reef World Heritage Area (GBRWHA) includes one of the world's largest areas of seagrass (35,000 km2) encompassing approximately 20% of the world's species. Mapping and monitoring programs sponsored by the Australian and Queensland Governments and Queensland Port Authorities have tracked a worrying decrease in abundance and area since 2007. This decline has almost certainly been the result of a series of severe tropical storms and associated floods exacerbating existing human induced stressors. A complex variety of marine and terrestrial management actions and plans have been implemented to protect seagrass and other habitats in the GBRWHA. For seagrasses, these actions are inadequate. They provide an impression of effective protection of seagrasses; reduce the sense of urgency needed to trigger action; and waste the valuable and limited supply of "conservation capital". There is a management focus on ports, driven by public concerns about high profile development projects, which exaggerates the importance of these relatively concentrated impacts in comparison to the total range of threats and stressors. For effective management of seagrass at the scale of the GBRWHA, more emphasis needs to be placed on the connectivity between seagrass meadow health, watersheds, and all terrestrial urban and agricultural development associated with human populations. The cumulative impacts to seagrass from coastal and marine processes in the GBRWHA are not evenly distributed, with a mosaic of high and low vulnerability areas. This provides an opportunity to make choices for future coastal development plans that minimise stress on seagrass meadows.

  12. Computing the net primary productivity for a savannah-dominated ecosystem using stable isotopes: a case study of the Volta River Basin

    International Nuclear Information System (INIS)

    Hayford, E.K.

    2008-01-01

    The hydrologic systems and the terrestrial ecosystem of the Volta river basin in West Africa, play important role in the carbon cycle. This is so because of the coupling of water vapour release and CO 2 uptake during photosynthesis, expressed as water use efficiency or transpiration ratio. Hydrologic and land-cover data, together with stable isotope ratio measurements of δ 18 O and δD, and data from the global network of isotopes in precipitation (GNIP) are used to determine the net primary productivity (NPP) of the Savannah-dominated ecosystem. The δ 18 O and δD values in the Volta rivers range from -4.72 to 2.37 mm -l and from -35.28 to 9.30 mm -1 SMOW, respectively. The results indicate that the vegetation is supported by 380 km 3 of rainfall, out of which 50% is returned to the atmosphere via plant transpiration. Associated with annual transpiration is the NPP of 0.170 x 10 15 gCyr -1 or 428 gCm -2 from the terrestrial ecosystem. Modelled estimates of heterotrophic soil respiration in this study slightly exceeded the NPP estimates, implying a small source of CO 2 to the atmosphere. This condition does not favour the postulated existence of a major sink of atmospheric CO 2 in the Volta basin. (au)

  13. Evaluating the hydrological functioning and the supply of water provisioning services to support the ecosystem-water-food-energy nexus in the Arno river basin

    Science.gov (United States)

    Pacetti, Tommaso; Willaarts, Barbara; Caporali, Enrica; Schroeder Esselbach, Boris

    2017-04-01

    Water, flowing in a basin, underpins key provisioning ecosystem services like freshwater supply, food and energy production. River basin management largely determines the type of water-related ecosystem services (WES) that are provided and the extent to which trade-offs and synergies might arise. Gaining insights on the ecohydrological behavior of a basin and on the conflicting anthropic pressures on the available water resources allows to identify the most important WES, as well as the existence of WES supply and demand hotspots. This information is crucial for water resources management and, in the context of the European Union, also required to comply with the requirements of the Water Framework Directive (WFD). The purpose of this research is to quantify the provisioning WES in the upstream part of the Arno river basin (Central Italy) and identify WES hotspots and fluxes. Current information on how water is allocated in the Arno basin remains scarce, despite the increasing water demand by some sectors, particularly irrigation, and a number of emerging conflicts among users. It is expected that research outputs can support the improvement of the existing management framework, moving from the classical DPSIR (Driving forces, Pressure, State, Impact e Response) approach, where impacts must be reduced or mitigated, to a more proactive framework to support the sustainability of the Arno basin and meet the different policy goals. The eco-hydrological model SWAT (Soil Water Assessment Tool) is applied to spatially quantify the provision of WES. The preliminary results of this research indicate that the highest amount of water yield, i.e. net amount of water that contributes to streamflow and represents the main blue water fund, originates in the northern part of the basin, characterized by forest areas. In contrast, the southern part of the basin, which is mainly agriculturally used, gives a minor contribution to the overall water yield, in direct proportion to the

  14. Drought drove forest decline and dune building in eastern upper Michigan, USA, as the upper Great Lakes became closed basins

    Science.gov (United States)

    Loope, Walter L.; Loope, Henry M.; Goble, Ronald J.; Fisher, Timothy G.; Lytle, David E.; Legg, Robert J.; Wysocki, Douglas A.; Hanson, Paul R.; Young, Aaron R.

    2012-01-01

    Current models of landscape response to Holocene climate change in midcontinent North America largely reconcile Earth orbital and atmospheric climate forcing with pollen-based forest histories on the east and eolian chronologies in Great Plains grasslands on the west. However, thousands of sand dunes spread across 12,000 km2 in eastern upper Michigan (EUM), more than 500 km east of the present forest-prairie ecotone, present a challenge to such models. We use 65 optically stimulated luminescence (OSL) ages on quartz sand deposited in silt caps (n = 8) and dunes (n = 57) to document eolian activity in EUM. Dune building was widespread ca. 10–8 ka, indicating a sharp, sustained decline in forest cover during that period. This decline was roughly coincident with hydrologic closure of the upper Great Lakes, but temporally inconsistent with most pollen-based models that imply canopy closure throughout the Holocene. Early Holocene forest openings are rarely recognized in pollen sums from EUM because faint signatures of non-arboreal pollen are largely obscured by abundant and highly mobile pine pollen. Early Holocene spikes in nonarboreal pollen are recorded in cores from small ponds, but suggest only a modest extent of forest openings. OSL dating of dune emplacement provides a direct, spatially explicit archive of greatly diminished forest cover during a very dry climate in eastern midcontinent North America ca. 10–8 ka.

  15. Application of the North American Multi-Model Ensemble to seasonal water supply forecasting in the Great Lakes basin through the use of the Great Lakes Seasonal Climate Forecast Tool

    Science.gov (United States)

    Gronewold, A.; Apps, D.; Fry, L. M.; Bolinger, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) contribution to the internationally coordinated 6-month forecast of Great Lakes water levels relies on several water supply models, including a regression model relating a coming month's water supply to past water supplies, previous months' precipitation and temperature, and forecasted precipitation and temperature. Probabilistic forecasts of precipitation and temperature depicted in the Climate Prediction Center's seasonal outlook maps are considered to be standard for use in operational forecasting for seasonal time horizons, and have provided the basis for computing a coming month's precipitation and temperature for use in the USACE water supply regression models. The CPC outlook maps are a useful forecast product offering insight into interpretation of climate models through the prognostic discussion and graphical forecasts. However, recent evolution of USACE forecast procedures to accommodate automated data transfer and manipulation offers a new opportunity for direct incorporation of ensemble climate forecast data into probabilistic outlooks of water supply using existing models that have previously been implemented in a deterministic fashion. We will present results from a study investigating the potential for applying data from the North American Multi-Model Ensemble to operational water supply forecasts. The use of NMME forecasts is facilitated by a new, publicly available, Great Lakes Seasonal Climate Forecast Tool that provides operational forecasts of monthly average temperatures and monthly total precipitation summarized for each lake basin.

  16. Evaluating land-use change scenarios for the Puget Sound Basin, Washington, within the ecosystem recovery target model-based framework

    Science.gov (United States)

    Villarreal, Miguel; Labiosa, Bill; Aiello, Danielle

    2017-05-23

    The Puget Sound Basin, Washington, has experienced rapid urban growth in recent decades, with varying impacts to local ecosystems and natural resources. To plan for future growth, land managers often use scenarios to assess how the pattern and volume of growth may affect natural resources. Using three different land-management scenarios for the years 2000–2060, we assessed various spatial patterns of urban growth relative to maps depicting a model-based characterization of the ecological integrity and recent development pressure of individual land parcels. The three scenarios depict future trajectories of land-use change under alternative management strategies—status quo, managed growth, and unconstrained growth. The resulting analysis offers a preliminary assessment of how future growth patterns in the Puget Sound Basin may impact land targeted for conservation and how short-term metrics of land-development pressure compare to longer term growth projections.

  17. A new conceptual model to understand the water budget of an Irrigated Basin with Groundwater Dependent Ecosystems

    Science.gov (United States)

    Foglia, L.; McNally, A.; Harter, T.

    2012-12-01

    The Scott River is one of four major tributaries in the Klamath River Basin that provide cold water habitat for salmonid populations. The Scott Valley is also a major agricultural growing region with extensive alfalfa and hay productions that are key to the local economy. Due to the Mediterranean climate in the area, discharge rates in the river are highly seasonal. Almost all annual discharge occurs during the winter precipitation season and spring snowmelt. During the summer months (July through September), the main-stem river becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the Scott Valley aquifer. Scott Valley agriculture relies on a combination of surface water and groundwater supplies for crop irrigation during April through September. Conflicts between ecosystem services needs to guarantee a sustainable water quality (mainly in-stream temperature) for the native salmon population and water demands for agricultural irrigation motivated the development of a new conceptual model for the evaluation of the soil-water budget throughout the valley, as a basis for developing alternative surface water and groundwater management practices. The model simulates daily hydrologic fluxes at the individual field scale (100 - 200 m), allocates water resources to nearby irrigation systems, and tracks soil moisture to determine groundwater recharge. The water budget model provides recharge and pumping values for each field. These values in turn are used as inputs for a valley-wide groundwater model developed with MODFLOW-2000. In a first step, separate sensitivity analysis and calibration of the groundwater model is used to provide insights on the accuracy of the recharge and pumping distribution estimated with the water budget model. In a further step, the soil water budget and groundwater flow models will be coupled and sensitivity analysis and calibration will be performed simultaneously. Field-based, local

  18. No Abrupt Changes in redox conditions associated with the end-Permian marine ecosystem collapse in the east Greenland basin

    DEFF Research Database (Denmark)

    Nielsen, Jesper K.; Shen, Y; Piasecki, Stefan

    2010-01-01

    compositions of pyrites from the East Greenland Basin. The size distributions of framboidal pyrites in sediments from a continuous section across the Permian–Triassic boundary reveal that sulfidic conditions in water columns were established about 0.7 m above the extinction event in the East Greenland Basin...

  19. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    Science.gov (United States)

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    The assessment of Great Lakes prey fish stocks have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique, population indices were standardized to the highest value for a time series within each lake for the following prey species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), and Round Goby (Neogobius melanostomus). In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. There was basin-wide agreement in the trends of age-1 and older biomass for all prey species, with the highest concordance occurring for coregonids and Rainbow Smelt, and weaker concordance for Alewife. For coregonids, the highest biomass occurred from the mid-1980s to the mid-1990s. Rainbow Smelt biomass declined slowly and erratically during the last quarter century. Alewife biomass was generally higher from the early 1980s through 1990s across the Great Lakes, but since the early 1990s, trends have been divergent across the lakes, though there has been a downward trend in all lakes since 2005. Recently, Lake Huron has shown resurgence in biomass of Bloater, achieving 75% of its maximum record in 2012 due to recruitment of a succession of strong and moderate year classes that appeared in 2005-2011. Also, strong recruitment of the 2010 year class of Alewife has led to a sharp increase in biomass of Alewife in

  20. Contaminants of emerging concern in the Great Lakes Basin: A report on sediment, water, and fish tissue chemistry collected in 2010-2012

    Science.gov (United States)

    Choy, Steven J.; Annis, Mandy L.; Banda, JoAnn; Bowman, Sarah R.; Brigham, Mark E.; Elliott, Sarah M.; Gefell, Daniel J.; Jankowski, Mark D.; Jorgenson, Zachary G.; Lee, Kathy E.; Moore, Jeremy N.; Tucker, William A.

    2017-01-01

    Despite being detected at low levels in surface waters and sediments across the United States, contaminants of emerging concern (CECs) in the Great Lakes Basin are not well characterized in terms of spatial and temporal occurrence. Additionally, although the detrimental effects of exposure to CECs on fish and wildlife have been documented for many CECs in laboratory studies, we do not adequately understand the implications of the presence of CECs in the environment. Based on limited studies using current environmentally relevant concentrations of chemicals, however, risks to fish and wildlife are evident. As a result, there is an increasing urgency to address data gaps that are vital to resource management decisions. The U.S. Fish and Wildlife Service, in collaboration with the U.S. Geological Survey, is leading a Great Lakes Basin-wide evaluation of CECs (CEC Project) with the objectives to (a) characterize the spatial and temporal distribution of CECs; (b) evaluate risks to fish and wildlife resources; and (c) develop tools to aid resource managers in detecting, averting, or minimizing the ecological consequences to fish and wildlife that are exposed to CECs. This report addresses objective (a) of the CEC Project, summarizing sediment and water chemistry data collected from 2010 to 2012 and fish liver tissue chemistry data collected in 2012; characterizes the sampling locations with respect to potential sources of CECs in the landscape; and provides an initial interpretation of the variation in CEC concentrations relative to the identified sources. Data collected during the first three years of our study, which included 12 sampling locations and analysis of 134 chemicals, indicate that contaminants were more frequently detected in sediment compared to water. Chemicals classified as alkyphenols, flavors/ fragrances, hormones, PAHs, and sterols had higher average detection frequencies in sediment compared to water, while the opposite was observed for pesticides

  1. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  2. Fish Lake, Utah - a promising long core site straddling the Great Basin to Colorado Plateau transition zone

    Science.gov (United States)

    Marchetti, D. W.; Abbott, M. B.; Bailey, C.; Wenrich, E.; Stoner, J. S.; Larsen, D. J.; Finkenbinder, M. S.; Anderson, L.; Brunelle, A.; Carter, V.; Power, M. J.; Hatfield, R. G.; Reilly, B.; Harris, M. S.; Grimm, E. C.; Donovan, J.

    2015-12-01

    Fish Lake (~7x1.5 km and 2696 m asl) is located on the Fish Lake Plateau in central Utah. The Lake occupies a NE-striking tectonic graben; one of a suite of grabens on the Plateau that cut 21-26 Ma volcanic rocks. The lake outflows via Lake Creek to the NE where it joins Sevenmile Creek to become the Fremont River, a tributary to the Colorado River. A bathymetric survey reveals a mean depth of 27 m and a max depth of 37.2 m. The lake bottom slopes from NW to SE with the deepest part near the SE wall, matching the topographic expression of the graben. Nearby Fish Lake Hightop (3545 m) was glaciated with an ice field and outlet glaciers. Exposure ages indicate moraine deposition during Pinedale (15-23 ka) and Bull Lake (130-150 ka) times. One outlet glacier at Pelican Canyon deposited moraines and outwash into the lake but the main basin of the lake was never glaciated. Gravity measurements indicate that lake sediments thicken toward the SE side of the lake and the thickest sediment package is modeled to be between 210 and 240 m. In Feb 2014 we collected cores from Fish Lake using a 9-cm diameter UWITECH coring system in 30.5 m of water. A composite 11.2-m-long core was constructed from overlapping 2 m drives that were taken in triplicate to ensure total recovery and good preservation. Twelve 14C ages and 3 tephra layers of known age define the age model. The oldest 14C age of 32.3±4.2 cal ka BP was taken from 10.6 m. Core lithology, CT scans, and magnetic susceptibility (ms) reveal three sediment packages: an organic-rich, low ms Holocene to post-glacial section, a fine-grained, minerogenic glacial section with high ms, and a short section of inferred pre-LGM sediment with intermediate composition. Extrapolating the age model to the maximum estimated sediment thicknesses suggest sediments may be older than 500-700 ka. Thus Fish Lake is an ideal candidate for long core retrieval as it likely contains paleoclimatic records extending over multiple glacial cycles.

  3. A method to identify the variable ecosystem services relationship across time: a case study on Yanhe Basin, China

    Science.gov (United States)

    Zhenmin Zheng; Bojie Fu; Haitang Hu; Ge Sun

    2014-01-01

    Ecosystem services are increasingly recognized as the foundations of a well-functioning society. Large-scale ecological restoration projects have been implemented around China with the goal of restoring and sustaining ecosystem services, especially in vulnerable semi-arid regions where soil and water resources are most stressed due to historic human activities. The...

  4. Impacts of land-use change on the water cycle of urban areas within the Upper Great Lakes drainage basin

    Science.gov (United States)

    Bowling, L. C.; Cherkauer, K. A.; Pijanowski, B. C.; Niyogi, D.

    2006-12-01

    Urbanization is altering the global landscape at an unprecedented rate. This form of land cover/land-use change (LCLUC) can significantly reduce infiltration and runoff response times, and alter heat and water vapor fluxes, which can further alter surface-forced regional circulation patterns and modulate precipitation volume and intensity. Spatial patterns of future LCLUC are projected using the Land Transformation Model (LTM), enhanced to incorporate dynamic landcover, economics and policy using Bayesian Belief Networks (LTM- BBN). Different land use scenarios predicted by the LTM-BBN as well as a pre-development scenario are represented through the Unified Noah Land Surface Model (LSM) with an enhanced urban canopy model, embedded in the Weather Research and Forecasting (WRF) model. The coupled WRF-Noah LSM model will be used to investigate the connections between land-use, hydrometeorology and the atmosphere, through analysis of water and energy balances over several urbanized watersheds within the Upper Great Lakes region. Preliminary results focus on a single watershed, the White River in Indiana, which includes the city of Indianapolis. Coupled WRF-Noah simulations made using pre and post-development land use maps provide a 7 year climatology of convective storm morphology around the urban center. Precipitation and other meteorological variables from the WRF-Noah simulations are used to drive simulations of the White River watershed using the Variable Infiltration Capacity (VIC) macroscale hydrologic model. The VIC model has been modified to represent urban areas and has been calibrated for modern flow regimes in the White River watershed. Pre- and post-development VIC simulations are used to assess the impact of Indianapolis area infiltration changes. Finally, VIC model simulations utilizing projected land use change from 2005 through 2040 for the Indianapolis metropolitan area explore the magnitude of future hydrologic change, especially peak flow response

  5. An integrated ecological modeling system for assessing impacts of multiple stressors on stream and riverine ecosystem services within river basins

    Data.gov (United States)

    U.S. Environmental Protection Agency — We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric...

  6. Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA

    Science.gov (United States)

    Christopher D. Henry,; John, David A.

    2013-01-01

    The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah. Twenty-three calderas and their caldera-forming tuffs are reasonably well identified in the western Nevada volcanic field, and the presence of at least another 14 areally extensive, apparently voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered calderas. Eruption and caldera collapse occurred between at least 34.4 and 23.3 Ma and clustered into five ∼0.5–2.7-Ma-long episodes separated by quiescent periods of ∼1.4 Ma. One eruption and caldera collapse occurred at 19.5 Ma. Intermediate to silicic lavas or shallow intrusions commonly preceded caldera-forming eruptions by 1–6 Ma in any specific area. Caldera-related as well as other magmatism migrated from northeast Nevada to the southwest through time, probably resulting from rollback of the formerly shallow-dipping Farallon slab. Calderas are restricted to the area northeast of what was to become the Walker Lane, although intermediate and effusive magmatism continued to migrate to the southwest across the future Walker Lane.Most ash-flow tuffs in the western Nevada volcanic field are rhyolites, with approximately equal numbers of sparsely porphyritic (≤15% phenocrysts) and abundantly porphyritic (∼20–50% phenocrysts) tuffs. Both sparsely and abundantly porphyritic rhyolites commonly show compositional or petrographic evidence of zoning to trachydacites or dacites. At least four tuffs have volumes greater than 1000 km3, with one possibly as much as ∼3000 km3. However, the volumes of most tuffs are difficult to estimate, because many tuffs primarily filled their source calderas and/or flowed and were deposited in paleovalleys, and thus are irregularly distributed.Channelization and westward flow of most tuffs in paleovalleys allowed them to travel great distances, many as much as ∼250 km (original distance) to what is now the western foothills of the

  7. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume II Yakima (Overview, Report, Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  8. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume III (Overview and Tools).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  9. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope and Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41 deg 32'N, 120 deg 5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4(2-), respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth

  10. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope aud Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41º32'N, 120º5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4 2-, respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth estimated

  11. Summer watering patterns of mule deer in the Great Basin Desert, USA: implications of differential use by individuals and the sexes for management of water resources.

    Science.gov (United States)

    Shields, Andrew V; Larsen, Randy T; Whiting, Jericho C

    2012-01-01

    Changes in the abundance and distribution of free water can negatively influence wildlife in arid regions. Free water is considered a limiting factor for mule deer (Odocoileus hemionus) in the Great Basin Desert. Consequently, a better understanding of differential use of water by individuals and the sexes could influence the conservation and management of mule deer and water resources in their habitats. We deployed remote cameras at all known water sources (13 wildlife water developments and 4 springs) on one mountain range in western Utah, USA, during summer from 2007 to 2011 to document frequency and timing of water use, number of water sources used by males and females, and to estimate population size from individually identified mule deer. Male and female mule deer used different water sources but visited that resource at similar frequencies. Individual mule deer used few water sources and exhibited high fidelity to that resource. Wildlife water developments were frequently used by both sexes. Our results highlight the differing use of water sources by sexes and individual mule deer. This information will help guide managers when siting and reprovisioning wildlife water developments meant to benefit mule deer and will contribute to the conservation and management of this species.

  12. 81Br, 37Cl, and 87Sr studies to assess groundwater flow and solute sources in the southwestern Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Gwynne, Rhys; Frape, Shaun; Shouakar-Stash, Orfan; Love, Andy

    2013-01-01

    The Great Artesian Basin (GAB) is a water source for more than 200,000 residents in central Australia. This study investigates the relationship of bromine and chlorine stable isotopes to groundwater chemistry in a confined aquifer in the southwestern GAB to better understand its flow regime and solute sources. δ 81 Br values range from +0.660/00 near the recharge area to +1.04 0/00, 150 km down gradient, while δ 37 Cl ranges from 00/00 to -2.50/00. While δ 37 Cl decreases with distance from the recharge area, δ 81 Br increases slightly. Bromide in the recharge area is possibly enriched from selective atmospheric processes causing fractionation in marine aerosols during transport. When confined and isolated from the atmosphere, increases in bromide and to a lesser extent strontium concentrations may contribute through water-rock interaction to changes in isotopic signatures along the flow system. 87 Sr/ 86 Sr values range from ∼0.717 near the recharge zone to a depleted 0.708 160 km down gradient. (authors)

  13. {sup 81}Br, {sup 37}Cl, and {sup 87}Sr studies to assess groundwater flow and solute sources in the southwestern Great Artesian Basin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Gwynne, Rhys; Frape, Shaun; Shouakar-Stash, Orfan [University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada); Love, Andy [Flinders University, Sturt Road, Bedford Park 5042 (Australia)

    2013-07-01

    The Great Artesian Basin (GAB) is a water source for more than 200,000 residents in central Australia. This study investigates the relationship of bromine and chlorine stable isotopes to groundwater chemistry in a confined aquifer in the southwestern GAB to better understand its flow regime and solute sources. δ{sup 81}Br values range from +0.660/00 near the recharge area to +1.04 0/00, 150 km down gradient, while δ{sup 37}Cl ranges from 00/00 to -2.50/00. While δ{sup 37}Cl decreases with distance from the recharge area, δ{sup 81}Br increases slightly. Bromide in the recharge area is possibly enriched from selective atmospheric processes causing fractionation in marine aerosols during transport. When confined and isolated from the atmosphere, increases in bromide and to a lesser extent strontium concentrations may contribute through water-rock interaction to changes in isotopic signatures along the flow system. {sup 87}Sr/{sup 86}Sr values range from ∼0.717 near the recharge zone to a depleted 0.708 160 km down gradient. (authors)

  14. Erosion Potential of a Burn Site in the Mojave-Great Basin Transition Zone: Interim Summary of One Year of Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Etyemezian, V.; Shafer, D.; Miller, J.; Kavouras, I.; Campbell, S.; DuBois, D.; King, J.; Nikolich, G.; Zitzer, S.

    2010-05-18

    A historic return interval of 100 years for large fires in deserts in the Southwest U.S. is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. This increase in fires has implications for management of Soil Sub-Project Corrective Action Units (CAUs) for which the Department of Energy, National Nuclear Security Administration Nevada Site office (NNSA/NSO) has responsibility. A series of studies has been initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn over to understand technical and perceived risk they might pose to site workers and public receptors in communities around the NTS, TTR, and NTTR; and to develop recommendations for stabilization and restoration after a fire. The first of these studies was undertaken at the Jacob fire, a lightning-caused fire approximately 12 kilometers north of Hiko, Nevada, that burned approximately 200 ha between August 6-8, 2008, and is representative of a transition zone on the NTS between the Mojave and Great Basin Deserts, where the largest number of Soil Sub-Project CAUs/CASs are located.

  15. Role of burrowing activities of the Great Basin pocket mouse (Perognathus parvus) in the dispersal of radionuclides on a decommissioned pond

    International Nuclear Information System (INIS)

    Landeen, D.S.; Mitchell, R.M.

    1982-08-01

    The intrusion of waste burial sites by animals is a common occurrence at nuclear waste facilities. This study identifies parameters associated with burrowing activities of the Great Basin Pocket Mouse at the Hanford Site in southeastern Washington. The objectives of the study were to: (1) document and compare burrow depths on a control site and a decommissioned radioactive waste pond and (2) document 137 Cs concentrations in pocket mice and the soil mounds created by their burrowing activities. Pocket mice burrowed deeper in the backfilled burial site (anti x = 72 cm) than they did in the control site (anti x = 38 cm). The small amounts of 137 Cs found in the mice were an order of magnitude below what was present in the mounds. This indicates that the burrowing habits of these mice and subsequent mound construction may be more important in terms of radionuclide dispersal than the small amounts contained within their bodies. The 137 Cs values reported in the mice and mounds are below Rockwell Hanford Operations (Rockwell) surface soil contamination limits. Information received from test plots will be used in formulating appropriate control mechanisms which may be deployed in the future. In the interim, surface stabilization efforts are being conducted on waste sites to control and deter burrowing animals

  16. Summer Watering Patterns of Mule Deer in the Great Basin Desert, USA: Implications of Differential Use by Individuals and the Sexes for Management of Water Resources

    Directory of Open Access Journals (Sweden)

    Andrew V. Shields

    2012-01-01

    Full Text Available Changes in the abundance and distribution of free water can negatively influence wildlife in arid regions. Free water is considered a limiting factor for mule deer (Odocoileus hemionus in the Great Basin Desert. Consequently, a better understanding of differential use of water by individuals and the sexes could influence the conservation and management of mule deer and water resources in their habitats. We deployed remote cameras at all known water sources (13 wildlife water developments and 4 springs on one mountain range in western Utah, USA, during summer from 2007 to 2011 to document frequency and timing of water use, number of water sources used by males and females, and to estimate population size from individually identified mule deer. Male and female mule deer used different water sources but visited that resource at similar frequencies. Individual mule deer used few water sources and exhibited high fidelity to that resource. Wildlife water developments were frequently used by both sexes. Our results highlight the differing use of water sources by sexes and individual mule deer. This information will help guide managers when siting and reprovisioning wildlife water developments meant to benefit mule deer and will contribute to the conservation and management of this species.

  17. Microbial rRNA sequencing analysis of evaporative cooler indoor environments located in the Great Basin Desert region of the United States†

    Science.gov (United States)

    Lemons, Angela R.; Hogan, Mary Beth; Gault, Ruth A.; Holland, Kathleen; Sobek, Edward; Olsen-Wilson, Kimberly A.; Park, Yeonmi; Park, Ju-Hyeong; Gu, Ja Kook; Kashon, Michael L.; Green, Brett J.

    2017-01-01

    Recent studies conducted in the Great Basin Desert region of the United States have shown that skin test reactivity to fungal and dust mite allergens are increased in children with asthma or allergy living in homes with evaporative coolers (EC). The objective of this study was to determine if the increased humidity previously reported in EC homes leads to varying microbial populations compared to homes with air conditioners (AC). Children with physician-diagnosed allergic rhinitis living in EC or AC environments were recruited into the study. Air samples were collected from the child's bedroom for genomic DNA extraction and metagenomic analysis of bacteria and fungi using the Illumina MiSeq sequencing platform. The analysis of bacterial populations revealed no major differences between EC and AC sampling environments. The fungal populations observed in EC homes differed from AC homes. The most prevalent species discovered in AC environments belonged to the genera Cryptococcus (20%) and Aspergillus (20%). In contrast, the most common fungi identified in EC homes belonged to the order Pleosporales and included Alternaria alternata (32%) and Phoma spp. (22%). The variations in fungal populations provide preliminary evidence of the microbial burden children may be exposed to within EC environments in this region. PMID:28091681

  18. Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains

    International Nuclear Information System (INIS)

    Dunagan, J.F. Jr.; Kadish, K.A.

    1977-11-01

    Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains

  19. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    Science.gov (United States)

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  20. Biotic diversity interfaces with urbanization in the Lake Tahoe basin

    Science.gov (United States)

    Patricia N. Manley; Dennis D. Murphy; Lori A. Campbell; Kirsten E. Heckmann; Susan Merideth; Sean A. Parks; Monte P. Sanford; Matthew D. Schlesinger

    2006-01-01

    In the Lake Tahoe Basin, the retention of native ecosystems within urban areas may greatly enhance the landscape’s ability to maintain biotic diversity. Our study of plant, invertebrate and vertebrate species showed that many native species were present in remnant forest stands in developed areas; however, their richness and abundance declined in association with...

  1. Modeling Landscape-scale Ecosystem Services Relative to Biodiversity in the Upper San Pedro River Basin (U.S. Mexico)

    Science.gov (United States)

    It is widely understood that human condition is tightly linked to environmental condition and the services it provides. Ecosystem services, i.e. "services provided to humans from natural systems" have become a paramount issue of this century in resource management, conservation, ...

  2. Combining Multifunctionality and Ecosystem Services into a Win-Win Solution. The Case Study of the Serchio River Basin (Tuscany—Italy

    Directory of Open Access Journals (Sweden)

    Massimo Rovai

    2016-09-01

    Full Text Available Post-war development—characterized by intensive processes of urbanization, concentration of agriculture on the most fertile lands, and abandonment of mountainous and marginal areas—brought about negative environmental and socio-economic consequences. They have been particularly severe in terms of increase of hydrogeological risk, which is high in most Italian regions. Over time, there has been an increasing awareness of the multiple functions played by agriculture in terms of provision of Ecosystem Services (ES, which contribute fundamentally to human well-being. In particular, some ES provided by farmers may help to reduce the hydrogeological risk of territories prone to landslides and floods. In this framework, the paper presents as a case study the project “Farmers as Custodians of a Territory.” This project was implemented in the Serchio River basin, Tuscany (Italy, and combines a multifunctional farm strategy of diversification with the provision of Ecosystem Services related to the hydraulic and hydrogeological protection of the river-basin territory. Although this case study should be read within the framework of the theories of agricultural multifunctionality and ES provision, it nevertheless took a very pragmatic and innovative approach, which differentiates it from most of the case studies given in the literature. Results of our analysis show that, by involving farmers as custodians of the territory, it is possible to reach a “win-win” solution characterized, on the one hand, by better services for the community at a lower cost for the Land Reclamation Consortia involved with hydrogeological risk prevention, thus improving the effectiveness and efficiency of ES provision; and on the other hand, by improving the economic situation and survival chances of local farms.

  3. Incidental oligotrophication of North American Great Lakes.

    Science.gov (United States)

    Evans, Mary Anne; Fahnenstiel, Gary; Scavia, Donald

    2011-04-15

    Phytoplankton production is an important factor in determining both ecosystem stability and the provision of ecosystem goods and services. The expansive and economically important North American Great Lakes are subjected to multiple stressors and understanding their responses to those stresses is important for understanding system-wide ecological controls. Here we show gradual increases in spring silica concentration (an indicator of decreasing growth of the dominant diatoms) in all basins of Lakes Michigan and Huron (USA and Canadian waters) between 1983 and 2008. These changes indicate the lakes have undergone gradual oligotrophication coincident with and anticipated by nutrient management implementation. Slow declines in seasonal drawdown of silica (proxy for seasonal phytoplankton production) also occurred, until recent years, when lake-wide responses were punctuated by abrupt decreases, putting them in the range of oligotrophic Lake Superior. The timing of these dramatic production drops is coincident with expansion of populations of invasive dreissenid mussels, particularly quagga mussels, in each basin. The combined effect of nutrient mitigation and invasive species expansion demonstrates the challenges facing large-scale ecosystems and suggest the need for new management regimes for large ecosystems.

  4. Are Wind Power and Hydropower Complements or Competitors? An Analysis of Ecosystem Service Constraints in the Roanoke Basin

    Science.gov (United States)

    Reed, P. M.; Fernandez, A. R.; Blumsack, S.

    2011-12-01

    Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.

  5. Hydroeconomic Analysis of the Balance between Renewable Wind Energy, Hydropower, and Ecosystems Services in the Roanoke River Basin

    Science.gov (United States)

    Fernandez, A.; Blumsack, S.; Reed, P.

    2012-04-01

    Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.

  6. Technical note: A hydrological routing scheme for the Ecosystem Demography model (ED2+R tested in the Tapajós River basin in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    F. F. Pereira

    2017-09-01

    Full Text Available Land surface models are excellent tools for studying how climate change and land use affect surface hydrology. However, in order to assess the impacts of Earth processes on river flows, simulated changes in runoff need to be routed through the landscape. In this technical note, we describe the integration of the Ecosystem Demography (ED2 model with a hydrological routing scheme. The purpose of the study was to create a tool capable of incorporating to hydrological predictions the terrestrial ecosystem responses to climate, carbon dioxide, and land-use change, as simulated with terrestrial biosphere models. The resulting ED2+R model calculates the lateral routing of surface and subsurface runoff resulting from the terrestrial biosphere models' vertical water balance in order to determine spatiotemporal patterns of river flows within the simulated region. We evaluated the ED2+R model in the Tapajós, a 476 674 km2 river basin in the southeastern Amazon, Brazil. The results showed that the integration of ED2 with the lateral routing scheme results in an adequate representation (Nash–Sutcliffe efficiency up to 0.76, Kling–Gupta efficiency up to 0.86, Pearson's R up to 0.88, and volume ratio up to 1.06 of daily to decadal river flow dynamics in the Tapajós. These results are a consistent step forward with respect to the no river representation common among terrestrial biosphere models, such as the initial version of ED2.

  7. Socio-hydrologic Modeling to Understand and Mediate the Competition for Water between Humans and Ecosystems: Murrumbidgee River Basin, Australia (Invited)

    Science.gov (United States)

    Sivapalan, M.

    2013-12-01

    Competition for water between humans and ecosystems is set to become a flash point in coming decades in all parts of the world. An entirely new and comprehensive quantitative framework is needed to establish a holistic understanding of that competition, thereby enabling development of effective mediation strategies. This paper presents a case study centered on the Murrumbidgee river basin in eastern Australia that illustrates the dynamics of the balance between water extraction and use for food production and efforts to mitigate and reverse consequent degradation of the riparian environment. Interactions between patterns of water management and climate driven hydrological variability within the prevailing socio-economic environment have contributed to the emergence of new whole system dynamics over the last 100 years. In particular, data analysis reveals a pendulum swing between an exclusive focus on agricultural development and food production in the initial stages of water resource development and its attendant socio-economic benefits, followed by the gradual realization of the adverse environmental impacts, efforts to mitigate these with the use of remedial measures, and ultimately concerted efforts and externally imposed solutions to restore environmental health and ecosystem services. A quasi-distributed coupled socio-hydrologic system model that explicitly includes the two-way coupling between human and hydrological systems, including evolution of human values/norms relating to water and the environment, is able to mimic broad features of this pendulum swing. The model consists of coupled nonlinear differential equations that include four state variables describing the co-evolution of storage capacity, irrigated area, human population, and ecosystem health. The model is used to generate insights into the dominant controls of the trajectory of co-evolution of the coupled human-water system, to serve as the theoretical framework for more detailed analysis of

  8. Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years

    International Nuclear Information System (INIS)

    Tyler, S.W.; Chapman, J.B.; Conrad, S.H.; Hammermeister, D.P.; Blout, D.O.; Miller, J.J.; Sully, M.J.; Ginanni, J.M.

    1996-01-01

    The disposal of hazardous and radioactive waste in arid regions requires a thorough understanding of the occurrence of soil-water flux and recharge. Soil-water chemistry and isotopic data are presented from three deep vadose zone boreholes (> 230 m) at the Nevada Test Site, located in the Great Basin geographic province of the southwestern United States, to quantify soil-water flux and its relation to climate. The low water contents found in the soils significantly reduce the mixing of tracers in the subsurface and provide a unique opportunity to examine the role of climate variation on recharge in arid climates. Tracing techniques and core data are examined in this work to reconstruct the paleohydrologic conditions existing in the vadose zone well beyond the timescales typically investigated. Stable chloride and chlorine 36 profiles indicate that the soil waters deep in the vadose zone range in age from approximately 20,000 to 120,000 years. Secondary chloride bulges that are present in two of the three profiles support the concept of recharge occurring at or near the last two glacial maxima, when the climate of the area was considerably wetter and cooler. The stable isotopic composition of the soil water in the profiles is significantly more depleted in heavy isotopes than is modern precipitation, suggesting that recharge under the current climate is not occurring at this arid site. Past and present recharge appears to have been strongly controlled by surface topography, with increased incidence of recharge where runoff from the surrounding mountains may have been concentrated. The data obtained from this detailed drilling and sampling program shed new light on the behavior of water in thick vadose zones and, in particular, show the sensitivity of arid regions to the extreme variations in climate experienced by the region over the last two glacial maxima

  9. Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA

    Science.gov (United States)

    Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.

  10. Environmental conditions and microbial community structure during the Great Ordovician Biodiversification Event; a multi-disciplinary study from the Canning Basin, Western Australia

    Science.gov (United States)

    Spaak, Gemma; Edwards, Dianne S.; Foster, Clinton B.; Pagès, Anais; Summons, Roger E.; Sherwood, Neil; Grice, Kliti

    2017-12-01

    The Great Ordovician Biodiversification Event (GOBE) is regarded as one of the most significant evolutionary events in the history of Phanerozoic life. The present study integrates palynological, petrographic, molecular and stable isotopic (δ13C of biomarkers) analyses of cores from four boreholes that intersected the Goldwyer Formation, Canning Basin, Western Australia, to determine depositional environments and microbial diversity within a Middle Ordovician epicontinental, tropical sea. Data from this study indicate lateral and temporal variations in lipid biomarker assemblages extracted from Goldwyer Formation rock samples. These variations likely reflect changing redox conditions between the upper (Unit 4) and lower (Units 1 + 2) Goldwyer, which is largely consistent with existing depositional models for the Goldwyer Formation. Cryptospores were identified in Unit 4 in the Theia-1 well and are most likely derived from bryophyte-like plants, making this is the oldest record of land plants in Australian Middle Ordovician strata. Biomarkers in several samples from Unit 4 that also support derivation from terrestrial organic matter include benzonaphthofurans and δ13C-depleted mid-chain n-alkanes. Typical Ordovician marine organisms including acritarchs, chitinozoans, conodonts and graptolites were present in the lower and upper Goldwyer Formation, whereas the enigmatic organism Gloeocapsomorpha prisca (G. prisca) was only detected in Unit 4. The correlation of a strong G. prisca biosignature with high 3-methylhopane indices and 13C depleted G. prisca-derived chemical fossils (biomarkers) is interpreted to suggest an ecological relationship between methanotrophs and G. prisca. This research contributes to a greater understanding of Ordovician marine environments from a molecular perspective since few biomarker studies have been undertaken on age-equivalent sections. Furthermore, the identification of the oldest cryptospores in Australia and their corresponding

  11. Value of ecosystem hydropower service and its impact on the payment for ecosystem services.

    Science.gov (United States)

    Fu, B; Wang, Y K; Xu, P; Yan, K; Li, M

    2014-02-15

    Hydropower is an important service provided by ecosystems. We surveyed all the hydropower plants in the Zagunao River Basin, Southwest China. Then, we assessed the hydropower service by using the InVEST (The Integrated Value and Tradeoff of Ecosystem Service Tools) model. Finally, we discussed the impact on ecological compensation. The results showed that: 1) hydropower service value of ecosystems in the Zagunao River Basin is 216.29 Euro/hm(2) on the average, of which the high-value area with more than 475.65 Euro/hm(2) is about 750.37 km(2), accounting for 16.12% of the whole watershed, but it provides 53.47% of the whole watershed service value; 2) ecosystem is an ecological reservoir with a great regulation capacity. Dams cannot completely replace the reservoir water conservation function of ecosystems, and has high economic and environmental costs that must be paid as well. Compensation for water conservation services should become an important basis for ecological compensation of hydropower development. 3) In the current PES cases, the standard of compensation is generally low. Cascade development makes the value of upstream ecosystem services become more prominent, reflecting the differential rent value, and the value of ecosystem services should be based on the distribution of differentiated ecological compensation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Isotopic tracers for net primary productivity for a terrestrial ecosystem: a case study of the Volta River basin

    International Nuclear Information System (INIS)

    Hayford, E.K.; Odamtten, G.T.; Enu-Kwesi, L.

    2006-01-01

    The coupling effect of vapour release and CO2 uptake during photosynthesis plays an important role in the carbon and hydrologic cycles. The water use efficiency (WUE) for transpiration was used in calculating the net primary productivity (NPP) for terrestrial ecosystem. Three parameters were used in calculating the water and carbon balance of the River Volta watershed. These are 1) stable isotopes of hydrogen and oxygen, 2) long-term data on precipitation and evapotranspiration, and 3) stoichiometric relations of water and carbon. Results indicate that soils in the watershed annually respire 0.199 Pg C, and that the NPP is +0.029 Pg C yr-1. This implies an annual change in CO2 to the atmosphere within the watershed. Annually, River Volta watershed receives about 380 km3 of rainfall; approximately 50 per cent of which is returned to the atmosphere through plant transpiration. Associated with annual transpiration flux is a carbon flux of 0.170 x 1015 g C yr-1 or 428 g C m-2 yr-1 from the terrestrial ecosystem. Modeled estimates of heterotrophic soil respiration exceeds slightly the estimated NPP values, implying that carbon flux to and from the Volta river watershed is close to being in balance. In other words, the watershed releases annually more carbon dioxide to the atmosphere than it takes. Apart from the terrestrial carbon flux, the balance of photosynthesis and respiration in the Volta lake was also examined. The lake was found to release carbon dioxide to the atmosphere although the magnitude of the flux is smaller than that of the terrestrial ecosystem. (au)

  13. Migration of 90Sr in the cooling basin of the Ignalina atomic power plant and the Baltic sea ecosystems

    International Nuclear Information System (INIS)

    Dushauskiene-Duzh, R.

    1992-01-01

    On the basis of a long-time radiation monitoring of the Ignalina APP and the Baltic sea ecosystems determined regularities of the 90 Sr distribution in the main components of the ecosystems (water, bottom sediments, biota). It was established that 90 Sr accumulation coefficient in the aquatic plants of the warmed up water zone of the Ignalina APP is 2.6 lower than that of the stable water suction zone. The accumulation of 90 Sr in molluscs is higher in the warmed up water zone than in the stable water zone. It was determined that the mean concentration of 90 Sr in surface water of near-shore areas of the Baltic sea are higher than that in the open Baltic. Concentration of the 90 Sr in the biota in the Baltic sea is about 300-500 times higher than in the water. The accumulation level of 90 Sr in zoobenthos varies in different species being in organs and tissues of fishes consuming actively calcium for building up their skeletons. 90 Sr levels in bottom sediments of bays are higher than those in sediments of the open sea. Accumulation of 90 Sr in muds is about 11 times higher than in sands. (author). 5 figs., 3 refs

  14. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    Science.gov (United States)

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Hydrologic models of modern and fossil geothermal systems in the Great Basin: Genetic implications for epithermal Au-Ag and Carlin-type gold deposits

    Science.gov (United States)

    Person, M.; Banerjee, A.; Hofstra, A.; Sweetkind, D.; Gao, Y.

    2008-01-01

    The Great Basin region in the western United States contains active geothermal systems, large epithermal Au-Ag deposits, and world-class Carlin-type gold deposits. Temperature profiles, fluid inclusion studies, and isotopic evidence suggest that modern and fossil hydrothermal systems associated with gold mineralization share many common features, including the absence of a clear magmatic fluid source, discharge areas restricted to fault zones, and remarkably high temperatures (>200 ??C) at shallow depths (200-1500 m). While the plumbing of these systems varies, geochemical and isotopic data collected at the Dixie Valley and Beowawe geothermal systems suggest that fluid circulation along fault zones was relatively deep (>5 km) and comprised of relatively unexchanged Pleistocene meteoric water with small (horizons. Those with minimal fluid ?? 18O shifts are restricted to high-permeability fault zones and relatively small-scale (???5 km), single-pass flow systems (e.g., Beowawe). Those with intermediate to large isotopic shifts (e.g., epithermal and Carlin-type Au) had larger-scale (???15 km) loop convection cells with a greater component of flow through marine sedimentary rocks at lower water/rock ratios and greater endowments of gold. Enthalpy calculations constrain the duration of Carlin-type gold systems to probably account for the amount of silica in the sinter deposits. In the Carlin trend, fluid circulation extended down into Paleozoic siliciclastic rocks, which afforded more mixing with isotopically enriched higher enthalpy fluids. Computed fission track ages along the Carlin trend included the convective effects, and ranged between 91.6 and 35.3 Ma. Older fission track ages occurred in zones of groundwater recharge, and the younger ages occurred in discharge areas. This is largely consistent with fission track ages reported in recent studies. We found that either an amagmatic system with more permeable faults (10-11 m2) or a magmatic system with less

  16. Hydrologic Impacts Associated with the Increased Role of Wildland Fire Across the Rangeland-Xeric Forest Continuum of the Great Basin and Intermountain West, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Boll, J.; Al-Hamdan, O. Z.

    2011-12-01

    The increased role of wildland fire across the rangeland-xeric forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Concomitant climate conditions and altered plant community transitions in recent decades along grassland-shrubland-woodland-xeric forest transitions have promoted frequent and large wildland fires, and the continuance of the trend appears likely if current or warming climate conditions prevail. Much of the Great Basin and Intermountain West in the US now exists in a state in which rangeland and woodland wildfires stimulated by invasive cheatgrass and dense, horizontal and vertical fuel layers have a greater likelihood of progressing upslope into xeric forests. Drier moisture conditions and warmer seasonal air temperatures, along with dense fuel loads, have lengthened fire seasons and facilitated an increase in the frequency, severity and area burned in mid-elevation western US forests. These changes potentially increase the overall hydrologic vulnerability across the rangeland-xeric forest continuum by spatially and temporally increasing soil surface exposure to runoff and erosion processes. Plot-to-hillslope scale studies demonstrate burning may increase event runoff and/or erosion by factors of 2-40 over small-plots scales and more than 100-fold over large-plot to hillslope scales. Anecdotal reports of large-scale flooding and debris-flow events from rangelands and xeric forests following burning document the potential risk to resources (soil loss, water quality, degraded aquatic habitat, etc.), property and infrastructure, and human life. Such risks are particularly concerning for urban centers near the urban-wildland interface. We do not yet know the long-term ramifications of frequent soil loss associated with commonly occurring runoff events on repeatedly burned sites. However, plot to landscape-scale post-fire erosion rate estimates suggest potential losses of biologically

  17. Uranium resources in fine-grained carbonaceous rocks of the Great Divide Basin, south-central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Burger, J.A.; Roe, L.M. II; Hacke, C.M.; Mosher, M.M.

    1982-11-01

    The uranium resources of the fine-grained carbonaceous rocks of the Great Divide Basin in southern Wyoming were assessed. The assessment was based primarily on data from some 600 boreholes. The data included information from geophysical logs, lithologic logs and cores, and drill cuttings. The cores and cuttings were analyzed for chemical U 3 O 8 , radiometric U, Th and trace elements. Selected samples were examined by thin section, sieve analysis, x-ray, SEM, ion probe, and alpha track methods. The uranium is associated with fine-grained carbonaceous shales, siltstones, mudstones, and coals in radioactive zones 5 to 50 ft thick that are continuous over broad areas. These rocks have a limited stratigraphic range between the Red Desert tongue of the Wasatch Formation and the lower part of the Tipton tongue of the Green River Formation. Most of this uranium is syngenetic in origin, in part from the chelation of the uranium by organic material in lake-side swamps and in part as uranium in very fine detrital heavy minerals. The uraniferous fine-grained carbonaceous rocks that exceed a cutoff grade of 100 ppM eU 3 O 8 extend over an area of 542 mi 2 and locally to a depth of approximately 2000 ft. The uraniferous area is roughly ellipical and embraces the zone of change between the piedmont and alluvial-fan facies and the lacustrine facies of the intertonguing Battle Spring, Wasatch, and Green River Formations. About 1.05 x 10 6 tons U 3 O 8 , based on gross-gamma logs not corrected for thorium, are assigned to the area in the first 500 ft; an estimated 3.49 x 10 6 tons are assigned to a depth of 1000 ft. These units also contain a substantial thorium resource that is also associated with fine-grained rocks. The thorium-to-uranium ratio generally ranges between 1 and 4. A thorium resource of 3.43 x 10 6 tons to a depth of 500 ft is estimated for the assessment area. 5 figures, 3 tables

  18. Balancing ecosystem services with energy and food security - Assessing trade-offs from reservoir operation and irrigation investments in Kenya's Tana Basin

    Science.gov (United States)

    Hurford, A. P.; Harou, J. J.

    2014-08-01

    Competition for water between key economic sectors and the environment means agreeing allocations is challenging. Managing releases from the three major dams in Kenya's Tana River basin with its 4.4 million inhabitants, 567 MW of installed hydropower capacity, 33 000 ha of irrigation and ecologically important wetlands and forests is a pertinent example. This research seeks firstly to identify and help decision-makers visualise reservoir management strategies which result in the best possible (Pareto-optimal) allocation of benefits between sectors. Secondly, it seeks to show how trade-offs between achievable benefits shift with the implementation of proposed new rice, cotton and biofuel irrigation projects. To approximate the Pareto-optimal trade-offs we link a water resources management simulation model to a multi-criteria search algorithm. The decisions or "levers" of the management problem are volume-dependent release rules for the three major dams and extent of investment in new irrigation schemes. These decisions are optimised for eight objectives covering the provision of water supply and irrigation, energy generation and maintenance of ecosystem services. Trade-off plots allow decision-makers to assess multi-reservoir rule-sets and irrigation investment options by visualising their impacts on different beneficiaries. Results quantify how economic gains from proposed irrigation schemes trade-off against the disturbance of ecosystems and local livelihoods that depend on them. Full implementation of the proposed schemes is shown to come at a high environmental and social cost. The clarity and comprehensiveness of "best-case" trade-off analysis is a useful vantage point from which to tackle the interdependence and complexity of "water-energy-food nexus" resource security issues.

  19. The Nexus between Bovine Tuberculosis and Fasciolosis Infections in Cattle of the Kafue Basin Ecosystem in Zambia: Implications on Abattoir Surveillance

    Directory of Open Access Journals (Sweden)

    Musso Munyeme

    2012-01-01

    Full Text Available Bovine tuberculosis (bTB and fasciolosis are important but neglected diseases that result in chronic infections in cattle. However, in Zambia, these diseases are mainly diagnosed at abattoirs during routine meat inspection. Albeit the coinfection status, these diseases have been reported as nothing more than normal separate findings without an explanatory phenomena. Forthwith, we formulated this study to assess the possible association of the two diseases in a known high prevalence area on the Kafue basin ecosystem. Of the 1,680 animals screened, 600 (35.7%; 95% CI 33.4%–38% and 124 (7.4%; 95% CI 6.1%–8.6% had fasciolosis and tuberculous lesions; respectively, whilst 72 had both fasciola and tuberculous lesions representing 12% (95% CI 9.4%–14.6% and 58.1% (95% CI; 49.3%–66.7% of the total positives for fasciola and tuberculosis, respectively. Jaundice was seen in 304 animals, 18.1% (95% CI; 16.3%–19.9% and was significantly correlated to fasciolosis (r=0.59, P<0.0001. A significant association (χ2=76.2, df=1, and P<0.0001 was found between fasciolosis and tuberculous lesions. Simple logistic regression intimated fasciolosis as a strong predictor for tuberculous lesions with animals that had fasciola being five times more likely to have tuberculous lesions (odds ratio = 4.8, 95% CI: 3.3–7.0. This study indicates that transmission and spatial risk factors of communicable and noncommunicable diseases such as bTB and fasciolosis can be correlated in an ecosystem such as the Kafue flats.

  20. Balancing ecosystem services with energy and food security - assessing trade-offs for reservoir operation and irrigation investment in Kenya's Tana basin

    Science.gov (United States)

    Hurford, A. P.; Harou, J. J.

    2014-01-01

    Competition for water between key economic sectors and the environment means agreeing on allocation is challenging. Managing releases from the three major dams in Kenya's Tana River basin with its 4.4 million inhabitants, 567 MW of installed hydropower capacity, 33 000 ha of irrigation and ecologically important wetlands and forests is a pertinent example. This research seeks to identify and help decision-makers visualise reservoir management strategies which result in the best possible (Pareto-optimal) allocation of benefits between sectors. Secondly we seek to show how trade-offs between achievable benefits shift with the implementation of new proposed rice, cotton and biofuel irrigation projects. To identify the Pareto-optimal trade-offs we link a water resources management model to a multi-criteria search algorithm. The decisions or "levers" of the management problem are volume dependent release rules for the three major dams and extent of investment in new irrigation schemes. These decisions are optimised for objectives covering provision of water supply and irrigation, energy generation and maintenance of ecosystem services which underpin tourism and local livelihoods. Visual analytic plots allow decision makers to assess multi-reservoir rule-sets by understanding their impacts on different beneficiaries. Results quantify how economic gains from proposed irrigation schemes trade-off against disturbance of the flow regime which supports ecosystem services. Full implementation of the proposed schemes is shown to be Pareto-optimal, but at high environmental and social cost. The clarity and comprehensiveness of "best-case" trade-off analysis is a useful vantage point from which to tackle the interdependence and complexity of water-energy-food "nexus" challenges.

  1. Across Hydrological Interfaces from Coastal Watersheds to the Open Lake: Finding Landscape Signals in the Great Lakes Coastal Zone

    Science.gov (United States)

    Over the past decade, our group has been working to bring coastal ecosystems into integrated basin-lakewide monitoring and assessment strategies for the Great Lakes. We have conducted a wide range of research on coastal tributaries, coastal wetlands, semi-enclosed embayments an...

  2. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  3. Attenuation of landscape signals through the coastal zone: A basin-wide analysis for the US Great Lakes shoreline, circa 2002-2010

    Science.gov (United States)

    We compare statistical models developed to describe a) the relationship between watershed properties and Great Lakes coastal wetlands with b) the relationship developed between watershed properties and the Great Lakes nearshore. Using landscape metrics from the GLEI project (Dan...

  4. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  5. Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion.

    Science.gov (United States)

    Xun, Weibing; Xu, Zhihui; Li, Wei; Ren, Yi; Huang, Ting; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-09-01

    Natural ecosystems comprise the planet's wild plant and animal resources, but large tracts of land have been converted to agroecosystems to support the demand for agricultural products. This conversion limits the number of plant species and decreases the soil biological diversity. Here we used high-throughput 16S rRNA gene sequencing to evaluate the responses of soil bacterial communities in long-term converted and fertilized red soils (a type of Ferralic Cambisol). We observed that soil bacterial diversity was strongly affected by different types of fertilization management. Oligotrophic bacterial taxa demonstrated large relative abundances in chemically fertilized soil, whereas copiotrophic bacterial taxa were found in large relative abundances in organically fertilized and fallow management soils. Only organic-inorganic fertilization exhibited the same local taxonomic and phylogenetic diversity as that of a natural ecosystem. However, the independent use of organic or inorganic fertilizer reduced local taxonomic and phylogenetic diversity and caused biotic homogenization. This study demonstrated that the homogenization of bacterial communities caused by natural-to-agricultural ecosystem conversion can be mitigated by employing rational organic-inorganic fertilization management.

  6. Groundwater model of the Great Basin carbonate and alluvial aquifer system version 3.0: Incorporating revisions in southwestern Utah and east central Nevada

    Science.gov (United States)

    Brooks, Lynette E.

    2017-12-01

    The groundwater model described in this report is a new version of previously published steady-state numerical groundwater flow models of the Great Basin carbonate and alluvial aquifer system, and was developed in conjunction with U.S. Geological Survey studies in Parowan, Pine, and Wah Wah Valleys, Utah. This version of the model is GBCAAS v. 3.0 and supersedes previous versions. The objectives of the model for Parowan Valley were to simulate revised conceptual estimates of recharge and discharge, to estimate simulated aquifer storage properties and the amount of reduction in storage as a result of historical groundwater withdrawals, and to assess reduction in groundwater withdrawals necessary to mitigate groundwater-level declines in the basin. The objectives of the model for the area near Pine and Wah Wah Valleys were to recalibrate the model using new observations of groundwater levels and evapotranspiration of groundwater; to provide new estimates of simulated recharge, hydraulic conductivity, and interbasin flow; and to simulate the effects of proposed groundwater withdrawals on the regional flow system. Meeting these objectives required the addition of 15 transient calibration stress periods and 14 projection stress periods, aquifer storage properties, historical withdrawals in Parowan Valley, and observations of water-level changes in Parowan Valley. Recharge in Parowan Valley and withdrawal from wells in Parowan Valley and two nearby wells in Cedar City Valley vary for each calibration stress period representing conditions from March 1940 to November 2013. Stresses, including recharge, are the same in each stress period as in the steady-state stress period for all areas outside of Parowan Valley. The model was calibrated to transient conditions only in Parowan Valley. Simulated storage properties outside of Parowan Valley were set the same as the Parowan Valley properties and are not considered calibrated. Model observations in GBCAAS v. 3.0 are

  7. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    Science.gov (United States)

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  8. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    Science.gov (United States)

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a

  9. Geochemical evidence for groundwater mixing in the western Great Artesian Basin and recognition of deep inputs in continental-scale flow systems

    Science.gov (United States)

    Crossey, L. J.; Karlstrom, K. E.; Love, A.; Priestley, S.; Shand, P.

    2010-12-01

    Mound springs of the western Great Artesian Basin (GAB), Australia, represent a significant proportion of the discharge of the continental-scale confined aquifers of the region. They also provide unique ecological niches, and they are important historical and cultural sites in an austere landscape. Fed by confined aquifers within the GAB, these spring systems are at risk due to anthropogenic drawdown and increasing demand on scarce hydrologic resources. New water and gas geochemical data indicate that they record hydrologic mixing and complex, fault-influenced flow paths within the western GAB. Elevated 3He/4He gas values, termed “xenowhiffs”, with RA up to 0.09 (Bubbler Spring) provide evidence for mantle-derived fluids introduced through fault conduits into the groundwater system in the last several million years and hence an active mantle-to-groundwater fluid linkage. We apply multiple tracers to understand mixing. Major and trace element data show distinctly different water chemistries for Dalhousie versus southern mound springs suggesting different flow paths and mixing proportions. The source of the C for the CO2 -rich springs is evaluated using water chemistry and C-isotope data. Carbon isotope values range from -9 (Bubbler) to -16 (Strangways). Mixing models allow us to distinguish contributions from dissolution of carbonate in the aquifer (Ccarb=Ca+Mg-SO4 and δ13C= 0), from biological/organic sources (δ13C= -28), and from endogenic sources (deeply derived; δ13C= -3). Results show that all of the springs contain appreciable (many > 50%) endogenic CO2, with Dalhousie showing less endogenic CO2 than the southern mound springs and Paralana hot spring system. CO2/3He values of 4 to 8 x 109 (Bubbler and Jersey Springs) are close to MORB end member values of 2 x 109 whereas other springs have values strongly enriched in CO2 (up to 1013 at Elizabeth Spring). Elevated but highly variable 87Sr/86Sr values up to 0.718 at Dalhousie and up to 0.76 at Paralana

  10. Energy and water in the Great Lakes.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  11. Coso geothermal environmental overview study ecosystem quality

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, P.

    1981-09-01

    The Coso Known Geothermal Resource Area is located just east of the Sierra Nevada, in the broad transition zone between the Mohave and Great Basin desert ecosystems. The prospect of large-scale geothermal energy development here in the near future has led to concern for the protection of biological resources. Objectives here are the identification of ecosystem issues, evaluation of the existing data base, and recommendation of additional studies needed to resolve key issues. High-priority issues include the need for (1) site-specific data on the occurrence of plant and animal species of special concern, (2) accurate and detailed information on the nature and extent of the geothermal resource, and (3) implementation of a comprehensive plan for ecosystem protection.

  12. Exploiting Habitat and Gear Patterns for Efficient Detection of Rare and Non-native Benthos and Fish in Great Lakes Coastal ecosystems

    Science.gov (United States)

    There is at present no comprehensive early-detection monitoring for exotic species in the Great Lakes, despite their continued arrival and impacts and recognition that early detection is key to effective management. We evaluated strategies for efficient early-detection monitorin...

  13. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 3: Kinematics of Great Basin intraplate extension from earthquake, geodetic and geologic information. Final Technical Report, 15 Apr. 1981 - 31 Jan. 1986 M.S. Thesis

    Science.gov (United States)

    Eddington, P. K.

    1986-01-01

    Strain rates assessed from brittle fracture, associated with earthquakes, and total brittle-ductile deformation measured from geodetic data were compared to paleostrain from Quaternary geology for the intraplate Great Basin of the western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced in the last 5 to 10 million years. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions. Contemporary deformation of the Great Basin occurs principally along the active seismic zones. The earthquake related strain shows that the Great Basin is characterized by regional E-W extension at 8.4 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum extension correspond to belts of shallow crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through an effect such as a stress relaxation allowing bouyant uplift and ascension of magmas.

  14. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    Science.gov (United States)

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  15. Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julianne [DRI; Etyemezian, Vic [DRI; Cablk, Mary E. [DRI; Shillito, Rose [DRI; Shafer, David [DOE Grand Junction, Colorado

    2013-06-01

    A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were

  16. The 2012 Mw 8.6 Wharton Basin sequence: A cascade of great earthquakes generated by near-orthogonal, young, oceanic mantle faults

    Science.gov (United States)

    Hill, Emma M.; Yue, Han; Barbot, Sylvain; Lay, Thorne; Tapponnier, Paul; Hermawan, Iwan; Hubbard, Judith; Banerjee, Paramesh; Feng, Lujia; Natawidjaja, Danny; Sieh, Kerry

    2015-05-01

    We improve constraints on the slip distribution and geometry of faults involved in the complex, multisegment, Mw 8.6 April 2012 Wharton Basin earthquake sequence by joint inversion of high-rate GPS data from the Sumatran GPS Array (SuGAr), teleseismic observations, source time functions from broadband surface waves, and far-field static GPS displacements. This sequence occurred under the Indian Ocean, ˜400 km offshore Sumatra. The events are extraordinary for their unprecedented rupture of multiple cross faults, deep slip, large strike-slip magnitude, and potential role in the formation of a discrete plate boundary between the Indian and Australian plates. The SuGAr recorded static displacements of up to ˜22 cm, along with time-varying arrivals from the complex faulting, which indicate that the majority of moment release was on young, WNW trending, right-lateral faults, counter to initial expectations that an old, lithospheric, NNE trending fracture zone played the primary role. The new faults are optimally oriented to accommodate the present-day stress field. Not only was the greatest moment released on the younger faults, but it was these that sustained very deep slip and high stress drop (>20 MPa). The rupture may have extended to depths of up to 60 km, suggesting that the oceanic lithosphere in the northern Wharton Basin may be cold and strong enough to sustain brittle failure at such depths. Alternatively, the rupture may have occurred with an alternative weakening mechanism, such as thermal runaway.

  17. Effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function on woodland-encroached sagebrush steppe, Great Basin, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Kormos, P.; Al-Hamdan, O. Z.; Nouwakpo, S.; Weltz, M.; Vega, S.; Lindsay, K.

    2017-12-01

    Range expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) conifers into sagebrush steppe (Artemisia spp.) communities has imperiled a vast domain in the western US. Encroachment of sagebrush ecosystems by pinyon and juniper conifers has negative ramifications to ecosystem structure and function and delivery of goods and services. Scientists, land management agencies, and private land owners throughout the western US are challenged with selecting from a suite of options to reduce pinyon and juniper woody fuels and re-establish sagebrush steppe structure and function. This study evaluated the effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function over a 9 yr period. Nine years post-fire hydrologic and erosion responses reflect the combination of pre-fire site conditions, perennial grass recruitment, delayed litter cover, and inherent site characteristics. Burning initially increased bare ground, runoff, and erosion for well-vegetated areas underneath tree and shrub canopies, but had minimal impact on hydrology and erosion for degraded interspaces between plants. The degraded interspaces were primarily bare ground and exhibited high runoff and erosion rates prior to burning. Initial fire effects persisted for two years, but increased productivity of grasses improved hydrologic function of interspaces over the full 9 yr period. At the hillslope scale, grass recruitment in the intercanopy between trees reduced runoff from rainsplash, sheetflow, and concentrated overland flow at one site, but did not reduce the high levels of runoff and erosion from a more degraded site. In areas formerly occupied by trees (tree zones), burning increased invasive annual grass cover due to fire removal of limited native perennial plants and competition for resources. The invasive annual grass cover had no net effect on runoff and erosion from tree zones however. Runoff and erosion increased in tree zones at the more degraded site due to

  18. Przewalski’ s Horse ( Equus ferus przewalskii Re-intr oduction in the Great Gobi B Strictly Protected Area: from Species to Ecosystem Conservation

    Directory of Open Access Journals (Sweden)

    P. Kaczensky

    2007-05-01

    Full Text Available The Przewalski’s horse ( Equus ferus przewalskii Po ljakov , 1881, or “T akhi” in Mongolian, became extinct in the wild by the mid 1960’ s. The last recorded sightings of Przewalski’s horses occurred in the Dzungarian Gobi desert in SW Mo ngolia, today’s Great Gobi B Strictly Protected Area (SP A. A re - introduction program was initiated in 1992 and the fi rs t group of captive-born Przewalski’s horses was airlifted to the SPA. Given the logistical challenges associated with such a venture, the initial project focus has been on transport logistics and the well-being of the re-introduced horses. Tod ay, conservation efforts are spread over the entire protected area. Present day ef forts include other mammals, vegetation and the local people. Due to its important symbolic value in Mongolian culture, the Przewalski’ s horse became an important fl agship species for the protected area’s conservation and management.

  19. Responses of Plant Community Composition to Long-term Changes in Snow Depth at the Great Basin Desert - Sierra Nevada ecotone.

    Science.gov (United States)

    Loik, M. E.

    2015-12-01

    Snowfall is the dominant hydrologic input for many high-elevation ecosystems of the western United States. Many climate models envision changes in California's Sierra Nevada snow pack characteristics, which would severely impact the storage and release of water for one of the world's largest economies. Given the importance of snowfall for future carbon cycling in high elevation ecosystems, how will these changes affect seedling recruitment, plant mortality, and community composition? To address this question, experiments utilize snow fences to manipulate snow depth and melt timing at a desert-montane ecotone in eastern California, USA. Long-term April 1 snow pack depth averages 1344 mm (1928-2015) but is highly variable from year to year. Snow fences increased equilibrium drift snow depth by 100%. Long-term changes in snow depth and melt timing are associated with s shift from shurbs to graminoids where snow depth was increased for >50 years. Changes in snow have impacted growth for only three plant species. Moreover, annual growth ring increments of the conifers Pinus jeffreyi and Pi. contorta were not equally sensitive to snow depth. There were over 8000 seedlings of the shrubs Artemisia tridentata and Purshia tridentata found in 6300 m2 in summer 2009, following about 1400 mm of winter snow and spring rain. The frequency of seedlings of A. tridentata and P. tridentata were much lower on increased-depth plots compared to ambient-depth, and reduced-depth plots. Survival of the first year was lowest for A. tridentata. Survival of seedlings from the 2008 cohort was much higher for P. tridentata than A. tridentata during the 2011-2015 drought. Results indicate complex interactions between snow depth and plant community characteristics, and that responses of plants at this ecotone may not respond similarly to increases vs. decreases in snow depth. These changes portend altered carbon uptake in this region under future snowfall scenarios.

  20. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  1. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  2. Canada's Response to the Recommendations in the Tenth Biennial Report on Great Lakes Water Quality of the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The Government of Canada and Ontario are currently renegotiating the Canada-Ontario Agreement Respecting the Great Lakes Basin Ecosystem (COA). They are committed to restoring and maintaining the basin's chemical, physical and biological integrity and ensuring that it has a healthy, sustainable future. The COA has established a strategic framework for coordinated federal-provincial responsibilities regarding the Great Lakes basin ecosystem. This document presents responses to the recommendations of the International Joint Commission's (IJC) Tenth Biennial Report on how to improve the performance and effectiveness of government programs such as the Great Lakes Water Quality Agreement. According to the IJC, there are many challenges ahead, including: cleanup of Canadian Areas of Concern; controlling and preventing the further introduction of exotic species; mitigating the impact of rapid urban growth on environmental conditions throughout the basin; and reducing contaminants transported in the atmosphere over long distances to the Great Lakes. This document presented the government's responses to each of the following IJC recommendations regarding remedial action plans, threats to human health with respect to consumption of fish, contaminated sediment, airborne toxic substances, Great Lakes binational toxics strategy, land use, alien invasive species, and information and data management. IJC also recommended that indicators should be reported regarding whether the Great Lakes surface waters are suitable for drinking, swimming and whether fish are edible.

  3. Geologic Map of the Bodie Hills Volcanic Field, California and Nevada: Anatomy of Miocene Cascade Arc Magmatism in the Western Great Basin

    Science.gov (United States)

    John, D. A.; du Bray, E. A.; Blakely, R. J.; Box, S.; Fleck, R. J.; Vikre, P. G.; Rytuba, J. J.; Moring, B. C.

    2011-12-01

    The Bodie Hills Volcanic Field (BHVF) is a >700 km2, long-lived (~9 Ma) but episodic, Miocene eruptive center in the southern part of the ancestral Cascade magmatic arc. A 1:50,000-scale geologic map based on extensive new mapping, combined with 40Ar/39Ar dates, geochemical data, and detailed gravity and aeromagnetic surveys, defines late Miocene magmatic and hydrothermal evolution of the BHVF and contrasts the subduction-related BHVF with the overlying, post-subduction, bimodal Plio-Pleistocene Aurora Volcanic Field (AVF). Important features of the BHVF include: Eruptions occurred during 3 major eruptive stages: dominantly trachyandesite stratovolcanoes (~14.7 to 12.9 Ma), mixed silicic trachyandesite, dacite, and rhyolite (~11.3 to 9.6 Ma), and dominantly silicic trachyandesite to dacite domes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Trachyandesitic stratovolcanoes with extensive debris flow aprons form the outer part of BHVF, whereas silicic trachyandesite to rhyolite domes are more centrally located. Geophysical data suggest that many BHVF volcanoes have shallow plutonic roots that extend to depths ≥1-2 km below the surface, and much of the Bodie Hills may be underlain by low density plutons presumably related to BHVF volcanism. BHVF rocks contain ~50 to 78% SiO2 (though few rocks have Bodie Hills at ~10 Ma, but the composition and eruptive style of volcanism continued unchanged for 2 Ma. However, kinematic data for veins and faults in mining districts suggest a change in the stress field from transtensional to extensional approximately coincident with cessation of subduction. The Bodie Hills are flanked to the east, north, and west by sedimentary basins that began to form in the late Miocene (locally >11 Ma). Fine to coarse sedimentary deposits within the BHVF include stream deposits in channels that cut across the hills and were partly filled by ~9.4 Ma Eureka Valley Tuff erupted 20 km to the northwest. Shallow dips and preservation of

  4. Middle Rio Grande Basin Research Report 2008

    Science.gov (United States)

    Deborah M. Finch; Catherine Dold

    2008-01-01

    An ecosystem is rarely static. A natural system composed of plants, animals, and microorganisms interacting with an area's physical factors, an ecosystem is always fluctuating and evolving. But sometimes, often at the hands of humans, ecosystems change too much. Such is the case with many of the ecosystems of the Middle Rio Grande Basin of New Mexico.

  5. Responses of streamflow and sediment load to climate change and human activity in the Upper Yellow River, China: a case of the Ten Great Gullies Basin.

    Science.gov (United States)

    Liu, Tong; Huang, He Qing; Shao, Mingan; Yao, Wenyi; Gu, Jing; Yu, Guoan

    2015-01-01

    Soil erosion and land desertification are the most serious environmental problems globally. This study investigated the changes in streamflow and sediment load from 1964 to 2012 in the Ten Great Gullies area of the Upper Yellow River. Tests for gradual trends (Mann-Kendall test) and abrupt changes (Pettitt test) identify that significant declines in streamflow and sediment load occurred in 1997-1998 in two typical gullies. A comparison of climatic variability before and after the change points shows no statistically significant trends in annual precipitation and potential evapotranspiration. Human activities have been very active in the region and during 1990-2010, 146.01 and 197.62 km2 of land were converted, respectively, to forests and grassland, with corresponding increases of 87.56 and 77.05%. In addition, a large number of check dams have been built up in the upper reaches of the ten gullies. These measures were likely responsible for the significant decline in the annual streamflow and sediment load over the last 49 years.

  6. Spatial trends, sources, and air-water exchange of organochlorine pesticides in the Great Lakes basin using low density polyethylene passive samplers.

    Science.gov (United States)

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2014-08-19

    Polyethylene passive samplers were deployed during summer and fall of 2011 in the lower Great Lakes to assess the spatial distribution and sources of gaseous and freely dissolved organochlorine pesticides (OCPs) and their air-water exchange. Average gaseous OCP concentrations ranged from nondetect to 133 pg/m(3). Gaseous concentrations of hexachlorobenzene, dieldrin, and chlordanes were significantly greater (Mann-Whitney test, p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression implied that both cropland and urban areas within 50 and 10 km buffer zones, respectively, were critical parameters to explain the total variability in atmospheric concentrations. Freely dissolved OCP concentrations (nondetect to 114 pg/L) were lower than previously reported. Aqueous half-lives generally ranged from 1.7 to 6.7 years. Nonetheless, concentrations of p,p'-DDE and chlordanes were higher than New York State Ambient Water Quality Standards for the protection of human health from the consumption of fish. Spatial distributions of freely dissolved OCPs in both lakes were influenced by loadings from areas of concern and the water circulation patterns. Flux calculations indicated net deposition of γ-hexachlorocyclohexane, heptachlor-epoxide, and α- and β-endosulfan (-0.02 to -33 ng/m(2)/day) and net volatilization of heptachlor, aldrin, trans-chlordane, and trans-nonachlor (0.0 to 9.0 ng/m(2)/day) in most samples.

  7. Comment on “The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States”: report published in Hydrogeology Journal (2014) 22:807–828, by Stephen T. Nelson and Alan L. Mayo

    Science.gov (United States)

    Masbruch, Melissa D.; Brooks, Lynette E.; Heilweil, Victor M.; Sweetkind, Donald S.

    2015-01-01

    The subject article (Nelson and Mayo 2014) presents an overview of previous reports of interbasin flow in the Great Basin of the western United States. This Comment is presented by authors of a cited study (comprising chapters in one large report) on the Great Basin carbonate and alluvial aquifer system (GBCAAS; Heilweil and Brooks 2011; Masbruch et al. 2011; Sweetkind et al. 2011a, b), who agree that water budget imbalances alone are not enough to accurately quantify interbasin flow; however, it is proposed that statements made in the subject article about the GBCAAS report are inaccurate. The Comment authors appreciate the opportunity to clarify some statements made about the work.

  8. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  9. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  10. Coarse-scale restoration planning and design in Interior Columbia River Basin ecosystems: An example for restoring declining whitebark pine forests

    Science.gov (United States)

    Robert E. Keane; James P. Menakis; Wendel J. Hann

    1996-01-01

    During the last 2 years, many people from numerous government agencies and private institutions compiled a scientific assessment of the natural and human resources of the Interior Columbia River Basin (Jensen and Bourgeron 1993). This assessment is meant to guide the development of a coarse-scale Environmental Impact Statement for all 82 million hectares comprising the...

  11. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    Science.gov (United States)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only

  12. Ecosystem health assessment based on the different characteristics of Ohanba river basin,Xi'an%基于流域不同特征的沪灞河生态系统健康评价

    Institute of Scientific and Technical Information of China (English)

    徐志嫱; 刘维; 张建丰; 李怀恩

    2011-01-01

    【目的】根据流域不同特征,构建浐灞河流域生态系统健康评价指标体系,并对其生态系统健康状况进行评价,为河流综合治理提供科学依据。【方法】基于浐灞河流域的水资源开发利用程度、水功能定位和生态环境保护的不同特点,构建了由生态结构与功能、水文特征、水环境状况、社会经济和生态服务功能5个方面要素,11个单项指标组成的流域生态系统健康评价指标体系,并采用模糊综合评价法与层次分析法相结合的方法对浐灞河流域生态系统健康状况进行评价。【结果】影响浐灞河流域上中游区域生态系统健康的主要问题有水土流失、植被破坏以及人口增加对环%【Objective】 A health assessment index system was established to estimate the ecosystem health of Chanba river basin considering its different characteristics.It can provide scientific basis for river comprehensive management.【Method】 Based on the different characteristics of Chanba river basin,including water resource utilization,aquatic ecological function and eco-environment protection,we established the index system which consisted of 11 individual indices in five categories:configuration and function of ecosystem,hydrology characteristics,water environment,socio-economic and eco-service function.An integrative method of fuzzy hierarchical model and AHP was used to evaluate ecosystem health of Chanba river basin.【Result】 Soil erosion,vegetation destruction and population pressures are the main factors influencing ecosystem health of the upper & middle reaches.Water resources overexploitation and water pollution are the major causes to the lower reaches.The health general evaluating value to the upper & middle and the lower reaches is respectively 0.803 7 and 0.760 9.The results show that the upper & middle reaches ecosystem is in sub-healthy status and the lower reaches is in critical state

  13. Great Apes

    Science.gov (United States)

    Sleeman, Jonathan M.; Cerveny, Shannon

    2014-01-01

    Anesthesia of great apes is often necessary to conduct diagnostic analysis, provide therapeutics, facilitate surgical procedures, and enable transport and translocation for conservation purposes. Due to the stress of remote delivery injection of anesthetic agents, recent studies have focused on oral delivery and/or transmucosal absorption of preanesthetic and anesthetic agents. Maintenance of the airway and provision of oxygen is an important aspect of anesthesia in great ape species. The provision of analgesia is an important aspect of the anesthesia protocol for any procedure involving painful stimuli. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are often administered alone, or in combination to provide multi-modal analgesia. There is increasing conservation management of in situ great ape populations, which has resulted in the development of field anesthesia techniques for free-living great apes for the purposes of translocation, reintroduction into the wild, and clinical interventions.

  14. Evidence of late Quaternary wet/dry climate episodes derived from paleoclimatic proxy data recovered from the paleoenvironmental record of the Great Basin of western North America: Paleobotanical studies

    International Nuclear Information System (INIS)

    1998-01-01

    Through the integration of several avenues of paleoclimatic proxy data, the authors intend to arrive a definite conclusions regarding the frequency of periods of wetter climate, and to drive information regarding the magnitudes of these episodes, rates of their onset and demise, and the climatic conditions under which wetter climate can occur. These will in turn lead to rough estimates of: (1) the amounts of rainfall available for recharge during past periods of effectively wetter climate; and (2) the durations and spacing of such events that provide an indication of the amount of time that the area was subjected to these inputs. To accomplish these goals the paleobotanical record over a broad region is being examined to identify periods of greater effective precipitation. Although the project focus is on a region a of about 200 km around Yucca Mountain, they have collected data in other areas of the Great Basin in order to be able to identify large-scale climatic patterns. Once identified and described these climatic patterns can be separated from purely local climatic phenomena that might hinder the understanding of the Pliestocene climates of southern Nevada and the Yucca Mountain area in particular

  15. Energy development in the Great Basin

    Science.gov (United States)

    Nora Devoe

    2008-01-01

    The United States, with less than 5 percent of the world’s population, consumes 40 percent of the oil and 23 percent of natural gas annual global production. Fluctuating and rising energy prices can be expected to continue with political instability in producing countries and intensifying supply competition from expanding Asian economies. The United States seeks to...

  16. Penstemons are for Great Basin gardens

    Science.gov (United States)

    Heidi Kratsch

    2013-01-01

    Penstemons are flowering perennials much loved by the gardening public. Gardeners appreciate their diversity of flower colors that are at peak bloom in June and July, their many shapes and sizes, and their attractiveness to hummingbirds and other native pollinators. You may even have planted some in your own garden. Most people don't realize there are about 280...

  17. Great Expectations

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    One of Dickens's most renowned and enjoyable novels, Great Expectations tells the story of Pip, an orphan boy who wishes to transcend his humble origins and finds himself unexpectedly given the opportunity to live a life of wealth and respectability. Over the course of the tale, in which Pip

  18. Ecosystem Services

    Science.gov (United States)

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  19. Rating impacts in a multi-stressor world: a quantitative assessment of 50 stressors affecting the Great Lakes.

    Science.gov (United States)

    Smith, Sigrid D P; Mcintyre, Peter B; Halpern, Benjamin S; Cooke, Roger M; Marino, Adrienne L; Boyer, Gregory L; Buchsbaum, Andy; Burton, G A; Campbell, Linda M; Ciborowski, Jan J H; Doran, Patrick J; Infante, Dana M; Johnson, Lucinda B; Read, Jennifer G; Rose, Joan B; Rutherford, Edward S; Steinman, Alan D; Allan, J David

    2015-04-01

    Ecosystems often experience multiple environmental stressors simultaneously that can differ widely in their pathways and strengths of impact. Differences in the relative impact of environmental stressors can guide restoration and management prioritization, but few studies have empirically assessed a comprehensive suite of stressors acting on a given ecosystem. To fill this gap in the Laurentian Great Lakes, where considerable restoration investments are currently underway, we used expert elicitation via a detailed online survey to develop ratings of the relative impacts of 50 potential stressors. Highlighting the multiplicity of stressors in this system, experts assessed all 50 stressors as having some impact on ecosystem condition, but ratings differed greatly among stressors. Individual stressors related to invasive and nuisance species (e.g., dreissenid mussels and ballast invasion risk) and climate change were assessed as having the greatest potential impacts. These results mark a shift away from the longstanding emphasis on nonpoint phosphorus and persistent bioaccumulative toxic substances in the Great Lakes. Differences in impact ratings among lakes and ecosystem zones were weak, and experts exhibited surprisingly high levels of agreement on the relative impacts of most stressors. Our results provide a basin-wide, quantitative summary of expert opinion on the present-day influence of all major Great Lakes stressors. The resulting ratings can facilitate prioritizing stressors to achieve management objectives in a given location, as well as providing a baseline for future stressor impact assessments in the Great Lakes and elsewhere.

  20. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff

    Science.gov (United States)

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.

    2016-01-01

    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after

  1. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff

    Science.gov (United States)

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.

    2016-01-01

    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after

  2. Great Lakes rivermouths: a primer for managers

    Science.gov (United States)

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  3. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Lee, Kathy E.; Banda, Jo A.; Choy, Steven J.; Gefell, Daniel J.; Minarik, Thomas A.; Moore, Jeremy N.; Jorgenson, Zachary G.

    2017-01-01

    Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) μg/L in water and 1.75 (diphenhydramine) to 20,800 μg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin.

  4. Alpine ecosystems

    Science.gov (United States)

    P.W. Rundel; C.I. Millar

    2016-01-01

    Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...

  5. Ecosystem Jenga!

    Science.gov (United States)

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  6. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile

    Science.gov (United States)

    Uribe, Javier; Muñoz, José F.; Gironás, Jorge; Oyarzún, Ricardo; Aguirre, Evelyn; Aravena, Ramón

    2015-11-01

    Closed basins are catchments whose drainage networks converge to lakes, salt flats or alluvial plains. Salt flats in the closed basins in arid northern Chile are extremely important ecological niches. The Salar del Huasco, one of these salt flats located in the high plateau (Altiplano), is a Ramsar site located in a national park and is composed of a wetland ecosystem rich in biodiversity. The proper management of the groundwater, which is essential for the wetland function, requires accurate estimates of recharge in the Salar del Huasco basin. This study quantifies the spatio-temporal distribution of the recharge, through combined use of isotopic characterization of the different components of the water cycle and a rainfall-runoff model. The use of both methodologies aids the understanding of hydrological behavior of the basin and enabled estimation of a long-term average recharge of 22 mm/yr (i.e., 15 % of the annual rainfall). Recharge has a high spatial variability, controlled by the geological and hydrometeorological characteristics of the basin, and a high interannual variability, with values ranging from 18 to 26 mm/yr. The isotopic approach allowed not only the definition of the conceptual model used in the hydrological model, but also eliminated the possibility of a hydrogeological connection between the aquifer of the Salar del Huasco basin and the aquifer that feeds the springs of the nearby town of Pica. This potential connection has been an issue of great interest to agriculture and tourism activities in the region.

  7. Modeling and assessing the function and sustainability of natural patches in salt-affected agro-ecosystems: Application to tamarisk (Tamarix chinensis Lour.) in Hetao, upper Yellow River basin

    Science.gov (United States)

    Ren, Dongyang; Xu, Xu; Ramos, Tiago B.; Huang, Quanzhong; Huo, Zailin; Huang, Guanhua

    2017-09-01

    Relatively low-lying zones of natural vegetation within irrigated areas are not only carriers of biodiversity but also dry drainage areas of excess water and salts applied to nearby croplands. It is thus useful to have a correct understanding of the soil water-salt dynamics and plant water use for keeping the sustainability of those natural areas. The HYDRUS-dualKc model that couples the HYDRUS-1D model with the FAO-56 dualKc approach was extended to simulate the eco-hydrological processes in natural patches of Hetao Irrigation District (Hetao), upper Yellow River basin. Field experiments were conducted in a tamarisk (Tamarix chinensis Lour.) dominated area during the growing seasons of 2012 and 2013. The model was calibrated and validated using the two-year experimental data, and applied to analyze the water and salt dynamics and the tamarisk water consumption for the present situation. Then, various groundwater depth (i.e. the depth from groundwater surface to water table, GWD) scenarios were simulated while considering the fluctuating and constant regimes of GWD changes, as well as variations of the rooting depth. Results indicated that this natural land functioned efficiently as a drainage area for subsurface flow and excess salt from surrounding croplands. However, the present GWDs were too shallow leading to high soil evaporation and severe salt stress. The soil evaporation accounted for 50% of the total evapotranspiration (ETa) while root zone salt storage increased about 50% during growing seasons. On the basis of scenario analysis, an optimum groundwater depth of 140-200 cm with smaller fluctuation was suggested for the growing seasons of natural patches. In addition, tamarisk growth could be largely improved if the roots can grow deeper with water table decline in the future. We demonstrated that monitoring and modeling could be used to support the development of water management strategies in Hetao aimed at conserving water while sustaining local

  8. Ecosystem approach in education

    Science.gov (United States)

    Nabiullin, Iskander

    2017-04-01

    Environmental education is a base for sustainable development. Therefore, in our school we pay great attention to environmental education. Environmental education in our school is based on ecosystem approach. What is an ecosystem approach? Ecosystem is a fundamental concept of ecology. Living organisms and their non-living environments interact with each other as a system, and the biosphere planet functions as a global ecosystem. Therefore, it is necessary for children to understand relationships in ecosystems, and we have to develop systems thinking in our students. Ecosystem approach and systems thinking should help us to solve global environmental problems. How do we implement the ecosystem approach? Students must understand that our biosphere functions as a single ecosystem and even small changes can lead to environmental disasters. Even the disappearance of one plant or animal species can lead to irreversible consequences. So in the classroom we learn the importance of each living organism for the nature. We pay special attention to endangered species, which are listed in the Red Data List. Kids are doing projects about these organisms, make videos, print brochures and newspapers. Fieldwork also plays an important role for ecosystem approach. Every summer, we go out for expeditions to study species of plants and animals listed in the Red Data List of Tatarstan. In class, students often write essays on behalf of any endangered species of plants or animals, this also helps them to understand the importance of each living organism in nature. Each spring we organise a festival of environmental projects among students. Groups of 4-5 students work on a solution of environmental problems, such as water, air or soil pollution, waste recycling, the loss of biodiversity, etc. Participants shoot a clip about their project, print brochures. Furthermore, some of the students participate in national and international scientific Olympiads with their projects. In addition to

  9. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  10. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland.

    Science.gov (United States)

    Flanagan, Lawrence B; Farquhar, Graham D

    2014-02-01

    Measurements of the carbon (δ(13) Cm ) and oxygen (δ(18) Om ) isotope composition of C3 plant tissue provide important insights into controls on water-use efficiency. We investigated the causes of seasonal and inter-annual variability in water-use efficiency in a grassland near Lethbridge, Canada using stable isotope (leaf-scale) and eddy covariance measurements (ecosystem-scale). The positive relationship between δ(13) Cm and δ(18) Om values for samples collected during 1998-2001 indicated that variation in stomatal conductance and water stress-induced changes in the degree of stomatal limitation of net photosynthesis were the major controls on variation in δ(13) Cm and biomass production during this time. By comparison, the lack of a significant relationship between δ(13) Cm and δ(18) Om values during 2002, 2003 and 2006 demonstrated that water stress was not a significant limitation on photosynthesis and biomass production in these years. Water-use efficiency was higher in 2000 than 1999, consistent with expectations because of greater stomatal limitation of photosynthesis and lower leaf ci /ca during the drier conditions of 2000. Calculated values of leaf-scale water-use efficiency were 2-3 times higher than ecosystem-scale water-use efficiency, a difference that was likely due to carbon lost in root respiration and water lost during soil evaporation that was not accounted for by the stable isotope measurements. © 2013 John Wiley & Sons Ltd.

  11. Entrepreneurial Ecosystems

    NARCIS (Netherlands)

    Stam, F.C.; Spigel, Ben

    2016-01-01

    This paper reviews and discusses the emergent entrepreneurial ecosystem approach. Entrepreneurial ecosystems are defined as a set of interdependent actors and factors coordinated in such a way that they enable productive entrepreneurship within a particular territory. The purpose of this paper is to

  12. Wyoming Basin Rapid Ecoregional Assessment

    Science.gov (United States)

    Carr, Natasha B.; Melcher, Cynthia P.

    2015-08-28

    The Wyoming Basin Rapid Ecoregional Assessment was conducted in partnership with the Bureau of Land Management (BLM). The overall goals of the BLM Rapid Ecoregional Assessments (REAs) are to identify important ecosystems and wildlife habitats at broad spatial scales; identify where these resources are at risk from Change Agents, including development, wildfire, invasive species, disease and climate change; quantify cumulative effects of anthropogenic stressors; and assess current levels of risk to ecological resources across a range of spatial scales and jurisdictional boundaries by assessing all lands within an ecoregion. There are several components of the REAs. Management Questions, developed by the BLM and stakeholders for the ecoregion, identify the regionally significant information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant species and ecological communities that are of management concern. Change Agents that currently affect or are likely to affect the condition of species and communities in the future are identified and assessed. REAs also identify areas that have high conservation potential that are referred to as “large intact areas.” At the ecoregion level, the ecological value of large intact areas is based on the assumption that because these areas have not been greatly altered by human activities (such as development), they are more likely to contain a variety of plant and animal communities and to be resilient and resistant to changes resulting from natural disturbances such as fire, insect outbreaks, and disease.

  13. ECO-Report - Great issues, great diversions

    Science.gov (United States)

    Janie Canton-Thompson; Jim Saveland; Sharon Ritter; Yvette K Ortega; Dean F. Pearson; Mick Harrington; Elaine Kennedy Sutherland; Clint Cook; Greg Jones

    2004-01-01

    ECO-Report is an annual Rocky Mountain Research Station (RMRS) publication which contains a set of articles showcasing the Bitterroot Ecosystem Management Research Project (BEMRP) research projects and activities. The articles are concise, user-friendly, and designed to inform a broad range of audiences interested in ecosystem management. Articles featured in...

  14. An Integrated Approach for Identifying Priority Contaminant in the Great Lakes Basin –Investigations in the Lower Green Bay/Fox River and Milwaukee Estuary Areas of Concern

    Data.gov (United States)

    U.S. Environmental Protection Agency — Prioritization of chemicals was performed on two Areas of Concerns in the Great Lakes An integrated risk surveillance and monitoring approach was applied Bio-effect...

  15. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  16. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  17. Urban ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Duvigneaud, P

    1974-01-01

    The author considers the town as an ecosystem. He examines its various subdivisions (climate, soil, structure, human and non-human communities, etc.) for which he chooses examples with particular reference to the city of Brussels.

  18. The Great Recession was not so Great

    NARCIS (Netherlands)

    van Ours, J.C.

    2015-01-01

    The Great Recession is characterized by a GDP-decline that was unprecedented in the past decades. This paper discusses the implications of the Great Recession analyzing labor market data from 20 OECD countries. Comparing the Great Recession with the 1980s recession it is concluded that there is a

  19. Sustainability Of Coastal Fringe Ecosystems Against Anthropogenic Chemical Stressors

    Science.gov (United States)

    Plant-dominated coastal ecosystems provide least 21 ecological services including shoreline protection, contaminant removal and nursery and breeding habitat for biota. The value of these ecological services is as great as $28000/h. These ecosystems which include intertidal wetl...

  20. Strategic ecosystems of Colombia

    International Nuclear Information System (INIS)

    Marquez Calle German

    2002-01-01

    The author relates the ecosystems in Colombia, he makes a relationship between ecosystems and population, utility of the ecosystems, transformation of the ecosystems and poverty and he shows a methodology of identification of strategic ecosystems

  1. West Nile virus ecology in a tropical ecosystem in Guatemala.

    Science.gov (United States)

    Morales-Betoulle, Maria E; Komar, Nicholas; Panella, Nicholas A; Alvarez, Danilo; López, María R; Betoulle, Jean-Luc; Sosa, Silvia M; Müller, María L; Kilpatrick, A Marm; Lanciotti, Robert S; Johnson, Barbara W; Powers, Ann M; Cordón-Rosales, Celia

    2013-01-01

    West Nile virus ecology has yet to be rigorously investigated in the Caribbean Basin. We identified a transmission focus in Puerto Barrios, Guatemala, and established systematic monitoring of avian abundance and infection, seroconversions in domestic poultry, and viral infections in mosquitoes. West Nile virus transmission was detected annually between May and October from 2005 to 2008. High temperature and low rainfall enhanced the probability of chicken seroconversions, which occurred in both urban and rural sites. West Nile virus was isolated from Culex quinquefasciatus and to a lesser extent, from Culex mollis/Culex inflictus, but not from the most abundant Culex mosquito, Culex nigripalpus. A calculation that combined avian abundance, seroprevalence, and vertebrate reservoir competence suggested that great-tailed grackle (Quiscalus mexicanus) is the major amplifying host in this ecosystem. West Nile virus transmission reached moderate levels in sentinel chickens during 2007, but less than that observed during outbreaks of human disease attributed to West Nile virus in the United States.

  2. A new framework for assessing river ecosystem health with consideration of human service demand.

    Science.gov (United States)

    Luo, Zengliang; Zuo, Qiting; Shao, Quanxi

    2018-06-01

    In order to study river health status from harmonic relationship between human and natural environment, a river health evaluation method was proposed from the aspects of ecosystem integrity and human service demand, and the understanding of river health connotation. The proposed method is based on the harmony theory and two types of river health assessment methods (the forecasting model and index evaluation). A new framework for assessing river water health was then formed from the perspective of harmony and dynamic evolution between human service demand and river ecosystem integrity. As a case study, the method and framework were applied to the Shaying River Basin, a tributary of the most polluted Huaihe River Basin in China. The health status of the river's ecosystem and its effect on the mainstream of Huaihe River were evaluated based on water ecological experiment. The results indicated that: (1) the water ecological environment in Shaying River was generally poor and showed a gradual changing pattern along the river. The river health levels were generally "medium" in the upstream but mostly "sub-disease" in the midstream and downstream, indicating that the water pollution in Shaying River were mainly concentrated in the midstream and downstream; (2) the water pollution of Shaying River had great influence on the ecosystem of Huaihe River, and the main influencing factors were TN, followed by TP and COD Mn ; (3) the natural attribute of river was transferring toward to the direction of socialization due to the increasing human activities. The stronger the human activity intervention is, the faster the transfer will be and the more river's attributes will match with human service demand. The proposed framework contributes to the research in water ecology and environment management, and the research results can serve as an important reference for basin management in Shaying River and Huaihe River. Copyright © 2018. Published by Elsevier B.V.

  3. Partitioning ecosystems for sustainability.

    Science.gov (United States)

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems.

  4. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  5. Snapping turtles (Chelydra serpentina) as bioindicators in Canadian Areas of Concern in the Great Lakes Basin. II. Changes in hatching success and hatchling deformities in relation to persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Solla, S.R. de , [Population Assessment Unit, Canadian Wildlife Service, Environment Canada, 867 Lakeshore Road, Box 5050, Burlington, ON, L7R 4A6 (Canada); Fernie, K J; Ashpole, S [Population Assessment Unit, Canadian Wildlife Service, Environment Canada, 867 Lakeshore Road, Box 5050, Burlington, ON, L7R 4A6 (Canada)

    2008-06-15

    Hatching success and deformities in snapping turtle hatchlings (Chelydra serpentina) were evaluated using eggs collected from 14 sites in the Canadian lower Great Lakes, including Areas of Concern (AOC), between 2001 and 2004. Eggs were analyzed for PCBs, PBDEs, and pesticides. Between 2002 and 2004, hatchling deformity rates were highest in two AOCs (18.3-28.3%) compared to the reference sites (5.3-11.3%). Hatching success was poorest in three AOCs (71.3-73.1%) compared to the reference sites (86.0-92.7%). Hatching success and deformity rates were generally poorer in 2001 compared to 2002-2004, irrespective of the study location and could be due to egg handling stress in 2001. Hatching success and deformities were generally worst from the Wheatley Harbour, St. Lawrence River (Cornwall), Detroit River, and Hamilton Harbour AOCs. Associations between contaminant burdens with embryonic development were sufficiently poor that the biological relevance is questionable. Stressors not measured may have contributed to development abnormalities. - Hatching success and deformities of snapping turtle eggs varied among Great Lake Areas of Concern, but were not attributable to specific chemical exposure.

  6. Snapping turtles (Chelydra serpentina) as bioindicators in Canadian Areas of Concern in the Great Lakes Basin. II. Changes in hatching success and hatchling deformities in relation to persistent organic pollutants

    International Nuclear Information System (INIS)

    Solla, S.R. de; Fernie, K.J.; Ashpole, S.

    2008-01-01

    Hatching success and deformities in snapping turtle hatchlings (Chelydra serpentina) were evaluated using eggs collected from 14 sites in the Canadian lower Great Lakes, including Areas of Concern (AOC), between 2001 and 2004. Eggs were analyzed for PCBs, PBDEs, and pesticides. Between 2002 and 2004, hatchling deformity rates were highest in two AOCs (18.3-28.3%) compared to the reference sites (5.3-11.3%). Hatching success was poorest in three AOCs (71.3-73.1%) compared to the reference sites (86.0-92.7%). Hatching success and deformity rates were generally poorer in 2001 compared to 2002-2004, irrespective of the study location and could be due to egg handling stress in 2001. Hatching success and deformities were generally worst from the Wheatley Harbour, St. Lawrence River (Cornwall), Detroit River, and Hamilton Harbour AOCs. Associations between contaminant burdens with embryonic development were sufficiently poor that the biological relevance is questionable. Stressors not measured may have contributed to development abnormalities. - Hatching success and deformities of snapping turtle eggs varied among Great Lake Areas of Concern, but were not attributable to specific chemical exposure

  7. Designer ecosystems

    NARCIS (Netherlands)

    Awasthi, Ashutosh; Singh, Kripal; O'Grady, Audrey; Courtney, Ronan; Kalra, Alok; Singh, Rana Pratap; Cerda Bolinches, Artemio; Steinberger, Yosef; Patra, D.D.

    2016-01-01

    Increase in human population is accelerating the rate of land use change, biodiversity loss and habitat degradation, triggering a serious threat to life supporting ecosystem services. Existing strategies for biological conservation remain insufficient to achieve a sustainable human-nature

  8. Great plains regional climate assessment technical report

    Science.gov (United States)

    The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...

  9. Accumulation of carbon in northern mire ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, K.; Turunen, J.; Alm, J. [Joensuu Univ. (Finland). Dept. of Biology; Korhola, A. [Helsinki Univ. (Finland). Lab. of Physical Geography; Jungner, H. [Helsinki Univ. (Finland). Dating Lab.; Vasander, H. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The basic feature in the functional ecology of any mire ecosystem is retardation of the effective decay of organic material resulting in a conspicuous accumulation of plant debris as peat overtime. The carbon accumulation process is slow, and climatic change may have an impact on the carbon cycle of peatlands, therefore, it has been of interest to study the rate of carbon accumulation by geological methods from dated peat strata. The approach is hampered by several facts. First, the mires vary enormously as to their vegetation and hydrology and hence their production and decay properties. It follows that a great number of study sites are needed. Second, the peat in mires expands both vertically and laterally, and this requires a spatial reconstruction of carbon accumulation within a mire basin. Third, simple geological methods cannot account for the actual rate of carbon accumulation in peat, and finally, an additional carbon sink in the mire ecosystems can be the mineral subsoil beneath peat. The proposed warming will perhaps shift northwards the existing climatic mire regimes and, thus, the northern aapa fens will change to Sphagnum bogs that are more effective in sequestering carbon, but distinctly less effective in their CH{sub 4} and N{sub 2}O emanation. The role of mire fires in more remote northern areas may then become another important factor. The answer to the important question of future total sequestration of carbon to peatlands depends on the precipitation and its seasonal distribution pattern. Most climatic scenarios predict a decrease in the evaporation surplus during the summer at northern regions. Presumably, the consequent lowering of the water table would improve growth of forest on mires and simultaneously decrease the methane fluxes from peat. The combined net effect could be a clear restraining of the radiative forcing

  10. Accumulation of carbon in northern mire ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, K; Turunen, J; Alm, J [Joensuu Univ. (Finland). Dept. of Biology; Korhola, A [Helsinki Univ. (Finland). Lab. of Physical Geography; Jungner, H [Helsinki Univ. (Finland). Dating Lab.; Vasander, H [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1997-12-31

    The basic feature in the functional ecology of any mire ecosystem is retardation of the effective decay of organic material resulting in a conspicuous accumulation of plant debris as peat overtime. The carbon accumulation process is slow, and climatic change may have an impact on the carbon cycle of peatlands, therefore, it has been of interest to study the rate of carbon accumulation by geological methods from dated peat strata. The approach is hampered by several facts. First, the mires vary enormously as to their vegetation and hydrology and hence their production and decay properties. It follows that a great number of study sites are needed. Second, the peat in mires expands both vertically and laterally, and this requires a spatial reconstruction of carbon accumulation within a mire basin. Third, simple geological methods cannot account for the actual rate of carbon accumulation in peat, and finally, an additional carbon sink in the mire ecosystems can be the mineral subsoil beneath peat. The proposed warming will perhaps shift northwards the existing climatic mire regimes and, thus, the northern aapa fens will change to Sphagnum bogs that are more effective in sequestering carbon, but distinctly less effective in their CH{sub 4} and N{sub 2}O emanation. The role of mire fires in more remote northern areas may then become another important factor. The answer to the important question of future total sequestration of carbon to peatlands depends on the precipitation and its seasonal distribution pattern. Most climatic scenarios predict a decrease in the evaporation surplus during the summer at northern regions. Presumably, the consequent lowering of the water table would improve growth of forest on mires and simultaneously decrease the methane fluxes from peat. The combined net effect could be a clear restraining of the radiative forcing

  11. Avian wildlife as sentinels of ecosystem health.

    Science.gov (United States)

    Smits, Judit E G; Fernie, Kimberly J

    2013-05-01

    Birds have been widely used as sentinels of ecosystem health reflecting changes in habitat quality, increased incidence of disease, and exposure to and effects of chemical contaminants. Numerous studies addressing these issues focus on the breeding period, since hormonal, behavioural, reproductive, and developmental aspects of the health can be observed over a relatively short time-span. Many body systems within individuals are tightly integrated and interdependent, and can be affected by contaminant chemicals, disease, and habitat changes in complex ways. Animals higher in the food web will reflect cumulative effects of multiple stressors. Such features make birds ideal indicators for assessing environmental health in areas of environmental concern. Five case studies are presented, highlighting the use of different species which have provided insight into ecosystem sustainability, including (i) the consequences of anthropogenic disturbances of sagebrush habitat on the greater northern sage grouse Centrocercus urophasianus; (ii) the high prevalence of disease in very specific passerine species in the Canary Islands closely paralleling deterioration of formerly productive desert habitat and ensuing interspecific stressors; (iii) fractures, abnormal bone structure, and associated biochemical aberrations in nestling storks exposed to acidic tailings mud from a dyke rupture at an iron pyrite mine near Sevilla, Spain; (iv) newly presented data demonstrating biochemical changes in nestling peregrine falcons Falco peregrinus and associations with exposure to major chemical classes in the Great Lakes Basin of Canada; and (v) the variability in responses of tree swallows Tachycineta bicolor to contaminants, biological and meteorological challenges when breeding in the Athabasca oil sands. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Snapping turtles (Chelydra serpentina) as bioindicators in Canadian areas of concern in the Great Lakes Basin. II. Changes in hatching success and hatchling deformities in relation to persistent organic pollutants.

    Science.gov (United States)

    de Solla, S R; Fernie, K J; Ashpole, S

    2008-06-01

    Hatching success and deformities in snapping turtle hatchlings (Chelydra serpentina) were evaluated using eggs collected from 14 sites in the Canadian lower Great Lakes, including Areas of Concern (AOC), between 2001 and 2004. Eggs were analyzed for PCBs, PBDEs, and pesticides. Between 2002 and 2004, hatchling deformity rates were highest in two AOCs (18.3-28.3%) compared to the reference sites (5.3-11.3%). Hatching success was poorest in three AOCs (71.3-73.1%) compared to the reference sites (86.0-92.7%). Hatching success and deformity rates were generally poorer in 2001 compared to 2002-2004, irrespective of the study location and could be due to egg handling stress in 2001. Hatching success and deformities were generally worst from the Wheatley Harbour, St. Lawrence River (Cornwall), Detroit River, and Hamilton Harbour AOCs. Associations between contaminant burdens with embryonic development were sufficiently poor that the biological relevance is questionable. Stressors not measured may have contributed to development abnormalities.

  13. Upscaling key ecosystem functions across the conterminous United States by a water‐centric ecosystem model

    Science.gov (United States)

    Ge Sun; Peter Caldwell; Asko Noormets; Steven G. McNulty; Erika Cohen; al. et.

    2011-01-01

    We developed a water‐centric monthly scale simulation model (WaSSI‐C) by integrating empirical water and carbon flux measurements from the FLUXNET network and an existing water supply and demand accounting model (WaSSI). The WaSSI‐C model was evaluated with basin‐scale evapotranspiration (ET), gross ecosystem productivity (GEP), and net ecosystem exchange (NEE)...

  14. Earthworms (Annelida: Oligochaeta) of the Columbia River basin assessment area.

    Science.gov (United States)

    Sam. James

    2000-01-01

    Earthworms are key components of many terrestrial ecosystems; however, little is known of their ecology, distribution, and taxonomy in the eastern interior Columbia River basin assessment area (hereafter referred to as the basin assessment area). This report summarizes the main issues about the ecology of earthworms and their impact on the physical and chemical status...

  15. New TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1986-12-01

    The New TNX Seepage Basin has been in operation at the Savannah River Plant (SRP) since 1980 and is located in the southeastern section of the TNX facility. The basin receives waste from pilot scale tests conducted at TNX in support of the Defense Waste Processing Facility (DWPF) and the plant Separations area. The basin is scheduled for closure after the TNX Effluent Treatment Plant (ETP) begins operation. The basin will be closed pursuant to all applicable state and federal regulations. A statistical analysis of monitoring data indicates elevated levels of sodium and zinc in the groundwater at this site. Closure options considered for the New TNX Seepage Basin include waste removal and closure, no waste removal and closure, and no action. The two predominant pathways for human exposure to chemical contaminants are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options for the New TNX Seepage Basin. Cost estimates for each closure option at the basin have also been prepared. An evaluation of the environmental impacts from the New TNX Seepage Basin indicate that the relative risks to human health and ecosystems for the postulated closure options are low. The transport of six chemical and one radionuclide constituents through the environmental pathways from the basin were modeled. The maximum chemical carcinogenic risk and the noncarcinogenic risk for the groundwater pathways were from exposure to trichloromethane and nitrate

  16. Effects of urban development on ant communities: implications for ecosystem services and management

    Science.gov (United States)

    M.P. Sanford; Patricia N. Manley; Dennis D. Murphy

    2009-01-01

    Research that connects the effects of urbanization on biodiversity and ecosystem services is lacking. Ants perform multifarious ecological functions that stabilize ecosystems and contribute to a number of ecosystem services. We studied responses of ant communities to urbanization in the Lake Tahoe basin by sampling sites along a gradient...

  17. Polar marine ecosystems: major threats and future change

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, A. [British Antarctic Survey, Cambridge (United Kingdom); Harris, C.M. [Environmental Research and Assessment, Grantchester (United Kingdom)

    2003-07-01

    This review of polar marine ecosystems covers both the Arctic and Antarctic, identifying the major threats and, where possible, predicting their possible state(s) in 2025. Although the two polar regions are similar in their extreme photoperiod, low temperatures, and in being heavily influenced by snow and ice, in almost all other respects they are very different. The Arctic Ocean is a basin surrounded by continental landmasses close to, and influenced by, large populations and industrial activities. In contrast, the Southern Ocean is contiguous with all the other great oceans and surrounds a single land mass; Antarctica is remote from major centres of population and sources of pollution. Marine environments in both Polar Regions have been highly disturbed by fishing activity, but, in terms of pollution, some areas remain among the most pristine in the world. There are, however, both local and global pressures. Over the 2025 time horizon, the greatest concern for the Arctic is probably the ecological implications of climate change, particularly insofar as sea ice extent and duration are likely to be affected. Such changes are not expected to be as pronounced in the Southern Ocean over this time period, and concerns are related more to direct threats from harvesting of marine living resources, and the ability to manage these fisheries sustainably. In both Polar Regions, the capacity of marine ecosystems to withstand the cumulative impact of a number of pressures, including climate change, pollution and overexploitation, acting synergistically is of greatest concern. (author)

  18. Stormwater management and ecosystem services: a review

    Science.gov (United States)

    Prudencio, Liana; Null, Sarah E.

    2018-03-01

    Researchers and water managers have turned to green stormwater infrastructure, such as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to reduce flooding, augment surface water supplies, recharge groundwater, and improve water quality. It is increasingly clear that green stormwater infrastructure not only controls stormwater volume and timing, but also promotes ecosystem services, which are the benefits that ecosystems provide to humans. Yet there has been little synthesis focused on understanding how green stormwater management affects ecosystem services. The objectives of this paper are to review and synthesize published literature on ecosystem services and green stormwater infrastructure and identify gaps in research and understanding, establishing a foundation for research at the intersection of ecosystems services and green stormwater management. We reviewed 170 publications on stormwater management and ecosystem services, and summarized the state-of-the-science categorized by the four types of ecosystem services. Major findings show that: (1) most research was conducted at the parcel-scale and should expand to larger scales to more closely understand green stormwater infrastructure impacts, (2) nearly a third of papers developed frameworks for implementing green stormwater infrastructure and highlighted barriers, (3) papers discussed ecosystem services, but less than 40% quantified ecosystem services, (4) no geographic trends emerged, indicating interest in applying green stormwater infrastructure across different contexts, (5) studies increasingly integrate engineering, physical science, and social science approaches for holistic understanding, and (6) standardizing green stormwater infrastructure terminology would provide a more cohesive field of study than the diverse and often redundant terminology currently in use. We recommend that future research provide metrics and quantify ecosystem services, integrate disciplines to

  19. Fish tissue contamination in the mid-continental great rivers of the United States

    Science.gov (United States)

    The great rivers of the central United States (Upper Mississippi, Missouri and Ohio rivers) are significant economic and cultural resources, but their ecological condition is not well quantified. The Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP...

  20. Development of a Bi-National Great Lakes Coastal Wetland and Land Use Map Using Three-Season PALSAR and Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Laura Bourgeau-Chavez

    2015-07-01

    Full Text Available Methods using extensive field data and three-season Landsat TM and PALSAR imagery were developed to map wetland type and identify potential wetland stressors (i.e., adjacent land use for the United States and Canadian Laurentian coastal Great Lakes. The mapped area included the coastline to 10 km inland to capture the region hydrologically connected to the Great Lakes. Maps were developed in cooperation with the overarching Great Lakes Consortium plan to provide a comprehensive regional baseline map suitable for coastal wetland assessment and management by agencies at the local, tribal, state, and federal levels. The goal was to provide not only land use and land cover (LULC baseline data at moderate spatial resolution (20–30 m, but a repeatable methodology to monitor change into the future. The prime focus was on mapping wetland ecosystem types, such as emergent wetland and forested wetland, as well as to delineate wetland monocultures (Typha, Phragmites, Schoenoplectus and differentiate peatlands (fens and bogs from other wetland types. The overall accuracy for the coastal Great Lakes map of all five lake basins was 94%, with a range of 86% to 96% by individual lake basin (Huron, Ontario, Michigan, Erie and Superior.

  1. [Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: a review].

    Science.gov (United States)

    Yang, Kun; Deng, Xi; Li, Xue-Ling; Wen, Ping

    2011-05-01

    Hydroelectric cascade exploitation, one of the major ways for exploiting water resources and developing hydropower, not only satisfies the needs of various national economic sectors, but also promotes the socio-economic sustainable development of river basin. unavoidable anthropogenic impacts on the entire basin ecosystem. Based on the process of hydroelectric cascade exploitation and the ecological characteristics of river basins, this paper reviewed the major impacts of hydroelectric cascade exploitation on dam-area ecosystems, river reservoirs micro-climate, riparian ecosystems, river aquatic ecosystems, wetlands, and river landscapes. Some prospects for future research were offered, e.g., strengthening the research of chain reactions and cumulative effects of ecological factors affected by hydroelectric cascade exploitation, intensifying the study of positive and negative ecological effects under the dam networks and their joint operations, and improving the research of successional development and stability of basin ecosystems at different temporal and spatial scales.

  2. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    Science.gov (United States)

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  3. Marine Ecosystem Modeling Beyond the Box: Using GIS to Study Carbon Fluxes in a Coastal Ecosystem

    International Nuclear Information System (INIS)

    Wijnbladh, Erik; Joensson, Bror Fredrik; Kumblad, Linda

    2006-01-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phyto benthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem

  4. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  5. Upper Illinois River basin

    Science.gov (United States)

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  6. Hydrological characterization of the Usumacinta River Basin towards the preservation of environmental services

    Science.gov (United States)

    Tapia-Silva, F.-O.; Contreras-Silva, A.-I.; Rosales-Arriaga, E.-R.

    2015-04-01

    The Usumacinta basin is characterized by aboundance of natural and scenic resources. It also houses a vast biodiversity (wich also means invaluable genetic resources). Its river is the longest in Mexico (main channel length of 927 km). Therefore it is one of the most productive regions of the country in terms of ecosystem services (such as habitat for biodiversity, maintenance of wetlands, water flows generation, carbon sequestration, soil retention, etc.) that are directly related to the hydrological functioning. During the last centuries, human activities on the Usumacinta basin have drastically changed its geomorphology and vegetation cover. As a result the hydrological cycle has been greatly modified. Therefore, it is necessary to conduct studies in order to support planning activities and implementation of public policies, as well as, to generate a permanent scientific ecosystem monitoring system. This paper presents the results of a study focused on estimating the water balance of this frontier basin. Satellite and field data is used. Variables as vegetation cover (generated by classification of Landsat and MODIS), digital terrain model (SRTM), surface temperature (MODIS), potential evaporation, precipitation and runoff measurements were processed. Various techniques of Remote Sensing, geospatial models (as SSEB and the model for definition of surface hydrological connectivity) and spatial analysis (geostatistics and map algebra) were implemented. The results were integrated into the environment of a Geographic Information System. These are estimates of actual evapotranspiration, soil moisture and runoff, among other biophysical parameters. For the lower part of the basin a balance was performed to estimate inputs of water from runoff and precipitation to the large amount of wetlands in the area. Additionally, areas generating runoff and areas in which most of the precipitaion infiltrates were also mapped. The geo-information obtained is requiered for

  7. Bringing the "social" into sociohydrology: Conservation policy support in the Central Great Plains of Kansas, USA

    Science.gov (United States)

    Sanderson, Matthew R.; Bergtold, Jason S.; Heier Stamm, Jessica L.; Caldas, Marcellus M.; Ramsey, Steven M.

    2017-08-01

    Identifying means of empirically modeling the human component of a coupled, human-water system becomes critically important to further advances in sociohydrology. We develop a social-psychological model of environmental decision making that addresses four key challenges of incorporating social science into integrated models. We use the model to explain preferences for three conservation policies designed to conserve and protect water resources and aquatic ecosystems in the Smoky Hill River Basin, a semiarid agricultural region in the Central U.S. Great Plains. Further, we compare the model's capacity to explain policy preferences among members of two groups in the River Basin: agricultural producers and members of nonfarming communities. We find that financial obligation is the strongest and most consistent explanation of support for conservation policies among members of both groups. We also find that policy support is grounded in cultural values—deeply held ideas about right and wrong. Environmental values are particularly important explanations of policy support. The constellations of values invoked to make decisions about policies, and the social-psychological pathways linking values to policy support, can vary across policies and types of agents (farmers and nonfarmers). We discuss the implications of the results for future research in sociohydrology.

  8. Great Lakes Literacy Principles

    Science.gov (United States)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  9. The Next Great Generation?

    Science.gov (United States)

    Brownstein, Andrew

    2000-01-01

    Discusses ideas from a new book, "Millennials Rising: The Next Great Generation," (by Neil Howe and William Strauss) suggesting that youth culture is on the cusp of a radical shift with the generation beginning with this year's college freshmen who are typically team oriented, optimistic, and poised for greatness on a global scale. Includes a…

  10. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  11. Astronomical Ecosystems

    Science.gov (United States)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  12. Defining decision making strategies in software ecosystem governance

    DEFF Research Database (Denmark)

    Manikas, Konstantinos; Wnuk, Krzysztof; Shollo, Arisa

    Making the right decisions is an essential part of software ecosystem governance. Decisions related to the governance of a software ecosystem can influence the health of the ecosystem and can result in fostering the success or greatly contributing to the failure of the ecosystem. However, very few...... studies touch upon the decision making of software ecosystem governance. In this paper, we propose decomposing software ecosystem governance into three activities: input or data collection, decision making, and applying actions. We focus on the decision making activity of software ecosystem governance...... and review related literature consisted of software ecosystem governance, organizational decision making, and IT governance. Based on the identified studies, we propose a framework for defining the decision making strategies in the governance of software ecosystems. We identify five decision areas...

  13. Quantifying social norms: by coupling the ecosystem management concept and semi-quantitative sociological methods

    Science.gov (United States)

    Zhang, D.; Xu, H.

    2012-12-01

    Over recent decades, human-induced environmental changes have steadily and rapidly grown in intensity and impact to where they now often exceed natural impacts. As one of important components of human activities, social norms play key roles in environmental and natural resources management. But the lack of relevant quantitative data about social norms greatly limits our scientific understanding of the complex linkages between humans and nature, and hampers our solving of pressing environmental and social problems. In this study, we built a quantified method by coupling the ecosystem management concept, semi-quantitative sociological methods and mathematical statistics. We got the quantified value of social norms from two parts, whether the content of social norms coincide with the concept of ecosystem management (content value) and how about the performance after social norms were put into implementation (implementation value) . First, we separately identified 12 core elements of ecosystem management and 16 indexes of social norms, and then matched them one by one. According to their matched degree, we got the content value of social norms. Second, we selected 8 key factors that can represent the performance of social norms after they were put into implementation, and then we got the implementation value by Delph method. Adding these two parts values, we got the final value of each social norms. Third, we conducted a case study in Heihe river basin, the second largest inland river in China, by selecting 12 official edicts related to the river basin ecosystem management of Heihe River Basin. By doing so, we first got the qualified data of social norms which can be directly applied to the research that involved observational or experimental data collection of natural processes. Second, each value was supported by specific contents, so it can assist creating a clear road map for building or revising management and policy guidelines. For example, in this case study

  14. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

    Science.gov (United States)

    Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin

    2013-01-01

    The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.

  15. Simulations of forest mortality in Colorado River basin

    Science.gov (United States)

    Wei, L.; Xu, C.; Johnson, D. J.; Zhou, H.; McDowell, N.

    2017-12-01

    The Colorado River Basin (CRB) had experienced multiple severe forest mortality events under the recent changing climate. Such forest mortality events may have great impacts on ecosystem services and water budget of the watershed. It is hence important to estimate and predict the forest mortality in the CRB with climate change. We simulated forest mortality in the CRB with a model of plant hydraulics within the FATES (the Functionally Assembled Terrestrial Ecosystem Simulator) coupled to the DOE Earth System model (ACME: Accelerated Climate Model of Energy) at a 0.5 x 0.5 degree resolution. Moreover, we incorporated a stable carbon isotope (δ13C) module to ACME(FATE) and used it as a new predictor of forest mortality. The δ13C values of plants with C3 photosynthetic pathway (almost all trees are C3 plants) can indicate the water stress plants experiencing (the more intensive stress, the less negative δ13C value). We set a δ13C threshold in model simulation, above which forest mortality initiates. We validate the mortality simulations with field data based on Forest Inventory and Analysis (FIA) data, which were aggregated into the same spatial resolution as the model simulations. Different mortality schemes in the model (carbon starvation, hydraulic failure, and δ13C) were tested and compared. Each scheme demonstrated its strength and the plant hydraulics module provided more reliable simulations of forest mortality than the earlier ACME(FATE) version. Further testing is required for better forest mortality modelling.

  16. Sense of place: An elusive concept that is finding a home in ecosystem management

    Science.gov (United States)

    Daniel R. Williams; Susan I. Stewart

    1998-01-01

    One of the great and largely unmet challenges associated with ecosystem management is treating people as a rightful part of ecosystems. In many ecosystem models, despite occasional rhetoric to the contrary, there is still a tendency to treat people as autonomous individual agents outside the ecosystem, at best a source of values to be incorporated into decisions, at...

  17. Great Indoors Awards 2007

    Index Scriptorium Estoniae

    2007-01-01

    Hollandis Maastrichtis jagati 17. XI esimest korda rahvusvahelist auhinda The Great Indoors Award. Aasta sisekujundusfirmaks valiti Masamichi Katayama asutatud Wonderwall. Auhinna said veel Zaha Hadid, Heatherwick Studio, Ryui Nakamura Architects ja Item Idem

  18. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  19. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA

    Science.gov (United States)

    Hladik, Michelle; Corsi, Steven; Kolpin, Dana W.; Baldwin, Austin K.; Blackwell, Brett R.; Cavallin, Jenna E.

    2018-01-01

    To better characterize the transport of neonicotinoid insecticides to the world's largest freshwater ecosystem, monthly samples (October 2015–September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in every month sampled and five of the six target neonicotinoids were detected. At least one neonicotinoid was detected in 74% of the monthly samples with up to three neonicotinoids detected in an individual sample (10% of all samples). The most frequently detected neonicotinoid was imidacloprid (53%), followed by clothianidin (44%), thiamethoxam (22%), acetamiprid (2%), and dinotefuran (1%). Thiacloprid was not detected in any samples. The maximum concentration for an individual neonicotinoid was 230 ng L−1 and the maximum total neonicotinoids in an individual sample was 400 ng L−1. The median detected individual neonicotinoid concentrations ranged from non-detect to 10 ng L−1. The detections of clothianidin and thiamethoxam significantly increased as the percent of cultivated crops in the basins increased (ρ = 0.73, P = .01; ρ = 0.66, P = .04, respectively). In contrast, imidacloprid detections significantly increased as the percent of the urbanization in the basins increased (ρ = 0.66, P = .03). Neonicotinoid concentrations generally increased in spring through summer coinciding with the planting of neonicotinoid-treated seeds and broadcast applications of neonicotinoids. More spatially intensive samples were collected in an agriculturally dominated basin (8 sites along the Maumee River, Ohio) twice during the spring, 2016 planting season to provide further information on neonicotinoid inputs to the Great Lakes. Three neonicotinoids were ubiquitously detected (clothianidin, imidacloprid, thiamethoxam) in all water samples collected within this basin. Maximum individual neonicotinoid concentrations was 330 ng L−1

  20. Impacts of aquatic nonindigenous invasive species on the Lake Erie ecosystem

    Science.gov (United States)

    Austen, Madeline J.W.; Ciborowski, Jan J.H.; Corkum, Lynda D.; Johnson, Tim B.; MacIsaac, Hugh J.; Metcalfe-Smith, Janice L.; Schloesser, Donald W.; George, Sandra E.

    2002-01-01

    Lake Erie is particularly vulnerable to the introduction and establishment of aquatic nonindigenous invasive species (NIS) populations. A minimum of 144 aquatic NIS have been recorded in the Lake Erie basin including several species [e.g., Eurasian watermilfoil (Myriophyllum spicatum); zebra mussel (Dreissena polymorpha); quagga mussel (Dreissena bugensis); an amphipod (Echinogammarus ischnus); round goby (Neogobius melanostomus); and sea lamprey (Petromyzon marinus)] that have had discernible impacts on the lake's ecology. NIS pose threats to the Lake Erie ecosystem for a variety of reasons including their ability to proliferate quickly, compete with native species, and transfer contaminants (e.g., PCBs) and disease through the food web. Six of the 14 beneficial use impairments listed in Annex 2 of the Great Lakes Water Quality Agreement are impaired in Lake Erie, in part as a result of the introduction of NIS. The Lake Erie Lakewide Management Plan (LaMP) has adopted an ecosystem approach to restore beneficial use impairments in the lake. Furthermore, a research consortium, known as the Lake Erie Millennium Network, is working alongside the LaMP, to address research problems regarding NIS, the loss of habitat, and the role of contaminants in the Lake Erie ecosystem.

  1. Evaluation of Environmental Quality Productive Ecosystem Guayas (Ecuador).

    Science.gov (United States)

    Pozo, Wilson; Pardo, Francisco; Sanfeliu, Teófilo; Carrera, Gloria; Jordan, Manuel; Bech, Jaume; Roca, Núria

    2015-04-01

    Natural resources are deteriorating very rapidly in the Gulf of Guayaquil and the area of influence in the Guayas Basin due to human activity. Specific problems are generated by the mismanagement of the aquaculture industry affecting the traditional agricultural sectors: rice, banana, sugarcane, cocoa, coffee, and soya also studied, and by human and industrial settlements. The development of industrial activities such as aquaculture (shrimp building for shrimp farming in ponds) and agriculture, have increasingly contributed to the generation of waste, degrading and potentially toxic elements in high concentrations, which can have adverse effects on organisms in the ecosystems, in the health of the population and damage the ecological and environmental balance. The productive Guayas ecosystem, consists of three interrelated ecosystems, the Gulf of Guayaquil, the Guayas River estuary and the Guayas Basin buffer. The objective of this study was to evaluate the environmental quality of the productive Guayas ecosystem (Ecuador), through operational and specific objectives: 1) Draw up the transition coastal zone in the Gulf of Guayaquil, 2) Set temporal spatial variability of soil salinity in wetlands rice, Lower Guayas Basin, 3) evaluate the heavy metals in wetland rice in the Lower Basin of Guayas. The physical and chemical parameters of the soils have been studied. These are indicators of environmental quality. The multivariate statistical method showed the relations of similarities and dissimilarities between variables and parameter studies as stable. Moreover, the boundaries of coastal transition areas, temporal spatial variability of soil salinity and heavy metals in rice cultivation in the Lower Basin of Guayas were researched. The sequential studies included and discussed represent a broad framework of fundamental issues that has been valued as a basic component of the productive Guayas ecosystem. They are determinants of the environmental quality of the Guayas

  2. Climate change and the Great Barrier Reef

    International Nuclear Information System (INIS)

    Johnson, Johanna; Marshall, Paul

    2007-01-01

    Full text: Full text: Climate change is now recognised as the greatest long-term threat to the Great Barrier Reef (GBR). Managers face a future in which the impacts of climate change on tropical marine ecosystems are becoming increasingly frequent and severe. Further degradation is inevitable as the climate continues to change but the extent of the decline will depend on the rate and magnitude of climate change and the resilience of the ecosystem. Changes to the ecosystem have implications for the industries and regional communities that depend on the GBR. Climate projections for the GBR region include increasing air and sea temperatures, ocean acidification, nutrient enrichment (via changes in rainfall), altered light levels, more extreme weather events, changes to ocean circulation and sea level rise. Impacts have already been observed, with severe coral bleaching events in 1998 and 2002, and mass mortalities of seabirds linked to anomalously warm summer conditions. Climate change also poses significant threats to the industries and communities that depend on the GBR ecosystem, both directly and indirectly through loss of natural resources; industries such as recreational and commercial fishing, and tourism, which contributes to a regional tourism industry worth $6.1 billion (Access Economics 2005). A vulnerability assessment undertaken by leading experts in climate and marine science identified climate sensitivities for GBR species, habitats, key processes, GBR industries and communities (Johnson and Marshall 2007). This information has been used to develop a Climate Change Action Plan for the GBR. The Action Plan is a five-year program aimed at facilitating targeted science, building a resilient ecosystem, assisting adaptation of industries and communities, and reducing climate footprints. The Action Plan identifies strategies to review current management arrangements and raise awareness of the issue in order to work towards a resilient ecosystem. Integral to

  3. Quaternary ostracodes and molluscs from the Rukwa Basin (Tanzania) and their evolutionary and paleobiogeographic implications

    Science.gov (United States)

    Cohen, Andrew S.; Van Bocxlaer, Bert; Todd, Jonathan A.; McGlue, Michael; Michel, Ellinor; Nkotagu, Hudson H.; Grove, A.T.; Delvaux, Damien

    2013-01-01

    Much of the spectacular biodiversity of the African Great Lakes is endemic to single lake basins so that the margins of these basins or their lakes coincide with biogeographic boundaries. Longstanding debate surrounds the evolution of these endemic species, the stability of bioprovinces, and the exchange of faunas between them over geologic time as the rift developed. Because these debates are currently unsettled, we are uncertain of how much existing distribution patterns are determined by modern hydrological barriers versus reflecting past history. This study reports on late Quaternary fossils from the Rukwa Basin and integrates geological and paleoecological data to explore faunal exchange between freshwater bioprovinces, in particular with Lake Tanganyika. Lake Rukwa's water level showed large fluctuations over the last 25 ky, and for most of this period the lake contained large habitat diversity, with different species assemblages and taphonomic controls along its northern and southern shores. Comparison of fossil and modern invertebrate assemblages suggests faunal persistence through the Last Glacial Maximum, but with an extirpation event that occurred in the last 5 ky. Some of the molluscs and ostracodes studied here are closely related to taxa (or part of clades) that are currently endemic to Lake Tanganyika, but others testify to wider and perhaps older faunal exchanges between the Rukwa bioprovince and those of Lake Malawi and the Upper Congo (in particular Lake Mweru). The Rukwa Basin has a long history of rifting and lacustrine conditions and, at least temporarily, its ecosystems appear to have functioned as satellites to Lake Tanganyika in which intralacustrine speciation occurred. Paleontological studies of the Rukwa faunas are particularly relevant because of the basin's important role in the late Cenozoic biogeography of tropical Africa, and because many of the molecular traces potentially revealing this history would have been erased in the late

  4. Nitrogen dynamics in northern peatland ecosystems

    Science.gov (United States)

    Nitrogen pollution has become a global issue over the last century due to increased fertilizer use and burning of fossil fuels. Excess N has been responsible for algal blooms, hypoxic zones, climate change, and human health issues. Extent of peatlands in the Great Lakes basin is ...

  5. Measuring Entrepreneurial Ecosystems

    OpenAIRE

    Stam, F.C.

    2017-01-01

    How can entrepreneurial ecosystems and productive entrepreneurship can be traced empirically and how is entrepreneurship related to entrepreneurial ecosystems. The analyses in this chapter show the value of taking a systems view on the context of entrepreneurship. We measure entrepreneurial ecosystem elements and use these to compose an entrepreneurial ecosystem index. Next, we measure the output of entrepreneurial ecosystems with different indicators of high-growth firms. We use the 12 provi...

  6. Mapping Ecosystem Services

    OpenAIRE

    Georgiev,Teodor; Burkhard,Benjamin; Maes,Joachim

    2017-01-01

    Ecosystem services are the contributions of ecosystem structure and function (in combination with other inputs) to human well-being. That means, humankind is strongly dependent on well-functioning ecosystems and natural capital that are the base for a constant flow of ecosystem services from nature to society. Therefore ecosystem services have the potential to become a major tool for policy and decision making on global, national, regional and local scales. Possible applications are manifold:...

  7. The GREAT3 challenge

    International Nuclear Information System (INIS)

    Miyatake, H; Mandelbaum, R; Rowe, B

    2014-01-01

    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is an image analysis competition that aims to test algorithms to measure weak gravitational lensing from astronomical images. The challenge started in October 2013 and ends 30 April 2014. The challenge focuses on testing the impact on weak lensing measurements of realistically complex galaxy morphologies, realistic point spread function, and combination of multiple different exposures. It includes simulated ground- and space-based data. The details of the challenge are described in [1], and the challenge website and its leader board can be found at http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/, respectively

  8. Nothing Great Is Easy

    OpenAIRE

    Stansbie, Lisa

    2014-01-01

    A solo exhibition of 13 pieces of art work.\\ud \\ud Nothing Great is Easy is an exhibition of sculpture, film, drawing and photography that proposes reconstructed narratives using the sport of swimming and in particular the collective interaction and identity of the channel swimmer. The work utilises the processes, rituals/rules, language and the apparatus of sport.\\ud \\ud “Nothing great is easy” are the words on the memorial to Captain Matthew Webb who was the first man to swim the English ch...

  9. Distribution and Modeled Transport of Plastic Pollution in the Great Lakes, the World's Largest Freshwater Resource

    Directory of Open Access Journals (Sweden)

    Rachel N. Cable

    2017-07-01

    Full Text Available Most plastic pollution originates on land. As such, freshwater bodies serve as conduits for the transport of plastic litter to the ocean. Understanding the concentrations and fluxes of plastic litter in freshwater ecosystems is critical to our understanding of the global plastic litter budget and underpins the success of future management strategies. We conducted a replicated field survey of surface plastic concentrations in four lakes in the North American Great Lakes system, the largest contiguous freshwater system on the planet. We then modeled plastic transport to resolve spatial and temporal variability of plastic distribution in one of the Great Lakes, Lake Erie. Triplicate surface samples were collected at 38 stations in mid-summer of 2014. Plastic particles >106 μm in size were quantified. Concentrations were highest near populated urban areas and their water infrastructure. In the highest concentration trawl, nearly 2 million fragments km−2 were found in the Detroit River—dwarfing previous reports of Great Lakes plastic abundances by over 4-fold. Yet, the accuracy of single trawl counts was challenged: within-station plastic abundances varied 0- to 3-fold between replicate trawls. In the smallest size class (106–1,000 μm, false positive rates of 12–24% were determined analytically for plastic vs. non-plastic, while false negative rates averaged ~18%. Though predicted to form in summer by the existing Lake Erie circulation model, our transport model did not predict a permanent surface “Lake Erie Garbage Patch” in its central basin—a trend supported by field survey data. Rather, general eastward transport with recirculation in the major basins was predicted. Further, modeled plastic residence times were drastically influenced by plastic buoyancy. Neutrally buoyant plastics—those with the same density as the ambient water—were flushed several times slower than plastics floating at the water's surface and exceeded the

  10. The Great Mathematician Project

    Science.gov (United States)

    Goldberg, Sabrina R.

    2013-01-01

    The Great Mathematician Project (GMP) introduces both mathematically sophisticated and struggling students to the history of mathematics. The rationale for the GMP is twofold: first, mathematics is a uniquely people-centered discipline that is used to make sense of the world; and second, students often express curiosity about the history of…

  11. Transformation of Digital Ecosystems

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Hedman, Jonas

    2014-01-01

    the Digital Ecosystem Technology Transformation (DETT) framework for explaining technology-based transformation of digital ecosystems by integrating theories of business and technology ecosystems. The framework depicts ecosystem transformation as distributed and emergent from micro-, meso-, and macro- level......In digital ecosystems, the fusion relation between business and technology means that the decision of technical compatibility of the offering is also the decision of how to position the firm relative to the coopetive relations that characterize business ecosystems. In this article we develop...... coopetition. The DETT framework consists an alternative to the existing explanations of digital ecosystem transformation as the rational management of one central actor balancing ecosystem tensions. We illustrate the use of the framework by a case study of transformation in the digital payment ecosystem...

  12. Coupling habitat suitability and ecosystem health with AEHRA to estimate E-flows under intensive human activities

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.

    2017-08-01

    Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.

  13. What great managers do.

    Science.gov (United States)

    Buckingham, Marcus

    2005-03-01

    Much has been written about the qualities that make a great manager, but most of the literature overlooks a fundamental question: What does a great manager actually do? While there are countless management styles, one thing underpins the behavior of all great managers. Above all, an exceptional manager comes to know and value the particular quirks and abilities of her employees. She figures out how to capitalize on her staffers' strengths and tweaks her environment to meet her larger goals. Such a specialized approach may seem like a lot of work. But in fact, capitalizing on each person's uniqueness can save time. Rather than encourage employees to conform to strict job descriptions that may include tasks they don't enjoy and aren't good at, a manager who develops positions for his staff members based on their unique abilities will be rewarded with behaviors that are far more efficient and effective than they would be otherwise. This focus on individuals also makes employees more accountable. Because staffers are evaluated on their particular strengths and weaknesses, they are challenged to take responsibility for their abilities and to hone them. Capitalizing on a person's uniqueness also builds a stronger sense of team. By taking the time to understand what makes each employee tick, a great manager shows that he sees his people for who they are. This personal investment not only motivates individuals but also galvanizes the entire team. Finally, this approach shakes up existing hierarchies, which leads to more creative thinking. To take great managing from theory to practice, the author says, you must know three things about a person: her strengths, the triggers that activate those strengths, and how she learns. By asking the right questions, squeezing the right triggers, and becoming aware of your employees' learning styles, you will discover what motivates each person to excel.

  14. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  15. Charcterization of meadow ecosystems based on watershed and valley segment/reach scale characteristics [chapter 7

    Science.gov (United States)

    Wendy Trowbridge; Jeanne C. Chambers; Dru Germanoski; Mark L. Lord; Jerry R. Miller; David G. Jewett

    2011-01-01

    Great Basin riparian meadows are highly sensitive to both natural and anthropogenic disturbance. As detailed in earlier chapters, streams in the central Great Basin have a natural tendency to incise due to their geomorphic history (Miller and others 2001, 2004). Anthropogenic disturbances, including overgrazing by livestock, mining activities, and roads in the valley...

  16. Great magnetic storms

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Yen Te Lee; Tang, F.; Gonzalez, W.D.

    1992-01-01

    The five largest magnetic storms that occurred between 1971 and 1986 are studied to determine their solar and interplanetary causes. All of the events are found to be associated with high speed solar wind streams led by collisionless shocks. The high speed streams are clearly related to identifiable solar flares. It is found that (1) it is the extreme values of the southward interplanetary magnetic fields rather than solar wind speeds that are the primary causes of great magnetic storms, (2) shocked and draped sheath fields preceding the driver gas (magnetic cloud) are at least as effective in causing the onset of great magnetic storms (3 of 5 events ) as the strong fields within the driver gas itself, and (3) precursor southward fields ahead of the high speed streams allow the shock compression mechanism (item 2) to be particularly geoeffective

  17. The great intimidators.

    Science.gov (United States)

    Kramer, Roderick M

    2006-02-01

    After Disney's Michael Eisner, Miramax's Harvey Weinstein, and Hewlett-Packard's Carly Fiorina fell from their heights of power, the business media quickly proclaimed thatthe reign of abrasive, intimidating leaders was over. However, it's premature to proclaim their extinction. Many great intimidators have done fine for a long time and continue to thrive. Their modus operandi runs counter to a lot of preconceptions about what it takes to be a good leader. They're rough, loud, and in your face. Their tactics include invading others' personal space, staging tantrums, keeping people guessing, and possessing an indisputable command of facts. But make no mistake--great intimidators are not your typical bullies. They're driven by vision, not by sheer ego or malice. Beneath their tough exteriors and sharp edges are some genuine, deep insights into human motivation and organizational behavior. Indeed, these leaders possess political intelligence, which can make the difference between paralysis and successful--if sometimes wrenching--organizational change. Like socially intelligent leaders, politically intelligent leaders are adept at sizing up others, but they notice different things. Those with social intelligence assess people's strengths and figure out how to leverage them; those with political intelligence exploit people's weaknesses and insecurities. Despite all the obvious drawbacks of working under them, great intimidators often attract the best and brightest. And their appeal goes beyond their ability to inspire high performance. Many accomplished professionals who gravitate toward these leaders want to cultivate a little "inner intimidator" of their own. In the author's research, quite a few individuals reported having positive relationships with intimidating leaders. In fact, some described these relationships as profoundly educational and even transformational. So before we throw out all the great intimidators, the author argues, we should stop to consider what

  18. Great Lakes Energy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J. Iwan [Case Western Reserve Univ., Cleveland, OH (United States)

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  19. Integrated Assessment of Ecosystem Effects of Atmospheric Deposition

    Science.gov (United States)

    Ecosystems obtain a portion of their nutrients from the atmosphere. Following the Industrial Revolution, however, human activities have accelerated biogeochemical cycles, greatly enhancing the transport of substances among the atmosphere, water, soil, and living things. The atmos...

  20. Measuring Entrepreneurial Ecosystems

    NARCIS (Netherlands)

    Stam, F.C.

    How can entrepreneurial ecosystems and productive entrepreneurship can be traced empirically and how is entrepreneurship related to entrepreneurial ecosystems. The analyses in this chapter show the value of taking a systems view on the context of entrepreneurship. We measure entrepreneurial

  1. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  2. Agencies within communities, communities within ecosystems

    Science.gov (United States)

    Jane Kapler Smith; Kerry McMenus

    2000-01-01

    Can scientific information and intensive, extensive public involvement through facilitated meetings be expected to lead to agreement on natural resource issues? Communications and research in the Bitterroot Ecosystem Management Research Project indicate that, where people’s values differ greatly, consensus is not a realistic goal for short term planning processes....

  3. Ecosystem classification, Chapter 2

    Science.gov (United States)

    M.J. Robin-Abbott; L.H. Pardo

    2011-01-01

    The ecosystem classification in this report is based on the ecoregions developed through the Commission for Environmental Cooperation (CEC) for North America (CEC 1997). Only ecosystems that occur in the United States are included. CEC ecoregions are described, with slight modifications, below (CEC 1997) and shown in Figures 2.1 and 2.2. We chose this ecosystem...

  4. On Man and Ecosystems.

    Science.gov (United States)

    Brookfield, Harold

    1982-01-01

    Distinctions between natural ecosystems and human ecosystems are misleading. Natural and social sciences can be integrated through the concept of a "human-use ecosystem," in which social scientists analyze the community, household, and individual, and natural scientists analyze the land. Includes a case study of St. Kitts. (KC)

  5. Global Ecosystem Restoration Index

    DEFF Research Database (Denmark)

    Fernandez, Miguel; Garcia, Monica; Fernandez, Nestor

    2015-01-01

    The Global ecosystem restoration index (GERI) is a composite index that integrates structural and functional aspects of the ecosystem restoration process. These elements are evaluated through a window that looks into a baseline for degraded ecosystems with the objective to assess restoration...

  6. Towards ecosystem accounting

    NARCIS (Netherlands)

    Duku, C.; Rathjens, H.; Zwart, S.J.; Hein, L.

    2015-01-01

    Ecosystem accounting is an emerging field that aims to provide a consistent approach to analysing environment-economy interactions. One of the specific features of ecosystem accounting is the distinction between the capacity and the flow of ecosystem services. Ecohydrological modelling to support

  7. Rights to ecosystem services

    NARCIS (Netherlands)

    Davidson, M.

    2014-01-01

    Ecosystem services are the benefits people obtain from ecosystems. Many of these services are provided outside the borders of the land where they are produced; this article investigates who is entitled to these non-excludable ecosystem services from two libertarian perspectives. Taking a

  8. Research of the Rio Grande Ecosystem Management Program

    Science.gov (United States)

    Deborah M. Finch

    2000-01-01

    This paper describes the mission, objectives, and preliminary results of the Middle Rio Grande Ecosystem Management Research Program managed at the Rocky Mountain Research Station's Albuquerque laboratory. This program was initiated in 1994 to address growing pressures to effectively manage the limited resources of the middle Rio Grande Basin. The program is...

  9. Idiopathic great saphenous phlebosclerosis.

    Directory of Open Access Journals (Sweden)

    Ahmadreza Jodati

    2013-06-01

    Full Text Available Arterial sclerosis has been extensively described but reports on venous sclerosis are very sparse. Phlebosclerosis refers to the thickening and hardening of the venous wall. Despite its morphological similarities with arteriosclerosis and potential morbid consequences, phlebosclerosis has gained only little attention. We report a 72 year old male with paralysis and atrophy of the right leg due to childhood poliomyelitis who was referred for coronary artery bypass surgery. The great saphenous vein, harvested from the left leg, showed a hardened cord-like obliterated vein. Surprisingly, harvested veins from the atrophic limb were normal and successfully used for grafting.

  10. Great software debates

    CERN Document Server

    Davis, A

    2004-01-01

    The industry’s most outspoken and insightful critic explains how the software industry REALLY works. In Great Software Debates, Al Davis, shares what he has learned about the difference between the theory and the realities of business and encourages you to question and think about software engineering in ways that will help you succeed where others fail. In short, provocative essays, Davis fearlessly reveals the truth about process improvement, productivity, software quality, metrics, agile development, requirements documentation, modeling, software marketing and sales, empiricism, start-up financing, software research, requirements triage, software estimation, and entrepreneurship.

  11. Making Psychotherapy Great Again?

    Science.gov (United States)

    Plakun, Eric M

    2017-05-01

    Psychotherapy never stopped being as "great" as other treatments. This column explores the evidence base for both psychotherapy and medications, using depression as a specific example. The limitations are comparable for psychotherapy and medication, with much of the evidence based on small degrees of "statistically significant" rather than "clinically meaningful" change. Our field's biomedical emphasis leads to a false assumption that most patients present with single disorders, when comorbidity is the rule rather than the exception. This false assumption contributes to limitations in the evidence base and in our ability to treat patients optimally.

  12. Water resources data, Idaho, 2002; Volume 1. Great Basin and Snake River basin above King Hill

    Science.gov (United States)

    Brennan, T.S.; Lehmann, A.K.; Campbell, A.M.; O'Dell, I.; Beattie, S.E.

    2003-01-01

    Water resources data for the 2002 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The two volumes of this report contain discharge records for 196 stream-gaging stations and 15 irrigation diversions; stage only records for 5 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 78 stream-gaging stations and partial record sites, 3 lakes sites, and 383 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  13. Future directions of ecosystem science

    Science.gov (United States)

    Baron, Jill S.; Galvin, Kathleen A.

    1990-01-01

    Scientific knowledge about ecosystem structure and function has expanded greatly during the past few decades. Terrestrial and aquatic nutrient cycling, ecosystem energetics, population dynamics, belowground processes, and food webs have been studied at the plot, stand, watershed, and landscape levels at many locations around the globe. Ideas about terrestrial-atmospheric interactions and human interference in these processes have changed dramatically. There is new appreciation of the need to incorporate into ecosystem studies the interactions between human populations and the ecosystem, not only because humans affect ecosystem processes, but because these systems support human populations (Glantz 1988, Holden 1988, Parry et al. 1988, WCED 1987). Recent advances in ecosystem science are due, in part, to technological improvements in computing power, new laboratory and field physical and chemical analytical techniques, and satellite imagery for remote sensing of Earth's structure and dynamics. Modeling and geographic information systems have provided the capability for integrating multiple data sets with process simulations to generate hypotheses about regional ecosystem function. Concurrent with these scientific developments has been a growing concern about the links between the health of the environment and world-wide industrial, land, and resource-management practices. Environmental damage at the local level was widely recognized in the 1960s, prompting the environmental movement of that decade. Regional environmental problems with multiple effects and politically difficult solutions have been perceived more recently; the issue of acidic deposition provides an example of such a second-generation concern (Clark and Holling 1985). Today there is a growing awareness of global-scale environmental degradation brought about by the combined actions of all peoples on Earth (Clark 1989, Woodmansee et al. 1988). The three levels of environmental concern--local, regional

  14. Ecosystem services in ECOCLIM

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Boegh, Eva; Bendtsen, J

    that actions initiated to reduce anthropogenic GHG emissions are sustainable and not destructive to existing ecosystem services. Therefore it is important to address i.e. land use change in relation to the regulating services of the ecosystems, such as carbon sequestration and climate regulation. At present...... a thorough understanding of the ecosystem processes controlling the uptake or emissions of GHG is fundamental. Here we present ECOCLIM in the context of ecosystem services and the experimental studies within ECOCLIM which will lead to an enhanced understanding of Danish ecosystems....

  15. Fishing for ecosystem services.

    Science.gov (United States)

    Pope, Kevin L; Pegg, Mark A; Cole, Nicholas W; Siddons, Stephen F; Fedele, Alexis D; Harmon, Brian S; Ruskamp, Ryan L; Turner, Dylan R; Uerling, Caleb C

    2016-12-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships. Published by Elsevier Ltd.

  16. Millennium Ecosystem Assessment

    Science.gov (United States)

    (Kristianstad) Sweden (Stockholm Urban) Trade, Poverty & Environment Trinidad United States (Alaska) United (Local Villages) India (Urban) Indonesia (Jakarta Bay and Bunaken) Norway (Glomma River Basin) Papua New

  17. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure

    Science.gov (United States)

    Thomas, Linnea M.; Jorgenson, Zachary G.; Brigham, Mark E.; Choy, Steven J.; Moore, Jeremy N.; Banda, Jo A.; Gefell, D.J.; Minarik, Thomas A.; Schoenfuss, Heiko L.

    2017-01-01

    The Laurentian Great Lakes contain one fifth of the world’s surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a varie