WorldWideScience

Sample records for great basin area

  1. Great Basin Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Bryce A. Richardson; Stanley G. Kitchen

    2013-01-01

    This annotated bibliography documents the research that has been conducted on the Great Basin Experimental Range (GBER, also known as the Utah Experiment Station, Great Basin Station, the Great Basin Branch Experiment Station, Great Basin Experimental Center, and other similar name variants) over the 102 years of its existence. Entries were drawn from the original...

  2. Great Basin paleoenvironmental studies project

    International Nuclear Information System (INIS)

    1993-01-01

    Project goals, project tasks, progress on tasks, and problems encountered are described and discussed for each of the studies that make up the Great Basin Paleoenvironmental Studies Project for Yucca Mountain. These studies are: Paleobotany, Paleofauna, Geomorphology, and Transportation. Budget summaries are also given for each of the studies and for the overall project

  3. Great Basin wildlife disease concerns

    Science.gov (United States)

    Russ Mason

    2008-01-01

    In the Great Basin, wildlife diseases have always represented a significant challenge to wildlife managers, agricultural production, and human health and safety. One of the first priorities of the U.S. Department of Agriculture, Division of Fish and Wildlife Services was Congressionally directed action to eradicate vectors for zoonotic disease, particularly rabies, in...

  4. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  5. Impacts of land-use change on the water cycle of urban areas within the Upper Great Lakes drainage basin

    Science.gov (United States)

    Bowling, L. C.; Cherkauer, K. A.; Pijanowski, B. C.; Niyogi, D.

    2006-12-01

    Urbanization is altering the global landscape at an unprecedented rate. This form of land cover/land-use change (LCLUC) can significantly reduce infiltration and runoff response times, and alter heat and water vapor fluxes, which can further alter surface-forced regional circulation patterns and modulate precipitation volume and intensity. Spatial patterns of future LCLUC are projected using the Land Transformation Model (LTM), enhanced to incorporate dynamic landcover, economics and policy using Bayesian Belief Networks (LTM- BBN). Different land use scenarios predicted by the LTM-BBN as well as a pre-development scenario are represented through the Unified Noah Land Surface Model (LSM) with an enhanced urban canopy model, embedded in the Weather Research and Forecasting (WRF) model. The coupled WRF-Noah LSM model will be used to investigate the connections between land-use, hydrometeorology and the atmosphere, through analysis of water and energy balances over several urbanized watersheds within the Upper Great Lakes region. Preliminary results focus on a single watershed, the White River in Indiana, which includes the city of Indianapolis. Coupled WRF-Noah simulations made using pre and post-development land use maps provide a 7 year climatology of convective storm morphology around the urban center. Precipitation and other meteorological variables from the WRF-Noah simulations are used to drive simulations of the White River watershed using the Variable Infiltration Capacity (VIC) macroscale hydrologic model. The VIC model has been modified to represent urban areas and has been calibrated for modern flow regimes in the White River watershed. Pre- and post-development VIC simulations are used to assess the impact of Indianapolis area infiltration changes. Finally, VIC model simulations utilizing projected land use change from 2005 through 2040 for the Indianapolis metropolitan area explore the magnitude of future hydrologic change, especially peak flow response

  6. Highly calcareous lacustrine soils in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Meester, de T.

    1971-01-01

    The Great Konya Basin is in the south of the Central Anatolian Plateau in Turkey. It is a depression without outlet to the sea. The central part of the Basin is the floor of a former Pleistocene lake, the Ancient Konya Lake. This area, called the Lacustrine
    Plain, has highly calcareous

  7. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  8. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  9. Great Basin Factsheet Series 2016 - Information and tools to restore and conserve Great Basin ecosystems

    Science.gov (United States)

    Jeanne C. Chambers

    2016-01-01

    Land managers are responsible for developing effective strategies for conserving and restoring Great Basin ecosystems in the face of invasive species, conifer expansion, and altered fire regimes. A warming climate is magnifying the effects of these threats and adding urgency to implementation of management practices that will maintain or improve ecosystem...

  10. Geology of photo linear elements, Great Divide Basin, Wyoming

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  11. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  12. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.

    The Great

  13. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  14. Germination phenology of some Great Basin native annual forb species

    Science.gov (United States)

    Tara A. Forbis

    2010-01-01

    Great Basin native plant communities are being replaced by the annual invasive cheatgrass Bromus tectorum. Cheatgrass exhibits a germination syndrome that is characteristic of facultative winter annuals. Although perennials dominate these communities, native annuals are present at many sites. Germination timing is often an important predictor of competitive...

  15. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows comprise a very small percentage of the total landscape of the mountain ranges in the central Great Basin however, they represent important ecological environments. We have used s...

  16. Soil fertility in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Janssen, B.H.

    1970-01-01

    Soil fertility was studied in the Great Konya Basin, as part of the study carried out by the Department of Tropical Soil Science of the Agricultural University at Wageningen.

    The purpose was to find the agricultural value of the soils, to learn about the main factors governing soil fertility,

  17. Genecology and seed zones for tapertip onion in the US Great Basin

    Science.gov (United States)

    R. C. Johnson; Barbara C. Hellier; Ken W. Vance-Borland

    2013-01-01

    The choice of germplasm is critical for sustainable restoration, yet seed transfer guidelines are lacking for all but a few herbaceous species. Seed transfer zones based on genetic variability and climate were developed using tapertip onion (Allium acuminatum Hook.) collected in the Great Basin and surrounding areas in the United States. Bulbs from 53 locations were...

  18. GEOMORPHIC AND HYDROGEOLOGICAL CONTROLS ON THE DISTRIBUTION OF WET MEADOWS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    The Great Basin is an arid landscape dominated by dryland vegetation such as big sage and xeric grasses. Meadow complexes occur in mountain drainages and consist of discrete parcels of land up to several hectares in area that are characterized by high water tables and that primar...

  19. MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Riparian meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision, due to natural and anth...

  20. Fire rehabilitation effectiveness: a chronosequence approach for the Great Basin

    Science.gov (United States)

    Pyke, David A.; Pilliod, David S.; Chambers, Jeanne C.; Brooks, Matthew L.; Grace, James

    2009-01-01

    Federal land management agencies have invested heavily in seeding vegetation for emergency stabilization and rehabilitation (ES&R) of non-forested lands. ES&R projects are implemented to reduce post-fire dominance of non-native annual grasses, minimize probability of recurrent fire, quickly recover lost habitat for sensitive species, and ultimately result in plant communities with desirable characteristics including resistance to invasive species and resilience or ability to recover following disturbance. Land managers lack scientific evidence to verify whether seeding non-forested lands achieves their desired long-term ES&R objectives. The overall objective of our investigation is to determine if ES&R projects increase perennial plant cover, improve community composition, decrease invasive annual plant cover and result in a more desirable fuel structure relative to no treatment following fires while potentially providing habitat for Greater Sage-Grouse, a species of management concern. In addition, we provide the locations and baseline vegetation data for further studies relating to ES&R project impacts. We examined effects of seeding treatments (drill and broadcast) vs. no seeding on biotic and abiotic (bare ground and litter) variables for the dominant climate regimes and ecological types within the Great Basin. We attempted to determine seeding effectiveness to provide desired plant species cover while restricting non-native annual grass cover relative to post-treatment precipitation, post-treatment grazing level and time-since-seeding. Seedings were randomly sampled from all known post-fire seedings that occurred in the four-state area of Idaho, Nevada, Oregon and Utah. Sampling locations were stratified by major land resource area, precipitation, and loam-dominated soils to ensure an adequate spread of locations to provide inference of our findings to similar lands throughout the Great Basin. Nearly 100 sites were located that contained an ES&R project. Of

  1. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    Science.gov (United States)

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  2. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.

    Science.gov (United States)

    Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E

    2015-03-01

    The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the

  3. Gardening guide for high-desert urban landscapes of Great Basin regions in Nevada and Utah

    Science.gov (United States)

    Heidi Kratsch; Rick Heflebower

    2013-01-01

    Some Great Basin urban areas in Utah and Nevada exhibit climatic conditions that make it difficult for all but the toughest landscape plants to thrive without providing supplemental water. These areas are found at elevations from 4,000 feet to 6,000 feet in USDA cold-hardiness zones 6 and 7. Soils are often poor and gravelly, containing less than 1 percent organic...

  4. An Integrated Approach for Identifying Priority Contaminant in the Great Lakes Basin –Investigations in the Lower Green Bay/Fox River and Milwaukee Estuary Areas of Concern

    Data.gov (United States)

    U.S. Environmental Protection Agency — Prioritization of chemicals was performed on two Areas of Concerns in the Great Lakes An integrated risk surveillance and monitoring approach was applied Bio-effect...

  5. Climate change and water quality in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Great Lakes Basin is subjected to several stresses, such as land use changes, chemical contamination, nutrient over-enrichment, alien invasive species, and acid precipitation. Climate change is now added to this list. The Water Quality Board was asked to provide advice concerning the impacts of climate change on the water quality of the Great Lakes and on how to address the issue. A White Paper was commissioned by the Board to address four key questions: (1) what are the Great Lakes water quality issues associated with climate change, (2) what are potential impacts of climate change on beneficial uses, (3) how might impacts vary across the Great Lakes region, and (4) what are the implications for decision making. The conclusions and findings of the White Paper were then discussed at a workshop held in May 2003. Part 1 of the document provides an executive summary. The advice of the Water Quality Board was based on the findings of the White Paper and presented in Part 2. Part 3 presented the White Paper, while a summary of the workshop was provided in Part 4. A presentation on cross border tools and strategies was also presented by a workshop participant.

  6. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    Science.gov (United States)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability

  7. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  8. Digital Soil Mapping Using Landscape Stratification for Arid Rangelands in the Eastern Great Basin, Central Utah

    OpenAIRE

    Fonnesbeck, Brook B.

    2015-01-01

    Digital soil mapping typically involves inputs of digital elevation models, remotely sensed imagery, and other spatially explicit digital data as environmental covariates to predict soil classes and attributes over a landscape using statistical models. Digital imagery from Landsat 5, a digital elevation model, and a digital geology map were used as environmental covariates in a 67,000-ha study area of the Great Basin west of Fillmore, UT. A “pre-map” was created for selecting sampling locatio...

  9. A synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin

    International Nuclear Information System (INIS)

    Denkenberger, Joseph S.; Driscoll, Charles T.; Branfireun, Brian A.; Eckley, Chris S.; Cohen, Mark; Selvendiran, Pranesh

    2012-01-01

    Rates of surface-air elemental mercury (Hg 0 ) fluxes in the literature were synthesized for the Great Lakes Basin (GLB). For the majority of surfaces, fluxes were net positive (evasion). Digital land-cover data were combined with representative evasion rates and used to estimate annual Hg 0 evasion for the GLB (7.7 Mg/yr). This value is less than our estimate of total Hg deposition to the area (15.9 Mg/yr), suggesting the GLB is a net sink for atmospheric Hg. The greatest contributors to annual evasion for the basin are agricultural (∼55%) and forest (∼25%) land cover types, and the open water of the Great Lakes (∼15%). Areal evasion rates were similar across most land cover types (range: 7.0–21.0 μg/m 2 -yr), with higher rates associated with urban (12.6 μg/m 2 -yr) and agricultural (21.0 μg/m 2 -yr) lands. Uncertainty in these estimates could be partially remedied through a unified methodological approach to estimating Hg 0 fluxes. - Highlights: ► Considerable variability exists across spatial/temporal scales in Hg 0 evasion rates. ► Methodological approaches vary for estimating and reporting gaseous Hg 0 fluxes. ► Hg 0 evasion from the Great Lakes Basin is estimated at 7.7 Mg/yr (10.2 μg/m 2 -yr). ► Hg flux estimates suggest region is a net sink for atmospheric Hg. ► 95% of Hg 0 evasion in the region is from agriculture, forest, and the Great Lakes. - A synthesis of Hg evasion was conducted and this information was used to develop an estimate of Hg evasion for the Great Lakes Basin.

  10. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  11. Monitoring species richness and abundance of shorebirds in the western Great Basin

    Science.gov (United States)

    Warnock, Nils; Haig, Susan M.; Oring, Lewis W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inaccessibility of sites, and few ornithologists. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted in the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determine species diversity. Aerial surveys of three large alkali lakes in Oregon (Goose, Summer, and Abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebird sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of S-10% negative declines in populations of these birds would take a minimum of 7-23 years of comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  12. Ground Motion Prediction for Great Interplate Earthquakes in Kanto Basin Considering Variation of Source Parameters

    Science.gov (United States)

    Sekiguchi, H.; Yoshimi, M.; Horikawa, H.

    2011-12-01

    Broadband ground motions are estimated in the Kanto sedimentary basin which holds Tokyo metropolitan area inside for anticipated great interplate earthquakes along surrounding plate boundaries. Possible scenarios of great earthquakes along Sagami trough are modeled combining characteristic properties of the source area and adequate variation in source parameters in order to evaluate possible ground motion variation due to next Kanto earthquake. South to the rupture area of the 2011 Tohoku earthquake along the Japan trench, we consider possible M8 earthquake. The ground motions are computed with a four-step hybrid technique. We first calculate low-frequency ground motions at the engineering basement. We then calculate higher-frequency ground motions at the same position, and combine the lower- and higher-frequency motions using a matched filter. We finally calculate ground motions at the surface by computing the response of the alluvium-diluvium layers to the combined motions at the engineering basement.

  13. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Science.gov (United States)

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  14. Native plant development and restoration program for the Great Basin, USA

    Science.gov (United States)

    N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur

    2008-01-01

    The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...

  15. Quantifying phenology metrics from Great Basin plant communities and their relationship to seasonal water availability

    Science.gov (United States)

    Background/Question/Methods Sagebrush steppe is critical habitat in the Great Basin for wildlife and provides important ecosystem goods and services. Expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) in the Great Basin has reduced the extent of sagebrush steppe causing habitat, fire, and...

  16. Geomorphic controls on Great Basin riparian vegetation at the watershed and process zone scales

    Science.gov (United States)

    Blake Meneken Engelhardt

    2009-01-01

    Riparian ecosystems supply valuable resources in all landscapes, but especially in semiarid regions such as the Great Basin of the western United States. Over half of Great Basin streams are thought to be in poor ecological condition and further deterioration is of significant concern to stakeholders. A thorough understanding of how physical processes acting at...

  17. Environmental drivers of cambial phenology in Great Basin bristlecone pine.

    Science.gov (United States)

    Ziaco, Emanuele; Biondi, Franco; Rossi, Sergio; Deslauriers, Annie

    2016-07-01

    The timing of wood formation is crucial to determine how environmental factors affect tree growth. The long-lived bristlecone pine (Pinus longaeva D. K. Bailey) is a foundation treeline species in the Great Basin of North America reaching stem ages of about 5000 years. We investigated stem cambial phenology and radial size variability to quantify the relative influence of environmental variables on bristlecone pine growth. Repeated cellular measurements and half-hourly dendrometer records were obtained during 2013 and 2014 for two high-elevation stands included in the Nevada Climate-ecohydrological Assessment Network. Daily time series of stem radial variations showed rehydration and expansion starting in late April-early May, prior to the onset of wood formation at breast height. Formation of new xylem started in June and lasted until mid-September. There were no differences in phenological timing between the two stands, or in the air and soil temperature thresholds for the onset of xylogenesis. A multiple logistic regression model highlighted a separate effect of air and soil temperature on xylogenesis, the relevance of which was modulated by the interaction with vapor pressure and soil water content. While air temperature plays a key role in cambial resumption after winter dormancy, soil thermal conditions coupled with snowpack dynamics also influence the onset of wood formation by regulating plant-soil water exchanges. Our results help build a physiological understanding of climate-growth relationships in P. longaeva, the importance of which for dendroclimatic reconstructions can hardly be overstated. In addition, environmental drivers of xylogenesis at the treeline ecotone, by controlling the growth of dominant species, ultimately determine ecosystem responses to climatic change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Snapping turtles (Chelydra serpentina) as bioindicators in Canadian Areas of Concern in the Great Lakes Basin. II. Changes in hatching success and hatchling deformities in relation to persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Solla, S.R. de , [Population Assessment Unit, Canadian Wildlife Service, Environment Canada, 867 Lakeshore Road, Box 5050, Burlington, ON, L7R 4A6 (Canada); Fernie, K J; Ashpole, S [Population Assessment Unit, Canadian Wildlife Service, Environment Canada, 867 Lakeshore Road, Box 5050, Burlington, ON, L7R 4A6 (Canada)

    2008-06-15

    Hatching success and deformities in snapping turtle hatchlings (Chelydra serpentina) were evaluated using eggs collected from 14 sites in the Canadian lower Great Lakes, including Areas of Concern (AOC), between 2001 and 2004. Eggs were analyzed for PCBs, PBDEs, and pesticides. Between 2002 and 2004, hatchling deformity rates were highest in two AOCs (18.3-28.3%) compared to the reference sites (5.3-11.3%). Hatching success was poorest in three AOCs (71.3-73.1%) compared to the reference sites (86.0-92.7%). Hatching success and deformity rates were generally poorer in 2001 compared to 2002-2004, irrespective of the study location and could be due to egg handling stress in 2001. Hatching success and deformities were generally worst from the Wheatley Harbour, St. Lawrence River (Cornwall), Detroit River, and Hamilton Harbour AOCs. Associations between contaminant burdens with embryonic development were sufficiently poor that the biological relevance is questionable. Stressors not measured may have contributed to development abnormalities. - Hatching success and deformities of snapping turtle eggs varied among Great Lake Areas of Concern, but were not attributable to specific chemical exposure.

  19. Snapping turtles (Chelydra serpentina) as bioindicators in Canadian Areas of Concern in the Great Lakes Basin. II. Changes in hatching success and hatchling deformities in relation to persistent organic pollutants

    International Nuclear Information System (INIS)

    Solla, S.R. de; Fernie, K.J.; Ashpole, S.

    2008-01-01

    Hatching success and deformities in snapping turtle hatchlings (Chelydra serpentina) were evaluated using eggs collected from 14 sites in the Canadian lower Great Lakes, including Areas of Concern (AOC), between 2001 and 2004. Eggs were analyzed for PCBs, PBDEs, and pesticides. Between 2002 and 2004, hatchling deformity rates were highest in two AOCs (18.3-28.3%) compared to the reference sites (5.3-11.3%). Hatching success was poorest in three AOCs (71.3-73.1%) compared to the reference sites (86.0-92.7%). Hatching success and deformity rates were generally poorer in 2001 compared to 2002-2004, irrespective of the study location and could be due to egg handling stress in 2001. Hatching success and deformities were generally worst from the Wheatley Harbour, St. Lawrence River (Cornwall), Detroit River, and Hamilton Harbour AOCs. Associations between contaminant burdens with embryonic development were sufficiently poor that the biological relevance is questionable. Stressors not measured may have contributed to development abnormalities. - Hatching success and deformities of snapping turtle eggs varied among Great Lake Areas of Concern, but were not attributable to specific chemical exposure

  20. Three-Dimensional Geologic Characterization of a Great Basin Geothermal System: Astor Pass, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mayhew, Brett; Siler, Drew L; Faulds, James E

    2013-09-30

    The Great Basin, western USA, exhibits anomalously high heat flow (~75±5 mWm-2) and active faulting and extension, resulting in ~430 known geothermal systems. Recent studies have shown that steeply dipping normal faults in transtensional pull-aparts are a common structural control of these Great Basin geothermal systems. The Astor Pass blind (no surface expression) geothermal system, Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Across this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range, resulting in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and northerly striking normal faults. Previous studies indicate that Astor Pass was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal-dextral fault bounding the western side of the Terraced Hills. Drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming a blind geothermal system. Expanding upon previous work and employing interpretation of 2D seismic reflection data, additional detailed geologic mapping, and well cuttings analysis, a 3-dimensional geologic model of the Astor Pass geothermal system was constructed. The 3D model indicates a complex interaction/intersection area of three discrete fault zones: a northwest-striking dextral-normal fault, a north-northwest-striking normal-dextral fault, and a north-striking west-dipping normal fault. These two discrete, critically-stressed intersection areas plunge moderately to steeply to the NW-NNW and probably act as conduits for upwelling geothermal fluids.

  1. Evaluating connection of aquifers to springs and streams, Great Basin National Park and vicinity, Nevada

    Science.gov (United States)

    Prudic, David E.; Sweetkind, Donald S.; Jackson, Tracie R.; Dotson, K. Elaine; Plume, Russell W.; Hatch, Christine E.; Halford, Keith J.

    2015-12-22

    Federal agencies that oversee land management for much of the Snake Range in eastern Nevada, including the management of Great Basin National Park by the National Park Service, need to understand the potential extent of adverse effects to federally managed lands from nearby groundwater development. As a result, this study was developed (1) to attain a better understanding of aquifers controlling groundwater flow on the eastern side of the southern part of the Snake Range and their connection with aquifers in the valleys, (2) to evaluate the relation between surface water and groundwater along the piedmont slopes, (3) to evaluate sources for Big Springs and Rowland Spring, and (4) to assess groundwater flow from southern Spring Valley into northern Hamlin Valley. The study focused on two areas—the first, a northern area along the east side of Great Basin National Park that included Baker, Lehman, and Snake Creeks, and a second southern area that is the potential source area for Big Springs. Data collected specifically for this study included the following: (1) geologic field mapping; (2) drilling, testing, and water quality sampling from 7 test wells; (3) measuring discharge and water chemistry of selected creeks and springs; (4) measuring streambed hydraulic gradients and seepage rates from 18 shallow piezometers installed into the creeks; and (5) monitoring stream temperature along selected reaches to identify places of groundwater inflow.

  2. AN INTEGRATED, SCIENCE-BASED APPROACH TO MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE GREAT BASIN OF CENTRAL NEVADA

    Science.gov (United States)

    Riparian corridor and meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision is a major ...

  3. 3D characterization of a Great Basin geothermal system: Astor Pass, NV

    Science.gov (United States)

    Siler, D. L.; Mayhew, B.; Faulds, J. E.

    2012-12-01

    The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault and fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings, a 3

  4. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    Science.gov (United States)

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  5. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    Science.gov (United States)

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  6. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  7. Snapping turtles (Chelydra serpentina) as bioindicators in Canadian areas of concern in the Great Lakes Basin. II. Changes in hatching success and hatchling deformities in relation to persistent organic pollutants.

    Science.gov (United States)

    de Solla, S R; Fernie, K J; Ashpole, S

    2008-06-01

    Hatching success and deformities in snapping turtle hatchlings (Chelydra serpentina) were evaluated using eggs collected from 14 sites in the Canadian lower Great Lakes, including Areas of Concern (AOC), between 2001 and 2004. Eggs were analyzed for PCBs, PBDEs, and pesticides. Between 2002 and 2004, hatchling deformity rates were highest in two AOCs (18.3-28.3%) compared to the reference sites (5.3-11.3%). Hatching success was poorest in three AOCs (71.3-73.1%) compared to the reference sites (86.0-92.7%). Hatching success and deformity rates were generally poorer in 2001 compared to 2002-2004, irrespective of the study location and could be due to egg handling stress in 2001. Hatching success and deformities were generally worst from the Wheatley Harbour, St. Lawrence River (Cornwall), Detroit River, and Hamilton Harbour AOCs. Associations between contaminant burdens with embryonic development were sufficiently poor that the biological relevance is questionable. Stressors not measured may have contributed to development abnormalities.

  8. Environmental Setting and Effects on Water Quality in the Great and Little Miami River Basins, Ohio and Indiana

    Science.gov (United States)

    Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.

    2000-01-01

    The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and

  9. Recharge Area of Groundwater of Jakarta Basin

    International Nuclear Information System (INIS)

    Wandowo; Abidin, Zainal; Alip; Djiono

    2002-01-01

    Groundwater inside the earth contained in a porous and permeable layers called aquifers. Depend on the hydrogeological structure, the aquifers may be composed of independent layers separated each other by impermeable boundaries. Such a condition may effect the location of recharge where water is able to infiltrate and goes to the aquifers. The objective of this research is to find out and to locate the recharge area of Jakarta basin by utilizing stable isotopes 2H and 18O . The work was done by collecting shallow and deep groundwater samples throughout Jabotabek area and precipitations from different altitudes. Since the stable isotopes composition of precipitation is subject to the altitude, the recharge area would be able to be identified by assessing the correlation of stable isotopes composition of precipitation and corresponding groundwater population. The data obtained from this study suggested that shallow groundwater is originated from local recharge while deep groundwater is recharged from the area having altitude of 125 -230 meters, it correspond to the area between Depok and Bogor

  10. Anoxia pre-dates Frasnian–Famennian boundary mass extinction horizon in the Great Basin, USA

    Science.gov (United States)

    Bratton, John F.; Berry, William B.N.; Morrow, Jared R.

    1999-01-01

    Major and trace metal results from three Great Basin stratigraphic sections with strong conodont biostratigraphy identify a distinct anoxic interval that precedes, but ends approximately 100 kyr before, the Frasnian–Famennian (F–F, mid-Late Devonian) boundary mass extinction horizon. This horizon corresponds to the final and most severe step of a more protracted extinction period. These results are inconsistent with data reported by others from the upper Kellwasser horizon in Europe, which show anoxia persisting up to the F–F boundary in most sections. Conditions returned to fully oxygenated prior to the F–F boundary in the study area. These data indicate that the worst part of the F–F extinction was not related directly to oceanic anoxia in this region and potentially globally.

  11. Preliminary assessment of the risk of volcanism at a proposed nuclear-waste repository in the southern Great Basin

    International Nuclear Information System (INIS)

    Crowe, B.M.; Carr, W.J.

    1980-01-01

    Volcanic hazard studies of the southern Great Basin are being conducted on behalf of the Nevada Nuclear Waste Storage Investigations program. Current work is chiefly concerned with characterizing the geology, chronology, and tectonic setting of Pliocene and Quaternary volcanism in the Nevada Test Site region, and assessing volcanic risk through consequence and probability studies, particularly with respect to a potential site in the southwestern Nevada Test Site. Young ( - 6 volcanic events per year. Based on this rate, the annual probability of disruption of a 10-km 2 repository located within a 25-km radius circle centered at Yucca Mountain, southwestern Nevada Test Site, is 10 - 8 . A larger area, 50-km radius, yields a disruption probability of 10 - 9 per year. Current tectonic zonation studies of the southern Great Basin will reduce the calculated probabilities of basaltic eruption for certain areas. 21 references, 3 figures

  12. Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins

    International Nuclear Information System (INIS)

    1993-08-01

    The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R ampersand D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ''typical'' well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic

  13. Collaboration in River Basin Management: The Great Rivers Project

    Science.gov (United States)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or

  14. Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park

    Science.gov (United States)

    Volk, J. M.

    2013-12-01

    Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.

  15. Evaluating Hydrologic Transience in Watershed Delineation, Numerical Modeling and Solute Transport in the Great Basin. Clayton Valley, Nevada

    Science.gov (United States)

    Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.

    2017-12-01

    Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute transport, a refined (transient) version of the USGS steady-state groundwater flow model of the Great Basin is evaluated. This model is used to assess transient changes in contributing area for Clayton Valley, a lithium-brine producing endorheic basin in southwestern Nevada. Model runs of various recharge, discharge and storage bounds are created from conceptual models based upon historical climate data. Comparing results of the refined model to USGS groundwater observations allows for model validation and comparison against the USGS steady-state model. The transient contributing area to Clayton Valley is 85% smaller than that calculated from the steady-state solution, however several long flow paths important to both water and solute budgets at Clayton Valley

  16. M-area basin closure-Savannah River Site

    International Nuclear Information System (INIS)

    McMullin, S.R.; Horvath, J.G.

    1991-01-01

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway

  17. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.

    Science.gov (United States)

    Klecka, Gary; Persoon, Carolyn; Currie, Rebecca

    2010-01-01

    This review and statistical analysis was conducted to better understand the nature and significance of environmental exposures in the Great Lakes Basin and watershed to a variety of environmental contaminants. These contaminants of interest included current-use pesticides, pharmaceuticals, organic wastewater contaminants, alkylphenol ethoxylates, perfluorinated surfactants, flame retardants, and chlorinated paraffins. The available literature was critically reviewed and used to develop a database containing 19,611 residue values for 326 substances. In many papers, sampling locations were characterized as being downstream from municipal wastewater discharges, receiving waters for industrial facilities, areas susceptible to agricultural or urban contamination, or harbors and ports. To develop an initial assessment of their potential ecological significance, the contamination levels found were compared with currently available regulatory standards, guidelines, or criteria. This review was prepared for the IJC multi-board work group, and served as background material for an expert consultation, held in March, 2009, in which the significance of the contaminants found was discussed. Moreover, the consultation attempted to identify and assess opportunities for strengthening future actions that will protect the Great Lakes. Based on the findings and conclusions of the expert consultation, it is apparent that a wide variety of chemicals of emerging concern have been detected in environmental media (air, water, sediment, biota) from the Great Lakes Basin, although many are present at only trace levels. Although the presence of these contaminants raises concerns in the public and among the scientific community, the findings must be placed in context. Significant scientific interpretation is required to understand the extent to which these chemicals may pose a threat to the ecosystem and to human health. The ability to detect chemicals in environmental media greatly surpasses

  18. Earthworms (Annelida: Oligochaeta) of the Columbia River basin assessment area.

    Science.gov (United States)

    Sam. James

    2000-01-01

    Earthworms are key components of many terrestrial ecosystems; however, little is known of their ecology, distribution, and taxonomy in the eastern interior Columbia River basin assessment area (hereafter referred to as the basin assessment area). This report summarizes the main issues about the ecology of earthworms and their impact on the physical and chemical status...

  19. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: introduction.

    Science.gov (United States)

    Chris Maser; Jack Ward. Thomas

    1983-01-01

    The need for a way by which rangeland managers can account for wildlife in land-use planning, in on-the-ground management actions, and in preparation of environmental impact statements is discussed. Principles of range-land-wildlife interactions and management are described along with management systems. The Great Basin of southeastern Oregon was selected as a well-...

  20. New records of marginal locations for American pika (Ochotona princeps) in the Western Great Basin

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Diane L. Delany

    2013-01-01

    We describe 46 new site records documenting occupancy by American pika (Ochotona princeps) at 21 locations from 8 mountain regions in the western Great Basin, California, and Nevada. These locations comprise a subset of sites selected from regional surveys to represent marginal, isolated, or otherwise atypical pika locations, and to provide...

  1. Reconsidering the process for bow-stave removal from juniper trees in the Great Basin

    Science.gov (United States)

    Constance I. Millar; Kevin T. Smith

    2017-01-01

    We question the growth arrestment hypothesis for bow stave removal used by indigenous people in the western Great Basin. Using modern understanding of tree growth and wound response, we suggest that growth would not be arrested by one or two transverse notches along a juniper stem. Rather these would trigger compartmentalization, which limits cambial death to within 10...

  2. The Role of Credit in Native Adaptation to the Great Basin Ranching Economy.

    Science.gov (United States)

    Knack, Martha C.

    1987-01-01

    Examines Nevada rancher's account books to explain details of relationship between Great Basin Indian laborers and White employers during the late 19th century. Describes Indians' work, pay rates, purchases, seasonal food availability, and credit arrangements. Examines Indians' social, economic lives and their incorporation into debt/wage system.…

  3. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    Science.gov (United States)

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  4. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  5. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  6. Birds of a Great Basin Sagebrush Habitat in East-Central Nevada

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Breeding bird populations ranged from 3.35 to 3.48 individuals/ha over a 3-year study conducted from 1981 to 1983. Brewer's sparrows, sage sparrows, sage thrashers, and black-throated sparrows were numerically dominant. Horned larks and western meadowlarks were less common. Results are compared with bird populations in Great Basin sagebrush habitats elsewhere in the United States.

  7. Priority research and management issues for the imperiled Great Basin of the western United States

    Science.gov (United States)

    Jeanne C. Chambers; Michael J. Wisdom

    2009-01-01

    Like many arid and semiarid regions, the Great Basin of the western United States is undergoing major ecological, social, and economic changes that are having widespread detrimental effects on the structure, composition, and function of native ecosystems. The causes of change are highly interactive and include urban, suburban, and exurban growth, past and present land...

  8. Biological soil crust response to late season prescribed fire in a Great Basin juniper woodland

    Science.gov (United States)

    Steven D. Warren; Larry L. St.Clair; Jeffrey R. Johansen; Paul Kugrens; L. Scott Baggett; Benjamin J. Bird

    2015-01-01

    Expansion of juniper on U.S. rangelands is a significant environmental concern. Prescribed fire is often recommended to control juniper. To that end, a prescribed burn was conducted in a Great Basin juniper woodland. Conditions were suboptimal; fire did not encroach into mid- or late-seral stages and was patchy in the early-seral stage. This study evaluated the effects...

  9. Geomorphology, hydrology, and ecology of Great Basin meadow complexes - implications for management and restoration

    Science.gov (United States)

    Jeanne C. Chambers; Jerry R. Miller

    2011-01-01

    This report contains the results of a 6-year project conducted by the U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station and U.S. Environmental Protection Agency, Office of Research and Development on stream incision and meadow ecosystem degradation in the central Great Basin. The project included a coarse-scale assessment of 56 different...

  10. Evaluation of thermal, chemical, and mechanical seed scarification methods for 4 Great Basin lupine species

    Science.gov (United States)

    Covy D. Jones; Mikel R. Stevens; Von D. Jolley; Bryan G. Hopkins; Scott L. Jensen; Dave Turner; Jason M. Stettler

    2016-01-01

    Seeds of most Great Basin lupine (Lupinus spp. [Fabaceae]) species are physically dormant and thus, difficult to establish in uniform stands in seed production fields. We designed this study to examine 5 seed scarification techniques, each with 11 levels of application (including a non-scarified control), to reduce the physical seed dormancy of longspur lupine...

  11. A landscape approach for ecologically based management of Great Basin shrublands

    Science.gov (United States)

    Michael J. Wisdom; Jeanne C. Chambers

    2009-01-01

    Native shrublands dominate the Great Basin of western of North America, and most of these communities are at moderate or high risk of loss from non-native grass invasion and woodland expansion. Landscape-scale management based on differences in ecological resistance and resilience of shrublands can reduce these risks. We demonstrate this approach with an example that...

  12. Aspects of the isotope hydrology of the Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Airey, P.L.; Calf, G.E.; Campbell, B.L.; Hartley, P.E.; Roman, D.

    1978-01-01

    A study has been made of the isotope hydrology of the principal Jurassic aquifer of the Queensland portion of the Great Artesian Basin down-gradient of the recharge area. Much of the data have been interpreted in terms of the residence times of the groundwater samples which were up to 350,000 years. It is postulated that the observed systematic variations in the chloride levels reflect variations in the rate of infiltration of recycled salt throughout the late Quaternary. The minimum and maximum in the chloride curve correlate with the last glacial and interglacial period respectively. The bicarbonate ion levels are perturbed by the dissolution of carbonate minerals. About 0.1 per cent of the aquifer materia would have been dissolved since the mid-tertiary when the present hydrodynamic conditions were established if dissolution rates calculated from the geochemical model are representative. The D/H ratios were found to be extremely constant. The 46 wells sited away from the recharge area have a mean of delta D of -41.8 per mille and a standard deviation of 1.1. There was no isotopic evidence for exchange of oxygen between water and the host rock despite the long contact periods, sometimes at elevated temperatures. A 226 Ra, 238 U survey showed that radium is frequently in excess despite extensive leaching since the Tertiary times and the fact that the time scales associated with the transport of water are large compared with the half life of 226 Ra. (orig.) [de

  13. Aspects of the isotope hydrology of the Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Airey, P.L.; Calf, G.E.; Campbell, B.L.; Hartley, P.E.; Roman, D.

    1979-01-01

    A study has been made of the isotope hydrology of the principal Jurassic aquifer of the Queensland portion of the Great Artesian Basin down-gradient of the recharge area. Much of the data have been interpreted in terms of the residence times of the groundwater samples which were up to 350,000 years. It is postulated that the observed systematic variations in the chloride levels reflect variations in the rate of infiltration of recycled salt throughout the late Quaternary. The minimum and maximum in the chloride curve correlate with the last glacial and interglacial period respectively. The bicarbonate ion levels are perturbed by the dissolution of carbonate minerals. About 0.1% of the aquifer material would have been dissolved since the mid-Tertiary when the present hydrodynamic conditions were established if dissolution rates calculated from the geochemical model are representative. The D/H ratios were found to be extremely constant. The 46 wells sited away from the recharge area have a mean deltaD of -41.8 per mille and a standard deviation of 1.1. There was no isotopic evidence for exchange of oxygen between water and the host rock despite the long contact periods, sometimes at elevated temperatures. A 226 Ra, 238 U survey showed that radium is frequently in excess despite extensive leaching since the Tertiary times and the fact that the time scales associated with the transport of water are large compared with the half life of 226 Ra. (author)

  14. Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin

    International Nuclear Information System (INIS)

    Aldekoa, Joana; Medici, Chiara; Osorio, Victoria; Pérez, Sandra; Marcé, Rafael; Barceló, Damià; Francés, Félix

    2013-01-01

    Highlights: • Diclofenac levels were measured in 14 sampling sites of the Llobregat River (Spain). • GREAT-ER model was used to simulate diclofenac concentrations in the Llobregat River. • Deterministic and stochastic modelling approaches were contrasted. • Diclofenac discharge into the basin was estimated for the studied period. • Consistent degradation rates were predicted and compared with literature values. -- Abstract: The present research aims at giving an insight into the increasingly important issue of water pollution due to emerging contaminants. In particular, the source and fate of the non-steroidal anti-inflammatory drug diclofenac have been analyzed at catchment scale for the Llobregat River in Catalonia (Spain). In fact, water from the Llobregat River is used to supply a significant part of the Metropolitan Area of Barcelona. At the same time, 59 wastewater treatment plants discharge into this basin. GREAT-ER model has been implemented in this basin in order to reproduce a static balance for this pollutant for two field campaigns data set. The results highlighted the ability of GREAT-ER to simulate the diclofenac concentrations in the Llobregat Catchment; however, this study also pointed out the urgent need for longer time series of observed data and a better knowledge of wastewater plants outputs and their parameterization in order to obtain more reliable results

  15. Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Aldekoa, Joana, E-mail: joaalma2@cam.upv.es [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Medici, Chiara [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Osorio, Victoria; Pérez, Sandra [Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona (Spain); Marcé, Rafael [Catalan Institute for Water Research, Emili Grahit 101, 17003 Girona (Spain); Barceló, Damià [Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona (Spain); Francés, Félix [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain)

    2013-12-15

    Highlights: • Diclofenac levels were measured in 14 sampling sites of the Llobregat River (Spain). • GREAT-ER model was used to simulate diclofenac concentrations in the Llobregat River. • Deterministic and stochastic modelling approaches were contrasted. • Diclofenac discharge into the basin was estimated for the studied period. • Consistent degradation rates were predicted and compared with literature values. -- Abstract: The present research aims at giving an insight into the increasingly important issue of water pollution due to emerging contaminants. In particular, the source and fate of the non-steroidal anti-inflammatory drug diclofenac have been analyzed at catchment scale for the Llobregat River in Catalonia (Spain). In fact, water from the Llobregat River is used to supply a significant part of the Metropolitan Area of Barcelona. At the same time, 59 wastewater treatment plants discharge into this basin. GREAT-ER model has been implemented in this basin in order to reproduce a static balance for this pollutant for two field campaigns data set. The results highlighted the ability of GREAT-ER to simulate the diclofenac concentrations in the Llobregat Catchment; however, this study also pointed out the urgent need for longer time series of observed data and a better knowledge of wastewater plants outputs and their parameterization in order to obtain more reliable results.

  16. Young (gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    Science.gov (United States)

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  17. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    Science.gov (United States)

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  18. Cheatgrass percent cover change: Comparing recent estimates to climate change − Driven predictions in the Northern Great Basin

    Science.gov (United States)

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and

  19. Regional cooperation on public acceptance in the pacific basin area

    International Nuclear Information System (INIS)

    Yasumasa Tanaka

    1987-01-01

    This paper is an attempt to examine the nature of nuclear issues and the need for effective public acceptance programs in the Pacific Basin area, drawing attention to Japan, Canada and Taiwan of China. The paper first presents a general institutional framework in which regional cooperetion is being sought in the Pacific Basin area. Secondly, country-specific nuclear issues and public acceptance programs of Canada, Japan and Taiwan of China will be presented. And thirdly, the importance of international public acceptance programs will be discussed for nuclear-electric power to grow in the Pacific Basin area toward the Year 2000. (author)

  20. Geochemical Modeling Of F Area Seepage Basin Composition And Variability

    International Nuclear Information System (INIS)

    Millings, M.; Denham, M.; Looney, B.

    2012-01-01

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin

  1. Chlorine stable isotope studies of old groundwater, southwestern Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Zhang Min; Frape, Shaun K.; Love, Andrew J.; Herczeg, Andrew L.; Lehmann, B.E.; Beyerle, U.; Purtschert, R.

    2007-01-01

    Stable Cl isotope ratios ( 37 Cl/ 35 Cl) were measured in groundwater samples from the southwestern flow system of the Great Artesian Basin, Australia to gain a better understanding of the Cl - sources and transport mechanisms. δ 37 Cl values range from 0 per mille to -2.5 per mille (SMOC), and are inversely correlated with Cl - concentration along the inferred flow direction. The Cl isotopic compositions, in conjunction with other geochemical parameters, suggest that Cl - in groundwaters is not derived from salt dissolution. Mixing of the recharge water with saline groundwater cannot explain the relationship between δ 37 Cl and Cl - concentration measured. Marine aerosols deposited via rainfall and subsequent evapotranspiration appear to be responsible for the Cl - concentrations observed in wells that are close to the recharge area, and in groundwaters sampled along the southern transect. δ 37 Cl values measured in the leachate of the Bulldog shale suggest that the aquitard is the subsurface source of Cl - for the majority of groundwater samples studied. Diffusion is likely the mechanism through which Cl - is transported from the pore water of the Bulldog shale to the aquifer. However, a more detailed study of the aquitard rocks is required to verify this hypothesis

  2. Three-Dimensional Geothermal Fairway Mapping: Examples From the Western Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Siler, Drew L. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology; Faulds, James E. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology

    2013-09-29

    Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal ‘fairways’, areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

  3. Ammonia emissions from Swine waste lagoons in the Utah great basin.

    Science.gov (United States)

    Harper, Lowry A; Weaver, Kim H; Dotson, Richard A

    2006-01-01

    In animal production systems (poultry, beef, and swine), current production, storage, and disposal techniques present a challenge to manage wastes to minimize the emissions of trace gases within relatively small geographical areas. Physical and chemical parameters were measured on primary and secondary lagoons on three different swine farming systems, three replicates each, in the Central Great Basin of the United States to determine ammonia (NH3) emissions. Nutrient concentrations, lagoon water temperature, and micrometeorological data from these measurements were used with a published process model to calculate emissions. Annual cycling of emissions was determined in relation to climatic factors and wind speed was found the predominating factor when the lagoon temperatures were above about 3 degrees C. Total NH3 emissions increased in the order of smallest to largest: nursery, sow, and finisher farms. However, emissions on an animal basis increased from nursery animals being lowest to sow animals being highest. When emissions were compared to the amount of nitrogen (N) fed to the animals, NH3 emissions from sows were lowest with emissions from finisher animals highest. Ammonia emissions were compared to similar farm production systems in the humid East of the United States and found to be similar for finisher animals but had much lower emissions than comparable humid East sow production. Published estimates of NH3 emissions from lagoons ranged from 36 to 70% of feed input (no error range) compared to our emissions determined from a process model of 9.8% with an estimated range of +/-4%.

  4. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.

    Science.gov (United States)

    Arkle, Robert S; Pilliod, David S

    2015-09-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species' range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  5. Integrated monitoring of hydrogeomorphic, vegetative, and edaphic conditions in riparian ecosystems of Great Basin National Park, Nevada

    Science.gov (United States)

    Beever, Erik A.; Pyke, D.A.

    2004-01-01

    In semiarid regions such as the Great Basin, riparian areas function as oases of cooler and more stable microclimates, greater relative humidity, greater structural complexity, and a steady flow of water and nutrients relative to upland areas. These qualities make riparian areaʼs attractive not only to resident and migratory wildlife, but also to visitors in recreation areas such as Great Basin National Park in the Snake Range, east-central Nevada. To expand upon the system of ten permanent plots sampled in 1992 (Smith et al. 1994) and 2001 (Beever et al. in press), we established a collection of 31 cross-sectional transects of 50-m width across the mainstems of Strawberry, Lehman, Baker, and Snake creeks. Our aims in this research were threefold: a) map riparian vegetative communities in greater detail than had been done by past efforts; b) provide a monitoring baseline of hydrogeomorphology; structure, composition, and function of upland- and riparianassociated vegetation; and edaphic properties potentially sensitive to management; and c) test whether instream conditions or physiographic variables predicted vegetation patterns across the four target streams.

  6. Implications of climate change for water resources in the Great Lakes basin

    International Nuclear Information System (INIS)

    Clamen, M.

    1990-01-01

    Several authors have suggested the following impacts of global warming for the Great Lakes region. The average annual warming is predicted by one model to be ca 4.5 degree C, slightly more in winter and slightly less in summer. Annual precipitation is projected to increase by ca 8% for points in the central and western basin, but to decrease by 3-6% for the eastern basin. Basin snowpack could be reduced by up to 100% and the snow season shortened by 2-4 weeks, resulting in a reduction of more than 50% in available soil moisture. Buoyancy-driven turnovers of the water column on four of the six lakes may not occur at all. Presently the phenomena occurs twice per year on all the lakes. Ice formation would be greatly reduced. Maximum ice cover may decline from 72-0% for Lake Superior, 38-0% for Lake Michigan, 65-0% for Lake Huron, 90-50% for Lake Erie and 33-0% for Lake Ontario. Net basin supplies would be reduced probably in the range 15-25% below the current mean value. Possible responses include integrated studies and research, better and continually updated information, assessment of public policies in the U.S. and Canada, enhanced private planning efforts, and increased global cooperation

  7. Bi-national Great Lakes-St. Lawrence Basin climate change and hydrologic scenarios report

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, B.; Smith, J.V.; Koshida, G.; Mortsch, L.D. [eds.

    1998-09-01

    Climate experts in government, industry and academic institutions have put together a national assessment of how climate change will affect Canadians and their social, biological and economic environment over the next century. This volume documents the impacts and implications of climate change on the Great Lakes-St. Lawrence Basin, and provides an analysis and assessment of various climate and hydrologic scenarios used for the Great Lakes - St. Lawrence Basin Project. As part of the analysis and assessment, results from the Canadian Climate Centre second-generation General Circulation Model and four transposition scenarios for both climate and hydrological resources are reviewed. The objective is to provide an indication of sensitivities and vulnerabilities of the region to climate, with a view to improve adaptation to potential climate changes. 25 tabs., 26 figs. figs.

  8. Flow velocities estimated from chlorine-36 in the South-West Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Herczeg, A.L.; Love, A.J.; Sampson, L.; Cresswell, R.G.; Fifield, L.K.

    1999-01-01

    The Great Artesian Basin (GAB) is the largest groundwater basin in the world and is the lifeline for water resources in a large proportion of the arid interior of the Australian continent. Despite its obvious importance, there is a great deal of uncertainty in the estimates of horizontal groundwater flow velocities and recharge rates. We report the first reliable estimates of these sustainability indicators in the south west segment of the GAB. Groundwater was sampled from 23 wells along two transects parallel to the W-E hydraulic gradient for 36 Cl, 14 C, stable isotopes (δ 13 C, δ 18 O, δ 2 H) and major ion chemistry. The groundwater collected was from the undifferentiated Jurassic and Cretaceous (J and K) aquifer. These new data potentially contribute to the resolution of the interpretation of 36 Cl derived ages in a very large slow moving groundwater system and to the overall conceptual understanding of flow systems of the GAB

  9. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    During second quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Plant. This report gives the results of the analyses of groundwater from the H-Area Seepage Basin

  10. 76 FR 17347 - Revision to the California State Implementation Plan, Great Basin Unified Air Pollution Control...

    Science.gov (United States)

    2011-03-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revision to the California State Implementation Plan, Great Basin Unified Air Pollution Control District CFR Correction In Title 40 of the Code of Federal Regulations, Part 52 (Sec. Sec. 52.01 to 52.1018), revised as of July 1, 2010, on page 252, in Sec. 52.220, paragraph (c)(345)(i)(D) is added to...

  11. MODELING ECONOMIC AND ECOLOGICAL BENEFITS OF POST-FIRE REVEGETATION IN THE GREAT BASIN

    OpenAIRE

    Niell, Rebecca; Englin, Jeffrey E.; Nalle, Darek

    2004-01-01

    This study employs a Markov chain model of vegetation dynamics to examine the economic and ecological benefits of post-fire revegetation in the Great Basin sagebrush steppe. The analysis is important because synergies between wildland fire and invasive weeds in this ecosystem are likely to result in the loss of native biodiversity, less predictable forage availability for livestock and wildlife, reduced watershed stability and water quality, and increased costs and risk associated with firefi...

  12. An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem

    International Nuclear Information System (INIS)

    Gilbertson, Michael; Carpenter, D.O.

    2004-01-01

    New concerns about the global presence and human health significance of mercury have arisen as a result of recent epidemiological data demonstrating subtle neurological effects from consumption of mercury-contaminated fish. In the Great Lakes Basin, the complexity of the diverse sources, pools, and sinks of mercury and of the pathways of distribution, fate, and biotransformation requires an ecosystem approach to the assessment of exposures of Great Lakes' human populations. Further epidemiological research is needed to verify preliminary indications of harmful effects in people living near the Great Lakes. Great Lakes fish are valuable resources for subsistence nutrition, recreation, and commerce, but the benefits of fish consumption must be balanced by concern for the hazards from the contaminants that they may contain. The efficacy of fish consumption advisories in reducing exposures should continue to be evaluated while planning continues for remedial actions on contaminated sediments from historic industrial activities and for regulatory action to control sources

  13. Great Basin land managers provide detailed feedback about usefulness of two climate information web applications

    Directory of Open Access Journals (Sweden)

    Chad Zanocco

    Full Text Available Land managers in the Great Basin are working to maintain or restore sagebrush ecosystems as climate change exacerbates existing threats. Web applications delivering climate change and climate impacts information have the potential to assist their efforts. Although many web applications containing climate information currently exist, few have been co-produced with land managers or have incorporated information specifically focused on land managers’ needs. Through surveys and interviews, we gathered detailed feedback from federal, state, and tribal sagebrush land managers in the Great Basin on climate information web applications targeting land management. We found that a managers are searching for weather and climate information they can incorporate into their current management strategies and plans; b they are willing to be educated on how to find and understand climate related web applications; c both field and administrative-type managers want data for timescales ranging from seasonal to decadal; d managers want multiple levels of climate information, from simple summaries, to detailed descriptions accessible through the application; and e managers are interested in applications that evaluate uncertainty and provide projected climate impacts. Keywords: Great Basin, Sagebrush, Land management, Climate change, Web application, Co-production

  14. Soil Preferences in Germination and Survival of Limber Pine in the Great Basin White Mountains

    Directory of Open Access Journals (Sweden)

    Brian V. Smithers

    2017-11-01

    Full Text Available In the Great Basin, limber pine is a sub-alpine tree species that is colonizing newly available habitat above treeline in greater numbers than treeline-dominating Great Basin bristlecone pine, especially on dolomite soil, where few plants are able to grow and where limber pine adults are rare. To examine the role of soil type on germination and establishment of limber pine, I sowed limber pine seeds in containers of the three main White Mountains soil types in one location while measuring soil moisture and temperature. I found that dolomite soil retains water longer, and has higher soil water content, than quartzite and granite soils and has the coolest maximum growing season temperatures. Limber pine germination and survival were highest in dolomite soil relative to quartzite and granite where limber pine adults are more common. While adult limber pines are rare on dolomite soils, young limber pines appear to prefer them. This indicates that limber pine either has only recently been able to survive in treeline climate on dolomite or that bristlecone pine has some long-term competitive advantage on dolomite making limber pine, a species with 1500 year old individuals, an early succession species in Great Basin sub-alpine forests.

  15. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.

    Science.gov (United States)

    Hahnenberger, Maura; Nicoll, Kathleen

    2014-01-01

    This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern

  16. WOOD CELLULAR DENDROCLIMATOLOGY: TESTING NEW PROXIES IN GREAT BASIN BRISTLECONE PINE

    Directory of Open Access Journals (Sweden)

    Emanuele Ziaco

    2016-10-01

    Full Text Available Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870-2013 time series of anatomical parameters were developed for Great Basin bristlecone pine (Pinus longaeva D.K. Bailey by capturing strongly contrasted microscopic images through a Confocal Laser Scanning Microscope. Environmental information embedded in wood anatomical series was analyzed in comparison with ring-width series using measures of empirical signal strength. Response functions were calculated against monthly climatic variables to evaluate climate sensitivity of cellular features (e.g. lumen area; lumen diameter for the period 1950-2013. Calibration-verification tests were used to determine the potential to generate long climate reconstructions from these anatomical proxies. A total of eight tree-ring parameters (two ring-width and six chronologies of xylem anatomical parameters were analyzed. Synchronous variability among samples varied among tree-ring parameters, usually decreasing from ring width to anatomical features. Cellular parameters linked to plant hydraulic performance (e.g. tracheid lumen area and radial lumen diameter showed empirical signal strength similar to ring-width series, while noise was predominant in chronologies of lumen tangential width and cell-wall thickness. Climatic signals were different between anatomical and ring-width chronologies, revealing a positive and temporally stable correlation of tracheid size (i.e. lumen and cell diameter with monthly (i.e. March and seasonal precipitation. In particular, tracheid lumen diameter emerged as a reliable moisture indicator and was then used to reconstruct total March-August precipitation from 1870 to 2013. Wood anatomy holds great potential to refine and expand dendroclimatic records by allowing estimates of plant physiological

  17. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    Science.gov (United States)

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  18. Cyberinfrastructure for remote environmental observatories: a model homogeneous sensor network in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty; Slater, David; Fritzinger, Eric; Lyles, Bradley; Kent, Graham; Smith, Kenneth; Dascalu, Sergiu; Harris, Frederick

    2017-04-01

    Sensor-based data collection has changed the potential scale and resolution of in-situ environmental studies by orders of magnitude, increasing expertise and management requirements accordingly. Cost-effective management of these observing systems is possible by leveraging cyberinfrastructure resources. Presented is a case study environmental observation network in the Great Basin region, USA, the Nevada Climate-ecohydrological Assessment Network (NevCAN). NevCAN stretches hundreds of kilometers across several mountain ranges and monitors climate and ecohydrological conditions from low desert (900 m ASL) to high subalpine treeline (3360 m ASL) down to 1-minute timescales. The network has been operating continuously since 2010, collecting billions of sensor data points and millions of camera images that record hourly conditions at each site, despite requiring relatively low annual maintenance expenditure. These data have provided unique insight into fine-scale processes across mountain gradients, which is crucial scientific information for a water-scarce region. The key to maintaining data continuity for these remotely-located study sites has been use of uniform data transport and management systems, coupled with high-reliability power system designs. Enabling non-proprietary digital communication paths to all study sites and sensors allows the research team to acquire data in near-real-time, troubleshoot problems, and diversify sensor hardware. A wide-area network design based on common Internet Protocols (IP) has been extended into each study site, providing production bandwidth of between 2 Mbps and 60 Mbps, depending on local conditions. The network architecture and site-level support systems (such as power generation) have been implemented with the core objectives of capacity, redundancy, and modularity. NevCAN demonstrates that by following simple but uniform "best practices", the next generation of regionally-specific environmental observatories can evolve to

  19. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems

    Science.gov (United States)

    Knutson, Kevin C.; Pyke, David A.; Wirth, Troy A.; Arkle, Robert S.; Pilliod, David S.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.

    2014-01-01

    1. Invasive annual grasses alter fire regimes in shrubland ecosystems of the western USA, threatening ecosystem function and fragmenting habitats necessary for shrub-obligate species such as greater sage-grouse. Post-fire stabilization and rehabilitation treatments have been administered to stabilize soils, reduce invasive species spread and restore or establish sustainable ecosystems in which native species are well represented. Long-term effectiveness of these treatments has rarely been evaluated. 2. We studied vegetation at 88 sites where aerial or drill seeding was implemented following fires between 1990 and 2003 in Great Basin (USA) shrublands. We examined sites on loamy soils that burned only once since 1970 to eliminate confounding effects of recurrent fire and to assess soils most conducive to establishment of seeded species. We evaluated whether seeding provided greater cover of perennial seeded species than burned–unseeded and unburned–unseeded sites, while also accounting for environmental variation. 3. Post-fire seeding of native perennial grasses generally did not increase cover relative to burned–unseeded areas. Native perennial grass cover did, however, increase after drill seeding when competitive non-natives were not included in mixes. Seeding non-native perennial grasses and the shrub Bassia prostrata resulted in more vegetative cover in aerial and drill seeding, with non-native perennial grass cover increasing with annual precipitation. Seeding native shrubs, particularly Artemisia tridentata, did not increase shrub cover or density in burned areas. Cover of undesirable, non-native annual grasses was lower in drill seeded relative to unseeded areas, but only at higher elevations. 4. Synthesis and applications. Management objectives are more likely to be met in high-elevation or precipitation locations where establishment of perennial grasses occurred. On lower and drier sites, management objectives are unlikely to be met with seeding alone

  20. Water towers of the Great Basin: climatic and hydrologic change at watershed scales in a mountainous arid region

    Science.gov (United States)

    Weiss, S. B.

    2017-12-01

    Impacts of climate change in the Great Basin will manifest through changes in the hydrologic cycle. Downscaled climate data and projections run through the Basin Characterization Model (BCM) produce time series of hydrologic response - recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) - that directly affect water resources and vegetation. More than 50 climate projections from CMIP5 were screened using a cluster analysis of end-century (2077-2099) seasonal precipitation and annual temperature to produce a reduced subset of 12 climate futures that cover a wide range of macroclimate response. Importantly, variations among GCMs in summer precipitation produced by the SW monsoon are captured. Data were averaged within 84 HUC8 watersheds with widley varying climate, topography, and geology. Resultant time series allow for multivariate analysis of hydrologic response, especially partitioning between snowpack, recharge, runoff, and actual evapotranspiration. Because the bulk of snowpack accumulation is restricted to small areas of isolated mountain ranges, losses of snowpack can be extreme as snowline moves up the mountains with warming. Loss of snowpack also affects recharge and runoff rates, and importantly, the recharge/runoff ratio - as snowpacks fade, recharge tends to increase relative to runoff. Thresholds for regime shifts can be identified, but the unique topography and geology of each basin must be considered in assessing hydrologic response.

  1. Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake

    Science.gov (United States)

    Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.

    2014-12-01

    Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion

  2. Quantifying cambial activity of high-elevation conifers in the Great Basin, Nevada, USA

    Science.gov (United States)

    Ziaco, E.; Biondi, F.; Rossi, S.; Deslauriers, A.

    2013-12-01

    Understanding the physiological mechanisms that control the formation of tree rings provides the necessary biological basis for developing dendroclimatic reconstructions and dendroecological histories. Studies of wood formation in the Great Basin are now being conducted in connection with the Nevada Climate-ecohydrological Assessment Network (NevCAN), a recently established transect of valley-to-mountaintop instrumented stations in the Snake and Sheep Ranges of the Great Basin. Automated sensors record meteorological, soil, and vegetational variables at these sites, providing unique opportunities for ecosystem science, and are being used to investigate the ecological implications of xylogenesis. We present here an initial study based on microcores collected during summer 2013 from mountain and subalpine conifers (including Great Basin bristlecone pine, Pinus longaeva) growing on the west slope of Mt. Washington. Samples were taken from the mountain west (SM; 2810 m elevation) and the subalpine west (SS, 3355 m elevation) NevCAN sites on June 16th and 27th, 2013. The SS site was further subdivided in a high (SSH) and a low (SSL) group of trees, separated by about 10 m in elevation. Microscopic analyses showed the effect of elevation on cambial activity, as annual ring formation was more advanced at the lower (mountain) site compared to the higher (subalpine) one. At all sites cambium size showed little variations between the two sampling dates. The number of xylem cells in the radial enlargement phase decreased between the two sampling dates at the mountain site but increased at the subalpine site, confirming a delayed formation of wood at the higher elevations. Despite relatively high within-site variability, a general trend of increasing number of cells in the lignification phase was found at all sites. Mature cells were present only at the mountain site on June 27th. Spatial differences in the xylem formation process emerged at the species level and, within

  3. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  4. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  5. Possible extrinsic controls on the Ordovician radiation: Stratigraphic evidence from the Great Basin, western USA

    Energy Technology Data Exchange (ETDEWEB)

    Droser, M.L. (Univ. of California, Riverside, CA (United States). Dept. of Earth Sciences); Fortey, R.A. (Natural History Museum, London (United Kingdom). Dept. of Palaeontology)

    1993-04-01

    The Ordovician radiation has been previously examined by looking at 1/analyses of patterns of diversification within small clades, 2/analyses of large databases to elucidate large-scale paleoecological patterns such as increased tiering and onshore-offshore shifts associated with this radiation. In order to resolve the relationships between these two scales of analysis there is critical need to examine in detail the paleoecology and possible biofacies shifts associated with the Ordovician radiation. The authors have examined the base of the Whiterock Series (Lower-Middle Ordovician) in the Great Basin as it represents one of the most complete records of the Ordovician radiation on the North American continent. Detailed field evidence suggests that the base of the Whiterock does not represent a simple faunal turnover but corresponds with the first occurrences in the region of groups that come to dominate the rest of the Paleozoic. Among the trilobites, this includes the lichides, calymenids, proetides, and phacopides. Similar patterns are found among the dominate Paleozoic bivalve, cephalopod, brachiopod and graptolite clades. Global correlation of this time interval suggests that this pattern of first broad geographic occurrences is not unique to North America. This boundary corresponds with a globally recognized sea level lowstand. In the Great Basin, significant facies shifts are present in shallow and deep water settings. While extrinsic controls are commonly reserved for extinctions, these data suggest that extrinsic factors may have been significant in the timing of the Paleozoic fauna rose to dominance.

  6. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    Science.gov (United States)

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  7. Petroliferous basin analysis in Jinju area 2

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Ho; Kwak, Young Hoon; Son, Jin Dam; Cheong, Tae Jin; Ryu, Byung Jae; Son, Byeong Kook; Hwang, In Gul; Lee, Yong Joo; Kim, Hag Ju; Ko Jae Hong [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Petroleum geological studies such as stratigraphy, sedimentology, petrology and organic geochemistry were carried out in the Gyeongsang Supergroup, Jinju area. Based on lithofacies and rock color, the sequence can be divided into seven formations which can be organized into two groups (Sindong Group: Nagdong, Hasandong and Jinju formations in ascending order; Hayang Group: Chilgog, Silla Conglomerate, Haman and Jindong formations). The results may indicate that all transformable organic matter has been transformed into hydrocarbon and that considerable hydrocarbons could be generated. All of these indicate that some dry gas potential can be expected if suitable reservoir were formed. (author). 13 refs., 31 figs., 8 tabs.

  8. 75 FR 26786 - Notice of Public Meeting: Sierra Front-Northwestern Great Basin Resource Advisory Council, NV

    Science.gov (United States)

    2010-05-12

    ... 261A; 10-08807; MO 4500012081; TAS: 14X1109] Notice of Public Meeting: Sierra Front-Northwestern Great..., Bureau of Land Management (BLM) Sierra Front-Northwestern Great Basin Resource Advisory Council (RAC... discussion will include, but are not limited to: District Manager's reports on current program of work, Draft...

  9. Drainage areas of the Potomac River basin, West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.

    1996-01-01

    This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.

  10. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    Science.gov (United States)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter

  11. Records of millennial-scale climate change from the Great Basin of the Western United States

    Science.gov (United States)

    Benson, Larry

    High-resolution (decadal) records of climate change from the Owens, Mono, and Pyramid Lake basins of California and Nevada indicate that millennialscale oscillations in climate of the Great Basin occurred between 52.6 and 9.2 14C ka. Climate records from the Owens and Pyramid Lake basins indicate that most, but not all, glacier advances (stades) between 52.6 and ˜15.0 14C ka occurred during relatively dry times. During the last alpine glacial period (˜60.0 to ˜14.0 14C ka), stadial/interstadial oscillations were recorded in Owens and Pyramid Lake sediments by the negative response of phytoplankton productivity to the influx of glacially derived silicates. During glacier advances, rock flour diluted the TOC fraction of lake sediments and introduction of glacially derived suspended sediment also increased the turbidity of lake water, decreasing light penetration and photosynthetic production of organic carbon. It is not possible to correlate objectively peaks in the Owens and Pyramid Lake TOC records (interstades) with Dansgaard-Oeschger interstades in the GISP2 ice-core δ18O record given uncertainties in age control and difference in the shapes of the OL90, PLC92 and GISP2 records. In the North Atlantic region, some climate records have clearly defined variability/cyclicity with periodicities of 102 to 103 yr; these records are correlatable over several thousand km. In the Great Basin, climate proxies also have clearly defined variability with similar time constants, but the distance over which this variability can be correlated remains unknown. Globally, there may be minimal spatial scales (domains) within which climate varies coherently on centennial and millennial scales, but it is likely that the sizes of these domains vary with geographic setting and time. A more comprehensive understanding of the mechanisms of climate forcing and the physical linkages between climate forcing and system response is needed in order to predict the spatial scale(s) over which

  12. Petroliferous basin analysis in Taegu area (II)

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, T J; Oh, J H; Son, J D; Bong, P Y; Lee, H Y; Ryu, B J; Son, B K; Kwon, Y I; Hwang, I G; Lee, Y J; Kim, H J [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Sandstones of the Sindong and Hayang groups belong to the arkose-feldspar arenite. In the Sindong Group, sandstones are dominated by quartz. In the Hayang Group, however, feldspar and tuffaceous sandstones are abundant. Sand grains are subangular to subrounded and moderately-sorted, in which the sand grains show point- and long-contact. Primary pores are filled with diagenetic minerals such as calcite, silica and authigenic clay minerals. Replacement and dissolution of calcite, and alternation of feldspar form the minor secondary pores. Reservoir quality of the sandstones is poor with less than 5% of porosity. In the study area, illite crystallinity is strongly affected by the post depositional intrusion, regardless of stratigraphic position. The burial temperature of the study area could be estimated at about 150-180 deg.C based on illite crystallinity data. In the Sindong Group, vitrinite reflectance ranges from 2.51% to 3.85% Ro and Rock-Eval Tmax ranges from 613 deg. to 711 deg.C, indicating that thermal maturity of the organic matter reached at the last stage of dry gas generation. These data also indicate that all of the transformable organic matter has been transformed into hydrocarbon and that considerable hydrocarbons could have been generated. Geophysical study on the Jinju Formation suggests that P-wave velocity of the sediments is very high and high frequency seismic source should be used to identify main depositional units. In this case, some depositional units can not be recognized, using ordinary seismic data acquisition method. In summary, the Nakdong and Jinju formations contain abundant black shales, and thermal maturity of the organic matter reached at the final stage of dry gas generation. These formations also contain thick sandstones which can act as a petroleum reservoir. However, reservoir quality of the sandstones is poor (porosity: < 5%; permeability: < 0.001 md). In these sandstones, secondary pores such as dissolution pores and

  13. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume I. Dalhart Basin

    International Nuclear Information System (INIS)

    1982-09-01

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and highly variable prcipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  14. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume II. Palo Duro basin

    International Nuclear Information System (INIS)

    1982-09-01

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and high variable precipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  15. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, antimony, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Site. This report presents and discusses the groundwater monitoring results in the H-Area for first quarter 1992

  16. Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty

    Observation of climate and ecohydrological variables in mountain systems is a necessary (if challenging) endeavor for modern society. Water resources are often intimately tied to mountains, and high elevation environments are frequently home to unique landscapes and biota with limited geographical distributions. This is especially true in the temperate and semi-arid mountains of the western United States, and specifically the Great Basin. Stark contrasts in annual water balance and ecological populations are visible across steep elevational gradients in the region; and yet the bulk of our historical knowledge of climate and related processes comes from lowland observations. Interpolative models that strive to estimate conditions in mountains using existing datasets are often found to be inaccurate, making future projections of mountain climate and ecosystem response suspect. This study details the results of high-resolution topographically-diverse ecohydrological monitoring, and describes the character and seasonality of basic climatic variables such as temperature and precipitation as well as their impact on soil moisture and vegetation during the 2012-2015 drought sequence. Relationships of topography (elevation/aspect) to daily and seasonal temperatures are shown. Tests of the PRISM temperature model are performed at the large watershed scale, revealing magnitudes, modes, and potential sources of bias that could dramatically affect derivative scientific conclusions. A new method of precipitation phase partitioning to detect and quantify frozen precipitation on a sub-daily basis is described. Character of precipitation from sub-daily to annual scales is quantified across all major Great Basin vegetation/elevation zones, and the relationship of elevation to precipitation phase, intensity, and amount is explored. Water-stress responses of Great Basin conifers including Pinus flexilis, Pinus longaeva, and Pinus ponderosa are directly observed, showing potential

  17. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    Science.gov (United States)

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  18. First evidence of grass carp recruitment in the Great Lakes Basin

    Science.gov (United States)

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  19. Evaluation of Weights of Evidence to Predict Epithermal-Gold Deposits in the Great Basin of the Western United States

    International Nuclear Information System (INIS)

    Raines, Gary L.

    1999-01-01

    The weights-of-evidence method provides a simple approach to the integration of diverse geologic information. The application addressed is to construct a model that predicts the locations of epithermal-gold mineral deposits in the Great Basin of the western United States. Weights of evidence is a data-driven method requiring known deposits and occurrences that are used as training sites in the evaluated area. Four hundred and fifteen known hot spring gold-silver, Comstock vein, hot spring mercury, epithermal manganese, and volcanogenic uranium deposits and occurrences in Nevada were used to define an area of 327.4 km 2 as training sites to develop the model. The model consists of nine weighted-map patterns that are combined to produce a favorability map predicting the distribution of epithermal-gold deposits. Using a measure of the association of training sites with predictor features (or patterns), the patterns can be ranked from best to worst predictors. Based on proximity analysis, the strongest predictor is the area within 8 km of volcanic rocks younger than 43 Ma. Being close to volcanic rocks is not highly weighted, but being far from volcanic rocks causes a strong negative weight. These weights suggest that proximity to volcanic rocks define where deposits do not occur. The second best pattern is the area within 1 km of hydrothermally altered areas. The next best pattern is the area within 1 km of known placer-gold sites. The proximity analysis for gold placers weights this pattern as useful when close to known placer sites, but unimportant where placers do not exist. The remaining patterns are significantly weaker predictors. In order of decreasing correlation, they are: proximity to volcanic vents, proximity to east-west to northwest faults, elevated airborne radiometric uranium, proximity to northwest to west and north-northwest linear features, elevated aeromagnetics, and anomalous geochemistry. This ordering of the patterns is a function of the quality

  20. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  1. The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Julienne J. eParaiso

    2013-08-01

    Full Text Available Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs are core membrane lipids of many archaea that enhance the integrity of cytoplasmic membranes in extreme environments. We examined the iGDGT profiles and corresponding aqueous geochemistry in 40 hot spring sediment and microbial mat samples from the U.S. Great Basin with temperatures ranging from 31 to 95°C and pH ranging from 6.8 to 10.7. The absolute abundance of iGDGTs correlated negatively with pH and positively with temperature. High lipid concentrations, distinct lipid profiles, and a strong relationship between polar and core lipids in hot spring samples suggested in situ production of most iGDGTs rather than contamination from local soils. Two-way cluster analysis and non-metric multidimensional scaling (NMS of polar iGDGTs indicated that the relative abundance of individual lipids was most strongly related to temperature (r2 = 0.546, with moderate correlations with pH (r2 = 0.359, nitrite (r2 = 0.286, oxygen (r2 = 0.259, and nitrate (r2 = 0.215. Relative abundance profiles of individual polar iGDGTs indicated potential temperature optima for iGDGT-0 (≤70°C, iGDGT-3 (≥55°C, and iGDGT -4 (≥60°C. These relationships likely reflect both physiological adaptations and community-level population shifts in response to temperature differences, such as a shift from cooler samples with more abundant methanogens to higher-temperature samples with more abundant Crenarchaeota. Crenarchaeol was widely distributed across the temperature gradient, which is consistent with other reports of abundant crenarchaeol in Great Basin hot springs and suggests a wide distribution for thermophilic ammonia-oxidizing archaea (AOA.

  2. The use of process models to inform and improve statistical models of nitrate occurrence, Great Miami River Basin, southwestern Ohio

    Science.gov (United States)

    Walter, Donald A.; Starn, J. Jeffrey

    2013-01-01

    in estimated variables for circular buffers and contributing recharge areas of existing public-supply and network wells in the Great Miami River Basin. Large differences in areaweighted mean environmental variables are observed at the basin scale, determined by using the network of uniformly spaced hypothetical wells; the differences have a spatial pattern that generally is similar to spatial patterns in the underlying STATSGO data. Generally, the largest differences were observed for area-weighted nitrogen-application rate from county and national land-use data; the basin-scale differences ranged from -1,600 (indicating a larger value from within the volume-equivalent contributing recharge area) to 1,900 kilograms per year (kg/yr); the range in the underlying spatial data was from 0 to 2,200 kg/yr. Silt content, alfisol content, and nitrogen-application rate are defined by the underlying spatial data and are external to the groundwater system; however, depth to water is an environmental variable that can be estimated in more detail and, presumably, in a more physically based manner using a groundwater-flow model than using the spatial data. Model-calculated depths to water within circular buffers in the Great Miami River Basin differed substantially from values derived from the spatial data and had a much larger range. Differences in estimates of area-weighted spatial variables result in corresponding differences in predictions of nitrate occurrence in the aquifer. In addition to the factors affecting contributing recharge areas and estimated explanatory variables, differences in predictions also are a function of the specific set of explanatory variables used and the fitted slope coefficients in a given model. For models that predicted the probability of exceeding 1 and 4 milligrams per liter as nitrogen (mg/L as N), predicted probabilities using variables estimated from circular buffers and contributing recharge areas generally were correlated but differed

  3. Ground water in selected areas in the Klamath Basin, Oregon

    Science.gov (United States)

    Leonard, A.R.; Harris, A.B.

    1973-01-01

    GROUNDWATER FEATURES OF SIX LOWLAND AREAS IN THE KLAMATH BASIN OF OREGON--KLAMATH MARSH AREA, AND SPRAGUE RIVER, SWAN LAKE, YONNA, POE, AND LANGELL VALLEYS--ARE DESCRIBED. RUGGED MOUNTAINS AND RIDGES SURROUND AND SEPARATE THESE LOWLANDS WHERE FLOORS RANGE IN ALTITUDE FROM 4,100 FEET IN POE VALLEY TO 4,600 FEET NORTH OF KLAMATH MARSH. THE SIX AREAS EXTEND OVER A NORTH-SOUTH DISTANCE OF 70 MILES, AN EAST-WEST DISTANCE OF 40 MILES, AND INCLUDE AN AREA OF APPROXIMATELY 600 SQUARE MILES. THE AREA IS SEMIARID AND RECEIVED ABOUT 14 TO 18 INCHES OF PRECIPITATION A YEAR. EXTINCT VOLCANOES AND THEIR EXTRUSIONS CHARACTERIZE THE AREA. MOST WELLS TAP PERMEABLE BASALT OR CINDERY RUBBLE BENEATH THE LACUSTRINE BEDS. THE DEPTHS OF WELLS RANGE FROM LESS THAN 50 TO NEARLY 2,000 FEET--MOST ARE BETWEEN 100 AND 1,000 FEET DEEP. FLOWING WELLS OCCUR IN ALL AREAS EXCEPT SWAN LAKE VALLEY. THE MOST EXTENSIVE AREA OF FLOWING WELLS IS IN THE SPRAGUE RIVER VALLEY, WHERE ABOUT 25 WELLS, SOME FLOWING MORE THAN 2,000 GPM, SUPPLY WATER FOR IRRIGATION. WATER LEVELS IN WELLS FLUCTUATE SEASONALLY FROM 1 TO 4 FEET. GROUNDWATER IN THE BASIN IS OF EXCELLENT QUALITY FOR DRINKING, IRRIGATION, AND MOST INDUSTRIAL USES.

  4. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  5. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  6. Airborne geophysical survey, Wind River Basin area, Wyoming

    International Nuclear Information System (INIS)

    1974-01-01

    Results are reported of AEC-sponsored, high sensitivity, reconnaisance airborne gamma-ray survey of the Wind River Basin area, Wyoming. The objective of the survey was to define those areas showing surface indications of a generally higher uranium content (uraniferous provinces) and where detailed exploration for uranium would most likely be successful. For the data collection tasks, a TI high sensitivity gamma-ray system consisting of seven large-volume NaI detectors, two 400-channel analyzers, and ancillary geophysical and electronic equipment was used. Gamma-ray spectrometric data were processed to correct for variations in atmospheric and flight conditions and statistically evaluated to remove the effect of surface geologic variations. Data were then compared to regional geomorphic lineaments derived from ERTS-1 imagery. Aeromagnetic data were collected simultaneously with the airborne gamma-ray survey and interpreted in terms of regional structure. Ten major anomalous uranium areas and ten less strong anomalous areas were defined within the region surveyed. These anomalies and the known mining districts and uranium occurrences demonstrated good correlation with the ERTS lineaments. The basins were defined by the aeromagnetic data. It is suggested that gamma-ray spectrometer data be supplemented by both the ERTS and aeromagnetic data to best define the targets of greatest potential for further exploration. (U.S.)

  7. The Great Basin Canada goose in southcentral Washington: A 40-year nesting history

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Rickard, W.H.; Eberhardt, L.E.; Gray, R.H.

    1991-04-01

    Overall, the nesting population of Great Basin Canada geese (Branta canadensis moffitti) on the Hanford Site in southcentral Washington State is doing well and appears to be increasing. The average annual total nests for the period 1981 through 1990 was 215 nests, which is slightly above the average reported for the period 1950 through 1970. The nesting population has shifted its nucleus from upriver islands (1--10) to the lower river islands (11--20) with over 70% of the present-day nesting occurring on Islands 17, 18, 19, 20. The annual percent-successful nests from 1981 through 1990 was 80%. This is above the 71% reported for 1950 to 1970, but is below the 82% reported for 1971 to 1980. Average annual clutch size for 1981 to 1990 was 6.05, which is above the 1971-to-1980 average of 5.6 and the 1950-to-70 average of 5.5. Next desertions for 1981 to 1990 averaged 8%. This rate is well below the 14% reported for 1950 to 1970. Predators were responsible for an annual predation rate of 9% from 1981 to 1990. This is below the 1950-to-1970 annual average predation rate of 14%. Flooding losses to nests were low during the 1980s, except for 1989 and 1990 when 6% and 9% of the total nests, respectively, were destroyed by flooding. 9 refs., 4 figs., 1 tab

  8. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    Science.gov (United States)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  9. Advances in Hydrogeochemical Indicators for the Discovery of New Geothermal Resources in the Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart F. [Colorado School of Mines, Golden, CO (United States). Geology and Geological Engineering; Spycher, Nicolas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2013-05-20

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  10. Extraction of uranium low-grade ores from Great Divide Basin, Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Judd, J.C.; Nichols, I.L.; Huiatt, J.L.

    1983-04-01

    The US Bureau of Mines is investigating the leachability of carbonaceous uranium ore samples submitted by the DOE under an Interagency Agreement. Studies on eight samples from the Great Divide Basin, Wyoming, are the basis of this report. The uranium content of the eight ore samples ranged from 0.003 to 0.03% U 3 O 8 and contained 0.7 to 45% organic carbon. Experiments were performed to determine the feasibility of extracting uranium using acid leaching, roast-acid leaching and pressure leaching techniques. Acid leaching with 600 lb/ton H 2 SO 4 plus 10 lb/ton NaClO 3 for 18 h at 70 0 C extracted 65 to 83% of the uranium. One sample responded best to a roast-leach treatment. When roasting for 4 h at 500 0 C followed by acid leaching of the calcine using 600 lb/ton H 2 SO 4 , the uranium extraction was 82%. Two of the samples responded best to an oxidative pressure leach for 3 h at 200 0 C under a total pressure of 260 psig; uranium extractions were 78 and 82%

  11. Consistency of variables in PCS and JASTRO great area database

    International Nuclear Information System (INIS)

    Nishino, Tomohiro; Teshima, Teruki; Abe, Mitsuyuki

    1998-01-01

    To examine whether the Patterns of Care Study (PCS) reflects the data for the major areas in Japan, the consistency of variables in the PCS and in the major area database of the Japanese Society for Therapeutic Radiology and Oncology (JASTRO) were compared. Patients with esophageal or uterine cervical cancer were sampled from the PCS and JASTRO databases. From the JASTRO database, 147 patients with esophageal cancer and 95 patients with uterine cervical cancer were selected according to the eligibility criteria for the PCS. From the PCS, 455 esophageal and 432 uterine cervical cancer patients were surveyed. Six items for esophageal cancer and five items for uterine cervical cancer were selected for a comparative analysis of PCS and JASTRO databases. Esophageal cancer: Age (p=.0777), combination of radiation and surgery (p=.2136), and energy of the external beam (p=.6400) were consistent for PCS and JASTRO. However, the dose of the external beam for the non-surgery group showed inconsistency (p=.0467). Uterine cervical cancer: Age (p=.6301) and clinical stage (p=.8555) were consistent for the two sets of data. However, the energy of the external beam (p<.0001), dose rate of brachytherapy (p<.0001), and brachytherapy utilization by clinical stage (p<.0001) showed inconsistencies. It appears possible that the JASTRO major area database could not account for all patients' backgrounds and factors and that both surveys might have an imbalance in the stratification of institutions including differences in equipment and staffing patterns. (author)

  12. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    Science.gov (United States)

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated

  13. K-Area Acid/Caustic Basin groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1992-09-01

    During second quarter 1992, samples from the seven older KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, and other constituents. New wells FAC 8 and 9 received the first of four quarters of comprehensive analyses and GC/MS VOA (gas chromatograph/ mass spectrometer volatile organic analyses). Monitoring results that exceeded the US Environmental Protection Agency's Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standards during the quarter are discussed in this report

  14. Assessing potential impacts of climate change and variability on the Great Lakes-St. Lawrence Basin: A binational approach

    International Nuclear Information System (INIS)

    Quinn, F.H.; Mortsch, L.D.

    1997-01-01

    The potential impacts of climate change and variability on the Great Lakes environment are serious and complex. The Great Lakes-St. Lawrence Basin is home to 42.5 million US and Canadian citizens and is the industrial and commercial heartland of both nations. The region is rich in human and natural resources, with diverse economic activities and substantial infrastructure which would be affected by major shifts in climate. For example, water level changes could affect wetland distribution and functioning; reductions in streamflow would alter assimilative capacities while warmer water temperatures would influence spring and fall turnover and incidence of anoxia. A binational program has been initiated to conduct interdisciplinary, integrated impact assessments for the Great Lakes-St. Lawrence River Basin. The goal of this program is to undertake interdisciplinary, integrated studies to improve the understanding of the complex interactions between climate, the environment, and socioeconomic systems in order to develop informed regional adaptation responses

  15. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    Science.gov (United States)

    Hollingsworth, Jeffery L.

    2016-01-01

    ' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  16. Regional evaluation and primary geological structural and metallogenical research of great Kavir basin as view of possibility formation of sedimentary-surficial Uranium mineralization

    International Nuclear Information System (INIS)

    Kamali Sadr, S.

    2006-01-01

    Great Kavir basin is the largest inner basin in Iran that extended about 90000 km 2. This basin is situated in the centre of lran , to the south from Alborz mountain range and elongated in the sub- latitudinal trend and its construction is asymmetric. The basin cover consists generally of complicated sequence of continental - marine Oligocene - Miocene molasses. According to drainage systems - conditions, molassoid cycles, alluvial, alluvial - deltaic and lacustrine sediments, climate, morphological conditions and metallogenic and structural features, Great Kavir depression generally is favorable for exigence and surficial uranium deposits (vally - fill, flood plain, deltaic and playa). Uranium occurrences that are Known in the southern and north eastern part of the margent Great Kavir basin, are Arosan, Irekan and Mohammad Abad. Similar geological - structural conditions for uranium mineralization is possible in the margent of Great Kavir basin

  17. Integrated scientific assessment for ecosystem management in the interior Columbia Basin and portions of the Klamath and Great Basins.

    Science.gov (United States)

    Thomas M. Quigley; Richard W Haynes; Russell T. Graham

    1996-01-01

    The Integrated Scientific Assessment for Ecosystem Management for the Interior Columbia Basin links landscape, aquatic, terrestrial, social, and economic characterizations to describe biophysical and social systems. Integration was achieved through a framework built around six goals for ecosystem management and three different views of the future. These goals are:...

  18. 8000 yr of vegetation reconstruction from the Great Basin (Nevada, USA): the contribution of Non-Pollen Palynomorphs.

    Science.gov (United States)

    Tunno, I.; Mensing, S. A.

    2017-12-01

    Multiproxy records from the Great Basin showed that a severe drought occurred in the area between 3000-1850 BP (Mensing et al., 2013). The pollen analysis on a 7m sediment core from Stonehouse Meadow revealed that during this period arboreal pollen dropped abruptly, reaching the lowest percentage ( 10%) around 2500 BP. At the same time, grass and herbs increased significantly ( 60%) together with the total carbonate percentage (TC%). To better understand this dramatic event, the analysis of Non-Pollen Palynomorphs (NPPs) was conducted. NPPs are microfossils that survive the chemical treatment during pollen extraction and appear in pollen slides. They are valuable indicators of climate- and human-induced changes, and due to their different origin, NPPs can be integrated with pollen analysis to corroborate and improve the information provided by pollen records. To obtain more reliable information, fossil NPPs from the sediment core were compared to modern NPPs and the pollen records. Modern samples, represented by mineral soil and sediment specimens, were collected around the meadow in 2015. Fossil NPPs were counted from the same sediment core subsamples previously analyzed for pollen records. A total of 64 different NPPs were identified from both modern and fossil samples, 33 of which were identified as unknowns and given an identification code. While several of the known NPPs were consistent with the data provided by pollen record, the most crucial information was provided by some of the unknown NPPs, such as PLN-01, PLN-20 and PLN-11. The presence of PLN-01 and PLN-20 on the edge of the meadow in the modern samples and right before and after the driest period in the core, supports the evidence of a drought, when the meadow was likely shrinking during the transition from a wetter to a drier period and expanding once again after the drought. PLN-11 appears to be related to the drought as well, occurring exclusively during the driest period. However, this NPP was not

  19. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.

    Directory of Open Access Journals (Sweden)

    Maike F Holthuijzen

    grasses might improve plant establishment, growth, or survival (or some combination thereof, particularly in drier areas. We suggest that land managers consider the nurse plant approach as a way to increase perennial grass abundance in the Great Basin. Controlled experimentation will provide further insights into the life stage-specific effectiveness and practicality of a nurse plant approach for ecological restoration in this region.

  20. Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia's Great Artesian Basin

    Science.gov (United States)

    Smerdon, Brian D.; Turnadge, Chris

    2015-08-01

    Hydraulic head measurements in the Great Artesian Basin (GAB), Australia, began in the early 20th century, and despite subsequent decades of data collection, a well-accepted smoothed potentiometric surface has continually assumed a contiguous aquifer system. Numerical modeling was used to produce alternative potentiometric surfaces for the Cadna-owie-Hooray aquifers with and without the effect of major faults. Where a fault created a vertical offset between the aquifers and was juxtaposed with an aquitard, it was assumed to act as a lateral barrier to flow. Results demonstrate notable differences in the central portion of the study area between potentiometric surfaces including faults and those without faults. Explicitly considering faults results in a 25-50 m difference where faults are perpendicular to the regional flow path, compared to disregarding faults. These potential barriers create semi-isolated compartments where lateral groundwater flow may be diminished or absent. Groundwater management in the GAB relies on maintaining certain hydraulic head conditions and, hence, a potentiometric surface. The presence of faulting has two implications for management: (1) a change in the inferred hydraulic heads (and associated fluxes) at the boundaries of regulatory jurisdictions; and (2) assessment of large-scale extractions occurring at different locations within the GAB.

  1. Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah

    Directory of Open Access Journals (Sweden)

    Meredith C. Schuman

    2013-01-01

    Full Text Available Big-eyed bugs (Geocoris spp. Fallén, Hemiptera: Lygaeidae are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stål and G. punctipes (Say native to the Great Basin Desert of southwestern Utah, including observations of their life histories and color morphs, dynamics of their predatory feeding behavior and prey choice over space and time, and novel aspects of Geocoris spp.’s relationships to their host plants. These observations open up new areas to be explored regarding the behavior of Geocoris spp. and their interactions with plant and herbivore populations.

  2. A population model of the impact of a rodenticide containing strychnine on Great Basin Gophersnakes (Pituophis catenifer deserticola).

    Science.gov (United States)

    Bishop, Christine A; Williams, Kathleen E; Kirk, David A; Nantel, Patrick; Reed, Eric; Elliott, John E

    2016-09-01

    Strychnine is a neurotoxin and an active ingredient in some rodenticides which are placed in burrows to suppress pocket gopher (Thomomys talpoides) populations in range and crop land in western North America. The population level impact was modelled of the use of strychnine-based rodenticides on a non-target snake species, the Great Basin Gophersnake (Pituophis catenifer deserticola), which is a predator of pocket gopher and a Species at Risk in Canada. Using information on population density, demographics, and movement and habitat suitability for the Gophersnake living in an agricultural valley in BC, Canada, we estimated the impact of the poisoning of adult snakes on the long-term population size. To determine the area where Gophersnakes could be exposed to strychnine, we used vendor records of a rodenticide, and quantified the landcover areas of orchards and vineyards where the compound was most commonly applied. GIS analysis determined the areas of overlap between those agricultural lands and suitable habitats used by Gophersnakes. Stage-based population matrix models revealed that in a low density (0.1/ha) population scenario, a diet of one pocket gopher per year wherein 10 % of them carried enough strychnine to kill an adult snake could cause the loss of 2 females annually from the population and this would reduce the population by 35.3 % in 25 years. Under the same dietary exposure, up to 35 females could die per year in a high density (0.4/ha) population which would result in a loss of 50 % of adults in 25 years.

  3. Use of the GREAT-ER model to estimate mass fluxes of chemicals, carried into the Western Scheldt estuary from the Rupel basin

    OpenAIRE

    Schowanek, D.

    2002-01-01

    The poster illustrates the application of the GREAT-ER model to estimate the mass flux of chemicals carried from a river basin into an estuary. GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) is a newly developed model (1999) for management and risk assessment of chemicals in river basins (see www.great-er.org). Recently the Rupel basin has been made available for use within GREAT-ER. This now allows to make a reliable estimation of the contribution of pollu...

  4. Hydrologic variability in the Red River of the North basin at the eastern margin of the northern Great Plains

    International Nuclear Information System (INIS)

    Wiche, G.J.

    1991-01-01

    The temporal and spatial variations in streamflow in the Red River of the North basin on the eastern margin of the Great Plains are described and related to the various climatic conditions associated with the flows. The Red River drains about 290,000 square kilometers in parts of Minnesota, South Dakota, North Dakota, Saskatchewan and Manitoba, and a 200 year flood history is available from documents of fur traders, explorers and missionaries, as well as from gauging-station records. The coefficient of variation of mean annual streamflow ranges from ca 110% for streams in the southern and western parts of the Assiniboine River basin to ca 50% for streams along the eastern margin of the Red River of the North basin. Decadal streamflow variability is great in the Red River of the North basin, with mean annual streamflow for the 10 years ending 1940 of 489 cubic hectometers and for the 10 years ending 1975 of 3,670 cubic hectometers. Construction of the Rafferty Reservoir on the Souris River and the Almeda Reservoir on Moose Mountain Creek will cause changes in water quality in the Souris River, with most problems occurring during protracted low flow conditions

  5. Preliminary evaluation of the radioactive waste isolation potential of the alluvium-filled valleys of the Great Basin

    International Nuclear Information System (INIS)

    Smyth, J.R.; Crowe, B.M.; Halleck, P.M.; Reed, A.W.

    1979-08-01

    The occurrences, geologic features, hydrology, and thermal, mechanical, and mineralogical properties of the alluvium-filled valleys are compared with those of other media within the Great Basin. Computer modeling of heat conduction indicates that heat generated by the radioactive waste can be dissipated through the alluvium in a manner that will not threaten the integrity of the repository, although waste emplacement densities will be lower than for other media available. This investigation has not revealed any failure mechanism by which one can rule out alluvium as a primary waste isolation medium. However, the alluvium appears to rank behind one or more other possible media in all properties examined except, perhaps, in sorption properties. It is therefore recommended that alluvium be considered as a secondary isolation medium unless primary sites in other rock types in the Great Basin are eliminated from consideration on grounds other than those considered here

  6. H-Area Seepage Basins: Environmental information document

    International Nuclear Information System (INIS)

    Killian, T.H.; Kolb, N.L.; Corbo, P.

    1986-12-01

    The basins contain liquid low-level radioactivity and chemicals from the H-Area separations facility. Wells monitor the water table in the vicinity of the basins and also underlying aquifers to detect any vertical contaminant migration. A statistical analysis of monitoring data from this site indicates elevated levels of chloride, fluoride, manganese, mercury, nitrate, sodium, and total radium in the groundwater. The predominant pathways for human exposure to contaminants are surface, subsurface, and atmospheric transport. Modeling calculations were performed to determine the risks to humans via these pathways for the postulated closure options. Modeling calculations were also performed to determine ecological impacts. The environmental impact evaluation indicates that the relative human health risks for all closure options are low. Tritium, the dominant radionuclide, reached a maximum risk in Year -29 (from 1985) of 2.7E-04 HE/yr. Results of the atmospheric pathway modeling indicate that risks associated with the no action option are 2 or more orders of magnitude greater than the waste removal closure option for both radionuclides and chemicals. Ecological analysis indicates that the choice of closure option has no effect on the maximum surface water quality impacts. Implementation of no waste removal or waste removal closure options would not appreciably accelerate a decline in groundwater outcrop concentrations. 49 refs., 41 figs., 94 tabs

  7. Macroecology, paleoecology, and ecological integrity of terrestrial species and communities of the interior Columbia basin and northern portions of the Klamath and Great Basins.

    Science.gov (United States)

    Bruce G. Marcot; L.K. Croft; J.F. Lehmkuhl; R.H. Naney; C.G. Niwa; W.R. Owen; R.E. Sandquist

    1998-01-01

    This report present information on biogeography and broad-scale ecology (macroecology) of selected fungi, lichens, bryophytes, vascular plants, invertebrates, and vertebrates of the interior Columbia River basin and adjacent areas. Rareplants include many endemics associated with local conditions. Potential plant and invertebrate bioindicators are identified. Species...

  8. Hydrologic Vulnerability and Risk Assessment Associated With the Increased Role of Fire on Western Landscapes, Great Basin, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.

    2010-12-01

    Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.

  9. Alien invasive species and biological pollution of the Great Lakes Basin ecosystem[Great Lakes Water Quality Board : Report to the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The displacement of important native species in the Great Lakes is a result of an invasion by a succession of non indigenous aquatic species. These invasion also resulted in interference with the proper human water uses and cost billions of dollars. The problem was considered serious enough that the International Joint Commission asked the Great Lakes Water Quality Board in 1999 to review the regulations in place and make recommendations, if necessary, for the implementation of additional measures that could be considered to keep control over the introduction of alien invasive species. Escapes from aquaria, aquaculture, research and educational facilities, canal and diversion water flows, and release of live bait are all sources of this invasion. The effectiveness of alternative technologies to control the invasion was to be examined by the Board. Other efforts taking place to address the situation in the basin are being complemented by the publication of this report. It is considered that the most important source of alien invasive species (AIS) to the Great Lakes is the discharge of ballast water from shipping vessels coming from outside the United States and Canada. A major concern is the role played by vessels reporting no ballast on board (NOBOB) upon entering the basin. A number of recommendations were made concerning: (1) implementation and enforcement of the ballast water discharge standards agreed upon by both countries, (2) the evaluation of the effectiveness of alternative technologies to achieve ballast water discharge standards over the long term, combined with the use of chemical treatment while the evaluation is being performed, (3) the implementation of optimal management practices to control sediments in shipping vessels, (4) modifications to the design of shipping vessels, and (5) the monitoring and contingency plans in the event of a repeat scenario in the future. Composed of an equal number representatives from the United States and Canada, at

  10. Geochemistry and travertine dating provide new insights into the hydrogeology of the Great Artesian Basin, South Australia

    International Nuclear Information System (INIS)

    Love, A.J.; Rousseau-Gueutin, P.; Priestley, S.; Keppel, M.; Shand, P.; Karlstrom, K.; Crossey, L.; Wholing, D.; Fulton, S.

    2013-01-01

    While of great national and societal significance, and importance in its own right, the Great Artesian Basin of Australia is an iconic example of a continental scale artesian groundwater system. New geochemical, hydrological, and neo-tectonic data suggests that existing models that involve recharge in eastern Australia, relatively simple flow paths and discharge in springs in the western margin require modification. New geochemical data indicate a small volume flux of deeply derived (endogenic) fluids mixing into the aquifer system at a continental scale. Neotectonic data indicates active tectonism today that provides a fluid pathway through faults for the deeply sourced endogenic fluids to discharge in GAB travertine depositing springs. (authors)

  11. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    Science.gov (United States)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  12. A high 87Sr 86Sr mantle source for low alkali tholeiite, northern Great Basin

    Science.gov (United States)

    Mark, R.K.; Lee, Hu C.; Bowman, H.R.; Asaro, F.; McKee, E.H.; Coats, R.R.

    1975-01-01

    Olivine tholeiites, the youngest Tertiary units (about 8-11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250-3350 ppm), Rb (1??9-6??2 ppm) and Sr (140-240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100-780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0??7052-0??7076, considerably higher than MORB (~0??702-0??703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0??02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0??04. A significant decrease in Rb/Sr of the source material (a factor 2??) thus most probably occurred in the relatively recent (1??09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr 86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history. ?? 1975.

  13. H-Area Acid/Caustic Basin Groundwater Monitoring Report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in wells HAC 1, 2, 3, and 4 during fourth quarter 1992. Tritium activities in upgradient well HAC 4 were similar to tritium levels in wells HAC 1, 2, and 3. Iron was elevated in well HAC 1, 2, and 3. Specific conductance and manganese were elevated in one downgradient well each. No well samples exceeded the SRS turbidity standard. During 1992, tritium was the only constituent that exceeded the final PDWS. It did so consistently in all four wells during all four quarters, with little variability in activity

  14. M-Area Settling Basin and vicinity: Environmental information document

    International Nuclear Information System (INIS)

    Pickett, J.B.; Colven, W.P.; Bledsoe, H.W.

    1986-12-01

    This document provides environmental information on postulated closure options for the M-Area Settling Basin and vicinity at the Savannah River Plant and was developed as background technical documentation for the Department of Energy's proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (40 CFR 1500-1508). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations

  15. L-Area Oil and Chemical Basin: Environmental information document

    International Nuclear Information System (INIS)

    Pekkala, R.O.; Price, V.; Bledsoe, H.W.

    1986-12-01

    This document provides environmental information on postulated closure options for the L-Area Oil and Chemical Basin at the Savannah River Plant and was developed as background technical documentation for the Department of Energy's proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (40 CFR 1500-1508). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a regulatory closure plan or other regulatory document to comply with required federal or state environmental regulations

  16. Empirical assessment of effects of urbanization on event flow hydrology in watersheds of Canada's Great Lakes-St Lawrence basin

    Science.gov (United States)

    Trudeau, M. P.; Richardson, Murray

    2016-10-01

    We conducted an empirical hydrological analysis of high-temporal resolution streamflow records for 27 watersheds within 11 river systems in the Greater Toronto Region of the Canadian Great Lakes basin. Our objectives were to model the event-scale flow response of watersheds to urbanization and to test for scale and threshold effects. Watershed areas ranged from 37.5 km2 to 806 km2 and urban percent land cover ranged from less than 0.1-87.6%. Flow records had a resolution of 15-min increments and were available over a 42-year period, allowing for detailed assessment of changes in event-scale flow response with increasing urban land use during the post-freshet period (May 26 to November 15). Empirical statistical models were developed for flow characteristics including total runoff, runoff coefficient, eightieth and ninety-fifth percentile rising limb event runoff and mean rising limb event acceleration. Changes in some of these runoff metrics began at very low urban land use (acceleration increased with increasing urban cover, thus causing 80th percentile runoff depths to be reached sooner. These results indicate the potential for compromised water balance when cumulative changes are considered at the watershed scale. No abrupt or threshold changes in hydrologic characteristics were identified along the urban land use gradient. A positive interaction of urban percent land use and watershed size indicated a scale effect on total runoff. Overall, the results document compromised hydrologic stability attributable to urbanization during a period with no detectable change in rainfall patterns. They also corroborate literature recommendations for spatially distributed low impact urban development techniques; measures would be needed throughout the urbanized area of a watershed to dampen event-scale hydrologic responses to urbanization. Additional research is warranted into event-scale hydrologic trends with urbanization in other regions, in particular rising limb event

  17. A simple prioritization tool to diagnose impairment of stream temperature for coldwater fishes in the Great Basin

    Science.gov (United States)

    Falke, Jeffrey A.; Dunham, Jason B.; Hockman-Wert, David; Pahl, Randy

    2016-01-01

    We provide a simple framework for diagnosing the impairment of stream water temperature for coldwater fishes across broad spatial extents based on a weight-of-evidence approach that integrates biological criteria, species distribution models, and geostatistical models of stream temperature. As a test case, we applied our approach to identify stream reaches most likely to be thermally impaired for Lahontan Cutthroat Trout Oncorhynchus clarkii henshawi in the upper Reese River, located in the northern Great Basin, Nevada. We first evaluated the capability of stream thermal regime descriptors to explain variation across 170 sites, and we found that the 7-d moving average of daily maximum stream temperatures (7DADM) provided minimal among-descriptor redundancy and, based on an upper threshold of 20°C, was also a good indicator of acute and chronic thermal stress. Next, we quantified the range of Lahontan Cutthroat Trout within our study area using a geographic distribution model. Finally, we used a geostatistical model to assess spatial variation in 7DADM and predict potential thermal impairment at the stream reach scale. We found that whereas 38% of reaches in our study area exceeded a 7DADM of 20°C and 35% were significantly warmer than predicted, only 17% both exceeded the biological criterion and were significantly warmer than predicted. This filtering allowed us to identify locations where physical and biological impairment were most likely within the network and that would represent the highest management priorities. Although our approach lacks the precision of more comprehensive approaches, it provides a broader context for diagnosing impairment and is a useful means of identifying priorities for more detailed evaluations across broad and heterogeneous stream networks.

  18. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  19. Long-term effects of wildfire on greater sage-grouse - integrating population and ecosystem concepts for management in the Great Basin

    Science.gov (United States)

    Coates, Peter S.; Ricca, Mark A.; Prochazka, Brian G.; Doherty, Kevin E.; Brooks, Matthew L.; Casazza, Michael L.

    2015-09-10

    Greater sage-grouse (Centrocercus urophasianus; hereinafter, sage-grouse) are a sagebrush obligate species that has declined concomitantly with the loss and fragmentation of sagebrush ecosystems across most of its geographical range. The species currently is listed as a candidate for federal protection under the Endangered Species Act (ESA). Increasing wildfire frequency and changing climate frequently are identified as two environmental drivers that contribute to the decline of sage-grouse populations, yet few studies have rigorously quantified their effects on sage-grouse populations across broad spatial scales and long time periods. To help inform a threat assessment within the Great Basin for listing sage-grouse in 2015 under the ESA, we conducted an extensive analysis of wildfire and climatic effects on sage-grouse population growth derived from 30 years of lek-count data collected across the hydrographic Great Basin of Western North America. Annual (1984–2013) patterns of wildfire were derived from an extensive dataset of remotely sensed 30-meter imagery and precipitation derived from locally downscaled spatially explicit data. In the sagebrush ecosystem, underlying soil conditions also contribute strongly to variation in resilience to disturbance and resistance to plant community changes (R&R). Thus, we developed predictions from models of post-wildfire recovery and chronic effects of wildfire based on three spatially explicit R&R classes derived from soil moisture and temperature regimes. We found evidence of an interaction between the effects of wildfire (chronically affected burned area within 5 kilometers of a lek) and climatic conditions (spring through fall precipitation) after accounting for a consistent density-dependent effect. Specifically, burned areas near leks nullifies population growth that normally follows years with relatively high precipitation. In models, this effect results in long-term population declines for sage-grouse despite cyclic

  20. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    Science.gov (United States)

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  1. Hydrogeochemical studies of historical mining areas in the Humboldt River basin and adjacent areas, northern Nevada

    Science.gov (United States)

    Nash, J. Thomas

    2005-01-01

    The study area comprises the Humboldt River Basin and adjacent areas, with emphasis on mining areas relatively close to the Humboldt River. The basin comprises about 16,840 mi2 or 10,800,000 acres. The mineral resources of the Humboldt Basin have been investigated by many scientists over the past 100 years, but only recently has our knowledge of regional geology and mine geology been applied to the understanding and evaluation of mining effects on water and environmental quality. The investigations reported here apply some of the techniques and perspectives developed in the Abandoned Mine Lands Initiative (AMLI) of the U.S. Geological Survey (USGS), a program of integrated geological-hydrological-biological-chemical studies underway in the Upper Animas River watershed in Colorado and the Boulder River watershed in, Montana. The goal of my studies of sites and districts is to determine the character of mining-related contamination that is actively or potentially a threat to water quality and to estimate the potential for natural attenuation of that contamination. These geology-based studies and recommendations differ in matters of emphasis and data collection from the biology-based assessments that are the cornerstone of environmental regulations.

  2. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    Science.gov (United States)

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  3. Money, management, and manipulation: Environmental mobilization in the Great Lakes basin

    International Nuclear Information System (INIS)

    Gould, K.A.

    1991-01-01

    This document examines variations in the responses of communities to local pollution problems affecting Great Lakes water quality. The study is based on research conducted at six such communities, at sites that have been designated as 'Areas of Concern' by the International Joint Commission. The roles of economic dependency or diversity, access to scientific and political resources, community size, social visibility of pollution, and consciousness- and unconsciousness-making activities are examined as they relate to grass roots political mobilization in response to local, lake-related environmental issues. Of particular interest is the participation of national and regional environmental social movement organizations, Federal, State/Provincial and local governments, and local industry. National and regional environmental social movement organizations appear to have a greater mobilizing impact on communities that are closest to the urban centers in which these organizations are based. State and Provincial environmental agencies play a centrist role in promoting minimal remediation. Local governments typically oppose the definition of local environmental disorganization as a problem

  4. Closure plan for the M-Area settling basin and vicinity at the Savannah River Plant

    International Nuclear Information System (INIS)

    Colven, W.P.; Pickett, J.B.

    1985-07-01

    The areas addressed in this closure plan include a process sewer line, surface impoundment (settling basin), overflow ditch, seepage area, and a Carolina Bay known as Lost Lake. Since it is proposed that the basin and vicinity be closed with the hazardous wastes placed and stabilized in the basin, it will be closed pursuant to regulations for closing a hazardous waste landfill. No free liquids will remain in the impoundment after closure is completed

  5. Hydrology of the Upper Capibaribe Basin, Pernambuco, Brazil - A reconnaissance in an Area of Crystalline Rocks

    Science.gov (United States)

    Chada Filho, Luiz Goncalves; Dias Pessoa, Mario; Sinclair, William C.

    1966-01-01

    The upper Capibaribe basin is the western three-fourths, approximately, of the valley of the river that empties into the Atlantic Ocean at Recife, the capital of the State of Pernambuco, Brazil. It is the part of the drainage basin that is within the Drought Polygon of northeast Brazil, and it totals about 5,400 square kilometers. It receives relatively abundant precipitation in terms of the annual average, yet is regarded as hot subhumid to semiarid because the precipitation is uneven from year to year and place to place. The dependable water supply, therefore, is small. The basin has water, which could be put to better use than at present, but the opportunities for augmenting the usable supply are not great. The streams are intermittent and therefore cannot be expected to fill surface reservoirs and to keep them filled. The ground-water reservoirs have small capacity--quickly filled and quickly drained. A rough estimate based on the records for 1964 suggests that, of 4,700 million cubic meters of precipitation in the upper Capibaribe basin, 2,700 million cubic meters (57 percent) left the basin as runoff and 2,000 million cubic meters {43 percent) went into underground storage or was evaporated or transpired. The bedrock of the upper Capibaribe basin is composed of granite, gneiss, schist, and other varieties of crystalline rocks, which have only insignificant primary permeability. They are permeable mainly where fractured. The principal fracture zones, fortunately, are in the valleys, where water accumulates and can feed into them, but the volume of fractured rock is small in relation to the basin as a whole. A well in a large water-filled fracture zone may yield up to 20,000 liters per hour, but the average well yields less than one-fourth this amount, and some wells yield none. The saprolite, or weathered rock, is many meters thick at some places especially in the eastern half of the upper Capibaribe basin. It contains water locally, but ordinarily will yield

  6. HYDROGEOMORPHIC SETTING, CHARACTERISTICS, AND RESPONSE TO STREAM INCISION OF MONTANA RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN--IMPLICATIONS FOR RESTORATION

    Science.gov (United States)

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...

  7. Stratigraphy and tectonics of Permo-Triassic basins in the Netherlands and surrounding areas

    NARCIS (Netherlands)

    Geluk, M.C.

    2005-01-01

    This thesis addresses different aspects of the geological development during the Permian and Triassic (300 to 200 Ma) of the Netherlands and surrounding areas. The study area encompasses the Southern Permian Basin (SPB), a large intracratonic basin stretched out from the United Kingdom in the west

  8. Hydrology of area 59, northern Great Plains and Rocky Mountain coal provinces, Colorado and Wyoming

    Science.gov (United States)

    Gaggiani, Neville G.; Britton, Linda J.; Minges, Donald R.; Kilpatrick, F.A.; Parker, Randolph S.; Kircher, James E.

    1987-01-01

    Hydrologic information and analysis aid in decisions to lease federally owned coal and to prepare necessary Environmental Assessments and Impact Study reports. This need has become even more critical with the enactment of Public Law 95-87, the "Surface Mining Control and Reclamation Act of 1977." This act requires an appropriate regulatory agency to issue permits, based on the review of permit-application data to assess hydrologic impacts. This report, which partially fulfills this requirement, is one in a series of nationwide coal province reports that present information thematically, through the use of a brief text and accompanying maps, graphs, charts, or other illustrations for single hydrologic topics. The report broadly characterizes the hydrology of Area 59 in north-central Colorado and southeastern Wyoming.The report area, located within the South Platte River basin, covers a 16,000-square-mile area of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics.The South Platte River, the major stream in the area, and most of its tributaries originate in granitic mountains and flow into and through the sedimentary rocks of the Great Plains. Altitudes range from less than 5,000 feet to more than 14,000 feet above sea level. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, and produces deep snowpacks. Snowmelt during the spring and summer produces most streamflow. Transmountain diversion of water from the streams on the western slope of the mountains also adds to the streamflow. Precipitation in the plains is as little as 10 inches annually. Streams that originate in the plains are ephemeral.Streamflow quality is best in the mountains, where dissolved-solids concentrations are generally small. Concentrations increase in the plains as streams flow through sedimentary basins, and as urbanization and irrigation increase. The quality of some mountain streams is affected by

  9. F-Area Seepage Basins: Environmental information document

    International Nuclear Information System (INIS)

    Corbo, P.; Killian, T.H.; Kolb, N.L.; Marine, I.W.

    1986-12-01

    This document provides environmental information on postulated closure options for the F-Area Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy's proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (40 CFR 1502.22). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to represent or be used as a regulatory closure plan or other regulatory sufficient document. Technical assistance in the environmental analyses of waste site closures was provided by Clemson University; GeoTrans, Inc.; JBF Associates, Inc.; S.S. Papadopulos and Associates Inc.; Radiological Assessments Corporation; Rogers and Associates Engineering Corporation; Science Applications International Corporation; C.B. Shedrow Environmental Consultants, Inc.; Exploration Software; and Verbatim Typing and Editing

  10. Preliminary seismicity and focal mechanisms for the southern Great Basin of Nevada and California: January 1992 through September 1992

    International Nuclear Information System (INIS)

    Harmsen, S.C.

    1994-01-01

    The telemetered southern Great Basin seismic network (SGBSN) is operated for the Department of Energy's Yucca Mountain Project (YMP). The US Geological Survey, Branch of Earthquake and Landslide Hazards, maintained this network until September 30, 1992, at which time all operational and analysis responsibilities were transferred to the University of Nevada at Reno Seismological Laboratory (UNRSL). This report contains preliminary earthquake and chemical explosion hypocenter listings and preliminary earthquake focal mechanism solutions for USGS/SGBSN data for the period January 1, 1992 through September 30, 1992, 15:00 UTC

  11. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    Science.gov (United States)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  12. Eleventh-century shift in timber procurement areas for the great houses of Chaco Canyon.

    Science.gov (United States)

    Guiterman, Christopher H; Swetnam, Thomas W; Dean, Jeffrey S

    2016-02-02

    An enduring mystery from the great houses of Chaco Canyon is the origin of more than 240,000 construction timbers. We evaluate probable timber procurement areas for seven great houses by applying tree-ring width-based sourcing to a set of 170 timbers. To our knowledge, this is the first use of tree rings to assess timber origins in the southwestern United States. We found that the Chuska and Zuni Mountains (>75 km distant) were the most likely sources, accounting for 70% of timbers. Most notably, procurement areas changed through time. Before 1020 Common Era (CE) nearly all timbers originated from the Zunis (a previously unrecognized source), but by 1060 CE the Chuskas eclipsed the Zuni area in total wood imports. This shift occurred at the onset of Chaco florescence in the 11th century, a time with substantial expansion of existing great houses and the addition of seven new great houses in the Chaco Core area. It also coincides with the proliferation of Chuskan stone tools and pottery in the archaeological record of Chaco Canyon, further underscoring the link between land use and occupation in the Chuska area and the peak of great house construction. Our findings, based on the most temporally specific and replicated evidence of Chacoan resource procurement obtained to date, corroborate the long-standing but recently challenged interpretation that large numbers of timbers were harvested and transported from distant mountain ranges to build the great houses at Chaco Canyon.

  13. Impacts of CO/sub 2/-induced climatic change on water resources in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S J

    1986-01-01

    Scenarios of CO/sub 2/-induced climatic change, based on models produced by the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Lab (GFDL), were used to estimate future changes in water supply in the Great Lakes Basin. The major components of annual Net Basin Supply, surface runoff and lake evaporation, were estimated using the Thornthwaite water balance model and the mass transfer approach, respectively. Two scenarios were derived from each climatic change model, one based on present normal winds, the other assuming reduced wind speeds. A third scenario was derived from GFDL, using wind speeds generated by the GFDL model. Results varied from a decrease in Net Basin Supply of 28.9% for GISS-normal winds, to a decrease of 11.7% for GFDL-reduced wind speeds. All five scenarios projected decreases. These differences in projection will have to be considered when performing climate impact studies, since economic activities affected by lake levels would probably experience different impacts under these scenarios.

  14. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    Science.gov (United States)

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  15. Effects of Land-use/Land-cover and Climate Changes on Water Quantity and Quality in Sub-basins near Major US Cities in the Great Lakes Region

    Science.gov (United States)

    Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.

    2017-12-01

    Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the

  16. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Science.gov (United States)

    2010-07-01

    ... Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. (a) The area. The waters within the Naval Station Annapolis small boat basin and...

  17. Characterization of habitat and biological communities at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2001

    Science.gov (United States)

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested.High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites.Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species.Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  18. Long-period Ground Motion Characteristics Inside and Outside of the Osaka Basin during the 2011 Great Tohoku Earthquake and Its Largest Aftershock

    Science.gov (United States)

    Sato, K.; Iwata, T.; Asano, K.; Kubo, H.; Aoi, S.

    2013-12-01

    The 2011 great Tohoku earthquake (Mw 9.0) occurred on March 11, 2011, and the largest aftershock (Mw 7.7) at the region adjacent to south boundary of the mainshock's source region. Long-period ground motions (1-10s) of large amplitude were observed in the Osaka sedimentary basin about 550-800km away from the source regions during both events. We studied propagation and site characteristics of these ground motions, and found some common features between these two events in the Osaka basin. (1) The amplitude of horizontal components of the ground motion at the site-specific period is amplified at each sedimentary station. The predominant period is around 7s in the bayside area where the largest pSv were observed. (2) The velocity Fourier spectra have their peak values around 7s at the bedrock sites surrounding the Osaka basin. (3) Two remarkable wave packets separated by 30s propagating from stations around the Nobi plain to the bedrock sites near the Osaka basin were seen in the pasted-up velocity waveforms from the source regions to the Osaka basin for both events (Sato et al., 2012). Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. Firstly, we simulate ground motions due to the largest aftershock using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). The reason we focus on the largest aftershock is that this event has a relatively small rupture area and simple rupture process compared to the mainshock. The source model is based on the model estimated by Kubo et al. (2013). The velocity structure model is a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012) and the layer of Vs 350m/s in this model is replaced with one of Vs 500m/s. The minimum effective period in this computation is 3s. Then, we compare synthetic waveforms with observed ones. At CHBH14, the nearest station to the source and 60km away from the

  19. River basin management and estuarine needs: the Great Brak case study

    CSIR Research Space (South Africa)

    Huizinga, P

    1995-01-01

    Full Text Available The study of the effect of the Wolwedans Dam on the Great Brak Estuary and the development of the management plan to maintain a healthy environment yielded many interesting results. The general conclusion is that developments in a catchment...

  20. Recruitment patterns and growth of high-elevation pines in response to climatic variability (1883–2013), in the western Great Basin, USA

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Diane L. Delany; Alan L. Flint; Lorraine E. Flint

    2015-01-01

    Over the period 1883–2013, recruitment of subalpine limber pine (Pinus flexilis E. James) and Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) above the upper tree line, below the lower tree line, and across middle-elevation forest borders occurred at localized sites across four mountain ranges in the western Great...

  1. Hydrology of area 53, Northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

    Science.gov (United States)

    Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; ,

    1984-01-01

    Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached

  2. Deep Microbial Ecosystems in the U.S. Great Basin: A Second Home for Desulforudis audaxviator?

    Science.gov (United States)

    Moser, D. P.

    2012-12-01

    Deep subsurface microbial ecosystems have attracted scientific and public interest in recent years. Of deep habitats so far investigated, continental hard rock environments may be the least understood. Our Census of Deep Life (CoDL) project targets deep microbial ecosystems of three little explored (for microbiology), North American geological provinces: the Basin and Range, Black Hills, and Canadian Shield. Here we focus on the Basin and Range, specifically radioactive fluids from nuclear device test cavities (U12N.10 tunnel and ER-EC-11) at the Nevada National Security Site (NNSS) and non-radioactive samples from a deep dolomite aquifer associated with Death Valley, CA (BLM-1 and Nevares Deep Well 2). Six pyrotag sequencing runs were attempted at the Marine Biology Lab (MBL) (bacterial v6v4 amplification for all sites and archaeal v6v4 amplification for BLM-1 and Nevares DW2). Of these, DNA extracts from five samples (all but Nevares DW2 Arch) successfully amplified. Bacterial libraries were generally dominated by Proteobacteria, Firmicutes, and Nitrospirae (ER-EC-11: Proteobacteria (45%), Deinococcus-Thermus (35%), Firmicutes (15%); U12N.10: Proteobacteria (37%), Firmicutes (32%), Nitrospirae (15%), Bacteroidetes (11%); BLM-1 (Bact): Firmicutes (93%); and Nevares DW2: Firmicutes (51%), Proteobacteria (16%), Nitrospirae (15%)). The BLM-1 (Arch) library contained >99% Euryarchaeota, with 98% of sequences represented by a single uncharacterized species of Methanothermobacter. Alpha diversity was calculated using the MBL VAMPS (Visualization and Analysis of Microbial Population Structures) system; showing the highest richness at both the phylum and genus levels in U12N.10 (Sp = 42; Sg = 341), and the lowest (Sp = 3; Sg = 11) in the BLM-1(Arch) library. Diversity was covered well at this depth of sequencing (~20,000 reads per sample) based on rarefaction analysis. One Firmicute lineage, candidatus D. audaxviator, has been shown to dominate microbial communities from

  3. Invertebrates of the Columbia River basin assessment area.

    Science.gov (United States)

    Christine G. Niwa; Roger E. Sandquist; Rod Crawford; et al.

    2001-01-01

    A general background on functional groups of invertebrates in the Columbia River basin and how they affect sustainability and productivity of their ecological communities is presented. The functional groups include detritivores, predators, pollinators, and grassland and forest herbivores. Invertebrate biodiversity and species of conservation interest are discussed....

  4. Controlled Source Audio Magneto Telluric (CSAMT) studies for uranium exploration in Durgi area, Palnad sub-basin, Cuddapah basin, India

    International Nuclear Information System (INIS)

    Kumar, Indresh; Kumar, S. Vijaya; Ramesh Babu, V.; Kumar, B.V.L.; Dash, J.K.; Chaturvedi, A.K.

    2017-01-01

    Cuddapah basin is known for hosting unconformity proximal uranium deposits viz., Lambapur, Peddagattu, Chitirial and Koppunuru along the northern margin of the basin. It is well known that these deposits are mostly associated with basement granitoids in Srisailam Sub-basin, and with cover sediments in Palnad subbasin where basement topography and fault/fracture system influence the fluid flow causing basement alteration and ore deposition. Geological setup, surface manifestation of uranium anomalies and association of the hydro-uranium anomalies near Durgi area in southern part of the Palnad sub-basin, have prompted detail investigation by geophysical methods to probe greater depths. Controlled Source Audio Magneto Telluric (CSAMT) survey conducted over five decades of frequency (0.1-9600 Hz) delineated the various lithounits of Kurnool and Nallamalai Groups along with their thicknesses as there exist an appreciable resistivity contrast. Interpretation of CSAMT sounding data are constrained by resistivity logs and litholog data obtained from the boreholes drilled within the basin indicated three to four layered structure. Sub-surface 2-D and 3-D geo-electrical models are simulated by stitching 1-D layered inverted resistivity earth models. Stitched 1-D inverted resistivity sections revealed the unconformity between the Kurnool Group and Nallamalai Group along with basement undulations. The faults/fractures delineated from the CSAMT data corroborated well with the results of gravity data acquired over the same area. Simulated 3-D voxel resistivity model helped in visualising the faults/fractures, their depth extent, thickness of the Banganapalle quartzite and basement configuration. Integrated interpretation of CSAMT, gravity and borehole data facilitated in delineating the unconformity and the structural features favourable for uranium mineralisation in deeper parts of the Palnad sub-basin. (author)

  5. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    Science.gov (United States)

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  6. Benthic environmental baseline investigations in the manganese nodule area of the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.; Gupta, S.M.; Ansari, Z.A.

    In order to exploit the manganese nodule deposits in future, an assessment of the environmental impact due to potential mining activity, has been undertaken in the Central Indian Basin Under this programme, seabed surveys in five selected areas have...

  7. Organic contamination in tree swallow (Tachycineta bicolor) nestlings at United States and binational great Lakes Areas of Concern

    Science.gov (United States)

    Custer, Thomas W.; Custer, Christine M.; Dummer, Paul; Goldberg, Diana R.; Franson, J. Christian; Erickson, Richard A.

    2017-01-01

    Contaminant exposure of tree swallows, Tachycineta bicolor, nesting in 27 Areas of Concern (AOCs) in the Great Lakes basin was assessed from 2010 to 2014 to assist managers and regulators in their assessments of Great Lakes AOCs. Contaminant concentrations in nestlings from AOCs were compared with those in nestlings from nearby non-AOC sites. Polychlorinated biphenyl (PCB) and polybrominated diphenyl ether concentrations in tree swallow nestling carcasses at 30% and 33% of AOCs, respectively, were below the mean concentration for non-AOCs. Polycyclic aromatic hydrocarbon (PAH) concentrations in nestling stomach contents and perfluorinated compound concentrations in nestling plasma at 67% and 64% of AOCs, respectively, were below the mean concentration for non-AOCs. Concentrations of PCBs in nestling carcasses were elevated at some AOCs but modest compared with highly PCB-contaminated sites where reproductive effects have been documented. Concentrations of PAHs in diet were sufficiently elevated at some AOCs to elicit a measurable physiological response. Among AOCs, concentrations of the perfluorinated compound perfluorooctane sulfonate in plasma were the highest on the River Raisin (MI, USA; geometric mean 330 ng/mL) but well below an estimated toxicity reference value (1700 ng/mL). Both PAH and PCB concentrations in nestling stomach contents and PCBs in carcasses were significantly correlated with concentrations in sediment previously reported, thereby reinforcing the utility of tree swallows to assess bioavailability of sediment contamination.

  8. Mapping ecosystem service indicators in a Great Lakes estuarine Area of Concern

    Science.gov (United States)

    Estuaries provide multiple ecosystem services from which humans benefit. Currently, thirty-six Great Lakes estuaries in the United States and Canada are designated as Areas of Concern (AOCs) due to a legacy of chemical contamination, degraded habitat, and non-point-source polluti...

  9. Geographic variability in elevation and topographic constraints on the distribution of native and nonnative trout in the Great Basin

    Science.gov (United States)

    Warren, Dana R.; Dunham, Jason B.; Hockman-Wert, David

    2014-01-01

    Understanding local and geographic factors influencing species distributions is a prerequisite for conservation planning. Our objective in this study was to model local and geographic variability in elevations occupied by native and nonnative trout in the northwestern Great Basin, USA. To this end, we analyzed a large existing data set of trout presence (5,156 observations) to evaluate two fundamental factors influencing occupied elevations: climate-related gradients in geography and local constraints imposed by topography. We applied quantile regression to model upstream and downstream distribution elevation limits for each trout species commonly found in the region (two native and two nonnative species). With these models in hand, we simulated an upstream shift in elevation limits of trout distributions to evaluate potential consequences of habitat loss. Downstream elevation limits were inversely associated with latitude, reflecting regional gradients in temperature. Upstream limits were positively related to maximum stream elevation as expected. Downstream elevation limits were constrained topographically by valley bottom elevations in northern streams but not in southern streams, where limits began well above valley bottoms. Elevation limits were similar among species. Upstream shifts in elevation limits for trout would lead to more habitat loss in the north than in the south, a result attributable to differences in topography. Because downstream distributions of trout in the north extend into valley bottoms with reduced topographic relief, trout in more northerly latitudes are more likely to experience habitat loss associated with an upstream shift in lower elevation limits. By applying quantile regression to relatively simple information (species presence, elevation, geography, topography), we were able to identify elevation limits for trout in the Great Basin and explore the effects of potential shifts in these limits that could occur in response to changing

  10. 76 FR 10914 - Notice of Public Meetings: Mojave-Southern Great Basin Resource Advisory Council, Nevada

    Science.gov (United States)

    2011-02-28

    ... Area (NCA) Visitor's Center, Las Vegas, Nevada; July 21, 2011, at the BLM Southern Nevada District... final meeting agenda that will be available two weeks prior to each meeting. FOR FURTHER INFORMATION... be raised by RAC members. The final agendas with any additions/corrections to agenda topics...

  11. Estimating root biomass and distribution after fire in a Great Basin woodland using cores and pits

    Science.gov (United States)

    Benjamin M. Rau; Dale W. Johnson; Jeanne C. Chambers; Robert R. Blank; Annmarie Lucchesi

    2009-01-01

    Quantifying root biomass is critical to an estimation and understanding of ecosystem net primary production, biomass partitioning, and belowground competition. We compared 2 methods for determining root biomass: a new soil-coring technique and traditional excavation of quantitative pits. We conducted the study in an existing Joint Fire Sciences demonstration area in...

  12. Guidelines for acceptable soil concentrations in the old F- and H-Area Retention Basins

    International Nuclear Information System (INIS)

    Hamby, D.M.

    1994-01-01

    Concentration guidelines for residual radionuclides in soil at the sites of the Old F- and H-Area Retention Basins (281-3F, 281-3H) have been calculated using a dose-based approach. The guidelines also are being applied to areas around the F-Basin's Process Line. Estimation of these soil guidelines was completed using RESRAD 5.0 in accordance with the DOE RESRAD methodology specified in DOE/CH/8901 (Gi89). Guidelines are provided for the nuclides known to be present in the soils at each basin (Sc87). Soil and hydrologic characteristics specific to each basin are defined for the areas above, within, and beneath the contaminated zones

  13. Assessment of tree toxicity near the F- and H-Area seepage basins of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. (ed.) (Westinghouse Savannah River Co., Aiken, SC (USA)); Richardson, C.J. (ed.); Greenwood, K.P.; Hane, M.E.; Lander, A.J. (Duke Univ., Durham, NC (USA))

    1990-12-01

    Areas of tree mortality, originating in 1979, have been documented downslope of the F- and H-Area Seepage Basins. The basins were used as discharge areas for low-level radioactive and nonradioactive waste. Preliminary studies indicated that there are three possible causes of stress: altered hydrology; hazardous chemicals; and nonhazardous chemicals. It was originally hypothesized that the most likely hydrological stressors to Nyssa sylvatica var. biflora were flooding where water levels cover the lenticels for more than 26 percent of the growing season, resulting in low oxygen availability, and toxins produced under anaerobic conditions. In fact, trees began to show stress only flowing a drought year (1977) rather than a wet year. Dry conditions could exacerbate stress by concentrating contaminants, particularly salt. Study of the soil and water chemical parameters in the impacted sites indicated that salt concentrations in the affected areas have produced abnormally high exchangeable sodium percentages. Furthermore, significantly elevated concentrations of heavy metals were found in each impacted site, although no one metal was consistently elevated. Evaluation of the concentrations of various chemicals toxic to Nyssa sylvatica var. biflora revealed that aluminum was probably the most toxic in the F-Area. Manganese, cadmium, and zinc had concentrations great enough to be considered possible causes of tree mortality in the F-Area. Aluminum was the most likely cause of mortality in the H-Area. Controlled experiments testing metal and salt concentration effects on Nyssa sylvatica would be needed to specifically assign cause and effect mortality relationships.

  14. Assessment of tree toxicity near the F- and H-Area seepage basins of the Savannah River Site

    International Nuclear Information System (INIS)

    Loehle, C.; Richardson, C.J.

    1990-12-01

    Areas of tree mortality, originating in 1979, have been documented downslope of the F- and H-Area Seepage Basins. The basins were used as discharge areas for low-level radioactive and nonradioactive waste. Preliminary studies indicated that there are three possible causes of stress: altered hydrology; hazardous chemicals; and nonhazardous chemicals. It was originally hypothesized that the most likely hydrological stressors to Nyssa sylvatica var. biflora were flooding where water levels cover the lenticels for more than 26 percent of the growing season, resulting in low oxygen availability, and toxins produced under anaerobic conditions. In fact, trees began to show stress only flowing a drought year (1977) rather than a wet year. Dry conditions could exacerbate stress by concentrating contaminants, particularly salt. Study of the soil and water chemical parameters in the impacted sites indicated that salt concentrations in the affected areas have produced abnormally high exchangeable sodium percentages. Furthermore, significantly elevated concentrations of heavy metals were found in each impacted site, although no one metal was consistently elevated. Evaluation of the concentrations of various chemicals toxic to Nyssa sylvatica var. biflora revealed that aluminum was probably the most toxic in the F-Area. Manganese, cadmium, and zinc had concentrations great enough to be considered possible causes of tree mortality in the F-Area. Aluminum was the most likely cause of mortality in the H-Area. Controlled experiments testing metal and salt concentration effects on Nyssa sylvatica would be needed to specifically assign cause and effect mortality relationships

  15. Integrating Environmental and Human Health Databases in the Great Lakes Basin: Themes, Challenges and Future Directions

    Directory of Open Access Journals (Sweden)

    Kate L. Bassil

    2015-03-01

    Full Text Available Many government, academic and research institutions collect environmental data that are relevant to understanding the relationship between environmental exposures and human health. Integrating these data with health outcome data presents new challenges that are important to consider to improve our effective use of environmental health information. Our objective was to identify the common themes related to the integration of environmental and health data, and suggest ways to address the challenges and make progress toward more effective use of data already collected, to further our understanding of environmental health associations in the Great Lakes region. Environmental and human health databases were identified and reviewed using literature searches and a series of one-on-one and group expert consultations. Databases identified were predominantly environmental stressors databases, with fewer found for health outcomes and human exposure. Nine themes or factors that impact integration were identified: data availability, accessibility, harmonization, stakeholder collaboration, policy and strategic alignment, resource adequacy, environmental health indicators, and data exchange networks. The use and cost effectiveness of data currently collected could be improved by strategic changes to data collection and access systems to provide better opportunities to identify and study environmental exposures that may impact human health.

  16. Application of LANDSAT to the surveillance and control of lake eutrophication in the Great Lakes Basin

    Science.gov (United States)

    Rogers, R. H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Preliminary results in Saginaw Bay show that processed LANDSAT data provides a synoptic view of turbidity and circulation patterns that no degree of ground monitoring can provide. Processed imagery was produced to show nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. Analysis of lakes near Madison, Wisconsin show that inland lake water can be categorized by LANDSAT as clear, tannin, algal, and red clay. LANDSAT's capability to inventory watershed land use was throughly demonstrated in the Ohio-Kentucky-Indiana regional planning area. Computer tabulations providing area covered by each of 16 land use categories were rapidly and economically produced for each of the 225 watersheds and nine counties.

  17. Fingerprints in the Great Basin: The Nellis Air Force Base Regional Obsidian Sourcing Study

    Science.gov (United States)

    2005-01-01

    disturbance from the fed- ware made up 14 percent, and Virgin- Kayenta eral action proposed for the project area, the sites Pueblo wares, 12 percent. Only seven...Virgin- Kayenta Pueblo). Most ceramics (53 per- retrieved from two small, temporary camps. Site cent) were found in Unit V, where wares manu...Parowan Fremont wares unearthed from the sites included projectile were predominant (85 percent). Virgin- Kayenta points, drills, bifaces, and

  18. The Study of Airline Merger and Acquisition in the Great China Area

    Science.gov (United States)

    Shon, Zhengyi

    2003-01-01

    The Asian financial crisis in the late 20 th century has some long lasting effect on the air transportation industry in Asia, especially in the Great China Area. Starting from 1998, airlines in both China and Taiwan suffered some serious financial losses due to the diminishing travel demand caused by the economic recession. Airlines were forced to cut price to attract passengers and hence crashed the market discipline. A number of airline mergers and acquisitions were then driven by the markets and the governments. After China and Taiwan have both entered the World Trade Organization, some mega-merging cases were finalized in late 2002 for better fitting the world's aviation competitions. This paper reviews the nine merging and acquiring cases in the Great China Area in the past 5 years. Almost all the airlines in the area were involved. The new groups of airlines and the survival airlines are introduced. Market response to the airline mergers will also be examined. A general look over the performance of the new airlines will be discussed. And the future of the market will also be analyzed. Finally, the practices and the impacts of current inter-state mergers in the Great China Area will be examined. The study has expected a highly concentrated domestic market in both China and Taiwan. Each of the market will be dominated by three major airline groups of their own. Cross-holding equity within these 6 leading aviation groups would also be possible after further deregulations.

  19. Scytonemin and Photosynthetic Pigment Proxies for Late Pleistocene/Holocene Environmental Change in the Eastern Great Basin

    Science.gov (United States)

    Fulton, J. M.; Van Mooy, B. A. S.

    2015-12-01

    Sedimentary pigments are biomarkers of photosynthetic organisms, most commonly derived from aquatic bacteria and algae but also with potential terrigenous sources. We detected a diverse pigment assemblage with variable down-core distributions in Great Salt Lake (GSL) sediments deposited since ca. 280 ka (GLAD1-GSL00, core 4). The most abundant pigments included derivatives of chlorophyll a, most likely from algae or cyanobacteria, bacteriochlorophyll c from green sulfur bacteria, okenone from purple sulfur bacteria, and scytonemin from UV-exposed cyanobacteria. Scytonemin is a biomarker for colonial cyanobacteria exposed to UV-radiation. In GSL it has potential sources from bioherms on the shoreline or microbiotic soil crusts from the adjacent Great Basin Desert. Scytonemin concentration was highest in the Upper Salt and Sapropel (USS) unit, deposited between 11.5-10 ka in shallow water (ca. 10 m), following deep pluvial Lake Bonneville (30-18 cal ka), the Provo lake level (ca. 18-15 cal ka), and the Gilbert transgression (11.6 cal ka). Scytonemin concentration was very low in sediments deposited during the deep lake phases, even though bioherms were prominent shoreline features. The USS was deposited under hypersaline waters and contained remarkably low concentrations of photosynthetic pigment derivatives that would be expected in organic-matter-rich sediments deposited under productive surface waters or anoxic bottom waters. Stable carbon and nitrogen isotopic data point toward a desert soil crust source for scytonemin in the USS, similar to what we previously observed in the Holocene Black Sea sapropel. We propose that increased aridity supported the widespread occurrence and erosion of microbiotic soil crusts during deposition of the USS. This is consistent with interpretations of Great Salt Lake hydrology, pointing toward a broader regional aridity event. Holocene sediments above the USS also contain scytonemin at relatively high concentration, consistent with

  20. Levels of radioactivity in fish from streams near F-Area and H-Area seepage basins

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Loehle, C.

    1991-05-01

    This report summarizes results of recent analyses of radioactivity in fish from SRS streams near the F-Area and H-Area seepage basins. Fish were collected from headwater areas of Four Mile Creek and Pen Branch, from just below the H-Area seepage basin, and from three sites downstream in Four Mile Creek. These fish were analyzed for gross alpha and gross beta radioactivity using standard EPA methods. Levels of gross alpha and nonvolatile beta radioactivity in fish were found to be comparable to levels previously reported for these sites. Gross alpha activity was not found to be influenced by Separations Area discharges. Nonvolatile beta activity was higher in the nonvolatile beta activity was attributable to Cs-137 and K-40. The dosimetric consequences of consuming fish from this area were found to be well below DOE guidelines

  1. 81Br, 37Cl, and 87Sr studies to assess groundwater flow and solute sources in the southwestern Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Gwynne, Rhys; Frape, Shaun; Shouakar-Stash, Orfan; Love, Andy

    2013-01-01

    The Great Artesian Basin (GAB) is a water source for more than 200,000 residents in central Australia. This study investigates the relationship of bromine and chlorine stable isotopes to groundwater chemistry in a confined aquifer in the southwestern GAB to better understand its flow regime and solute sources. δ 81 Br values range from +0.660/00 near the recharge area to +1.04 0/00, 150 km down gradient, while δ 37 Cl ranges from 00/00 to -2.50/00. While δ 37 Cl decreases with distance from the recharge area, δ 81 Br increases slightly. Bromide in the recharge area is possibly enriched from selective atmospheric processes causing fractionation in marine aerosols during transport. When confined and isolated from the atmosphere, increases in bromide and to a lesser extent strontium concentrations may contribute through water-rock interaction to changes in isotopic signatures along the flow system. 87 Sr/ 86 Sr values range from ∼0.717 near the recharge zone to a depleted 0.708 160 km down gradient. (authors)

  2. {sup 81}Br, {sup 37}Cl, and {sup 87}Sr studies to assess groundwater flow and solute sources in the southwestern Great Artesian Basin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Gwynne, Rhys; Frape, Shaun; Shouakar-Stash, Orfan [University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada); Love, Andy [Flinders University, Sturt Road, Bedford Park 5042 (Australia)

    2013-07-01

    The Great Artesian Basin (GAB) is a water source for more than 200,000 residents in central Australia. This study investigates the relationship of bromine and chlorine stable isotopes to groundwater chemistry in a confined aquifer in the southwestern GAB to better understand its flow regime and solute sources. δ{sup 81}Br values range from +0.660/00 near the recharge area to +1.04 0/00, 150 km down gradient, while δ{sup 37}Cl ranges from 00/00 to -2.50/00. While δ{sup 37}Cl decreases with distance from the recharge area, δ{sup 81}Br increases slightly. Bromide in the recharge area is possibly enriched from selective atmospheric processes causing fractionation in marine aerosols during transport. When confined and isolated from the atmosphere, increases in bromide and to a lesser extent strontium concentrations may contribute through water-rock interaction to changes in isotopic signatures along the flow system. {sup 87}Sr/{sup 86}Sr values range from ∼0.717 near the recharge zone to a depleted 0.708 160 km down gradient. (authors)

  3. The environmental fate of polybrominated diphenyl ethers in the Great Lakes Basin

    Science.gov (United States)

    Gouin, Todd William

    that this phenomenon is likely to be important only during the period of a few days. Passive air samplers (PAS) deployed on a seasonal basis suggest that the "spring pulse" effect is not likely to dominate the seasonal trend, but do indicate that areas with high population densities, such as large urban areas, are likely sources of PBDEs to the atmosphere. PAS are thus useful in qualitatively identifying spatial and temporal trends of PBDEs, investigating source-receptor relationships, and may help to assess the effectiveness of regulatory restrictions in the future by monitoring the temporal trend of PBDEs in air. The PBDE congener profile in air is shown to be dominated by decaBDE, which is currently exempt from regulatory restrictions. The presence of decaBDE in air is shown to be almost entirely associated with particles. It is concluded that improving our understanding of particle-bound transport is necessary to better assess the environmental fate of decaBDE.

  4. Binational climate change vulnerability assessment of migratory birds in the Great Lakes Basins: Tools and impediments.

    Directory of Open Access Journals (Sweden)

    Robert S Rempel

    Full Text Available Climate change is a global concern, requiring international strategies to reduce emissions, however, climate change vulnerability assessments are often local in scope with assessment areas restricted to jurisdictional boundaries. In our study we explored tools and impediments to understanding and responding to the effects of climate change on vulnerability of migratory birds from a binational perspective. We apply and assess the utility of a Climate Change Vulnerability Index on 3 focal species using distribution or niche modeling frameworks. We use the distributional forecasts to explore possible changes to jurisdictional conservation responsibilities resulting from shifting distributions for: eastern meadowlark (Sturnella magna, wood thrush (Hylocichla mustelina, and hooded warbler (Setophaga citrina. We found the Climate Change Vulnerability Index to be a well-organized approach to integrating numerous lines of evidence concerning effects of climate change, and provided transparency to the final assessment of vulnerability. Under this framework, we identified that eastern meadowlark and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnerable. Our study revealed impediments to assessing and modeling vulnerability to climate change from a binational perspective, including gaps in data or modeling for climate exposure parameters. We recommend increased cross-border collaboration to enhance the availability and resources needed to improve vulnerability assessments and development of conservation strategies. We did not find evidence to suggest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate increasing responsibility for these birds in the Canadian Provinces. These Provinces should consider conservation planning to help ensure a future supply of necessary habitat for these species.

  5. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs

    Science.gov (United States)

    Hedlund, Brian P.; Paraiso, Julienne J.; Williams, Amanda J.; Huang, Qiuyuan; Wei, Yuli; Dijkstra, Paul; Hungate, Bruce A.; Dong, Hailiang; Zhang, Chuanlun L.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31–95°C; pH: 6.8–10.7). bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal). The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS−) and positively with properties of oxygenated, low temperature sites (O2, NO−3). Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤70°C). PMID:23964271

  6. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Brian P. Hedlund

    2013-08-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31-95°C; pH: 6.8-10.7. bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal. The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤ 70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS- and positively with properties of oxygenated, low temperature sites (O2, NO3-. Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤ 70°C.

  7. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    Science.gov (United States)

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  8. Influence of domestic livestock grazing on American Pika (Ochotona princeps) forage and haypiling behavior in the Great Basin. Western North American Naturalist.

    Science.gov (United States)

    Constance I. Millar

    2011-01-01

    In a pilot study, I observed a relationship between domestic livestock grazing and location of American pika (Ochotona princeps) haypiles in the eastern Sierra Nevada and several Great Basin mountain ranges. Where vegetation communities adjacent to talus bases (forefields) were grazed, mean distance from the talus borders to the closest fresh...

  9. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 1).

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. The paper does not provide guidelines but rather...

  10. Beginnings of range management: an anthology of the Sampson-Ellison photo plots (1913 to 2003) and a short history of the Great Basin Experiment Station

    Science.gov (United States)

    David A. Prevedel; E. Durant McArthur; Curtis M. Johnson

    2005-01-01

    High-elevation watersheds on the Wasatch Plateau in central Utah were severely overgrazed in the late 1800s, resulting in catastrophic flooding and mudflows through adjacent communities. Affected citizens petitioned the Federal government to establish a Forest Reserve (1902), and the Manti National Forest was established by the Transfer Act of 1905. The Great Basin...

  11. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 2).

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described in a series of appendices. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. ...

  12. Partners in flight bird conservation plan for the Upper Great Lakes Plain (Physiographic Area 16)

    Science.gov (United States)

    Knutson, M.G.; Butcher, G.; Fitzgerald, J.; Shieldcastle, J.

    2001-01-01

    1 November 2001. Conservation of bird habitats is a major focus of effort by Partners in Flight, an international coalition of agencies, citizens, and other groups dedicated to 'keeping common birds common'. USGS worked on a planning team to publish a bird conservation plan for the Upper Great Lakes Plain ecoregion (PIF 16), which includes large portions of southern Wisconsin, southern Michigan and parts of Minnesota, Iowa, Illinois, Indiana, and Ohio. The conservation plan outlines specific habitat restoration and bird population objectives for the ecoregion over the next decade. The plan provides a context for on-the-ground conservation implementation by the US Fish and Wildlife Service, the USDA Natural Resources Conservation Service, the US Forest Service, states, and conservation groups. Citation: Knutson, M. G., G. Butcher, J. Fitzgerald, and J. Shieldcastle. 2001. Partners in Flight Bird Conservation Plan for The Upper Great Lakes Plain (Physiographic Area 16). USGS Upper Midwest Environmental Sciences Center in cooperation with Partners in Flight, La Crosse, Wisconsin. Download from website: http://www.blm.gov/wildlife/pifplans.htm. The Upper Great Lakes Plain covers the southern half of Michigan, northwest Ohio, northern Indiana, northern Illinois, southern Wisconsin, and small portions of southwest Minnesota and northwest Iowa. Glacial moraines and dissected plateaus are characteristic of the topography. Broadleaf forests, oak savannahs, and a variety of prairie communities are the natural vegetation types. A oDriftless Areao was not glaciated during the late Pleistocene and emerged as a unique area of great biological diversity. Priority bird species for the area include the Henslow's Sparrow, Sedge Wren, Bobolink, Golden-winged Warbler, Cerulean Warbler, Black-billed Cuckoo, and Red-headed Woodpecker. There are many large urban centers in this area whose growth and sprawl will continue to consume land. The vast majority of the presettlement forest and

  13. Phosphorus losses from agricultural areas in river basins; effects and uncertainties of targeted mitigation measures

    NARCIS (Netherlands)

    Kronvang, B.; Bechmann, M.; Lundekvam, H.; Behrendt, H.; Rubaek, G.H.; Schoumans, O.F.; Syversen, N.; Andersen, H.E.; Hoffmann, C.C.

    2005-01-01

    In this paper we show the quantitative and relative importance of phosphorus (P) losses from agricultural areas within European river basins and demonstrate the importance of P pathways, linking agricultural source areas to surface water at different scales. Agricultural P losses are increasingly

  14. Extended characterization of M-Area settling basin and vicinity. Technical data summary. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, J B

    1985-10-01

    The Savannah River Plant M-Area settling basin, an unlined surface impoundment, has received process effluents from the M-Area fuel and target fabrication facilities since 1958. The waste effluents have contained metal degreasing agents (chlorinated hydrocarbons), acids, caustics, and heavy metals. Data analyses are provided.

  15. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin

    Science.gov (United States)

    Davis, John M.; Ekman, Drew R.; Teng, Quincy; Ankley, Gerald T.; Berninger, Jason P.; Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Schroeder, Anthony L.; Villeneuve, Daniel L.; Jorgenson, Zachary G.; Lee, Kathy E.; Collette, Timothy W.

    2016-01-01

    The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants. Environ Toxicol Chem 2016;35:2493–2502.

  16. Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia's Great Artesian Basin.

    Science.gov (United States)

    Murphy, Nicholas P; Adams, Mark; Austin, Andrew D

    2009-01-01

    The groundwater-dependent springs of the Great Artesian Basin (GAB) in arid inland Australia represent a unique and threatened ecosystem. These incredibly isolated springs support a diverse array of endemic flora and fauna. One of the common faunal groups in the GAB springs is the freshwater amphipods of the family Chiltoniidae. The morphological conservatism and taxonomic uncertainty associated with these amphipods has ensured their true biodiversity, phylogeographical history and evolutionary affinities have remained unknown. We have used mitochondrial DNA and allozyme data to unravel a complicated history of isolation, extinction and dispersal among spring amphipod populations across the GAB. The results provide evidence for multiple independent colonizations in the GAB springs, particularly within the Lake Eyre group of springs. The inclusion of a group of Western Australian (WA) stygobitic amphipods from populations up to 1500 km away found surprising evidence for a shared evolutionary history between stygobitic and GAB spring amphipods. Approximate dating of the diversity found between major clades suggests the majority of lineages originated in the late Miocene, around the time of the aridification of inland Australia. The large number of independent lineages and the close connection between GAB spring and WA stygobitic amphipods suggest that a significantly rich amphipod fauna existed in the much wetter environment that once existed in inland Australia. The results also provide evidence for a gross underestimation of the species diversity within the springs, with 12 putative species identified, a conclusion with significant implications for the ongoing conservation of the GAB springs.

  17. Hunter-gatherer adaptations and environmental change in the southern Great Basin: The evidence from Pahute and Rainier mesas

    Energy Technology Data Exchange (ETDEWEB)

    Pippin, L.C.

    1998-06-01

    This paper reviews the evidence for fluctuations in past environments in the southern Great Basin and examines how these changes may have affected the strategies followed by past hunter and gatherers in their utilization of the resources available on a highland in this region. The evidence used to reconstruct past environments for the region include botanical remains from packrat middens, pollen spectra from lake and spring deposits, faunal remains recovered from archaeological and geologic contexts, tree-ring indices from trees located in sensitive (tree-line) environments, and eolian, alluvial and fluvial sediments deposited in a variety of contexts. Interpretations of past hunter and gatherer adaptive strategies are based on a sample of 1,311 archaeological sites recorded during preconstruction surveys on Pahute and Rainier mesas in advance of the US Department of Energy`s nuclear weapons testing program. Projectile point chronologies and available tree-ring, radiocarbon, thermoluminescence and obsidian hydration dates were used to assign these archaeological sites to specific periods of use.

  18. Upper Ordovician-Lower Silurian shelf sequences of the Eastern Great Basin: Barn Hills and Lakeside Mountains, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.T. (Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Geosciences); Sheehan, P.M. (Milwaukee Public Museum, WI (United States). Dept of Geology)

    1993-04-01

    Detailed stratigraphic sections through Upper Ordovician-Lower Silurian shelf strata of the Eastern Great Basin were measured in two Utah localities, Barn Hills (Confusion Range) and Lakeside Mountains. Six major subfacies occur in these strata: mud-cracked and crinkly laminated subfacies, Laminated mudstone subfacies, cross-bedded grainstone subfacies, cross-laminated packstone subfacies, grainy bioturbated subfacies, muddy bioturbated subfacies, and thalassinoides burrowed subfacies. These occur in 1--10 m thick cycles in three facies: muddy cyclic laminite facies (tidal flats), cross-bedded facies (subtidal shoals), and bioturbated facies (moderate to low-energy shelf). The vertical facies succession, stacking patterns of meter-scale cycles, and exposure surfaces define correlatable sequences. The authors recognize four Upper Ordovician sequences (Mayvillian to Richmondian). An uppermost Ordovician (Hirnantian) sequence is missing in these sections but occurs basinward. Lower Silurian sequences are of early Llandoverian (A), middle Llandoverian (B), early late Llandoverian (C1--C3), late late Llandoverian (C4--C5), latest Llandoverian (C6) to early Wenlock age. In general, Upper Ordovician and latest Llandoverian-Wenlockian facies are muddier than intervening Llandoverian facies. The shift to muddier shelf facies in latest Llandoverian probably corresponds to the development of a rimmed shelf. The sequence framework improves correlation of these strata by combining sedimentologic patterns with the biostratigraphic data. For example, in the Lakesides, the Ordovician-Silurian boundary is shifted 37 m downward from recent suggestions. In addition, the sequence approach highlights intervals for which additional biostratigraphic information is needed.

  19. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA

    Science.gov (United States)

    Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra

    2018-01-01

    Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.

  20. Chapter B: Regional Geologic Setting of Late Cenozoic Lacustrine Diatomite Deposits, Great Basin and Surrounding Region: Overview and Plans for Investigation

    Science.gov (United States)

    Wallace, Alan R.

    2003-01-01

    Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional

  1. Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains

    International Nuclear Information System (INIS)

    Dunagan, J.F. Jr.; Kadish, K.A.

    1977-11-01

    Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains

  2. Levee Presence and Wetland Areas within the 100-Year Floodplain of the Wabash Basin

    Science.gov (United States)

    Morrison, R. R.; Dong, Q.; Nardi, F.; Grantham, T.; Annis, A.

    2016-12-01

    Wetlands have declined over the past century due to land use changes and water management activities in the United States. Levees have been extensively built to provide protection against flooding events, and can fundamentally alter the water distribution and hydrologic dynamics within floodplains. Although levees can reduce wetlands in many places, it is unclear how much wetland areas are impacted at a basin-scale. This study explores the relationship between wetlands, levee presence, and other important hydrologic metrics within a 100-year floodplain. We estimated total wetland area, levee length, floodplain area and other variables, in discrete 12-digit hydrologic units (HUC-12) of the Wabash Basin (n=854) and examined the relationship between these variables using non-parametric statistical tests. We found greater areas of wetland habitat in HUC12 units that contain levees compared to those without levees when we aggregated the results across the entire basin. Factors such as stream order, mean annual flow, and HUC12 area are not correlated with the wetland area in HUC-12 units that contain levees. In addition, median wetland area in HUC12 units with levees is surprisingly consistent regardless of maximum stream order. Visual observations of wetland distributions indicate that wetland presence may be dependent on its location relative to levees. These results indicate that refined geospatial analyses may be necessary to explore the complex influence of levees on wetland habitat, and that additional basins should be explored to develop more generalized trends. This information is preliminary and subject to revision.

  3. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    Science.gov (United States)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  4. RESRAD soil concentration guidelines for the Old F-Area Retention Basin

    International Nuclear Information System (INIS)

    Hamby, D.M.

    1994-01-01

    Concentration guidelines for residual radionuclides in soil at the site of the Old F-Area Retention Basin have been calculated using a dose-based approach. Estimation of these soil guidelines was completed using RESRAD 5.0 in accordance with the DOE RESRAD methodology specified in DOE/CH/8901. Guidelines are provided for the two predominant nuclides, Sr-90 and Cs-137, known to be present in the soil beneath the old basin. A guideline is also given for Pu-238 since it is known to exist at the H-Area Retention Basin. Site-specific soil characteristics are defined for the areas above, within, and beneath the contaminated zone

  5. Structural changes in the Czech, Slovak and euro area economies during the Great Recession

    Directory of Open Access Journals (Sweden)

    Tvrz Stanislav

    2016-12-01

    Full Text Available The goal of this paper is to identify and compare the most important changes in the structure of the Czech economy, as a small open economy with independent monetary policy, the Slovak economy, as a small open economy that entered monetary union, and the economy of the euro area, which has a common monetary policy, during the turbulent period of the Great Recession, the subsequent anaemic recovery and recent disinflationary period. Structural changes are identified with the help of nonlinear dynamic stochastic models of general equilibrium with time-varying parameters. The model parameters are estimated using Bayesian methods and a nonlinear particle filter. The results confirm the similarity of the Czech and Slovak economies and show that in certain respects the structure of the Czech economy might be closer to that of the euro area than that of Slovakia. The time-varying estimates reveal many similarities between the parameter changes in the Czech economy and those in the euro area. In Slovakia, the situation during the Great Recession was dominated by the country’s adoption of the euro, which caused large deviations in its Calvo parameters.

  6. Habitation areas and funeral areas in the Neolithic of the inland Tagus basin: province of Toledo

    Directory of Open Access Journals (Sweden)

    Bueno Ramírez, Primitiva

    2002-12-01

    Full Text Available This paper offers a reflection on the social, cultural and chronological implications of the funeral world of the inland Tagus basin. In particular the data of the province of Toledo, analysed from the site of the megaliths of Azutan and the burial mound of the Castillejo, allows us to propose the contemporaneity of several architectural types in the early Megalithic culture of Iberia and the association between habitats and graves. The economic niches, mainly cultivated meadows with areas for sowing grain and pasture for animals, suggest the existence of a mixed economy in a peasant society practised by groups who returned to the same places from the earliest moments of the Neolithic to the Bronze Age.

    Se plantea una reflexión sobre las implicaciones sociales, culturales y cronológicas del mundo funerario al interior del Tajo. Concretamente los datos de la provincia de Toledo; analizados desde los yacimientos del dolmen de Azután y del túmulo del Castillejo, plantean la contemporaneidad de distintas versiones arquitectónicas en el megalitismo antiguo peninsular y la asociación manifiesta entre hábitats y sepulturas. Los nichos económicos, fundamentalmente dehesas cultivadas con zonas aclaradas para la siembra de cereal y para los pastos de los animales, abogan por proponer una economía mixta en un modelo de explotación campesina protagonizado por grupos que acuden de modo recurrente a los mismos lugares desde los momentos más antiguos del Neolítico hasta la Edad del Bronce.

  7. H-Area Seepage Basin (H-HWMF): Fourth quarterly 1989, groundwater quality assessment report

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    During the fourth quarter of 1989 the wells which make up the H-Area Seepage Basins (H-HWMF){sup 1} monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, and total radium.

  8. Regional Hydrology of the Green River-Moab Area, Northwestern Paradox Basin, Utah

    OpenAIRE

    United States Geological Survey

    1982-01-01

    The Green River-Moab area encompasses about 7,800 square kilometers or about 25 percent of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and overlying and underlying thick sequences of rocks with...

  9. Map showing principal drainage basins, principal runoff-producing areas, and selected stream flow data in the Kaiparowits coal-basin area, Utah

    Science.gov (United States)

    Price, Don

    1978-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. Streamflow records used to compile this map and the accompanying table were collected by the U.S. Geological Survey in cooperation with the Utah State Engineer and the Utah Department of Transportation. The principal runoff-producing areas were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Information about Lake Powell was furnished by the U.S. Bureau of Reclamation.

  10. Ambulance Dispatches From Unaffected Areas After the Great East Japan Earthquake: Impact on Emergency Care in the Unaffected Areas.

    Science.gov (United States)

    Hagihara, Akihito; Onozuka, Daisuke; Nagata, Takashi; Abe, Takeru; Hasegawa, Manabu; Nabeshima, Yoshihiro

    2015-12-01

    Although dispatching ambulance crews from unaffected areas to a disaster zone is inevitable when a major disaster occurs, the effect on emergency care in the unaffected areas has not been studied. We evaluated whether dispatching ambulance crews from unaffected prefectures to those damaged by the Great East Japan Earthquake was associated with reduced resuscitation outcomes in out-of-hospital cardiac arrest (OHCA) cases in the unaffected areas. We used the Box-Jenkins transfer function model to assess the relationship between ambulance crew dispatches and return of spontaneous circulation (ROSC) before hospital arrival or 1-month survival after the cardiac event. In a model whose output was the rate of ROSC before hospital arrival, dispatching 1000 ambulance crews was associated with a 0.474% decrease in the rate of ROSC after the dispatch in the prefectures (p=0.023). In a model whose output was the rate of 1-month survival, dispatching 1000 ambulance crews was associated with a 0.502% decrease in the rate of 1-month survival after the dispatch in the prefectures (p=0.011). The dispatch of ambulances from unaffected prefectures to earthquake-stricken areas was associated with a subsequent decrease in the ROSC and 1-month survival rates in OHCA cases in the unaffected prefectures.

  11. Antifoulant (butyltin and copper) concentrations in sediments from the Great Barrier Reef World Heritage Area, Australia

    International Nuclear Information System (INIS)

    Haynes, David; Loong, Dominica

    2002-01-01

    Antifoulant concentrations are generally low in the Great Barrier Reef, although ship grounding sites present a previously unidentified significant source of antifoulant pollutants in the Great Barrier Reef. - Antifoulant concentrations were determined in marine sediments collected from commercial harbours, marinas, mooring locations on mid-shelf continental islands, and outer reef sites in four regions within the Great Barrier Reef World Heritage Area in 1999. Highest copper concentrations were present in sediments collected from commercial harbour sampling sites (28-233 μg Cu g -1 dry wt.). In contrast, copper concentrations in sediments collected from boat mooring sites on mid-shelf continental islands and outer reef sites were at background concentrations (i.e. -1 dry wt.). Butyltin was only detectable in four of the 42 sediments sampled for analysis, and was only present in sediments collected from commercial harbours (18-1275 ng Sn g -1 dry wt.) and from marinas (4-5 ng Sn g -1 dry wt.). The detection of tributyltin at marina sites implies that this antifoulant may continue to be used illegally on the hulls of smaller recreational vessels. Sediment samples were also collected opportunistically from the site of a 22,000 t cargo ship grounding in May 1999 at Heath Reef, in the far northern Great Barrier Reef. Butyltin concentrations were grossly elevated (660-340,000 ng Sn g -1 dry wt.) at the grounding site. The impact of residual antifoulants at large ship grounding sites should be recognised as a significant, long-term environmental problem unless antfoulant clean-up strategies are undertaken

  12. Extensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs.

    Science.gov (United States)

    Snyder, K A; Donovan, L A; James, J J; Tiller, R L; Richards, J H

    2004-10-01

    Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, delta15N, delta13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of

  13. Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records

    Science.gov (United States)

    Biondi, Franco; Rossi, Sergio

    2015-08-01

    Water is the main limiting resource for natural and human systems, but the effect of hydroclimatic variability on woody species in water-limited environments at sub-monthly time scales is not fully understood. Plant-water relationships of single-leaf pinyon pine ( Pinus monophylla) were investigated using hourly dendrometer and environmental data from May 2006 to October 2011 in the Great Basin Desert, one of the driest regions of North America. Average radial stem increments showed an annual range of variation below 1.0 mm, with a monotonic steep increase from May to July that yielded a stem enlargement of about 0.5 mm. Stem shrinkage up to 0.2 mm occurred in late summer, followed by an abrupt expansion of up to 0.5 mm in the fall, at the arrival of the new water year precipitation. Subsequent winter shrinkage and enlargement were less than 0.3 mm each. Based on 4 years with continuous data, diel cycles varied in both timing and amplitude between months and years. Phase shifts in circadian stem changes were observed between the growing season and the dormant one, with stem size being linked to precipitation more than to other water-related indices, such as relative humidity or soil moisture. During May-October, the amplitude of the phases of stem contraction, expansion, and increment was positively related to their duration in a nonlinear fashion. Changes in precipitation regime, which affected the diel phases especially when lasting more than 5-6 h, could substantially influence the dynamics of water depletion and replenishment in single-leaf pinyon pine.

  14. Let's jump in: A phylogenetic study of the great basin springfishes and poolfishes, Crenichthys and Empetrichthys (Cyprinodontiformes: Goodeidae.

    Directory of Open Access Journals (Sweden)

    D Cooper Campbell

    Full Text Available North America's Great Basin has long been of interest to biologists due to its high level of organismal endemicity throughout its endorheic watersheds. One example of such a group is the subfamily Empetricthyinae. In this paper, we analyzed the relationships of the Empetrichtyinae and assessed the validity of the subspecies designations given by Williams and Wilde within the group using concatenated phylogenetic tree estimation and species tree estimation. Samples from 19 populations were included covering the entire distribution of the three extant species of Empetricthyinae-Crenichthys nevadae, Crenichthys baileyi and Empetricthys latos. Three nuclear introns (S8 intron 4, S7 intron 1, and P0 intron 1 and one mitochondrial gene (Cytb were sequenced for phylogenetic analysis. Using these sequences, we generated two separate hypotheses of the evolutionary relationships of Empetrichtyinae- one based on the mitochondrial data and one based on the nuclear data using Bayesian phylogenetics. Haplotype networks were also generated to look at the relationships of the populations within Empetrichthyinae. After comparing the two phylogenetic hypotheses, species trees were generated using *BEAST with the nuclear data to further test the validity of the subspecies within Empetrichthyinae. The mitochondrial analyses supported four lineages within C. baileyi and 2 within C. nevadae. The concatenated nuclear tree was more conserved, supporting one clade and an unresolved polytomy in both species. The species tree analysis supported the presence of two species within both C. baileyi and C. nevadae. Based on the results of these analyses, the subspecies designations of Williams and Wilde are not valid, rather a conservative approach suggests there are two species within C. nevadae and two species within C. baileyi. No structure was found for E. latos or the populations of Empetricthyinae. This study represents one of many demonstrating the invalidity of

  15. Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia.

    Science.gov (United States)

    Edwards, Tara A; Calica, Nicole A; Huang, Dolores A; Manoharan, Namritha; Hou, Weiguo; Huang, Liuqin; Panosyan, Hovik; Dong, Hailiang; Hedlund, Brian P

    2013-08-01

    Despite its importance in the nitrogen cycle, little is known about nitrite oxidation at high temperatures. To bridge this gap, enrichment cultures were inoculated with sediment slurries from a variety of geothermal springs. While nitrite-oxidizing bacteria (NOB) were successfully enriched from seven hot springs located in US Great Basin, south-western China, and Armenia at ≤ 57.9 °C, all attempts to enrich NOB from > 10 hot springs at ≥ 61 °C failed. The stoichiometric conversion of nitrite to nitrate, chlorate sensitivity, and sensitivity to autoclaving all confirmed biological nitrite oxidation. Regardless of origin, all successful enrichments contained organisms with high 16S rRNA gene sequence identity (≥ 97%) with Nitrospira calida. In addition, Armenian enrichments also contained close relatives of Nitrospira moscoviensis. Physiological properties of all enrichments were similar, with a temperature optimum of 45-50 °C, yielding nitrite oxidation rates of 7.53 ± 1.20 to 23.0 ± 2.73 fmoles cell(-1) h(-1), and an upper temperature limit between 60 and 65 °C. The highest rates of NOB activity occurred with initial NO2 - concentrations of 0.5-0.75 mM; however, lower initial nitrite concentrations resulted in shorter lag times. The results presented here suggest a possible upper temperature limit of 60-65 °C for Nitrospira and demonstrate the wide geographic range of Nitrospira species in geothermal environments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    Science.gov (United States)

    Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphael; Gebelin, Aude; Chamberlain, C. Page

    2015-01-01

    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (−90‰ to −154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ −154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ −125‰), where 40Ar/39Ar geochronological data indicate Miocene (18–15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.

  17. Visual aesthetics study: Gibson Dome area, Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1984-03-01

    The Visual Aesthetics study was performed as an initial assessment of concerns regarding impacts to visual resources that might be associated with the construction of a geologic nuclear waste repository and associated rail routes in the Gibson Dome location of southeastern Utah. Potential impacts to visual resources were evaluated by predicting visibility of the facility and railway routes using the US Forest Service (USFS) computer program, VIEWIT, and by applying the Bureau of Land Management (BLM) Visual Resource Management (VRM) methodology. Five proposed facility sites in the Gibson Dome area and three proposed railway routes were evaluated for visual impact. 10 references, 19 figures, 5 tables

  18. Characteristics of Physician Outflow from Disaster Areas following the Great East Japan Earthquake.

    Directory of Open Access Journals (Sweden)

    Saori Kashima

    Full Text Available The shortage of physicians after a major disaster is a crucial issue. We aimed to evaluate the characteristics of physicians who left affected areas following the accident at Fukushima Daiichi Nuclear Power Plant caused by the Great East Japan Earthquake on March 11, 2011.Using data from a physician census conducted in 2010 (pre-disaster and 2012 (post-disaster, we evaluated changes in the number of physicians in affected areas. We then calculated the odds ratios and 95% confidence intervals using a logistic regression model to evaluate the association between physician characteristics and outflow. We also conducted stratified analyses based on physician characteristics.The number of physicians decreased in Fukushima Prefecture (-5.3% and increased in Miyagi Prefecture (2.8%. The decrease in Fukushima and increase in Miyagi were evident even after taking the prefecture's population change into account (change in physician to population ratios: -1.9% and 3.2%, respectively. Compared with physicians who lived in areas >100 km from the nuclear power plant, physicians living 20-50 km and 50-100 km were, respectively, 3.9 times (95% confidence interval, 2.6-5.7 and 2.6 times (95% confidence interval, 1.7-3.8 more likely to migrate to distant areas. In the stratified analysis, younger physicians and those earlier in their careers had higher odds ratios for outflow than other physicians (P for interaction = 0.02 and <0.01, respectively.The risk of outflow was greater among younger and early-career physicians in areas around the power plant. Political support may be necessary to recruit and retain such physicians, who will be responsible for future community health in the disaster area.

  19. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  20. Macrobenthic standing stock in the nodule areas of Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pavithran, S.; Ingole, B.S.

    Diversity, distribution and standing stock of macrofauna in the nodule areas of Central Indian Ocean Basin (CIOB) were studied during April 2003. The density ranged between 22 to 132 no.m super(-2) (mean: 55 + or - 37 SD, n=25) and biomass ranged...

  1. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope and Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41 deg 32'N, 120 deg 5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4(2-), respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth

  2. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope aud Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41º32'N, 120º5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4 2-, respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth estimated

  3. F-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and fourth quarters 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1994-03-01

    Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the F-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988

  4. Hydrological assessment of freshwater resource areas in the Zambezi River Basin

    CSIR Research Space (South Africa)

    Mwenge Kahinda, Jean-Marc

    2012-10-01

    Full Text Available characterisation of the degree of regulation of the river system, followed by an assessment of high water yielding areas (water towers), groundwater recharge and base flow index. To understand the environmental patterns and processes that occur in the river... to hydrogeology, IAH Publ. 8, Verlag Heinz Heisse. Xu, Y. and Beekman, H.E. (Eds). 2003. Groundwater recharge estimation in southern Africa. UNESCO IHP Series No. 64. UNESCO Paris. Figure 1: The Zambezi River Basin and its 13 sub basins Figure 3: High water...

  5. H-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and Fourth quarters 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1994-03-01

    Isoconcentration/isocactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1994. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the H-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988

  6. Research on supplying potential of uranium source from rocks in western provenance area of Hailaer basin

    International Nuclear Information System (INIS)

    Xia Yuliang; Liu Hanbin; Chinese Academy of Geological Sciences, Beijing

    2006-01-01

    Using U-Pb isotope composition evolution, this paper expounds the initial uranium content in volcanic rocks of provenance area of Xihulitu basin and in granites of provenance area of Kelulun sag, western Hailaer basin. The initial uranium content (U 0 ) in volcanic rocks of provenance area is higher, the average initial uranium content of volcanic rocks is 10.061 x 10 -6 , the average uranium variation coefficient (ΔU) is -49.57%; the average initial uranium content of granites is 18.381 x 10 -6 , the average uranium variation coefficient (ΔU) is -80%. The results indicate that rocks in provenance area could provide the pre-enrichment of uranium in deposited sandstone. U-Ra equilibrium coefficients of rocks indicate that there is obvious U-Ra disequilibrium phenomenon in volcanic rocks, and the time when granites provided uranium source occurred 16000 a ago. (authors)

  7. Wind and wildlife in the Northern Great Plains: identifying low-impact areas for wind development.

    Directory of Open Access Journals (Sweden)

    Joseph Fargione

    Full Text Available Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP is home both to some of the world's best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas.

  8. Estimating Major Crop Water Productivity at Neyshabour Basin and Optimize Crop Area

    Directory of Open Access Journals (Sweden)

    Yavar Pourmohamad

    2017-06-01

    Full Text Available Introductionin current situation when world is facing massive population, producing enough food and adequate income for people is a big challenge specifically for governors. This challenge gets even harder in recent decades, due to global population growth which was projected to increase to 7.8 billion in 2025. Agriculture as the only industry that has ability to produce food is consuming 90 percent of fresh water globally. Despite of increasing for food demand, appropriate agricultural land and fresh water resources are restricted. To solve this problem, one is to increase water productivity which can be obtain by irrigation. Iran is not only exempted from this situation but also has more critical situation due to its dry climate and inappropriate precipitation distribution spatially and temporally, also uneven distribution of population which is concentrate in small area. The only reasonable solution by considering water resources limitation and also restricted crop area is changing crop pattern to reach maximum or at least same amount of income by using same or less amount of water. The purpose of this study is to assess financial water productivity and optimize farmer’s income by changing in each crop acreage at basin and sub-basin level with no extra groundwater withdrawals, also in order to repair the damages which has enforce to groundwater resources during last decades a scenario of using only 80percent of renewable water were applied and crop area were optimize to provide maximum or same income for farmers. Materials and methodsThe Neyshabour basin is located in northeast of Iran, the total geographical area of basin is 73,000 km2 consisting of 41,000 km2 plain and the rest of basin is mountains. This Basin is a part of Kalshoor catchment that is located in southern part of Binaloud heights and northeast of KavirMarkazi. In this study whole Neyshabour basin were divided into 199 sub-basins based on pervious study.Based on official

  9. [US Geological Survey research in radioactive waste disposal, fiscal year 1980:] Tectonics, seismicity, volcanism, and erosion rates in the southern Great Basin

    International Nuclear Information System (INIS)

    Carr, W.J.; Rogers, A.M.

    1982-01-01

    The objective is to assess the potential for faulting, damaging earthquakes, recurrence of volcanism, and local acceleration of erosion in parts of the southern Great Basin. The following approaches are being used: (1) investigating the rate, intensity, and distribution of faulting during approximately the last 25 m.y., with emphasis on the last 10 m.y.; (2) monitoring and interpreting present seismicity; (3) studying the history of volcanism; and (4) evaluating past rates of erosion and deposition. Progress is reported

  10. Closure plan for the M-Area settling basin and vicinity at the Savannah River Plant

    International Nuclear Information System (INIS)

    Colven, W.P.; Pickett, J.B.; Muska, C.F.; Boone, L.F.

    1988-03-01

    The closure plan for the M-Area settling basin and vicinity was originally submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) Bureau of Solid and Hazardous Waste Management in September 1984. The plan was revised in July and November 1985 in response to SCDHEC comments. After public comment in April through July 1986, the closure plan was conditionally approved by SCDHEC in March 1987. The conditions included (1) providing a temporary wastewater treatment facility to process the water remaining in the basin, (2) using a burn box to limit ash emissions from burning in the basin, (3) obtaining SCDHEC approval prior to operating the leach field, and (4) completing all closure activities within three years of the startup date

  11. Area geological characterization report for the Palo Duro and Dalhart Basins, Texas

    International Nuclear Information System (INIS)

    1983-07-01

    The present state of knowledge of the geology, hydrogeology, and seismology of the Palo Duro and Dalhart basins is summarized as a basis for future siting studies for a high-level nuclear waste repository. Large portions of the Texas Panhandle, and especially the Palo Duro basin, have stable geologic conditions and a favorable evaporite stratigraphy that warrant further study. Five salt-bearing formations containing thick salt units are present within the basin. Salt beds appear to be persistent over wide areas, relatively flat lying and structurally undisturbed. Available hydrogeologic data suggest that favorable conditions for waste isolation are widespread. The level and rate of seismic activity are low throughout the Texas Panhandle. 335 references, 83 figures, 17 tables

  12. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas

    Science.gov (United States)

    Kováč, Michal; Márton, Emő; Oszczypko, Nestor; Vojtko, Rastislav; Hók, Jozef; Králiková, Silvia; Plašienka, Dušan; Klučiar, Tomáš; Hudáčková, Natália; Oszczypko-Clowes, Marta

    2017-08-01

    The data on the Neogene geodynamics, palaeogeography, and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas (ALCAPA Mega-unit) are summarized, re-evaluated, supplemented, and newly interpreted. The proposed concept is illustrated by a series of palinspastic and palaeotopographic maps. The Miocene development of the Outer Carpathians reflects the vanishing subduction of the residual oceanic and/or thinned continental crust. A compression perpendicular to the front of the orogenic system led to the closing of residual flysch troughs and to accretionary wedge growth, as well as to the development of a foredeep on the margin of the European Platform. Docking of the Outer Western Carpathians accretionary wedge, together with the Central Western Carpathians and Northern Pannonian domain, was accompanied by stretching of the overriding microplate. An orogen parallel and perpendicular extension was associated with the opening and subsidence of the Early and Middle Miocene hinterland (back-arc) basin system that compensated counter-clockwise rotations of the individual crustal fragments of ALCAPA. The Late Miocene development relates to the opening of the Pannonian Basin System. This process was coupled with common stretching of both ALCAPA and Tisza-Dacia Mega-units due to the pull exerted by subduction rollback in front of the Eastern Carpathians. The filling up of the hinterland basin system was associated with thermal subsidence and was followed by the Pliocene tectonic inversion and consequent erosion of the basin system margins, as well as part of the interior.

  13. Late holocene climate derived from vegetation history and plant cellulose stable isotope records from the Great Basin of western North America

    International Nuclear Information System (INIS)

    Wigand, P.E.; Hemphill, M.L.; Patra, S.M.

    1994-01-01

    Integration of pollen records, and fossil woodrat midden data recovered from multiple strata of fossil woodrat (Neotoma spp.) dens (middens) in both northern and southern Nevada reveal a detailed paleoclimatic proxy record for the Great Basin during the last 45,000 years in growing detail. Clear, late Holocene climate-linked elevational depressions of plant species' distributions have occurred throughout the Great Basin of up to 200 m below today's and by as much as 1000 m below what they were during the middle Holocene. Horizontal plant range extentions during the Holocene reflecting the final northern most adjustments to Holocene climates range up to several hundred kilometers in the Great Basin. Well documented lags evidenced in the late Holocene response of vegetation communities to increased precipitation indicate reduced effectiveness in the ability of plant communities to assimilate excess precipitation. This resulted in significant runoff that was available for recharge. These responses, although indicating both rapid and dramatic fluctuations of climate for the Holocene, fall far short of the scale of such changes during the late Pleistocene. Extension of these results to Pleistocene woodrat den and pollen data evidence spans lasting several hundred to a thousand or more years during which significantly greater amounts of precipitation would have been available for runnoff or recharge

  14. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  15. Small-area analyses of bone cancer diagnosed in Great Britain provide clues to aetiology

    Directory of Open Access Journals (Sweden)

    McNally Richard J Q

    2012-06-01

    Full Text Available Abstract Background The aetiology of bone cancers is poorly understood. This study examined geographical patterning in incidence of primary bone cancers diagnosed in 0–49 year olds in Great Britain during 1980–2005 to provide information on factors linked with disease development. We investigated putative associations with deprivation and population density. Methods Data on osteosarcoma and Ewing sarcoma were obtained from national population-based registries. Negative binomial regression was used to examine the relationship between incidence rates and the Townsend deprivation score (and its component variables and small-area population density. Results The study analyzed 2566 osteosarcoma and 1650 Ewing sarcoma cases. For females with osteosarcoma, statistically significant decreased risk was associated with higher levels of deprivation (relative risk [RR] per unit increase in deprivation score = 0.969; 95% confidence interval [CI] 0.946–0.993. For all Ewing sarcoma combined, statistically significant decreased risk was associated with greater area-level population density and higher levels of non-car ownership (RR per person per hectare increase = 0.984; 95% CI 0.976–0.993, RR per 1% increase in non-car ownership = 0.994; 95% CI 0.991–0.998. Conclusions Higher incidence of osteosarcoma was observed for females in areas with lower deprivation levels indicating increased risk is linked to some aspect of affluent living. Higher incidence of Ewing sarcoma occurred in areas of low population density and where more people owned cars, both characteristic of rural environments. The study adds substantially to evidence associating Ewing sarcoma risk with rural environmental exposures. Putative risk factors include agricultural exposures, such as pesticides and zoonotic agents.

  16. Natural resource mitigation, adaptation and research needs related to climate change in the Great Basin and Mojave Desert

    Science.gov (United States)

    Hughson, Debra L.; Busch, David E.; Davis, Scott; Finn, Sean P.; Caicco, Steve; Verburg, Paul S.J.

    2011-01-01

    This report synthesizes the knowledge, opinions, and concerns of many Federal and State land managers, scientists, stakeholders, and partners from a workshop, held at the University of Nevada, Las Vegas, on April 20-22, 2010. Land managers, research scientists, and resource specialists identified common concerns regarding the potential effects of climate change on public lands and natural resources in the Great Basin and Mojave Desert and developed recommendations for mitigation, adaptation, and research needs. Water and, conversely, the effects of drought emerged as a common theme in all breakout sessions on terrestrial and aquatic species at risk, managing across boundaries, monitoring, and ecosystem services. Climate change models for the southwestern deserts predict general warming and drying with increasing precipitation variability year to year. Scientists noted that under these changing conditions the past may no longer be a guide to the future in which managers envision increasing conflicts between human water uses and sustaining ecosystems. Increasing environmental stress also is expected as a consequence of shifting ecosystem boundaries and species distributions, expansion of non-native species, and decoupling of biotic mutualisms, leading to increasingly unstable biologic communities. Managers uniformly expressed a desire to work across management and agency boundaries at a landscape scale but conceded that conflicting agency missions and budgetary constraints often impede collaboration. More and better science is needed to cope with the effects of climate change but, perhaps even more important is the application of science to management issues using the methods of adaptive management based on long-term monitoring to assess the merits of management actions. Access to data is essential for science-based land management. Basic inventories, spatial databases, baseline condition assessments, data quality assurance, and data sharing were identified as top

  17. Encounters with Pinyon-Juniper influence riskier movements in Greater Sage-Grouse across the Great Basin

    Science.gov (United States)

    Prochazka, Brian; Coates, Peter S.; Ricca, Mark; Casazza, Michael L.; Gustafson, K. Ben; Hull, Josh M.

    2016-01-01

    Fine-scale spatiotemporal studies can better identify relationships between individual survival and habitat fragmentation so that mechanistic interpretations can be made at the population level. Recent advances in Global Positioning System (GPS) technology and statistical models capable of deconstructing high-frequency location data have facilitated interpretation of animal movement within a behaviorally mechanistic framework. Habitat fragmentation due to singleleaf pinyon (Pinus monophylla; hereafter pinyon) and Utah juniper (Juniperus osteosperma; hereafter juniper) encroachment into sagebrush (Artemisia spp.) communities is a commonly implicated perturbation that can adversely influence greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) demographic rates. Using an extensive GPS data set (233 birds and 282,954 locations) across 12 study sites within the Great Basin, we conducted a behavioral change point analysis and subsequently constructed Brownian bridge movement models from each behaviorally homogenous section. We found a positive relationship between modeled movement rate and probability of encountering pinyon-juniper with significant variation among age classes. The probability of encountering pinyon-juniper among adults was two and three times greater than that of yearlings and juveniles, respectively. However, the movement rate in response to the probability of encountering pinyon-juniper trees was 1.5 times greater for juveniles. We then assessed the risk of mortality associated with an interaction between movement rate and the probability of encountering pinyon-juniper using shared frailty models. During pinyon-juniper encounters, on average, juvenile, yearling, and adult birds experienced a 10.4%, 0.2%, and 0.3% reduction in annual survival probabilities. Populations that used pinyon-juniper habitats with a frequency ≥ 3.8 times the overall mean experienced decreases in annual survival probabilities of 71.1%, 0.9%, and 0.9%. This

  18. Black Mats, Spring-Fed Streams, and Late-Glacial-Age Recharge in the Southern Great Basin

    Science.gov (United States)

    Quade, Jay; Forester, R.M.; Pratt, W.L.; Carter, C.

    1998-01-01

    Black mats are prominent features of the late Pleistocene and Holocene stratigraphic record in the southern Great Basin. Faunal, geochemical, and sedimentological evidence shows that the black mats formed in several microenvironments related to spring discharge, ranging from wet meadows to shallow ponds. Small land snails such as Gastrocopta tappaniana and Vertigo berryi are the most common mollusk taxa present. Semiaquatic and aquatic taxa are less abundant and include Catinellids, Fossaria parva, Gyraulus parvus, and others living today in and around perennial seeps and ponds. The ostracodes Cypridopsis okeechobi and Scottia tumida, typical of seeps and low-discharge springs today, as well as other taxa typical of springs and wetlands, are common in the black mats. Several new species that lived in the saturated subsurface also are present, but lacustrine ostracodes are absent. The ??13C values of organic matter in the black mats range from -12 to -26???, reflecting contributions of tissue from both C3 (sedges, most shrubs and trees) and C4 (saltbush, saltgrass) plants. Carbon-14 dates on the humate fraction of 55 black mats fall between 11,800 to 6300 and 2300 14C yr B.P. to modern. The total absence of mats in our sample between 6300 and 2300 14C yr B.P. likely reflects increased aridity associated with the mid-Holocene Altithermal. The oldest black mats date to 11,800-11,600 14C yr B.P., and the peak in the 14C black mat distribution falls at ???10,000 14C yr B.P. As the formation of black mats is spring related, their abundance reflects refilling of valley aquifers starting no later than 11,800 and peaking after 11,000 14C yrB.P. Reactivation of spring-fed channels shortly before 11,200 14C yr B.P. is also apparent in the stratigraphic records from the Las Vegas and Pahrump Valleys. This age distribution suggests that black mats and related spring-fed channels in part may have formed in response to Younger Dryas (YD)-age recharge in the region. However, the

  19. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Science.gov (United States)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  20. The Cadmium Isotope Record of the Great Oxidation Event from the Turee Creek Group, Hamersley Basin, Australia

    Science.gov (United States)

    Abouchami, W.; Busigny, V.; Philippot, P.; Galer, S. J. G.; Cheng, C.; Pecoits, E.

    2016-12-01

    The evolution of the ocean, atmosphere and biosphere throughout Earth's history has impacted on the biogeochemistry of some key trace metals that are of particular importance in regulating the exchange between Earth's reservoirs. Several geochemical proxies exhibit isotopic shifts that have been linked to major changes in the oxygenation levels of the ancient oceans during the Great Oxygenation Event (GOE) between 2.45 and 2.2 Ga and the Neoproterozoic Oxygenation Event at ca. 0.6 Ga. Studies of the modern marine biogeochemical cycle of the transition metal Cadmium have shown that stable Cd isotope fractionation is mainly driven by biological uptake of light Cd into marine phytoplankton in surface waters leaving behind the seawater enriched in the heavy Cd isotopes. Here we use of the potential of this novel proxy to trace ancient biological productivity which remains an enigma, particularly during the early stages of Earth history. The Turee Creek Group in the Hamersley Basin, Australia, provides a continuous stratigraphic sedimentary section covering the GOE and at least two glacial events, offering a unique opportunity to examine the changes that took place during these periods and possibly constrain the evolution, timing and onset of oxygenic photosynthesis. Stable Cd isotope data were obtained on samples from the Boolgeeda Iron Fm. (BIFs), the siliciclastic and carbonate successions of Kungara (including the Meteorite Bore Member) and the Kazputt Fm., using a double spike technique by TIMS (ThermoFisher Triton) and Cd concentrations were determined by isotope dilution. The Boolgeeda BIFs have generally low Cd concentrations varying between 8 and 50ppb, with two major excursions marked by an increase in Cd content, reaching similar levels to those in the overlying Kungarra Fm. (≥150 ppb). These variations are associated with a large range in ɛ112/110Cd values (-2 to +2), with the most negative values typically found in the organic and Cd-rich shales and

  1. Diagenetic differences of the Zhenzhuchong Member of Ziliujing Formation in the Jiulongshan–Jiange area, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Mingcai Hou

    2015-03-01

    Full Text Available The rocks of the Zhenzhuchong Member of the Ziliujing Formation, Jiulongshan–Jiange area in the Sichuan Basin, were analyzed by petrography, XRD, and SEM techniques to investigate their diagenetic history and properties, such as authigenic mineral types, evolution of mixed-layer illite–smectite minerals, the clay assembly, and the fraction of mixed-layer clay minerals. The results revealed that the Zhenzhuchong Member has experienced several important episodes of diagenetic alteration since the deposition, including compaction (pressure-solution, cementation, metasomatism, dissolution, fracturing, and infilling of caves and cracks. It was also observed that diagenetic properties of the Jiulongshan area were significantly different from those of the Jiange area. The rock samples from the Jiulongshan area were characterized by the composition of siliceous and calcareous cements, varying amounts of detrital grains, clay matrix and kaolinite replaced by calcites, a certain amount of rarely dissolved early-stage kaolinite, dickite, and infillings by late-stage calcite. On the other hand, for the rock samples from the Jiange area, the dissolution is a common phenomenon with features of abundant aluminosilicates-dissolution pores or components, but the replacement phenomenon has rarely been seen. These rock samples were characterized by the presence of clay mineral cements, quartz, and dolomite infillings. It indicated that there was a great difference of diagenesis between the two areas in the types, phase, and temperature of diagenetic fluids. Revealing the difference would provide theoretical and practical implications for the exploration of high quality oil and gas reservoirs.

  2. Regional summary and recommended study areas for the Texas Panhandle portion of the Permian Basin

    International Nuclear Information System (INIS)

    1983-12-01

    This report summarizes the regional geologic and environmental characterizations that have been completed for the Permian region of study, and describes the procedure used to identify study areas for the next phase of investigation. The factors evaluated in the Permian region fall into three broad areas: health and safety, environmental and socioeconomic, and engineering and economic considerations. Health and safety considerations included salt depth and thickness, faults, seismic activity, groundwater, salt dissolution, energy and mineral resources, presence of boreholes, and interactive land uses. Salt depth and thickness was the key health and safety factor, and when mapped, provded to be a discriminator. The evaluation of environmental and socioeconomic conditions focused primarily on the presence of urban areas and on designated land uses such as parks, wildlife areas, and historic sites. Engineering and economic considerations centered primarily on salt depth, which was already evaluated in the health and safety area. The Palo Duro and Dalhart basins are recommended for future studies on the basis of geology. In these two basins, salt depth and thickness appear promising, and there is less likelihood of past or future oil and gas exploratory holes. Environmental and socioeconomic factors did not preclude any of the basins from further study. 66 references, 16 figures, 2 tables

  3. Estimation of potential runoff-contributing areas in the Kansas-Lower Republican River Basin, Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    1999-01-01

    Digital soils and topographic data were used to estimate and compare potential runoff-contributing areas for 19 selected subbasins representing soil, slope, and runoff variability within the Kansas-Lower Republican (KLR) River Basin. Potential runoff-contributing areas were estimated separately and collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented high, moderate, and low potential runoff. For infiltration-excess overland flow, various rainfall intensities and soil permeabilities were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that the subbasins with relatively high potential runoff are located in the central part of the KLR River Basin. These subbasins are Black Vermillion River, Clarks Creek, Delaware River upstream from Muscotah, Grasshopper Creek, Mill Creek (Wabaunsee County), Soldier Creek, Vermillion Creek (Pottawatomie County), and Wildcat Creek. The subbasins with relatively low potential runoff are located in the western one-third of the KLR River Basin, with one exception, and are Buffalo Creek, Little Blue River upstream from Barnes, Mill Creek (Washington County), Republican River between Concordia and Clay Center, Republican River upstream from Concordia, Wakarusa River downstream from Clinton Lake (exception), and White Rock Creek. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the KLR River Basin.

  4. Evaluation of seismic reflection data in the Davis and Lavender Canyons study area, Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Kitcho, C.A.; Wong, I.G.; Turcotte, F.T.

    1986-08-01

    Seismic reflection data purchased from petroleum industry brokers and acquired through group speculative surveys were interpreted for information on the regional subsurface geologic structure and stratigraphy within and surrounding the Davis and Lavender Canyons study area in the Paradox Basin of southeastern Utah. Structures of interest were faults, folds, joints, and collapse structures related to salt dissolution. The seismic reflection data were used to interpret stratigraphy by identifying continuous and discontinuous reflectors on the seismic profiles. Thickening and thinning of strata and possible areas of salt flowage or dissolution could be identified from the seismic data. Identifiable reflectors included the tops of the Precambrian and Mississippian, a distinctive interbed close to the middle of the Pennsylvanian Paradox salt formation (probably the interval between Salt Cycles 10 and 13), and near the top of the Paradox salt. Of the 56 faults identified from the seismic reflection interpretation, 33 trend northwest, west-northwest, or west, and most affect only the deeper part of the stratigraphic section. These faults are part of the deep structural system found throughout the Paradox Basin, including the fold and fault belt in the northeast part of the basin. The faults bound basement Precambrian blocks that experienced minor activity during Mississippian and early Pennsylvanian deposition, and showed major displacement during early Paradox salt deposition as the Paradox Basin subsided. Based on the seismic data, most of these faults appear to have an upward terminus between the top of the Mississippian and the salt interbed reflector

  5. Uranium resources in fine-grained carbonaceous rocks of the Great Divide Basin, south-central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Burger, J.A.; Roe, L.M. II; Hacke, C.M.; Mosher, M.M.

    1982-11-01

    The uranium resources of the fine-grained carbonaceous rocks of the Great Divide Basin in southern Wyoming were assessed. The assessment was based primarily on data from some 600 boreholes. The data included information from geophysical logs, lithologic logs and cores, and drill cuttings. The cores and cuttings were analyzed for chemical U 3 O 8 , radiometric U, Th and trace elements. Selected samples were examined by thin section, sieve analysis, x-ray, SEM, ion probe, and alpha track methods. The uranium is associated with fine-grained carbonaceous shales, siltstones, mudstones, and coals in radioactive zones 5 to 50 ft thick that are continuous over broad areas. These rocks have a limited stratigraphic range between the Red Desert tongue of the Wasatch Formation and the lower part of the Tipton tongue of the Green River Formation. Most of this uranium is syngenetic in origin, in part from the chelation of the uranium by organic material in lake-side swamps and in part as uranium in very fine detrital heavy minerals. The uraniferous fine-grained carbonaceous rocks that exceed a cutoff grade of 100 ppM eU 3 O 8 extend over an area of 542 mi 2 and locally to a depth of approximately 2000 ft. The uraniferous area is roughly ellipical and embraces the zone of change between the piedmont and alluvial-fan facies and the lacustrine facies of the intertonguing Battle Spring, Wasatch, and Green River Formations. About 1.05 x 10 6 tons U 3 O 8 , based on gross-gamma logs not corrected for thorium, are assigned to the area in the first 500 ft; an estimated 3.49 x 10 6 tons are assigned to a depth of 1000 ft. These units also contain a substantial thorium resource that is also associated with fine-grained rocks. The thorium-to-uranium ratio generally ranges between 1 and 4. A thorium resource of 3.43 x 10 6 tons to a depth of 500 ft is estimated for the assessment area. 5 figures, 3 tables

  6. F-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    International Nuclear Information System (INIS)

    1994-09-01

    During second quarter 1994, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. Analytical results that exceeded final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alpha exceeded the final PDWS and aluminum, iron, manganese, and total organic halogens exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard in well FAC 3. Groundwater flow direction and rate in the water table beneath the F-Area Acid/Caustic Basin were similar to past quarters

  7. P-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-06-01

    During first quarter 1995, groundwater from the six PAC monitoring wells at the P-Area Acid/Caustic Basin was analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, adionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During first quarter 1995, no constituents exceeded the final PDWS. Aluminum exceeded its SRS Flag 2 criterion in all six PAC wells. Iron and manganese exceeded Flag 2 criteria in three wells, while turbidity was elevated in one well. Groundwater flow direction and rate in the water table beneath the P-Area Acid/Caustic Basin were similar to past quarters

  8. Soil map, area and volume calculations in Orrmyrberget catchment basin at Gideaa, Northern Sweden

    International Nuclear Information System (INIS)

    Ittner, T.; Tammela, P.T.; Gustafsson, E.

    1991-06-01

    Fallout studies in the Gideaa study site after the Chernobyl fallout in 1986, has come to the point that a more exact surface mapping of the studied catchment basin is needed. This surface mapping is mainly made for area calculations of different soil types within the study site. The mapping focus on the surface, as the study concerns fallout redistribution and it is extended to also include materials down to a depth of 0.5 meter. Volume calculations are made for the various soil materials within the top 0.5 m. These volume and area calculations will then be used in the modelling of the migration and redistribution of the fallout radionuclides within the studied catchment basin. (au)

  9. A comparison of sediment toxicity test methods at three Great Lake Areas of Concern

    Science.gov (United States)

    Burton, G. Allen; Ingersoll, Christopher G.; Burnett, LouAnn C.; Henry, Mary; Hinman, Mark L.; Klaine, Stephen J.; Landrum, Peter F.; Ross, Phillipe; Tuchman, Marc

    1996-01-01

    The significance of sediment contamination is often evaluated using sediment toxicity (bioassay) testing. There are relatively few “standardized” test methods for evaluating sediments. Popular sediment toxicity methods examine the extractable water (elutriate), interstitial water, or whole (bulk) sediment phases using test species spanning the aquatic food chain from bacteria to fish. The current study was designed to evaluate which toxicity tests were most useful in evaluations of sediment contamination at three Great Lake Areas of Concern. Responses of 24 different organisms including fish, mayflies, amphipods, midges, cladocerans, rotifers, macrophytes, algae, and bacteria were compared using whole sediment or elutriate toxicity assays. Sediments from several sites in the Buffalo River, Calumet River (Indiana Harbor), and Saginaw River were tested, as part of the U.S. Environmental Protection Agency's (USEPA) Assessment and Remediation of Contaminated Sediments (ARCS) Project. Results indicated several assays to be sensitive to sediment toxicity and able to discriminate between differing levels of toxicity. Many of the assay responses were significantly correlated to other toxicity responses and were similar based on factor analysis. For most applications, a test design consisting of two to three assays should adequately detect sediment toxicity, consisting of various groupings of the following species: Hyalella azteca, Ceriodaphnia dubia, Chironomus riparius, Chironomus tentans, Daphnia magna, Pimephales promelas, Hexagenia bilineata, Diporeia sp., Hydrilla verticillata, or Lemna minor.

  10. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  11. The late Holocene dry period: multiproxy evidence for an extended drought between 2800 and 1850 cal yr BP across the central Great Basin, USA

    Science.gov (United States)

    Mensing, Scott A.; Sharpe, Saxon E.; Tunno, Irene; Sada, Don W.; Thomas, Jim M.; Starratt, Scott W.; Smith, Jeremy

    2013-01-01

    Evidence of a multi-centennial scale dry period between ∼2800 and 1850 cal yr BP is documented by pollen, mollusks, diatoms, and sediment in spring sediments from Stonehouse Meadow in Spring Valley, eastern central Nevada, U.S. We refer to this period as the Late Holocene Dry Period. Based on sediment recovered, Stonehouse Meadow was either absent or severely restricted in size at ∼8000 cal yr BP. Beginning ∼7500 cal yr BP, the meadow became established and persisted to ∼3000 cal yr BP when it began to dry. Comparison of the timing of this late Holocene drought record to multiple records extending from the eastern Sierra Nevada across the central Great Basin to the Great Salt Lake support the interpretation that this dry period was regional. The beginning and ending dates vary among sites, but all sites record multiple centuries of dry climate between 2500 and 1900 cal yr BP. This duration makes it the longest persistent dry period within the late Holocene. In contrast, sites in the northern Great Basin record either no clear evidence of drought, or have wetter than average climate during this period, suggesting that the northern boundary between wet and dry climates may have been between about 40° and 42° N latitude. This dry in the southwest and wet in the northwest precipitation pattern across the Great Basin is supported by large-scale spatial climate pattern hypotheses involving ENSO, PDO, AMO, and the position of the Aleutian Low and North Pacific High, particularly during winter.

  12. Dissolved organic carbon in the INDEX area of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; De

    -Sea Research II 48 (2001) 3353–3361 Dissolved organic carbon in the INDEX area of the Central Indian Basin Sugandha Sardessai*, S.N. de Sousa National Institute of Oceanography, Dona-Paula, Goa 403 004, India Abstract Dissolved organic carbon (DOC..., 1996). While there is substantial information available on the DOC content of sea water throughout the Atlantic, Pacific and southern oceans, there are limited reports on contents and distribution of this organic fraction in the Indian Ocean (Menzel...

  13. Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years

    International Nuclear Information System (INIS)

    Tyler, S.W.; Chapman, J.B.; Conrad, S.H.; Hammermeister, D.P.; Blout, D.O.; Miller, J.J.; Sully, M.J.; Ginanni, J.M.

    1996-01-01

    The disposal of hazardous and radioactive waste in arid regions requires a thorough understanding of the occurrence of soil-water flux and recharge. Soil-water chemistry and isotopic data are presented from three deep vadose zone boreholes (> 230 m) at the Nevada Test Site, located in the Great Basin geographic province of the southwestern United States, to quantify soil-water flux and its relation to climate. The low water contents found in the soils significantly reduce the mixing of tracers in the subsurface and provide a unique opportunity to examine the role of climate variation on recharge in arid climates. Tracing techniques and core data are examined in this work to reconstruct the paleohydrologic conditions existing in the vadose zone well beyond the timescales typically investigated. Stable chloride and chlorine 36 profiles indicate that the soil waters deep in the vadose zone range in age from approximately 20,000 to 120,000 years. Secondary chloride bulges that are present in two of the three profiles support the concept of recharge occurring at or near the last two glacial maxima, when the climate of the area was considerably wetter and cooler. The stable isotopic composition of the soil water in the profiles is significantly more depleted in heavy isotopes than is modern precipitation, suggesting that recharge under the current climate is not occurring at this arid site. Past and present recharge appears to have been strongly controlled by surface topography, with increased incidence of recharge where runoff from the surrounding mountains may have been concentrated. The data obtained from this detailed drilling and sampling program shed new light on the behavior of water in thick vadose zones and, in particular, show the sensitivity of arid regions to the extreme variations in climate experienced by the region over the last two glacial maxima

  14. Real-Time Monitoring of Mountain Conifer Growth Response to Seasonal Climate and the Summer Monsoon in the Great Basin of North America

    Science.gov (United States)

    Strachan, S.; Biondi, F.

    2013-12-01

    Tree rings in the American intermountain west are often used for palaeoclimatic purposes, including reconstructions of precipitation, temperature, and drought. Specific seasonal phenomena such as the North American Monsoon (NAM) are also being identified in tree-ring studies as being related to certain growth features in the rings (such as early-onset 'false' latewood). These relationships have historically been developed using statistical relationships between tree-ring chronologies and regional weather observations. In zones near the periphery of the NAM, summertime precipitation may be more sporadic, yet localized vegetation assemblages in the northern Mojave desert and Great Basin regions indicate that these events are still important for some ecosystems which have established in areas where NAM activity is present. Major shifts in NAM behavior in the past may have been recorded by tree rings, and identifying the specific mechanisms/circumstances by which this occurs is critical for efforts seeking to model ecosystem response to climate changes. By establishing in-situ monitoring of climate/weather, soils, and tree-growth variables in Pinus ponderosa scopulorum and Pinus monophylla zones at study sites in eastern/southern Nevada, we are able to address these issues at very fine spatial and temporal scales. Data from two seasons of monitoring precipitation, solar radiation, air temperature, soil temperature, soil water content, tree sap flow, tree radial distance increment, and hourly imagery are presented. Point dendrometers along with sap flow sensors monitor growth in these ponderosa pine around the clock to help researchers understand tree-ring/climate relationships.

  15. Remote-sensing and geological information for prospective area selection of in-situ leachable sandstone-type uranium deposit in Songliao and Liaohe faulted-depressed basins

    International Nuclear Information System (INIS)

    Yu Baoshan

    1998-01-01

    On the basis of remote-sensing information and geological environments for the formation of in-situ leachable sandstone-type uranium deposits such as geomorphic features, distribution of drainage system, and paleo-alluvial (diluvial) fans and time-space distribution regularities of orehosting rocks and sandstone bodies in Songliao and Liaohe faulted-depressed basins, image features, tectonic patterns and paleo-geographic environment of the prospective areas are discussed for both basins, and based on a great number of petroleum-geological data and comparison analysis, a remote sensing-geological prospecting model for in-situ leachable sandstonetype uranium deposits in the region is established, providing indications for selection of prospective area

  16. Characteristics of interlayer oxidation zone and uranium metallogenetic prospect of Zhiluo formation in Daliuta area, Ordos Basin

    International Nuclear Information System (INIS)

    Yang Jianxin; Li Xide; Zhang Zhaolin

    2006-01-01

    Ordos Basin is a large down-warping basin in the northwest of North-China Platform; Daliuta area is located in the northeast of Ordos Basin. In this area, sand bodies of fluvial facies developed well in the submember of the lower member of the target Zhiluo Formation of Middle Jurassic and several sand belt of large scale occurred. Yellow interlayer oxidation zone have been discovered in belt I and belt III by the drilling and it is of a certain scale. Due to the young age of interlayer oxidation and unsatisfied uranium sources, uranium metallogenic prospect of this area need more research and exploration. (authors)

  17. Estimation of Leak Rate from the Emergency Pump Well in L-Area Complex Basin

    International Nuclear Information System (INIS)

    Duncan, A

    2005-01-01

    This report provides an estimate of the leak rate from the emergency pump well in L-basin that is to be expected during an off-normal event. This estimate is based on expected shrinkage of the engineered grout (i.e., controlled low strength material) used to fill the emergency pump well and the header pipes that provide the dominant leak path from the basin to the lower levels of the L-Area Complex. The estimate will be used to provide input into the operating safety basis to ensure that the water level in the basin will remain above a certain minimum level. The minimum basin water level is specified to ensure adequate shielding for personnel and maintain the ''as low as reasonably achievable'' concept of radiological exposure. The need for the leak rate estimation is the existence of a gap between the fill material and the header pipes, which penetrate the basin wall and would be the primary leak path in the event of a breach in those pipes. The gap between the pipe and fill material was estimated based on a full scale demonstration pour that was performed and examined. Leak tests were performed on full scale pipes as a part of this examination. Leak rates were measured to be on the order of 0.01 gallons/minute for completely filled pipe (vertically positioned) and 0.25 gallons/minute for partially filled pipe (horizontally positioned). This measurement was for water at 16 feet head pressure and with minimal corrosion or biofilm present. The effect of the grout fill on the inside surface biofilm of the pipes is the subject of a previous memorandum

  18. Arsenic in terrestrial invertebrates from riparian areas of the Piracicaba River Basin, Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Franca, E.J.; Magalhaes, M.R.L.; Santos, M.L.O.; Nadai Fernandes, E.A. de; Fonseca, F.Y.

    2017-01-01

    There is no information on arsenic distribution in terrestrial invertebrates from riparian forests of urban and rural areas in Brazil. The objective of this study was to evaluate the As levels in invertebrates from riverine forests of the Piracicaba River Basin, Sao Paulo, Brazil, using the instrumental neutron activation analysis, k 0 -comparator method. After correction of mass fractions, values higher than 0.10 mg kg -1 were quantified in invertebrates from both urban and agricultural areas. An unexpected As mass fraction of 13 mg kg -1 obtained in the Coleopteran pest Macrodactylus pumilio indicated resistance to As-containing-pesticides. (author)

  19. Leap frog in slow motion: Divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests.

    Science.gov (United States)

    Smithers, Brian V; North, Malcolm P; Millar, Constance I; Latimer, Andrew M

    2018-02-01

    In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will colonize newly available habitat first, potentially excluding species that have slower establishment rates. Using a network of plots across five mountain ranges, we described patterns of upslope elevational range shift for the two dominant Great Basin subalpine species, limber pine and Great Basin bristlecone pine. We found that the Great Basin treeline for these species is expanding upslope with a mean vertical elevation shift of 19.1 m since 1950, which is lower than what we might expect based on temperature increases alone. The largest advances were on limber pine-dominated granitic soils, on west aspects, and at lower latitudes. Bristlecone pine juveniles establishing above treeline share some environmental associations with bristlecone adults. Limber pine above-treeline juveniles, in contrast, are prevalent across environmental conditions and share few environmental associations with limber pine adults. Strikingly, limber pine is establishing above treeline throughout the region without regard to site characteristic such as soil type, slope, aspect, or soil texture. Although limber pine is often rare at treeline where it coexists with bristlecone pine, limber pine juveniles dominate above treeline even on calcareous soils that are core bristlecone pine habitat. Limber pine is successfully "leap-frogging" over bristlecone pine, probably because of its strong dispersal advantage and broader tolerances for establishment. This early-stage dominance indicates the potential for the species composition of treeline to change in response to climate change. More broadly, it shows how species differences in dispersal

  20. Evolution characteristic of gypsum-salt rocks of the upper member of Oligocene Lower Ganchaigou Fm in the Shizigou area, western Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Dinghong Yi

    2017-09-01

    Full Text Available Over years of oil and gas exploration in the Qaidam Basin, reservoirs have been discovered in many layers. In the Shizigou area, western Qaidam Basin, the upper member of Oligocene Lower Ganchaigou Fm is an important target for oil and gas exploration, and gypsum-salt rocks are the high-quality caprocks for the preservation of oil and gas reservoirs in this area. For predicting oil and gas exploration direction and target in the western Qaidam Basin and providing guidance for its oil and gas exploration deployment, its depositional characteristics and environment of gypsum-salt rocks in this area were investigated based on the core observation, thin section identification, and analysis of grain size, sensitivity parameter ratios (Sr/Cu, Fe/Mn, (Fe + Al/(Ca + Mg, V/(V + Ni and Pr/Ph, pyrite content and inclusions. The following characteristics are identified. First, gypsum-salt rocks are mainly distributed in the depocenter of the lake basin and their thickness decreases towards the margin of the basin. They are laterally transformed into carbonate rocks or terrigenous clastic rocks. They are areally distributed in the shape of irregular ellipse. Second, gypsum-salt rocks are vertically developed mainly in the middle and upper parts of the upper member of Lower Ganchaigou Fm and they are interbedded with carbonate rocks or terrigenous clastic rocks. Their single layer thickness changes greatly, and there are many layers with good continuity. Third, Sand Group III to Group I in the upper member of Lower Ganchaigou Fm (inter-salt are of reductive water environment of semi-deep to deep lake facies due to their sedimentation in an arid and hot climate. It is concluded that gypsum-salt rocks of the upper member of Lower Ganchaigou Fm are distributed widely with great accumulative thickness in this area; and that they are originated from deep lake water by virtue of evaporation, concentration and crystallization in an arid and hot climate instead

  1. Hydrogeological monitoring in Riberao da onca basin located in out croup area of Guarani Aquifer

    International Nuclear Information System (INIS)

    Wendland, E.; Andrade Gomes Barreto, C.; Gomes, L. . E mail:ew@sc.usp.br

    2004-01-01

    Objective of this project is the estimation of the direct recharge rate of the Guarani Aquifer System, based on a water balance study in the Ribeirao da Onca basin, located in the outcrop area of the Botucatu Formation, in Brotas-SP (Brazil). It is intended to monitor the groundwater level behavior and the superficial outflow from the basin, as function of the registered precipitation and evapotranspiration, during two hydrological cycles. The results to be obtained are of general interest in the context of the Project for Environmental Protection and Integrated Sustainable Management of the Guarani Aquifer System, since understanding the process and rate of direct recharge are essential information for any initiative for management of the aquifer. In this work, the main activities proposed are presented [es

  2. Sequence Stratigraphic Framework Analysis of Putaohua Oil Reservoir in Chaochang Area of Songliao Basin

    Science.gov (United States)

    Chang, Yan; Liu, Dameng; Yao, Yanbin

    2018-01-01

    The regional structure of the Changchang area in the Songliao Basin is located on the Chaoyangou terrace and Changchunling anticline belt in the central depression of the northern part of the Songliao Basin, across the two secondary tectonic units of the Chaoyanggou terrace and Changchunling anticline. However, with the continuous development of oil and gas, the unused reserves of Fuyu oil reservoir decreased year by year, and the oil field faced a serious shortage of reserve reserves. At the same time, during the evaluation process, a better oil-bearing display was found during the drilling and test oil in the Putao depression to the Chaoyanggou terraces, the Yudong-Taipingchuan area, and in the process of drilling and testing oil in the Putaohua reservoir. Zhao41, Zhao18-1, Shu38 and other exploration wells to obtain oil oil, indicating that the area has a further evaluation of the potential. Based on the principle of stratification, the Putao area was divided into three parts by using the core, logging and logging. It is concluded that the middle and western strata of the study area are well developed, including three sequences, one cycle from bottom to top (three small layers), two cycles (one small layer), three cycles (two small layers) Rhythm is positive-anti-positive. From the Midwest to the southeastern part of the strata, the strata are overtaken, the lower strata are missing, and the top rhythms become rhythmic.

  3. Investigation of potential alternate study areas in the Paradox Basin region, Utah

    International Nuclear Information System (INIS)

    Grant, T.A.

    1984-03-01

    The Paradox Basin was re-evaluated to determine if any parts of the Basin that had not been identified in previous studies might be suitable for a more detailed evaluation as a nuclear waste repository site. The factors used in this re-evaluation were depth to salt and dedicated lands, because these factors directly address the engineering and environmental feasibility of a repository. Six areas (Happy Canyon, Green River, Dolores River, Expectation Mountain, Dark Canyon, and Kane Springs Canyon) were identified on this basis as potentially suitable areas for further study. These areas were assessed in more detail to review the feasibility of siting a repository. None of the six areas was recommended for further study as a repository site because the size of the areas, thickness of the salt beds, topography, and engineering factors resulting from the loading of nearby mesas generally did not allow the construction of a feasible repository. The content of this report was effective as of May 1983. 41 references, 17 figures

  4. Recovery act. Characterizing structural controls of EGS-candidate and conventional geothermal reservoirs in the Great Basin. Developing successful exploration strategies in extended terranes

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James [Univ. of Nevada, Reno, NV (United States)

    2015-06-25

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites.

  5. Local earthquake tomography of the Erzincan Basin and the surrounding area in Turkey

    Directory of Open Access Journals (Sweden)

    H. Gökalp

    2007-06-01

    Full Text Available In this study, selected travel time data from the aftershock series of the Erzincan earthquake (March, 1992, Ms=6.8 were inverted simultaneously for both hypocenter locations and 3D Vp and Vs structure. The general features of the 3D velocity structure of the upper crust of Erzincan Basin and the surrounding area, one of the most tectonically and seismically active regions in Turkey were investigated. The data used for this purpose were 2215 P-wave and 547 S-wave arrival times from 350 local earthquakes recorded by temporary 15 short-period seismograph stations. Thurber’s simultaneous inversion method (1983 was applied to the arrival time data to obtain a 3D velocity structure, and hypocentral locations. Both 3D heterogeneous P and S wave velocity variations down to 12 km depth were obtained. The acquired tomographic images show that the 3D velocity structure beneath the region is heterogeneous in that low velocity appears throughout the basin and at the southeastern flank, and high velocities occur at south and east of the basin. The low velocities can be related to small and large scale fractures, thus causing rocks to weaken over a long period of the active tectonic faulting process. The ophiolitic rock units mostly occurring around the basin area are the possible reason for the high velocities. The validity of 3D inversion results was tested by performing detailed resolution analysis. The test results confirm the velocity anomalies obtained from inversion. Despite the small number of inverted S-wave arrivals, the obtained 3D S velocity model has similar anomalies with lower resolution than the 3D P-wave velocity model. Better hypocenter locations were calculated using the 3D heterogeneous model obtained from tomographic inversion.

  6. Hydrologic models of modern and fossil geothermal systems in the Great Basin: Genetic implications for epithermal Au-Ag and Carlin-type gold deposits

    Science.gov (United States)

    Person, M.; Banerjee, A.; Hofstra, A.; Sweetkind, D.; Gao, Y.

    2008-01-01

    The Great Basin region in the western United States contains active geothermal systems, large epithermal Au-Ag deposits, and world-class Carlin-type gold deposits. Temperature profiles, fluid inclusion studies, and isotopic evidence suggest that modern and fossil hydrothermal systems associated with gold mineralization share many common features, including the absence of a clear magmatic fluid source, discharge areas restricted to fault zones, and remarkably high temperatures (>200 ??C) at shallow depths (200-1500 m). While the plumbing of these systems varies, geochemical and isotopic data collected at the Dixie Valley and Beowawe geothermal systems suggest that fluid circulation along fault zones was relatively deep (>5 km) and comprised of relatively unexchanged Pleistocene meteoric water with small (horizons. Those with minimal fluid ?? 18O shifts are restricted to high-permeability fault zones and relatively small-scale (???5 km), single-pass flow systems (e.g., Beowawe). Those with intermediate to large isotopic shifts (e.g., epithermal and Carlin-type Au) had larger-scale (???15 km) loop convection cells with a greater component of flow through marine sedimentary rocks at lower water/rock ratios and greater endowments of gold. Enthalpy calculations constrain the duration of Carlin-type gold systems to probably account for the amount of silica in the sinter deposits. In the Carlin trend, fluid circulation extended down into Paleozoic siliciclastic rocks, which afforded more mixing with isotopically enriched higher enthalpy fluids. Computed fission track ages along the Carlin trend included the convective effects, and ranged between 91.6 and 35.3 Ma. Older fission track ages occurred in zones of groundwater recharge, and the younger ages occurred in discharge areas. This is largely consistent with fission track ages reported in recent studies. We found that either an amagmatic system with more permeable faults (10-11 m2) or a magmatic system with less

  7. Hydrologic Impacts Associated with the Increased Role of Wildland Fire Across the Rangeland-Xeric Forest Continuum of the Great Basin and Intermountain West, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Boll, J.; Al-Hamdan, O. Z.

    2011-12-01

    The increased role of wildland fire across the rangeland-xeric forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Concomitant climate conditions and altered plant community transitions in recent decades along grassland-shrubland-woodland-xeric forest transitions have promoted frequent and large wildland fires, and the continuance of the trend appears likely if current or warming climate conditions prevail. Much of the Great Basin and Intermountain West in the US now exists in a state in which rangeland and woodland wildfires stimulated by invasive cheatgrass and dense, horizontal and vertical fuel layers have a greater likelihood of progressing upslope into xeric forests. Drier moisture conditions and warmer seasonal air temperatures, along with dense fuel loads, have lengthened fire seasons and facilitated an increase in the frequency, severity and area burned in mid-elevation western US forests. These changes potentially increase the overall hydrologic vulnerability across the rangeland-xeric forest continuum by spatially and temporally increasing soil surface exposure to runoff and erosion processes. Plot-to-hillslope scale studies demonstrate burning may increase event runoff and/or erosion by factors of 2-40 over small-plots scales and more than 100-fold over large-plot to hillslope scales. Anecdotal reports of large-scale flooding and debris-flow events from rangelands and xeric forests following burning document the potential risk to resources (soil loss, water quality, degraded aquatic habitat, etc.), property and infrastructure, and human life. Such risks are particularly concerning for urban centers near the urban-wildland interface. We do not yet know the long-term ramifications of frequent soil loss associated with commonly occurring runoff events on repeatedly burned sites. However, plot to landscape-scale post-fire erosion rate estimates suggest potential losses of biologically

  8. Basin of the river Oskil as a tourist-recreational area

    Directory of Open Access Journals (Sweden)

    Валентина Клименко

    2017-09-01

    Full Text Available At the current stage of Ukraine’s economic development tourism is a priority sector of our country’s economy. Due to the fact that Ukraine has set a high priority goal - to join the European Union, we should pay attention to the conditions of various areas and sectors of our economy, in particular, the quality of tourism services, whether the recreational sector meets European standards. Many economically developed countries make tourism the most important among other sectors to fill the budget and closely monitor the quality of tourist services. Due to the rapid development of the tourism industry in our country the question has arisen as to conformity of recreational facilities conditions with international standards and finding new places of recreation, including water tourism. The aim of the study is to highlight the Oskil River Basin (within Kharkiv region as a tourist and recreational area and the use of the study materials in the learning process. The article deals with problems of insufficiently studied use of the river Oskil basin both as a tourist, and a recreational area. The hydrographic characteristics of the reservoir have been studied to illustrate the conformity of water objects with the standards and requirements of tourist and recreational activities; methods and techniques of water resources assessment have been analyzed for recreation; the river Oskil (within Ukraine and Chervono-Oskil reservoir have been assessed on the possibility of tourist-recreational use. The ways to use the study materials in education have been determined. Recreational potential of the river and the reservoir should not be underestimated. Thus, analyzing resources of the Oskil river basin and Chervono-Oskil reservoir in terms of recreation, we can conclude that the water of the river is not equally suitable for recreational purposes. The river basin can be used as an object of beach-bathing leisure, tourist boating and rafting, sport rafting

  9. Regional hydrology of the Green River-Moab area, northwestern Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Rush, F.E.; Whitfield, M.S.; Hart, I.M.

    1982-12-01

    The Green River-Moab area encompasses about 7800 square kilometers or about 25% of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and overlying and underlying thick sequences of rocks with minimal permeability; above and below these confining beds are aquifers. The upper Mesozoic sandstone aquifer, probably is the most permeable hydrogeologic unit of the area and is the subject of this investigation. The principal component of groundwater outflow from this aquifer probably is subsurface flow to regional streams (the Green and Colorado Rivers) and is about 100 million cubic meters per year. All other components of outflow are relatively small. The average annual recharge to the aquifer is about 130 million cubic meters, of which about 20 million cubic meters is from local precipitation. For the lower aquifer, all recharge and discharge probably is by subsurface flow and was not estimated. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. Brines are present in the confining beds, but solution of beds of salt probably is very slow in most parts of the area. No brine discharges have been identified

  10. Radionuclide inventories for the F- and H-area seepage basin groundwater plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, Robert A [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kubilius, Walter P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliance & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.

  11. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  12. Instrumenting the Conifers: A Look at Daily Tree Growth and Locally Observed Environmental Conditions Across Four Mountain Sites in the Central Great Basin, USA

    Science.gov (United States)

    Strachan, S.; Biondi, F.; Johnson, B. G.

    2012-12-01

    Tree growth is often used as a proxy for past environmental conditions or as an indicator of developing trends. Reconstructions of drought, precipitation, temperature, and other phenomena derived from tree-growth indices abound in scientific literature aimed at informing policy makers. Observations of tree recruitment or death in treeline populations are frequently tied to climatic fluctuation in cause-effect hypotheses. Very often these hypotheses are based on statistical relationships between annual-to-seasonal tree growth measurements and some environmental parameter measured or modeled off-site. Observation of daily tree growth in conjunction with in-situ environmental measurements at similar timescales takes us one step closer to quantifying the uncertainty in reconstruction or predictive studies. In four separate sites in two different mountain ranges in the central Great Basin, co-located observations of conifer growth activity and local atmospheric and soils conditions have been initiated. Species include Pinus longaeva (Great Basin bristlecone pine), Pinus flexilis (limber pine), Picea engelmannii (Engelmann spruce), Pinus monophylla (singleleaf pinyon pine), Pinus ponderosa (ponderosa pine), Abies concolor (white fir), and Pseudotsuga menziesii (Douglas-fir). Measurements of sub-hourly tree radial length change and sap flow activity are compared with a suite of in-situ observations including air temperature, precipitation, photosynthetically-active radiation (PAR), relative humidity, soil temperature, and soil moisture/water content. Subalpine study site located at 3360 m elevation in the Snake Range, Nevada

  13. New sedimentological and palynological data from surface Miocene strata in the central Amazonas Basin area

    Directory of Open Access Journals (Sweden)

    Emílio Alberto Amaral Soares

    Full Text Available ABSTRACT The scarcity of stratigraphic data has hindered the demarcation of the outcropping area of Miocene deposits of the Amazon Basin, represented informally by the Novo Remanso Formation. Moreover, this unit is characterized by a sparse and irregular geographic distribution due to its sedimentological features and rare fossil content. Miocene deposits cropping out in central Amazonas Basin area were described in sedimentological terms and analyzed palynologically. All analyses were undertaken in samples collected at the Uatumã River banks (Itapiranga and São Sebastião do Uatumã cities. Lithostratigraphic data shows that Novo Remanso Formation consists of sandstones, with subordinate conglomerates and pelites, characteristic of a meandering fluvial paleosystem, with fluvial channel, point bar, floodplain and crevasse splay facies. The palynoflora retrieved from five samples consists exclusively of continental-origin palynomorphs dominated by angiosperms species. Trilete spores are well represented, while gymnosperms pollen grains are minor components. The presence of Psilastephanoporites tesseroporus, Syncolporites poricostatus, Jandufouria seamrogiformis and Polypodiaceoisporites potoniei ensure these deposits fits into the Grimsdalea magnaclavata palynozone (Regali et al. 1974a, b, and the Grimsdalea magnaclavata/Crassoretitriletes vanraadshooveni palynozones of Jaramillo et al. (2011 considered Middle Miocene age. This age is confirmed by the zonation of Jaramillo et al. (2011, based on the LADs of Bombacacidites baumfalki (11.57Ma and Crototricolpites annemariae (12.91Ma; and the FAD of Psilastephanoporites tesseroporus (14.00Ma. With these new data presented herein, it is possible to assume that the Miocene strata represented by the Novo Remanso Formation covers a larger area in the basin than previously considered, and that it may be extended for about 300 km until the Manacapuru village, indicating a Miocene subsidence phase.

  14. Preliminary classification of water areas within the Atchafalaya Basin Floodway System by using landsat imagery

    Science.gov (United States)

    Allen, Yvonne C.; Constant, Glenn C.; Couvillion, Brady R.

    2008-01-01

    The southern portion of the Atchafalaya Basin Floodway System (ABFS) is a large area (2,571 km2) in south central Louisiana bounded on the east and west sides by a levee system. The ABFS is a sparsely populated area that includes some of the Nation's most significant extents of bottomland hardwoods, swamps, bayous, and backwater lakes, holding a rich abundance and diversity of terrestrial and aquatic species. The seasonal flow of water through the ABFS is critical to maintaining its ecological integrity. Because of strong interdependencies among species, habitat quality, and water flow in the ABFS, there is a need to better define the paths by which water moves at various stages of the hydrocycle. Although river level gages have collected a long historical record of water level variation, very little synoptic information has been available regarding the distribution and character of water at more remote locations in the basin. Most water management plans for the ABFS strive to improve water quality by increasing water flow and circulation from the main stem of the Atchafalaya River into isolated areas. To describe the distribution of land and water on a basin-wide scale, we chose to use Landsat 5 and Landsat 7 imagery to determine the extent of water distribution from 1985 to 2006 and at a variety of river stages. Because the visual signature of river water is high turbidity, we also used Landsat imagery to describe the distribution of turbid water in the ABFS. The ability to track water flow patterns by tracking turbid waters will enhance the characterization of water movement and aid in planning.

  15. F-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993

    International Nuclear Information System (INIS)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the F-Area Seepage Basins (FASB) was monitored in compliance with Module 3, Section C, of South Carolina Hazardous Waste Permit SC1-890-008-989, effective November 2, 1992. The monitoring well network is composed of 87 FSB wells screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning in the first quarter of 1993, the standard for comparison became the SCDHEC Groundwater Protection Standard (GWPS) specified in the approved F-Area Seepage Basins Part B permit. Currently and historically, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the second half of 1993, notably aluminum, iodine-129, and zinc. The elevated constituents are found primarily in Aquifer Zone 2B 2 and Aquifer Zone 2B 1 wells. However, several Aquifer Unit 2A wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Water-level maps indicate that the groundwater flow rates and directions at the FASB have remained relatively constant since the basins ceased to be active in 1988

  16. Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA

    Science.gov (United States)

    Christopher D. Henry,; John, David A.

    2013-01-01

    The western Nevada volcanic field is the western third of a belt of calderas through Nevada and western Utah. Twenty-three calderas and their caldera-forming tuffs are reasonably well identified in the western Nevada volcanic field, and the presence of at least another 14 areally extensive, apparently voluminous ash-flow tuffs whose sources are unknown suggests a similar number of undiscovered calderas. Eruption and caldera collapse occurred between at least 34.4 and 23.3 Ma and clustered into five ∼0.5–2.7-Ma-long episodes separated by quiescent periods of ∼1.4 Ma. One eruption and caldera collapse occurred at 19.5 Ma. Intermediate to silicic lavas or shallow intrusions commonly preceded caldera-forming eruptions by 1–6 Ma in any specific area. Caldera-related as well as other magmatism migrated from northeast Nevada to the southwest through time, probably resulting from rollback of the formerly shallow-dipping Farallon slab. Calderas are restricted to the area northeast of what was to become the Walker Lane, although intermediate and effusive magmatism continued to migrate to the southwest across the future Walker Lane.Most ash-flow tuffs in the western Nevada volcanic field are rhyolites, with approximately equal numbers of sparsely porphyritic (≤15% phenocrysts) and abundantly porphyritic (∼20–50% phenocrysts) tuffs. Both sparsely and abundantly porphyritic rhyolites commonly show compositional or petrographic evidence of zoning to trachydacites or dacites. At least four tuffs have volumes greater than 1000 km3, with one possibly as much as ∼3000 km3. However, the volumes of most tuffs are difficult to estimate, because many tuffs primarily filled their source calderas and/or flowed and were deposited in paleovalleys, and thus are irregularly distributed.Channelization and westward flow of most tuffs in paleovalleys allowed them to travel great distances, many as much as ∼250 km (original distance) to what is now the western foothills of the

  17. Evaporation Basin Test Reactor Area, Idaho National Engineering Laboratory: Environmental assessment

    International Nuclear Information System (INIS)

    1991-12-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0501, on the construction and operation of the proposed Evaporation Basin at the Test Reactor Area (TRA) at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact

  18. GIS Analysis of Flood Vulnerable Areas In Benin- Owena River Basin, Nigeria

    Directory of Open Access Journals (Sweden)

    Adebayo Oluwasegun Hezekiah

    2017-07-01

    Full Text Available The frequency and intensity of flood disasters have become serious issues in the national development process of Nigeria as flood disasters have caused serious environmental damages, loss of human lives and other heavy economic losses;  putting the issue of disaster reduction and risk management higher on the policy agenda of affected governments, multilateral agencies and NGOs. The starting point of concrete flood disaster mitigation efforts is to identify the areas with higher risk levels and fashion out appropriate preventive and response mechanisms. This research paper explored the potentials of Geographic Information System (GIS in data capture, processing and analysis in identifying flood-prone areas for the purpose of planning for disaster mitigation and preparedness, using Benin-Owena river basin of Nigeria as a unit of analysis. The data used in this study were obtained from FORMECU and were entered and use to develop a flood risk information system. Analysis and capability of the developed system was illustrated and shown graphically. The research showed that over one thousand settlements harbouring over ten million people located in the study area are at grave risk of flooding.   Key words: Flood, Risk, Vulnerability, Geographical Information System (GIS, River -Basin

  19. Estimation of Soil Erosion Dynamics in the Koshi Basin Using GIS and Remote Sensing to Assess Priority Areas for Conservation.

    Science.gov (United States)

    Uddin, Kabir; Murthy, M S R; Wahid, Shahriar M; Matin, Mir A

    2016-01-01

    High levels of water-induced erosion in the transboundary Himalayan river basins are contributing to substantial changes in basin hydrology and inundation. Basin-wide information on erosion dynamics is needed for conservation planning, but field-based studies are limited. This study used remote sensing (RS) data and a geographic information system (GIS) to estimate the spatial distribution of soil erosion across the entire Koshi basin, to identify changes between 1990 and 2010, and to develop a conservation priority map. The revised universal soil loss equation (RUSLE) was used in an ArcGIS environment with rainfall erosivity, soil erodibility, slope length and steepness, cover-management, and support practice factors as primary parameters. The estimated annual erosion from the basin was around 40 million tonnes (40 million tonnes in 1990 and 42 million tonnes in 2010). The results were within the range of reported levels derived from isolated plot measurements and model estimates. Erosion risk was divided into eight classes from very low to extremely high and mapped to show the spatial pattern of soil erosion risk in the basin in 1990 and 2010. The erosion risk class remained unchanged between 1990 and 2010 in close to 87% of the study area, but increased over 9.0% of the area and decreased over 3.8%, indicating an overall worsening of the situation. Areas with a high and increasing risk of erosion were identified as priority areas for conservation. The study provides the first assessment of erosion dynamics at the basin level and provides a basis for identifying conservation priorities across the Koshi basin. The model has a good potential for application in similar river basins in the Himalayan region.

  20. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    Science.gov (United States)

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a

  1. Inventory of trees in nonforest areas in the Great Plains states

    Science.gov (United States)

    Andrew Lister; Chip Scott; Steve Rasmussen

    2009-01-01

    The U.S. Forest Service's Forest Inventory and Analysis (FIA) program collects information on trees in areas that meet its definition of forest. However, the inventory excludes trees in areas that do not meet this definition, such as those found in isolated patches, in areas with sparse or predominantly herbaceous vegetation, in narrow strips (e.g., shelterbelts...

  2. Geophysical borehole logging in selected areas in the Greater Accra plains and the Densu river basin

    International Nuclear Information System (INIS)

    Amartey, E. A.

    2009-06-01

    Geophysical borehole logging was complemented by Vertical Electrical Sounding (VES) method to study fractured bedrock aquifer systems on the compounds of Ghana Atomic Energy Commission (GAEC), Water Research Institute (WRI) in the Accra Plains and the Hydrometric Station of the Department of Geology, University of Ghana at Buokrom in the Densu River Basin. Single-point resistance, resistivity and natural gamma logging in a total of nine boreholes were conducted to identify and characterize the various aquifers in the study areas. Results obtained from the single-point resistance and resistivity logs showed clearly the characteristics of water-bearing fracture zones in the various rock formations. The gamma logs obtained for each area were correlated to form hydrostratigraphic units to establish potential zones of high water-bearing fractures. VES modeled curves shows hydrogeological units of the geological formation which compares well with features obtained on the logs. The investigation identified fractured zone thicknesses of <1 m to 2 m at GAEC area, <1 m to 9 m at WRI area and <1 m to 10 m thicknesses at the Buokrom area. The fractured bedrock aquifers identified have been characterized based on their thicknesses as follows. Five minor (thickness < 5 m), two medium (thickness 5 m to 14 m) and three major (thickness ⩾15 m) fractures were identified at the GAEC area. At the WRI area three minor and five medium fractures were identified. Also four minor and five medium fractures were identified for the Buokrom area boreholes. (au)

  3. Natural gas geological characteristics and great discovery of large gas fields in deep-water area of the western South China Sea

    Directory of Open Access Journals (Sweden)

    Zhenfeng Wang

    2015-12-01

    Full Text Available To accelerate the petroleum exploration in deep sea of China, since the period of “the 11th Five-Year Plan”, the sedimentary process, source rock formation and hydrocarbon generation and expulsion process in deep-water area of the Qiongdongnan Basin in the western South China Sea have been studied systematically using the data like large-area 3D seismic survey, logging, drill core (cuttings and geochemical analysis, providing three innovative understandings, i.e. excellent hydrocarbon source conditions, good accumulation conditions, and grouping and zonal distribution of large exploration targets. From the study, the following conclusions are drawn. First, the deep-water area located in the southern and central parts of the Qiongdongnan Basin was formed under the control of such tectonic events as Indosinian–Eurasian Plate collision, Himalayan uplifting and South China Sea expansion, and experienced Paleogene lift and Neogene depression stages. Second, accompanied by lacustrine deposition, faulting activity was violent in Eocene; whereas in Early Oligocene, rift continued to develop under a sedimentary environment of marine–terrestrial transitional facies and littoral-neritic facies. Third, oil generation predominated Eocene lacustrine mudstone and gas generation predominated Lower Oligocene marine–terrestrial transitional facies coal-measure strata compose two sets of major source rocks. Fourth, analysis in respect of thermal evolution level, hydrocarbon generation volume and hydrocarbon generation intensity shows that Ledong, Lingshui, Baodao and Changchang sags belong to potential hydrocarbon-rich kitchens, among which Ledong and Lingshui sags have been proved to have great hydrocarbon generation potential by drilling. Fifth, researches of deep-water sedimentology and hydrocarbon accumulation dynamics reveal that Paleogene and Neogene plays are developed vertically, and favorable hydrocarbon accumulation zones like the Central

  4. Groundwater model of the Great Basin carbonate and alluvial aquifer system version 3.0: Incorporating revisions in southwestern Utah and east central Nevada

    Science.gov (United States)

    Brooks, Lynette E.

    2017-12-01

    The groundwater model described in this report is a new version of previously published steady-state numerical groundwater flow models of the Great Basin carbonate and alluvial aquifer system, and was developed in conjunction with U.S. Geological Survey studies in Parowan, Pine, and Wah Wah Valleys, Utah. This version of the model is GBCAAS v. 3.0 and supersedes previous versions. The objectives of the model for Parowan Valley were to simulate revised conceptual estimates of recharge and discharge, to estimate simulated aquifer storage properties and the amount of reduction in storage as a result of historical groundwater withdrawals, and to assess reduction in groundwater withdrawals necessary to mitigate groundwater-level declines in the basin. The objectives of the model for the area near Pine and Wah Wah Valleys were to recalibrate the model using new observations of groundwater levels and evapotranspiration of groundwater; to provide new estimates of simulated recharge, hydraulic conductivity, and interbasin flow; and to simulate the effects of proposed groundwater withdrawals on the regional flow system. Meeting these objectives required the addition of 15 transient calibration stress periods and 14 projection stress periods, aquifer storage properties, historical withdrawals in Parowan Valley, and observations of water-level changes in Parowan Valley. Recharge in Parowan Valley and withdrawal from wells in Parowan Valley and two nearby wells in Cedar City Valley vary for each calibration stress period representing conditions from March 1940 to November 2013. Stresses, including recharge, are the same in each stress period as in the steady-state stress period for all areas outside of Parowan Valley. The model was calibrated to transient conditions only in Parowan Valley. Simulated storage properties outside of Parowan Valley were set the same as the Parowan Valley properties and are not considered calibrated. Model observations in GBCAAS v. 3.0 are

  5. Climate and human influences on historical fire regimes (AD 1400-1900) in the eastern Great Basin (USA)

    Science.gov (United States)

    Stanley G. Kitchen

    2015-01-01

    High fire activity in western North America is associated with drought. Drought and fire prevail under negative El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) phases in the Southwest and with positive phases in the Northwest. Here, I infer climate effects on historic fire patterns in the geographically intermediate, eastern Great...

  6. Simulating the potential effects of climate change in two Colorado basins and at two Colorado ski areas

    Science.gov (United States)

    Battaglin, William; Hay, Lauren E.; Markstrom, Steve

    2011-01-01

    The mountainous areas of Colorado are used for tourism and recreation, and they provide water storage and supply for municipalities, industries, and agriculture. Recent studies suggest that water supply and tourist industries such as skiing are at risk from climate change. In this study, a distributed-parameter watershed model, the Precipitation-Runoff Modeling System (PRMS), is used to identify the potential effects of future climate on hydrologic conditions for two Colorado basins, the East River at Almont and the Yampa River at Steamboat Springs, and at the subbasin scale for two ski areas within those basins.Climate-change input files for PRMS were generated by modifying daily PRMS precipitation and temperature inputs with mean monthly climate-change fields of precipitation and temperature derived from five general circulation model (GCM) simulations using one current and three future carbon emission scenarios. All GCM simulations of mean daily minimum and maximum air temperature for the East and Yampa River basins indicate a relatively steady increase of up to several degrees Celsius from baseline conditions by 2094. GCM simulations of precipitation in the two basins indicate little change or trend in precipitation, but there is a large range associated with these projections. PRMS projections of basin mean daily streamflow vary by scenario but indicate a central tendency toward slight decreases, with a large range associated with these projections.Decreases in water content or changes in the spatial extent of snowpack in the East and Yampa River basins are important because of potential adverse effects on water supply and recreational activities. PRMS projections of each future scenario indicate a central tendency for decreases in basin mean snow-covered area and snowpack water equivalent, with the range in the projected decreases increasing with time. However, when examined on a monthly basis, the projected decreases are most dramatic during fall and spring

  7. HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K AREA

    International Nuclear Information System (INIS)

    CHRONISTER, G.B.

    2005-01-01

    This paper discusses selecting and implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water. sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal

  8. H-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    International Nuclear Information System (INIS)

    1994-09-01

    During second quarter 1994, samples collected from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses (exclusive of boron and lithium) and turbidity measurements. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in all four HAC wells during second quarter 1994. Carbon tetrachloride exceeded the final PDWS in well HAC 4. Aluminum exceeded its Flag 2 criterion in wells HAC 2, 3, and 4. Iron was elevated in wells HAC 1, 2, and 3. Manganese exceeded its Flag 2 criterion in well HAC 3. Specific conductance and total organic halogens were elevated in well HAC 2. No well samples exceeded the SRS turbidity standard. Groundwater flow direction in the water stable beneath the H-Area Acid/Caustic Basin was to the west during second quarter 1994. During previous quarters, the groundwater flow direction has been consistently to the northwest or the north-northwest. This apparent change in flow direction may be attributed to the lack of water elevations for wells HTF 16 and 17 and the anomalous water elevations for well HAC 2 during second quarter

  9. Estimation of energy potential and power generation from tidal basin in coastal area of malaysia

    Directory of Open Access Journals (Sweden)

    Nazri Nazani

    2016-01-01

    Full Text Available This paper presents the potential of tidal energy in Malaysia. Malaysia is heavily depending on the fossil fuel to satisfy the energy demand. However, this reserve energy is reported will be depleted. The population growth also caused the demand on energy increase over the year. This situation can lead to the global warming and climate change that be a major concern around the world. As an alternative, renewable energy become a solution in order to reduce the usage of conventional energy such as fossil fuel, coal and gas. One of the renewable energy that can be used is from ocean energy. Since the tidal energy is not study thoroughly in Malaysia and Malaysia has a potential sites that can implement this tidal energy for electricity generation to meet the local demand. This tidal energy can be harnessed in several approach such as by using tidal barrage single basin with single mode generation consist ebb-mode and flood-mode of generation and the other approach of single mode is double-mode of generation. In order to meet the local demand, single-mode generation and double-mode generation was studied by getting the number of population at that area, the electricity demand then from that data the basin area is estimated for power generation. The result shows that double-mode generation is one of the approaches that meet the local demand for electricity.

  10. Guidelines for acceptable soil concentrations in the Old F- and H-Area Retention Basins. Revision 1

    International Nuclear Information System (INIS)

    Hamby, D.M.

    1994-01-01

    Concentration guidelines for residual radionuclides in soil at the sites of the Old F- and a Retention Basins (281-3F, 281-3H) have been calculated using a dose-based approach. The guidelines also are being applied to areas around the F-Basin's Process Line. Estimation of these soil guidelines was completed using RESRAD 5.0 in accordance with the DOE RESRAD methodology specified in DOE/CH/8901 (Gi89). Guidelines are provided for the nuclides known to be present in the soils at each basin (Sc87). Soil and hydrologic characteristics specific to each basin are defined for the areas above, within, and beneath the contaminated zones

  11. Drought drove forest decline and dune building in eastern upper Michigan, USA, as the upper Great Lakes became closed basins

    Science.gov (United States)

    Loope, Walter L.; Loope, Henry M.; Goble, Ronald J.; Fisher, Timothy G.; Lytle, David E.; Legg, Robert J.; Wysocki, Douglas A.; Hanson, Paul R.; Young, Aaron R.

    2012-01-01

    Current models of landscape response to Holocene climate change in midcontinent North America largely reconcile Earth orbital and atmospheric climate forcing with pollen-based forest histories on the east and eolian chronologies in Great Plains grasslands on the west. However, thousands of sand dunes spread across 12,000 km2 in eastern upper Michigan (EUM), more than 500 km east of the present forest-prairie ecotone, present a challenge to such models. We use 65 optically stimulated luminescence (OSL) ages on quartz sand deposited in silt caps (n = 8) and dunes (n = 57) to document eolian activity in EUM. Dune building was widespread ca. 10–8 ka, indicating a sharp, sustained decline in forest cover during that period. This decline was roughly coincident with hydrologic closure of the upper Great Lakes, but temporally inconsistent with most pollen-based models that imply canopy closure throughout the Holocene. Early Holocene forest openings are rarely recognized in pollen sums from EUM because faint signatures of non-arboreal pollen are largely obscured by abundant and highly mobile pine pollen. Early Holocene spikes in nonarboreal pollen are recorded in cores from small ponds, but suggest only a modest extent of forest openings. OSL dating of dune emplacement provides a direct, spatially explicit archive of greatly diminished forest cover during a very dry climate in eastern midcontinent North America ca. 10–8 ka.

  12. Application of the North American Multi-Model Ensemble to seasonal water supply forecasting in the Great Lakes basin through the use of the Great Lakes Seasonal Climate Forecast Tool

    Science.gov (United States)

    Gronewold, A.; Apps, D.; Fry, L. M.; Bolinger, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) contribution to the internationally coordinated 6-month forecast of Great Lakes water levels relies on several water supply models, including a regression model relating a coming month's water supply to past water supplies, previous months' precipitation and temperature, and forecasted precipitation and temperature. Probabilistic forecasts of precipitation and temperature depicted in the Climate Prediction Center's seasonal outlook maps are considered to be standard for use in operational forecasting for seasonal time horizons, and have provided the basis for computing a coming month's precipitation and temperature for use in the USACE water supply regression models. The CPC outlook maps are a useful forecast product offering insight into interpretation of climate models through the prognostic discussion and graphical forecasts. However, recent evolution of USACE forecast procedures to accommodate automated data transfer and manipulation offers a new opportunity for direct incorporation of ensemble climate forecast data into probabilistic outlooks of water supply using existing models that have previously been implemented in a deterministic fashion. We will present results from a study investigating the potential for applying data from the North American Multi-Model Ensemble to operational water supply forecasts. The use of NMME forecasts is facilitated by a new, publicly available, Great Lakes Seasonal Climate Forecast Tool that provides operational forecasts of monthly average temperatures and monthly total precipitation summarized for each lake basin.

  13. Percolation testing at the F- and H-Area Seepage Basins

    International Nuclear Information System (INIS)

    McHood, M.D.

    1993-01-01

    The design of the F- and H-Area Seepage Basin contaminated groundwater remediation system requires information from multiple well pump tests (Reference 1). Soil percolation rates are needed in order to support the multiple well pump test planning. The objective of this task was to determine characteristic percolation rates for soils in four select areas where infiltration galleries are proposed. These infiltration galleries will be temporary installations built on the ground surface and used to disposes of water from the multiple well pump tests. A procedure defining the specific work process for collecting percolation rate data is contained in Appendix 3. Results from these percolation tests will be used in the design of infiltration galleries for the disposal of well water extracted during the multiple well pump tests

  14. Evaluating extreme flood characteristics of small mountainous basins of the Black Sea coastal area, Northern Caucasus

    Directory of Open Access Journals (Sweden)

    L. S. Lebedeva

    2015-06-01

    Full Text Available The probability of heavy rains and river floods is expected to increase with time in the Northern Caucasus region. Densely populated areas in the valleys of small mountainous watersheds already frequently suffer from catastrophic peak floods caused by intense rains at higher elevations. This study aimed at assessing the flood characteristics of several small basins in the piedmont area of the Caucasus Mountains adjacent to the Black Sea coast including ungauged Cemes River in the Novorossiysk city. The Deterministic-Stochastic Modelling System which consists of hydrological model Hydrograph and stochastic weather generator was applied to evaluate extreme rainfall and runoff characteristics of 1% exceedance probability. Rainfall intensity is shown to play more significant role than its depth in formation of extreme flows within the studied region.

  15. Bulk division of metallogenetic region and uranium metallogenetic regularities in Heilongjiang basin and its adjacent areas

    International Nuclear Information System (INIS)

    Guo Hua; Zhao Fengmin; Hu Shaokang; Chen Zuyi

    2002-01-01

    On the base of the study in the working area, a conclusion is made that there are 36 combined types of tectonic-material and 6 basic tectonic units. According to radioactive geochemical quantitative and qualitative factors, which are relevant to rock composition and geological formation, 5 radioactive geochemical provinces and 8 radioactive geochemical differentiation regions could be marked out. The working area contains three hydrogeological fold belts and two hydrogeological artesian basins. It could also be divided into 9 metallogenetic provinces or 30 metallogenetic regions, or 206 ore districts. On the other hand, the area could be divided into 2 uranium metallogenetic provinces, 2 potential uranium metallogenetic provinces and 3 uraniferous provinces, which contain uranium properties or potential uranium properties or uraniferous properties. The authors systematically summary the geological environment and indicators of prospecting and predicting of fluorine-molybdenum-uranium formation, hydromorphic uranium deposit formation and poly-genetic uranium deposit formation which contains uranium-coal model, uranium-asphalt model, uranium-sulfuret model, etc. The metallogenetic potential among Aerdan uranium province, Aoliaokema uranium province, Bulieya-Jiamusi-Xingkai potential uranium province and Xihuote-Alin uranium province are assessed. On this base, the authors delineate 23 uranium metallogenetic prospective areas needing further exploration efforts. 8 uranium metallogenetic prospective areas in China are marked out, which are areas of interest for searching for exogenetic and epigenetic sandstone uranium deposits

  16. Final technology report for D-Area oil seepage basin bioventing optimization test, environmental restoration support

    International Nuclear Information System (INIS)

    Radway, J.C.; Lombard, K.H.; Hazen, T.C.

    1997-01-01

    One method proposed for the cleanup of the D-Area Oil Seepage Basin was in situ bioremediation (bioventing), involving the introduction of air and gaseous nutrients to stimulate contaminant degradation by naturally occurring microorganisms. To test the feasibility of this approach, a bioventing system was installed at the site for use in optimization testing by the Environmental Biotechnology Section of the Savannah River Technology Center. During the interim action, two horizontal wells for a bioventing remediation system were installed eight feet below average basin grade. Nine piezometers were also installed. In September of 1996, a generator, regenerative blower, gas cylinder station, and associated piping and nutrient injection equipment were installed at the site and testing was begun. After baseline characterization of microbial activity and contaminant degradation at the site was completed, four injection campaigns were carried out. These consisted of (1) air alone, (2) air plus triethylphosphate (TEP), (3) air plus nitrous oxide, and (4) air plus methane. This report describes results of these tests, together with conclusions and recommendations for further remediation of the site. Natural biodegradation rates are high. Oxygen, carbon dioxide, and methane levels in soil gas indicate substantial levels of baseline microbial activity. Oxygen is used by indigenous microbes for biodegradation of organics via respiration and hence is depleted in the soil gas and water from areas with high contamination. Carbon dioxide is elevated in contaminated areas. High concentrations of methane, which is produced by microbes via fermentation once the oxygen has been depleted, are found at the most contaminated areas of this site. Groundwater measurements also indicated that substantial levels of natural contaminant biodegradation occurred prior to air injection

  17. Carbonate reservoirs modified by magmatic intrusions in the Bachu area, Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Kang Xu

    2015-09-01

    Full Text Available Oil and gas exploration in carbonate rocks was extremely successful in recent years in the Ordovician in Tarim Basin, NW China. Here, we investigate the carbonate reservoirs in the Bachu area of the Tarim Basin through petrological and geochemical studies combined with oil and gas exploration data. Geochemical analysis included the major, trace, and rare earth elements; fluid inclusion thermometry; clay mineral characterization; and carbon and oxygen isotopes of the carbonate rocks. Homogenization temperatures of the fluid inclusions of Well He-3 in the Bachu area indicate three groups, 60–80 °C, 90–130 °C, and 140–170 °C, and suggest that the carbonate rocks experienced modification due to heating events. The porosity in the reservoir is defined by fractures and secondary pores, and there is a notable increase in the porosity of the carbonate reservoirs in proximity to magmatic intrusion, particularly approximately 8–10 m from the intrusive rocks. The development of secondary pores was controlled by lithofacies and corrosion by various fluids. We identify supercritical fluids with high density (138.12–143.97 mg/cm3 in the Bachu area. The negative correlations of δ13C (−2.76‰ to −0.97‰ and δ18O (−7.91‰ to −5.07‰ suggest that the carbonate rocks in the study area were modified by high-salinity hydrothermal fluid. The formation of clay minerals, such as illite and montmorillonite, caused a decrease in porosity. Our study demonstrates the effect of magmatic intrusions in modifying the reservoir characteristics of carbonate rocks and has important implications for oil and gas exploration.

  18. Regional hydrology of the Blanding-Durango area, southern Paradox Basin, Utah and Colorado

    International Nuclear Information System (INIS)

    Whitfield, M.S. Jr.; Thordarson, W.; Oatfield, W.J.; Zimmerman, E.A.; Rueger, B.F.

    1983-01-01

    Principal findings of this study that are pertinent to an assessment of suitability of the hydrogeologic systems to store and contain radioactive waste in salt anticlines of adjacent areas are: water in the upper ground-water flow system discharges to the San Juan River - a major tributary of the Colorado River. Discharge of water from the upper aquifer system to streambed channels of the San Juan River and its tributaries during low-flow periods primarily is through evapotranspiration from areas on flood plains and maintenance of streamflow; the lower ground-water system does not have known recharge or discharge areas within the study area; subsurface inflow to this system comes from recharge areas located north and northeast of the study area; the upper and lower ground-water systems are separated regionally by thick salt deposits in the Blanding-Durango study area of the Paradox basin; potential exists in mountainous areas for downward leakage between the upper and lower ground-water systems, where salt deposits are thin, absent, or faulted; no brines were found in this study area with outflow to the biosphere; water in the upper ground-water system generally is fresh. Water in the lower ground-water system generally is brackish or saline; and ground-water flow disruptions by contiguous faults probably are common in the upper ground-water system. These disruptions of flow are not apparent in the lower ground-water system, perhaps because available hydrologic data for the lower ground-water system are scarce. The above major findings do not preclude the potential for waste storage in salt; however, they do not allow the prediction of detailed ground-water flow rates and directions through this area. 55 references, 13 figures, 15 tables

  19. Comparison of lightning activity in the two most active areas of the Congo Basin

    Science.gov (United States)

    Kigotsi, Jean K.; Soula, Serge; Georgis, Jean-François

    2018-02-01

    A comparison of the lightning activity in the two most active areas (Area_max for the main maximum and Area_sec for the secondary maximum) of the Congo Basin is made with data obtained by the World Wide Lightning Location Network (WWLLN) during 2012 and 2013. Both areas of same size (5° × 5°) exhibit flash counts in a ratio of about 1.32 for both years and very different distributions of the flash rate density (FRD) with maximums in a ratio of 1.94 and 2.59 for 2012 and 2013, respectively. The FRD is much more widely distributed in Area_sec, which means the whole area contributes more or less equal to the lightning activity. The diurnal cycle is much more pronounced in Area_max than in Area_sec with a ratio between the maximum and the minimum of 15.4 and 4.7, respectively. However, the minimum and maximum of the hourly flash rates are observed roughly at the same time in both areas, between 07:00 and 09:00 UTC and between 16:00 and 17:00 UTC, respectively. In Area_sec the proportion of days with low lightning rate (0-1000 flashes per day) is much larger (˜ 45 % in 2013) compared to Area_max (˜ 23 % in 2013). In Area_max the proportion of days with moderate lightning rate (1001-6000 flashes per day) is larger (˜ 68.5 % in 2013) compared to Area_sec (˜ 46 % in 2013). The very intense convective events are slightly more numerous in Area_sec. In summary, the thunderstorm activity in Area_sec is more variable at different scales of time (annually and daily), in intensity and in location. Area_max combines two favourable effects for thunderstorm development, the convergence associated with the African easterly jet of the Southern Hemisphere (AEJ-S) and a geographic effect due to the orography and the presence of a lake. The location of the strong convection in Area_sec is modulated by the distance of westward propagation/regeneration of mesoscale convective systems (MCSs) in relation to the phase of Kelvin waves.

  20. 76 FR 8765 - Eastern Great Lakes Area Maritime Security Committee; Vacancies

    Science.gov (United States)

    2011-02-15

    ..., update, and exercising of the AMS Plan for their area of responsibility. Such matters may include, but...; maritime industry, including labor; other port stakeholders having a special competence in maritime...

  1. 78 FR 11670 - Eastern Great Lakes Area Maritime Security Committee; Vacancies

    Science.gov (United States)

    2013-02-19

    ... assist the Captain of the Port in the development, review, update, and exercising of the Area Maritime..., including labor; other port stakeholders having a special competence in maritime security; and port...

  2. An appraisal of the Permian palaeobiodiversity and geology of the Ib-River Basin, eastern coastal area, India

    Science.gov (United States)

    Goswami, Shreerup; Saxena, Anju; Singh, Kamal Jeet; Chandra, Shaila; Cleal, Christopher J.

    2018-05-01

    The Ib-River Basin situated in the east coastal area of India, in Odisha State is a south-eastern part of the Mahanadi Master Basin. A large number of plant macrofossils belonging to the Glossopteris flora were described and documented between 2006 and 2010 from various localities of the Barakar and Lower Kamthi formations of this basin. The floral components representing leaves, roots and fructifications in these assemblages belong to the Lycopodiales, Equisetales, Sphenophyllales, Filicales, Cordaitales, Cycadales, Ginkgoales, Coniferales and Glossopteridales. In the present study, all the available data pertaining to the biological remains, petrological analyses as well as the geology of this basin are reviewed and analyzed to deduce and reconstruct the biostratigraphy, palaeoclimate, palaeoenvironment and the landscape of this basin during Permian time in general and during the deposition of Barakar (Artinskian - Kungurian) and Lower Kamthi (Lopingian) formations in particular. The floral composition suggests the prevalence of a temperate climate with a slight change from warm moist to warm dry conditions during the deposition of the Barakar Formation and warm and humid during the deposition of Lower Kamthi sediments. Distribution of various plant groups in the Barakar and Lower Kamthi formations have been shown to depict the biodiversity trends. Vegetational reconstructions during the deposition of the Barakar and Lower Kamthi formations around the Ib-River Basin have also been attempted based on all the fossil records from this area. The status of unclassified Barakar and Kamthi formations has been redefined. Apart from megafloristics, the palynology of the basin is also discussed. Possible marine incursions and marine marginal environment in the Ib-Basin during Permian are overtly summarized on the basis of records of acritarchs, typical marine ichnofossils and evidences of wave activity in Lower Gondwana sediments of this Basin.

  3. Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julianne [DRI; Etyemezian, Vic [DRI; Cablk, Mary E. [DRI; Shillito, Rose [DRI; Shafer, David [DOE Grand Junction, Colorado

    2013-06-01

    A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were

  4. Great Recession and paradigm shift – towards sustainable development of agriculture and rural areas

    Directory of Open Access Journals (Sweden)

    Wiktor Szydło

    2012-09-01

    Full Text Available Great Recession is another proof that the current paradigm of economic growth should be changed. It ought to be applied to all sectors, including agriculture. The farming sector was strongly affected by substantial price increases of some products. It was especially painful for poorer consumers in developing and Third World countries, while its benefits were channelled mainly to big farmers and speculators in developed economies. Common Agricultural Policy could not avert this turbulence. The implementa-tion of the concept of sustainable development is a possible solution of this problem as its approach is more holistic and humanistic. However, the implementation of adequate reforms is very slow. It is a sign that leading US and EU policymakers attempt to stay within the limits of current model of growth.However, the second wave of price hikes may prove to be more lasting, which would further deepen income inequality.

  5. Geological risk assessment for the rapid development area of the Erhai Basin

    Science.gov (United States)

    Yang, Liu; Wang, Zhanqi; Jin, Gui; Chen, Dongdong; Wang, Zhan

    For low-slope hilly land development to have more new land space in a watershed, it is particularly important that to coordinate the sharply increasing conflicts between mountainous and urban land utilization in the city. However, development of low-slope hilly land easily induce potential risks of geologic hazards such as landslide and landslip. It may lead to further environmental losses in a watershed. Hence, it is necessary to study potential risks of geo-hazards in low-slope hilly land development in urban area. Based on GIS spatial analysis technique, we select a study area, Dali City in the Erhai Basin located in watershed belt of Jinsha River, Lancang River and Red River in Yunnan Province of China. Through studying some relevant key indexes and parameters for monitoring potential risks of geo-hazards, we establish a composite index model for zoning the area with potential risks of geo-hazards in development of low-slope hilly land in the study area. Our research findings indicate that the potential risks of geo-hazards in eastern Dali City is relatively low while of that on slow hills with gentle slopes in the western area are relatively high. By using a zoning research method, generated maps show geological information of potential risks of geo-hazards on low-slope hilly land which provide important messages for guarding against natural geo-hazards and potential environmental losses in a watershed.

  6. Control of Pollutants in the Trans-Boundary Area of Taihu Basin, Yangtze Delta

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2016-12-01

    Full Text Available This work focuses on pollution control in the trans-boundary area of Taihu Basin. Considering the unique characteristics of the river network in the study area, a new methodology of pollution control is proposed aiming at improving the water quality in the trans-boundary area and reducing conflicts between up and downstream regions. Based on monitoring data and statistical analysis, important trans-boundary cross sections identified by the regional government were selected as important areas for consideration in developing management objectives; using a 1-D mathematicmodel and an effective weight evaluation model, the trans-boundary effective control scope (TECS of the study area was identified as the scope for pollutant control; the acceptable pollution load was then estimated using an established model targeting bi-directional flow. The results suggest that the water environmental capacity for chemical oxygen demand (COD, in order to guarantee reaching the target water quality standard in the TECS, is 160,806 t/year, and amounts to 16,098 t/year, 3493 t/year, and 39,768 t/year for ammonia nitrogen, total nitrogen, and total phosphorus, respectively. Our study method and results have been incorporated into the local government management project, and have been proven to be useful in designing a pollution control strategy and management policy.

  7. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    Science.gov (United States)

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    The assessment of Great Lakes prey fish stocks have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique, population indices were standardized to the highest value for a time series within each lake for the following prey species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), and Round Goby (Neogobius melanostomus). In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. There was basin-wide agreement in the trends of age-1 and older biomass for all prey species, with the highest concordance occurring for coregonids and Rainbow Smelt, and weaker concordance for Alewife. For coregonids, the highest biomass occurred from the mid-1980s to the mid-1990s. Rainbow Smelt biomass declined slowly and erratically during the last quarter century. Alewife biomass was generally higher from the early 1980s through 1990s across the Great Lakes, but since the early 1990s, trends have been divergent across the lakes, though there has been a downward trend in all lakes since 2005. Recently, Lake Huron has shown resurgence in biomass of Bloater, achieving 75% of its maximum record in 2012 due to recruitment of a succession of strong and moderate year classes that appeared in 2005-2011. Also, strong recruitment of the 2010 year class of Alewife has led to a sharp increase in biomass of Alewife in

  8. Morphostructural characterization of the Charco basin and its surrounding areas in the Chihuahua segment of north Mexican Basin and Range Province

    Science.gov (United States)

    Troiani, Francesco; Menichetti, Marco

    2014-05-01

    The Chihuahua Basin and Range (CBR) is the eastern branch of the northern Mexican Basin and Range Province that, from a morphostructural point of view, presently is one amongst the lesser-known zones of the southern portion of the North America Basin and Range Province. The study area covers an approximately 800 km2-wide portion of the CBR and encompasses the fault-bounded Charco basin and its surrounding areas. The bedrock of the area pertains to the large siliceous-igneous province of the Sierra Madre Occidental and consists of volcanoclastic rocks including Oligocene dacite, rhyolite, rhyolitic tuffs, and polimitic conglomerates. The region is characterized by a series of NW-SE oriented valleys delimited by tilted monoclinal blocks bounded by high angle, SW-dipping, normal faults. Abrupt changes in elevation, alternating between narrow faulted mountain chains and flat arid valleys or basins are the main morphological elements of the area. The valleys correspond to structural grabens filled with Plio-Pleistocene continental sediments. These grabens are about 10 km wide, while the extensional fault system extend over a distance of more than 15 km. The mountain ranges are in most cases continuous over distances that range from 10 to 70 km including different branches of the extensional and transfer faults. The morphogenesis is mainly erosive in character: erosional landforms (such as rocky scarps, ridges, strath-terraces, erosional pediment, reverse slopes, landslide scar zones, litho-structural flat surfaces) dominate the landscape. In contrast, Quaternary depositional landforms are mainly concentrated within the flat valleys or basins. The Quaternary deposits consist of wide alluvial fans extending to the foot of the main ridges, fluvial and debris-slope deposits. The morphostructural characterization of the area integrated different methodologies, including: i) geomorphological and structural field analyses; ii) remote sensing and geo-morphometric investigations

  9. Chromium and nickel in the soils of industrial areas at Asopos river basin

    Directory of Open Access Journals (Sweden)

    Athanassios Karayannis

    2016-07-01

    Full Text Available The purpose of this paper is to present and compare previous efforts aiming to investigate whether previous wastewater disposal practices in selected (four metal finishing facilities, located at Asopos river basin (near Athens at East-Central Greece, and resulted in relevant soil contamination. The work is focused mainly on Cr and Ni, which are the primary elements of concern in the Asopos river Basin area. To assess the natural geochemical levels of Cr and Ni, 30 soil samples were collected from locations that were assumed free of contamination. In these 30 soil samples, Cr concentration varied from 60 to 418 mg/kg, and Ni concentrations varied between 91 and 1200 mg/kg. A second group of soil samples consisted of more than 100 samples from drill cores and surface soil samples, assumed affected by the disposal of effluents of the metal finishing facilities and/or the relevant drainage of runoff water. A third group of samples consisted of 10 more surface soil samples collected in summer 2015 (campaigns by Sybilla ltd in the framework of EU IED Directive Baseline Site Investigation Study for two metal finishing units. The above mentioned groups of data were evaluated and compared with a fourth group of data (collected from Inofyta industrial area in the framework of EU funded project LIFE-CHARM “Chromium in Asopos groundwater system: Remediation technologies and Measures”. The conclusion of this study is that there is no indication of downstream pollution migration from the land-based treated effluents disposal of the above mentioned metal finishing facilities. Cr and Ni concentrations in the lower soil layers were of the same order of magnitude to those of the reference soils. On the contrary Inofyta Industrial Area soil seems to be rather contaminated and requires special attention.

  10. Integrating Geological map of the Plata Basin and adjacent areas: release Bulletin

    International Nuclear Information System (INIS)

    Preciozzi, F.; Spoturno Pioppo, J.; Medina, E.

    2001-01-01

    During the 1st Meeting of the Geological Surveys of the Southern Cone Countries, held in the city of Porto Alegre (Rio Grande do Sul - Brazil) in November 1995, it was born the idea of ​​a set of activities that it had aimed at developing integration , technical cooperation and scientific exchange between these institutions, resulting in a concrete proposal in order to develop a map of geological, metallogenic and hydrogeological basins of the Parana and Plata integration; which provide the basic information needed for the further development of mineral resources maps approach to groundwater, gold, ornamental stones, industrial minerals and precious stones; the development of exchange activities in the area of ​​the environment and the creation of a data bank of geological and mining of the countries involved in the program. This intention of working together was presented to SGT2, Theme of Geology and Mineral Resources MERCOSUR Commission, at its first meeting, held in Buenos Aires - Argentina, in April 1996, with the aim of transforming it into an official activity of this Commission, time that the delegations of the four States-Party endorsed the proposal. These opportunities were discussed and established parameters and standards for the execution of the works to be developed in the area between the parallel of 14oS and 38oS and meridians 44oW and 68oW (Figure 1), covering approximately 5,800,000 Km2 continental area, scale 1: 2,500,000, covering the entire basin of the River Plate. geological one, one and one hydrogeological mineral resources, plus a database of mineral resources, which serve as a source of information for the map of mineral resources: the generation of three maps was established as a goal. The official name for this project was established Maps

  11. Biopetrology of coals from Krishnavaram area, Chintalapudi sub-basin, Godavari valley coalfields, Andhra Pradesh

    Energy Technology Data Exchange (ETDEWEB)

    Sarate, O.S. [Birbal Sahni Institute of Palaeobotany, Lucknow (India)

    2001-07-01

    Critical analysis of the constitution and rank of the sub-surface coal deposits from Krishnavaram area in the Chintalapudi sub-basin of Godavari valley coalfield is presented. Three coal/shale zones viz. A, B and C (in the ascending order) are encountered from Barakar Formation and lower Kamthi Member of the Lower Gondwana sequence. Zone C mostly contains shaly beds interbedded with thin coal bands (mostly shaly coal), and as such has no economic significance. Zone B is dominated by the vitric and mixed type of coal which has attained high volatile bituminous B and C ranks. The lowermost Zone A is characterised by mixed and fusic coal types with high volatile bituminous C rank. Both the zones A and B contain good quality coal and bear high economic potential. Cold and humid climate with alternating dry and oxidising spells have been interpreted from the constitution of coal. Moreover, the accumulation of thick pile of sediments rich in organic matter is attributed to the sinking of the basin floor due to the activation of faults. Later tectonic events either caused extinction or drastically reduced the number of the floral elements and formed thick shaly horizons interrupting the continuity of the coal facies.

  12. Glacial dispersal and flow history, East Arm area of Great Slave Lake, NWT, Canada

    Science.gov (United States)

    Sharpe, D. R.; Kjarsgaard, B. A.; Knight, R. D.; Russell, H. A. J.; Kerr, D. E.

    2017-06-01

    Little work has been completed on paleo-ice-sheet flow indicators of the Laurentide Ice Sheet, west of the Keewatin Ice Divide. Field mapping, sampling and analysis of glaciogenic sediment (∼500 sample sites) in a ∼33,000 km2 region near the East Arm of Great Slave Lake in northwestern Canada, provided a rare opportunity to improve understanding of sediment erosion and transport patterns. Glacially-eroded bedrock and sedimentary landforms record east to west flow with NW and SW divergence, mapped within a portion of the Great Slave Lake flow tract. Transported till reflects a similar divergent flow pattern based on dispersal geometries for multiple indicators (e.g., heavy minerals and lithic fragments), which are aligned with the dominant and latest ice flow direction. Glaciofluvial erosion (e.g., s-forms and till removal), transport, and deposition (mainly as esker sediment) are set within 0.3-3 km wide meltwater erosional corridors, spaced regularly at 10-15 km intervals. Transport paths and distances are comparable in till and esker sediment, however, distances appear to be greater (∼5-25 km) in some esker constituents and indicator minerals are typically more concentrated in esker sediment than in till. Corridors form a divergent array identical to the pattern of ice-flow features. The congruence of ice and meltwater flow features is interpreted to be a response to a similar ice sheet gradient, and close timing of events (late dominant glacial ice flow and meltwater flow). The similarity in glacial and glaciofluvial flow patterns has important ramifications for event reconstruction and for exploration geologists utilizing mineral and geochemical tracing methods in this region, and possibly other parts of northern Canada. The correspondence between East Arm dispersal patterns, landforms and flow indicators supports interpretation of a simple and predictable single flow divergence model. This is in contrast to previous, multi-flow models, in which fan

  13. The great tsunami of 26 December 2004: A description based on tide gauge data from Indian subcontinent and surrounding areas

    Digital Repository Service at National Institute of Oceanography (India)

    Nagarajan, B.; Suresh, I; Sundar, D.; Sharma, R; Lal, A.K.; Neetu, S.; Shenoi, S.S.C.; Shetye, S.R; Shankar, D.

    -1 Earth Planets Space, 58, 211?215, 2006 The Great Tsunami of 26 December 2004: A description based on tide-gauge data from the Indian subcontinent and surrounding areas B. Nagarajan1, I. Suresh2, D. Sundar2, R. Sharma1,A.K.Lal1, S. Neetu2, S. S. C. Shenoi..., I. Suresh, D. Sundar, R. Sharma, A. K. Lal, S. Neetu, S. S. C. Shenoi, S. R. Shetye, and D. Shankar (e-mail: shankar@nio.org) ...

  14. Tectonic heat flow modelling for basin maturation - Implications for frontier areas in the mediterranean

    NARCIS (Netherlands)

    Wees, J.D. van; Bonte, D.; Nelskamp, S.

    2009-01-01

    Basement heat flow is one of the most influential parameters on basin maturity. Although rapid progress has been made in the development of tectonic models capable of modelling the thermal consequences of basin formation, these models are hardly used in basin modelling. To better predict heat flows

  15. Superfund record of decision (EPA Region 4): Savannah River Site (USDOE), F-Area Retention Basin (281-3F), Aiken, SC, September 4, 1998

    International Nuclear Information System (INIS)

    1999-05-01

    The F-Area Retention Basin (FRB) Operable Unit (OU) includes the retention basin (basin soils), the former process sewer line (pipeline sediment, and pipeline associated soils), and the groundwater associated with the unit. This decision document presents the selected remedial alternatives for the FRB OU located at the SRS south of Aiken, South Carolina

  16. Contaminants of emerging concern in the Great Lakes Basin: A report on sediment, water, and fish tissue chemistry collected in 2010-2012

    Science.gov (United States)

    Choy, Steven J.; Annis, Mandy L.; Banda, JoAnn; Bowman, Sarah R.; Brigham, Mark E.; Elliott, Sarah M.; Gefell, Daniel J.; Jankowski, Mark D.; Jorgenson, Zachary G.; Lee, Kathy E.; Moore, Jeremy N.; Tucker, William A.

    2017-01-01

    Despite being detected at low levels in surface waters and sediments across the United States, contaminants of emerging concern (CECs) in the Great Lakes Basin are not well characterized in terms of spatial and temporal occurrence. Additionally, although the detrimental effects of exposure to CECs on fish and wildlife have been documented for many CECs in laboratory studies, we do not adequately understand the implications of the presence of CECs in the environment. Based on limited studies using current environmentally relevant concentrations of chemicals, however, risks to fish and wildlife are evident. As a result, there is an increasing urgency to address data gaps that are vital to resource management decisions. The U.S. Fish and Wildlife Service, in collaboration with the U.S. Geological Survey, is leading a Great Lakes Basin-wide evaluation of CECs (CEC Project) with the objectives to (a) characterize the spatial and temporal distribution of CECs; (b) evaluate risks to fish and wildlife resources; and (c) develop tools to aid resource managers in detecting, averting, or minimizing the ecological consequences to fish and wildlife that are exposed to CECs. This report addresses objective (a) of the CEC Project, summarizing sediment and water chemistry data collected from 2010 to 2012 and fish liver tissue chemistry data collected in 2012; characterizes the sampling locations with respect to potential sources of CECs in the landscape; and provides an initial interpretation of the variation in CEC concentrations relative to the identified sources. Data collected during the first three years of our study, which included 12 sampling locations and analysis of 134 chemicals, indicate that contaminants were more frequently detected in sediment compared to water. Chemicals classified as alkyphenols, flavors/ fragrances, hormones, PAHs, and sterols had higher average detection frequencies in sediment compared to water, while the opposite was observed for pesticides

  17. Health benefit from decreasing exposure to heavy metals and metalloid after strict pollution control measures near a typical river basin area in China.

    Science.gov (United States)

    Cao, Suzhen; Duan, Xiaoli; Ma, Yingqun; Zhao, Xiuge; Qin, Yanwen; Liu, Yan; Li, Sai; Zheng, Binghui; Wei, Fusheng

    2017-10-01

    The metal(loid) pollution still is a great concern due to the effects from urbanization and industrialization. While, the health risks from the toxic metal(loid)s could decrease if strict pollution control measures were adopted. However, few studies to date investigate the health risks of heavy metal(loid)s in a systematic river basin for the dependent residents, after taking pollution control measures. Thus, the contents of metal(loid)s (Cu, Pb, Zn, Cd, Mn, As) in surface water along a typical river basin were investigated in this study, and the potential non-carcinogenic and carcinogenic health risks posed to the residents were assessed. Although the soluble contents of Cu, Pb, Zn and Cd exceeded the respective thresholds in two sites located downstream the mine area, they were greatly decreased in comparison with previous contamination levels, and the soluble concentrations of all the metal(loid)s were within the relevant thresholds in the sites far away from the mining area. Moreover, the closer to the mining area, the higher the pollution levels of metal(loid)s. The total hazard index for non-carcinogenic risks of metal(loid)s were basically lower than the threshold (1) for the local population. Whereas, although the content of metal(loid)s were low (such as As), they could pose relative higher non-carcinogenic health risks. The result illustrated that pollution levels, toxicity of the contaminants and exposure behavior patterns all could contribute to the potential detrimental health risks. Additionally, the non-carcinogenic and carcinogenic risks from ingestion exposure were ∼2-∼4 orders of magnitude higher than those from dermal contact. The total carcinogenic risks were basically lower than the maximum tolerable levels (1.0 × 10 -4 ), indicating carcinogenic risks from most areas of the river could also be accepted. Among different population groups, heavy metal(loid)s posed relative higher non-carcinogenic and carcinogenic risks to the children in

  18. Fish Lake, Utah - a promising long core site straddling the Great Basin to Colorado Plateau transition zone

    Science.gov (United States)

    Marchetti, D. W.; Abbott, M. B.; Bailey, C.; Wenrich, E.; Stoner, J. S.; Larsen, D. J.; Finkenbinder, M. S.; Anderson, L.; Brunelle, A.; Carter, V.; Power, M. J.; Hatfield, R. G.; Reilly, B.; Harris, M. S.; Grimm, E. C.; Donovan, J.

    2015-12-01

    Fish Lake (~7x1.5 km and 2696 m asl) is located on the Fish Lake Plateau in central Utah. The Lake occupies a NE-striking tectonic graben; one of a suite of grabens on the Plateau that cut 21-26 Ma volcanic rocks. The lake outflows via Lake Creek to the NE where it joins Sevenmile Creek to become the Fremont River, a tributary to the Colorado River. A bathymetric survey reveals a mean depth of 27 m and a max depth of 37.2 m. The lake bottom slopes from NW to SE with the deepest part near the SE wall, matching the topographic expression of the graben. Nearby Fish Lake Hightop (3545 m) was glaciated with an ice field and outlet glaciers. Exposure ages indicate moraine deposition during Pinedale (15-23 ka) and Bull Lake (130-150 ka) times. One outlet glacier at Pelican Canyon deposited moraines and outwash into the lake but the main basin of the lake was never glaciated. Gravity measurements indicate that lake sediments thicken toward the SE side of the lake and the thickest sediment package is modeled to be between 210 and 240 m. In Feb 2014 we collected cores from Fish Lake using a 9-cm diameter UWITECH coring system in 30.5 m of water. A composite 11.2-m-long core was constructed from overlapping 2 m drives that were taken in triplicate to ensure total recovery and good preservation. Twelve 14C ages and 3 tephra layers of known age define the age model. The oldest 14C age of 32.3±4.2 cal ka BP was taken from 10.6 m. Core lithology, CT scans, and magnetic susceptibility (ms) reveal three sediment packages: an organic-rich, low ms Holocene to post-glacial section, a fine-grained, minerogenic glacial section with high ms, and a short section of inferred pre-LGM sediment with intermediate composition. Extrapolating the age model to the maximum estimated sediment thicknesses suggest sediments may be older than 500-700 ka. Thus Fish Lake is an ideal candidate for long core retrieval as it likely contains paleoclimatic records extending over multiple glacial cycles.

  19. Groundwater quality in a mining activity area (The Bierzo Basin-Leon)

    International Nuclear Information System (INIS)

    Losa, A. de la; Moreno, L.; Nunez, I.

    2010-01-01

    The Bierzo Basin presents large coal mining structures without restore where the air exposition of metallic sulphurs could become a source of heavy metal pollution and acification of waters. This paper presents the results of a research focused on groundwater quality affected by the mining activity. A sampling campaign of both ground and surface waters was carried out. Altogether, 37 sampling points has been selected including 26 springs, 7 shallow wells for agricultural use and 4 river water samples, all of them directly or indirectly connected to groundwater. The interpretation of results is based on the multivariate analysis application. Sulphate is the dominant anion in both water types, and it is related, in most cases, to oxidation of sulphurs, widely represented in the study area. However, the main conclusion is that surface water and groundwater samples have no high abnormal contents of heavy metals due to the induced alteration by mining activity. (Author) 15 refs.

  20. Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic)

    Science.gov (United States)

    Bankwitz, P.; Schneider, G.; Kämpf, H.; Bankwitz, E.

    2003-03-01

    The earthquake distribution pattern of Central Europe differs systematically from the neighbouring areas of NW and southern Europe regarding the fault plane kinematics. Within a belt between the French Massif Central and the northern part of the Bohemian Massif (1000 km) sinistral faulting along N-S zones dominates on the contrary to the Alps and their foreland with common bookshelf shears. One of the prominent N-S structures is the Regensburg-Leipzig-Rostock Zone (A) with several epicentral areas, where the main seismic center occurs in the northern Cheb Basin (NW Bohemia). The study demonstrates new structural results for the swarm-quake region in NW-Bohemia, especially for the Nový Kostel area in the Cheb Basin. There the N-S-trending newly found Počatky-Plesná zone (PPZ) is identical with the main earthquake line. The PPZ is connected with a mofette line between Hartušov and Bublák with evidence for CO 2 degassing from the subcrustal mantle. The morphologically more prominent Mariánské Lázně fault (MLF) intersects the PPZ obliquely under an acuate angle. In the past the MLF was supposed to be the tectonic structure connected with the epicentral area of Nový Kostel. But evidence from the relocated hypocentres along the PPZ (at 7-12 kms depth) indicate that the MLF is seismically non-active. Asymmetric drainage patterns of the Cheb Basin are caused by fault related movement along Palaeozoic basement faults which initiate a deformation of the cover (Upper Pliocene to Holocene basin filling). The PPZ forms an escarpment in Pliocene and Pleistocene soft rock and is supposingly acting as an earthquake zone since late Pleistocene time. The uppermost Pleistocene of 0.12-0.01 Ma deposited only in front of the fault scarp dates the fault activity. The crossing faults envelope crustal wedges under different local stress conditions. Their intersection line forms a zone beginning at the surface near Nový Kostel, dipping south with increasing depth, probably down

  1. Surface Water Transport for the F/H Area Seepage Basins Groundwater Program

    International Nuclear Information System (INIS)

    Chen, Kuo-Fu.

    1995-01-01

    The contribution of the F- and H-Area Seepage Basins (FHSBs) tritium releases to the tritium concentration in the Savannah River are presented in this report. WASP5 was used to simulate surface water transport for tritium releases from the FHSBs. The WASP5 model was qualified with the 1993 tritium measurements at US Highway 301. The tritium concentrations in Fourmile Branch and the Savannah River were calculated for tritium releases from FHSBs. The calculated tritium concentrations above normal environmental background in the Savannah River, resulting from FHSBs releases, drop from 1.25 pCi/ml (<10% of EPA Drinking Water Guide) in 1995 to 0.0056 pCi/ml in 2045

  2. Polarization signatures for abandoned agricultural fields in the Manix Basin area of the Mojave Desert

    Science.gov (United States)

    Ray, Terrill W.; Farr, Tom G.; Vanzyl, Jakob J.

    1991-01-01

    Polarimetric signatures from abandoned circular alfalfa fields in the Manix Basin area of the Mojave desert show systematic changes with length of abandonment. The obliteration of circular planting rows by surface processes could account for the disappearance of bright 'spokes', which seems to be reflection patterns from remnants of the planting rows, with increasing length of abandonment. An observed shift in the location of the maximum L-band copolarization return away from VV, as well as an increase in surface roughness, both occurring with increasing age of abandonment, seems to be attributable to the formation of wind ripple on the relatively vegetationless fields. A Late Pleistocene/Holocene sand bar deposit, which can be identified in the radar images, is probably responsible for the failure of three fields to match the age sequence patterns in roughness and peak shift.

  3. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB`s Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B{sub 2} and in the upper portion of Aquifer Zone 2B{sub 1}. However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B{sub 1} and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988.

  4. H-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993

    International Nuclear Information System (INIS)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with the September 30, 1992, modification of South Carolina Hazardous Waste Permit SC1-890-008-989. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning first quarter 1993, the HASB's Groundwater Protection Standard (GWPS), established in Appendix 3D-A of the cited permit, became the standard for comparison. Historically as well as currently, nitrate, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constitutents also exceeded the GWPS in the groundwater at the HASB (notably aluminum, iodine-129, strontium-90, technetium-99, and zinc) during the second half of 1993. Elevated constituents were found primarily in Aquifer Zone 2B 2 and in the upper portion of Aquifer Zone 2B 1 . However, constituents exceeding standards also occurred in several wells screened in the lower portion of Aquifer Zone 2B 1 and Aquifer Unit 2A. Isoconcentration/isoactivity maps include in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1993. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988

  5. Assessment of general health of fishes collected at selected sites in the Great Lakes Basin In 2012

    Science.gov (United States)

    Mazik, Patricia M.; Braham, Ryan P.; Hahn, Cassidy M.; Blazer, Vicki

    2015-01-01

    During the past decade, there has been a substantive increase in the detection of “emerging contaminants”, defined as a new substance, chemical, or metabolite in the environment; or a legacy substance with a newly expanded distribution, altered release, or a newly recognized effect (such as endocrine disruption). Emerging contaminants include substances such as biogenic hormones (human and animal), brominated flame retardants, pharmaceuticals, personal care products, plasticizers, current use pesticides, detergents, and nanoparticles. These contaminants are frequently not regulated or inadequately regulated by state or Federal water quality programs. Information about the toxicity of these substances to fish and wildlife resources is generally limited, compared to more highly regulated contaminants, and some classes have been shown to cause affects (for example feminization of male fish, immunomodulation) that are not evaluated via traditional toxicity testing protocols. As a result, these compounds may pose a substantial, but currently poorly documented threat to aquatic ecosystems. Failure to identify and understand the impacts of these emerging contaminants on fish and wildlife resources may result in deleterious impacts to Great Lakes resources that can result in adverse ecological, economic and recreational consequences.

  6. Mapping the Wetland Vegetation Communities of the Australian Great Artesian Basin Springs Using SAM, Mtmf and Spectrally Segmented PCA Hyperspectral Analyses

    Science.gov (United States)

    White, D. C.; Lewis, M. M.

    2012-07-01

    The Australian Great Artesian Basin (GAB) supports a unique and diverse range of groundwater dependent wetland ecosystems termed GAB springs. In recent decades the ecological sustainability of the springs has become uncertain as demands on this iconic groundwater resource increase. The impacts of existing water extractions for mining and pastoral activities are unknown. This situation is compounded by the likelihood of future increasing demand for extractions. Hyperspectral remote sensing provides the necessary spectral and spatial detail to discriminate wetland vegetation communities. Therefore the objectives of this paper are to discriminate the spatial extent and distribution of key spring wetland vegetation communities associated with the GAB springs evaluating three hyperspectral techniques: Spectral Angle Mapper (SAM), Mixture Tuned Matched Filtering (MTMF) and Spectrally Segmented PCA. In addition, to determine if the hyperspectral techniques developed can be applied at a number of sites representative of the range of spring formations and geomorphic settings and at two temporal intervals. Two epochs of HyMap airborne hyperspectral imagery were captured for this research in March 2009 and April 2011 at a number of sites representative of the floristic and geomorphic diversity of GAB spring groups/complexes within South Australia. Colour digital aerial photography at 30 cm GSD was acquired concurrently with the HyMap imagery. The image acquisition coincided with a field campaign of spectroradiometry measurements and a botanical survey. To identify key wavebands which have the greatest capability to discriminate vegetation communities of the GAB springs and surrounding area three hyperspectral data reduction techniques were employed: (i) Spectrally Segmented PCA (SSPCA); (ii) the Minimum Noise Transform (MNF); and (iii) the Pixel Purity Index (PPI). SSPCA was applied to NDVI-masked vegetation portions of the HyMap imagery with wavelength regions spectrally

  7. Use of fish telemetry in rehabilitation planning, management, and monitoring in Areas of Concern in the Laurentian Great Lakes

    Science.gov (United States)

    Brooks, J.L.; Boston, C.; Doka, Susan E.; Gorsky, Dimitry; Gustavson, K.; Hondorp, Darryl W.; Isermann, Daniel A.; Midwood, Jonathan D.; Pratt, T.C.; Rous, Andrew M.; Withers, J. L.; Krueger, C.C.; Cooke, S.J.

    2017-01-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish–habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  8. Use of Fish Telemetry in Rehabilitation Planning, Management, and Monitoring in Areas of Concern in the Laurentian Great Lakes

    Science.gov (United States)

    Brooks, J. L.; Boston, C.; Doka, S.; Gorsky, D.; Gustavson, K.; Hondorp, D.; Isermann, D.; Midwood, J. D.; Pratt, T. C.; Rous, A. M.; Withers, J. L.; Krueger, C. C.; Cooke, S. J.

    2017-12-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish-habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  9. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is

  10. The phytocoenoses of anthropogenically transformed areas with a great importance for Apoidea

    Directory of Open Access Journals (Sweden)

    Małgorzata Wrzesień

    2012-12-01

    Full Text Available The paper indicates the phytocenoses most rich in bee taxons and occurring in habitats located along railway lines crossing Lublin Upland. To date, in the study area 124 basic phytocoenoses have been discovered, described and classifi ed into 12 different synecological groups. Among 52 phytocoenoses, the participation of bee flora was considerable. Most voluble phytocoenoses represent ruderal and segetal associations (Artemisietea vulgaris, Stellarietea mediae classes - 87 species, meadow and pasture associations (Mollinio-Arrhenatheretea - 56 species, psammophilous and xerothermic grasslands (Festuco- Brometea, Koelerio glauce-Corynophoretea canescensis - 38 species, thermophilous forest edge communities and thickets (Trifolio-Geranietea and Rhamno-Prunetea - 33 species. Significantly fewer melliferous and polleniferous taxons were noticed in mesophilous deciduous forests or thermophilous oak forests - 29 species. Most simple in structure and species richness are associations with Rumex acetosa, Reseda lutea, Linaria vulgaris, Papaver rhoeas, Cirsium arvense, Oenothera biennis, Viola arvensis and Potentilletum anserine or Sisymbrietum altissimi. The communities form patches (15-20 m2 with 80-100% cover of the diagnostic taxon and are of low or medium stability. The most persistent and floristically stable are Tanaceto Artemisietum, Rudbeckio- Solidaginetum, Echio-Melilotetum, Sambucetum nigrae, Rubo fruticosi-Prunetum spinosae and communities with Rosa rugosa, Rubus caesius, Geranium robertianum, Pastinaca sativa, Trifolium medium or Euphorbia cyparissias. The maintenance of the mosaic of phytocoenoses in anthropogenically transformed habitats, including those along railway lines, is of decisive importance for the protection of floristic diversity and adaptation processes of Apoidea.

  11. Assessing Potential Conservation and Restoration Areas of Freshwater Fish Fauna in the Indian River Basins.

    Science.gov (United States)

    Bhatt, Jay P; Manish, Kumar; Mehta, Rajender; Pandit, Maharaj K

    2016-05-01

    Conservation efforts globally are skewed toward terrestrial ecosystems. To date, conservation of aquatic ecosystems, in particular fish fauna, is largely neglected. We provide a country-wide assessment of Indian river ecosystems in order to identify and prioritize areas for protection and restoration of freshwater fish fauna. Using various biodiversity and anthropogenic attributes, coupled with tools of ecological modeling, we delineated areas for fish fauna conservation and restoration in the 20 major river basins of India. To do this, we used prioritization analyses and reserve selection algorithms to derive conservation value index (CVI) and vulnerability index (VI) of the river basins. CVI was estimated using endemicity, rarity, conservation value, and taxonomic singularity, while VI was estimated using a disturbance index derived from percent geographic area of the basin under human settlements, human population density, predominant land use, and total number of exotic fish species in each basin. The two indices, CVI and VI, were converted into geo-referenced maps, and each map was super-imposed onto species richness and forest cover maps, respectively. After superimposition, areas with high CVI and low VI shade intensities were delineated for conservation, while areas with high CVI and high VI shade intensities were demarcated for restoration. In view of the importance of freshwater fish for human livelihoods and consumption, and ecosystems of India's rivers, we call for urgent attention to the conservation of their fish fauna along with restoration of their degraded habitats.

  12. Neotectonic movement and its relation to uranium metallogenesis in central-southern Songliao basin and its adjacent areas

    International Nuclear Information System (INIS)

    Sang Jisheng; Zhang Yongbao; Chen Weiyi

    2004-01-01

    The central-southern Songliao basin and its adjacent area ar located in the south of Inner Mongolian-Northeastern China neotectonic region of the circum-pacific neotectonic domain. Since Late Tertiary the neotectonic movement in the region has been being more intense, and the most obvious feature of the neotectonic movement was characterized by large-amplitude block-faulting and strong volcanic activity. The mega-scale basin-and-range tectonics and other micro-geomorphology created favourable tectonic and geomorphologic conditions for the ore-formation of in-situ leachable sandstone-type uranium deposits. Neotectonic movement played both positive and negative roles in uranium ore-formation. Neotectonics are well developed at the eastern and the southern margins of the Songliao basin, and these areas are favourable for locating in-situ leachable sandstone-type uranium deposits

  13. Quantifying restoration effectiveness using multi-scale habitat models: implications for sage-grouse in the Great Basin

    Science.gov (United States)

    Arkle, Robert S.; Pilliod, David S.; Hanser, Steven E.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.; Knutson, Kevin C.; Pyke, David A.; Welty, Justin L.

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of occupancy in 211 randomly located plots within a 40 million ha portion of the species' range. We then used these models to predict sage-grouse habitat quality at 826 plots associated with 101 post-wildfire seeding projects implemented from 1990 to 2003. We also compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy was positively related to plot- and landscape-level dwarf sagebrush (Artemisia arbuscula, A. nova, A. tripartita) and big sagebrush steppe prevalence, and negatively associated with non-native plants and human development. The predicted probability of sage-grouse occupancy at treated plots was low on average (0.09) and not substantially different from burned areas that had not been treated. Restoration sites with quality habitat tended to occur at higher elevation locations with low annual temperatures, high spring precipitation, and high plant diversity. Of 313 plots seeded after fire, none met all sagebrush guidelines for breeding habitats, but approximately 50% met understory guidelines, particularly for perennial grasses. This pattern was similar for summer habitat. Less than 2% of treated plots met winter habitat guidelines. Restoration actions did not increase the probability of burned areas meeting most guideline criteria. The probability of meeting guidelines was influenced by a latitudinal gradient, climate, and topography. Our results suggest that sage-grouse are relatively unlikely to use many burned areas within 20 years of fire, regardless of treatment. Understory habitat conditions are more likely to be adequate than overstory

  14. Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth Basin, northern South China Sea

    Science.gov (United States)

    Tang, Xiaoyin; Yang, Shuchun; Hu, Shengbiao

    2017-11-01

    The Baiyun Sag, located in the deep-water area of the northern South China Sea, is the largest and deepest subbasin in the Pearl River Mouth Basin and one of the most important hydrocarbon-accumulation depression areas in China. Thermal history is widely thought to be of great importance in oil and gas potential assessment of a basin as it controls the timing of hydrocarbon generation and expulsion from the source rock. In order to unravel the paleo-heat flow of the Baiyun Sag, we first analyzed tectonic subsidence of 55 pseudo-wells constructed based on newly interpreted seismic profiles, along with three drilled wells. We then carried out thermal modeling using the multi-stage finite stretching method and calibrated the results using collected present-day vitrinite reflectance data and temperature data. Results indicate that the first and second heating of the Baiyun Sag after 49 Ma ceased at 33.9 Ma and 23 Ma. Reconstructed average basal paleoheat flow values at the end of the rifting periods are 57.7-86.2 mW/m2 and 66.7-97.3 mW/m2, respectively. Following the last heating period at 23 Ma, the study area has undergone a persistent thermal attenuation phase, and basal heat flow has cooled down to 64.0-79.2 mW/m2 at present.

  15. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    Science.gov (United States)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring

  16. Evidence of late Quaternary wet/dry climate episodes derived from paleoclimatic proxy data recovered from the paleoenvironmental record of the Great Basin of western North America: Paleobotanical studies

    International Nuclear Information System (INIS)

    1998-01-01

    Through the integration of several avenues of paleoclimatic proxy data, the authors intend to arrive a definite conclusions regarding the frequency of periods of wetter climate, and to drive information regarding the magnitudes of these episodes, rates of their onset and demise, and the climatic conditions under which wetter climate can occur. These will in turn lead to rough estimates of: (1) the amounts of rainfall available for recharge during past periods of effectively wetter climate; and (2) the durations and spacing of such events that provide an indication of the amount of time that the area was subjected to these inputs. To accomplish these goals the paleobotanical record over a broad region is being examined to identify periods of greater effective precipitation. Although the project focus is on a region a of about 200 km around Yucca Mountain, they have collected data in other areas of the Great Basin in order to be able to identify large-scale climatic patterns. Once identified and described these climatic patterns can be separated from purely local climatic phenomena that might hinder the understanding of the Pliestocene climates of southern Nevada and the Yucca Mountain area in particular

  17. Optimization of wetland restoration siting and zoning in flood retention areas of river basins in China: A case study in Mengwa, Huaihe River Basin

    Science.gov (United States)

    Zhang, Xiaolei; Song, Yuqin

    2014-11-01

    Wetland restoration in floodplains is an ecological solution that can address basin-wide flooding issues and minimize flooding and damages to riverine and downstream areas. High population densities, large economic outputs, and heavy reliance on water resources make flood retention and management pressing issues in China. To balance flood control and sustainable development economically, socially, and politically, flood retention areas have been established to increase watershed flood storage capacities and enhance the public welfare for the populace living in the areas. However, conflicts between flood storage functions and human habitation appear irreconcilable. We developed a site-specific methodology for identifying potential sites and functional zones for wetland restoration in a flood retention area in middle and eastern China, optimizing the spatial distribution and functional zones to maximize flood control and human and regional development. This methodology was applied to Mengwa, one of 21 flood retention areas in China's Huaihe River Basin, using nine scenarios that reflected different flood, climatic, and hydraulic conditions. The results demonstrated improved flood retention and ecological functions, as well as increased economic benefits.

  18. Mapping forested wetlands in the Great Zhan River Basin through integrating optical, radar, and topographical data classification techniques.

    Science.gov (United States)

    Na, X D; Zang, S Y; Wu, C S; Li, W L

    2015-11-01

    Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (pwetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (pwetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.

  19. The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests

    Directory of Open Access Journals (Sweden)

    Astrid Verhegghen

    2016-11-01

    Full Text Available In this study, the recently launched Sentinel-2 (S2 optical satellite and the active radar Sentinel-1 (S1 satellite supported by active fire data from the MODIS sensor were used to detect and monitor forest fires in the Congo Basin. In the context of a very strong El Niño event, an unprecedented outbreak of fires was observed during the first months of 2016 in open forests formations in the north of the Republic of Congo. The anomalies of the recent fires and meteorological situation compared to historical data show the severity of the drought. Burnt areas mapped by the S1 SAR and S2 Multi Spectral Instrument (MSI sensors highlight that the fires occurred mainly in Marantaceae forests, characterized by open tree canopy cover and an extensive tall herbaceous layer. The maps show that the origin of the fires correlates with accessibility to the forest, suggesting an anthropogenic origin. The combined use of the two independent and fundamentally different satellite systems of S2 and S1 captured an extent of 36,000 ha of burnt areas, with each sensor compensating for the weakness (cloud perturbations for S2, and sensitivity to ground moisture for S1 of the other.

  20. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  1. Ecosystem studies, endangered species survey - Gibson Dome and Elk Ridge study areas, Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report is published as a product of the National Waste Terminal Storage (NWTS) Program. The objective of this program is the development of terminal waste storage facilities in deep stable geologic formations for high-level nuclear wastes, including spent fuel elements from commercial power reactors and transuranic nuclear waste for which the federal government is responsible. This report is part of the location and site characterization phase and contains threatened and endangered species information for the Gibson Dome and Elk Ridge study areas of the Paradox Region. The threatened and endangered species information was obtained through site surveys designed and implemented by area experts. The site surveys were performed during the period late summer 1981 - spring 1982 in the Gibson Dome and Elk Ridge Study Areas. No threatened or endangered species were identified in either Lavender or Davis canyons. Additional studies at the borehole locations in Beef Basin did identify the nearest occurrence of a species proposed for endangered status (Astragalus monumentalis, a monument milkvetch, member of the legume family). The species was identified approximately 160 to 300 m (500 to 1000 ft) from a hydro testing drill site. Consequently, construction and operation activity should not cause any adverse impacts. This report will be used to satisfy Section 7 requirements of the Endangered Species Act (PL 93-205 as amended) and to allow the United States Fish and Wildlife Service to verify that no protected species are subject to disturbance as the result of project activities occurring in the Gibson Dome and Elk Ridge study areas

  2. Variability of morphometric characteristics of the leaves of European white elm from the area of Great War Island

    Directory of Open Access Journals (Sweden)

    Devetaković Jovana

    2013-01-01

    Full Text Available The European White Elm (Ulmus effusa Willd. is indicated as a rare and endangered species in the growing stock of the Republic of Serbia. In the area of Great War Island, its natural populations were reduced to 56 registered trees, which occur in three spatially isolated subpopulations. On the basis of the research conducted on the level of variability of adaptible morphometric characteristics of leaves from 14 selected test trees of European White Elm, it can be concluded that the degree of interpopulation variability is satisfactory, which is a good basis for the conservation of the available gene pool.

  3. Dilution correction equation revisited: The impact of stream slope, relief ratio and area size of basin on geochemical anomalies

    Science.gov (United States)

    Shahrestani, Shahed; Mokhtari, Ahmad Reza

    2017-04-01

    Stream sediment sampling is a well-known technique used to discover the geochemical anomalies in regional exploration activities. In an upstream catchment basin of stream sediment sample, the geochemical signals originating from probable mineralization could be diluted due to mixing with the weathering material coming from the non-anomalous sources. Hawkes's equation (1976) was an attempt to overcome the problem in which the area size of catchment basin was used to remove dilution from geochemical anomalies. However, the metal content of a stream sediment sample could be linked to several geomorphological, sedimentological, climatic and geological factors. The area size is not itself a comprehensive representative of dilution taking place in a catchment basin. The aim of the present study was to consider a number of geomorphological factors affecting the sediment supply, transportation processes, storage and in general, the geochemistry of stream sediments and their incorporation in the dilution correction procedure. This was organized through employing the concept of sediment yield and sediment delivery ratio and linking such characteristics to the dilution phenomenon in a catchment basin. Main stream slope (MSS), relief ratio (RR) and area size (Aa) of catchment basin were selected as the important proxies (PSDRa) for sediment delivery ratio and then entered to the Hawkes's equation. Then, Hawkes's and new equations were applied on the stream sediment dataset collected from Takhte-Soleyman district, west of Iran for Au, As and Sb values. A number of large and small gold, antimony and arsenic mineral occurrences were used to evaluate the results. Anomaly maps based on the new equations displayed improvement in anomaly delineation taking the spatial distribution of mineral deposits into account and could present new catchment basins containing known mineralization as the anomaly class, especially in the case of Au and As. Four catchment basins having Au and As

  4. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Directory of Open Access Journals (Sweden)

    Krajčí Pavel

    2016-03-01

    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  5. Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-02-01

    This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public

  6. Evaluation of the impact of farming activity in the water quality in surface catchment areas in hydrographic basin from Mogi-Guacu and Pardo Rivers, Sao Paulo

    International Nuclear Information System (INIS)

    Katsuoka, Lidia

    2001-01-01

    This study was performed in 10 small basins located in the Mogi-Guacu and Pardo Rivers, in the Northeastern area of Sao Paulo State. The land belonging of these basins is used to grow row crops of potato, coffee and pasture areas. This study aimed to characterize small basins, to evaluate water and sediment quality and to correlate basic aspects of climatology, hydrology, toxicology and land uses to the physical, chemical and toxicological characteristics of the water in the streams. Geographic Information System (GIS) was used as a tool of evaluation of land uses and risk assessment was performed for a final evaluation. The samplings were carried out from June/1999 to June/2000 in the 13 collecting points. It was verified that water quality is dependent upon the rainy and dry periods and the harvest periods. In the beginning of rainy periods were found large concentrations of metals and traces of herbicides leachate from soil and, in the dry period the same event was verified, caused by concentration of the water. In August, September and October phosphorus concentrations were very low getting an improvement in the water quality. Al, Fe and Mn are majority elements of chemical compositions of rocks of the study area, and exceed the Brazilian Guidelines. The stream waters were classified as 44% oligotrophic, 42% mesotrophic and 14% eutrophic. Jaguari-Mirim River presented the largest values of Trophic Index (TI). Sediment analyses showed a great variety of organic compounds coming from anthropogenic activities (industrial and farming activity). Toxicity tests with hyalella azteca in the sediments presented toxicity for sediments from Sao Joao da Boa Vista and Divinolandia. A methodology was developed for organochlorinated pesticides by gas chromatography coupled to mass spectrometry (GCMS). The presence of organochlorinated pesticides was not verified. (author)

  7. Hydrology and snowmelt simulation of Snyderville Basin, Park City, and adjacent areas, Summit County, Utah

    Science.gov (United States)

    Brooks, Lynette E.; Mason, James L.; Susong, David D.

    1998-01-01

    Increasing residential and commercial development is placing increased demands on the ground- and surface-water resources of Snyderville Basin, Park City, and adjacent areas in the southwestern corner of Summit County, Utah. Data collected during 1993-95 were used to assess the quantity and quality of the water resources in the study area.Ground water within the study area is present in consolidated rocks and unconsolidated valley fill. The complex geology makes it difficult to determine the degree of hydraulic connection between different blocks of consolidated rocks. Increased ground-water withdrawal during 1983- 95 generally has not affected ground-water levels. Ground-water withdrawal in some areas, however, caused seasonal fluctuations and a decline in ground-water levels from 1994 to 1995, despite greater-than-normal recharge in the spring of 1995.Ground water generally has a dissolved-solids concentration that ranges from 200 to 600 mg/L. Higher sulfate concentrations in water from wells and springs near Park City and in McLeod Creek and East Canyon Creek than in other parts of the study area are the result of mixing with water that discharges from the Spiro Tunnel. The presence of chloride in water from wells and springs near Park City and in streams and wells near Interstate Highway 80 is probably caused by the dissolution of applied road salt. Chlorofluorocarbon analyses indicate that even though water levels rise within a few weeks of snowmelt, the water took 15 to 40 years to move from areas of recharge to areas of discharge.Water budgets for the entire study area and for six subbasins were developed to better understand the hydrologic system. Ground-water recharge from precipitation made up about 80 percent of the ground-water recharge in the study area. Ground-water discharge to streams made up about 40 percent of the surface water in the study area and ground-water discharge to springs and mine tunnels made up about 25 percent. Increasing use of

  8. Extending the area of investigation of fine versus coarse quartz optical ages from the Lower Danube to the Carpathian Basin

    DEFF Research Database (Denmark)

    Timar-Gabor, Alida; Constantin, Daniela; Marković, S.B.

    2015-01-01

    mm) grains and coarse (63e90 mm) grains respectively. The current study aims at expanding these investigations, both by extending the area of study from the Lower Danube Basin to the Carpathian Basin and by applying time-resolved optically stimulated luminescence (TR-OSL) on quartz, in order to gain...... is observed for both continuous wave (CW-OSL) and pulsed OSL (POSL), where the dose response (up to 1000 Gy) is well described by a sum of two saturating exponential functions. TR-OSL measurements show one single, characteristic quartz lifetime for both natural as well as regenerative signals in the entire...

  9. Summer watering patterns of mule deer in the Great Basin Desert, USA: implications of differential use by individuals and the sexes for management of water resources.

    Science.gov (United States)

    Shields, Andrew V; Larsen, Randy T; Whiting, Jericho C

    2012-01-01

    Changes in the abundance and distribution of free water can negatively influence wildlife in arid regions. Free water is considered a limiting factor for mule deer (Odocoileus hemionus) in the Great Basin Desert. Consequently, a better understanding of differential use of water by individuals and the sexes could influence the conservation and management of mule deer and water resources in their habitats. We deployed remote cameras at all known water sources (13 wildlife water developments and 4 springs) on one mountain range in western Utah, USA, during summer from 2007 to 2011 to document frequency and timing of water use, number of water sources used by males and females, and to estimate population size from individually identified mule deer. Male and female mule deer used different water sources but visited that resource at similar frequencies. Individual mule deer used few water sources and exhibited high fidelity to that resource. Wildlife water developments were frequently used by both sexes. Our results highlight the differing use of water sources by sexes and individual mule deer. This information will help guide managers when siting and reprovisioning wildlife water developments meant to benefit mule deer and will contribute to the conservation and management of this species.

  10. Erosion Potential of a Burn Site in the Mojave-Great Basin Transition Zone: Interim Summary of One Year of Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Etyemezian, V.; Shafer, D.; Miller, J.; Kavouras, I.; Campbell, S.; DuBois, D.; King, J.; Nikolich, G.; Zitzer, S.

    2010-05-18

    A historic return interval of 100 years for large fires in deserts in the Southwest U.S. is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. This increase in fires has implications for management of Soil Sub-Project Corrective Action Units (CAUs) for which the Department of Energy, National Nuclear Security Administration Nevada Site office (NNSA/NSO) has responsibility. A series of studies has been initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn over to understand technical and perceived risk they might pose to site workers and public receptors in communities around the NTS, TTR, and NTTR; and to develop recommendations for stabilization and restoration after a fire. The first of these studies was undertaken at the Jacob fire, a lightning-caused fire approximately 12 kilometers north of Hiko, Nevada, that burned approximately 200 ha between August 6-8, 2008, and is representative of a transition zone on the NTS between the Mojave and Great Basin Deserts, where the largest number of Soil Sub-Project CAUs/CASs are located.

  11. Role of burrowing activities of the Great Basin pocket mouse (Perognathus parvus) in the dispersal of radionuclides on a decommissioned pond

    International Nuclear Information System (INIS)

    Landeen, D.S.; Mitchell, R.M.

    1982-08-01

    The intrusion of waste burial sites by animals is a common occurrence at nuclear waste facilities. This study identifies parameters associated with burrowing activities of the Great Basin Pocket Mouse at the Hanford Site in southeastern Washington. The objectives of the study were to: (1) document and compare burrow depths on a control site and a decommissioned radioactive waste pond and (2) document 137 Cs concentrations in pocket mice and the soil mounds created by their burrowing activities. Pocket mice burrowed deeper in the backfilled burial site (anti x = 72 cm) than they did in the control site (anti x = 38 cm). The small amounts of 137 Cs found in the mice were an order of magnitude below what was present in the mounds. This indicates that the burrowing habits of these mice and subsequent mound construction may be more important in terms of radionuclide dispersal than the small amounts contained within their bodies. The 137 Cs values reported in the mice and mounds are below Rockwell Hanford Operations (Rockwell) surface soil contamination limits. Information received from test plots will be used in formulating appropriate control mechanisms which may be deployed in the future. In the interim, surface stabilization efforts are being conducted on waste sites to control and deter burrowing animals

  12. Summer Watering Patterns of Mule Deer in the Great Basin Desert, USA: Implications of Differential Use by Individuals and the Sexes for Management of Water Resources

    Directory of Open Access Journals (Sweden)

    Andrew V. Shields

    2012-01-01

    Full Text Available Changes in the abundance and distribution of free water can negatively influence wildlife in arid regions. Free water is considered a limiting factor for mule deer (Odocoileus hemionus in the Great Basin Desert. Consequently, a better understanding of differential use of water by individuals and the sexes could influence the conservation and management of mule deer and water resources in their habitats. We deployed remote cameras at all known water sources (13 wildlife water developments and 4 springs on one mountain range in western Utah, USA, during summer from 2007 to 2011 to document frequency and timing of water use, number of water sources used by males and females, and to estimate population size from individually identified mule deer. Male and female mule deer used different water sources but visited that resource at similar frequencies. Individual mule deer used few water sources and exhibited high fidelity to that resource. Wildlife water developments were frequently used by both sexes. Our results highlight the differing use of water sources by sexes and individual mule deer. This information will help guide managers when siting and reprovisioning wildlife water developments meant to benefit mule deer and will contribute to the conservation and management of this species.

  13. Microbial rRNA sequencing analysis of evaporative cooler indoor environments located in the Great Basin Desert region of the United States†

    Science.gov (United States)

    Lemons, Angela R.; Hogan, Mary Beth; Gault, Ruth A.; Holland, Kathleen; Sobek, Edward; Olsen-Wilson, Kimberly A.; Park, Yeonmi; Park, Ju-Hyeong; Gu, Ja Kook; Kashon, Michael L.; Green, Brett J.

    2017-01-01

    Recent studies conducted in the Great Basin Desert region of the United States have shown that skin test reactivity to fungal and dust mite allergens are increased in children with asthma or allergy living in homes with evaporative coolers (EC). The objective of this study was to determine if the increased humidity previously reported in EC homes leads to varying microbial populations compared to homes with air conditioners (AC). Children with physician-diagnosed allergic rhinitis living in EC or AC environments were recruited into the study. Air samples were collected from the child's bedroom for genomic DNA extraction and metagenomic analysis of bacteria and fungi using the Illumina MiSeq sequencing platform. The analysis of bacterial populations revealed no major differences between EC and AC sampling environments. The fungal populations observed in EC homes differed from AC homes. The most prevalent species discovered in AC environments belonged to the genera Cryptococcus (20%) and Aspergillus (20%). In contrast, the most common fungi identified in EC homes belonged to the order Pleosporales and included Alternaria alternata (32%) and Phoma spp. (22%). The variations in fungal populations provide preliminary evidence of the microbial burden children may be exposed to within EC environments in this region. PMID:28091681

  14. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    Science.gov (United States)

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  15. Phase I Focused Corrective Measures Study/Feasibility Study for the L-Area Oil and Chemical Basin (904-83G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-02-01

    This report presents the completed Resource Conservation and Recovery Act (RCRA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Focused Corrective Measures Study/Feasibility Study (CMS/FS) for the L-Area Oil and Chemical Basin (LAOCB)/L-Area Acid Caustic Basin (9LAACB) Solid Waste Management Unit/Operable Unit (SWMU/OU) at the Savannah River Site (SRS).

  16. Aquatic habitat modifications in La Plata River basin, Patagonia and associated marine areas.

    Science.gov (United States)

    Mugetti, Ana Cristina; Calcagno, Alberto Tomás; Brieva, Carlos Alberto; Giangiobbe, María Silvia; Pagani, Andrea; Gonzalez, Silvia

    2004-02-01

    This paper describes the environmental characteristics and situation of aquatic habitats and communities in southern continental and maritime areas of southeastern South America (Patagonian Shelf GIWA Subregion), resulting from an overall assessment carried out within the framework of a GIWA project, mostly on the basis of publicly available data. The main focus of the analysis was on the current situation of transboundary water resources and anthropogenic impacts. In the inland waters, habitat and community modifications result, principally, from dams and reservoirs built in the main watercourses for hydroelectric power generation and other uses. The transformation of lotic environments into lentic ones have affected habitats and altered biotic communities. In the La Plata River basin, invasive exotic species have displaced native ones. Habitats in the ocean have been degraded, as their biodiversity becomes affected by overfishing and pollution. This article includes a discussion on the causal chain and the policy options elaborated for the Coastal Ecosystem of Buenos Aires province and the Argentinean-Uruguayan Common Fishing Zone, where fishing resources are shared by both countries.

  17. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)

    2013-08-01

    A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.

  18. A historical perspective on the "fish tumors or other deformities" beneficial use impairment at Great Lakes Areas of Concern

    Science.gov (United States)

    Rafferty, S.D.; Blazer, V.S.; Pinkney, A.E.; Grazio, J.L.; Obert, E.C.; Boughton, L.

    2009-01-01

    The Great Lakes Water Quality Agreement defines Areas of Concern as geographic areas that fail to meet the general or specific objectives of the agreement where such failure has caused or is likely to cause impairment of beneficial use of the area's ability to support aquatic life. One of the beneficial use impairments, fish tumors or other deformities, is defined by the International Joint Commission to occur when the incidence rate of fish tumors and other deformities exceeds rates at unimpacted or control sites, or when survey data confirm the presence of neoplastic or preneoplastic liver tumors in bullhead or suckers. Brown bullhead, a benthic species with a limited home range, have frequently been used as indicator species in U.S. Areas of Concern. While there is strong field evidence for an association between PAH exposure and hepatic neoplasia in brown bullhead, laboratory investigations would strengthen the association. There is less evidence linking specific classes of chemicals in the environment to orocutaneous neoplasia in brown bullhead. Studies on orocutaneous neoplasia of brown bullhead should focus on assessing the presence or absence of viruses and on epidermal exposure to specific chemicals and chemical mixtures. Lastly, the effects of covariates such as length, age, and gender on the prevalence of liver and skin neoplasms should be investigated. This paper reviews the state of science on the fish tumors or other deformities beneficial use impairment. Subsequent papers address specific issues related to this impairment and provide recommendations for standardized criteria.

  19. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future

    Science.gov (United States)

    Coles, Robert G.; Rasheed, Michael A.; McKenzie, Len J.; Grech, Alana; York, Paul H.; Sheaves, Marcus; McKenna, Skye; Bryant, Catherine

    2015-02-01

    The Great Barrier Reef World Heritage Area (GBRWHA) includes one of the world's largest areas of seagrass (35,000 km2) encompassing approximately 20% of the world's species. Mapping and monitoring programs sponsored by the Australian and Queensland Governments and Queensland Port Authorities have tracked a worrying decrease in abundance and area since 2007. This decline has almost certainly been the result of a series of severe tropical storms and associated floods exacerbating existing human induced stressors. A complex variety of marine and terrestrial management actions and plans have been implemented to protect seagrass and other habitats in the GBRWHA. For seagrasses, these actions are inadequate. They provide an impression of effective protection of seagrasses; reduce the sense of urgency needed to trigger action; and waste the valuable and limited supply of "conservation capital". There is a management focus on ports, driven by public concerns about high profile development projects, which exaggerates the importance of these relatively concentrated impacts in comparison to the total range of threats and stressors. For effective management of seagrass at the scale of the GBRWHA, more emphasis needs to be placed on the connectivity between seagrass meadow health, watersheds, and all terrestrial urban and agricultural development associated with human populations. The cumulative impacts to seagrass from coastal and marine processes in the GBRWHA are not evenly distributed, with a mosaic of high and low vulnerability areas. This provides an opportunity to make choices for future coastal development plans that minimise stress on seagrass meadows.

  20. Geologic and isostatic map of the Nenana Basin area, central Alaska

    Science.gov (United States)

    Frost, G.M.; Barnes, D.F.; Stanley, R.G.

    2002-01-01

    Introduction The Nenana Basin area is a prospective petroleum province in central Alaska, and this geologic and isostatic gravity map is part of a petroleum resource assessment of the area. The geology was compiled from published sources (Chapman and others, 1971, 1975a, 1975b, 1982; Chapman and Yeend, 1981; Csejtey and others, 1986; Jones and others, 1983; Pewe and others, 1966; Reed, 1961; and Weber and others, 1992), as shown on the index map (map sheet). Map units are organized and presented according to the scheme of lithotectonic terranes proposed by Jones and others (1987) and Silberling and Jones (1984); we recognize, however, that this terrane scheme is controversial and likely to be revised in the future. In some cases, we combined certain terranes because we were unable to match the terrane boundaries given by Jones and others (1987) and Silberling and Jones (1984) with specific faults shown on existing geologic maps. Postaccretion cover deposits represent overlap assemblages that depositionally overlie accreted terranes. Plutonic igneous rocks shown on this map include several plutons that are clearly postaccretionary, based on isotopic ages and (or) field relations. It is possible that some of the plutons predate accretion, but this has not been demonstrated. According to Jones and others (1982), the terranes in the area of our map were assembled during late Mesozoic or earliest Cenozoic time. The gravity contours are derived from data used in earlier compilations (Barnes, 1961, 1977; Hackett, 1981; Valin and others, 1991; Frost and Stanley, 1991) that are supplemented by some National Oceanic and Atmospheric Administration data along the Alaska Pipeline level line (W.E. Strange, written commun., 1980). The earlier compilations were used for simple Bouguer maps, prepared primarily by non-digital methods, and are superseded by this map. The present map is the result of digital processing that includes the 1967 Geodetic Reference System, the IGSN-71

  1. Hydrological and pollution processes in mining area of Fenhe River Basin in China.

    Science.gov (United States)

    Yang, Yonggang; Meng, Zhilong; Jiao, Wentao

    2018-03-01

    The hydrological and pollution processes are an important science problem for aquatic ecosystem. In this study, the samples of river water, reservoir water, shallow groundwater, deep groundwater, and precipitation in mining area are collected and analyzed. δD and δ 18 O are used to identify hydrological process. δ 15 N-NO 3 - and δ 18 O-NO 3 - are used to identify the sources and pollution process of NO 3 - . The results show that the various water bodies in Fenhe River Basin are slightly alkaline water. The ions in the water mainly come from rock weathering. The concentration of SO 4 2- is high due to the impact of coal mining activity. Deep groundwater is significantly less affected by evaporation and human activity, which is recharged by archaic groundwater. There are recharge and discharge between reservoir water, river water, soil water, and shallow groundwater. NO 3 - is the main N species in the study area, and forty-six percent of NO 3 - -N concentrations exceed the drinking water standard of China (NO 3 - -N ≤ 10 mg/L content). Nitrification is the main forming process of NO 3 - . Denitrification is also found in river water of some river branches. The sources of NO 3 - are mainly controlled by land use type along the riverbank. NO 3 - of river water in the upper reaches are come from nitrogen in precipitation and soil organic N. River water in the lower reaches is polluted by a mixture of soil organic N and fertilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Regional summary and recommended study areas for the Texas panhandle portion of the Permian Basin. Technical report

    International Nuclear Information System (INIS)

    1979-10-01

    This report summarizes the regional geologic and environmental characterizations that have been completed for the Permian region of study, and describes the procedure used to identify study areas for the next phase of investigation. The factors evaluated in the Permian region fall into three broad areas: health and safety, environmental and socioeconomic, and engineering and economic considerations. Health and safety considerations included salt depth and thickness, faults, seismic activity, groundwater, salt dissolution, energy and mineral resources, presence of boreholes, and interactive land uses. Salt depth and thickness was the key health and safety factor, and when mapped, proved to be a discriminator. The evaluation of environmental and socioeconomic conditions focused primarily on the presence of urban areas and on designated land uses such as parks, wildlife areas, and historic sites. Engineering and economic considerations centered primarily on salt depth, which was already evaluated in the health and safety area. The Palo Duro and Dalhart basins are recommended for future studies on the basis of geology. In these two basins, salt depth and thickness appear promising, and there is less likelihood of past or future oil and gas exploratory holes. Environmental and socioeconomic factors did not preclude any of the basins from further study

  3. Multiscale Spatio-Temporal Dynamics of Economic Development in an Interprovincial Boundary Region: Junction Area of Tibetan Plateau, Hengduan Mountain, Yungui Plateau and Sichuan Basin, Southwestern China Case

    Directory of Open Access Journals (Sweden)

    Jifei Zhang

    2016-02-01

    Full Text Available An interprovincial boundary region is a new subject of economic disparity study in China. This study explored the multi-scale spatio-temporal dynamics of economic development from 1995 to 2010 in the interprovincial boundary region of Sichuan-Yunnan-Guizhou, a mountain area and also the junction area of Tibetan Plateau, Hengduan Mountain, Yungui Plateau and Sichuan Basin in southwestern China. A quantitative study on county GDP per capita for different scales of administrative regions was conducted using the Theil index, Markov chains, a geographic information system and exploratory spatial data analysis. Results indicated that the economic disparity was closely related with geographical unit scale in the study area: the smaller the unit, the bigger the disparity, and the regional inequality gradually weakened over time. Moreover, significant positive spatial autocorrelation and clustering of economic development were also found. The spatial pattern of economic development presented approximate circle structure with two cores in the southwest and northeast. The Panxi region in the southwest core and a part of Hilly Sichuan Basin in the northeast core were considered to be hot spots of economic development. Most areas in the east and central region were persistently trapped in the low level of a balanced development state, with a poverty trap being formed in the central and south part. Geographical conditions and location, administrative barriers and the lack of effective growth poles may be the main reasons for the entire low level of balanced development. Our findings suggest that in order to achieve a high level of balanced development, attention should be paid beyond developing transportation and other infrastructure. Breaking down the rigid shackles of administrative districts that hinder trans-provincial cooperation and promoting new regional poles in the Yunnan-Guizhou region may have great significance for the study area.

  4. Climate change impacts on water availability in the Red River Basin and critical areas for future water conservation

    Science.gov (United States)

    Zamani Sabzi, H.; Moreno, H. A.; Neeson, T. M.; Rosendahl, D. H.; Bertrand, D.; Xue, X.; Hong, Y.; Kellog, W.; Mcpherson, R. A.; Hudson, C.; Austin, B. N.

    2017-12-01

    Previous periods of severe drought followed by exceptional flooding in the Red River Basin (RRB) have significantly affected industry, agriculture, and the environment in the region. Therefore, projecting how climate may change in the future and being prepared for potential impacts on the RRB is crucially important. In this study, we investigated the impacts of climate change on water availability across the RRB. We used three down-scaled global climate models and three potential greenhouse gas emission scenarios to assess precipitation, temperature, streamflow and lake levels throughout the RRB from 1961 to 2099 at a spatial resolution of 1/10°. Unit-area runoff and streamflow were obtained using the Variable Infiltration Capacity (VIC) model applied across the entire basin. We found that most models predict less precipitation in the western side of the basin and more in the eastern side. In terms of temperature, the models predict that average temperature could increase as much as 6°C. Most models project slightly more precipitation and streamflow values in the future, specifically in the eastern side of the basin. Finally, we analyzed the projected meteorological and hydrologic parameters alongside regional water demand for different sectors to identify the areas on the RRB that will need water-environmental conservation actions in the future. These hotspots of future low water availability are locations where regional environmental managers, water policy makers, and the agricultural and industrial sectors must proactively prepare to deal with declining water availability over the coming decades.

  5. Assessing trail conditions in protected areas: Application of a problem-assessment method in Great Smoky Mountains National Park, USA

    Science.gov (United States)

    Leung, Y.-F.; Marion, J.

    1999-01-01

    The degradation of trail resources associated with expanding recreation and tourism visitation is a growing management problem in protected areas worldwide. In order to make judicious trail and visitor management decisions, protected area managers need objective and timely information on trail resource conditions. This paper introduces a trail survey method that efficiently characterizes the lineal extent of common trail problems. The method was applied to a large sample of trails within Great Smoky Mountains National Park, a highuse protected area in the USA. The Trail ProblemAssessment Method (TPAM) employs a continuous search for multiple indicators of predefined tread problems, yielding census data documenting the location, occurrence and extent of each problem. The present application employed 23 different indicators in three categories to gather inventory, resource condition, and design and maintenance data of each surveyed trail. Seventy-two backcountry hiking trails (528 km), or 35% of the Park's total trail length, were surveyed. Soil erosion and wet soil were found to be the two most common impacts on a lineal extent basis. Trails with serious tread problems were well distributed throughout the Park, although wet muddy treads tended to be concentrated in areas where horse use was high. The effectiveness of maintenance features installed to divert water from trail treads was also evaluated. Water bars were found to be more effective than drainage dips. The TPAM was able to provide Park managers with objective and quantitative information for use in trail planning, management and maintenance decisions, and is applicable to other protected areas elsewhere with different environmental and impact characteristics.

  6. REVITALIZATION OF DEGRADED AREAS OF THE TUZLA BASIN AND FORMING ARTIFICIAL LAKES IN THE FUNCTION OF TOURISM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    SENADA NEZIROVIĆ

    2016-03-01

    Full Text Available The Tuzla basin is located in the central part of the region of north-eastern Bosnia. It covers an area of 1,405 km² consisting of five municipalities:Tuzla, Ţivinice, Lukavac, Banovići and Kalesija. It is surrounded by mountains Majevica, Ozren, Konjuh and Javornik. It has a favorable geo-traffic position because it represents the intersection of roads leading to Belgrade,Orašje, Sarajevo and Doboj. The area of Tuzla basin has significant resources of coal and rock salt on the basis of which was developed chemical industry.The period of industrialization has considerably affected the economic situation of the entire region, and particularly the development of the central places of the Tuzla basin. Intensive exploitation of rock salt has significantly influenced the subsidence in the metropolitan area of Tuzla and turned it into an unordered wetlands. After the end of coal mining in the abandoned mining pits in the area of the municipalities of Ţivinice, Tuzla and Banovići were formed lake depressions. In order to improve and protect the environment, there were implemented several environmental projects which reconstructed coastal areas of lakes in the area of Ţivinice, Tuzla, Lukavac and Banovići, and in the metropolitan area of Tuzla there were built three artificial salt lakes in the function of the city outdoor pool.The paper places particular emphasis on the promotion of values of artificial lakes created by revitalization of degraded areas in the Tuzla basin and future directions in the development of the same. Moreover, considerable attention is given to the system of planned realisation of environmental projects for the improvement of environment in the towns of Tuzla, Ţivinice, Lukavac, Banovići and solving environmental problems.The aim of this study is to point out the proper management and use of hydrographic resources in the function of tourism development in the area of the Tuzla basin.

  7. The sedimentary facies characteristics and lithofacies palaeogeography during Middle-Late Cambrian, Sichuan Basin and adjacent area

    Directory of Open Access Journals (Sweden)

    Feifan Lu

    2017-06-01

    Full Text Available Combined with the regional strata filling characteristics of Middle-Upper Cambrian, the present paper conducts a systematic research on sedimentary facies in the basin and its peripheral area by utilizing 164 field outcrops and drilling and coring data. Further, the method of “multi-factor comprehensive synthesis based on single-factor analysis” was employed to investigate the sedimentary facies and palaeogeography of the study area and establish the sedimentary facies model. Stratigraphic reveals that the study area represents the pattern of thin-northwest and thick-southeast by stretching northeast-southwest. Within the present basin, the pattern of “one thin and two thick” predominates, while outside the basin “four thin and three thick” filling feature was found. Sedimentary facies shows that the study area was featured by rimmed carbonate platform. Specifically, carbonate platform, slope and northeastern corner Qinling paleooceanic Basin and southeastern corner Jiangnan Bain was identified from the west to the east. The carbonate platform contains restricted platform, evaporation-restricted platform, semi-restricted platform and the platform margin. Single factor analysis and lithofacies palaeogeographic characteristics manifests that during Middle-Late Cambrian, the western Old land evolved into peneplain stage, and that the eastern and southwestern sub-sags remained connected to the open-sea to some extent. At the time, the shllow seawater circulation was relatively restricted, while the ancient seabed tended to be flat and evaporation characteristics significantly diminished. Secondary sea-level fluctuation intensively influenced the development of scaled grain beach. It is suggested that tide marginal beach, intraplatform shoal subfacies zone, along with Shiqian-SangZhi in southeast and Zhenba-Xinshan in northeast platform-margin beach subfacies zone to be preferable targets for the favorable reservoir facies zone and

  8. Road kills of amphibians in different land use areas from Sharavathi river basin, central Western Ghats, India

    Directory of Open Access Journals (Sweden)

    K.S. Seshadri

    2009-11-01

    Full Text Available A survey of amphibian mortality on roads was carried out in the Sharavathi river basin in the central Western Ghats. Road kills in three different land use areas: agricultural fields, water bodies and forests were recorded for four days along three 100m stretches in each type of area. One-hundred-and-forty-four individuals belonging to two orders, eight families, 11 genera and 13 species were recorded in the survey. Kills/km observed were: in forest 55, agricultural fields 38 and water bodies 27, for an overall average of 40 kills/km. Kill species compositions varied significantly between land use areas, but not overall kill rates.

  9. Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA

    Science.gov (United States)

    Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.

  10. Environmental conditions and microbial community structure during the Great Ordovician Biodiversification Event; a multi-disciplinary study from the Canning Basin, Western Australia

    Science.gov (United States)

    Spaak, Gemma; Edwards, Dianne S.; Foster, Clinton B.; Pagès, Anais; Summons, Roger E.; Sherwood, Neil; Grice, Kliti

    2017-12-01

    The Great Ordovician Biodiversification Event (GOBE) is regarded as one of the most significant evolutionary events in the history of Phanerozoic life. The present study integrates palynological, petrographic, molecular and stable isotopic (δ13C of biomarkers) analyses of cores from four boreholes that intersected the Goldwyer Formation, Canning Basin, Western Australia, to determine depositional environments and microbial diversity within a Middle Ordovician epicontinental, tropical sea. Data from this study indicate lateral and temporal variations in lipid biomarker assemblages extracted from Goldwyer Formation rock samples. These variations likely reflect changing redox conditions between the upper (Unit 4) and lower (Units 1 + 2) Goldwyer, which is largely consistent with existing depositional models for the Goldwyer Formation. Cryptospores were identified in Unit 4 in the Theia-1 well and are most likely derived from bryophyte-like plants, making this is the oldest record of land plants in Australian Middle Ordovician strata. Biomarkers in several samples from Unit 4 that also support derivation from terrestrial organic matter include benzonaphthofurans and δ13C-depleted mid-chain n-alkanes. Typical Ordovician marine organisms including acritarchs, chitinozoans, conodonts and graptolites were present in the lower and upper Goldwyer Formation, whereas the enigmatic organism Gloeocapsomorpha prisca (G. prisca) was only detected in Unit 4. The correlation of a strong G. prisca biosignature with high 3-methylhopane indices and 13C depleted G. prisca-derived chemical fossils (biomarkers) is interpreted to suggest an ecological relationship between methanotrophs and G. prisca. This research contributes to a greater understanding of Ordovician marine environments from a molecular perspective since few biomarker studies have been undertaken on age-equivalent sections. Furthermore, the identification of the oldest cryptospores in Australia and their corresponding

  11. Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs.

    Science.gov (United States)

    Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J

    2015-06-01

    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.

  12. Assessing the conditions favorable for the occurrence of gas hydrate in the Tuonamu area Qiangtang basin, Qinghai–Tibetan, China

    International Nuclear Information System (INIS)

    He Jianglin; Wang Jian; Fu Xiugen; Zheng Chenggang; Chen Yanting

    2012-01-01

    Highlights: ► This is a pioneer research on the exploration of gas hydrate in Qiangtang basin. ► The factors influencing the stable of gas hydrate in Tuonamu area were studied. ► Simulation shows that gas hydrate stable zone is about 300 m thick in target area. ► Source condition is the key factor for the formation of gas hydrate in this area. ► The areas around the deeper faults are favorable targets for gas hydrate. - Abstract: Qiangtang basin, which is located in the largest continuous permafrost area in Qinghai–Tibetan Plateau, is expected to be a strategic area of gas hydrate exploitation in China. However, relatively little work has been done on the exploration of gas hydrate in this area. In this work, we evaluated the factors controlling the formation of gas hydrate in the Tuonamu area and provided a preliminary insight into gas hydrate distribution in it on the basis of the core samples, seismic data and laboratory analysis. It can be concluded that the source rock in the deeper formation would be dominant thermogenic source for the formation of gas hydrate in Tuonamu area. The thickness of gas hydrate stable zone in this area is about 300 m. The gas hydrate in the area most probably is in the form of gas-hydrate-water. The source condition is the key factor for the formation of gas hydrate and the gas hydrate layer would be mainly present in the form of interlayer in this area. The areas around the deeper faults are the favorable targets for the exploration of gas hydrate in the Tuonamu area.

  13. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  14. Vegetation concentration and inventory of metals and radionuclides in the old F-area seepage basin, 904-49G

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1994-01-01

    Measured concentrations of radionuclides and toxic metals are used to calculate the total inventory of in the vegetation growing on the Old F-Area Seepage Basin. Air concentrations and inhalation doses from exposure to smoke from burning the vegetation are calculated to evaluate the effect of open air burning. Radionuclide inventory is one order of magnitude (10 x) less than those necessary to produce a 1 mrem dose. Air concentrations of toxic metals are less than one third the permissible occupational dose

  15. [Prediction model of meteorological grade of wheat stripe rust in winter-reproductive area, Sichuan Basin, China].

    Science.gov (United States)

    Guo, Xiang; Wang, Ming Tian; Zhang, Guo Zhi

    2017-12-01

    The winter reproductive areas of Puccinia striiformis var. striiformis in Sichuan Basin are often the places mostly affected by wheat stripe rust. With data on the meteorological condition and stripe rust situation at typical stations in the winter reproductive area in Sichuan Basin from 1999 to 2016, this paper classified the meteorological conditions inducing wheat stripe rust into 5 grades, based on the incidence area ratio of the disease. The meteorological factors which were biologically related to wheat stripe rust were determined through multiple analytical methods, and a meteorological grade model for forecasting wheat stripe rust was created. The result showed that wheat stripe rust in Sichuan Basin was significantly correlated with many meteorological factors, such as the ave-rage (maximum and minimum) temperature, precipitation and its anomaly percentage, relative humidity and its anomaly percentage, average wind speed and sunshine duration. Among these, the average temperature and the anomaly percentage of relative humidity were the determining factors. According to a historical retrospective test, the accuracy of the forecast based on the model was 64% for samples in the county-level test, and 89% for samples in the municipal-level test. In a meteorological grade forecast of wheat stripe rust in the winter reproductive areas in Sichuan Basin in 2017, the prediction was accurate for 62.8% of the samples, with 27.9% error by one grade and only 9.3% error by two or more grades. As a result, the model could deliver satisfactory forecast results, and predicate future wheat stripe rust from a meteorological point of view.

  16. RESEARCH: Influence of Social, Biophysical, and Managerial Conditions on Tourism Experiences Within the Great Barrier Reef World Heritage Area.

    Science.gov (United States)

    Shafer; Inglis

    2000-07-01

    / Managing protected areas involves balancing the enjoyment of visitors with the protection of a variety of cultural and biophysical resources. Tourism pressures in the Great Barrier Reef World Heritage Area (GBRWHA) are creating concerns about how to strike this balance in a marine environment. Terrestrial-based research has led to conceptual planning and management frameworks that address issues of human use and resource protection. The limits of acceptable change (LAC) framework was used as a conceptual basis for a study of snorkeling at reef sites in the GBRWHA. The intent was to determine if different settings existed among tourism operators traveling to the reef and, if so, to identify specific conditions relating to those settings. Snorkelers (N = 1475) traveling with tourism operations of different sizes who traveled to different sites completed surveys. Results indicated that snorkelers who traveled with larger operations (more people and infrastructure) differed from those traveling with smaller operations (few people and little on-site infrastructure) on benefits received and in the way that specific conditions influenced their enjoyment. Benefits related to nature, escape, and family helped to define reef experiences. Conditions related to coral, fish, and operator staff had a positive influence on the enjoyment of most visitors but, number of people on the trip and site infrastructure may have the greatest potential as setting indicators. Data support the potential usefulness of visitor input in applying the LAC concept to a marine environment where tourism and recreational uses are rapidly changing.

  17. Geologia e pedologia da bacia glacial no distrito de Sousas, Campinas, SP Geology and pedology of a glacial basin found in the Sousas area

    Directory of Open Access Journals (Sweden)

    Adolpho José Melfi

    1962-01-01

    Full Text Available O presente trabalho refere-se à geologia e pedología de uma bacia sedimentar glacial, situada no distrito de Sousas, Município de Campinas, em região de rochas pré-cambrianas. Os estudos geológicos constaram da elaboração de mapa geológico, baseado em fotografias aéreas, na escala média de 1:14 000 e mapa topográfico na escala de 1:5000; reconhecimento das rochas e esbôço estrutural da bacia. Quando à pedología, foram feitas caracterizações morfo-pedogenétícas dos solos por meio de perfis e determinações das classes texturais através de análise granulométrica.A glacial basin was found in the Sousas area, Campinas County, surrounded by pre-Cambrian rocks and not connected with the Paraná sedimentary basin which possesses a similar formation. Geological studies were carried out consisting of petrographie identifications, structural sketch of the basin, delimitation of its occurrence, and mapping of its geological limits. The field delimitation was done by means of aerial photographs (average scale 1:14, 000 and topographic maps (scale 1:5, 000. The pedological studies that were performed consisted in taking soil profiles for morphological and genetic characterization of the great soil groups and collection of samples for textural analysis.

  18. Reproductive success and contaminant associations in tree swallows (Tachycineta bicolor) used to assess a beneficial use impairment in U.S. and Binational Great Lakes’ Areas of Concern

    Science.gov (United States)

    During 2010-2014, tree swallow (Tachycineta bicolor) reproductive success was monitored at 68 sites across all 5 Great Lakes, including 58 sites located within Great Lakes Areas of concern (AOCs) and 10 non-AOCs. Sample eggs were collected from tree swallow clutches and analyzed ...

  19. Interactions between a Trawl fishery and spatial closures for biodiversity conservation in the Great Barrier Reef World Heritage Area, Australia.

    Directory of Open Access Journals (Sweden)

    Alana Grech

    Full Text Available BACKGROUND: The Queensland East Coast Otter Trawl Fishery (ECOTF for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA. The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. METHODOLOGY AND RESULTS: We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS to assess change in effort of the trawl fishery from 2001-2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. CONCLUSIONS/SIGNIFICANCE: Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention.

  20. Vegetation management in sensitive areas of the Lake Tahoe Basin: A workshop to evaluate risks and advance existing strategies and practices [Independent review panel report

    Science.gov (United States)

    William Elliot; Wally Miller; Bruce Hartsough; Scott Stephens

    2009-01-01

    Elected officials, agency representatives and stakeholders representing many segments of the Lake Tahoe Basin community have all raised concerns over the limited progress in reducing excess vegetation biomass in Stream Environment Zones (SEZ) and on steep slopes (collectively referred to as sensitive areas) in the Lake Tahoe Basin. Limited access, the potential for...

  1. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas

    Directory of Open Access Journals (Sweden)

    Yuman Wang

    2015-03-01

    Full Text Available A high-precision sedimentary environment study of the Lower Silurian Longmaxi Formation is an important subject for shale gas exploration and development in Sichuan Basin and its surrounding areas. On the basis of outcrops and drilling data, its isochronous stratigraphic framework was built according to a particular graptolite zone and an important marker bed, and lithofacies, paleontology, calcareous content, well logging, geochemistry and other geologic information were combined to describe the sedimentary microfacies of Longmaxi Formation and its stratigraphic sequence, sedimentary evolution process and high quality shale distribution features as follows: ① with regional diachronism of the top and the bottom, the Longmaxi Formation is divided into two third-order sequences (SQ1 and SQ2, of which SQ1 is mainly an abyssal sedimentary assemblage deposited in the marine transgression period, and SQ2 is a bathyal to shallow sea sedimentary assemblage deposited in the marine regression period; ② there are eight microfacies such as deep calcareous shelf and deep argillaceous shelf in this formation and the organic-rich shale was mainly deposited in the deep water area of SQ1; and ③ from SQ1 to SQ2, the depocenter moved from the depression area in southern-eastern to northern Sichuan Basin, but the central Sichuan uplift remained an underwater one. It is concluded from this study that: ① shale gas production layers were mainly deposited in SQ1, the southern-eastern depression area was the depocenter in SQ1 and a shale gas enrichment area; and ② black shale in northern Sichuan was deposited in late SQ2, with limited distribution and relatively insufficient exploration potential, but the potential of shale gas exploration in western Hubei area is between southern-eastern and northern Sichuan Basin.

  2. Development of a relative risk model for evaluating ecological risk of water environment in the Haihe River Basin estuary area.

    Science.gov (United States)

    Chen, Qiuying; Liu, Jingling; Ho, Kin Chung; Yang, Zhifeng

    2012-03-15

    Ecological risk assessment for water environment is significant to water resource management of basin. Effective environmental management and systems restoration such as the Haihe River Basin require holistic understanding of the relative importance of various stressor-related impacts throughout the basin. As an effective technical tool for evaluating the ecological risk, relative risk model (RRM) was applied in regional scale successfully. In this study, the risk transfer from upstream of basin was considered and the RRM was developed through introducing the source-stressor-habitat exposure filter (SSH), the endpoint-habitat exposure filter (EH) and the stressor-endpoint effect filter (SE) to reflect the meaning of exposure and effect more explicit. Water environment which includes water quality, water quantity and aquatic ecosystems was selected as the assessment endpoints. We created a conceptual model which depicting potential and effect pathways from source to stressor to habitat to endpoint. The Haihe River Basin estuary (HRBE) was selected as the model case. The results showed that there were two low risk regions, one medium risk region and two high risk regions in the HRBE. The results also indicated that urbanization was the biggest source, the second was shipping and the third was industry, their risk scores are 5.65, 4.71 and 3.68 respectively. Furthermore, habitat destruction was the largest stressor with the risk scores (2.66), the second was oxygen consuming organic pollutants (1.75) and the third was pathogens (1.75). So these three stressors were the main influencing factors of the ecological pressure in the study area. For habitats, open waters (9.59) and intertidal mudflat were enduring the bigger pressure and should be taken considerable attention. Ecological service values damaged (30.54) and biodiversity decreased were facing the biggest risk pressure. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Radon and its decay product activities in the magmatic area and the adjacent volcano-sedimentary Intrasudetic Basin

    OpenAIRE

    Solecki, A. T.; Puchala, R.; Tchorz, D.

    2007-01-01

    In the magmatic area of Sudetes covering the Karkonosze granite and adjacent volcano-sedimentary Intrasudetic Basin a study of atmospheric radon activity was performed by means of SSNTD Kodak LR-115. The study was completed by gamma spectrometric survey of eU and eTh determined by gamma activity of radon decay products 214Bi and 208Tl respectively. In the case of the western part of the Karkonosze granite area the radon decay products activity in the granitic basement was ...

  4. Reconnaissance of promising areas for sandstone type uranium deposits in the Urmia-Naqadeh-Mahabad basin, NW Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hezareh

    2018-04-01

    Full Text Available Introduction The Urmia-Naqadeh-Mahabad basin is a part of the south and west Urmia Lake drainage basin that covers some parts of East-and-West Azerbaijan and northern Kurdistan. This study is the integration of geological, hydrological, remote sensing, geochemical and airborne geophysical data classifying promising areas that are related to sandstone type uranium (U mineralization in Iran. Based on positive factors such as favorable source, host rocks and suitable hydrological pattern, this basin is a favorable basin in Iran. According to the characteristics of lithology, tectonic, sedimentary environment, geotectonics and etc. the basin could be classified into favorable, promising and possible subbasins for mineralization of U sandstone type. Material and methods Geological data show that this region is a part of the Sanandaj-Sirjan zone and consists of Precambrian metamorphic rocks which are covered by younger sedimentary and volcano-sedimentary rocks that are influenced by different metamorphic phases. More than 7597 stream sediment samples from the area have been analyzed for Se،V، Mo، As،Cu، Ag، Zn، Co، Ni، Pb، Ti، Th، Zr، P and Sn. The basin is divided into 11 individual sub-basins. Radiometric data of the basin have been acquisitioned during 1976-1978 by an Australian-German- French Company with line separation of 500 meters and 120 meters of nominal terrain clearance. Remote sensing data reveals that the western subbasin is suitable for sandstone type uranium mineralization. Based on geochemical evidences, the Au, Zn, Sn, As and Pb elements were enriched. Geophysical investigation reveals that the Eastern basin includes high amounts of U and low amounts of Th. Hydrogeological study demonstrates that the trend of groundwater is from the west to the east. Geochemical data revealed that we can divide the basin into 11 subbasins which are characterized as follows: 1. Ghara Aghaj (126 Km2, North to south trend is situated at the

  5. Raft tectonics in northern Campos Basin; Tectonica de jangada (raft tectonics) na area norte da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Marilia R. de [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil)]|[PETROBRAS, Macae, RJ (Brazil). Unidade de Negocio da Bacia de Campos; Fugita, Adhemar M. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Programa de Recursos Humanos da ANP

    2004-07-01

    In the northern area of Campos Basin salt gliding/spreading processes promoted the break-up and transport of Cretaceous and Tertiary rocks overlying the evaporites. This process is known as raft tectonics, and it represents the most extreme form of thin-skinned extension above the salt decollement surface. Three distinct geotectonic domains were recognized that formed in response to the raft tectonics. The first one, confined to the shallower shelf portion of the basin, is characterized by minor extension (pre-raft domain), probably because of small salt thickness and low gradient. In the second domain (or disorganized rafts domain), located in distal platformal and slope areas, seismic sections show the occurrence of blocks or rafts with angular shapes, sometimes imbricated and frequently discontinuous. In the third domain, or domain of organized rafts, located in bacinal region, seismic sections show a more continuous raft pattern, often folded because of salt compression in the distal portions of the basin. The main purposes of this work is to characterize these three tectonic domains distinguished by raft tectonics, as well as their importance in hydrocarbon accumulations in calcarenites. (author)

  6. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yujie Diao

    2017-01-01

    Full Text Available In China, south of the Yangtze River, there are a large number of carbon sources, while the Sichuan Basin is the largest sedimentary basin; it makes sense to select the targets for CO2 geological storage (CGUS early demonstration. For CO2 enhanced oil and gas, coal bed methane recovery (CO2-EOR, EGR, and ECBM, or storage in these depleted fields, the existing oil, gas fields, or coal seams could be the target areas in the mesoscale. This paper proposed a methodology of GIS superimposed multisource information assessment of geological suitability for CO2 enhanced water recovery (CO2-EWR or only storage in deep saline aquifers. The potential per unit area of deep saline aquifers CO2 storage in Central Sichuan is generally greater than 50 × 104 t/km2 at P50 probability level, with Xujiahe group being the main reservoir. CO2 storage potential of depleted gas fields is 53.73 × 108 t, while it is 33.85 × 108 t by using CO2-EGR technology. This paper recommended that early implementation of CGUS could be carried out in the deep saline aquifers and depleted gas fields in the Sichuan Basin, especially that of the latter because of excellent traps, rich geological data, and well-run infrastructures.

  7. Determination of extent of the subsiding areas in the Czech part of Upper Silesian Basin

    Czech Academy of Sciences Publication Activity Database

    Kadlečík, Pavel; Kajzar, Vlastimil; Marek, Tomáš

    -, Part 2 (2012), s. 715-721 ISSN 1314-2704. [International Multidisciplinary Scientific GeoConference & EXPO SGEM 2012 /12./. Albena, 17.06.2012-23.06.2012] Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30860518 Keywords : Upper Silesian Basin * mining * subsidence Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  8. [Spatial pattern of land surface dead combustible fuel load in Huzhong forest area in Great Xing'an Mountains].

    Science.gov (United States)

    Liu, Zhi-Hua; Chang, Yu; Chen, Hong-Wei; Zhou, Rui; Jing, Guo-Zhi; Zhang, Hong-Xin; Zhang, Chang-Meng

    2008-03-01

    By using geo-statistics and based on time-lag classification standard, a comparative study was made on the land surface dead combustible fuels in Huzhong forest area in Great Xing'an Mountains. The results indicated that the first level land surface dead combustible fuel, i. e., 1 h time-lag dead fuel, presented stronger spatial auto-correlation, with an average of 762.35 g x m(-2) and contributing to 55.54% of the total load. Its determining factors were species composition and stand age. The second and third levels land surface dead combustible fuel, i. e., 10 h and 100 h time-lag dead fuels, had a sum of 610.26 g x m(-2), and presented weaker spatial auto-correlation than 1 h time-lag dead fuel. Their determining factor was the disturbance history of forest stand. The complexity and heterogeneity of the factors determining the quality and quantity of forest land surface dead combustible fuels were the main reasons for the relatively inaccurate interpolation. However, the utilization of field survey data coupled with geo-statistics could easily and accurately interpolate the spatial pattern of forest land surface dead combustible fuel loads, and indirectly provide a practical basis for forest management.

  9. A preliminary comparison of hydrodynamic approaches for flood inundation modeling of urban areas in Jakarta Ciliwung river basin

    Science.gov (United States)

    Rojali, Aditia; Budiaji, Abdul Somat; Pribadi, Yudhistira Satya; Fatria, Dita; Hadi, Tri Wahyu

    2017-07-01

    This paper addresses on the numerical modeling approaches for flood inundation in urban areas. Decisive strategy to choose between 1D, 2D or even a hybrid 1D-2D model is more than important to optimize flood inundation analyses. To find cost effective yet robust and accurate model has been our priority and motivation in the absence of available High Performance Computing facilities. The application of 1D, 1D/2D and full 2D modeling approach to river flood study in Jakarta Ciliwung river basin, and a comparison of approaches benchmarked for the inundation study are presented. This study demonstrate the successful use of 1D/2D and 2D system to model Jakarta Ciliwung river basin in terms of inundation results and computational aspect. The findings of the study provide an interesting comparison between modeling approaches, HEC-RAS 1D, 1D-2D, 2D, and ANUGA when benchmarked to the Manggarai water level measurement.

  10. Late Archaean tectonics and sedimentation of the South Rand area, Witwatersrand basin

    International Nuclear Information System (INIS)

    Spencer, R.M.

    1992-01-01

    The sedimentary fill of the southern part of the northeastern Witwatersrand basin consists of four unconformity bounded mega sequences. Early sedimentation took place in a stable, epi continental basin characterized by amphidromic flow. Gradual transgression to distal shelf facies was followed by gradual emergence to intertidal facies. Unconformity Bounded Mega sequence 2 shows that the basin underwent regression, in which discrete uplifts provided a source of granite-greenstone-derived sediment to associated braid plain aprons. Thereafter the basin subsided into a system almost identical to that in which Unconformity Bounded Mega sequence 1 developed. Unconformity Bounded Mega sequence 3 was deposited in a similar marine environment, on an angular unconformity in the east. Regional uplift occurred to the northwest of the basin. Unconformity Bounded Mega sequence 4 records progradation of a perennial braid plain controlled by uplift in the east, and by the minor influence of an uplift to the northwest. Rapid transgression resulted in submarine fan facies development, after which rapid emergence was controlled by uplift in the east, and to a lesser extent, the north. The braid plain was the site of extrusion of komatiitic lavas of the lower Ventersdorp Supergroup and was subsequently smothered by the sustained outpouring of a two kilometer-thick pile of basalts. Crustal extension climaxed after extrusion of felsic volcanics. This extension is antithetic to regional down-to-the-northwest, lower Ventersdorp Supergroup rifting. The last conspicuous phase of Precambrian tectonics is the superposition of a right-lateral wrench system on the early structural framework, after deposition of the lower Transvaal Sequence. Analysis of the samples was carried out by X-ray fluorescence spectrometry. 243 refs., 119 figs., 8 tabs

  11. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    Science.gov (United States)

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Operating history and environmental effects of seepage basins in chemical-separations areas of the Savannah River Plant

    International Nuclear Information System (INIS)

    Fenimore, J.W.; Horton, J.H.

    1973-01-01

    This report summarizes the history of operation and monitoring of the earthen seepage basins, presents results of a comprehensive study of radionuclide distribution in groundwater downgradient from the basins, and evaluates past performance and possible future alternatives for these basins

  13. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland cover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglecta). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2}2 plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  14. A potential archive of Pleistocene uplift and erosion in the eastern Nete basin, Campine area, north-eastern Belgium

    Science.gov (United States)

    Beerten, Koen; Leterme, Bertrand

    2013-04-01

    From a geodynamic point of view, the Campine area is situated on the crossroads between distinctive tectonic settings: the subsiding North Sea basin and Roer Valley Graben in the north, and the uplifting Brabant Massif and Ardennes in the south. In general, this has led to overall Cenozoic subsidence of the area and sedimentation of unconsolidated marine sands. However, the morphology of the present-day Nete basin, which is situated in the central and eastern part of the Campine area, is a clear example of an erosional feature and shows evidence of up to 30 m of Quaternary erosion. However, the drivers, timing and rate of landscape development in the Nete basin are poorly constrained. Here, we present and describe geological and geomorphological remnants testifying to past landscape development in the Nete basin, that will help understanding the Quaternary geodynamic evolution (uplift) of the Campine area. The Nete basin is located in northern Belgium and is drained by two small rivers, the Kleine Nete and Grote Nete, that merge into the larger Nete river several km before entering the Lower Scheldt basin. The Nete basin can clearly be identified on topographical maps as a depression, ca. 40 km x 40 km, with valley floors ranging between 10-20 m above sea level (a.s.l.). It is bounded in the north, east and south by erosion resistant geological formations at altitudes between 30 m (north) and 60 m (south). The major direction of drainage is from ENE to WSW and the basin thus opens towards the west. The start of basin development is situated after deposition of Rhine sediments (~ 1 Ma) which form the erosion resistant eastern watershed with the Meuse basin at an altitude of ~ 50 m a.s.l. on top of the Campine Plateau. GIS-based landscape analysis of the topography and the contour map of the Quaternary base confirm the observation that the lowering of the relief from the Campine Plateau down to the floodplain of the Kleine Nete and Grote Nete shows a stepwise

  15. Proterozoic stratabound dolostone-hosted uranium mineralisation in the Komantula - Reddypalle area, Cuddapah basin, Anantpur district, Andhra Pradesh, India

    International Nuclear Information System (INIS)

    Sharma, U.P.; Pandit, S.A.; Gangadharan, G.R.; Panda, Arjuna; Roy, Minati

    1998-01-01

    The Komantula-Reddypalle area constitutes the northern sector of the 160 km long, uranium mineralised belt along the western and southern margins of the Cuddapah basin. The mineralisation is hosted by impure dolostone of the Vempalle Formation of Cuddapah Supergroup and occurs in the form of pitchblende, coffinite and U-Ti complexes. Uranium minerals occur along the bedding plane, carbonate-phosphate mineral contact, suture boundaries of microstylolites, and grain boundaries of clasts. The ore bearing horizon has been traced for about 65 kms and samples have assayed from 0.01% to 0.67% U 3 O 8 with negligible thorium. The source of uranium for this mineralisation appears to be the nearby fertile basement granitic rocks present in the western margins of Cuddapah basin. This mineralisation as compared with those found in the Tummallapalle-Rachkuntapalle area in the southern sector, contains high Cu (65-8100 ppm) and low P 2 O 5 (0.07-0.59 wt%) and significant but varying Mo (20-292 ppm). Stratigraphically, this area differs from that of Tummalapalle-Rachkuntapalle area to its south in two respects, viz., absence of intraformational conglomerate below and presence of a non-radioactive limestone above the radioactive dolostone. (author)

  16. Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin

    Science.gov (United States)

    Sawakuchi, A. O.; Jain, M.; Mineli, T. D.; Nogueira, L.; Bertassoli, D. J.; Häggi, C.; Sawakuchi, H. O.; Pupim, F. N.; Grohmann, C. H.; Chiessi, C. M.; Zabel, M.; Mulitza, S.; Mazoca, C. E. M.; Cunha, D. F.

    2018-06-01

    The Amazon region hosts the world's largest watershed spanning from high elevation Andean terrains to lowland cratonic shield areas in tropical South America. This study explores variations in optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) signals in suspended silt and riverbed sands retrieved from major Amazon rivers. These rivers drain Pre-Cambrian to Cenozoic source rocks in areas with contrasting denudation rates. In contrast to the previous studies, we do not observe an increase in the OSL sensitivity of quartz with transport distance; for example, Tapajós and Xingu Rivers show more sensitive quartz than Solimões and Madeira Rivers, even though the latter have a significantly larger catchment area and longer sediment transport distance. Interestingly, high sensitivity quartz is observed in rivers draining relatively stable Central Brazil and Guiana shield areas (denudation rate ξ = 0.04 mmyr-1), while low sensitivity quartz occurs in less stable Andean terrains (ξ = 0.24 mmyr-1). An apparent linear correlation between quartz OSL sensitivity and denudation rate suggests that OSL sensitivity may be used as a proxy for erosion rates in the Amazon basin. Furthermore, luminescence sensitivity measured in sand or silt arises from the same mineral components (quartz and feldspar) and clearly discriminates between Andean and shield sediments, avoiding the grain size bias in provenance analysis. These results have implications for using luminescence sensitivity as a proxy for Andean and shield contributions in the stratigraphic record, providing a new tool to reconstruct past drainage configurations within the Amazon basin.

  17. Spatial trends, sources, and air-water exchange of organochlorine pesticides in the Great Lakes basin using low density polyethylene passive samplers.

    Science.gov (United States)

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2014-08-19

    Polyethylene passive samplers were deployed during summer and fall of 2011 in the lower Great Lakes to assess the spatial distribution and sources of gaseous and freely dissolved organochlorine pesticides (OCPs) and their air-water exchange. Average gaseous OCP concentrations ranged from nondetect to 133 pg/m(3). Gaseous concentrations of hexachlorobenzene, dieldrin, and chlordanes were significantly greater (Mann-Whitney test, p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression implied that both cropland and urban areas within 50 and 10 km buffer zones, respectively, were critical parameters to explain the total variability in atmospheric concentrations. Freely dissolved OCP concentrations (nondetect to 114 pg/L) were lower than previously reported. Aqueous half-lives generally ranged from 1.7 to 6.7 years. Nonetheless, concentrations of p,p'-DDE and chlordanes were higher than New York State Ambient Water Quality Standards for the protection of human health from the consumption of fish. Spatial distributions of freely dissolved OCPs in both lakes were influenced by loadings from areas of concern and the water circulation patterns. Flux calculations indicated net deposition of γ-hexachlorocyclohexane, heptachlor-epoxide, and α- and β-endosulfan (-0.02 to -33 ng/m(2)/day) and net volatilization of heptachlor, aldrin, trans-chlordane, and trans-nonachlor (0.0 to 9.0 ng/m(2)/day) in most samples.

  18. Attenuation of landscape signals through the coastal zone: A basin-wide analysis for the US Great Lakes shoreline, circa 2002-2010

    Science.gov (United States)

    We compare statistical models developed to describe a) the relationship between watershed properties and Great Lakes coastal wetlands with b) the relationship developed between watershed properties and the Great Lakes nearshore. Using landscape metrics from the GLEI project (Dan...

  19. Final report on the sampling and analysis of sediment cores from the L-Area oil and chemical basin

    Energy Technology Data Exchange (ETDEWEB)

    1985-08-01

    Nine vibracores were collected in the L-Area oil and chemical basin (904-83G) during late March and early April 1985. These cores were collected for analysis of the sludge on the basin floor and the underlying sediment. Several different field and laboratory analyses were performed on each three inch segment of all the cores. These included: (1) Sediment characterization; (2) Percent moisture; (3) Dry weight; (4) Spectral gamma analysis; (5) Gross alpha and beta analysis. Detailed chemical analysis were measured on selected intervals of 2 cores (LBC-5 and 6) for complete chemical characterization of the sediments. This sampling program was conducted to provide information so that a closure plan for the basin could be developed. This report describes the methods employed during the project and provide a hard copy of the analytical results from the sample analyses. Included in the appendices are copies of all field and laboratory notes taken during the project and copies of the gas chromatograms for the petroleum hydrocarbon analysis. All chemical results were also submitted on a 5-inch floppy disk.

  20. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey

    Directory of Open Access Journals (Sweden)

    Osman Orhan

    2014-01-01

    Full Text Available The main purpose of this paper is to investigate multitemporal land surface temperature (LST changes by using satellite remote sensing data. The study included a real-time field work performed during the overpass of Landsat-5 satellite on 21/08/2011 over Salt Lake, Turkey. Normalized vegetation index (NDVI, vegetation condition index (VCI, and temperature vegetation index (TVX were used for evaluating drought impact over the region between 1984 and 2011. In the image processing step, geometric and radiometric correction procedures were conducted to make satellite remote sensing data comparable with in situ measurements carried out using thermal infrared thermometer supported by hand-held GPS. The results showed that real-time ground and satellite remote sensing data were in good agreement with correlation coefficient (R2 values of 0.90. The remotely sensed and treated satellite images and resulting thematic indices maps showed that dramatic land surface temperature changes occurred (about 2∘C in the Salt Lake Basin area during the 28-year period (1984–2011. Analysis of air temperature data also showed increases at a rate of 1.5–2∘C during the same period. Intensification of irrigated agriculture particularly in the southern basin was also detected. The use of water supplies, especially groundwater, should be controlled considering particularly summer drought impacts on the basin.

  1. Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: Assessment of retention efficiency.

    Science.gov (United States)

    Mermillod-Blondin, Florian; Simon, Laurent; Maazouzi, Chafik; Foulquier, Arnaud; Delolme, Cécile; Marmonier, Pierre

    2015-09-15

    Managed aquifer recharge (MAR) has been developed in many countries to limit the risk of urban flooding and compensate for reduced groundwater recharge in urban areas. The environmental performances of MAR systems like infiltration basins depend on the efficiency of soil and vadose zone to retain stormwater-derived contaminants. However, these performances need to be finely evaluated for stormwater-derived dissolved organic matter (DOM) that can affect groundwater quality. Therefore, this study examined the performance of MAR systems to process DOM during its transfer from infiltration basins to an urban aquifer. DOM characteristics (fluorescent spectroscopic properties, biodegradable and refractory fractions of dissolved organic carbon -DOC-, consumption by micro-organisms during incubation in slow filtration sediment columns) were measured in stormwater during its transfer through three infiltration basins during a stormwater event. DOC concentrations sharply decreased from surface to the aquifer for the three MAR sites. This pattern was largely due to the retention of biodegradable DOC which was more than 75% for the three MAR sites, whereas the retention of refractory DOC was more variable and globally less important (from 18% to 61% depending on MAR site). Slow filtration column experiments also showed that DOC retention during stormwater infiltration through soil and vadose zone was mainly due to aerobic microbial consumption of the biodegradable fraction of DOC. In parallel, measurements of DOM characteristics from groundwaters influenced or not by MAR demonstrated that stormwater infiltration increased DOC quantity without affecting its quality (% of biodegradable DOC and relative aromatic carbon content -estimated by SUVA254-). The present study demonstrated that processes occurring in soil and vadose zone of MAR sites were enough efficient to limit DOC fluxes to the aquifer. Nevertheless, the enrichments of DOC concentrations measured in groundwater below

  2. Study on groundwater flow system in a sedimentary rock area. Case study for the Yoro river basin, Chiba Prefecture

    International Nuclear Information System (INIS)

    Sakai, Ryutaro; Munakata, Masahiro; Kimura, Hideo

    2007-01-01

    In the safety assessment for a geological disposal of long-lived radioactive waste such as high-level radioactive waste and TRU waste etc, it is important to estimate radionuclide migration to human society associated with groundwater flow. Groundwater flow systems for many domestic areas including Tono Mine, Kamaishi Mine and Horonobe district have been studied, but deep groundwater flow circumstances, and mixing between deep groundwater and shallow groundwater flow system are not well understood. Japan Atomic Energy Agency (JAEA) has started to investigate a sedimentary rock area in the Yoro river basin, in Chiba Prefecture, where the topographic and geological features are relatively simple for mathematical modeling, and hydraulic data as well as data from river and well water are available. Hydro-chemical conditions of the regional groundwater were discussed based on temperature, chemical compositions, isotopic ratios of hydrogen and oxygen, and the isotopic age of radioactive carbon for water samples collected from wells, rivers and springs in the Yoro river basin. It was found that the groundwater system in this basin consists of types of water: Ca-HCO 3 type water, Na-HCO 3 type water and NaCl type water. The Ca-HCO 3 type water is meteoric water cultivated several thousand years or after, the Na-HCO 3 type water is meteoric water cultivated under cold climates several to twenty thousand years ago. The NaCl type water is fossil brine water formed twenty thousand years ago. It was also observed that the Na-HCO 3 type water upwelled at the surface originates from GL-200m to -400m. This observation indicates that the Na-HCO 3 type water upwelled through the Ca-HCO 3 type water area with the both waters partially mixed. (author)

  3. Water management sustainability in reclaimed coastal areas. The case of the Massaciuccoli lake basin (Tuscany, Italy)

    Science.gov (United States)

    Rossetto, Rudy; Baneschi, Ilaria; Basile, Paolo; Guidi, Massimo; Pistocchi, Chiara; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    The lake of Massaciuccoli (7 km2 wide and about 2 m deep) and its palustrine nearby areas (about 13 km2 wide) constitute a residual coastal lacustrine and marshy area largerly drained by 1930. In terms of hydrological boundaries, the lake watershed is bordered by carbonate to arenaceous reliefs on the east, by a sandy coastal shallow aquifer on the west (preventing groundwater salinisation), while south and north by the Serchio River and the Burlamacca-Gora di Stiava channels alignment respectively. Since reclamation of the peaty soils started, subsidence began (2 to 3 m in 70 years), leaving the lake perched and central respect the low drained area, now 0 to -3 m below m.s.l., and requiring 16 km embankment construction. During the dry summer season, the lake undergoes a severe water stress, that, along with nutrients input, causes the continuous ecosystem degradation resulting in water salinisation and eutrophication. Water stress results in a head decrease below m.s.l., causing seawater intrusion along the main outlet, and reaching its highest point at the end of the summer season (common head values between -0.40 and -0.5 a.m.s.l.). The water budget for an average dry season lasting about 100 days was computed, considering a 10% error, in order to understand and evaluate all the components leading to the above mentioned water stress by means of several multidisciplinary activities during the years 2008-2009. They started with a thoroughly literature review, continued with hydrological, hydrogeochemical monitoring and testing (both for surface water and the shallow aquifer) and agronomical investigations (to characterize cropping systems, evapotranspiration rates and irrigation schemes). All the collected data were then processed by means of statistical methods, time series analysis, numerical modelling of the shallow aquifer and hydrological modelling. The results demonstrate the presence of two interrelated hydrological sub-systems: the lake and the reclaimed

  4. Polarization signatures for abandoned agricultural fields in the Manix Basin area of the Mojave Desert - Can polarimetric SAR detect desertification?

    Science.gov (United States)

    Ray, Terrill W.; Farr, Tom G.; Van Zyl, Jakob J.

    1992-01-01

    Radar backscatter from abandoned circular alfalfa fields in the Manix Basin area of the Mojave desert shows systematic changes with length of abandonment. The obliteration of circular planting rows by surface processes could account for the disappearance of bright spokes, which seem to be reflection patterns from remnants of the planting rows, with increasing length of abandonment. An observed shift in the location of the maximum L-band copolarization return away from VV, as well as an increase in surface roughness, both occurring with increasing age of abandonment, seems to be attributable to the formation of wind ripples on the relatively vegetationless fields.

  5. Ranking contributing areas of salt and selenium in the Lower Gunnison River Basin, Colorado, using multiple linear regression models

    Science.gov (United States)

    Linard, Joshua I.

    2013-01-01

    Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.

  6. Validation of a simple distributed sediment delivery approach in selected sub-basins of the River Inn catchment area

    Science.gov (United States)

    Reid, Lucas; Kittlaus, Steffen; Scherer, Ulrike

    2015-04-01

    For large areas without highly detailed data the empirical Universal Soil Loss Equation (USLE) is widely used to quantify soil loss. The problem though is usually the quantification of actual sediment influx into the rivers. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). But it gets difficult with spatially lumped approaches in large catchment areas where the geographical properties have a wide variance. In this study we developed a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in the catchments. The sediment delivery ratio was determined using an empirical approach considering the slope, morphology and land use properties along the flow path as an estimation of travel time of the eroded particles. The model was tested against suspended solids measurements in selected sub-basins of the River Inn catchment area in Germany and Austria, ranging from the high alpine south to the Molasse basin in the northern part.

  7. Paleofacies of Eocene Lower Ngimbang Source Rocks in Cepu Area, East Java Basin based on Biomarkers and Carbon-13 Isotopes

    Science.gov (United States)

    Devi, Elok A.; Rachman, Faisal; Satyana, Awang H.; Fahrudin; Setyawan, Reddy

    2018-02-01

    The Eocene Lower Ngimbang carbonaceous shales are geochemically proven hydrocarbon source rocks in the East Java Basin. Sedimentary facies of source rock is important for the source evaluation that can be examined by using biomarkers and carbon-13 isotopes data. Furthermore, paleogeography of the source sedimentation can be reconstructed. The case study was conducted on rock samples of Lower Ngimbang from two exploration wells drilled in Cepu area, East Java Basin, Kujung-1 and Ngimbang-1 wells. The biomarker data include GC and GC-MS data of normal alkanes, isoprenoids, triterpanes, and steranes. Carbon-13 isotope data include saturate and aromatic fractions. Various crossplots of biomarker and carbon-13 isotope data of the Lower Ngimbang source samples from the two wells show that the source facies of Lower Ngimbang shales changed from transitional/deltaic setting at Kujung-1 well location to marginal marine setting at Ngimbang-1 well location. This reveals that the Eocene paleogeography of the Cepu area was composed of land area in the north and marine setting to the south. Biomarkers and carbon-13 isotopes are powerful data for reconstructing paleogeography and paleofacies. In the absence of fossils in some sedimentary facies, these geochemical data are good alternatives.

  8. Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin

    DEFF Research Database (Denmark)

    Sawakuchi, A.O.; Jain, M.; Mineli, T.D.

    2018-01-01

    The Amazon region hosts the world's largest watershed spanning from high elevation Andean terrains to lowland cratonic shield areas in tropical South America. This study explores variations in optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) signals in suspended...... silt and riverbed sands retrieved from major Amazon rivers. These rivers drain Pre-Cambrian to Cenozoic source rocks in areas with contrasting denudation rates. In contrast to the previous studies, we do not observe an increase in the OSL sensitivity of quartz with transport distance; for example...... shield areas (denudation rate ξ=0.04 mmyr−1), while low sensitivity quartz occurs in less stable Andean terrains (ξ=0.24 mmyr−1). An apparent linear correlation between quartz OSL sensitivity and denudation rate suggests that OSL sensitivity may be used as a proxy for erosion rates in the Amazon basin...

  9. Regional magnetic and gravity features of the Gibson Dome area and surrounding region, Paradox Basin, Utah : a preliminary report

    Science.gov (United States)

    Hildenbrand, T.G.; Kucks, R.P.

    1983-01-01

    Analyses of regional gravity and magnetic anomaly maps have been carried out to assist in the evaluation of the Gibson Dome area as a possible repository site for high-level radioactive waste. Derivative, wavelength-filtered, and trend maps were compiled to aid in properly locating major geophysical trends corresponding to faults, folds, and lithologic boundaries. The anomaly maps indicate that Paradox Basin is characterized by a heterogeneous Precambrian basement, essentially a metamorphic complex of gneisses and schist intruded by granitic rocks and mafic to ultramafic bodies. Interpreted Precambrian structures trend predominantly northwest and northeast although east-west trending features are evident. Prominent gravity lows define the salt anticlines. Structural and lithologic trends in the Gibson Dome area are closely examined. Of greatest interest is a series of circular magnetic highs trending west-northwest into the Gibson Dome area. Further study of the exact definition and geologic significance of this series of anomalies is warranted.

  10. Petroleum geological atlas of the southern permian basin area -Overview SPB-atlas project-organisation and results

    NARCIS (Netherlands)

    Doornenbal, J.C.; Abbink, O.A.; Pagnier, H.J.M.; Wees, J.D. van

    2009-01-01

    The Southern Permian Basin (also referred to as Central European Basin) is Europe s largest sedimentary basin. It is a typical intracontinental basin that evolved from latest Carboniferous to recent times and extends from eastern England to the Belarussian-Polish border and from Denmark to South

  11. Geological Factors and Reservoir Properties Affecting the Gas Content of Coal Seams in the Gujiao Area, Northwest Qinshui Basin, China

    Directory of Open Access Journals (Sweden)

    Zhuo Zou

    2018-04-01

    Full Text Available Coalbed methane (CBM well drilling and logging data together with geological data were adopted to provide insights into controlling mechanism of gas content in major coal seams and establish gas accumulation models in the Gujiao area, Northwest Qinshui Basin, China. Gas content of targeted coals is various in the Gujiao area with their burial depth ranging from 295 to 859 m. Highly variable gas content of coals should be derived from the differences among tectonism, magmatism, hydrodynamism, and sedimentation. Gas content preserved in the Gujiao area is divided into two parts by the geological structure. Gas tends to accumulate in the groundwater stagnant zone with a total dissolved solids (TDS value of 1300–1700 ppm due to water pressure in the Gujiao area. Reservoir properties including moisture content, minerals, and pore structure also significantly result in gas content variability. Subsequently, the gray correlation statistic method was adopted to determine the most important factors controlling gas content. Coal metamorphism and geological structure had marked control on gas content for the targeted coals. Finally, the favorable CBM exploitation areas were comprehensively evaluated in the Gujiao area. The results showed that the most favorable CBM exploitation areas were in the mid-south part of the Gujiao area (Block I.

  12. Pesticides in storm runoff from agricultural and urban areas in the Tuolumne River basin in the vicinity of Modesto, California

    Science.gov (United States)

    Kratzer, Charles R.

    1998-01-01

    The occurrence, concentrations, and loads of dissolved pesticides in storm runoff were compared for two contrasting land uses in the Tuolumne River Basin, California, during two different winter storms: agricultural areas (February 1994) and the Modesto urban area (February 1995). Both storms followed the main application period of pesticides on dormant almond orchards. Eight samples of runoff from agricultural areas were collected from a Tuolumne River site, and 10 samples of runoff from urban areas were collected from five storm drains. All samples were analyzed for 46 pesticides. Six pesticides were detected in runoff from agricultural areas, and 15 pesticides were detected in runoff from urban areas. Chlorpyrifos, diazinon, dacthal (DCPA), metolachlor, and simazine were detected in almost every sample. Median concentrations were higher in the runoff from urban areas for all pesticides except napropamide and simazine. The greater occurrence and concentrations in storm drains is partly attributed to dilution of agricultural runoff by nonstorm base-flow in the Tuolumne River and by storm runoff from nonagricultural and nonurban land. In most cases, the occurrence and relative concentrations of pesticides found in storm runoff from agricultural and urban areas were related to reported pesticide application. Pesticide concentrations in runoff from agricultural areas were more variable during the storm hydrograph than were concentrations in runoff from urban areas. All peak pesticide concentrations in runoff from agricultural areas occurred during the rising limb of the storm hydrograph, whereas peak concentrations in the storm drains occurred at varying times during the storm hydrograph. Transport of pesticides from agricultural areas during the February 1994 storm exceeded transport from urban areas during the February 1995 storm for chlorpyrifos, diazinon, metolachlor, napropamide, and simazine. Transport of DCPA was about the same from agricultural and urban

  13. Estimation of residence times of coastal basins in the Laxemar- Simpevarp area between 3000 BC and 9000 AD

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (AandI Engqvist Konsult HB, Vaxholm (Sweden))

    2010-09-15

    The assignment has consisted of computation of the morpho- and bathymetry of the coastal area of Laxemar-Simpevarp for the time period 3000 BC through 9000 AD, in order to estimate the residence times as yearly means of volume-averaged specific age (Average Age, AvA) for water in coastal basins. These basins have been selected as belonging to earlier defined biosphere objects, containing anticipated exit points from possible radionuclides leaking from a hypothetical underground repository for spent nuclear fuel. This endeavor starts with partitioning of the coast into appropriate sub-basins interconnected by straits in an as objective manner as possible. This has been performed in cooperation with Umeaa Univ. followed by the transformation of these hypsographical data to a form that can serve as input data to the employed numerical CouBa-model. This model has been developed to simulate the water exchange of straits between densimetrically stably stratified basins with a free sea level including advection and mixing of water-borne conservative scalar properties, e.g. salinity, heat and specific age. The forcing of the model consists of run-off, wind-induced stress, thermal surface dynamics (heating/cooling) and density fluctuations at the open boundary toward the coastal zone, relative by which the specific water age is calculated For these ambient forcing factors there do not exist sufficiently precise climate data other than for contemporary times. For all other time periods the measured and/or model-computed forcing data regarding 2004 have been used. Estimated AvA-values for the different time periods are thus an expression of sub-basin configuration and hypsographical differences. An overriding directive has been to rather overestimate than underestimate the residence times, as to avoid underestimation of the subsequent dose calculations. The results of these AvA computations, presented as volume averages of yearly means of the sixteen biosphere object

  14. Estimation of residence times of coastal basins in the Laxemar-Simpevarp area between 3000 BC and 9000 AD

    International Nuclear Information System (INIS)

    Engqvist, Anders

    2010-09-01

    The assignment has consisted of computation of the morpho- and bathymetry of the coastal area of Laxemar-Simpevarp for the time period 3000 BC through 9000 AD, in order to estimate the residence times as yearly means of volume-averaged specific age (Average Age, AvA) for water in coastal basins. These basins have been selected as belonging to earlier defined biosphere objects, containing anticipated exit points from possible radionuclides leaking from a hypothetical underground repository for spent nuclear fuel. This endeavor starts with partitioning of the coast into appropriate sub-basins interconnected by straits in an as objective manner as possible. This has been performed in cooperation with Umeaa Univ. followed by the transformation of these hypsographical data to a form that can serve as input data to the employed numerical CouBa-model. This model has been developed to simulate the water exchange of straits between densimetrically stably stratified basins with a free sea level including advection and mixing of water-borne conservative scalar properties, e.g. salinity, heat and specific age. The forcing of the model consists of run-off, wind-induced stress, thermal surface dynamics (heating/cooling) and density fluctuations at the open boundary toward the coastal zone, relative by which the specific water age is calculated For these ambient forcing factors there do not exist sufficiently precise climate data other than for contemporary times. For all other time periods the measured and/or model-computed forcing data regarding 2004 have been used. Estimated AvA-values for the different time periods are thus an expression of sub-basin configuration and hypsographical differences. An overriding directive has been to rather overestimate than underestimate the residence times, as to avoid underestimation of the subsequent dose calculations. The results of these AvA computations, presented as volume averages of yearly means of the sixteen biosphere object

  15. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    Science.gov (United States)

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  16. Geochemical evidence for groundwater mixing in the western Great Artesian Basin and recognition of deep inputs in continental-scale flow systems

    Science.gov (United States)

    Crossey, L. J.; Karlstrom, K. E.; Love, A.; Priestley, S.; Shand, P.

    2010-12-01

    Mound springs of the western Great Artesian Basin (GAB), Australia, represent a significant proportion of the discharge of the continental-scale confined aquifers of the region. They also provide unique ecological niches, and they are important historical and cultural sites in an austere landscape. Fed by confined aquifers within the GAB, these spring systems are at risk due to anthropogenic drawdown and increasing demand on scarce hydrologic resources. New water and gas geochemical data indicate that they record hydrologic mixing and complex, fault-influenced flow paths within the western GAB. Elevated 3He/4He gas values, termed “xenowhiffs”, with RA up to 0.09 (Bubbler Spring) provide evidence for mantle-derived fluids introduced through fault conduits into the groundwater system in the last several million years and hence an active mantle-to-groundwater fluid linkage. We apply multiple tracers to understand mixing. Major and trace element data show distinctly different water chemistries for Dalhousie versus southern mound springs suggesting different flow paths and mixing proportions. The source of the C for the CO2 -rich springs is evaluated using water chemistry and C-isotope data. Carbon isotope values range from -9 (Bubbler) to -16 (Strangways). Mixing models allow us to distinguish contributions from dissolution of carbonate in the aquifer (Ccarb=Ca+Mg-SO4 and δ13C= 0), from biological/organic sources (δ13C= -28), and from endogenic sources (deeply derived; δ13C= -3). Results show that all of the springs contain appreciable (many > 50%) endogenic CO2, with Dalhousie showing less endogenic CO2 than the southern mound springs and Paralana hot spring system. CO2/3He values of 4 to 8 x 109 (Bubbler and Jersey Springs) are close to MORB end member values of 2 x 109 whereas other springs have values strongly enriched in CO2 (up to 1013 at Elizabeth Spring). Elevated but highly variable 87Sr/86Sr values up to 0.718 at Dalhousie and up to 0.76 at Paralana

  17. Using stable isotopes in tracing contaminant sources in an industrial area: A case study on the hydrological basin of the Olt River, Romania.

    Science.gov (United States)

    Popescu, Raluca; Mimmo, Tanja; Dinca, Oana Romina; Capici, Calogero; Costinel, Diana; Sandru, Claudia; Ionete, Roxana Elena; Stefanescu, Ioan; Axente, Damian

    2015-11-15

    Tracing pollution sources and transformation of nitrogen compounds in surface- and groundwater is an issue of great significance worldwide due to the increased human activity, translated in high demand of water resources and pollution. In this work, the hydrological basin of an important chemical industrial platform in Romania (Ramnicu Valcea industrial area) was characterized in terms of the physico-chemical and isotope composition of δ(18)O and δ(2)H in water samples and δ(15)N of the inorganic nitrogen species. Throughout a period of one year, water samples from the Olt River and its more important tributaries were collected monthly in the industrial area, when the seasonal and spatial isotope patterns of the surface waters and the main sources of pollution were determined. Higher inorganic nitrogen concentrations (up to 10.2 mg N L(-1)) were measured between November 2012 and April 2013, which were designated as anthropogenic additions using the mixing calculations. The main sources of pollution with inorganic nitrogen were agriculture and residential release. The inorganic nitrogen from the industrial waste water duct had a distinct δ(15)N fingerprint (mean of -8.6‰). Also, one industrial release into the environment was identified for Olt River, at Ionesti site, in November 2012. The mean precipitation samples had the lowest inorganic nitrogen concentrations (less than 5.5 mg N L(-1)) with a distinct δ(15)N fingerprint compared to the surface and industrial waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Determination of surface and groundwater quality in the Orontes basin (Syria) and the negative effect of some pollutants on the water, soil, and plants at this area

    International Nuclear Information System (INIS)

    Kassem, A.

    2005-01-01

    This work deals with the physical/chemical characteristics and quality of surface and ground water in the basin of the Orontes river in Syria. It also deals with concentration of basic elements and trace elements in water, soil and some plant leaves in that area. The internationally acknowledged methods were used to determine the physical constituents and to analyze elements of the most important basic and sub compounds in 95 water samples (77 ground samples and 18 surface samples). The instrumental Neutron Activation Analysis was used to analyze some major elements and trace elements in 18 soil samples and 9 plant leave samples. Evaluation of analysis results of those samples shows the great geo-ecological and geographic effect and the effect of human activities on polluting the water, soil and plants according to quality of irrigation water, effect of air, liquid and solid rejects of the industrial and municipal sites, nature and repetition of plantations and type of fertilizers and pesticides used in the studied area.(author)

  19. Geologic Map of the Bodie Hills Volcanic Field, California and Nevada: Anatomy of Miocene Cascade Arc Magmatism in the Western Great Basin

    Science.gov (United States)

    John, D. A.; du Bray, E. A.; Blakely, R. J.; Box, S.; Fleck, R. J.; Vikre, P. G.; Rytuba, J. J.; Moring, B. C.

    2011-12-01

    The Bodie Hills Volcanic Field (BHVF) is a >700 km2, long-lived (~9 Ma) but episodic, Miocene eruptive center in the southern part of the ancestral Cascade magmatic arc. A 1:50,000-scale geologic map based on extensive new mapping, combined with 40Ar/39Ar dates, geochemical data, and detailed gravity and aeromagnetic surveys, defines late Miocene magmatic and hydrothermal evolution of the BHVF and contrasts the subduction-related BHVF with the overlying, post-subduction, bimodal Plio-Pleistocene Aurora Volcanic Field (AVF). Important features of the BHVF include: Eruptions occurred during 3 major eruptive stages: dominantly trachyandesite stratovolcanoes (~14.7 to 12.9 Ma), mixed silicic trachyandesite, dacite, and rhyolite (~11.3 to 9.6 Ma), and dominantly silicic trachyandesite to dacite domes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Trachyandesitic stratovolcanoes with extensive debris flow aprons form the outer part of BHVF, whereas silicic trachyandesite to rhyolite domes are more centrally located. Geophysical data suggest that many BHVF volcanoes have shallow plutonic roots that extend to depths ≥1-2 km below the surface, and much of the Bodie Hills may be underlain by low density plutons presumably related to BHVF volcanism. BHVF rocks contain ~50 to 78% SiO2 (though few rocks have Bodie Hills at ~10 Ma, but the composition and eruptive style of volcanism continued unchanged for 2 Ma. However, kinematic data for veins and faults in mining districts suggest a change in the stress field from transtensional to extensional approximately coincident with cessation of subduction. The Bodie Hills are flanked to the east, north, and west by sedimentary basins that began to form in the late Miocene (locally >11 Ma). Fine to coarse sedimentary deposits within the BHVF include stream deposits in channels that cut across the hills and were partly filled by ~9.4 Ma Eureka Valley Tuff erupted 20 km to the northwest. Shallow dips and preservation of

  20. Responses of streamflow and sediment load to climate change and human activity in the Upper Yellow River, China: a case of the Ten Great Gullies Basin.

    Science.gov (United States)

    Liu, Tong; Huang, He Qing; Shao, Mingan; Yao, Wenyi; Gu, Jing; Yu, Guoan

    2015-01-01

    Soil erosion and land desertification are the most serious environmental problems globally. This study investigated the changes in streamflow and sediment load from 1964 to 2012 in the Ten Great Gullies area of the Upper Yellow River. Tests for gradual trends (Mann-Kendall test) and abrupt changes (Pettitt test) identify that significant declines in streamflow and sediment load occurred in 1997-1998 in two typical gullies. A comparison of climatic variability before and after the change points shows no statistically significant trends in annual precipitation and potential evapotranspiration. Human activities have been very active in the region and during 1990-2010, 146.01 and 197.62 km2 of land were converted, respectively, to forests and grassland, with corresponding increases of 87.56 and 77.05%. In addition, a large number of check dams have been built up in the upper reaches of the ten gullies. These measures were likely responsible for the significant decline in the annual streamflow and sediment load over the last 49 years.

  1. Evaluation of abundant hydrocarbon-generation depressions in the deepwater area of Qiongdongnan Basin, South China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen; SUN Zhipeng; WANG Zisong; ZHANG Wei; LI Tingan; HE Weijun; LI Fengxia

    2016-01-01

    It has been confirmed that the key source rocks of Qiongdongnan Basin are associated with the Yacheng Formation, which was deposited in a transitional marine-continental environment. Because the distribution and evolution patterns of the source rocks in the major depressions are different, it is important to determine the most abundant hydrocarbon-generation depressions in terms of exploration effectiveness. Based on an analysis of organic matter characteristics of the source rocks, in combination with drilling data and seismic data, this paper establishes a model to evaluate the hydrocarbon-generation depressions in the deepwater area of Qiongdongnan Basin. First of all, by using the method of seismic-facies model analysis, the distribution of sedimentary facies was determined. Then, the sedimentary facies were correlated with the organic facies, and the distribution of organic facies was predicted. Meanwhile, the thickness of source rocks for all the depressions was calculated on the basis of a quantitative analysis of seismic velocity and lithology. The relationship between mudstone porosity and vitrinite reflectance (Ro) was used to predict the maturity of source rocks. Second, using the parameters such as thickness and maturity of source rocks, the quantity and intensity of gas generation for Yacheng and Lingshui Formations were calculated. Finally, in combination with the identified hydrocarbon resources, the quantity and intensity of gas generation were used as a guide to establish an evaluation standard for hydrocarbon-generation depressions, which was optimized for the main depressions in the Central Depression Belt. It is proposed that Lingshui, Ledong, Baodao and Changchang Depressions are the most abundant hydrocarbon depressions, whilst Songnan and Beijiao Depressions are rich hydrocarbon depressions. Such an evaluation procedure is beneficial to the next stage of exploration in the deep-water area of Qiongdongnan Basin.

  2. Estimation of small reservoir storage capacities in the São Francisco, Limpopo, Bandama and Volta river basins using remotely sensed surface areas

    Science.gov (United States)

    Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens

    2010-05-01

    People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface

  3. Accumulation conditions and exploration potential of Wufeng-Longmaxi Formations shale gas in Wuxi area, Northeastern Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-12-01

    Full Text Available Wufeng-Longmaxi Formations shale gas is a new exploration field in Wuxi area, Sichuan Basin, China. Some geological parameters related to shale gas evaluation of the new exploration wells in Wuxi area have been studied, including shale reservoir, gas-bearing, geochemical and paleontological characteristics. The study suggests that the original shale gas generation conditions of the area were good, but later this area went through serious and multi-phase tectonic damage. The major evidences include that: the δ13C2 value of shale gas is obviously higher than that in areas with the same maturity, indicating the shale gas is mainly late kerogen cracking gas and high hydrocarbon expulsion efficiency; the porosity of shale in Wuxi area is very low because of strong tectonic movements and lack of retained oil in the shale; some shale cores near faults even show very weak metamorphic characteristics with intense cleavage, and the epidermis of graptolite fossils was pyrolyzed. The comprehensive study shows shale gas in Wuxi area has prospective resources, but the possibility to get scale commercial production in recent time is very low.

  4. Bibliography of the geology of the Columbia Basin and surrounding areas of Washington

    International Nuclear Information System (INIS)

    Tucker, G.B.; Rigby, J.G.

    1979-07-01

    In the fall of 1977, the Washington State Department of Natural Resources, Division of Geology and Earth Resources (WDGER), entered into a contract with the US Department of Energy, administered by Rockwell Hanford Operations (Rockwell) in Richland, Washington, as a principal contributor to a geologic study of feasibility of storing radioactive waste within Columbia River basalt. WDGER's responsibility was the production of this bibliography and a reconnaissance geologic map of the sediments overlying the Columbia River Basalt Group in the State of Washington. This bibliography is a compilation of all known published, unpublished, and open-file references dealing with geology and geophysics of the Columbia Basin of eastern Washington. The citations were obtained primarily from the WDGER and Washington State libraries; the Geo-Ref bibliographic system was also utilized. Because the WDGER portion of the study included preparation of a reconnaissance geologic map of surficial deposits in the Columbia Basin, available references dealing with this subject have been annotated. Many abstracts in the annotated section are quotations and have been copied directly from their respective publications

  5. Modelling spring flood in the area of the Upper Volga basin

    Directory of Open Access Journals (Sweden)

    M. Helms

    2006-01-01

    Full Text Available Integrated river-basin management for the Volga river requires understanding and modelling of the flow process in its macro-scale tributary catchments. At the example of the Kostroma catchment (16 000 km2, a method combining existing hydrologic simulation tools was developed that allows operational modelling even when data are scarce. Emphasis was placed on simulation of three processes: snow cover development using a snow-compaction model, runoff generation using a conceptual approach with parameters for seasonal antecedent moisture conditions, and runoff concentration using a regionalised unit hydrograph approach. Based on this method, specific regional characteristics of the precipitation-runoff process were identified, in particular a distinct threshold behaviour of runoff generation in catchments with clay-rich soils. With a plausible overall parameterisation of involved tools, spring flood events could successfully be simulated. Present paper mainly focuses on the simulation of a 16-year sample of snowmelt events in a meso-scale catchment. An example of regionalised simulation in the scope of the modelling system "Flussgebietsmodell" shows the capabilities of developed method for application in macro-scale tributary catchments of the Upper Volga basin.

  6. Bibliography of the geology of the Columbia Basin and surrounding areas of Washington

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, G.B.; Rigby, J.G.

    1979-07-01

    In the fall of 1977, the Washington State Department of Natural Resources, Division of Geology and Earth Resources (WDGER), entered into a contract with the US Department of Energy, administered by Rockwell Hanford Operations (Rockwell) in Richland, Washington, as a principal contributor to a geologic study of feasibility of storing radioactive waste within Columbia River basalt. WDGER's responsibility was the production of this bibliography and a reconnaissance geologic map of the sediments overlying the Columbia River Basalt Group in the State of Washington. This bibliography is a compilation of all known published, unpublished, and open-file references dealing with geology and geophysics of the Columbia Basin of eastern Washington. The citations were obtained primarily from the WDGER and Washington State libraries; the Geo-Ref bibliographic system was also utilized. Because the WDGER portion of the study included preparation of a reconnaissance geologic map of surficial deposits in the Columbia Basin, available references dealing with this subject have been annotated. Many abstracts in the annotated section are quotations and have been copied directly from their respective publications.

  7. ECOLOGICAL RESEARCH-STUDIES REGARDING THE AVIFAUNA DURING THE HIEMAL PERIOD FROM THE BASINS AREA OF THE ARGEŞ RIVER BETWEEN 2000 AND 2010

    Directory of Open Access Journals (Sweden)

    Adrian Mestecaneanu

    2010-01-01

    Full Text Available The basins from the middle and upper part of the Argeş River are included in “The Basins of the Argeş River”, site ofthe Nature 2000 Network and Important Bird Area. The paper show some results of the International Waterbird Count,organized on international level by the Wetland International and on national level by the Romanian OrnithologicalSociety. The analyze was performed only for 2000 – 2010 period, the researches in area being done after 1990. 116994individuals and 73 birds’ species, which belong to 14 orders, were recorded. Regarding the number of families the bestrepresented was the Passeriformes order. 9 species are protected by the Annex I of the Birds Directive. In the area ofthe Piteşti Basin was observed the majority of the number of species and in the area of the Goleşti Basin was registeredthe biggest number of the observed individuals. The Anseriformes order had the most of observed individuals, on thefirs place being Anas platyrhynchos. The best similarity was between Piteşti and Budeasa basins (by Bray-Curtis indexand between Valcele and Budeasa basins (by Jaccard index. For the whole period, Anas platyrhynchos was the onlydominant species (by index of relations. Considerations are also effectuated in relation with other few ecologicalindexes.

  8. Regional development of river basins in the Olkiluoto-Pyhaejaervi Area, SW Finland, 2000 BP - 8000 AP

    International Nuclear Information System (INIS)

    Ojala, A.E.K.; Virkki, H.; Palmu, J.-P.; Hokkanen, K.; Kaija, J.

    2006-12-01

    Biosphere assessment forms one of the main components in Posiva's Safety Case portfolio and includes analyses of terrain and ecosystem development. Shoreline displacement and changes in surface hydrology form one part of these analyses. In this report, the regional development of the Olkiluoto-Pyhaejaervi area in the time period 2000 BP - 8000 AP was examined by taking into account changes in the surface flow patterns of the Lapinjoki and Eurajoki river basins. A hydrological model, EULA, was developed and applied to investigate the past and future hydrological regimes and changes in the Olkiluoto-Pyhaejaervi study area. As detailed assessment of erosion and sedimentation effects were not within the scope of this study, only their general effects were evaluated. The digital elevation models (DEM) for different time stages (2000, 1500, 1000 and 500 BP; 100, 300, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 7000 and 8000 AP) were compiled taking into account the land uplift and tilting of the Earth's crust. With the aid of various sophisticated GIS tools, the boundaries of the main river basins, the flow patterns of rivers and development of lakes during each stage were modelled. The yearly discharge rates of rivers Eurajoki and Lapinjoki were also evaluated with the assumption that present climatic features prevail during the whole time period 2000 BP - 8000 AP. Finally, the probability of significant changes in the surface water flow routes were estimated during different stages. (orig.)

  9. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

    Science.gov (United States)

    Sack, Patrick J.; Large, Ross R.; Gregory, Daniel D.

    2018-01-01

    Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

  10. Geohydrology and potential effects of coal mining in 12 coal-lease areas, Powder River structural basin, northeastern Wyoming. Water Resources Investigation

    International Nuclear Information System (INIS)

    Fogg, J.L.; Martin, M.W.; Daddow, P.B.

    1991-01-01

    The purpose of the report is to describe the geohydrology of 12 coal-lease areas in the Powder River structural basin in relation to the mining proposed for each area. The description of the geohydrology of each of the lease areas focuses on the shallow ground-water system and includes identification of recharge and discharge areas, directions of ground-water movement, and potential effects of mining. The shallow ground-water system in the Powder River structural basin is not well defined because of the discontinuous nature of the aquifers in the basin. Understanding the ground-water hydrology of these 12 coal-lease areas will improve understanding of the shallow ground-water system in the basin. The first part of the report is a description of the general geohydrology of the Wyoming part of the Powder River structural basin. The second part of the report is a general discussion of the effects of coal mining on ground-water hydrology. The third part of the report contains site-specific discussions of the ground-water hydrology and potential effects of mining for each of the 12 coal-lease areas

  11. Assessing suitable area for Acacia dealbata Mill. in the Ceira River Basin (Central Portugal based on maximum entropy modelling approach

    Directory of Open Access Journals (Sweden)

    Jorge Pereira

    2015-12-01

    Full Text Available Biological invasion by exotic organisms became a key issue, a concern associated to the deep impacts on several domains described as resultant from such processes. A better understanding of the processes, the identification of more susceptible areas, and the definition of preventive or mitigation measures are identified as critical for the purpose of reducing associated impacts. The use of species distribution modeling might help on the purpose of identifying areas that are more susceptible to invasion. This paper aims to present preliminary results on assessing the susceptibility to invasion by the exotic species Acacia dealbata Mill. in the Ceira river basin. The results are based on the maximum entropy modeling approach, considered one of the correlative modelling techniques with better predictive performance. Models which validation is based on independent data sets present better performance, an evaluation based on the AUC of ROC accuracy measure.

  12. Monitoring the ecology and environment using remote sensing in the Jinta area/Middle Reaches of Heihe River Basin

    Science.gov (United States)

    Lu, Anxin; Wang, Lihong; Chen, Xianzhang

    2003-07-01

    A major monitoring area, a part of the middle reaches of Heihe basin, was selected. The Landsat TM data in summer of 1990 and 2000 were used with interpretation on the computer screen, classification and setting up environmental investigation database (1:100000) combined with DEM, land cover/land use, land type data and etc., according to the environmental classification system. Then towards to the main problems of environment, the spatial statistical analysis and dynamic comparisons were carried out using the database. The dynamic monitoring results of 1999 and 2000 show that the changing percentage with the area of 6 ground objects are as follows: land use and agriculture land use increased by 34.17% and 19.47% respectively, wet land and water-body also increased by 6.29% and 8.03% respectively; unused land increased by 1.73% and the biggest change is natural/semi-natural vegetation area, decreased by 42.78%, the main results above meat with the requirements of precise and practical conditions by the precise exam and spot check. With the combinations of using TM remote sensing data and rich un-remote sensing data, the investigations of ecology and environment and the dynamic monitoring would be carried out efficiently in the arid area. It is a dangerous signal of large area desertification if the area of natural/semi-natural vegetation is reduced continuously and obviously.

  13. Novel effects-based monitoring approaches to evaluate chemicals of emerging concern in Great Lakes areas of concern

    Science.gov (United States)

    As part of an on-going program of research in support of the Great Lakes Restoration Initiative, we have been developing effects-based biomonitoring tools to evaluate the occurrence and potential hazards associated with Chemicals of Emerging Concern (CECs). Over three field seaso...

  14. The role of domestic dogs in the transmission of zoonotic helminthes in a rural area of Mekong river basin.

    Science.gov (United States)

    Otake Sato, Marcello; Sato, Megumi; Yoonuan, Tippayarat; Pongvongsa, Tiengkham; Sanguankiat, Surapol; Kounnavong, Sengchanh; Maipanich, Wanna; Chigusa, Yuichi; Moji, Kazuhiko; Waikagul, Jitra

    2017-06-01

    Dogs have been bred since ancient times for companionship, hunting, protection, shepherding and other human activities. Some canine helminth parasites can cause significant clinical diseases in humans as Opisthorchis viverrini causing cholangiocarcinoma in Southeast Asian Countries. In this study, socio-cultural questionnaire, canine parasitological analysis, necropsy, parasite molecular confirmation and dog roaming data were evaluated in Savannakhet, Lao-PDR, a typical Mekong Basin area. Dog owners comprised 48.8% of the studied population, with 61.2% owning one dog, 25.1% 2 dogs, 8.5% 3 dogs and 1.8% owning more than 4 dogs. Data from GPS logger attached to dogs showed they walked from 1.4 to 13.3 km per day, covering an area of 3356.38m2 average, with a routine of accessing water sources. Thirteen zoonotic helminth species were observed. Causative agents of visceral and cutaneous larva migrans occurred in 44.1% and 70% of the samples respectively. Spirometra erinaceieuropaei was detected in 44.1% of samples. Importantly, O. viverrini was found in 8.8% of samples. Besides the known importance of dogs in the transmission of Ancylostoma spp., Toxocara spp. and S. erinaceieuropaei, the observed roaming pattern of dogs confirmed it as an important host perpetuating O. viverrini in endemic areas; their routine access to waterbodies may spread O. viverrini eggs in a favorable environment for the fluke development, facilitating the infection of fishes, and consequently infecting humans living in the same ecosystem. Therefore, parasitic NTDs control programs in humans should be done in parallel with parasite control in animals, especially dogs, in the Mekong River basin area.

  15. Radioactivity of dumps in mining areas of the Upper Silesian Coal Basin in Poland

    Directory of Open Access Journals (Sweden)

    Dorda J.

    2012-04-01

    Full Text Available Underground coal mining is associated with large quantities of gangue. In the past, the majority of gangue was not utilized but was placed in the vicinity of the coalmines forming cone-shaped dumps. Some of them contained even millions of tons of rock. Nowadays, environmental precautions extort larger utilization of any kind of waste materials, for example in road construction, civil engineering or as stowing in underground abandoned workings. Examination of the composition of waste dumps, including radioactivity, is thus an important issue. The paper presents results of a radiological survey carried out in several dumps located in the Upper Silesian Coal Basin in the south of Poland. Measurements of samples were carried out with the use of a gamma-ray spectrometer. Activity concentration results for the uranium and thorium decay chains are discussed.

  16. Land use changing and land use optimization of Lake Baikal basin on the example of two key areas

    Science.gov (United States)

    Solodyankina, S.

    2012-04-01

    Lake Baikal contains roughly 20% of the world's unfrozen surface fresh water. It was declared a UNESCO World Heritage Site in 1996. Today levels of urbanization and economic stress on environmental resources is increasing on the shorts of the lake Baikal. The potential of economic development (industry, local tourism, and mining) of the Severobaykalsky and Sludyansky districts is rather high although they are characterized not only by beneficial features for local economy but also by considerable disadvantages for nature of this world valuable territory. This investigation show human-caused landscape changes during economic development of the two key areas in Baikal water catchment basin during 10 years (point of reference is 2000 year). Key areas are 1) the Baikalo-Patomskoe highland in the north of the Baikal catchment basin (Severobaykalsky district, Republic of Buryatia); 2) Khamar-Daban mountain system in the south of the Baikal catchment basin (Sludyansky districy, Irkutsk region). Since 2000 year land use of the territory has changed. Areas of agriculture were reduced but recreation activity on the bank of the lake was increased. Methods of GIS analysis and local statistic analysis of landscape characteristic were used. Nature, rural and urban areas ratio are estimated. Vegetation and soil condition assessment were made. The essence of this research is in helping to make decisions linked to upcoming problems: situation identification, evaluation and forecasting of the potential landscape condition, optimization of land use, mitigation of impact and mapping of territories and nature resources which have a high ecological value or endangered by industrial impact. For this purpose landscape maps of the territories on the base of the remote sensing information and field investigations were created. They used to calculate potential landscape functions of the territory without taking into account present impact of anthropogenic actions. Land use maps for years

  17. Development of DNA-based Identification methods to track the species composition of fish larvae within nearshore areas of the Great Lakes

    Science.gov (United States)

    The ability to track the identity and abundance of larval fish, which are ubiquitous during spawning season, may lead to a greater understanding of fish species distributions in Great Lakes nearshore areas including early-detection of invasive fish species before they become esta...

  18. Evaluation of Eco-economy Harmony and Spatial Evolution of the Urban Agglomeration Area in The Great Pearl River Delta

    Science.gov (United States)

    Wang, Xiuming; Xu, Min; Zhang, Yong; Xu, Naizhong; Zhang, Yuhuan

    2018-05-01

    Based on the land use data of the study area during 1990 to 2016, the coordination between ecological environment and economy was estimated according to the ESV (ecosystem services value) and EEH (eco-economy harmony) index. The results showed that large amount of farmland and forests were changed to construction land in the study area, due to the rapid urbanization and industrialization. The ESV showed an overall downward trend, the ESV in per hectare was decreased from 1554,000Yuan to 14513,000Yuan. The economic development speed was decreased from 1990 to 2016, the area with high GDP growth rate is changed from the core area of the pearl river delta to the periphery area. The ecology-economy relation in the study area experienced a transformation of “low grade coordination-low grade conflict -further conflict”. Shenzhen, Dongguan, Huizhou, Jiangmen, the central city of Foshan and Guangzhou became the most high-grade conflict areas.

  19. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 3: Kinematics of Great Basin intraplate extension from earthquake, geodetic and geologic information. Final Technical Report, 15 Apr. 1981 - 31 Jan. 1986 M.S. Thesis

    Science.gov (United States)

    Eddington, P. K.

    1986-01-01

    Strain rates assessed from brittle fracture, associated with earthquakes, and total brittle-ductile deformation measured from geodetic data were compared to paleostrain from Quaternary geology for the intraplate Great Basin of the western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced in the last 5 to 10 million years. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions. Contemporary deformation of the Great Basin occurs principally along the active seismic zones. The earthquake related strain shows that the Great Basin is characterized by regional E-W extension at 8.4 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum extension correspond to belts of shallow crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through an effect such as a stress relaxation allowing bouyant uplift and ascension of magmas.

  20. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    Science.gov (United States)

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  1. Facies Analysis of Tertiary Basin-Filling Rocks of the Death Valley Regional Ground-Water System and Surrounding Areas, Nevada and California; TOPICAL

    International Nuclear Information System (INIS)

    Sweetkind, D.S.; Fridrich, C.J.; Taylor, Emily

    2002-01-01

    Existing hydrologic models of the Death Valley region typically have defined the Cenozoic basins as those areas that are covered by recent surficial deposits, and have treated the basin-fill deposits that are concealed under alluvium as a single unit with uniform hydrologic properties throughout the region, and with depth. Although this latter generalization was known to be flawed, it evidently was made because available geologic syntheses did not provide the basis for a more detailed characterization. As an initial attempt to address this problem, this report presents a compilation and synthesis of existing and new surface and subsurface data on the lithologic variations between and within the Cenozoic basin fills of this region. The most permeable lithologies in the Cenozoic basin fills are freshwater limestones, unaltered densely welded tuffs, and little-consolidated coarse alluvium. The least permeable lithologies are playa claystones, altered nonwelded tuffs, and tuffaceous and cl ay-matrix sediments of several types. In all but the youngest of the basin fills, permeability probably decreases strongly with depth owing to a typically increasing abundance of volcanic ash or clay in the matrices of the clastic sediments with increasing age (and therefore with increasing depth in general), and to increasing consolidation and alteration (both hydrothermal and diagenetic) with increasing depth and age. This report concludes with a categorization of the Cenozoic basins of the Death Valley region according to the predominant lithologies in the different basin fills and presents qualitative constraints on the hydrologic properties of these major lithologic categories

  2. Radon and its decay product activities in the magmatic area and the adjacent volcano-sedimentary Intrasudetic Basin

    Directory of Open Access Journals (Sweden)

    D. Tchorz

    2007-06-01

    Full Text Available In the magmatic area of Sudetes covering the Karkonosze granite and adjacent volcano-sedimentary Intrasudetic Basin a study of atmospheric radon activity was performed by means of SSNTD Kodak LR-115. The study was completed by gamma spectrometric survey of eU and eTh determined by gamma activity of radon decay products 214Bi and 208Tl respectively. In the case of the western part of the Karkonosze granite area the radon decay products activity in the granitic basement was found to be as high as 343 Bq/kg for 214Bi and 496 Bq/kg for 208Tl respectively. Atmospheric radon content measured by means of Kodak LR115 track detector at the height of 1.5 m was found as high as 70 Bq/m3 in the regions, where no mining activities took place. However in the eastern part of the granitic massif in the proximity of abandoned uranium mine atmospheric radon content was found to be 6000 Bq/m3. In the case of sedimentary basin where sedimentary sequence of Carboniferous rocks has been penetrated by younger gases and fluids of volcanic origin uranium mineralization developed. The region known from its CO2 outburst during coal mining activity is characterized by good ventilation of the uranium enriched geological basement resulting in increased atmospheric radon activity being in average 72 Bq/m3. In the vicinity of coal mine tailing an increase up to 125 Bq/m3 can be observed. Seasonal variations of atmospheric radon content are influenced in agricultural areas by cyclic cultivation works (plough on soils of increased uranium content and in the case of post-industrial brownfields varying rates of radon exhalation from tailings due to different meteorological conditions.

  3. GROUNDWATER QUALITY EVALUATION OF PERMANENT PRESERVATION AREAS (GUARANI AQUIFER SYSTEM - GAS, RIO PARDO HYDROGRAPHICAL BASIN, RS, BRAZIL

    Directory of Open Access Journals (Sweden)

    Adilson Ben da Costa

    2010-06-01

    Full Text Available The aim of this research was to evaluate the quality of groundwater in areas of permanent preservation (Guarani Aquifer System – GAS in the Rio Pardo Hydrographical Basin, RS, Brazil, using physical, chemical and microbiological variables, based on resolution no. 396/2008 of the National Council on t