WorldWideScience

Sample records for grazing-resistant filamentous bacteria

  1. High motility reduces grazing mortality of planktonic bacteria

    DEFF Research Database (Denmark)

    Matz, Carsten; Jurgens, K.

    2005-01-01

    We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated...... size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 mum(3). Grazing mortality was lowest for cells of >0.5 mum(3) and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (less than or equal to0.1 mum......(3), >50 mum s(-1)) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing....

  2. Antimicrobial resistance in faecal samples from buffalo, wildebeest and zebra grazing together with and without cattle in Tanzania.

    Science.gov (United States)

    Katakweba, A A S; Møller, K S; Muumba, J; Muhairwa, A P; Damborg, P; Rosenkrantz, J T; Minga, U M; Mtambo, M M A; Olsen, J E

    2015-04-01

    The aim of this study was to determine whether the practice of co-grazing with cattle and wild life constitutes a risk of transmission of antibiotic resistant bacteria to wild ungulates. Faecal samples were collected from buffalo (n = 35), wildebeest (n = 40), zebra (n = 40) and cattle (N = 20) from Mikumi National Park, Tanzania (MNP), where cattle is prohibited and from Ngorongoro Conservation Area (NCA) where co-grazing is practiced. The number of coliforms and enterococci resistant to selected antibiotics was determined. Wild life generally harboured higher number of resistant Escherichia coli and Enterococci than cattle, but with no general influence in wild life of co-grazing with cattle. Vancomycin-resistant Enterococci were detected in wild life samples, and E. coli resistant to cefotaxime and enrofloxacin were observed among isolates from all wild life, but not from cattle. Culture independent estimates of the number of sulII gene copies obtained by qPCR did not differ between wild life from the two sample sites, while tetW was significantly higher in samples from MPN than from NCA. Antibiotic resistant bacteria were not more frequently found in ungulates grazing together with cattle than ungulates without this interaction. This study did not indicate that transmission of antibiotic resistant bacteria is a frequent event following co-grazing of wild life and cattle. © 2014 The Society for Applied Microbiology.

  3. The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process.

    Science.gov (United States)

    Burger, Wilhelm; Krysiak-Baltyn, Konrad; Scales, Peter J; Martin, Gregory J O; Stickland, Anthony D; Gras, Sally L

    2017-10-15

    Filamentous bacteria can impact on the physical properties of flocs in the activated sludge process assisting solid-liquid separation or inducing problems when bacteria are overabundant. While filamentous bacteria within the flocs are understood to increase floc tensile strength, the relationship between protruding external filaments, dewatering characteristics and floc stability is unclear. Here, a quantitative methodology was applied to determine the abundance of filamentous bacteria in activated sludge samples from four wastewater treatment plants. An automated image analysis procedure was applied to identify filaments and flocs and calculate the length of the protruding filamentous bacteria (PFB) relative to the floc size. The correlation between PFB and floc behavior was then assessed. Increased filament abundance was found to increase interphase drag on the settling flocs, as quantified by the hindered settling function. Additionally, increased filament abundance was correlated with a lower gel point concentration leading to poorer sludge compactability. The floc strength factor, defined as the relative change in floc size upon shearing, correlated positively with filament abundance. This influence of external protruding filamentous bacteria on floc stability is consistent with the filamentous backbone theory, where filamentous bacteria within flocs increase floc resistance to shear-induced breakup. A qualitative correlation was also observed between protruding and internal filamentous structure. This study confirms that filamentous bacteria are necessary to enhance floc stability but if excessively abundant will adversely affect solid-liquid separation. The tools developed here will allow quantitative analysis of filament abundance, which is an improvement on current qualitative methods and the improved method could be used to assist and optimize the operation of waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Grazing of particle-associated bacteria-an elimination of the non-viable fraction.

    Science.gov (United States)

    Gonsalves, Maria-Judith; Fernandes, Sheryl Oliveira; Priya, Madasamy Lakshmi; LokaBharathi, Ponnapakkam Adikesavan

    Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42h showed that at the end of 24h, growth coefficient (k) of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, 'k' value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g)=0.564), the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, 'g' of non-viable fraction (particle-associated bacteria=0.615, Free=0.0086) was much greater than the viable fraction (particle-associated bacteria=0.056, Free=0.068). Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the "persistent variants" where the viable fraction multiply and release their progeny. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Grazing of particle-associated bacteria-an elimination of the non-viable fraction

    Directory of Open Access Journals (Sweden)

    Maria-Judith Gonsalves

    Full Text Available Abstract Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42 h showed that at the end of 24 h, growth coefficient (k of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, ‘k’ value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g = 0.564, the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, ‘g’ of non-viable fraction (particle-associated bacteria = 0.615, Free = 0.0086 was much greater than the viable fraction (particle-associated bacteria = 0.056, Free = 0.068. Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the “persistent variants” where the viable fraction multiply and release their progeny.

  6. Effective Parameters on Increasing Filamentous Bacteria and Their Effects on Membrane Fouling in MBR

    Directory of Open Access Journals (Sweden)

    Hossein Hazrati

    2013-03-01

    Full Text Available Over 90 percent of the wastewater treatment plants in Iran use activated sludge process. Due to increase in organic loading rates, most of these plants do not have appropriate performance. For upgrading these systems and decreasing production of the excess sludge, a UASB reactor can be used as pretreatment for decreasing the organic loading prior to the activated sludge system. Also for improving the effluent quality, a membrane can be replaced for secondary sedimentation tank, i.e. changing activated sludge to membrane bioreactor. In this study, the effect of significant changes in feed composition, due to the introduction of UASB reactor; have been investigated on the population of filamentous bacteria, COD and TS removal efficiency and membrane fouling. The results showed that the population of filamentous bacteria increased rapidly from 5 to 100 Count/µL. However, this increase does not have considerable effect on membrane fouling. With increasing MLSS concentration, the number of filamentous bacteria increased from 100 to 400Count/µL. As a result, the trans membrane pressure was raised from 1.5 to 3kpa and overall membrane resistance was increased against the effluent flux. For reducing the filamentous bacteria, a dose of 20 g Cl2 /Kg MLSS was added in few intervals for two days. It was also found the number of filamentous bacteria decreased from 400 to 100 after 5 days without decreasing the other microorganisms’ population significantly. The trans membrane pressure was also retained without any further increase.

  7. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    Science.gov (United States)

    Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  8. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    Directory of Open Access Journals (Sweden)

    Alexandra B Wolf

    Full Text Available The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus and a motile rod-shaped bacterium (Bacillus weihenstephanensis to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions. These data, combined with information on bacterial motility (expansion potential across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  9. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  10. Hot Ta filament resistance in-situ monitoring under silane containing atmosphere

    International Nuclear Information System (INIS)

    Grunsky, D.; Schroeder, B.

    2008-01-01

    Monitoring of the electrical resistance of the Ta catalyst during the hot wire chemical vapor deposition (HWCVD) of thin silicon films gives information about filament condition. Using Ta filaments for silane decomposition not only the well known strong changes at the cold ends, but also changes of the central part of the filament were observed. Three different phenomena can be distinguished: silicide (stoichiometric Ta X Si Y alloys) growth on the filament surfaces, diffusion of Si into the Ta filament and thick silicon deposits (TSD) formation on the filament surface. The formation of different tantalum silicides on the surface as well as the in-diffusion of silicon increase the filament resistance, while the TSDs form additional electrical current channels and that result in a decrease of the filament resistance. Thus, the filament resistance behaviour during ageing is the result of the competition between these two processes

  11. Automated image analysis for quantification of filamentous bacteria

    DEFF Research Database (Denmark)

    Fredborg, Marlene; Rosenvinge, Flemming Schønning; Spillum, Erik

    2015-01-01

    in systems relying on colorimetry or turbidometry (such as Vitek-2, Phoenix, MicroScan WalkAway). The objective was to examine an automated image analysis algorithm for quantification of filamentous bacteria using the 3D digital microscopy imaging system, oCelloScope. Results Three E. coli strains displaying...

  12. Selective grazing from protist over enteric bacteria in an aquatic system

    International Nuclear Information System (INIS)

    Dominguez, M. S.; Escalante, A. H.; Folabella, A. M.; Zamora, A. S.

    2009-01-01

    Its very clear that the grazing from protozoan can be an important source of mortality for the suspended bacteria, both in marine and freshwater environments. Considering that the presence of fecal contamination its a frequent phenomenon in this environments, and that Escherichia coli and members of Enterococcus genera are indicators of microbiology water quality, we analyze the effect of grazing from protozoan over E. coli and Enterococcus faecalis in de Los Padres Lagoon waters (Buenos Aires, Argentina) 37 degree centigrade 56'30'' S, 57 degree centigrade 44'30'' W). (Author)

  13. Selective grazing from protist over enteric bacteria in an aquatic system

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, M. S.; Escalante, A. H.; Folabella, A. M.; Zamora, A. S.

    2009-07-01

    Its very clear that the grazing from protozoan can be an important source of mortality for the suspended bacteria, both in marine and freshwater environments. Considering that the presence of fecal contamination its a frequent phenomenon in this environments, and that Escherichia coli and members of Enterococcus genera are indicators of microbiology water quality, we analyze the effect of grazing from protozoan over E. coli and Enterococcus faecalis in de Los Padres Lagoon waters (Buenos Aires, Argentina) 37 degree centigrade 56'30'' S, 57 degree centigrade 44'30'' W). (Author)

  14. Insights into the genome of large sulfur bacteria revealed by analysis of single filaments

    DEFF Research Database (Denmark)

    Mussmann, Marc; Hu, Fen Z.; Richter, Michael

    2007-01-01

    Beggiatoa to overcome non-overlapping availabilities of electron donors and acceptors while gliding between oxic and sulfidic zones. The first look into the genome of these filamentous sulfur-oxidizing bacteria substantially deepens the understanding of their evolution and their contribution to sulfur......Marine sediments are frequently covered by mats of the filamentous Beggiatoa and other large nitrate-storing bacteria that oxidize hydrogen sulfide using either oxygen or nitrate, which they store in intracellular vacuoles. Despite their conspicuous metabolic properties and their biogeochemical...

  15. Diversity and importance of filamentous bacteria in biological nutrient removal wastewater treatment plants – a worldwide survey

    DEFF Research Database (Denmark)

    Nierychlo, Marta; McIlroy, Simon Jon; Ziegler, Anja Sloth

    Filamentous bacteria are present in wastewater treatment plants (WWTPs) worldwide where they play an important role by providing structural backbone for activated sludge (AS) flocs and thus ensuring good settling properties. However, their excessive growth may lead to inter-floc bridging, which i...... demonstrated limited diversity of abundant filamentous bacteria in AS community around the globe presenting a hope for solution of sludge settling problems if we can couple the knowledge of filaments identity and their physiology....

  16. Role of Tellurite Resistance Operon in Filamentous Growth of Yersinia pestis in Macrophages.

    Science.gov (United States)

    Ponnusamy, Duraisamy; Clinkenbeard, Kenneth D

    2015-01-01

    Yersinia pestis initiates infection by parasitism of host macrophages. In response to macrophage infections, intracellular Y. pestis can assume a filamentous cellular morphology which may mediate resistance to host cell innate immune responses. We previously observed the expression of Y. pestis tellurite resistance proteins TerD and TerE from the terZABCDE operon during macrophage infections. Others have observed a filamentous response associated with expression of tellurite resistance operon in Escherichia coli exposed to tellurite. Therefore, in this study we examine the potential role of Y. pestis tellurite resistance operon in filamentous cellular morphology during macrophage infections. In vitro treatment of Y. pestis culture with sodium tellurite (Na2TeO3) caused the bacterial cells to assume a filamentous phenotype similar to the filamentous phenotype observed during macrophage infections. A deletion mutant for genes terZAB abolished the filamentous morphologic response to tellurite exposure or intracellular parasitism, but without affecting tellurite resistance. However, a terZABCDE deletion mutant abolished both filamentous morphologic response and tellurite resistance. Complementation of the terZABCDE deletion mutant with terCDE, but not terZAB, partially restored tellurite resistance. When the terZABCDE deletion mutant was complemented with terZAB or terCDE, Y. pestis exhibited filamentous morphology during macrophage infections as well as while these complemented genes were being expressed under an in vitro condition. Further in E. coli, expression of Y. pestis terZAB, but not terCDE, conferred a filamentous phenotype. These findings support the role of Y. pestis terZAB mediation of the filamentous response phenotype; whereas, terCDE confers tellurite resistance. Although the beneficial role of filamentous morphological responses by Y. pestis during macrophage infections is yet to be fully defined, it may be a bacterial adaptive strategy to macrophage

  17. Magnetoresistance Behavior of Conducting Filaments in Resistive-Switching NiO with Different Resistance States.

    Science.gov (United States)

    Zhao, Diyang; Qiao, Shuang; Luo, Yuxiang; Chen, Aitian; Zhang, Pengfei; Zheng, Ping; Sun, Zhong; Guo, Minghua; Chiang, Fu-Kuo; Wu, Jian; Luo, Jianlin; Li, Jianqi; Kokado, Satoshi; Wang, Yayu; Zhao, Yonggang

    2017-03-29

    The resistive switching (RS) effect in various materials has attracted much attention due to its interesting physics and potential for applications. NiO is an important system and its RS effect has been generally explained by the formation/rupture of Ni-related conducting filaments. These filaments are unique since they are formed by an electroforming process, so it is interesting to explore their magnetoresistance (MR) behavior, which can also shed light on unsolved issues such as the nature of the filaments and their evolution in the RS process, and this behavior is also important for multifunctional devices. Here, we focus on MR behavior in NiO RS films with different resistance states. Rich and interesting MR behaviors have been observed, including the normal and anomalous anisotropic magnetoresistance and tunneling magnetoresistance, which provide new insights into the nature of the filaments and their evolution in the RS process. First-principles calculation reveals the essential role of oxygen migration into the filaments during the RESET process and can account for the experimental results. Our work provides a new avenue for exploration of the conducting filaments in resistive switching materials and is significant for understanding the mechanism of RS effect and multifunctional devices.

  18. Image processing for identification and quantification of filamentous bacteria in in situ acquired images.

    Science.gov (United States)

    Dias, Philipe A; Dunkel, Thiemo; Fajado, Diego A S; Gallegos, Erika de León; Denecke, Martin; Wiedemann, Philipp; Schneider, Fabio K; Suhr, Hajo

    2016-06-11

    In the activated sludge process, problems of filamentous bulking and foaming can occur due to overgrowth of certain filamentous bacteria. Nowadays, these microorganisms are typically monitored by means of light microscopy, commonly combined with staining techniques. As drawbacks, these methods are susceptible to human errors, subjectivity and limited by the use of discontinuous microscopy. The in situ microscope appears as a suitable tool for continuous monitoring of filamentous bacteria, providing real-time examination, automated analysis and eliminating sampling, preparation and transport of samples. In this context, a proper image processing algorithm is proposed for automated recognition and measurement of filamentous objects. This work introduces a method for real-time evaluation of images without any staining, phase-contrast or dilution techniques, differently from studies present in the literature. Moreover, we introduce an algorithm which estimates the total extended filament length based on geodesic distance calculation. For a period of twelve months, samples from an industrial activated sludge plant were weekly collected and imaged without any prior conditioning, replicating real environment conditions. Trends of filament growth rate-the most important parameter for decision making-are correctly identified. For reference images whose filaments were marked by specialists, the algorithm correctly recognized 72 % of the filaments pixels, with a false positive rate of at most 14 %. An average execution time of 0.7 s per image was achieved. Experiments have shown that the designed algorithm provided a suitable quantification of filaments when compared with human perception and standard methods. The algorithm's average execution time proved its suitability for being optimally mapped into a computational architecture to provide real-time monitoring.

  19. Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge.

    Science.gov (United States)

    Rodriguez-Perez, S; Fermoso, F G; Arnaiz, C

    Medium-sized wastewater treatment plants are considered too small to implement anaerobic digestion technologies and too large for extensive treatments. A promising option as a sewage sludge reduction method is the inclusion of anoxic time exposures. In the present study, three different anoxic time exposures of 12, 6 and 4 hours have been studied to reduce sewage sludge production. The best anoxic time exposure was observed under anoxic/oxic cycles of 6 hours, which reduced 29.63% of the biomass production compared with the oxic control conditions. The sludge under different anoxic time exposures, even with a lower active biomass concentration than the oxic control conditions, showed a much higher metabolic activity than the oxic control conditions. Microbiological results suggested that both protozoa density and abundance of filamentous bacteria decrease under anoxic time exposures compared to oxic control conditions. The anoxic time exposures 6/6 showed the highest reduction in both protozoa density, 37.5%, and abundance of filamentous bacteria, 41.1%, in comparison to the oxic control conditions. The groups of crawling ciliates, carnivorous ciliates and filamentous bacteria were highly influenced by the anoxic time exposures. Protozoa density and abundance of filamentous bacteria have been shown as promising bioindicators of biomass production reduction.

  20. Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepcion, Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Strotmann, B.; Gallardo, VA

    2000-01-01

    A population of filamentous sulfur bacteria Thioploca spp. living in the Bay of Concepcion, Chile, and the adjoining shelf area was sampled for 14 mo at 4 to 6 wk intervals to investigate the influence of seasonal variations in upwelling intensity and oxygen concentrations on the population dynam......, filaments with short cells in sheaths, populating the upper 7 cm of the sediment, and filaments without sheaths living at the sediment surface....

  1. Evaluation of the local temperature of conductive filaments in resistive switching materials

    International Nuclear Information System (INIS)

    Yalon, E; Cohen, S; Gavrilov, A; Ritter, D

    2012-01-01

    The resistive switching effect in metal oxides and other dielectric materials is among the leading future non-volatile memory technologies. Resistive switching is widely ascribed to the formation and rupture of conductive filaments in the oxide, which are generated by temperature-enhanced nano-scale ion migration or other thermal effects. In spite of the central role of the local filament temperature on the switching effect, as well as on the conduction and reliability physics, no measurement methods of the filament temperature are yet available. In this work, we report on a method for evaluating the conducting filament temperature, using a metal–insulator–semiconductor bipolar transistor structure. The filament temperature is obtained by analyzing the thermal excitation rate of electrons from the filament Fermi level into the conduction band of a p-type semiconductor electrode. Measurements were carried out to obtain the conductive filament temperature in hafnia at varying ambient temperatures in the range of 3–300 K. Significant Joule heating of the filament was observed across the entire measured ambient temperature range. The extracted temperatures provide physical insight into the resistive switching effect. (paper)

  2. UV-induced filamentation in bacteria of the generum Erwinia

    Energy Technology Data Exchange (ETDEWEB)

    Prokulevich, V A; Tomichev, Yu K

    1988-09-01

    It is experimentally shown that cells of 56 pectolytic Erwinia strains isolated at different tomus in different states from various natural sources are converted into filaments under UV-light effect in relatively low doses which allows one to refer them to natural Fil/sup +/ - organisms. Ability to filamentation in Erwinia bacterium correlates with secretion process to the environment of pectolytic enzymes. Bacteria of 9 E.herbicola strains investigated (without pectatlyase secretion) after irradiation do not form stretched cells. Based on the results obtained a conclusion is drawn that increased ENA49 E.chrysanthemic cell sensitivity to UV light results from its natural defect in the system, providing for cell division processes like the one revealed in E.CoLiB and Lon/sup -/ - mutants of E.Coli K-12.

  3. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, de M.; Boer, de W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  4. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, M.; De Boer, W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  5. Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp, off the coast of Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB; Fossing, HA

    1996-01-01

    The filamentous sulfur bacteria Thioploca spp, produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm dean into the sediment, The structure of the Thioploca communities off the Bay...

  6. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    DEFF Research Database (Denmark)

    Jørgensen, BB; Gallardo, VA

    1999-01-01

    communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate...... with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate...

  7. Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria.

    Science.gov (United States)

    Yamada, Takashi

    2013-01-01

    Some phages from genus Inovirus use host or bacteriophage-encoded site-specific integrases or recombinases establish a prophage state. During integration or excision, a superinfective form can be produced. The three states (free, prophage, and superinfective) of such phages exert different effects on host bacterial phenotypes. In Ralstonia solanacearum, the causative agent of bacterial wilt disease of crops, the bacterial virulence can be positively or negatively affected by filamentous phages, depending on their state. The presence or absence of a repressor gene in the phage genome may be responsible for the host phenotypic differences (virulent or avirulent) caused by phage infection. This strategy of virulence control may be widespread among filamentous phages that infect pathogenic bacteria of plants.

  8. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A

    2004-01-01

    Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria...... (Chlorobi) and the filamentous anoxygenic phototrophic bacteria ("Chloroflexales"), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus...... a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic...

  9. Extended spectrum beta-lactamase-producing Escherichia coli forms filaments as an initial response to cefotaxime treatment

    DEFF Research Database (Denmark)

    Kjeldsen, Thea S. B.; Sommer, Morten Otto Alexander; Olsen, John E.

    2015-01-01

    Background: beta-lactams target the peptidoglycan layer in the bacterial cell wall and most beta-lactam antibiotics cause filamentation in susceptible Gram-negative bacteria at low concentrations. The objective was to determine the initial morphological response of cephalosporin resistant CTX-M-1......-producing E. coli to cefotaxime and to determine whether the response depended on the growth phase of the bacterium and the concentration of antibiotic. Results: Two antibiotic resistant strains carrying bla(CTX-M-1) on the chromosome and on an IncI1 plasmid and three sensitive strains were used...... to cefotaxime. The filament formation was restricted to early growth phases and the time the cells grew as filaments was antibiotic concentration dependent. This indicates that antibiotic resistant E. coli undergo the same morphological changes as sensitive bacteria in the presence of beta-lactam antibiotic...

  10. Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp, off the coast of Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB; Fossing, HA

    1996-01-01

    of Concepcion was investigated,vith respect to biomass, species distribution, and three-dimensional orientation of the sheaths, Thioploca sheaths and filaments were found across the whole shelf area within the oxygen minimum zone, The maximum wet weight of sheaths, 800 g m(-2), was found at a depth of 90 m......The filamentous sulfur bacteria Thioploca spp, produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm dean into the sediment, The structure of the Thioploca communities off the Bay...

  11. Radiation-resistant asporogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K [Tokyo Univ. (Japan). Faculty of Agriculture

    1975-09-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned.

  12. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    Yano, Keiji

    1975-01-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  13. Auto- and heterotrophic nanoplankton and filamentous bacteria of Guanabara Bay (RJ, Brazil: estimates of cell/filament numbers versus carbon content

    Directory of Open Access Journals (Sweden)

    Viviane Severiano Santos

    2007-06-01

    Full Text Available Variations of nanoplankton (2-20 µm and filamentous bacteria (diameter: 0.5-2.0 µm of Guanabara Bay (RJ, Brazil are presented, considering cell density and carbon content of auto- and heterotrophs. Our goal is to contribute to future modeling of local trophic dynamics. Subsurface water samples were taken weekly during the year 2000 at two sites: Urca (close to the entrance, more saline, eutrophic and Ramos (inner area, less saline, hypertrophic. Microscopic analysis was done by epifluorescence and cell density was converted to biomass through cell biovolume. Total nanoplankton was about 10(8 cells.l-1 in most samples (>57%, and total filamentous bacteria densities varied from 10(5 to 10(8 fil.l-1. Autotroph density was one order of magnitude higher at Ramos, both for nanoplankton (Md: 10(8cells.l-1 at Ramos and 10(7cells.l-1 at Urca and for filamentous bacteria (Md: 10(6 fil.l-1 at Ramos and 10(5 fil.l-1 at Urca. The same was observed for autotrophic biomass (Md: 10³µgC.l-1 at Ramos and 10¹µgC.l-1 at Urca for nanoplankton; Md: 28µgC.l-1 at Ramos and 1.4µgC.l-1 at Urca for filamentous bacteria. The relative contribution of autotrophs increased after conversion to biomass. Seasonal variation was conspicuous for filamentous bacteria at both sites and for nanoplankton only at Ramos, with maximum autotrophic abundances during the rainy period (spring-summer.Variações do nanoplâncton (2-20µm e bactérias filamentosas (diâmetro: 0.5-2.0 µm da Baía de Guanabara (RJ, Brasil são apresentadas, considerando densidade celular e biomassa de autótrofos e heterótrofos. A meta deste trabalho é contribuir para uma futura modelagem da dinâmica trófica neste sistema. Amostras subsuperficiais de água foram coletadas semanalmente durante um ano em dois pontos: Urca (próximo à entrada, mais salino, eutrófico e Ramos (no interior, menos salino, hipertrófico. Foi feita análise por microscopia de epifluorescência, com densidade celular

  14. Hybrid Wound Filaments for Greater Resistance to Impacts

    Science.gov (United States)

    DeLay, Thomas K.; Patterson, James E.; Olson, Michael A.

    2008-01-01

    A hybrid material containing wound filaments made of a hybrid of high-strength carbon fibers and poly(phenylene benzobisoxazole) [PBO] fibers is discussed. This hybrid material is chosen in an effort to increase the ability of the pressure vessel to resist damage by low-speed impacts (e.g., dropping of tools on the vessel or bumping of the vessel against hard objects during installation and use) without significantly increasing the weight of the vessel. While the basic concept of hybridizing fibers in filament-wound structures is not new, the use of hybridization to increase resistance to impacts is an innovation, and can be expected to be of interest in the composite-pressure-vessel industry. The precise types and the proportions of the high-strength carbon fibers and the PBO fibers in the hybrid are chosen, along with the filament-winding pattern, to maximize the advantageous effects and minimize the disadvantageous effects of each material. In particular, one seeks to (1) take advantage of the ability of the carbon fibers to resist stress rupture while minimizing their contribution to vulnerability of the vessel to impact damage and (2) take advantage of the toughness of the PBO fibers while minimizing their contribution to vulnerability of the vessel to stress rupture. Experiments on prototype vessels fabricated according to this concept have shown promising results. At the time of reporting the information for this article, research toward understanding and optimizing the performances of PBO fibers so as to minimize their contribution to vulnerability of the pressure vessel to stress rupture had yet to be performed.

  15. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment

    Science.gov (United States)

    Svahn, K. Stefan; Göransson, Ulf; El-Seedi, Hesham; Bohlin, Lars; Larsson, D.G. Joakim; Olsen, Björn; Chryssanthou, Erja

    2012-01-01

    Background Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive molecules. PMID:22957125

  16. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment

    Directory of Open Access Journals (Sweden)

    K. Stefan Svahn

    2012-05-01

    Full Text Available Background: Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods: In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results: Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion: This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive molecules.

  17. Cultural characteristics of chromium resistant filamentous cyanobacteria isolated from local environment in Pakistan

    International Nuclear Information System (INIS)

    Hameed, A.; Hasnain, S.

    2005-01-01

    Many filamentous cyanobacteria were isolated from different places: fields, ponds, polluted water and soils from Muredkey and Kasur tanneries area, near Lahore, Pakistan. Different media like BG 11 medium, Bold Basal medium, Chu's number 10 medium, Gorham's medium and modified SAG medium, in standard forms and with slight variations of ingredients, different pH, temperature and light regimes were checked for the optimum growth of isolates. The isolation procedure was repeated with different concentrations of chromium to select the resistant strains, These selected strains grew on chromium of range 100-200 micro gml/sup -1/ in BG 11 medium. Cyanobacteria were maintained in solid and in liquid media with/without shaking. Cyanobacterial strains were collected from natural habitats that were accompanied by a diversified group of organisms including bacteria, protozoan and rotifers etc. In order to eliminate these agents termed as contaminants, we used several methods including phenol treatment, use of antibiotic and careful manual picking of filamentous cyanobacteria. Resistance of these strains against different heavy metal (ZnSO/sub 4/, MnSO/sub 4/, NiSO/sub 4/, CoCl/sub 2/, Pb (NO/sub 3/)/sub 3/, CuSO/sub 4/, HgCl/sub 2/, AgNO/sub 3/ and CdCl/sub 2/) and antibiotics (erythromycin, streptomycin, kanamycin, chloramphenicol and neomycin) was evolved. Optimum temperature was 35 deg. C with pH 9 for the reduction of Cr (VI) in to Cr (III) in majority. (author)

  18. Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepcion, Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Strotmann, B.; Gallardo, VA

    2000-01-01

    A population of filamentous sulfur bacteria Thioploca spp. living in the Bay of Concepcion, Chile, and the adjoining shelf area was sampled for 14 mo at 4 to 6 wk intervals to investigate the influence of seasonal variations in upwelling intensity and oxygen concentrations on the population...... dynamics. The Thioploca population was described by its biomass, total number and diameter of sheaths, number of trichomes and species per sheath, and abundance and depth distribution of different morphological forms, e.g. trichome diameters and ratios of cell-length to diameter. Throughout the summer...... of Thioploca spp, changed strongly with seasonal variations, but the population structure remained mainly unchanged. During the 'El Nino' event in 1998, with high oxygen and low primary production the biomass was very low. In the Bay of Concepcion 2 populations of filamentous sulfur bacteria were observed...

  19. Particle-associated flagellates: swimming patterns, colonization rates, and grazing on attached bacteria

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Grossart, H.P.; Ploug, H.

    2004-01-01

    Some pelagic flagellates colonize particles, such as marine snow, where they graze on bacteria and thus impact the dynamics of the attached microbial communities. Particle colonization is governed by motility. Swimming patterns of 2 particle-associated flagellates, Bodo designis and Spumella sp......., are very different, the former swimming slowly in an erratic, random pattern, and the latter faster and along smooth helixes of variable amplitude and frequency. At spatial scales exceeding ca. 50 mum, the motility of B. designis can be described as a random walk and modeled as diffusion. Spumella sp...

  20. Tetrazolium Reduction-Malachite Green Method for Assessing the Viability of Filamentous Bacteria in Activated Sludge

    Science.gov (United States)

    Bitton, Gabriel; Koopman, Ben

    1982-01-01

    A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabolizing filaments after chlorine application to control the bulking of activated sludge. Images PMID:16345999

  1. Gradients in fracture force and grazing resistance across canopy layers in seven tropical grass species

    NARCIS (Netherlands)

    Jacobs, A.A.A.; Scheper, J.A.; Benvenutti, M.A.; Gordon, I.J.; Poppi, D.P.; Elgersma, A.

    2013-01-01

    In reproductive swards, stems can act as a barrier that affects the grazing behaviour of ruminant livestock. The barrier effect of stems is closely associated with both the force required to fracture the stems and the density of these stems (in combination, these make up grazing resistance), and

  2. Fire and grazing influence site resistance to Bromus tectorum through their effects on shrub, bunchgrass and biocrust communities in the Great Basin (USA)

    Science.gov (United States)

    Condon, Lea A.; Pyke, David A.

    2018-01-01

    Shrubs, bunchgrasses and biological soil crusts (biocrusts) are believed to contribute to site resistance to plant invasions in the presence of cattle grazing. Although fire is a concomitant disturbance with grazing, little is known regarding their combined impacts on invasion resistance. We are the first to date to test the idea that biotic communities mediate the effects of disturbance on site resistance. We assessed cover of Bromus tectorum, shrubs, native bunchgrasses, lichens and mosses in 99 burned and unburned plots located on similar soils where fires occurred between 12 and 23 years before sampling. Structural equation modeling was used to test hypothesized relationships between environmental and disturbance characteristics, the biotic community and resistance to B. tectorum cover. Characteristics of fire and grazing did not directly relate to cover of B. tectorum. Relationships were mediated through shrub, bunchgrass and biocrust communities. Increased site resistance following fire was associated with higher bunchgrass cover and recovery of bunchgrasses and mosses with time since fire. Evidence of grazing was more pronounced on burned sites and was positively correlated with the cover of B. tectorum, indicating an interaction between fire and grazing that decreases site resistance. Lichen cover showed a weak, negative relationship with cover of B. tectorum. Fire reduced near-term site resistance to B. tectorum on actively grazed rangelands. Independent of fire, grazing impacts resulted in reduced site resistance to B. tectorum, suggesting that grazing management that enhances plant and biocrust communities will also enhance site resistance.

  3. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria

    International Nuclear Information System (INIS)

    Swulius, Matthew T.; Chen, Songye; Jane Ding, H.; Li, Zhuo; Briegel, Ariane; Pilhofer, Martin; Tocheva, Elitza I.; Lybarger, Suzanne R.; Johnson, Tanya L.; Sandkvist, Maria; Jensen, Grant J.

    2011-01-01

    Highlights: → No long helical filaments are seen near or along rod-shaped bacterial inner membranes by electron cryo-tomography. → Electron cryo-tomography has the resolution to detect single filaments in vivo. -- Abstract: How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (>80 nm) helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.

  4. Alteration of Rumen Bacteria and Protozoa Through Grazing Regime as a Tool to Enhance the Bioactive Fatty Acid Content of Bovine Milk.

    Science.gov (United States)

    Bainbridge, Melissa L; Saldinger, Laurel K; Barlow, John W; Alvez, Juan P; Roman, Joe; Kraft, Jana

    2018-01-01

    Rumen microorganisms are the origin of many bioactive fatty acids (FA) found in ruminant-derived food products. Differences in plant leaf anatomy and chemical composition between cool- and warm-season pastures may alter rumen microorganisms, potentially enhancing the quantity/profile of bioactive FA available for incorporation into milk. The objective of this study was to identify rumen bacteria and protozoa and their cellular FA when cows grazed a warm-season annual, pearl millet (PM), in comparison to a diverse cool-season pasture (CSP). Individual rumen digesta samples were obtained from five Holstein cows in a repeated measures design with 28-day periods. The treatment sequence was PM, CSP, then PM. Microbial DNA was extracted from rumen digesta and sequence reads were produced with Illumina MiSeq. Fatty acids (FA) were identified in rumen bacteria and protozoa using gas-liquid chromatography/mass spectroscopy. Microbial communities shifted in response to grazing regime. Bacteria of the phylum Bacteroidetes were more abundant during PM than CSP ( P rumenic acid, and α-linolenic acid in milk. In conclusion, grazing regime can potentially be used to alter microbial communities shifting the FA profile of microbial cells, and subsequently, alter the milk FA profile.

  5. Study of self-compliance behaviors and internal filament characteristics in intrinsic SiOx-based resistive switching memory

    International Nuclear Information System (INIS)

    Chang, Yao-Feng; Zhou, Fei; Chen, Ying-Chen; Lee, Jack C.; Fowler, Burt

    2016-01-01

    Self-compliance characteristics and reliability optimization are investigated in intrinsic unipolar silicon oxide (SiO x )-based resistive switching (RS) memory using TiW/SiO x /TiW device structures. The program window (difference between SET voltage and RESET voltage) is dependent on external series resistance, demonstrating that the SET process is due to a voltage-triggered mechanism. The program window has been optimized for program/erase disturbance immunity and reliability for circuit-level applications. The SET and RESET transitions have also been characterized using a dynamic conductivity method, which distinguishes the self-compliance behavior due to an internal series resistance effect (filament) in SiO x -based RS memory. By using a conceptual “filament/resistive gap (GAP)” model of the conductive filament and a proton exchange model with appropriate assumptions, the internal filament resistance and GAP resistance can be estimated for high- and low-resistance states (HRS and LRS), and are found to be independent of external series resistance. Our experimental results not only provide insights into potential reliability issues but also help to clarify the switching mechanisms and device operating characteristics of SiO x -based RS memory

  6. Physiological and genetics studies of highly radiation-resistant bacteria

    International Nuclear Information System (INIS)

    Keller, L.C.

    1981-01-01

    The phenomenon of radiation resistance was studied using micrococci and Moraxella-Acinetobacter capable of surviving very high doses of gamma radiation which were isolated from foods. Physiological age, or growth phase, was found to be an important factor in making comparisons of radiation-resistance among different bacteria and their mutants. Radiation-resistant bacteria were highly resistant to the lethal effect of nitrosoguanidine used for mutagenesis. Studies of relative resistance of radiation-resistant bacteria, radiation-sensitive mutants, and nonradiation-resistant bacteria to killing by different chemical mutagens did not reveal a correlation between the traits of radiation resistance and mutagen resistance among different strains. Comparisons of plasmid profiles of radiation-resistant bacteria and selected radiation-sensitive mutants suggested the possibility that plasmids may carry genes involved in radiation resistance

  7. Anisotropic magnetoresistance and tunneling magnetoresistance of conducting filaments in NiO with different resistance states

    Science.gov (United States)

    Zhao, Diyang; Qiao, Shuang; Luo, Yuxiang; Chen, Aitian; Zhang, Pengfei; Zheng, Ping; Sun, Zhong; Guo, Minghua; Chiang, F.-K.; Wu, Jian; Luo, Jianlin; Li, Jianqi; Wang, Yayu; Zhao, Yonggang; Tsinghua University Team; Chinese Academy of Sciences Collaboration

    Resistive switching (RS) effect in conductor/insulator/conductor thin-film stacks has attracted much attention due to its interesting physics and potentials for applications. NiO is one of the most representative systems and its RS effect has been generally explained by the formation and rupture of Ni related conducting filaments, which are very unique since they are formed by electric forming process. We study the MR behaviors in NiO RS films with different resistance states. Rich and interesting MR behaviors were observed, including the normal and anomalous anisotropic magnetoresistance (AMR) and tunneling magnetoresistance (TMR), etc., which provide new insights into the nature of the filaments and their evolution in the resistive switching process. First-principles calculation reveals the essential role of oxygen migration into the filaments during the RESET process and can account for the experimental results. Our work provides a new avenue for the exploration of the conducting filaments in RS materials, and is significant for understanding the RS mechanism as well as multifunctional device design.

  8. Low-power resistive random access memory by confining the formation of conducting filaments

    International Nuclear Information System (INIS)

    Huang, Yi-Jen; Lee, Si-Chen; Shen, Tzu-Hsien; Lee, Lan-Hsuan; Wen, Cheng-Yen

    2016-01-01

    Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO_x/silver nanoparticles/TiO_x/AlTiO_x, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistance state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO_x layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.

  9. Relationships among Body Condition, Insulin Resistance and Subcutaneous Adipose Tissue Gene Expression during the Grazing Season in Mares.

    Directory of Open Access Journals (Sweden)

    Shaimaa Selim

    Full Text Available Obesity and insulin resistance have been shown to be risk factors for laminitis in horses. The objective of the study was to determine the effect of changes in body condition during the grazing season on insulin resistance and the expression of genes associated with obesity and insulin resistance in subcutaneous adipose tissue (SAT. Sixteen Finnhorse mares were grazing either on cultivated high-yielding pasture (CG or semi-natural grassland (NG from the end of May to the beginning of September. Body measurements, intravenous glucose tolerance test (IVGTT, and neck and tailhead SAT gene expressions were measured in May and September. At the end of grazing, CG had higher median body condition score (7 vs. 5.4, interquartile range 0.25 vs. 0.43; P=0.05 and body weight (618 kg vs. 572 kg ± 10.21 (mean ± SEM; P=0.02, and larger waist circumference (P=0.03 than NG. Neck fat thickness was not different between treatments. However, tailhead fat thickness was smaller in CG compared to NG in May (P=0.04, but this difference disappeared in September. Greater basal and peak insulin concentrations, and faster glucose clearance rate (P=0.03 during IVGTT were observed in CG compared to NG in September. A greater decrease in plasma non-esterified fatty acids during IVGTT (P<0.05 was noticed in CG compared to NG after grazing. There was down-regulation of insulin receptor, retinol binding protein 4, leptin, and monocyte chemoattractant protein-1, and up-regulation of adiponectin (ADIPOQ, adiponectin receptor 1 and stearoyl-CoA desaturase (SCD gene expressions in SAT of both groups during the grazing season (P<0.05. Positive correlations were observed between ADIPOQ and its receptors and between SCD and ADIPOQ in SAT (P<0.01. In conclusion, grazing on CG had a moderate effect on responses during IVGTT, but did not trigger insulin resistance. Significant temporal differences in gene expression profiles were observed during the grazing season.

  10. Isolation of radiation-resistant bacteria without exposure to irradiation

    International Nuclear Information System (INIS)

    Sanders, S.W.; Maxcy, R.B.

    1979-01-01

    Resistance to desiccation was utilized in the selection of highly radiation-resistant asporogenous bacteria from nonirradiated sources. A bacterial suspension in phosphate buffer was dried in a thin film at 25 0 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the number of radiation-sensitive bacteria. Further selection for radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, therby avoiding the toxic effect of irradiated media. The similarity of radiation resistance and identifying characteristics in irradiated and non-irradiated isolates should allay some concerns that highly radiation-resistance bacteria have been permanently altered by radiation selection

  11. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.

    Science.gov (United States)

    Kühn, Marco J; Schmidt, Felix K; Eckhardt, Bruno; Thormann, Kai M

    2017-06-13

    Many bacterial species swim by rotating single polar helical flagella. Depending on the direction of rotation, they can swim forward or backward and change directions to move along chemical gradients but also to navigate their obstructed natural environment in soils, sediments, or mucus. When they get stuck, they naturally try to back out, but they can also resort to a radically different flagellar mode, which we discovered here. Using high-speed microscopy, we monitored the swimming behavior of the monopolarly flagellated species Shewanella putrefaciens with fluorescently labeled flagellar filaments at an agarose-glass interface. We show that, when a cell gets stuck, the polar flagellar filament executes a polymorphic change into a spiral-like form that wraps around the cell body in a spiral-like fashion and enables the cell to escape by a screw-like backward motion. Microscopy and modeling suggest that this propagation mode is triggered by an instability of the flagellum under reversal of the rotation and the applied torque. The switch is reversible and bacteria that have escaped the trap can return to their normal swimming mode by another reversal of motor direction. The screw-type flagellar arrangement enables a unique mode of propagation and, given the large number of polarly flagellated bacteria, we expect it to be a common and widespread escape or motility mode in complex and structured environments.

  12. Selective grazing by protists upon enteric bacteria in an aquatic system Predación selectiva de bacterias entéricas por protistas en un ambiente acuático

    Directory of Open Access Journals (Sweden)

    María S Domínguez

    2012-03-01

    Full Text Available It is well known that protozoan grazing can be an important agent of mortality for suspended bacteria, both in marine and freshwater environments. Considering that the presence of fecal contamination is a frequent phenomenon in tríese environments, and that Escherichia coli and the genus Enterococcus are indicators of microbiological water quality, the effect of protozoan grazing on E. coli and Enterococcus faecalis in Los Padres Lagoon waters (Buenos Aires, Argentina, 37° 56'30" S, 57° 44'30" W was herein analyzed. Microcosm assays were carried out, simulating lacustrine conditions, confronting suspensions of autochthonous bacterivorous protozoans with suspensions of autochthonous and collection strains of E. coli and E. faecalis, combined and individually. Daily counts were made for evaluating bacterial survival and the number of ciliates. The results obtained indicate that there is a preferential sequence for bacterial removal in the water, where E. faecalis is more grazing-resistant than E. coli. Moreover, it was noted that the origin of bacterial strains influenced their sensitivity for grazing, at least in the short term (e.g. the collection strains were less affected. We conclude that protozoan grazing can modify the relative abundance of fecal indicator microorganisms, thus altering the results of water quality studies.Está bien establecido que la predación por protozoos puede ser un factor importante de mortalidad para las bacterias en suspensión, tanto en ambientes marinos como de agua dulce. Considerando que la contaminación fecal es un fenómeno frecuentemente observado en estos ambientes, y que Escherichia coli y miembros del género Enterococcus son indicadores de calidad microbiológica del agua, se analizó el efecto de la predación por protozoos sobre E. coli y Enterococcus faecalis en aguas de la Laguna de los Padres (Buenos Aires, Argentina, 37° 56'30" S, 57° 44'30" W. Se realizaron ensayos a microcosmos, simulando

  13. Marine echinoderms as reservoirs of antimicrobial resistant bacteria

    Directory of Open Access Journals (Sweden)

    Catarina Marinho

    2014-06-01

    Full Text Available Echinoderms are benthic animals that play an important ecological role in marine communities occupying diverse trophic levels in the marine food chains. The majority of echinoderms feed on small particles of edible matter, although they can eat many kinds of food (Clark, 1968. Although, some echinoderms species has been facing an emerging demand for human consumption, particularly in Asian and Mediterranean cuisine, where these animals can be eaten raw (Kelly, 2005; Micael et al., 2009. Echinoderms own an innate immune mechanism that allows them to defend themselves from high concentrations of bacteria, viruses and fungus they are often exposed, on marine sediment (Janeway and Medzhitov, 1998, Cooper, 2003. The most frequent genera of gut bacteria in echinoderms are Vibrio, Pseudomonas, Flavobacterium, and Aeromonas; nevertheless Enterococcus spp. and Escherichia coli are also present (Harris, 1993; Marinho et al., 2013. Moreover, fecal resistant bacteria found in the aquatic environment might represent an index of marine pollution (Foti et al., 2009, Kummerer, 2009. Several studies had been lead in order to identify environmental reservoirs for antibiotic-resistant bacteria in populations of fish, echinoderms and marine mammals, and they all support the thesis that these animals may serve as reservoirs since they had acquired resistant microbial species (Johnson et al., 1998, Marinho et al., 2013, Miranda and Zemelman, 2001. However, to our knowledge, there are only available in bibliography one study of antimicrobial resistant bacteria isolated from marine echinoderms (Marinho et al., 2013, which stats that their provenience in this environment is still unclear. Antimicrobial resistance outcomes from the intensive use of antimicrobial drugs in human activities associated with various mechanisms for bacteria genetic transfer (Barbosa and Levy, 2000, Coque et al., 2008. Antibiotic-resistant bacteria enter into water environments where they are

  14. Role of lattice structure and low temperature resistivity in fast-electron-beam filamentation in carbon

    International Nuclear Information System (INIS)

    Dance, R J; Butler, N M H; Gray, R J; MacLellan, D A; Rusby, D R; Xu, H; Neely, D; McKenna, P; Scott, G G; Robinson, A P L; Zielbauer, B; Bagnoud, V; Desjarlais, M P

    2016-01-01

    The influence of low temperature (eV to tens-of-eV) electrical resistivity on the onset of the filamentation instability in fast-electron transport is investigated in targets comprising of layers of ordered (diamond) and disordered (vitreous) carbon. It is shown experimentally and numerically that the thickness of the disordered carbon layer influences the degree of filamentation of the fast-electron beam. Strong filamentation is produced if the thickness is of the order of 60 μm or greater, for an electron distribution driven by a sub-picosecond, mid-10 20 Wcm −2 laser pulse. It is shown that the position of the vitreous carbon layer relative to the fast-electron source (where the beam current density and background temperature are highest) does not have a strong effect because the resistive filamentation growth rate is high in disordered carbon over a wide range of temperatures up to the Spitzer regime. (paper)

  15. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    International Nuclear Information System (INIS)

    Malkin, A.J.

    2010-01-01

    The extraordinary ability of indigenous microorganisms, like metal-resistant bacteria, for biotransformation of toxic compounds is of considerable interest for the emerging area of environmental bioremediation. However, the underlying mechanisms by which metal-resistant bacteria transform toxic compounds are currently unknown and await elucidation. The project's objective was to study stress-induced responses of metal-resistant bacteria to environmental changes and chemical stimulants. This project involved a multi-institutional collaboration of our LLNL group with the group of Dr. H.-Y. Holman (Lawrence Berkeley National Laboratory). In this project, we have utilized metal-resistant bacteria Arthrobacter oxydans as a model bacterial system. We have utilized atomic force microscopy (AFM) to visualize for the first time at the nanometer scale formation of stress-induced structures on bacterial surfaces in response to Cr (VI) exposure. We have demonstrated that structure, assembly, and composition of these stress-induced structures are dependent on Cr (VI) concentrations. Our AFM observations of the appearance and development of stress-induced layers on the surfaces of Arthrobacter oxydans bacteria exposed to Cr (VI) were confirmed by Dr. Holman's biochemical, electron microscopy, and synchrotron infrared spectromicroscopy studies. In general, in vitro imaging of live microbial and cellular systems represents one of the most challenging issues in application of AFM. Various approaches for immobilization of bacteria on the substrate for in vitro imaging were tested in this project. Imaging of live bacteria was achieved, however further optimization of experimental methods are needed for high-resolution visualization of the cellular environmental structural dynamics by AFM. This project enhanced the current insight into molecular architecture, structural and environmental variability of bacterial systems. The project partially funded research for two book chapters (1

  16. Beer spoilage bacteria and hop resistance.

    Science.gov (United States)

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  17. Direct observation of conductive filament formation in Alq3 based organic resistive memories

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Y., E-mail: yan.busby@unamur.be; Pireaux, J.-J. [Research Center in the Physics of Matter and Radiation (PMR), Laboratoire Interdisciplinaire de Spectroscopie Electronique (LISE), University of Namur, B-5000 Namur (Belgium); Nau, S.; Sax, S. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); List-Kratochvil, E. J. W. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); Institute of Solid State Physics, Graz University of Technology, A-8010 Graz (Austria); Novak, J.; Banerjee, R.; Schreiber, F. [Institute of Applied Physics, Eberhard-Karls-Universität Tübingen, D-72076 Tübingen (Germany)

    2015-08-21

    This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq{sub 3}). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq{sub 3}/Ag memory device stacks leading to conductive filament formation. The morphology of Alq{sub 3}/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filaments and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.

  18. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  19. Resistance of Bacteria to Biocides.

    Science.gov (United States)

    Maillard, Jean-Yves

    2018-04-01

    Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.

  20. plasmid mediated resistance in multidrug resistant bacteria isolated

    African Journals Online (AJOL)

    User

    PLASMID MEDIATED RESISTANCE IN MULTIDRUG RESISTANT BACTERIA. ISOLATED FROM CHILDREN WITH SUSPECTED SEPTICAEMIA IN ZARIA,. NIGERIA. AbdulAziz, Z. A.,1* Ehinmidu, J. O.,1 Adeshina, G. O.,1 Pala, Y. Y2., Yusuf, S. S2. and. Bugaje, M. A.3. 1Department of Pharmaceutics and Pharmaceutical ...

  1. Antibiotic-resistant bacteria in drinking water.

    Science.gov (United States)

    Armstrong, J L; Shigeno, D S; Calomiris, J J; Seidler, R J

    1981-08-01

    We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.

  2. Multidrug resistance in enteric and other gram-negative bacteria.

    Science.gov (United States)

    George, A M

    1996-05-15

    In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved.

  3. Microbial quality of soil from the Pampa biome in response to different grazing pressures

    Directory of Open Access Journals (Sweden)

    Rafael S. Vargas

    2015-06-01

    Full Text Available The aim of this study was to evaluate the impact of different grazing pressures on the activity and diversity of soil bacteria. We performed a long-term experiment in Eldorado do Sul, southern Brazil, that assessed three levels of grazing pressure: high pressure (HP, with 4% herbage allowance (HA, moderate pressure (MP, with 12% HA, and low pressure (LP, with 16% HA. Two reference areas were also assessed, one of never-grazed native vegetation (NG and another of regenerated vegetation after two years of grazing (RG. Soil samples were evaluated for microbial biomass and enzymatic (β-glucosidase, arylsulfatase and urease activities. The structure of the bacterial community and the population of diazotrophic bacteria were evaluated by RFLP of the 16S rRNA and nifH genes, respectively. The diversity of diazotrophic bacteria was assessed by partial sequencing of the 16S rDNA gene. The presence of grazing animals increased soil microbial biomass in MP and HP. The structures of the bacterial community and the populations of diazotrophic bacteria were altered by the different grazing managements, with a greater diversity of diazotrophic bacteria in the LP treatment. Based on the characteristics evaluated, the MP treatment was the most appropriate for animal production and conservation of the Pampa biome.

  4. Antimicrobial resistance in faecal samples from buffalo, wildebeest and zebra grazing together with and without cattle in Tanzania

    DEFF Research Database (Denmark)

    Katakweba, A. A. S.; Møller, K. S.; Muumba, J.

    2015-01-01

    number of resistant Escherichia coli and Enterococci than cattle, but with no general influence in wild life of co-grazing with cattle. Vancomycin-resistant Enterococci were detected in wild life samples, and E. coli resistant to cefotaxime and enrofloxacin were observed among isolates from all wild life...

  5. Use of Lecane rotifers for limiting Thiothrix filamentous bacteria in bulking activated sludge in a dairy wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Kowalska Ewa

    2014-01-01

    Full Text Available Excessive growth of filamentous bacteria is a serious problem in many dairy wastewater treatment plants (WWTPs. The objective of the study was to determine whether Lecane inermis rotifers were able to reduce the density of Thiothrix bacteria in activated sludge originating from a dairy WWTP, as well as to identify the impact of rotifers on other organisms in sludge. On a laboratory scale, three experiments were conducted in which activated sludge with a predominance of Thiothrix was inoculated with rotifers at an initial concentration of app. 600 individuals/mL. The results showed that the rotifers, by feeding on the bacterium filaments, are able to reduce significantly the quantity of Thiothrix. A decline in Thiothrix abundance coincided with an improvement of the sedimentation properties of activated sludge. In addition, it was proven that Lecane inermis did not negatively affect the number of Protozoa and Metazoa in activated sludge.

  6. Transfer of antibiotic resistant bacteria from animals to man

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Gerner-Smidt, P.

    1999-01-01

    for animals either for therapy or for growth promotion. Antibiotic resistance in zoonotic bacteria constitute a public health hazard, primarily through the increased risk of treatment failures. This paper describes the zoonotic bacteria, salmonella, campylobacter, yersinia and enterohaemorrhagic E. coli (EHEC......Antibiotic resistance develops in zoonotic bacteria in response to antibiotics used in food animals. A close association exists between the amounts of antibiotics used and the levels of resistance observed. The classes of antibiotics routinely used for treatment of human infections are also used......). Infections with these agents do not generally require antibiotic therapy, but in some cases antibiotics are essential to obtain a successful cure. The levels and types of resistance observed in zoonotic bacteria in some countries, especially the increasing levels of fluoroquinolone resistance in salmonella...

  7. Release of Antibiotic Resistant Bacteria by a Waste Treatment Plant from Romania.

    Science.gov (United States)

    Lupan, Iulia; Carpa, Rahela; Oltean, Andreea; Kelemen, Beatrice Simona; Popescu, Octavian

    2017-09-27

    The occurrence and spread of bacterial antibiotic resistance are subjects of great interest, and the role of wastewater treatment plants has been attracting particular interest. These stations are a reservoir of bacteria, have a large range of organic and inorganic substances, and the amount of bacteria released into the environment is very high. The main purpose of the present study was to assess the removal degree of bacteria with resistance to antibiotics and identify the contribution of a wastewater treatment plant to the microbiota of Someşul Mic river water in Cluj county. The resistance to sulfamethoxazole and tetracycline and some of their representative resistance genes: sul1, tet(O), and tet(W) were assessed in this study. The results obtained showed that bacteria resistant to sulphonamides were more abundant than those resistant to tetracycline. The concentration of bacteria with antibiotic resistance changed after the treatment, namely, bacteria resistant to sulfamethoxazole. The removal of all bacteria and antibiotic-resistant bacteria was 98-99% and the degree of removal of bacteria resistant to tetracycline was higher than the bacteria resistant to sulfamethoxazole compared to total bacteria. The wastewater treatment plant not only contributed to elevating ARG concentrations, it also enhanced the possibility of horizontal gene transfer (HGT) by increasing the abundance of the intI1 gene. Even though the treatment process reduced the concentration of bacteria by two orders of magnitude, the wastewater treatment plant in Cluj-Napoca contributed to an increase in antibiotic-resistant bacteria concentrations up to 10 km downstream of its discharge in Someşul Mic river.

  8. Antimicrobial resistance in aerobic bacteria isolated from oral ...

    African Journals Online (AJOL)

    ... varied antimicrobial susceptibility patterns. The oral cavities of hunting dogs are laden with multi-drug resistant bacteria of significant public health importance that could be transferred to humans through contaminated hunted games and bite wound. Keywords: Aerobic bacteria, Antimicrobial resistance, Dogs, Oral cavity, ...

  9. Frequency of Resistance and Susceptible Bacteria Isolated from Houseflies

    Directory of Open Access Journals (Sweden)

    B Davari

    2010-12-01

    Conclusion: Houseflies collected from hospitals and slaughterhouse may be involved in the spread of drug resistant bacteria and may increase the potential of human exposure to drug resistant bacteria.

  10. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  11. Effect of radiation decontamination on drug-resistant bacteria

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    More than 80% of food poisoning bacteria such as Salmonella are reported as antibiotic-resistant to at least one type antibiotic, and more than 50% as resistant to two or more. For the decontamination of food poisoning bacteria in foods, radiation resistibility on drug-resistant bacteria were investigated compared with drug-sensitive bacteria. Possibility on induction of drug-resistant mutation by radiation treatment was also investigated. For these studies, type strains of Escherichia coli S2, Salmonella enteritidis YK-2 and Staphylococcus aureus H12 were used to induce drug-resistant strains with penicillin G. From the study of radiation sensitivity on the drug-resistant strain induced from E. coli S2, D 10 value was obtained to be 0.20 kGy compared with 0.25 kGy at parent strain. On S. enteritidis YK-2, D 10 value was obtained to be 0.14 kGy at drug-resistant strain compared with 0.16 kGy at parent strain. D 10 value was also obtained to be 0.15 kGy at drug-resistant strain compared with 0.21 kGy at parent strain of St. aureus H12. Many isolates of E. coli 157:H7 or other type of E. coli from meats such as beef were resistant to penicillin G, and looked to be no relationship on radiation resistivities between drug-resistant strains and sensitive strains. On the study of radiation sensitivity on E. coli S2 at plate agars containing antibiotics, higher survival fractions were obtained at higher doses compared with normal plate agar. The reason of higher survival fractions at higher doses on plate agar containing antibiotics should be recovery of high rate of injured cells by the relay of cell division, and drug-resistant strains by mutation are hardly induced by irradiation. (author)

  12. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    International Nuclear Information System (INIS)

    Kevin Kim, Minyoung; Drescher, Knut; Shun Pak, On; Stone, Howard A; Bassler, Bonnie L

    2014-01-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen. (paper)

  13. Antibiotic-Resistant Enteric Bacteria in Environmental Waters

    Directory of Open Access Journals (Sweden)

    Lisa M. Casanova

    2016-11-01

    Full Text Available Sources of antibiotic resistant organisms, including concentrated animal feeding operations (CAFOs, may lead to environmental surface and groundwater contamination with resistant enteric bacteria of public health concern. The objective of this research is to determine whether Salmonella, Escherichia coli, Yersinia enterocolitica, and enterococci resistant to clinically relevant antibiotics are present in surface and groundwater sources in two eastern North Carolina counties, Craven and Wayne. 100 surface and groundwater sites were sampled for Salmonella, E. coli, and enterococci, and the bacteria isolated from these samples were tested for susceptibility to clinically relevant antibiotics. Salmonella were detected at low levels in some surface but not groundwater. E. coli were in surface waters but not ground in both counties. Enterococci were present in surface water and a small number of groundwater sites. Yersinia was not found. Bacterial densities were similar in both counties. For Salmonella in surface water, the most frequent type of resistance was to sulfamethoxazole. There was no ciprofloxacin resistance. There were a few surface water E. coli isolates resistant to chloramphenicol, gentamicin, and ampicillin. Enterococci in surface water had very low levels of resistance to vancomycin, chloramphenicol, ampicillin, and streptomycin. E. coli and enterococci are present more frequently and at higher levels in surface water than Salmonella, but groundwater contamination with any of these organisms was rare, and low levels of resistance can be found sporadically. Resistant bacteria are relatively uncommon in these eastern N.C. surface and groundwaters, but they could pose a risk of human exposure via ingestion or primary contact recreation.

  14. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter

    DEFF Research Database (Denmark)

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei

    2016-01-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bac......The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram......-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across.......6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor– encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance...

  15. [Impact of fluoroquinolone use on multidrug-resistant bacteria emergence].

    Science.gov (United States)

    Nseir, S; Ader, F; Marquette, C-H; Durocher, A

    2005-01-01

    During the last two decades, fluoroquinolone use has significantly increased in Europe and in the USA. This could be explained by the arrival of newer fluoroquinolones with antipneumoccal activity. Increased use of fluoroquinolones is associated with higher rates of bacterial resistance to these antibiotics. Resistance of Gram-negative bacilli to fluoroquinolones is increasing in industrialized countries. In addition, fluoroquinolone use has been identified as a risk factor for colonization and infection to methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanni, extending-spectrum beta-lactamase producing Gram negative bacilli, and multidrug-resistant bacteria. Nosocomial infections due to multidrug-resistant bacteria are associated with higher mortality and morbidity rates. This could be related to more frequent inappropriate initial antibiotic treatment in these patients. Limiting the use of fluoroquinolones, limiting the duration of treatment with fluoroquinolones, and using appropriate dosage of these antibiotics could be suggested to reduce resistance to these antibiotics and to reduce the emergence of multidrug-resistant bacteria.

  16. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    Directory of Open Access Journals (Sweden)

    A. Sobhani

    2004-05-01

    Full Text Available Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 positive blood cultures from 1999 to 2001. Variables under study were bacterial strains, antibiotics examined in antibiogram, microbial resistance, and patients' age and sex. The most common isolated bacteria were Salmonella typhi (22.2% and the least common ones were Citrobacter (1.6%. The highest antibiotic resistance was seen against amoxicillin (88.4%. The proportion of males to females was1: 1/1 and the most common age group was 15-44 (47.3%. Common bacteria and pattern of antibiotic resistance were different in some areas and this subject requires further studies in the future.

  17. Low Prevalence of Carbapenem-Resistant Bacteria in River Water: Resistance Is Mostly Related to Intrinsic Mechanisms.

    Science.gov (United States)

    Tacão, Marta; Correia, António; Henriques, Isabel S

    2015-10-01

    Carbapenems are last-resort antibiotics to handle serious infections caused by multiresistant bacteria. The incidence of resistance to these antibiotics has been increasing and new resistance mechanisms have emerged. The dissemination of carbapenem resistance in the environment has been overlooked. The main goal of this research was to assess the prevalence and diversity of carbapenem-resistant bacteria in riverine ecosystems. The presence of frequently reported carbapenemase-encoding genes was inspected. The proportion of imipenem-resistant bacteria was on average 2.24 CFU/ml. Imipenem-resistant strains (n=110) were identified as Pseudomonas spp., Stenotrophomonas maltophilia, Aeromonas spp., Chromobacterium haemolyticum, Shewanella xiamenensis, and members of Enterobacteriaceae. Carbapenem-resistant bacteria were highly resistant to other beta-lactams such as quinolones, aminoglycosides, chloramphenicol, tetracyclines, and sulfamethoxazole/trimethoprim. Carbapenem resistance was mostly associated with intrinsically resistant bacteria. As intrinsic resistance mechanisms, we have identified the blaCphA gene in 77.3% of Aeromonas spp., blaL1 in all S. maltophilia, and blaOXA-48-like in all S. xiamenensis. As acquired resistance mechanisms, we have detected the blaVIM-2 gene in six Pseudomonas spp. (5.45%). Integrons with gene cassettes encoding resistance to aminoglycosides (aacA and aacC genes), trimethoprim (dfrB1b), and carbapenems (blaVIM-2) were found in Pseudomonas spp. Results suggest that carbapenem resistance dissemination in riverine ecosystems is still at an early stage. Nevertheless, monitoring these aquatic compartments for the presence of resistance genes and its host organisms is essential to outline strategies to minimize resistance dissemination.

  18. Fabrication and properties of Ag-Bi2223 tapes with resistive barriers for filament decoupling

    International Nuclear Information System (INIS)

    Inada, Ryoji; Fukumoto, Yohei; Yasunami, Taeko; Nakamura, Yuichi; Oota, Akio; Li Chengshang; Zhang Pingxiang

    2007-01-01

    In this paper, we prepared the Bi2223 multifilamentary tapes with Ca 2 CuO 3 + Bi2212 as interfilamentary resistive barriers to suppress the electromagnetic coupling among the filaments under AC external magnetic field. The tapes with thin barrier layers of Ca 2 CuO 3 + 30 wt% Bi2212 around the filaments were prepared by using a standard powder-in-tube (PIT) method. The outside surface of monocore Ag-sheathed rods was coated by barrier materials. Then, the several coated monocore wires were stacked and packed into another Ag or Ag-Mg alloy tube. The packed tube was drawn and rolled into tape shape. The tape was subsequently sintered to form Bi2223 phase inside filaments. For the characterization of tapes, X-ray diffraction measurements were performed to investigate the phase formation inside the filaments. The uniformity of transport properties (J c ) for barrier tapes were evaluated on the order of several metre lengths and compared with the result for the tapes without barriers. Finally, AC loss characteristics under AC parallel transverse magnetic field were investigated to examine the effect of introducing the barriers on the filament decoupling

  19. Comparison of phenanthrene removal by Aspergillus niger ATC 16404 (filamentous fungi) and Pseudomonas putida KT2442 (bacteria) in enriched nutrient-liquid medium

    Science.gov (United States)

    Hamzah, N.; Kamil, N. A. F. M.; Singhal, N.; Padhye, L.; Swift, S.

    2018-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) is one of the persistent and carcinogenic pollutants that needs to be eliminated from the environment. The study on degradation of PAHs by bacteria is thoroughly discussed in literature. Many strains of bacteria were chosen in order to eliminate the PAHs compound in the environment. However, there are less study on the filamentous fungi although fungi appears to be an abundant population and as dominant group in PAHs contaminated soil habitats [1], [2]. This study was conducted to determine and compare the Phenanthrene (PHE) removal by fungi and bacteria in excessive nutrient-liquid culture. Then, the survival for both strains was investigated in the presence of PHE and finally, the analysis on the fungi-PHE interaction was carried out. In condition of excessive nutrient, the removal of PHE was evaluated for fungi and bacteria in batch experiment for 5 days. PHE removal for A.niger and P.putida were found to be 97% and 20% respectively after 5 days. The presence of PHE was negatively inhibits the grow of the bacteria and the fungus. The PHE uptake mechanism for A.niger was observed to be a passive transport mechanism with 45 μg per g fungus dry weight within 24 hr of incubation. As a conclusion, filamentous fungi have the potent role in the removal of PHE as well as bacteria but depending on the strains and the condition of the environment. Fungi is known to co-metabolize the PHE meanwhile, PHE can be used as sole carbon for bacteria. This preliminary result is significant in understanding the bacteria-fungi-PHE interaction to enhance the degradation of PAHs for co-culture study in the future.

  20. Gene Expression Analysis of Four Radiation-resistant Bacteria

    OpenAIRE

    Gao, Na; Ma, Bin-Guang; Zhang, Yu-Sheng; Song, Qin; Chen, Ling-Ling; Zhang, Hong-Yu

    2009-01-01

    To investigate the general radiation-resistant mechanisms of bacteria, bioinformatic method was employed to predict highly expressed genes for four radiation-resistant bacteria, i.e. Deinococcus geothermalis (D. geo), Deinococcus radiodurans (D. rad), Kineococcus radiotolerans (K. rad) and Rubrobacter xylanophilus (R. xyl). It is revealed that most of the three reference gene sets, i.e. ribosomal proteins, transcription factors and major chaperones, are generally highly expressed in the four ...

  1. Plasmid mediated resistance in multidrug resistant bacteria isolated ...

    African Journals Online (AJOL)

    The antibiotic susceptibility testing of isolated bacteria associated with septicaemia in children were carried out using standard microbiological protocol. The MAR index for the test bacterial isolates was determined and the bacterial isolates that displayed multiple antibiotic resistance were investigated for the presence of ...

  2. Stalking Antibiotic-Resistant Bacteria in Common Vegetables

    Science.gov (United States)

    Brock, David; Boeke, Caroline; Josowitz, Rebecca; Loya, Katherine

    2004-01-01

    The study developed a simple experimental protocol for studying antibiotic resistant bacteria that will allow students to determine the proportion of such bacteria found on common fruit and vegetable crops. This protocol can open up the world of environmental science and show how human behavior can dramatically alter ecosystems.

  3. Diversity of ionizing radiation-resistant bacteria obtained from the Taklimakan Desert.

    Science.gov (United States)

    Yu, Li Zhi-Han; Luo, Xue-Song; Liu, Ming; Huang, Qiaoyun

    2015-01-01

    So far, little is known about the diversity of the radiation-resistant microbes of the hyperarid Taklimakan Desert. In this study, ionizing radiation (IR)-resistant bacteria from two sites in Xinjiang were investigated. After exposing the arid (water content of 0.8 ± 0.3%) and non-arid (water content of 21.3 ± 0.9%) sediment samples to IR of 3000 Gy using a (60)Co source, a total of 52 γ-radiation-resistant bacteria were isolated from the desert sample. The 16S rRNA genes of all isolates were sequenced. The phylogenetic tree places these isolates into five groups: Cytophaga-Flavobacterium-Bacteroides, Proteobacteria, Deinococcus-Thermus, Firmicutes, and Actinobacteria. Interestingly, this is the first report of radiation-resistant bacteria belonging to the genera Knoellia, Lysobacter, Nocardioides, Paracoccus, Pontibacter, Rufibacter and Microvirga. The 16s rRNA genes of four isolates showed low sequence similarities to those of the published species. Phenotypic analysis showed that all bacteria in this study are able to produce catalase, suggesting that these bacteria possess reactive oxygen species (ROS)-scavenging enzymes. These radiation-resistant bacteria also displayed diverse metabolic properties. Moreover, their radiation resistances were found to differ. The diversity of the radiation-resistant bacteria in the desert provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of ROS-scavenging systems that protect cells against oxidative damage caused by desiccation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Monitoring of drug resistance amplification and attenuation with the use of tetracycline-resistant bacteria during wastewater treatment

    Science.gov (United States)

    Harnisz, Monika; Korzeniewska, Ewa; Niestępski, Sebastian; Osińska, Adriana; Nalepa, Beata

    2017-11-01

    The objective of this study was to monitor changes (amplification or attenuation) in antibiotic resistance during wastewater treatment based on the ecology of tetracycline-resistant bacteria. The untreated and treated wastewater were collected in four seasons. Number of tetracycline-(TETR) and oxytetracycline-resistant (OTCR) bacteria, their qualitative composition, minimum inhibitory concentrations (MICs), sensitivity to other antibiotics, and the presence of tet (A, B, C, D, E) resistance genes were determined. TETR and OTCR counts in untreated wastewater were 100 to 1000 higher than in treated effluent. OTCR bacterial counts were higher than TETR populations in both untreated and treated wastewater. TETR isolates were not dominated by a single bacterial genus or species, whereas Aeromonas hydrophila and Aeromonas sobria were the most common in OTCR isolates. The treatment process attenuated the drug resistance of TETR bacteria and amplified the resistance of OTCR bacteria. In both microbial groups, the frequency of tet(A) gene increased in effluent in comparison with untreated wastewater. Our results also indicate that treated wastewater is a reservoir of multiple drug-resistant bacteria as well as resistance determinants which may pose a health hazard for humans and animals when released to the natural environment.

  5. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.

    Science.gov (United States)

    Yosef, Ido; Manor, Miriam; Kiro, Ruth; Qimron, Udi

    2015-06-09

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.

  6. [Incidence of multi-resistant bacteria in Intensive Care Units of Chilean hospitals].

    Science.gov (United States)

    Acuña, M Paz; Cifuentes, Marcela; Silva, Francisco; Rojas, Álvaro; Cerda, Jaime; Labarca, Jaime

    2017-12-01

    Incidence of multi-resistant bacteria is an indicator that permits better estimation of the magnitude of bacterial resistance in hospitals. To evaluate the incidence of relevant multi-drug resistant bacteria in intensive care units (ICUs) of Chile. Participating hospitals submitted information about the number of isolates from infected or colonized patients with 7 epidemiologically relevant multi-resistant bacteria in adult and pediatric ICUs between January 1, 2014 and October 31, 2015 and the number of bed days occupied in these units in the same period was requested. With these data incidence was calculated per 1,000 patient days for each unit. Information from 20 adults and 9 pediatric ICUs was reviewed. In adult ICUs the bacteria with the highest incidence were K. pneumoniae ESBL [4.72 × 1,000 patient day (1.21-13.89)] and oxacillin -resistant S. aureus [3.85 (0.71-12.66)]. In the pediatric units the incidence was lower, highlighting K. pneumoniae ESBL [2.71 (0-7.11)] and carbapenem -resistant P. aeruginosa [1.61 (0.31-9.25)]. Important differences between hospitals in the incidence of these bacteria were observed. Incidence of multi-resistant bacteria in adult ICU was significantly higher than in pediatric ICU for most of the studied bacterias.

  7. Antimicrobial resistant bacteria in the food chain

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2003-01-01

    Antimicrobials are used for treatment and prevention of disease in food animals and as feed additives for growth promotion. All uses lead to the development of resistant bacteria, some of which are pathogenic to humans. Current main concerns are with resistance in Salmonella and Campylobacter...

  8. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  9. The evolution of compositionally and functionally distinct actin filaments.

    Science.gov (United States)

    Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C

    2015-06-01

    The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.

  10. Isolation and Characterization of Pb Resistant Bacteria from Cilalay Lake, Indonesia

    Directory of Open Access Journals (Sweden)

    Kesi Kurnia

    2015-12-01

    Full Text Available Pollution of water environment with heavy metals is becoming one of the most severe environmental and human health hazards. Lead (Pb is a major pollutant and highly toxic to human, animals, plants, and microbes. Toxic metals are difficult to remove from the environment, since they cannot be chemically or biologically degraded and are ultimately indestructible. Biological approaches based on metal-resistant microorganisms have received a great deal of attention as alternative remediation processes. This study aim to isolate and characterize Pb resistant of heterotrophic bacteria in Cilalay Lake, West Java, Indonesia. The water samples were collected along three points around Cilalay Lake. Water physical and chemical determination was performed using the Water Quality Checker. The bacterial isolates were screened on Triptone Glucose Yeast (TGY agar plates. Afterwards selected isolates were grown on Nutrient Agar media 50% with supplemented Pb 100 ppm by the standard disk. Population of resistant bacteria was counted. The result from metal resistant bacteria indicated that all isolates were resistant. The most abundant type of resistant bacteria to lead was Gram negative more than Gram positive. Identified have metal resistant bacteria could be useful for the bioremediation of heavy metal contaminated sewage and waste water

  11. Trends of 9,416 multidrug-resistant Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Viviane Decicera Colombo Oliveira

    2015-06-01

    Full Text Available Summary Objective: a resistance of hospital-acquired bacteria to multiple antibiotics is a major concern worldwide. The objective of this study was to investigate multidrugresistant (MDR bacteria, clinical specimens, origin of specimen and trends, and correlate these with bacterial sensitivity and consumption of antimicrobials. Methods: 9,416 bacteria of nosocomial origin were evaluated in a tertiary hospital, from 1999 to 2008. MDR was defined for Gram-negative bacteria (GNB as resistance to two or more classes/groups of antibiotics. Results: GNB MDR increased by 3.7 times over the study period (p<0.001. Acinetobacter baumannii was the most prevalent (36.2%. Over the study period, there were significant 4.8-fold and 14.6-fold increases for A. baumannii and K. pneumoniae (p<0.001, respectively. Sixty-seven percent of isolates of MDR GNB were isolated in intensive care units. The resistance of A. baumannii to carbapenems increased from 7.4 to 57.5% during the study period and concomitant with an increased consumption. Conclusion: that decade showed prevalence of GNB and a gradual increase in MDR GNB. There was an increase in carbapenem resistance of 50.1% during the study.

  12. Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin

    Directory of Open Access Journals (Sweden)

    Siamak Yazdankhah

    2014-09-01

    Full Text Available Farmed animals such as pig and poultry receive additional Zn and Cu in their diets due to supplementing elements in compound feed as well as medical remedies. Enteral bacteria in farmed animals are shown to develop resistance to trace elements such as Zn and Cu. Resistance to Zn is often linked with resistance to methicillin in staphylococci, and Zn supplementation to animal feed may increase the proportion of multiresistant E. coli in the gut. Resistance to Cu in bacteria, in particular enterococci, is often associated with resistance to antimicrobial drugs like macrolides and glycopeptides (e.g. vancomycin. Such resistant bacteria may be transferred from the food-producing animals to humans (farmers, veterinarians, and consumers. Data on dose-response relation for Zn/Cu exposure and resistance are lacking; however, it seems more likely that a resistance-driven effect occurs at high trace element exposure than at more basal exposure levels. There is also lack of data which could demonstrate whether Zn/Cu-resistant bacteria may acquire antibiotic resistance genes/become antibiotics resistant, or if antibiotics-resistant bacteria are more capable to become Zn/Cu resistant than antibiotics-susceptible bacteria. Further research is needed to elucidate the link between Zn/Cu and antibiotic resistance in bacteria.

  13. Antibiotic-Resistant Enteric Bacteria in Environmental Waters

    OpenAIRE

    Lisa M. Casanova; Mark D. Sobsey

    2016-01-01

    Sources of antibiotic resistant organisms, including concentrated animal feeding operations (CAFOs), may lead to environmental surface and groundwater contamination with resistant enteric bacteria of public health concern. The objective of this research is to determine whether Salmonella, Escherichia coli, Yersinia enterocolitica, and enterococci resistant to clinically relevant antibiotics are present in surface and groundwater sources in two eastern North Carolina counties, Craven and Wayne...

  14. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  15. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists.

    Directory of Open Access Journals (Sweden)

    Shuyang Sun

    Full Text Available Protozoan grazing is a major mortality factor faced by bacteria in the environment. Vibrio cholerae, the causative agent of the disease cholera, is a natural inhabitant of aquatic ecosystems, and its survival depends on its ability to respond to stresses, such as predation by heterotrophic protists. Previous results show that grazing pressure induces biofilm formation and enhances a smooth to rugose morphotypic shift, due to increased expression of Vibrio polysaccharide (VPS. In addition to negatively controlling vps genes, the global quorum sensing (QS regulator, HapR, plays a role in grazing resistance as the ΔhapR strain is efficiently consumed while the wild type (WT is not. Here, the relative and combined contributions of VPS and QS to grazing resistance were investigated by exposing VPS and HapR mutants and double mutants in VPS and HapR encoding genes at different phases of biofilm development to amoeboid and flagellate grazers. Data show that the WT biofilms were grazing resistant, the VPS mutants were less resistant than the WT strain, but more resistant than the QS mutant strain, and that QS contributes to grazing resistance mainly in mature biofilms. In addition, grazing effects on biofilms of mixed WT and QS mutant strains were investigated. The competitive fitness of each strain in mixed biofilms was determined by CFU and microscopy. Data show that protozoa selectively grazed the QS mutant in mixed biofilms, resulting in changes in the composition of the mixed community. A small proportion of QS mutant cells which comprised 4% of the mixed biofilm biovolume were embedded in grazing resistant WT microcolonies and shielded from predation, indicating the existence of associational protection in mixed biofilms.

  16. Radiation-resistant bacteria and their application to metal and radionuclides bioremediation

    International Nuclear Information System (INIS)

    Wang Jianlong

    2004-01-01

    Microorganisms have a number of applications in the nuclear industry, which would benefit from the use of radiation-resistant microorganisms. Environmentally isolated bacteria have shown to be resistant to gamma irradiation up to a dose of 30,000 Gy. It has also been reported that the presence of ionizing radiation may induce radio-resistance in bacteria. Recent demonstrations of the removal and immobilization of inorganic contaminants by microbial transformations, sorption and mineralization show the potential of both natural and engineered microorganisms as bioremedial tools. This review is to provide an overview of the application of radiation-resistant bacteria to decontamination of metal and radionuclide. (authors)

  17. Drug-Resistant Bacteria: On the Edge of a Crisis | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... drug-resistant bacteria research program. Why are certain bacteria becoming more resistant to drugs? There is a ... a national, even global crisis of drug-resistant bacteria. Why is that? The more we see this ...

  18. High resistance of some oligotrophic bacteria to ionizing radiation

    International Nuclear Information System (INIS)

    Nikitin, D.I.; Tashtemirova, M.A.; Pitryuk, I.A.; Sorokin, V.V.; Oranskaya, M.S.; Nikitin, L.E.

    1994-01-01

    The resistance of seven cultures of eutrophic and oligotrophic bacteria to gamma radiation (at doses up to 360 Gy) was investigated. The bacteria under study were divided into three groups according to their survival ability after irradiation. Methylobacterium organophilum and open-quotes Pedodermatophilus halotoleransclose quotes (LD 50 = 270 Gy) were highly tolerant. By their tolerance, these organisms approached Deinococcus radiodurans. Aquatic ring-shaped (toroidal) bacteria Flectobacillus major and open-quotes Arcocella aquaticaclose quotes (LD 5 = 173 and 210 Gy, respectively) were moderately tolerant. Eutrophic Pseudomonas fluorescens and Escherichia coli (LD 50 = 43 and 38 Gy, respectively) were the most sensitive. X-ray microanalysis showed that in tolerant bacteria the intracellular content of potassium increased and the content of calcium decreased after irradiation. No changes in the element composition of the eutrophic bacterium E. coli were detected. Possible mechanisms of the resistance of oligotrophic bacteria to gamma radiation are discussed

  19. Characterization of radiation-resistant vegetative bacteria in beef

    International Nuclear Information System (INIS)

    Welch, A.B.; Maxcy, R.B.

    1975-01-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D 10 of 5.4 min at 70 0 C or less. The radiation resistance ranged from D 10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. (auth)

  20. Total resistance of native bacteria as an indicator of changes in the water environment

    Energy Technology Data Exchange (ETDEWEB)

    Harnisz, Monika [Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn (Poland)

    2013-03-15

    This study analyzes changes in the total (intrinsic and acquired) resistance of autochthonous bacteria in a river which is a receiver of treated wastewater. In the analyzed samples, tetracycline contamination levels were low and characteristic of surface water bodies. An increase in the populations of tetracycline-resistant and fluoroquinolone-resistant microorganisms was noted in downstream river water samples in comparison with upstream river water samples, but the above trend was not observed in bacteria resistant to macrolides and β-lactams. The counts of doxycycline-resistant bacteria (DOX{sup R}) were significantly correlated with doxycycline levels. The minimum inhibitory concentrations (MICs) for doxycycline in DOX{sup R} isolates were higher in downstream river water than in upstream river water samples. The discharge of treated wastewater had no effect on the multi-drug resistance of oxytetracycline-resistant and doxycycline-resistant isolates. The results of the experiment indicate that the presence of doxycycline-resistant bacteria is a robust indicator of anthropogenic stress in river water. -- Highlights: ► The total resistance of native bacteria in river which is a receiver of treated wastewater was analyzed. ► Tetracyclines contamination levels were low. ► The counts of doxycycline-resistant bacteria were correlated with doxycycline levels. -- The presence of doxycycline-resistant bacteria in rivers can be a robust indicator of anthropogenic stress.

  1. Total resistance of native bacteria as an indicator of changes in the water environment

    International Nuclear Information System (INIS)

    Harnisz, Monika

    2013-01-01

    This study analyzes changes in the total (intrinsic and acquired) resistance of autochthonous bacteria in a river which is a receiver of treated wastewater. In the analyzed samples, tetracycline contamination levels were low and characteristic of surface water bodies. An increase in the populations of tetracycline-resistant and fluoroquinolone-resistant microorganisms was noted in downstream river water samples in comparison with upstream river water samples, but the above trend was not observed in bacteria resistant to macrolides and β-lactams. The counts of doxycycline-resistant bacteria (DOX R ) were significantly correlated with doxycycline levels. The minimum inhibitory concentrations (MICs) for doxycycline in DOX R isolates were higher in downstream river water than in upstream river water samples. The discharge of treated wastewater had no effect on the multi-drug resistance of oxytetracycline-resistant and doxycycline-resistant isolates. The results of the experiment indicate that the presence of doxycycline-resistant bacteria is a robust indicator of anthropogenic stress in river water. -- Highlights: ► The total resistance of native bacteria in river which is a receiver of treated wastewater was analyzed. ► Tetracyclines contamination levels were low. ► The counts of doxycycline-resistant bacteria were correlated with doxycycline levels. -- The presence of doxycycline-resistant bacteria in rivers can be a robust indicator of anthropogenic stress

  2. Identification of lead-resistant endophytic bacteria isolated from rice

    International Nuclear Information System (INIS)

    Perez-Cordero, Alexander; Barraza-Roman, Zafiro; Martinez-Pacheco, Dalila

    2015-01-01

    Resistance of endophytic bacteria in vitro was evaluated at different lead concentrations. The tissue samples of commercial rice varieties at tillering stage were collected during the first half of 2013, in Monteria, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria were isolated in agar R_2A medium. The population density (CFU/g tissue) was determined from each tissue by direct counting of R_2A medium surface. Morphotypes were classified by shape, color, size and appearance. A total of 168 morphotypes were isolated from root, tillers and leaf of different commercial varieties of rice. The lead resistance test is performed in vitro, The lead resistance test was performed in vitro, by the suspensions of endophytic bacteria in log phase and inoculation in minimal medium with five concentrations of lead as Pb (NO_3)_2. The experiment was incubated at 32 degrees celsius and agitated at 150 rpm for five days. The measure of turbidimetry at 600 nm was conduced every hour afterstarting the test. Endophytic bacteria showed the ability to grow at concentrations of 100% of Pb as Pb (NO_3) _2. The presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to differents lead concentration was confirmed as result of the identification with kit API20E. (author) [es

  3. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria.

    Science.gov (United States)

    Arzanlou, Mohsen; Chai, Wern Chern; Venter, Henrietta

    2017-02-28

    Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Antimicrobial-resistant bacteria in wild game in Slovenia

    Science.gov (United States)

    Križman, M.; Kirbiš, A.; Jamnikar-Ciglenečki, U.

    2017-09-01

    Wildlife is usually not exposed to clinically-used antimicrobial agents but can acquire antimicrobial resistance throughout contact with humans, domesticated animals and environments. Samples of faeces from intestines (80 in total) were collected from roe deer (52), wild boars (11), chamois (10) red deer (6) and moufflon (1). After culture on ChromID extended spectrum β-lactamase (ESBL) plates to select for growth of ESBL-producing bacteria, 25 samples produced bacterial colonies for further study. Six species of bacteria were identified from the 25 samples: Stenotrophomonas maltophilia, Serratia fonticola, Stenotrophomonas nitritireducens, Enterococcus faecium, Enterococcus faecalis and Escherichia coli. Two ESBL enzymes were amplified from group TEM and three from group CTX-M-1. Undercooked game meat and salami can be a source of resistant bacteria when animals are not eviscerated properly.

  5. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    Science.gov (United States)

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  6. Emergence of antibiotic-resistant bacteria in patients with Fournier gangrene.

    Science.gov (United States)

    Lin, Wei-Ting; Chao, Chien-Ming; Lin, Hsin-Lan; Hung, Ming-Chran; Lai, Chih-Cheng

    2015-04-01

    This study was conducted to investigate the bacteriology and associated patterns of antibiotic resistance Fournier gangrene. Patients with Fournier's gangrene from 2008 to 2012 were identified from the computerized database in a medical center in southern Taiwan. The medical records of all patients with Fournier's gangrene were reviewed retrospectively. There were 61 microorganisms, including 60 bacteria and one Candida spp, isolated from clinical wound specimens from 32 patients. The most common isolates obtained were Streptococcus spp. (n=12), Peptoniphilus spp. (n=8), Staphylococcus aureus (n=7), Escherichia coli (n=7), and Klebsiella pneumoniae (n=7). Among 21 strains of gram-negative bacilli, five (23.8%) were resistant to fluoroquinolones, and three isolates were resistant to ceftriaxone. Two E. coli strains produced extended-spectrum beta-lactamase. Four of the seven S. aureus isolates were methicillin-resistant. Among 15 anaerobic isolates, nine (60%) were resistant to penicillin, and eight (53.3%) were resistant to clindamycin. Four (26.7%) isolates were resistant to metronidazole. The only independent risk factor associated with mortality was inappropriate initial antibiotic treatment (p=0.021). Antibiotic-resistant bacteria are emerging in the clinical setting of Fournier gangrene. Clinicians should use broad-spectrum antibiotics initially to cover possible antibiotic-resistant bacteria.

  7. Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-κ dielectric based resistive random access memory

    KAUST Repository

    Wu, Xing

    2011-08-29

    Resistive switching in transition metal oxides could form the basis for next-generation non-volatile memory (NVM). It has been reported that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only individually, limiting our understanding of the possibility of multiple conductive filaments nucleation and rupture and the correlation kinetics of their evolution. In this study, direct visualization of uncorrelated multiple conductive filaments in ultra-thin HfO2-based high-κ dielectricresistive random access memory (RRAM) device has been achieved by high-resolution transmission electron microscopy (HRTEM), along with electron energy loss spectroscopy(EELS), for nanoscale chemical analysis. The locations of these multiple filaments are found to be spatially uncorrelated. The evolution of these microstructural changes and chemical properties of these filaments will provide a fundamental understanding of the switching mechanism for RRAM in thin oxide films and pave way for the investigation into improving the stability and scalability of switching memory devices.

  8. Resistive switching in ZrO2 films: physical mechanism for filament formation and dissolution

    International Nuclear Information System (INIS)

    Parreira, Pedro; McVitie, Stephen; MacLaren, D A

    2014-01-01

    Resistive switching devices, also called memristors, have attracted much attention due to their potential memory, logic and even neuromorphic applications. Multiple physical mechanisms underpin the non-volatile switching process and are ultimately believed to give rise to the formation and dissolution of a discrete conductive filament within the active layer. However, a detailed nanoscopic analysis that fully explains all the contributory events remains to be presented. Here, we present aspects of the switching events that are correlated back to tunable details of the device fabrication process. Transmission electron microscopy and atomically resolved electron energy loss spectroscopy (EELS) studies of electrically stressed devices will then be presented, with a view to understanding the driving forces behind filament formation and dissolution

  9. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    International Nuclear Information System (INIS)

    Möller, Jens; Emge, Philippe; Vizcarra, Ima Avalos; Kollmannsberger, Philip; Vogel, Viola

    2013-01-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length. (paper)

  10. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    Science.gov (United States)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  11. Multidrug resistant bacteria in companion animals: impact on animal health and zoonotic aspects

    DEFF Research Database (Denmark)

    Damborg, Peter Panduro

    -resistant bacteria include methicillin-resistant Staphylococcus pseudintermedius (MRSP), methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. These bacteria will be described with focus on their prevalence across Europe, their impact on animal...

  12. Population Screening Using Sewage Reveals Pan-Resistant Bacteria in Hospital and Community Samples.

    Science.gov (United States)

    Meir-Gruber, Lital; Manor, Yossi; Gefen-Halevi, Shiraz; Hindiyeh, Musa Y; Mileguir, Fernando; Azar, Roberto; Smollan, Gill; Belausov, Natasha; Rahav, Galia; Shamiss, Ari; Mendelson, Ella; Keller, Nathan

    2016-01-01

    The presence of pan-resistant bacteria worldwide possesses a threat to global health. It is difficult to evaluate the extent of carriage of resistant bacteria in the population. Sewage sampling is a possible way to monitor populations. We evaluated the presence of pan-resistant bacteria in Israeli sewage collected from all over Israel, by modifying the pour plate method for heterotrophic plate count technique using commercial selective agar plates. This method enables convenient and fast sewage sampling and detection. We found that sewage in Israel contains multiple pan-resistant bacteria including carbapenemase resistant Enterobacteriacae carrying blaKPC and blaNDM-1, MRSA and VRE. blaKPC carrying Klebsiella pneumonia and Enterobacter cloacae were the most common Enterobacteriacae drug resistant bacteria found in the sewage locations we sampled. Klebsiella pneumonia, Enterobacter spp., Escherichia coli and Citrobacter spp. were the 4 main CRE isolated from Israeli sewage and also from clinical samples in our clinical microbiology laboratory. Hospitals and Community sewage had similar percentage of positive samplings for blaKPC and blaNDM-1. VRE was found to be more abundant in sewage in Israel than MRSA but there were more locations positive for MRSA and VRE bacteria in Hospital sewage than in the Community. Therefore, our upgrade of the pour plate method for heterotrophic plate count technique using commercial selective agar plates can be a useful tool for routine screening and monitoring of the population for pan-resistant bacteria using sewage.

  13. Unusual rise in mercury-resistant bacteria in coastal environs

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; De, J.

    A sharp rise in mercury-resistant bacteria (MRB) capable of tolerating very high concentration of Hg was observed over the last 3-4 years in the coastal environs of India. While none or negligible colony-forming units (CFU) of bacteria were counted...

  14. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi

    Directory of Open Access Journals (Sweden)

    Qingxiang Yang

    2016-06-01

    Full Text Available Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1 non-treated; (2 chicken manure-treated and (3 organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB in soil and multiple antibiotic-resistant endophytic bacteria (MAREB in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.

  15. Exploring Post-Treatment Reversion of Antimicrobial Resistance in Enteric Bacteria of Food Animals as a Resistance Mitigation Strategy.

    Science.gov (United States)

    Volkova, Victoriya V; KuKanich, Butch; Riviere, Jim E

    2016-11-01

    Antimicrobial drug use in food animals is associated with an elevation in relative abundance of bacteria resistant to the drug among the animal enteric bacteria. Some of these bacteria are potential foodborne pathogens. Evidence suggests that at least in the enteric nontype-specific Escherichia coli, after treatment the resistance abundance reverts to the background pre-treatment levels, without further interventions. We hypothesize that it is possible to define the distribution of the time period after treatment within which resistance to the administered drug, and possibly other drugs in case of coselection, in fecal bacteria of the treated animals returns to the background pre-treatment levels. Furthermore, it is possible that a novel resistance mitigation strategy for microbiological food safety could be developed based on this resistance reversion phenomenon. The strategy would be conceptually similar to existing antimicrobial drug withdrawal periods, which is a well-established and accepted mitigation strategy for avoiding violative drug residues in the edible products from the treated animals. For developing resistance-relevant withdrawals, a mathematical framework can be used to join the necessary pharmacological, microbiological, and animal production components to project the distributions of the post-treatment resistance reversion periods in the production animal populations for major antimicrobial drug classes in use. The framework can also help guide design of empirical studies into the resistance-relevant withdrawal periods and development of mitigation approaches to reduce the treatment-associated elevation of resistance in animal enteric bacteria. We outline this framework, schematically and through exemplar equations, and how its components could be formulated.

  16. Empirical resistive-force theory for slender biological filaments in shear-thinning fluids

    Science.gov (United States)

    Riley, Emily E.; Lauga, Eric

    2017-06-01

    Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.

  17. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China

    OpenAIRE

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of a...

  18. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran.

    Science.gov (United States)

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. The average level of bacteria ranged from 99 to 1079 CFU/m(3). The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m(3)) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m(3)). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections.

  19. Antimicrobial resistance among pathogenic bacteria from mink (Neovison vison) in Denmark

    DEFF Research Database (Denmark)

    Nikolaisen, Nanett Kvist; Lassen, Desireé Corvera Kløve; Chriél, Mariann

    2017-01-01

    of antimicrobial resistance among pathogenic bacteria isolated from Danish mink during the period 2014-2016. The aim of this investigation was to provide data on antimicrobial resistance and consumption, to serve as background knowledge for new veterinary guidelines for prudent and optimal antimicrobial usage...... and macrolides. Conclusions: The study showed that antimicrobial resistance was common in most pathogenic bacteria from mink, in particular hemolytic E. coli. There is a need of guidelines for prudent use of antimicrobials for mink....

  20. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    Science.gov (United States)

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use. Copyright © 2015. Published by Elsevier Ltd.

  1. Duration of colonization with antimicrobial-resistant bacteria after ICU discharge

    NARCIS (Netherlands)

    Haverkate, Manon R; Derde, Lennie P G; Brun-Buisson, Christian; Bonten, Marc J M; Bootsma, Martin C J|info:eu-repo/dai/nl/304830305

    PURPOSE: Readmission of patients colonized with antimicrobial-resistant bacteria (AMRB) is important in the nosocomial dynamics of AMRB. We assessed the duration of colonization after discharge from the intensive care unit (ICU) with highly resistant Enterobacteriaceae (HRE), methicillin-resistant

  2. [From the discovery of antibiotics to emerging highly drug-resistant bacteria].

    Science.gov (United States)

    Meunier, Olivier

    2015-01-01

    The discovery of antibiotics has enabled serious infections to be treated. However, bacteria resistant to several families of antibiotics and the emergence of new highly drug-resistant bacteria constitute a public health issue in France and across the world. Actions to prevent their transmission are being put in place. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Detection and Characterizations of Genes Resistant to Tetracycline and Sulfa among the Bacteria in Mariculture Water

    Science.gov (United States)

    Qu, L.; Li, Y.; Zhu, P.

    2013-12-01

    One hundred and thirty-five bacteria from maricultural environments were tested for sensitivity to tetracycline and sulfa. Result show that 72% of the bacteria were sulfa-resistant, 36% of the bacteria were tetracycline-resistant, and 16.5% of bacteria showed resistance to both tetracyclines and sulfa ,indicating that the proportion of sulfa and tetracycline resistance bacteria isvery large in the maricultural environments. PCR methods were used to detect if these resistant bacteria carry tetracycline and sulfa resistance genes. Out of the 33 tetracycline-resistant bacteria screened, 3 were positive for tetA, 6 were positive for tetB and no isolate wasboth positive for tetA and tetB. Of the 97 sulfa-resistant bacteria screened, 9 were positive for sul2, 6 were positive for sul1, 1 isolate was positive for bothsul1 and sul2. The minimum inhibitory concentration (MIC) of tetracycline for tetA-carrying isolates were higher than those tetB-carrying isolates.while The MIC of sulfa for sul2-carrying isolates were higher than those sul1-carrying isolates. Indicating that tetA and sul2 gene may play ubknown roles in resisting tetracycline and sulfa than tetB and sul1 genes. The results showed the 4 kinds of genes (tetA,tetB,sul1,sul2) has no host specificity. All these 16S sequence are from the isolates which are positive for the above genes, it indicated the above antibiotic resistance genes are widespread in the environment regardless of the host. While the DNA sequence of these four genes showed tetA, sul1, sul2 genes are conservative in different bacteria , etB gene conserved poorly. The research aim is to get a preliminary understanding of resistance mechanism related to the resistant bacteria and the resistance genes in marine aquaculture environment through the analysis of resistant genes, providing research base for the prevention and treatment of drug-resistant bacteria so as to reduce the threat to the ecological environment, aquaculture and human health.

  4. Antibiotics resistance phenomenon and virulence ability in bacteria from water environment

    Directory of Open Access Journals (Sweden)

    Mohamed I. Azzam

    2017-10-01

    Full Text Available This study aims to determine the impact of five main drains as sources of antibiotics resistant bacteria in River Nile at Rosetta branch, and to generate a baseline data on their virulence ability. Out of 212 bacterial isolates, 39.2% and 60.8% were recovered from drains and Rosetta branch, respectively. Susceptibility of bacteria to different antibiotics showed multiple antibiotics resistances (MAR for the majority of isolates. Meanwhile, sensitivity was mostly directed to ofloxacin and norfloxacin antibiotics. Calculated MAR index values (>0.25 classified area of study as potentially health risk environment. Testing virulence ability of bacteria from drains showed positive results (65%. Contrastively, virulent strains in Rosetta branch were mostly lacking in this study. Concluding remarks justify the strong correlation (r = +0.82 between MAR and virulence of bacteria in polluted aquatic ecosystems, and highlight the potential of drains as reactors for their amplification and dissemination. The study suggests regular monitoring for antibiotics resistance in native bacteria of River Nile, prohibition of unregulated use of antibiotics, and proper management for wastes disposal.

  5. Isolation and characterization of chromium, mercury and cadmium resistant bacteria

    International Nuclear Information System (INIS)

    Bhatti, K.P.; Noor, A.R.

    2009-01-01

    Ten heavy metal resistant strains were isolated from samples of soil, water and rhizosphere of plant Cynadon Dectylon of Kasur sector. Among these bacteria, four strains Cr-l, Cr- 2, Cr-3 and Cr-4 were showed the resistant to chromium up to 300 mg/L, two strains Cd-1 and Cd-2 resisted cadmium up to 100 mg/L, two strains Cd-3 and Cd-4 resisted cadmium up to 50 mg/L and two strains (Hg-l, Hg-2) were observed resistant to mercury up to 100 mg/L. Their morphological and colonial characteristics were investigated. The families of isolated bacteria are reported i.e. Azotobacteriaceae(C r-l), Enterobacteriacea(eC r-2, Cr-3, Cr-4, Hg-2) and Neisseriaceae(Cd-I, Cd-2, Cd-3, Cd-4, Hg-2). (author)

  6. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Strong, P J; Chen, Hong

    2015-03-01

    In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P antibiotic-resistant bacteria (P < 0.01).

  7. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria

    Science.gov (United States)

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...

  8. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Science.gov (United States)

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  9. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  10. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  11. Anthelmintic resistance of nematodes in communally grazed goats in a semi-arid area of South Africa

    Directory of Open Access Journals (Sweden)

    F.R. Bakunzi

    2003-07-01

    Full Text Available A survey was conducted on the occurrence of anthelmintic resistance of nematodes in communally grazed goats in a semi-arid area in SouthAfrica. In herds belonging to 10 smallholder goat farmers, the efficacies of fenbendazole, levamisole and rafoxanide were tested by faecal egg count reduction (FECR tests. Efficacies of 80 % were considered a threshold for anthelmintic resistance. The FECR tests showed that all drugs tested more than 80 % effective in most instances, but there were notable exceptions. In 1 case, rafoxanide was only 31 % effective and in another case fenbendazole was only 47 % effective. The occurrence of anthelmintic resistance in this farming sector is of concern. Steps should be taken to prevent its further spread and to avoid the development of a situation as onnumerous commercial sheep farms in South Africa where resistance is very common.

  12. Evaluation of antibiotic resistant bacteria in underground drinking water and transfer of their resistant character to normal flora of the body.

    Science.gov (United States)

    Alam, Mehboob; Khan, Naqab; Rehman, Khurram; Khan, Samiullah; Niazi, Zahid Rasul; Shah, Kifayatullah; Baloch, Natasha; Khan, Barkat Ali

    2018-03-01

    The untreated surface water for drinking and domestic use is an alarming situation to public health especially in prevalence of antibiotics resistant bacteria. This investigation aimed to isolate and identify the antibiotic resistance bacteria in underground water samples in district Dera Ismail Khan, Pakistan. The underground water samples were collected from four different places using hand pumps (Khyber town, riverside, Gomal University and united town). Cultured on nutrient agar media, identified by Gam staining and biochemical tests. There after antibiotic resistance assay were performed by measuring zone of inhibition of different antibiotics by disc diffusion method. Six different bacterial colonies were isolated and identified as Enterobacteriaceae, Serriata specie, Proteues, Pseudomonas, all these bacterial colonies were 33% resistant to chloramphenicol with and 100% resistant to amoxicillin. Some colonies were also considered as resistant, according to the criteria of National Committee for Clinical Records (NCCL) that less than 10mm zone of inhibition are considered as resistant. Subsequently, the chloramphenicol resistance bacteria were analyzed for their ability to transfer resistant gene to sensitive bacteria. In in-vitro method, an isolate M1b (resistant) was found capable to transfer resistance gene to M1a isolate (sensitive) in nutrient rich environment. It was concluded that antibiotics resistance bacteria found in underground water, moreover capable of transferring the antibiotic resistant character to suitable recipient i.e. normal flora of the body or to other pathogens by conjugation.

  13. Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks

    OpenAIRE

    Köster, Sarah; Weitz, David; Goldman, Robert D.; Aebi, Ueli; Herrmann, Harald

    2015-01-01

    Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These “rod” particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, i.e. bending and stretching to a considerable degree, bo...

  14. Graphene-based filament material for thermal ionization

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shick, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Siegfried, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-19

    The use of graphene oxide materials for thermal ionization mass spectrometry analysis of plutonium and uranium has been investigated. Filament made from graphene oxide slurries have been 3-D printed. A method for attaching these filaments to commercial thermal ionization post assemblies has been devised. Resistive heating of the graphene based filaments under high vacuum showed stable operation in excess of 4 hours. Plutonium ion production has been observed in an initial set of filaments spiked with the Pu 128 Certified Reference Material.

  15. Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria.

    Science.gov (United States)

    Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor

    2017-04-01

    A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compensate for the genome-destabilizing effect of environmental DNA damage and may be expected to result in a more conserved gene order in radiation-resistant species. However, here we show that rates of genome rearrangements, measured as loss of gene order conservation with time, are higher in radiation-resistant species in multiple, phylogenetically independent groups of bacteria. Comparison of indicators of selection for genome organization between radiation-resistant and phylogenetically matched, nonresistant species argues against tolerance to disruption of genome structure as a strategy for radiation resistance. Interestingly, an important mechanism affecting genome rearrangements in prokaryotes, the symmetrical inversions around the origin of DNA replication, shapes genome structure of both radiation-resistant and nonresistant species. In conclusion, the opposing effects of environmental DNA damage and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria. Copyright © 2017 Repar et al.

  16. Identification of lead- resistant endophytic bacteria isolated from rice.

    Directory of Open Access Journals (Sweden)

    Alexander Pérez-Cordero

    2015-06-01

    Full Text Available   The objective of this study was to evaluate in vitro the endophytic bacteria resistance to different lead concentrations. The sampling was undertaken in the first half of 2013, when tissue samples of commercial varieties of rice at tillering stage were collected in Montería, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria in agar R2A medium were isolated. Population density (CFU/g tissue was determined from each tissue, by direct counting of R2A medium surface. morphotypes were classified by shape, color, size, and appearance. A total of 168 morphotypes were isolated from root, tillers, and leaf of different commercial varieties of rice. The lead resistance test was performed in vitro, to do that, suspensions of endophytic bacteria in log phase were prepared and inoculated in minimal medium with five concentrations of lead as Pb(NO32. The experiment was incubated at 32 °C and agitated at 150 rpm, for five days. Every hour afterstarting the test, turbidimetry measuring at 600 nm was conducted. Results showed the ability of endophytic bacteria to grow at concentrations of 100% of Pb as Pb(NO32. The results of the identification with kit API20E confirmed the presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to different lead concentrations.

  17. Pulling Helices inside Bacteria: Imperfect Helices and Rings

    Science.gov (United States)

    Allard, Jun F.; Rutenberg, Andrew D.

    2009-04-01

    We study steady-state configurations of intrinsically-straight elastic filaments constrained within rod-shaped bacteria that have applied forces distributed along their length. Perfect steady-state helices result from axial or azimuthal forces applied at filament ends, however azimuthal forces are required for the small pitches observed for MreB filaments within bacteria. Helix-like configurations can result from distributed forces, including coexistence between rings and imperfect helices. Levels of expression and/or bundling of the polymeric protein could mediate this coexistence.

  18. Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment.

    Science.gov (United States)

    Lemmen, S W; Häfner, H; Zolldann, D; Stanzel, S; Lütticken, R

    2004-03-01

    We prospectively studied the difference in detection rates of multi-resistant Gram-positive and multi-resistant Gram-negative bacteria in the inanimate environment of patients harbouring these organisms. Up to 20 different locations around 190 patients were surveyed. Fifty-four patients were infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant enterococci (VRE) and 136 with multi-resistant Gram-negative bacteria. The environmental detection rate for MRSA or VRE was 24.7% (174/705 samples) compared with 4.9% (89/1827 samples) for multi-resistant Gram-negative bacteria (PGram-positive bacteria were isolated more frequently than Gram-negatives from the hands of patients (PGram-positive and Gram-negative isolates. Our results suggest that the inanimate environment serves as a secondary source for MRSA and VRE, but less so for Gram-negative bacteria. Thus, strict contact isolation in a single room with complete barrier precautions is recommended for MRSA or VRE; however, for multi-resistant Gram-negative bacteria, contact isolation with barrier precautions for close contact but without a single room seems sufficient. This benefits not only the patients, but also the hospital by removing some of the strain placed on already over-stretched resources.

  19. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    Science.gov (United States)

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance. PMID:16723570

  20. Aridity and grazing as convergent selective forces: an experiment with an Arid Chaco bunchgrass.

    Science.gov (United States)

    Quiroga, R Emiliano; Golluscio, Rodolfo A; Blanco, Lisandro J; Fernández, Roberto J

    2010-10-01

    It has been proposed that aridity and grazing are convergent selective forces: each one selects for traits conferring resistance to both. However, this conceptual model has not yet been experimentally validated. The aim of this work was to experimentally evaluate the effect of aridity and grazing, as selective forces, on drought and grazing resistance of populations of Trichloris crinita, a native perennial forage grass of the Argentinean Arid Chaco region. We collected seeds in sites with four different combinations of aridity and grazing history (semiarid/ subhumid x heavily grazed/lightly grazed), established them in pots in a common garden, and subjected the resulting plants to different combinations of drought and defoliation. Our results agreed with the convergence model. Aridity has selected T. crinita genotypes that respond better to drought and defoliation in terms of sexual reproduction and leaf growth, and that can evade grazing due to a lower shoot: root ratio and a higher resource allocation to reserves (starch) in stem bases. Similarly, grazing has selected genotypes that respond better to drought and defoliation in terms of sexual reproduction and that can evade grazing due to a lower digestibility of leaf blades. These results allow us to extend concepts of previous models in plant adaptation to herbivory to models on plant adaptation to drought. The only variable in which we obtained a result opposite to predictions was plant height, as plants from semiarid sites were taller (and with more erect tillers) than plants from subhumid sites; we hypothesize that this result might have been a consequence of the selection exerted by the high solar radiation and soil temperatures of semiarid sites. In addition, our work allows for the prediction of the effects of dry or wet growing seasons on the performance of T. crinita plants. Our results suggest that we can rely on dry environments for selecting grazing-resistant genotypes and on high grazing pressure

  1. Tree-shrub associations in grazed woodlands: First rodents, then cattle?

    NARCIS (Netherlands)

    Smit, C.; Verwijmeren, M.

    2011-01-01

    Spatial associations of tree saplings with spiny or toxic plants in grazed woodlands are generally explained by associational resistance, i. e., protection against grazing via a well-defended neighbor. In this study, we tested whether directed seed dispersal and post-dispersal seed removal by wood

  2. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  3. Strongyle Infection and Gut Microbiota: Profiling of Resistant and Susceptible Horses Over a Grazing Season

    Directory of Open Access Journals (Sweden)

    Allison Clark

    2018-03-01

    Full Text Available Gastrointestinal strongyles are a major threat to horses' health and welfare. Given that strongyles inhabit the same niche as the gut microbiota, they may interact with each other. These beneficial or detrimental interactions are unknown in horses and could partly explain contrasted susceptibility to infection between individuals. To address these questions, an experimental pasture trial with 20 worm-free female Welsh ponies (10 susceptible (S and 10 resistant (R to parasite infection was implemented for 5 months. Fecal egg counts (FEC, hematological and biochemical data, body weight and gut microbiological composition were studied in each individual after 0, 24, 43, 92 and 132 grazing days. R and S ponies displayed divergent immunological profiles and slight differences in microbiological composition under worm-free conditions. After exposure to natural infection, the predicted R ponies exhibited lower FEC after 92 and 132 grazing days, and maintained higher levels of circulating monocytes and eosinophils, while lymphocytosis persisted in S ponies. Although the overall gut microbiota diversity and structure remained similar during the parasite infection between the two groups, S ponies exhibited a reduction of bacteria such as Ruminococcus, Clostridium XIVa and members of the Lachnospiraceae family, which may have promoted a disruption of mucosal homeostasis at day 92. In line with this hypothesis, an increase in pathobionts such as Pseudomonas and Campylobacter together with changes in several predicted immunological pathways, including pathogen sensing, lipid metabolism, and activation of signal transduction that are critical for the regulation of immune system and energy homeostasis were observed in S relative to R ponies. Moreover, S ponies displayed an increase in protozoan concentrations at day 92, suggesting that strongyles and protozoa may contribute to each other's success in the equine intestines. It could also be that S individuals

  4. Biological soil crusts across disturbance–recovery scenarios: effect of grazing regime on community dynamics.

    Science.gov (United States)

    Concostrina-Zubiri, L; Huber-Sannwald, E; Martínez, I; Flores Flores, J L; Reyes-Agüero, J A; Escude, A; Belnap, J

    Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.

  5. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics

    Science.gov (United States)

    Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J. L.; Reyes-Agüero, J. A.; Escudero, A.; Belnap, Jayne

    2014-01-01

    Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.

  6. Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant

    International Nuclear Information System (INIS)

    Keller, L.C.; Maxcy, R.B.

    1984-01-01

    Physiological age-dependent variation in radiation resistance was studied for three bacteria that are highly radiation resistant: Micrococcus radiodurans, Micrococcus sp. isolate C-3, and Moraxella sp. isolate 4. Stationary-phase cultures of M. radiodurans and isolate C-3 were much more resistant to gamma radiation than were log-phase cultures. This pattern of relative resistance was reversed for isolate 4. Resistance of isolate 4 to UV light was also greater during log phase, although heat resistance and NaCl tolerance after heat stresses were greater during stationary phase. Radiation-induced injury of isolate 4 compared with injury of Escherichia coli B suggested that the injury process, as well as the lethal process, was affected by growth phase. The hypothesis that growth rate affects radiation resistance was tested, and results were interpreted in light of the probable confounding effect of methods used to alter growth rates of bacteria. These results indicate that dose-response experiments should be designed to measure survival during the most resistant growth phase of the organism under study. The timing is particularly important when extrapolations of survival results might be made to potential irradiation processes for foods. 17 references

  7. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    Science.gov (United States)

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (psulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  8. Radiation-resistant vegetative bacteria in a proposed system of radappertization of meats

    International Nuclear Information System (INIS)

    Maxcy, R.B.; Rowley, D.B.

    1978-01-01

    After irradiation in the frozen state with 1 Mrad fresh minced pork or chicken contained approximately 10-100 colony-forming units of highly radiation resistant asporogenous bacteria per gram. Some of these had greater radiation resistance than Clostridium botulinum spores. Much of the radiation resistance was apparent as a shoulder in the death curve, which was markedly reduced by heating prior or subsequent to irradiation. Nature of the meat, such as variation in fat content (5-44%), had no significant effect on the radiation resistance of bacteria therein. Even though these bacteria were isolated from meat, it was not a favourable microenvironment for their growth. The water activity was too low. Heat sensitivity of isolates indicated the pre-irradiation enzyme inactivation treatment required for radappertization of meats would destroy or injure most vegetative cells. Thus, the combined process of heat, irradiation, and unfavourable microenvironment would ensure that these radiation resistant cells would not be a problem in radappertized meats. (author)

  9. Screening of antibiotic susceptibility to β-lactam-induced elongation of Gram-negative bacteria based on dielectrophoresis.

    Science.gov (United States)

    Chung, Cheng-Che; Cheng, I-Fang; Chen, Hung-Mo; Kan, Heng-Chuan; Yang, Wen-Horng; Chang, Hsien-Chang

    2012-04-03

    We demonstrate a rapid antibiotic susceptibility test (AST) based on the changes in dielectrophoretic (DEP) behaviors related to the β-lactam-induced elongation of Gram-negative bacteria (GNB) on a quadruple electrode array (QEA). The minimum inhibitory concentration (MIC) can be determined within 2 h by observing the changes in the positive-DEP frequency (pdf) and cell length of GNB under the cefazolin (CEZ) treatment. Escherichia coli and Klebsiella pneumoniae and the CEZ are used as the sample bacteria and antibiotic respectively. The bacteria became filamentous due to the inhibition of cell wall synthesis and cell division and cell lysis occurred for the higher antibiotic dose. According to the results, the pdfs of wild type bacteria decrease to hundreds of kHz and the cell length is more than 10 μm when the bacterial growth is inhibited by the CEZ treatment. In addition, the growth of wild type bacteria and drug resistant bacteria differ significantly. There is an obvious decrease in the number of wild type bacteria but not in the number of drug resistant bacteria. Thus, the drug resistance of GNB to β-lactam antibiotics can be rapidly assessed. Furthermore, the MIC determined using dielectrophoresis-based AST (d-AST) was consistent with the results of the broth dilution method. Utilizing this approach could reduce the time needed for bacteria growth from days to hours, help physicians to administer appropriate antibiotic dosages, and reduce the possibility of the occurrence of multidrug resistant (MDR) bacteria.

  10. How Fitness Reduced, Antimicrobial Resistant Bacteria Survive and Spread

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Nielsen, Søren Saxmose; Toft, Nils

    2014-01-01

    More than 30% of E. coli strains sampled from pig farms in Denmark over the last five years were resistant to the commonly used antimicrobial tetracycline. This raises a number of questions: How is this high level sustained if resistant bacteria have reduced growth rates? Given that there are mul...

  11. Prevalence and drug resistance in bacteria of the urinary tract ...

    African Journals Online (AJOL)

    Objective: To obtain data on the prevalence of antibiotic resistance in bacteria isolated from patients with suspected urinary tract infection in Bulawayo province, Zimbabwe. Method: Over a period of one year, 257 urine samples were analyzed for bacteria by standard procedures. Antimicrobial susceptibility testing of isolated ...

  12. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.

    Science.gov (United States)

    Tacconelli, Evelina; Carrara, Elena; Savoldi, Alessia; Harbarth, Stephan; Mendelson, Marc; Monnet, Dominique L; Pulcini, Céline; Kahlmeter, Gunnar; Kluytmans, Jan; Carmeli, Yehuda; Ouellette, Marc; Outterson, Kevin; Patel, Jean; Cavaleri, Marco; Cox, Edward M; Houchens, Chris R; Grayson, M Lindsay; Hansen, Paul; Singh, Nalini; Theuretzbacher, Ursula; Magrini, Nicola

    2018-03-01

    The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs. We used a multicriteria decision analysis method to prioritise antibiotic-resistant bacteria; this method involved the identification of relevant criteria to assess priority against which each antibiotic-resistant bacterium was rated. The final priority ranking of the antibiotic-resistant bacteria was established after a preference-based survey was used to obtain expert weighting of criteria. We selected 20 bacterial species with 25 patterns of acquired resistance and ten criteria to assess priority: mortality, health-care burden, community burden, prevalence of resistance, 10-year trend of resistance, transmissibility, preventability in the community setting, preventability in the health-care setting, treatability, and pipeline. We stratified the priority list into three tiers (critical, high, and medium priority), using the 33rd percentile of the bacterium's total scores as the cutoff. Critical-priority bacteria included carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa, and carbapenem-resistant and third-generation cephalosporin-resistant Enterobacteriaceae. The highest ranked Gram-positive bacteria (high priority) were vancomycin-resistant Enterococcus faecium and meticillin-resistant Staphylococcus aureus. Of the bacteria typically responsible for community-acquired infections, clarithromycin-resistant Helicobacter pylori, and fluoroquinolone-resistant Campylobacter spp, Neisseria gonorrhoeae, and Salmonella typhi were included in the high-priority tier. Future development strategies should focus on

  13. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system.

    Science.gov (United States)

    Chenia, Hafizah Y; Jacobs, Anelet

    2017-11-21

    Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.

  14. Tributyltin-resistant bacteria from estuarine and freshwater sediments.

    Science.gov (United States)

    Wuertz, S; Miller, C E; Pfister, R M; Cooney, J J

    1991-01-01

    Resistance to tributyltin (TBT) was examined in populations from TBT-polluted sediments and nonpolluted sediments from an estuary and from fresh water as well as in pure cultures isolated from those sediments. The 50% effective concentrations (EC50s) for populations were higher at a TBT-polluted freshwater site than at a site without TBT, suggesting that TBT selected for a TBT-resistant population. In contrast, EC50s were significantly lower for populations from a TBT-contaminated estuarine site than for those from a site without TBT, suggesting that other factors in addition to TBT determine whether populations become resistant. EC50s for populations from TBT-contaminated freshwater sediments were nearly 30 times higher than those for populations from TBT-contaminated estuarine sediments. We defined a TBT-resistant bacterium as one which grows on trypticase soy agar containing 8.4 microM TBT, a concentration which prevented the growth of 90% of the culturable bacteria from these sediments. The toxicity of TBT in laboratory media was influenced markedly by the composition of the medium and whether it was liquid or solid. Ten TBT-resistant isolates from estuarine sediments and 19 from freshwater sediments were identified to the genus level. Two isolates, each a Bacillus sp., may be the first gram-positive bacteria isolated from fresh water in the presence of a high concentration of TBT. There was a high incidence of resistance to heavy metals: metal resistance indices were 0.76 for estuarine isolates and 0.68 for freshwater isolates.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1746939

  15. Incidence of multidrug-resistant, extensively drug-resistant and pan-drug-resistant bacteria in children hospitalized at Dr. Hasan Sadikin general hospital Bandung Indonesia

    Science.gov (United States)

    Adrizain, R.; Suryaningrat, F.; Alam, A.; Setiabudi, D.

    2018-03-01

    Antibiotic resistance has become a global issue, with 700,000 deaths attributable to multidrug-resistance (MDR) occurring each year. Centers for Disease Control and Prevention (CDC) show rapidly increasing rates of infection due to antibiotic-resistant bacteria. The aim of the study isto describe the incidence of MDR, extensively drug-resistant (XDR) and pan drug-resistant (PDR) in Enterococcus spp., Staphylococcus aureus, K. pneumonia, Acinetobacter baumanii, P. aeruginosin, and Enterobacter spp. (ESKAPE) pathogens in children admitted to Dr. Hasan Sadikin Hospital. All pediatric patients having blood culture drawn from January 2015 to December 2016 were retrospectively studied. Data include the number of drawn blood culture, number of positive results, type of bacteria, sensitivity pattern. International standard definitions for acquired resistance by ECDC and CDC was used as definitions for MDR, XDR and PDR bacteria. From January 2015 to December 2016, 299 from 2.542 (11.7%) blood culture was positive, with Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter spp., respectively 5, 6, 24, 5, 20 with total 60 (20%). The MDR and XDR pathogen found were 47 and 13 patients, respectively.

  16. Antibiotic resistance of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Bulajić Snežana

    2008-01-01

    Full Text Available Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolates. Also, the choice of media is problematic, as well as the specification of MIC breakpoint values as a result of the large species variation and the possible resulting variation in MIC values between species and genera. The current investigations in this field showed that we might end up with a range of different species- or genus-specific breakpoint values that may further increase the current complexity. Another problem associated with safety determinations of starter strains is that once a resistance phenotype and an associated resistance determinant have been identified, it becomes difficult to show that this determinant is not transferable, especially if the resistance gene is not located on a plasmid and no standard protocols for showing genetic transfer are available. Encountering those problems, the QPS system should allow leeway for the interpretations of results, especially when these relate to the methodology for resistance phenotype determinations, determinations of MIC breakpoints for certain genera, species, or strains, the nondeterminability of a genetic basis of a resistance phenotype and the transferability of resistance genes.

  17. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    Science.gov (United States)

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides.

    Science.gov (United States)

    Soltani, Aboozar; Vatandoost, Hassan; Oshaghi, Mohammad Ali; Enayati, Ahmad Ali; Chavshin, Ali Reza

    2017-09-01

    In the current study, the effects of the presence of symbiotic bacteria on the activity of the enzymes involved in An. stephensi resistance to temephos are evaluated for the first time. Four different strains (I. susceptible strain, II. resistant strain, III. resistant strain + antibiotic, and IV. resistant strain + bacteria) were considered in order to determine the possible effects of the symbiotic bacteria on their hosts' resistance to temephos. The median values of all enzymes of susceptible strain were compared with those of other resistant strains. The results of this study indicated a direct relationship between the presence of bacteria in the symbiotic organs of An. stephensi and resistance to temephos. The profile of enzymatic activities in the resistant strain changed to a susceptible status after adding antibiotic. The resistance of An. stephensi to temephos could be completely broken artificially by removing their bacterial symbionts in a resistant population.

  19. Some physiological and morphological aspects of radiation-resistant bacteria and a new method for their isolation from food

    International Nuclear Information System (INIS)

    Sanders, S.W.

    1978-01-01

    A study was undertaken to help clarify the taxonomic positions and mechanisms of radiation resistance of radiation-resistant asporogenous bacteria found in foods. Determinations of DNA base compositions of highly resistant Moroxella-Acinetobacter (M-A) strains indicated that they were atypical, having percent guanine plus cytosine contents exceeding the values for true Moraxella or Acinetobacter spp. By direct observation of dividing cells, the resistant M-A were found to undergo multiple-plane division. Electron micrographs revealed unusually thick cell walls in the M-A as compared with gram-negative bacteria, indicating a possible role of the cell wall in radiation resistance. Resistance to desiccation was utilized in the selection of highly radiation-resistant bacteria from non-irradiated sources. Bacteria from a food or other source were suspended in dilute phosphate buffer and dried in a thin film at 25 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the numbers of radiation-sensitive bacteria. Further selection of the most radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, thereby allowing the isolation of highly resistant bacteria that had not been irradiated. The similarity of radiation-resistance and identifying characteristics between irradiated and non-irradiated isolates indicated that highly radiation-resistant bacteria are not altered by radiation selection. Irradiated Plate Count Agar and Tryptic Soy Agar were found to be very toxic to radiation-resistant bacteria. This phenomenon may be important in food irradiation, where the ability to survive and grow in a product may depend partly on the sensitivity to bacteriocidal products formed during irradiation

  20. Growth and nitrate reduction of Beggiatoa filaments studied in enrichment cultures

    DEFF Research Database (Denmark)

    Kamp, Anja

    In this thesis, several aspects of the gliding, filamentous, colourless sulphur bacteria Beggiatoa were investigated. The first part of this thesis addressed the growth mode, breakage of filaments for multiplication, and movement directions of filaments of Beggiatoa. Marine Beggiatoa were enriche...... to ammonium), whereas denitrification was not detected. This study revealed for the first time that a freshwater Beggiatoa strain was capable of intracellular accumulation of nitrate, and that the nitrate was used to perform DNRA....

  1. [Markers of antimicrobial drug resistance in the most common bacteria of normal facultative anaerobic intestinal flora].

    Science.gov (United States)

    Plavsić, Teodora

    2011-01-01

    Bacteria of normal intestinal flora are frequent carriers of markers of antimicrobial drug resistance. Resistance genes may be exchanged with other bacteria of normal flora as well as with pathogenic bacteria. The increase in the number of markers of resistance is one of the major global health problems, which induces the emergence of multi-resistant strains. The aim of this study is to confirm the presence of markers of resistance in bacteria of normal facultative anaerobic intestinal flora in our region. The experiment included a hundred fecal specimens obtained from a hundred healthy donors. A hundred bacterial strains were isolated (the most numerous representatives of the normal facultative-anaerobic intestinal flora) by standard bacteriological methods. The bacteria were cultivated on Endo agar and SS agar for 24 hours at 37 degrees C. Having been incubated, the selected characteristic colonies were submitted to the biochemical analysis. The susceptibility to antimicrobial drugs was tested by standard disc diffusion method, and the results were interpreted according to the Standard of Clinical and Laboratory Standards Institute 2010. The marker of resistance were found in 42% of the isolated bacteria. The resistance was the most common to ampicillin (42% of isolates), amoxicillin with clavulanic acid (14% of isolates), cephalexin (14%) and cotrimoxazole (8%). The finding of 12 multiresistant strains (12% of isolates) and resistance to ciprofloxacin were significant. The frequency of resistance markers was statistically higher in Klebsiella pneumoniae compared to Escherichia coli of normal flora. The finding of a large number of markers of antimicrobial drug resistance among bacteria of normal intestinal flora shows that it is necessary to begin with systematic monitoring of their antimicrobial resistance because it is an indicator of resistance in the population.

  2. Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin

    OpenAIRE

    Yazdankhah, Siamak; Rudi, Knut; Bernhoft, Aksel

    2014-01-01

    Farmed animals such as pig and poultry receive additional Zn and Cu in their diets due to supplementing elements in compound feed as well as medical remedies. Enteral bacteria in farmed animals are shown to develop resistance to trace elements such as Zn and Cu. Resistance to Zn is often linked with resistance to methicillin in staphylococci, and Zn supplementation to animal feed may increase the proportion of multiresistant E. coli in the gut. Resistance to Cu in bacteria, in particular ente...

  3. Resistance of Causing Bacteria of Bovine Mastitis in Regard to Common Antimicrobials

    Directory of Open Access Journals (Sweden)

    Darío Martínez Pacheco

    2013-05-01

    Full Text Available The bacteria develop resistence against to the common antimicrobians, which is a limitant in the control and treatment of infectious diseases. In the sistems of production of bovine milk, one problem that affects the quantity and quality of the produced milk, is the mastitis, which in most cases has a bacterian origen. Addition to correct milking routine is used many antibacterial agents that for pharmacokinetics and pharmacodynamics reasons are the first selection for this disease. Some cases the use of antibacterial agents is effective, while in other cases do not, due to the development of bacterial resistence. Recently, it has been possible to identify different mechanisms of resistence developed by bacteria. This has allowed pharmacology researchers to create new drugs or to modify existing, seeking to decrease the inefficacy caused by the mutation of the bacteria as an adaptative response mechanism. Therefore,the objective of this review is to offer an updated document on resistance mechanisms identified.

  4. Antibiotic-resistant bacteria: a challenge for the food industry.

    Science.gov (United States)

    Capita, Rosa; Alonso-Calleja, Carlos

    2013-01-01

    Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.

  5. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture.

    Science.gov (United States)

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Rioseco, Maria Luisa; Kalsi, Rajinder K; Godfrey, Henry P; Cabello, Felipe C

    2015-10-01

    Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Resistance in bacteria of the food chain: epidemiology and control strategies

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Wegener, Henrik Caspar; Collignon, P.

    2008-01-01

    quantification of the transmission difficult. The exposure of humans to antimicrobial resistance from food animals can be controlled by either limiting the selective pressure from antimicrobial usage or by limiting the spread of the bacteria/genes. A number of control options are reviewed, including drug...... licensing, removing financial incentives, banning or restricting the use of certain drugs, altering prescribers behavior, improving animal health, improving hygiene and implementing microbial criteria for certain types of resistant pathogens for use in the control of trade of both food animals and food.......Bacteria have evolved multiple mechanisms for the efficient evolution and spread of antimicrobial resistance. Modern food production facilitates the emergence and spread of resistance through the intensive use of antimicrobial agents and international trade of both animals and food products...

  7. Correlation between the transport mechanisms in conductive filaments inside Ta2O5-based resistive switching devices and in substoichiometric TaOx thin films

    Science.gov (United States)

    Rosário, Carlos M. M.; Thöner, Bo; Schönhals, Alexander; Menzel, Stephan; Wuttig, Matthias; Waser, Rainer; Sobolev, Nikolai A.; Wouters, Dirk J.

    2018-05-01

    Conductive filaments play a key role in redox-based resistive random access memory (ReRAM) devices based on the valence change mechanism, where the change of the resistance is ascribed to the modulation of the oxygen content in a local region of these conductive filaments. However, a deep understanding of the filaments' composition and structure is still a matter of debate. We approached the problem by comparing the electronic transport, at temperatures from 300 K down to 2 K, in the filaments and in TaOx films exhibiting a substoichiometric oxygen content. The filaments were created in Ta (15 nm)/Ta2O5 (5 nm)/Pt crossbar ReRAM structures. In the TaOx thin films with various oxygen contents, the in-plane transport was studied. There is a close similarity between the electrical properties of the conductive filaments in the ReRAM devices and of the TaOx films with x ˜ 1, evidencing also no dimensionality difference for the electrical transport. More specifically, for both systems there are two different conduction processes: one in the higher temperature range (from 50 K up to ˜300 K), where the conductivity follows a √{ T } dependence, and one at lower temperatures (<50 K), where the conductivity follows the exp(-1 / √{ T } ) dependence. This suggests a strong similarity between the material composition and structure of the filaments and those of the substoichiometric TaOx films. We also discuss the temperature dependence of the conductivity in the framework of possible transport mechanisms, mainly of those normally observed for granular metals.

  8. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: The missing link between consumption and resistance in veterinary medicine

    DEFF Research Database (Denmark)

    Garcia-Migura, Lourdes; Hendriksen, Rene S.; Fraile, Lorenzo

    2014-01-01

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents...... antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite...

  9. Filamentation of Campylobacter in broth cultures

    Directory of Open Access Journals (Sweden)

    Nacheervan M Ghaffar

    2015-06-01

    Full Text Available The transition from rod to filamentous cell morphology has been identified as a response to stressful conditions in many bacterial species and has been ascribed to confer certain survival advantages. Filamentation of Campylobacter jejuni was demonstrated to occur spontaneously on entry in to stationary phase distinguishing it from many other bacteria where a reduction in size is more common. The aim of this study was to investigate the cues that give rise to filamentation of C. jejuni and C. coli and gain insights into the process. Using minimal medium, augmentation of filamentation occurred and it was observed that this morphological change was wide spread amongst C. jejuni strains tested but was not universal in C. coli strains. Filamentation did not appear to be due to release of diffusible molecules, toxic metabolites, or be in response to oxidative stress in the medium. Separated filaments exhibited greater intracellular ATP contents (2.66 to 17.4 fg than spiral forms (0.99 to 1.7 fg and showed enhanced survival in water at 4oC and 37oC compared to spiral cells. These observations support the conclusion that the filaments are adapted to survive extra-intestinal environments. Differences in cell morphology and physiology need to be considered in the context of the design of experimental studies and the methods adopted for the isolation of campylobacters from food, clinical and environmental sources.

  10. Bacterial production, protozoan grazing, and mineralization in stratified Lake Vechten

    NARCIS (Netherlands)

    Bloem, J.

    1989-01-01

    The role of heterotrophic nanoflagellates (HNAN, size 2-20 μm) in grazing on bacteria and mineralization of organic matter in stratified Lake Vechten was studied.

    Quantitative effects of manipulation and fixation on HNAN were checked. Considerable losses were caused by

  11. Occurrence of Multidrug Resistant Extended Spectrum Beta-Lactamase-Producing Bacteria on Iceberg Lettuce Retailed for Human Consumption

    Directory of Open Access Journals (Sweden)

    Natasha Bhutani

    2015-01-01

    Full Text Available Antibiotic resistance in bacteria is a global problem exacerbated by the dissemination of resistant bacteria via uncooked food, such as green leafy vegetables. New strains of bacteria are emerging on a daily basis with novel expanded antibiotic resistance profiles. In this pilot study, we examined the occurrence of antibiotic resistant bacteria against five classes of antibiotics on iceberg lettuce retailed in local convenience stores in Rochester, Michigan. In this study, 138 morphologically distinct bacterial colonies from 9 iceberg lettuce samples were randomly picked and tested for antibiotic resistance. Among these isolates, the vast majority (86% demonstrated resistance to cefotaxime, and among the resistant bacteria, the majority showed multiple drug resistance, particularly against cefotaxime, chloramphenicol, and tetracycline. Three bacterial isolates (2.17% out of 138 were extended spectrum beta-lactamase (ESBL producers. Two ESBL producers (T1 and T5 were identified as Klebsiella pneumoniae, an opportunistic pathogen with transferable sulfhydryl variable- (SHV- and TEM-type ESBLs, respectively. The DNA sequence analysis of the blaSHV detected in K. pneumoniae isolate T1 revealed 99% relatedness to blaSHV genes found in clinical isolates. This implies that iceberg lettuce is a potential reservoir of newly emerging and evolving antibiotic resistant bacteria and its consumption poses serious threat to human health.

  12. [State-of-the-art status on airborne antibiotic resistant bacteria and antibiotic resistance genes].

    Science.gov (United States)

    Li, J; Yao, M S

    2018-04-06

    The world is facing more deaths due to increasing antibiotic-resistant bacterial infections and the shortage of new highly effective antibiotics, however the air media as its important transmission route has not been adequately studied. Based on the latest literature acquired in this work, we have discussed the state-of-the-art research progress of the concentration, distribution and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in different environmental air media, and also analyzed some future prevention and control measures. The large use of antibiotics in the medical settings and animal husbandry places has resulted in higher abundances of ARB and ARGs in the relevant and surrounding atmosphere than in urban and general indoor air environments. ARGs can be spread by adhering to airborne particles, and researchers have also found that air media contain more abundant ARGs than other environmental media such as soil, water and sediment. It was suggested in this review that strengthening the monitoring, study on spreading factors and biological toxicity, and also research and development on pathogen accurate diagnosis and new green antibiotic are expected to help effectively monitor, prevent and control of the impacts of airborne resistant bacteria and resistance genes on both human and ecologies.

  13. DEVELOPMENT OF RESISTANCE IN BACTERIA AGAINST ANTI - MICROBIAL AGENTS: REASONS, THREATS AND ONGOING ENCOUNTER

    OpenAIRE

    Shibabrata Pattanayak

    2011-01-01

    Development of Multi Druug Resistant bacteria is creating a very severe problem in anti-microbial chemotherapy. Many recently developed antibiotics are found incapable to control resistant organisms.The reasons of development of resistance gene in the bacterial plasmid and their quick spread among various related and unrelated bacteria are analysed in this article along with discussion of world wide ongoing research to combat the problem.

  14. Actinomycetes of Orthosipon stamineus rhizosphere as producer of antibacterial compound against multidrug resistant bacteria

    Science.gov (United States)

    Rante, H.; Yulianty, R.; Usmar; Djide, N.; Subehan; Burhamzah, R.; Prasad, M. B.

    2017-11-01

    The increasing case of antibiotic resistence has become an important problem to be faced in treating the infection diseases. The diversities of microbia, especially actinomycetes bacteria which originated from rizosphere soil of medicinal plant, has opened a chance for discovering the metabolites which can be used in solving the antibiotic resistant pathogenic bacteria problems. The aim of this research was to isolate the actinobacteria originated from medicinal plant rizosphere of Orthosipon stamineus as the producer of anti-multidrug resistances bacteria compounds. Three isolates of actinomycetes has been isolated from Orthosipon stamineus rhizosphere named KC3-1, KC3-2 and KC3-3. One isolate (KC3-3) showed big activity in inhibiting the test microbes by antagonistic test of actinomycetes isolates against Staphylococcus aureus and Eschericia coli antibiotic resistant bacteria. Furthermore, the KC3-3 isolate was fermented in Starch Nitrate Broth (SNB) medium for 14 days. The supernatant and the biomass of the fermentation yield were separated. The supernatant were extracted using ethyl acetate as the solvent and the biomass were extracted using methanol. The antibacterial activity test of ethyl acetate and methanol extract revealed that the extracts can inhibit the bacteria test up to 5% concentration. The ethyl acetate and methanol extracts can inhibit the bacteria test up to 5% concentration.

  15. Protein function prediction involved on radio-resistant bacteria

    International Nuclear Information System (INIS)

    Mezhoud, Karim; Mankai, Houda; Sghaier, Haitham; Barkallah, Insaf

    2009-01-01

    Previously, we identified 58 proteins under positive selection in ionizing-radiation-resistant bacteria (IRRB) but absent in all ionizing-radiation-sensitive bacteria (IRSB). These are good reasons to believe these 58 proteins with their interactions with other proteins (interactomes) are a part of the answer to the question as to how IRRB resist to radiation, because our knowledge of interactomes of positively selected orphan proteins in IRRB might allow us to define cellular pathways important to ionizing-radiation resistance. Using the Database of Interacting Proteins and the PSIbase, we have predicted interactions of orthologs of the 58 proteins under positive selection in IRRB but absent in all IRSB. We used integrate experimental data sets with molecular interaction networks and protein structure prediction from databases. Among these, 18 proteins with their interactomes were identified in Deinococcus radiodurans R1. DNA checkpoint and repair, kinases pathways, energetic and nucleotide metabolisms were the important biological process that found. We predicted the interactomes of 58 proteins under positive selection in IRRB. It is hoped our data will provide new clues as to the cellular pathways that are important for ionizing-radiation resistance. We have identified news proteins involved on DNA management which were not previously mentioned. It is an important input in addition to protein that studied. It does still work to deepen our study on these new proteins

  16. Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Thaller

    Full Text Available BACKGROUND: Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. METHODOLOGY/PRINCIPAL FINDINGS: Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i the abiotic conditions ensure to microbes good survival possibilities in the environment; ii the animal density and their habits favour microbial circulation between individuals; and iii there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. CONCLUSIONS/SIGNIFICANCE: Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  17. Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance.

    Science.gov (United States)

    Thaller, Maria Cristina; Migliore, Luciana; Marquez, Cruz; Tapia, Washington; Cedeño, Virna; Rossolini, Gian Maria; Gentile, Gabriele

    2010-02-01

    Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i) the abiotic conditions ensure to microbes good survival possibilities in the environment; ii) the animal density and their habits favour microbial circulation between individuals; and iii) there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  18. Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying; Julian, Timothy; Pype, Marie-Laure; Jiang, Sunny; Nelson, Kara; Graham, David; Pruden, Amy; Manaia, Cé lia

    2018-01-01

    As more countries engage in water reuse, either intended or de facto, there is an urgent need to more comprehensively evaluate resulting environmental and public health concerns. While antibiotic-resistant bacteria (ARB) and antibiotic resistance

  19. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Science.gov (United States)

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  20. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  1. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying; Aljassim, Nada I.; Ansari, Mohd Ikram; Mackie, Roderick

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  2. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  3. Anisotropic Magnetoresistance of Nano-conductive Filament in Co/HfO2/Pt Resistive Switching Memory.

    Science.gov (United States)

    Li, Leilei; Liu, Yang; Teng, Jiao; Long, Shibing; Guo, Qixun; Zhang, Meiyun; Wu, Yu; Yu, Guanghua; Liu, Qi; Lv, Hangbing; Liu, Ming

    2017-12-01

    Conductive bridge random access memory (CBRAM) has been extensively studied as a next-generation non-volatile memory. The conductive filament (CF) shows rich physical effects such as conductance quantization and magnetic effect. But so far, the study of filaments is not very sufficient. In this work, Co/HfO 2 /Pt CBRAM device with magnetic CF was designed and fabricated. By electrical manipulation with a partial-RESET method, we controlled the size of ferromagnetic metal filament. The resistance-temperature characteristics of the ON-state after various partial-RESET behaviors have been studied. Using two kinds of magnetic measurement methods, we measured the anisotropic magnetoresistance (AMR) of the CF at different temperatures to reflect the magnetic structure characteristics. By rotating the direction of the magnetic field and by sweeping the magnitude, we obtained the spatial direction as well as the easy-axis of the CF. The results indicate that the easy-axis of the CF is along the direction perpendicular to the top electrode plane. The maximum magnetoresistance was found to appear when the angle between the direction of magnetic field and that of the electric current in the CF is about 30°, and this angle varies slightly with temperature, indicating that the current is tilted.

  4. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.

    Science.gov (United States)

    Calomiris, J J; Armstrong, J L; Seidler, R J

    1984-06-01

    Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance.

  5. Prevalence of antibiotic resistance in bacteria isolated from drinking well water available in Guinea-Bissau (West Africa).

    Science.gov (United States)

    Machado, A; Bordalo, A A

    2014-08-01

    The dissemination of antibiotic-resistant bacteria and the spread of antibiotic resistance genes are a major public health concern worldwide, being even proposed as emerging contaminants. The aquatic environment is a recognized reservoir of antibiotic resistant bacteria, and antibiotic resistance genes have been recently detected in drinking water. In this study, the water quality and the prevalence of antibiotic resistance of heterotrophic culturable bacteria were characterized seasonally in wells that serve the population of Guinea-Bissau (West Africa) as the sole source of water for drinking and other domestic proposes. The results revealed that well water was unfit for human consumption independently of the season, owing to high acidity and heavy fecal contamination. Moreover, potentially pathogenic bacteria, which showed resistance to the most prescribed antibiotics in Guinea-Bissau, were isolated from well water, posing an additional health risk. Our results suggest that well water not only fosters the transmission of potential pathogenic bacteria, but also represents an important reservoir for the proliferation of antibiotic resistant bacteria, that can aggravate the potential to cause disease in a very vulnerable population that has no other alternative but to consume such water. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Presence of antimicrobial resistance in coliform bacteria from hatching broiler eggs with emphasis on ESBL/AmpC-producing bacteria.

    Science.gov (United States)

    Mezhoud, H; Chantziaras, I; Iguer-Ouada, M; Moula, N; Garmyn, A; Martel, A; Touati, A; Smet, A; Haesebrouck, F; Boyen, F

    2016-08-01

    Antimicrobial resistance is recognized as one of the most important global health challenges. Broilers are an important reservoir of antimicrobial resistant bacteria in general and, more particularly, extended-spectrum β-lactamases (ESBL)/AmpC-producing Enterobacteriaceae. Since contamination of 1-day-old chicks is a potential risk factor for the introduction of antimicrobial resistant Enterobacteriaceae in the broiler production chain, the presence of antimicrobial resistant coliform bacteria in broiler hatching eggs was explored in the present study. Samples from 186 hatching eggs, collected from 11 broiler breeder farms, were inoculated on MacConkey agar with or without ceftiofur and investigated for the presence of antimicrobial resistant lactose-positive Enterobacteriaceae, particularly, ESBL/AmpC-producers. Escherichia coli and Enterobacter cloacae were obtained from the eggshells in 10 out of 11 (10/11) sampled farms. The majority of the isolates were recovered from crushed eggshells after external decontamination suggesting that these bacteria are concealed from the disinfectants in the egg shell pores. Antimicrobial resistance testing revealed that approximately 30% of the isolates showed resistance to ampicillin, tetracycline, trimethoprim and sulphonamides, while the majority of isolates were susceptible to amoxicillin-clavulanic acid, nitrofurantoin, aminoglycosides, florfenicol, neomycin and apramycin. Resistance to extended-spectrum cephalosporins was detected in eight Enterobacteriaceae isolates from five different broiler breeder farms. The ESBL phenotype was confirmed by the double disk synergy test and blaSHV-12, blaTEM-52 and blaACT-39 resistance genes were detected by PCR. This report is the first to present broiler hatching eggs as carriers and a potential source of ESBL/AmpC-producing Enterobacteriaceae for broiler chicks.

  7. Frequency and antimicrobial resistance of aerobic bacteria isolated ...

    African Journals Online (AJOL)

    This study was carried out to evaluate the frequency of occurrence and antimicrobial resistance of aerobic bacteria isolated from surgical sites in human and animal patients in Nsukka, southeast Nigeria. Wound swabs from 132 patients (96 humans and 36 animals) were cultured for bacterial isolation. Antimicrobial ...

  8. Diversity and antibiotic resistance of uropathogenic bacteria from ...

    African Journals Online (AJOL)

    Background: Urinary tract infections (UTI) are one of the major causes of prescribing and antibiotic consumption. In order to use the best antibiotic treatment for their patients, reliable and recent data about epidemiology and antibiotic resistance profile of uropathogenic bacteria must be available for clinicians. Therefore ...

  9. DEVELOPMENT OF RESISTANCE IN BACTERIA AGAINST ANTI - MICROBIAL AGENTS: REASONS, THREATS AND ONGOING ENCOUNTER

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2011-07-01

    Full Text Available Development of Multi Druug Resistant bacteria is creating a very severe problem in anti-microbial chemotherapy. Many recently developed antibiotics are found incapable to control resistant organisms.The reasons of development of resistance gene in the bacterial plasmid and their quick spread among various related and unrelated bacteria are analysed in this article along with discussion of world wide ongoing research to combat the problem.

  10. Activity of siderophores against drug-resistant Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Gokarn K

    2018-01-01

    Full Text Available Karuna Gokarn,1,2 Ramprasad B Pal1 1Department of Microbiology, Sir Hurkisondas Nurrotumdas Medical Research Society, 2Caius Research Laboratory, St Xavier’s College, Mumbai, India Abstract: Infections by drug-resistant bacteria are life-threatening. As iron is a vital element for the growth of bacteria, iron-chelating agents (siderophores can be used to arrest their multiplication. Exogenous siderophores – exochelin-MS and deferoxamine-B – were evaluated for their inhibitory activity against methicillin-resistant Staphylococcus aureus and metallo-β-lactamase producers – Pseudomonas aeruginosa and Acinetobacter baumannii – by disc diffusion, micro-broth dilution, and turbidimetric growth assays. The drug-resistant isolates were inhibited by the synergistic activity of siderophores and antibiotics. Minimum inhibitory concentration of exochelin-MS+ampicillin for different isolates was between 0.05 and 0.5 mg/mL. Minimum inhibitory concentration of deferoxamine-B+ampicillin was 1.0 mg/mL and greater. Iron-chelation therapy could provide a complementary approach to overcome drug resistance in pathogenic bacteria. Keywords: iron-chelation, xenosiderophores, exochelin MS, deferoxamine B

  11. Agriculture and food animals as a source of antimicrobial-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Economou V

    2015-04-01

    Full Text Available Vangelis Economou,1 Panagiota Gousia2 1Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece; 2Food-Water Microbiology Unit, Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece Abstract: One of the major breakthroughs in the history of medicine is undoubtedly the discovery of antibiotics. Their use in animal husbandry and veterinary medicine has resulted in healthier and more productive farm animals, ensuring the welfare and health of both animals and humans. Unfortunately, from the first use of penicillin, the resistance countdown started to tick. Nowadays, the infections caused by antibiotic-resistant bacteria are increasing, and resistance to antibiotics is probably the major public health problem. Antibiotic use in farm animals has been criticized for contributing to the emergence of resistance. The use and misuse of antibiotics in farm animal settings as growth promoters or as nonspecific means of infection prevention and treatment has boosted antibiotic consumption and resistance among bacteria in the animal habitat. This reservoir of resistance can be transmitted directly or indirectly to humans through food consumption and direct or indirect contact. Resistant bacteria can cause serious health effects directly or via the transmission of the antibiotic resistance traits to pathogens, causing illnesses that are difficult to treat and that therefore have higher morbidity and mortality rates. In addition, the selection and proliferation of antibiotic-resistant strains can be disseminated to the environment via animal waste, enhancing the resistance reservoir that exists in the environmental microbiome. In this review, an effort is made to highlight the various factors that contribute to the emergence of antibiotic resistance in farm animals and to

  12. In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I.

    Science.gov (United States)

    Sekiguchi, Y; Takahashi, H; Kamagata, Y; Ohashi, A; Harada, H

    2001-12-01

    We previously showed that very thin filamentous bacteria affiliated with the division green non-sulfur bacteria were abundant in the outermost layer of thermophilic methanogenic sludge granules fed with sucrose and several low-molecular-weight fatty acids (Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada, Appl. Environ. Microbiol. 65:1280-1288, 1999). Further 16S ribosomal DNA (rDNA) cloning-based analysis revealed that the microbes were classified within a unique clade, green non-sulfur bacteria (GNSB) subdivision I, which contains a number of 16S rDNA clone sequences from various environmental samples but no cultured representatives. To investigate their function in the community and physiological traits, we attempted to isolate the yet-to-be-cultured microbes from the original granular sludge. The first attempt at isolation from the granules was, however, not successful. In the other thermophilic reactor that had been treating fried soybean curd-manufacturing wastewater, we found filamentous microorganisms to outgrow, resulting in the formation of projection-like structures on the surface of granules, making the granules look like sea urchins. 16S rDNA-cloning analysis combined with fluorescent in situ hybridization revealed that the projections were comprised of the uncultured filamentous cells affiliated with the GNSB subdivision I and Methanothermobacter-like cells and the very ends of the projections were comprised solely of the filamentous cells. By using the tip of the projection as the inoculum for primary enrichment, a thermophilic, strictly anaerobic, filamentous bacterium, designated strain UNI-1, was successfully isolated with a medium supplemented with sucrose and yeast extract. The strain was a very slow growing bacterium which is capable of utilizing only a limited range of carbohydrates in the presence of yeast extract and produced hydrogen from these substrates. The growth was found to be significantly stimulated when the strain was

  13. Multidrug-resistant bacteria infection and nursing quality management application in the department of physical examination.

    Science.gov (United States)

    Xu, Li; Luo, Qiang; Chen, Liangzhen; Jiao, Lingmei

    2017-09-01

    The main problem of clinical prevention and control of multi drug resistant bacteria infection is to strengthen the monitoring of pathogenic bacteria spectrum, this study research on the multi drug-resistant bacteria infection and nursing quality management application in the department of physical examination. The results of this study showed that the number of patients with multiple drug resistant infections showed an increasing trend. Therefore, once the patients with multiple drug-resistant bacteria infection are found, the prevention and control of the patients with multiple drug-resistant bacteria should be strictly followed, and the patient's medication care should be highly valued. Also, the nurses need to be classified based on the knowledge and skill characteristics of the nurses in the department of physical examination, and compare the nursing effect before and after classification and grouping. The physicians and individuals receiving physical examinations in the department of physical examination had a higher degree of satisfaction for nursing effect after classification compared with those before classification. Classification and grouping management helps improve the nursing quality and overall quality of the nurses in the department of physical examination.

  14. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    Directory of Open Access Journals (Sweden)

    Na Wang

    Full Text Available Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05. The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  15. Resistance of Bacteria Isolated from Otamiri River to Heavy Metals and Some Selected Antibiotics

    OpenAIRE

    I.C. Mgbemena; J.C. Nnokwe; L.A. Adjeroh; N.N. Onyemekara

    2012-01-01

    This study is aimed at determining the resistance of bacteria to heavy metals and some antibiotics. The ability of aquatic bacteria isolates from Otamiri River at Ihiagwa in Owerri North, Imo State to tolerate or resist the presence of certain selected heavy metals: Pb+, Zn2+ and Fe2+ and some antibiotics was investigated. Identification tests for the bacteria isolates from Otamiri River revealed them to belong to the genera Pseudomonas, Aeromonas, Bacillus, Escherichia, Micrococcus and Prote...

  16. A reservoir of drug-resistant pathogenic bacteria in asymptomatic hosts.

    Directory of Open Access Journals (Sweden)

    Gabriel G Perron

    Full Text Available The population genetics of pathogenic bacteria has been intensively studied in order to understand the spread of disease and the evolution of virulence and drug resistance. However, much less attention has been paid to bacterial carriage populations, which inhabit hosts without producing disease. Since new virulent strains that cause disease can be recruited from the carriage population of bacteria, our understanding of infectious disease is seriously incomplete without knowledge on the population structure of pathogenic bacteria living in an asymptomatic host. We report the first extensive survey of the abundance and diversity of a human pathogen in asymptomatic animal hosts. We have found that asymptomatic swine from livestock productions frequently carry populations of Salmonella enterica with a broad range of drug-resistant strains and genetic diversity greatly exceeding that previously described. This study shows how agricultural practice and human intervention may lead and influence the evolution of a hidden reservoir of pathogens, with important implications for human health.

  17. Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela

    Directory of Open Access Journals (Sweden)

    Maura Lina Rojas Pirela

    2014-07-01

    Full Text Available Título en ingles: Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela Título corto: Antibiotic and metal resistance in bacteria from deep subsurface Título en español: Resistencia a antibioticos y metals pesados en bacterias aisladas de subsuelo en la región El Callao, Venezuela Resumen:  Se investigó el efecto de la contaminación con mercurio (Hg en las comunidades bacterianas del subsuelo profundo en la región de El Callao (Estado Bolívar, Venezuela. Se estudiaron comunidades bacterianas de dos niveles de profundidad (-288 m y -388 m en una mina de oro con el propósito de describir las características más relevantes de las bacterias indígenas cultivables que colonizaban esta mina. Se evaluaron los patrones de resistencia a antibióticos y metales pesados, presencia del gen merA y plásmidos en aislados resistentes. Se encontró una elevada frecuencia de bacterias indígenas resistentes al Hg y otros metales pesados. De 76 aislados Hg-resistentes probados 73.7 % fueron adicionalmente resistentes a ampicilina; 86.8 % a cloranfenicol; 67.1 % a tetraciclina; 56.6 % a estreptomicina y 51.3 % a kanamicina. Además, se encontró que 40.74 % (-328 m y 26.53 % (-388 m de las bacterias Hg-resistentes fueron simultáneamente resistentes tanto a cuatro como a cinco de estos antibióticos. Se detectó la presencia de plásmidos de alto y bajo peso molecular y, a pesar de que los aislados mostraban resistencia a compuestos mercuriales, la presencia del gen merA fue detectada solo en 71.05 % de los cepas. Estos resultados sugieren que la exposición a Hg podría ser una presión selectiva en la proliferación de bacterias resistentes a antibióticos y promover el mantenimiento y propagación de estos genes de resistencia. Sin embargo, la existencia de tales resistencias a estas profundidades podría también apoyar la idea de que la resistencia a antibióticos en estas bacterias es

  18. Diversity and community composition of tributyltin-resistant bacteria under different conditions

    International Nuclear Information System (INIS)

    Lee, Y. H.; Park, S.; Park, H.; Choi, Y

    2009-01-01

    Tributyltin (TBT) is an organometallic compound used as anti fouling agent in marine paints. this compound is toxic not only for eukaryotes, but also for bacteria. Based on the literature review, a few researchers have reported evidence for the presence of TBT-resistant bacteria in natural seawater and marine sediment. (Author)

  19. Diversity and community composition of tributyltin-resistant bacteria under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Park, S.; Park, H.; Choi, Y

    2009-07-01

    Tributyltin (TBT) is an organometallic compound used as anti fouling agent in marine paints. this compound is toxic not only for eukaryotes, but also for bacteria. Based on the literature review, a few researchers have reported evidence for the presence of TBT-resistant bacteria in natural seawater and marine sediment. (Author)

  20. Antimicrobial resistance in aerobic bacteria isolated from oral ...

    African Journals Online (AJOL)

    This study reinforces the need for dog bite wound microbial culture and antimicrobial sensitivity test as isolates showed varied antimicrobial susceptibility patterns. The oral cavities of hunting dogs are laden with multi-drug resistant bacteria of significant public health importance that could be transferred to humans through ...

  1. The prevalence of pathogenic bacteria and antimicrobial resistance in milk of Ettawa Grade goat

    Directory of Open Access Journals (Sweden)

    A. Andriani

    2018-05-01

    Full Text Available Ettawa Grade (PE are potentially developed goats to produce milk and meat. Milk is food of animal that is rich in nutrients, but it is a perishable food easily contaminated by microorganisms. Contaminated pathogenic bacteria in milk can decrease the quality and has an organoleptic effect on milk, as well as endangers human health. Milk contaminated with bacteria antimicrobial resistance (AMR in which is resistant to antibiotics, may adversely affect the response to treatment with antibiotics in humans when suffering from infectious diseases and using antibiotics in therapy. In this study Ettawa Grade's samples of fresh milk and other dairy products were taken from some of the goat farms in Yogyakarta Sleman district. The samples were tested for the presence of pathogenic bacteria and for its resistance to several kinds of antibiotics. In this study 35 Ettawa Grade's samples of fresh milk and other dairy products (fresh milk, milk powder, ice cream, and yoghurt were taken from some of the goat farms in Sleman district-Yogyakarta. The samples were tested for the presence of pathogenic bacteria and for its resistance to several kinds of antibiotics. The result of the prevalence of pathogenic bacteria in goat fresh milk and other dairy products was 15% Escherichia coli and had multi resistance to multiple antibiotics, namely ampicillin, colistin sulphate, cefixime, kanamycin, oxytetracycline, tetracycline and sulfonamide.

  2. A WWW-based information system on resistance of bacteria to antibiotics.

    Science.gov (United States)

    Schindler, J; Schindler, Z; Schindler, J

    1998-01-01

    The information system on resistance of bacteria to antibiotics (WARN--World Antibiotic Resistance Network) is implemented as a WWW server at Charles University in Prague (http:/(/)www.warn.cas.cz). Its main goal is to give information about problems of antibiotic resistance of bacteria and to process data on isolated strains. The WARN web-site contains six main topics. Four of them form the core of the system: Topics of Interest bring information on selected timely topics in antibiotic resistance--pneumococci, staphylococci, beta-lactamases, glycopeptide--and aminoglycoside resistance. Global Monitor brings references and reports on resistance in the world as well as recommended method of surveillance. The topic Data contains raw data on strains in particular countries and hospitals. Data can be viewed in their original form as a list of records (strains) or processed to provide statistics about the resistance rates in the selected country or hospital respectively. The topic Search allows one to search for one or several terms in the whole document. Counts of accessed pages show, that there is a standing demand for information about the serious problems of antibiotic therapy of infectious diseases.

  3. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    Science.gov (United States)

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  4. Transmission electron microscopy assessment of conductive-filament formation in Ni-HfO2-Si resistive-switching operational devices

    Science.gov (United States)

    Martín, Gemma; González, Mireia B.; Campabadal, Francesca; Peiró, Francesca; Cornet, Albert; Estradé, Sònia

    2018-01-01

    Resistive random-access memory (ReRAM) devices are currently the object of extensive research to replace flash non-volatile memory. However, elucidation of the conductive-filament formation mechanisms in ReRAM devices at nanoscale is mandatory. In this study, the different states created under real operation conditions of HfO2-based ReRAM devices are characterized through transmission electron microscopy and electron energy-loss spectroscopy. The physical mechanism behind the conductive-filament formation in Ni/HfO2/Si ReRAM devices based on the diffusion of Ni from the electrode to the Si substrate and of Si from the substrate to the electrode through the HfO2 layer is demonstrated.

  5. Anti-virulence approaches and novel peptidomimetics for combating resistant and biofilm associated bacteria

    DEFF Research Database (Denmark)

    Liu, Yang

    Anti-virulence approaches and novel peptidomimetics for combating resistant and biofilm associated bacteria The misuse and overuse of antibiotics has a broad impact on the environment. Antibiotic resistance has become a major threat for modern medical treatment of infectious diseases. There are m......Anti-virulence approaches and novel peptidomimetics for combating resistant and biofilm associated bacteria The misuse and overuse of antibiotics has a broad impact on the environment. Antibiotic resistance has become a major threat for modern medical treatment of infectious diseases...... consisting of microcolonies embedded in self-produced extracellular polymer substances (EPS). EPS can contribute to cell-cell adhesion and restrict antibiotic penetration. Biofilm cells show much greater resistance to stressful conditions than their free-living counterparts. Conventional treatment strategies...

  6. Mathematical studies on nosocomial spread of antibiotic-resistant bacteria

    NARCIS (Netherlands)

    Gurieva, T.V.

    2017-01-01

    Infections with antibiotic-resistant bacteria are a worldwide problem in hospitals and their rates remain high in many countries despite efforts to reduce the rates. Infection prevention is complicated by asymptomatic carriers. Using mathematical modelling, different intervention strategies were

  7. Nonvolatile conductive filaments resistive switching behaviors in Ag/GaO{sub x} /Nb:SrTiO{sub 3}/Ag structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, P.G. [Beijing University of Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communication, Beijing (China); Zhejiang Sci-Tech University, Center for Optoelectronics Materials and Devices, Hangzhou (China); Zhi, Y.S.; An, Y.H.; Guo, D.Y.; Tang, W.H.; Xiao, J.H. [Beijing University of Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communication, Beijing (China); Wang, P.C. [Zhejiang Sci-Tech University, Center for Optoelectronics Materials and Devices, Hangzhou (China); Sun, Z.B. [Chinese Academy of Sciences, Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Beijing (China); Li, L.H. [State University of New York at Potsdam, Department of Physics, Potsdam, NY (United States)

    2016-07-15

    Ag/GaO{sub x} /NSTO/Ag structures were fabricated, and the electrical properties measurement results show that the device behaviors a unipolar resistance switching characteristic with bi-stable resistance ratio of three orders. In the positive voltage region, the dominant conducting mechanism of high resistance state obeys Poole-Frenkel emission rules, while in the negative region, that obeys space-charge-limited current mechanism. Both the I-V curves of ON and OFF states and temperature-dependent variation resistances indicate that the unipolar resistance switching behavior can be explained by the formation/rupture of conductive filaments, which composed of oxygen vacancies. The stable switching results demonstrated that the structure can be applied in resistance random access memory devices. (orig.)

  8. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation

    OpenAIRE

    de Almeida, Luis Gustavo; de Moraes, Luiz Alberto Beraldo; Trigo, Jos? Roberto; Omoto, Celso; C?nsoli, Fernando Luis

    2017-01-01

    The exploration of new niches for microorganisms capable of degrading recalcitrant molecules is still required. We hypothesized the gut microbiota associated with insect-resistant lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrading capacity of gut bacteria from the gut of fifth instars of Spodoptera frugiperda strains resistant to lambda-cyhalothrin, deltamethrin, ch...

  9. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria

    DEFF Research Database (Denmark)

    Halling-Sørensen, B.; Sengeløv, G.; Tjørnelund, J.

    2002-01-01

    Tetracyclines used in veterinary therapy invariably will find their way as parent compound and degradation products to the agricultural field. Major degradation products formed due to the limited stability of parent tetracyclines (tetracycline, chlortetracycline, and oxytetracycline) in aqueous...... at the same concentration level as tetracycline, chlortetracycline, and oxytetracycline on both the sludge and the tetracycline-sensitive soil bacteria. Further, both 5a,6-anhydrotetracychne and 5a,6-anhydrochlortetracycline had potency on tetracycline-resistant bacteria supporting a mode of action different...

  10. The carriage of antibiotic resistance by enteric bacteria from imported tokay geckos (Gekko gecko) destined for the pet trade

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Christine L. [Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Hernandez, Sonia M., E-mail: shernz@uga.edu [Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 (United States); Yabsley, Michael J. [Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 (United States); Smith, Katherine F. [Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 (United States); Sanchez, Susan [The Athens Veterinary Diagnostic Laboratory, Athens, GA 30602 (United States); The Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States)

    2015-02-01

    The emergence of antibiotic-resistant bacteria is a growing public health concern and has serious implications for both human and veterinary medicine. The nature of the global economy encourages the movement of humans, livestock, produce, and wildlife, as well as their potentially antibiotic-resistant bacteria, across international borders. Humans and livestock can be reservoirs for antibiotic-resistant bacteria; however, little is known about the prevalence of antibiotic-resistant bacteria harbored by wildlife and, to our knowledge, limited data has been reported for wild-caught reptiles that were specifically collected for the pet trade. In the current study, we examined the antibiotic resistance of lactose-positive Enterobacteriaceae isolates from wild-caught Tokay geckos (Gekko gecko) imported from Indonesia for use in the pet trade. In addition, we proposed that the conditions under which wild animals are captured, transported, and handled might affect the shedding or fecal prevalence of antibiotic resistance. In particular we were interested in the effects of density; to address this, we experimentally modified densities of geckos after import and documented changes in antibiotic resistance patterns. The commensal enteric bacteria from Tokay geckos (G. gecko) imported for the pet trade displayed resistance against some antibiotics including: ampicillin, amoxicillin/clavulanic acid, cefoxitin, chloramphenicol, kanamycin and tetracycline. There was no significant difference in the prevalence of antibiotic-resistant bacteria after experimentally mimicking potentially stressful transportation conditions reptiles experience prior to purchase. There were, however, some interesting trends observed when comparing Tokay geckos housed individually and those housed in groups. Understanding the prevalence of antibiotic resistant commensal enteric flora from common pet reptiles is paramount because of the potential for humans exposed to these animals to acquire antibiotic-resistant

  11. The carriage of antibiotic resistance by enteric bacteria from imported tokay geckos (Gekko gecko) destined for the pet trade

    International Nuclear Information System (INIS)

    Casey, Christine L.; Hernandez, Sonia M.; Yabsley, Michael J.; Smith, Katherine F.; Sanchez, Susan

    2015-01-01

    The emergence of antibiotic-resistant bacteria is a growing public health concern and has serious implications for both human and veterinary medicine. The nature of the global economy encourages the movement of humans, livestock, produce, and wildlife, as well as their potentially antibiotic-resistant bacteria, across international borders. Humans and livestock can be reservoirs for antibiotic-resistant bacteria; however, little is known about the prevalence of antibiotic-resistant bacteria harbored by wildlife and, to our knowledge, limited data has been reported for wild-caught reptiles that were specifically collected for the pet trade. In the current study, we examined the antibiotic resistance of lactose-positive Enterobacteriaceae isolates from wild-caught Tokay geckos (Gekko gecko) imported from Indonesia for use in the pet trade. In addition, we proposed that the conditions under which wild animals are captured, transported, and handled might affect the shedding or fecal prevalence of antibiotic resistance. In particular we were interested in the effects of density; to address this, we experimentally modified densities of geckos after import and documented changes in antibiotic resistance patterns. The commensal enteric bacteria from Tokay geckos (G. gecko) imported for the pet trade displayed resistance against some antibiotics including: ampicillin, amoxicillin/clavulanic acid, cefoxitin, chloramphenicol, kanamycin and tetracycline. There was no significant difference in the prevalence of antibiotic-resistant bacteria after experimentally mimicking potentially stressful transportation conditions reptiles experience prior to purchase. There were, however, some interesting trends observed when comparing Tokay geckos housed individually and those housed in groups. Understanding the prevalence of antibiotic resistant commensal enteric flora from common pet reptiles is paramount because of the potential for humans exposed to these animals to acquire antibiotic-resistant

  12. Carbapenem-Resistant Bacteria Recovered from Faeces of Dairy Cattle in the High Plains Region of the USA.

    Science.gov (United States)

    Webb, Hattie E; Bugarel, Marie; den Bakker, Henk C; Nightingale, Kendra K; Granier, Sophie A; Scott, H Morgan; Loneragan, Guy H

    2016-01-01

    A study was conducted to recover carbapenem-resistant bacteria from the faeces of dairy cattle and identify the underlying genetic mechanisms associated with reduced phenotypic susceptibility to carbapenems. One hundred and fifty-nine faecal samples from dairy cattle were screened for carbapenem-resistant bacteria. Phenotypic screening was conducted on two media containing ertapenem. The isolates from the screening step were characterised via disk diffusion, Modified Hodge, and Carba NP assays. Carbapenem-resistant bacteria and carbapenemase-producing isolates were subjected to Gram staining and biochemical testing to include Gram-negative bacilli. Whole genome sequencing was performed on bacteria that exhibited either a carbapenemase-producing phenotype or were not susceptible to ertapenem and were presumptively Enterobacteriaceae. Of 323 isolates collected from the screening media, 28 were selected for WGS; 21 of which were based on a carbapenemase-producing phenotype and 7 were presumptively Enterobacteriaceae and not susceptible to ertapenem. Based on analysis of WGS data, isolates included: 3 Escherichia coli harbouring blaCMY-2 and truncated ompF genes; 8 Aeromonas harbouring blacphA-like genes; 1 Acinetobacter baumannii harbouring a novel blaOXA gene (blaOXA-497); and 6 Pseudomonas with conserved domains of various carbapenemase-producing genes. Carbapenem resistant bacteria appear to be rare in cattle. Nonetheless, carbapenem-resistant bacteria were detected across various genera and were found to harbour a variety of mechanisms conferring reduced susceptibility. The development and dissemination of carbapenem-resistant bacteria in livestock would have grave implications for therapeutic treatment options in human medicine; thus, continued monitoring of carbapenem susceptibility among enteric bacteria of livestock is warranted.

  13. Cadmium resistance of endophytic bacteria and rizosféricas bacteria isolated from Oriza sativa in Colombia

    Directory of Open Access Journals (Sweden)

    Nataly Ayubb T

    2017-12-01

    Full Text Available The present study had as objective to evaluate in vitro the resistance of endophytic bacteria and rizospheric bacteria to different concentrations of Cadmium.This bacteria were isolated fron different tissues of commercial rice varieties and from bacteria isolated from the rhizosphere in rice plantations of the Nechí (Antioquía and Achí (Bolivar.  Plant growth promotion was evaluated in vitro by nitrogen fixation, phosphate solubilization and siderophores production of endophytic bacteria. Of each tissue isolated from rice plants was carried out isolation in culture medium for endophytic bacteria, and the soil samples were serially diluted in peptone water. Each sample was determined the population density by counting in CFU / g of tissue and morphotypes were separated by shape, color, size and appearance in culture media. Significant differences were observed for density population of bacteria with respect to tissue, with higher values in root (4x1011 g/root, followed of the stem (3x1010g/etem, leaf (5x109 g/ leaf, flag leaf (3x109 g/ flag leaf and with less density in panicle (4x108 g/panicle. The results of the identification with kit API were confirmed the presence of endophytic bacteria Burkholderia cepaceae and rizospheric bacteria Pseudomona fluorescens With the ability to tolerate different concentrations of Cd, fix nitrogen, solubilize phosphates and produce siderophores.

  14. Antimicrobial susceptibility of lactic acid bacteria isolated from human and food-producing animal feces in Khon Kaen Province, Thailand.

    Science.gov (United States)

    Sornplang, Pairat; Sakulsawasdiphan, Kattinet; Piyadeatsoontorn, Sudthidol; Surasorn, Benyapha

    2016-12-01

    The aim of this study was to investigate the susceptibility of 93 Lactobacillus strains to seven antimicrobial agents, i.e., penicillin G, amoxicillin-clavulanic acid, vancomycin, tetracycline, streptomycin, ciprofloxacin, and sulfamethoxazole-trimethoprim, by disk diffusion test. The Lactobacillus strains were isolated from fecal samples taken from 90 healthy, food-producing animals (fattening pigs, free-grazing ducks, and beef cattle) and 30 healthy human subjects (1- to 6-year-olds) in Khon Kaen. The minimum inhibitory concentration (MIC) values of tetracycline and ciprofloxacin against all strains were determined using the E-test. All 93 Lactobacillus isolates were identified at the species level using 16S rRNA gene sequencing. The most common species of Lactobacillus isolated from fattening pigs, free-grazing ducks, beef cattle, and humans were L. reuteri (30 %), L. salivarius (46.7 %), L. acetotolerans (20 %), and L. gasseri (33.3 %), respectively. A total of 83 Lactobacillus strains were resistant to the examined antibiotics. Some strains were resistant to two to six types of antibiotics. More than 50 % of Lactobacillus species were intrinsically resistant to vancomycin, streptomycin, ciprofloxacin, and sulfamethoxazole-trimethoprim. The prevalence of acquired resistance to tetracycline was observed for Lactobacillus isolates from fattening pigs, humans, free-grazing ducks, and beef cattle at 92.3, 85.7, 77.8, and 68.4 %, respectively. These results demonstrate the impact of antibiotic use in human and veterinary medicine on antibiotic treatment efficacy and may support the spread of transferable antibiotic resistant genes to other bacteria via the food chain.

  15. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    Science.gov (United States)

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  16. Electromagnetic effects on plasma blob-filament transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu [University of California, San Diego, La Jolla, CA (United States); Angus, J.R. [Naval Research Laboratory, Washington, DC (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Krasheninnikov, Sergei I. [University of California, San Diego, La Jolla, CA (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation)

    2015-08-15

    Both microscopic and macroscopic impacts of the electromagnetic effects on blob dynamics are considered. Linear stability analysis and nonlinear BOUT++ simulations demonstrate that electromagnetic effects in high temperature or high beta plasmas suppress the resistive drift wave turbulence in the blob when resistivity drops below a certain value. In the course of blob’s motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important. It is found that inhomogeneity of magnetic curvature or plasma pressure along the filament length leads to bending of the high-beta blob filaments. This is caused by the increase of the propagation time of plasma current (Alfvén time) in higher-density plasma. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time.

  17. Isolation of Corynebacterium Xerosis from Jordanian Soil and a Study on its Antimicrobial Activity against a Range of Bacteria and Fungi

    International Nuclear Information System (INIS)

    El-Banna, Nasser

    2004-01-01

    A bacterial strain which has been identified as Corneybacterium Xerosis NB-2 was isolated from a soil sample from Jerash Private University, Jerash, Jordan. This isolate was found to produce an antimicrobial substance active only against filamentous fungi and yeasts (Aspergillus niger SQ 40, Fusarium oxysporium SQ11, Verticillium dahliae SQ 42, Saccharomyces SQ 46 and Candida albicans SQ 47). However, all tested gram-positive bacteria and gram negative bacteria (Bacillus megaterium SQ5, Bacillus cereus SQ6, Staphylococcus aureus SQ9, Streptococcus pyogens SQ10, Eschericshia coli SQ 22, Klepsiella spp SQ33 and SQ33 and Pseudonomas mallei SQ 34) were found to be resistant. In batch culture, the isolated NB-2 produced the antimicrobial substance late in the growth phase and antimicrobial activity of Corynebacterium Xerosis against filamentous fungi and yeasts which was not previously described. (author)

  18. Bacillus subtilis MreB paralogues have different filament architectures and lead to shape remodelling of a heterologous cell system.

    Science.gov (United States)

    Soufo, Hervé Joël Defeu; Graumann, Peter L

    2010-12-01

    Like many bacteria, Bacillus subtilis cells contain three actin-like MreB proteins. We show that the three paralogues, MreB, Mbl and MreBH, have different filament architectures in a heterologous cell system, and form straight filaments, helices or ring structures, different from the regular helical arrangement in B. subtilis cells. However, when coexpressed, they colocalize into a single filamentous helical structure, showing that the paralogues influence each other's filament architecture. Ring-like MreBH structures can be converted into MreB-like helical filaments by a single point mutation affecting subunit contacts, showing that MreB paralogues feature flexible filament arrangements. Time-lapse and FRAP experiments show that filaments can extend as well as shrink at both ends, and also show internal rearrangement, suggesting that filaments consist of overlapping bundles of shorter filaments that continuously turn over. Upon induction in Escherichia coli cells, B. subtilis MreB (BsMreB) filaments push the cells into strikingly altered cell morphology, showing that MreB filaments can change cell shape. E. coli cells with a weakened cell wall were ruptured upon induction of BsMreB filaments, suggesting that the bacterial actin orthologue may exert force against the cell membrane and envelope, and thus possibly plays an additional mechanical role in bacteria. © 2010 Blackwell Publishing Ltd.

  19. Antibiotic Resistant Bacteria And Their Associated Resistance Genes in a Conventional Municipal Wastewater Treatment Plant

    KAUST Repository

    Aljassim, Nada I.

    2013-12-01

    With water scarcity as a pressing issue in Saudi Arabia and other Middle Eastern countries, the treatment and reuse of municipal wastewater is increasingly being used as an alternative water source to supplement country water needs. Standards are in place to ensure a safe treated wastewater quality, however they do not regulate pathogenic bacteria and emerging contaminants. Information is lacking on the levels of risk to public health associated with these factors, the efficiency of conventional treatment strategies in removing them, and on wastewater treatment in Saudi Arabia in general. In this study, a municipal wastewater treatment plant in Saudi Arabia is investigated to assess the efficiency of conventional treatment in meeting regulations and removing pathogens and emerging contaminants. The study found pathogenic bacterial genera, antibiotic resistance genes and antibiotic resistant bacteria, many of which were multi-resistant in plant discharges. It was found that although the treatments are able to meet traditional quality guidelines, there remains a risk from the discussed contaminants with wastewater reuse. A deeper understanding of this risk, and suggestions for more thorough guidelines and monitoring are needed.

  20. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production.

    Science.gov (United States)

    Mathew, Alan G; Cissell, Robin; Liamthong, S

    2007-01-01

    The use of antimicrobial compounds in food animal production provides demonstrated benefits, including improved animal health, higher production and, in some cases, reduction in foodborne pathogens. However, use of antibiotics for agricultural purposes, particularly for growth enhancement, has come under much scrutiny, as it has been shown to contribute to the increased prevalence of antibiotic-resistant bacteria of human significance. The transfer of antibiotic resistance genes and selection for resistant bacteria can occur through a variety of mechanisms, which may not always be linked to specific antibiotic use. Prevalence data may provide some perspective on occurrence and changes in resistance over time; however, the reasons are diverse and complex. Much consideration has been given this issue on both domestic and international fronts, and various countries have enacted or are considering tighter restrictions or bans on some types of antibiotic use in food animal production. In some cases, banning the use of growth-promoting antibiotics appears to have resulted in decreases in prevalence of some drug resistant bacteria; however, subsequent increases in animal morbidity and mortality, particularly in young animals, have sometimes resulted in higher use of therapeutic antibiotics, which often come from drug families of greater relevance to human medicine. While it is clear that use of antibiotics can over time result in significant pools of resistance genes among bacteria, including human pathogens, the risk posed to humans by resistant organisms from farms and livestock has not been clearly defined. As livestock producers, animal health experts, the medical community, and government agencies consider effective strategies for control, it is critical that science-based information provide the basis for such considerations, and that the risks, benefits, and feasibility of such strategies are fully considered, so that human and animal health can be maintained while

  1. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Palloma Rodrigues Marinho

    2009-08-01

    Full Text Available Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3 isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  2. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    Science.gov (United States)

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  3. Mechanism of quinolone resistance in anaerobic bacteria.

    Science.gov (United States)

    Oh, H; Edlund, C

    2003-06-01

    Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.

  4. Isolation and Cloning of mercuric reductase gene (merA from mercury-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Parisa Khoshniyat

    2018-03-01

    Full Text Available Introduction: Some of the bacteria having merA gene coding mineral mercury reducing enzyme, has genetic potential of Hg removing via reduction of mineral mercury and transformation of that to gas form and finally bioremediation of polluted area. The aim of this study is the isolation of merA gene from resistance bacteria and cloning of that into suitable expression vector and then the environmental bioremediation by the transformation of bacteria with this vector. Materials and methods: A number of bacteria were collected in contaminated areas with mercury in order to isolate merA genes. Polymerase chain reaction had done on the four bacterial genomes including Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens and Escherichia coli using the specific primers in order to detect merA gene. For cloning, the primers containing restriction enzyme sites are used, merA gene was isolated and amplified. The amplified fragments were cloned in the expression vector pET21a+ and via heat shock method were transformed into E. coli TOP10 competent cell. For clustering of genes, Mega software version 4 was used and bioanformatic studies were achieved for predicted enzyme. Results: merA gene with 1686 bp in length was isolated from K pneumoniae and E. coli. Recombinant vectors in transgenic bacteria were confirmed by various methods and finally were confirmed by sequencing. The result of clustering these genes with existence genes in NCBI showed high similarity. Discussion and conclusion: The existence of merA gene in bacteria that adapted to Hg pollution area is because of resistance, so with cloning this gene into suitable expression vector and transformation of susceptible bacteria with this vector ability of resistance to Hg in bacteria for bioremediation could be given.

  5. Emerging biocide resistance among multidrug-resistant bacteria: Myth or reality? A pilot study

    Directory of Open Access Journals (Sweden)

    Priyanka Gupta

    2018-01-01

    Full Text Available Context: Possible linkage between biocide and antibiotic resistance in bacteria is a major area of concern. Aim: To evaluate the susceptibility of multidrug-resistant (MDR bacteria to four commonly used biocides. Settings and Design: A pilot study was conducted in a tertiary care hospital from April to November 2017. Materials and Methods: Fifty-four MDR bacterial isolates, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus, were obtained from various clinical samples of inpatients. These isolates were subjected to tube dilution method for determining minimum inhibitory concentration (MIC of four commonly used biocides in our hospital, namely 5% w/v povidone iodine, absolute ethanol (99.9%, sodium hypochlorite (4% available chlorine, and quaternary ammonium compounds (QACs (3.39%. Minimum bactericidal concentration (MBC of these biocides was determined as per standard guidelines. Similar tests were also performed on corresponding American Type Culture Collection (ATCC bacterial strains. Statistical Analysis: The Fisher exact test. Results: Twenty-two MDR bacterial isolates had higher MIC values for QACs than their corresponding ATCC strains. Statistically significant difference in proportion of test isolates exhibiting higher MIC values for QACs and absolute ethanol was observed (P-value = 0.02. Twenty-four MDR bacterial isolates exhibited higher MBC values for sodium hypochlorite than their corresponding ATCC strains. The difference in proportion of test isolates exhibiting higher MBC values for sodium hypochlorite and absolute ethanol, respectively, was statistically significant (P-value <0.0001. The difference in proportion of test isolates exhibiting higher MBC values for absolute ethanol versus QACs and povidone iodine, respectively, was statistically significant (P-values = 0.0003 and 0.0076. Statistically significant differences in susceptibility to biocides among test isolates were also

  6. Grazing behavior and intake of goats rotationally grazing Tanzania-grass pasture with different post-grazing residues

    Directory of Open Access Journals (Sweden)

    Marcia H.M.R. Fernandes

    2016-05-01

    Full Text Available This study aimed to evaluate intake and ingestive behavior of goats rotationally grazing Tanzania (Panicum maximum cv. Tanzânia 1 pastures with 2 levels of post-grazing residue. The experimental area consisted of 1.2 ha of Tanzania pasture divided into 12 paddocks (24 areas, managed under 2 post-grazing residues: low green (leaf + stem herbage mass (GHM post-grazing (LR, approximately 1,500 kg/ha GHM; and high GHM post-grazing (HR, approximately 3,000 kg/ha GHM. Each paddock was grazed for 3 consecutive days (D1, D2, D3 followed by 33 days rest and evaluated from October 2005 to April 2006. Animal behavior (grazing time, bite rate and bite size/weight was evaluated on each grazing day. While goats spent more time grazing on LR than HR (P=0.02, bite rate did not differ between treatments or among days (P=0.31 and averaged 26.5 bites/min. In contrast, bite weight was greater in HR (0.15 g/bite than in LR (0.12 g/bite, and decreased from D1 to D3 (P<0.001. Absolute dry matter intake of goats was greater in the HR (2.19 kg/d than the LR (1.89 kg/d treatment; however, differences were not significant (P>0.05 when intake was determined on a body weight or metabolic weight basis. Our findings are consistent with the general assumption that bite weight is a trade-off between quantity and quality of the herbage mass and is the main determinant of animal performance. More studies are needed to determine animal performance on the various treatments and to determine management strategies to provide a desirable balance between animal weight gain and pasture stability.Keywords: Animal behavior, foraging, grazing systems, Megathyrsus maximus, plant - animal relations.DOI: 10.17138/TGFT(491-100

  7. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest.

    Science.gov (United States)

    Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Topp, Edward

    2013-09-01

    Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.

  8. The expression of antibiotic resistance genes in antibiotic-producing bacteria.

    Science.gov (United States)

    Mak, Stefanie; Xu, Ye; Nodwell, Justin R

    2014-08-01

    Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. © 2014 John Wiley & Sons Ltd.

  9. Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates.

    Science.gov (United States)

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G

    2017-02-01

    As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Largescale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuber-culosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk.

  10. Release and Consumption of DMSP from Emiliania Huxleyi during grazing by Oxyrrhis Marina

    Science.gov (United States)

    Wolfe, Gordon V.; Sherr, Evelyn B.; Sherr, Barry F.

    1994-01-01

    Degradation and release to solution of intracellular dimethylsulfoniopropionate (DMSP) from Emiliania huxleyi 370 was observed during grazing by the heterotrophic dinoflagellate Oxyrrhis marina in 24 h bottle incubations. Between 30 and 70% of the lost algal DMSP was metabolized by the grazers without production of dimethylsulfide (DMS) when grazer densities were 150 to 450/ml. The rest was released to solution and about 30% was converted to DMS by bacteria associated with the grazer culture. These experiments demonstrate that grazing by herbivorous protists may be an important sink for DMSP in marine waters, removing a potential source of DMS. Microzooplankton grazing may also indirectly increase the production of DMS by transferring algal DMSP to the dissolved pool, making it available for bacterial metabolism.

  11. In Situ Detection, Isolation, and Physiological Properties of a Thin Filamentous Microorganism Abundant in Methanogenic Granular Sludges: a Novel Isolate Affiliated with a Clone Cluster, the Green Non-Sulfur Bacteria, Subdivision I

    OpenAIRE

    Sekiguchi, Yuji; Takahashi, Hiroki; Kamagata, Yoichi; Ohashi, Akiyoshi; Harada, Hideki

    2001-01-01

    We previously showed that very thin filamentous bacteria affiliated with the division green non-sulfur bacteria were abundant in the outermost layer of thermophilic methanogenic sludge granules fed with sucrose and several low-molecular-weight fatty acids (Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada, Appl. Environ. Microbiol. 65:1280–1288, 1999). Further 16S ribosomal DNA (rDNA) cloning-based analysis revealed that the microbes were classified within a unique clade, green non...

  12. Identification of antibiotic resistant bacteria community and a GeoChip based study of resistome in urban watersheds.

    Science.gov (United States)

    Low, Adrian; Ng, Charmaine; He, Jianzhong

    2016-12-01

    Urban watersheds from point sources are potential reservoirs of antibiotic resistance genes (ARGs). However, few studies have investigated urban watersheds of non-point sources. To understand the type of ARGs and bacteria that might carry such genes, we investigated two non-point source urban watersheds with different land-use profiles. Antibiotic resistance levels of two watersheds (R1, R3) were examined using heterotrophic plate counts (HPC) as a culturing method to obtain counts of bacteria resistant to seven antibiotics belonging to different classes (erythromycin, kanamycin, lincomycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim). From the HPC study, 239 antibiotic resistant bacteria were characterized for resistance to more antibiotics. Furthermore, ARGs and antimicrobial biosynthesis genes were identified using GeoChip version 5.0 to elucidate the resistomes of surface waters in watersheds R1 and R3. The HPC study showed that water samples from R1 had significantly higher counts of bacteria resistant to erythromycin, kanamycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim than those from R3 (Analysis of Similarity (ANOSIM), R = 0.557, p antibiotics tested, lincomycin and trimethoprim resistant bacteria are greater in abundances. The 239 antibiotic resistant isolates represent a subset of resistant bacterial populations, including bacteria not previously known for resistance. Majority of the isolates had resistance to ampicillin, vancomycin, lincomycin and trimethoprim. GeoChip revealed similar ARGs in both watersheds, but with significantly higher intensities for tetX and β-lactamase B genes in R1 than R3. The genes with the highest average normalized intensities in R1 and R3 were tetracycline (tet) and fosfomycin (fosA) resistance genes, respectively. The higher abundance of tetX genes in R1 is congruent with the higher abundance of tetracycline resistant HPC observed in R1 samples. Strong correlations (r ≥ 0.8) of efflux

  13. Resistance trends in gram-negative bacteria: surveillance results from two Mexican hospitals, 2005–2010

    Directory of Open Access Journals (Sweden)

    Morfin-Otero Rayo

    2012-06-01

    Full Text Available Abstract Background Hospital-acquired infections caused by multiresistant gram-negative bacteria are difficult to treat and cause high rates of morbidity and mortality. The analysis of antimicrobial resistance trends of gram-negative pathogens isolated from hospital-acquired infections is important for the development of antimicrobial stewardship programs. The information obtained from antimicrobial resistant programs from two hospitals from Mexico will be helpful in the selection of empiric therapy for hospital-acquired gram-negative infections. Findings Two thousand one hundred thirty two gram-negative bacteria collected between January 2005 and December 2010 from hospital-acquired infections occurring in two teaching hospitals in Mexico were evaluated. Escherichia coli was the most frequently isolated gram-negative bacteria, with >50% of strains resistant to ciprofloxacin and levofloxacin. Klebsiella spp. showed resistance rates similar to Escherichia coli for ceftazidime (33.1% vs 33.2%, but exhibited lower rates for levofloxacin (18.2% vs 56%. Of the samples collected for the third most common gram-negative bacteria, Pseudomonas aeruginosa, >12.8% were resistant to the carbapenems, imipenem and meropenem. The highest overall resistance was found in Acinetobacter spp. Enterobacter spp. showed high susceptibility to carbapenems. Conclusions E. coli was the most common nosocomial gram-negative bacilli isolated in this study and was found to have the second-highest resistance to fluoroquinolones (>57.9%, after Acinetobacter spp. 81.2%. This finding represents a disturbing development in a common nosocomial and community pathogen.

  14. Transitions and coexistence along a grazing gradient in the Eurasian steppe

    Science.gov (United States)

    Ren, Haiyan; Taube, Friedelm; Zhang, Yingjun; Bai, Yongfei; Hu, Shuijin

    2017-04-01

    Ecological resilience theory has often been applied to explain species coexistence and range condition assessment of various community states and to explicate the dynamics of ecosystems. Grazing is a primary disturbance that can alter rangeland resilience by causing hard-to-reverse transitions in grasslands. Yet, how grazing affects the coexistence of plant functional group (PFG) and transition remains unclear. We conducted a six-year grazing experiment in a typical steppe of Inner Mongolia, using seven grazing intensities (0, 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 sheep/ hectare) and two grazing systems (i.e. a continuous annual grazing as in the traditional grazing system, and a mixed grazing system combining grazing and haymaking), to examine grazing effects on plant functional group shifts and species coexistence in the semi-arid grassland system. Our results indicate that the relative richness of dominant bunchgrasses and forbs had a compensatory coexistence at all grazing intensities, and the richness of rhizomatous grasses fluctuated but was persistent. The relative productivity of dominant bunchgrasses and rhizomatous grasses had compensatory interactions with grazing intensity and grazing system. Dominant bunchgrasses and rhizomatous grasses resist grazing effects by using their dominant species functional traits: high specific leaf area and low leaf nitrogen content. Our results suggest that: 1. Stabilizing mechanisms beyond grazing management are more important in determining plant functional group coexistence and ecological resilience. 2. Plant functional group composition is more important in influencing ecosystem functioning than diversity. 3. Ecosystem resilience at a given level is related to the biomass of dominant PFG, which is determined by a balanced shift between dominant species biomass. The relatively even ecosystem resilience along the grazing gradient is attributed to the compensatory interactions of dominant species in their biomass variations

  15. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    Science.gov (United States)

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  16. HEAVY METAL AND ANTIBIOTIC RESISTANCE BACTERIA IN MARINE SEDIMENT OF PAHANG COASTAL WATER

    Directory of Open Access Journals (Sweden)

    Zaima Azira

    2018-01-01

    Full Text Available The presence of heavy metal and antibiotic resistance bacteria in the marine sediment may indicate heavy metal pollution and antibiotic abuse present in the environment. In this study, a total of 89 bacteria isolated from sediment collected in Teluk Chempedak and Pantai Batu Hitam of Pahang coastal water underwent heavy metal resistance test against Chromium, Cadmium, Nickel, Copper and Cobalt. Previously, these isolates were found to exhibit antibiotic resistance capabilities to at least 5 antibiotics tested. Heavy metal resistance pattern for isolates from Teluk Chempedak was in the form of Cr > Ni >Co >Cd = Cu while for isolates from Pantai Batu Hitam showed a pattern of Cr = Ni >Co >Cu >Cd. Further investigation on the identity of selected isolates that exhibited both antibiotic and heavy metals resistance capabilities using 16S rRNA gene sequences revealed isolates with closest similarities to Staphylococcus saprophyticus and Brevundimonas vesicularis..

  17. Coevolution of antibiotic production and counter-resistance in soil bacteria.

    Science.gov (United States)

    Laskaris, Paris; Tolba, Sahar; Calvo-Bado, Leo; Wellington, Elizabeth M; Wellington, Liz

    2010-03-01

    We present evidence for the coexistence and coevolution of antibiotic resistance and biosynthesis genes in soil bacteria. The distribution of the streptomycin (strA) and viomycin (vph) resistance genes was examined in Streptomyces isolates. strA and vph were found either within a biosynthetic gene cluster or independently. Streptomyces griseus strains possessing the streptomycin cluster formed part of a clonal complex. All S. griseus strains possessing solely strA belonged to two clades; both were closely related to the streptomycin producers. Other more distantly related S. griseus strains did not contain strA. S. griseus strains with only vph also formed two clades, but they were more distantly related to the producers and to one another. The expression of the strA gene was constitutive in a resistance-only strain whereas streptomycin producers showed peak strA expression in late log phase that correlates with the switch on of streptomycin biosynthesis. While there is evidence that antibiotics have diverse roles in nature, our data clearly support the coevolution of resistance in the presence of antibiotic biosynthetic capability within closely related soil dwelling bacteria. This reinforces the view that, for some antibiotics at least, the primary role is one of antibiosis during competition in soil for resources.

  18. Resistance in bacteria of the food chain: epidemiology and control strategies

    DEFF Research Database (Denmark)

    Cavaco, Lina; Aarestrup, Frank Møller

    2013-01-01

    Antimicrobial agents are widely used for treatment of animals and humans as well as for production purposes in livestock production in several countries. This is exerting a major selective pressure on bacterial populations, and is selecting for populations resistant to the antimicrobials used....... The emergence and spread of resistant bacteria in the food chain is a major concern as food-producing animals may constitute a huge reservoir for antimicrobial resistance. Furthermore, food animals and food of animal origin is traded worldwide, which means that the occurrences of antimicrobial resistance...

  19. Antimicrobial resistance and susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Schuetz, Audrey N

    2014-09-01

    Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Heavy metal and antibiotic resistance in bacteria isolated from the environment of swine farms

    International Nuclear Information System (INIS)

    Fan, Y.; Ping, C.; Mei, L.S.

    2014-01-01

    The aim of the present study was to determine the level of heavy metal resistance and antibiotic resistance patterns of bacterial isolates from environment of swine farms in China. A total of 284 bacteria were isolated, 158 from manure, 62 from soil and 64 from wastewater in different swine farm samples. All the isolates were tested for resistant against eight heavy metals. From the total of 284 isolates, maximum bacterial isolates were found to be resistant to Zn/sup 2+/ (98.6%) followed by Cu/sup 2+/ (97.5%), Cd/sup 2+/ (68.3%), Mn/sup 2+/ (60.2%), Pb/sup 2+/(51.4%), Ni/sup 2+/(41.5%) and Cr/sup 2+/(45.1%). However, most of the isolates were sensitive to Co/sup 2+/. Meanwhile,all the isolates were tested for sensitively to nine antibiotics. The results shows that most isolates were sensitive to cefoxitin and oxacillin, but resistance to tetracycline, ampicillin, gentamicin, amikacin, erythromycin, clindamycin were widespread. Multiple resistant to metals and antibiotics were also observed in this study. Most isolates were tolerant to different concentrations of various heavy metals and antibiotics. Our results confirmed that environment of swine farms in China has a significant proportion of heavy metal and antibiotic resistant bacteria, and these bacteria constitute a potential risk for swine health and public health. (author)

  2. Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene

    Directory of Open Access Journals (Sweden)

    Ryota Ito

    2017-08-01

    Full Text Available Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn2+ and K+-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa, whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia. FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance.

  3. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Mocan L

    2017-03-01

    Full Text Available Lucian Mocan,1,2 Flaviu A Tabaran,3 Teodora Mocan,2,4 Teodora Pop,5 Ofelia Mosteanu,5 Lucia Agoston-Coldea,6 Cristian T Matea,2 Diana Gonciar,2 Claudiu Zdrehus,1,2 Cornel Iancu1 13rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2Department of Nanomedicine, “Octavian Fodor” Gastroenterology Institute, 3Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, 4Department of Physiology, 53rd Gastroenterology Department, 6Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania Abstract: The issue of multidrug resistance (MDR has become an increasing threat to public health. One alternative strategy against MDR bacteria would be to construct therapeutic vectors capable of physically damaging these microorganisms. Gold nanoparticles hold great promise for the development of such therapeutic agents, since the nanoparticles exhibit impressive properties, of which the most important is the ability to convert light into heat. This property has scientific significance since is exploited to develop nano-photothermal vectors to destroy bacteria at a molecular level. The present paper summarizes the latest advancements in the field of nanotargeted laser hyperthermia of MDR bacteria mediated by gold nanoparticles. Keywords: bacteria, photo-thermal ablation, gold nanoparticles, antibiotic resistance

  4. [Antibiotic resistance--an ambivalence of attitudes. As of now, the bacteria are in advantage].

    Science.gov (United States)

    Sköld, O

    1995-09-13

    The value of the precious medical asset that antibiotics constitute is contimualby being eroded by the spread of resistance. For some time that bacterial world has been adapting itself to contend with the toxic assault of man-made poisons, antibiotics, by developing resistance in a very rapid process of evolutionary changes occurring before our very eyes. This evolutionary adaptation is an example of natural genetic engineering entailing an interchange between bacteria of genes conferring antibiotic resistance. Trimethoprim resistance is an example where numerous genes of unknown origin (some closely interrelated), expressing drug-resistant dihydrofolate reductases, move among human commensals and pathogens. They have been shown to move as gene cassettes in and out of the recently characterised integron structure occurring in many pathogens. They are also carried by various transposons such as Tn7, or Tn5393 originally observed in a plant pathogen, Erwinia amylovora. Betalactam resistance is another example of natural genetic engineering, where new betalactamases are continually emerging, and individual enzyme substrate specificity is modified by point mutation. At present, betalactamase mutants resistant to all commercially available betalactams, including clavulanic acid used in combination with betalactam antibiotics, are to be found in clinical isolates. Thus, currently bacteria seem to be triumphing in the running battle between the pharmaceutical industry and the bacterial world, the former introducing one new antibiotic variant after another, to which bacteria promptly develop resistance by manipulating their own genomes.

  5. Factors influencing the survival and leaching of tetracycline-resistant bacteria and Escherichia coli through structured agricultural fields

    DEFF Research Database (Denmark)

    Bech, Tina B.; Rosenbom, Annette E.; Kjaer, Jeanne

    2014-01-01

    Intense use of antibiotics in agricultural production may lead to the contamination of surface and groundwater by antibiotic-resistant bacteria. In the present study, the survival and leaching of E. coli and tetracycline-resistant bacteria were monitored at two well-structured agricultural fields...

  6. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P anaerobic digestion by 12.0% and 14.3%, respectively (P bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05).

  7. Quantitative relationship between antibiotic exposure and the acquisition and transmission of resistance in bacteria in the laboratory

    NARCIS (Netherlands)

    Händel, N.

    2015-01-01

    The worldwide emergence and spread of antibiotic resistant bacteria represent a major threat to human health care as the chance of therapy failure and costs for treatment increase. To curb the continuous rise of drug resistant bacteria worldwide, new strategies are urgently needed that counteract

  8. Antibiotic resistant bacteria in urban sewage: Role of full-scale wastewater treatment plants on environmental spreading.

    Science.gov (United States)

    Turolla, A; Cattaneo, M; Marazzi, F; Mezzanotte, V; Antonelli, M

    2018-01-01

    The presence of antibiotic resistant bacteria (ARB) in wastewater was investigated and the role of wastewater treatment plants (WWTPs) in promoting or limiting antibiotic resistance was assessed. Escherichia coli (E. coli) and total heterotrophic bacteria (THB) resistance to ampicillin, chloramphenicol and tetracycline was monitored in three WWTPs located in Milan urban area (Italy), differing among them for the operating parameters of biological process, for the disinfection processes (based on sodium hypochlorite, UV radiation, peracetic acid) and for the discharge limits to be met. Wastewater was collected from three sampling points along the treatment sequence (WWTP influent, effluent from sand filtration, WWTP effluent). Antibiotic resistance to ampicillin was observed both for E. coli and for THB. Ampicillin resistant bacteria in the WWTP influents were 20-47% of E. coli and 16-25% of THB counts. A limited resistance to chloramphenicol was observed only for E. coli, while neither for E. coli nor for THB tetracycline resistance was observed. The biological treatment and sand filtration led to a decrease in the maximum percentage of ampicillin-resistant bacteria (20-29% for E. coli, 11-21% for THB). However, the conventionally adopted parameters did not seem adequate to support an interpretation of WWTP role in ARB spread. Peracetic acid was effective in selectively acting on antibiotic resistant THB, unlike UV radiation and sodium hypochlorite. The low counts of E. coli in WWTP final effluents in case of agricultural reuse did not allow to compare the effect of the different disinfection processes on antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles.

    Science.gov (United States)

    Wheeler, Emily; Hong, Pei-Ying; Bedon, Lenin Cruz; Mackie, Roderick I

    2012-01-01

    Increased overlap between humans and wildlife populations has increased the risk for novel disease emergence. Detecting contacts with a high risk for transmission of pathogens requires the identification of dependable measures of microbial exchange. We evaluated antibiotic resistance as a molecular marker for the intensity of human-wildlife microbial connectivity in the Galápagos Islands. We isolated Escherichia coli and Salmonella enterica from the feces of land iguanas (Conolophus sp.), marine iguanas (Amblyrhynchus cristatus), giant tortoises (Geochelone nigra), and seawater, and tested these bacteria with the use of the disk diffusion method for resistance to 10 antibiotics. Antibiotic-resistant bacteria were found in reptile feces from two tourism sites (Isla Plaza Sur and La Galapaguera on Isla San Cristóbal) and from seawater close to a public use beach near Puerto Baquerizo Moreno on Isla San Cristóbal. No resistance was detected at two protected beaches on more isolated islands (El Miedo on Isla Santa Fe and Cape Douglas on Isla Fernandina) and at a coastal tourism site (La Lobería on Isla San Cristóbal). Eighteen E. coli isolates from three locations, all sites relatively proximate to a port town, were resistant to ampicillin, doxycycline, tetracycline, and trimethoprin/sulfamethoxazole. In contrast, only five S. enterica isolates showed a mild decrease in susceptibility to doxycycline and tetracycline from these same sites (i.e., an intermediate resistance phenotype), but no clinical resistance was detected in this bacterial species. These findings suggest that reptiles living in closer proximity to humans potentially have higher exposure to bacteria of human origin; however, it is not clear from this study to what extent this potential exposure translates to ongoing exchange of bacterial strains or genetic traits. Resistance patterns and bacterial exchange in this system warrant further investigation to understand better how human associations

  10. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation

    Science.gov (United States)

    de Almeida, Luis Gustavo; de Moraes, Luiz Alberto Beraldo; Trigo, José Roberto; Omoto, Celso

    2017-01-01

    The exploration of new niches for microorganisms capable of degrading recalcitrant molecules is still required. We hypothesized the gut microbiota associated with insect-resistant lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrading capacity of gut bacteria from the gut of fifth instars of Spodoptera frugiperda strains resistant to lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, spinosad and lufenuron, using insecticide-selective media. Sixteen isolates belonging to 10 phylotypes were obtained, from which four were also associated with the susceptible strain. However, growth of gut bacteria associated with larvae from the susceptible strain was not obtained in any of the insecticide-based selective media tested. Growth of isolates was affected by the concentration of insecticides in the media, and all grew well up to 40 μg/ml. The insecticide-degrading capacity of selected isolates was assessed by GC or LC-MS/MS analyses. In conclusion, resistant strains of S. frugiperda are an excellent reservoir of insecticide-degrading bacteria with bioremediation potential. Moreover, gut-associated bacteria are subjected to the selection pressure imposed by insecticides on their hosts and may influence the metabolization of pesticides in insects. PMID:28358907

  11. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation.

    Directory of Open Access Journals (Sweden)

    Luis Gustavo de Almeida

    Full Text Available The exploration of new niches for microorganisms capable of degrading recalcitrant molecules is still required. We hypothesized the gut microbiota associated with insect-resistant lines carry pesticide degrading bacteria, and predicted they carry bacteria selected to degrade pesticides they were resistant to. We isolated and accessed the pesticide-degrading capacity of gut bacteria from the gut of fifth instars of Spodoptera frugiperda strains resistant to lambda-cyhalothrin, deltamethrin, chlorpyrifos ethyl, spinosad and lufenuron, using insecticide-selective media. Sixteen isolates belonging to 10 phylotypes were obtained, from which four were also associated with the susceptible strain. However, growth of gut bacteria associated with larvae from the susceptible strain was not obtained in any of the insecticide-based selective media tested. Growth of isolates was affected by the concentration of insecticides in the media, and all grew well up to 40 μg/ml. The insecticide-degrading capacity of selected isolates was assessed by GC or LC-MS/MS analyses. In conclusion, resistant strains of S. frugiperda are an excellent reservoir of insecticide-degrading bacteria with bioremediation potential. Moreover, gut-associated bacteria are subjected to the selection pressure imposed by insecticides on their hosts and may influence the metabolization of pesticides in insects.

  12. Succession of cable bacteria and electric currents in marine sediment

    DEFF Research Database (Denmark)

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper Urup

    2014-01-01

    conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15[thinsp]mm of the sediment, and after 21 days the filament density peaked with a total......][mu]m, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30[thinsp]mm, the electric...... current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement...

  13. A virulence-associated filamentous bacteriophage of Neisseria meningitidis increases host-cell colonisation.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Bille

    2017-07-01

    Full Text Available Neisseria meningitidis is a commensal of human nasopharynx. In some circumstances, this bacteria can invade the bloodstream and, after crossing the blood brain barrier, the meninges. A filamentous phage, designated MDAΦ for Meningococcal Disease Associated, has been associated with invasive disease. In this work we show that the prophage is not associated with a higher virulence during the bloodstream phase of the disease. However, looking at the interaction of N. meningitidis with epithelial cells, a step essential for colonization of the nasopharynx, we demonstrate that the presence of the prophage, via the production of viruses, increases colonization of encapsulated meningococci onto monolayers of epithelial cells. The analysis of the biomass covering the epithelial cells revealed that meningococci are bound to the apical surface of host cells by few layers of heavily piliated bacteria, whereas, in the upper layers, bacteria are non-piliated but surrounded by phage particles which (i form bundles of filaments, and/or (ii are in some places associated with bacteria. The latter are likely to correspond to growing bacteriophages during their extrusion through the outer membrane. These data suggest that, as the biomass increases, the loss of piliation in the upper layers of the biomass does not allow type IV pilus bacterial aggregation, but is compensated by a large production of phage particles that promote bacterial aggregation via the formation of bundles of phage filaments linked to the bacterial cell walls. We propose that MDAΦ by increasing bacterial colonization in the mucosa at the site-of-entry, increase the occurrence of diseases.

  14. Are grazer-induced adaptations of bacterial abundance and morphology timedependent?

    Directory of Open Access Journals (Sweden)

    Gianluca CORNO

    2006-02-01

    Full Text Available Predation by protists is a well known force that shapes bacterial communities and can lead to filamentous forms and aggregations of large cell clusters. These classic resistance strategies were observed as a direct consequence of predation by heteroand mixotrophic flagellates (the main group of bacteria predators in water on natural assemblages of bacteria and on single plastic strains. Recently it was shown that a long time exposure (about 30 days of a bacterial strain, characterized by high degree of phenotypic plasticity, to flagellates, without direct predation, enhanced the formation of resistant forms (filaments in a continuous culture system. Target prey populations and predators were separated by a dialysis membrane. Moreover, the positive impact on bacterial growth, due to the chemical excretes released by flagellates was demonstrated for exudates of photosynthetic activity. The same positive impact may also be seen in response to exudates related to grazing. In this study, two short-term experiments (<100 hours were conducted to test for modifications in the morphology and productivity of three different bacterial strains that were induced by the presence of active predators, but without direct predation. The growth and morphological distribution of each of the selected strains was tested separately using batch cultures. Cultures were either enriched with carbon in the presence or absence of flagellate predators, or included pre-filtered exudates from flagellate activity. In a second experiment, bottles were provided with a central dialysis bag that contained active flagellates, and were inoculated with the selected bacterial strains. In this way, bacteria were exposed to the presence of predators without direct predation. The bacterial strains used in this experience were characterised by a high degree of phenotypic plasticity and exhibited different successful strategies of resistance against grazing. The flagellates selected as

  15. Use of thermophilic bacteria for bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Al-Maghrabi, I.M.A.; Bin Aqil, A.O.; Chaalal, O.; Islam, M.R.

    1999-01-01

    Several strains of thermophilic bacteria were isolated from the environment of the United Arab Emirates. These bacteria show extraordinary resistance to heat and have their maximum growth rate around 60--80 C. This article investigates the potential of using these facultative bacteria for both in situ and ex situ bioremediation of petroleum contaminants. In a series of batch experiments, bacterial growth was observed using a computer image analyzer following a recently developed technique. These experiments showed clearly that the growth rate is enhanced in the presence of crude oil. This is coupled with a rapid degradation of the crude oil. These bacteria were found to be ideal for breaking down long-chain organic molecules at a temperature of 40 C, which is the typical ambient temperature of the Persian Gulf region. The same strains of bacteria are also capable of surviving in the presence of the saline environment that can prevail in both sea water and reservoir connate water. This observation prompted further investigation into the applicability of the bacteria in microbial enhanced oil recovery. In the United Arab Emirates, the reservoirs are typically at a temperature of around 85 C. Finally, the performance of the bacteria is tested in a newly developed bioreactor that uses continuous aeration through a transverse slotted pipe. This reactor also uses mixing without damaging the filamentous bacteria. In this process, the mechanisms of bioremediation are identified

  16. Bundling of elastic filaments induced by hydrodynamic interactions

    Science.gov (United States)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  17. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products.

    Science.gov (United States)

    Erginkaya, Z; Turhan, E U; Tatlı, D

    2018-01-01

    In this study, the antibiotic resistance (AR) of lactic acid bacteria (LAB) isolated from traditional Turkish fermented dairy products was investigated. Yogurt, white cheese, tulum cheese, cokelek, camız cream and kefir as dairy products were collected from various supermarkets. Lactic acid bacteria such as Lactobacillus spp., Streptococcus spp., Bifidobacterium spp., and Enterecoccus spp. were isolated from these dairy products. Lactobacillus spp. were resistant to vancomycin (58%), erythromycin (10.8%), tetracycline (4.3%), gentamicin (28%), and ciprofloxacin (26%). Streptococcus spp. were resistant to vancomycin (40%), erythromycin (10%), chloramphenicol (10%), gentamicin (20%), and ciprofloxacin (30%). Bifidobacterium spp. were resistant to vancomycin (60%), E 15 (6.6%), gentamicin (20%), and ciprofloxacin (33%). Enterococcus spp. were resistant to vancomycin (100%), erythromycin (100%), rifampin (100%), and ciprofloxacin (100%). As a result, LAB islated from dairy products in this study showed mostly resistance to vancomycin.

  18. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    Science.gov (United States)

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Efficacy of antibacterial peptides against peptide-resistant MRSA is restored by permeabilisation of bacteria membranes

    Directory of Open Access Journals (Sweden)

    Joshua Thomas Ravensdale

    2016-11-01

    Full Text Available Clinical application of antimicrobial peptides, as with conventional antibiotics, may be compromised by the development of bacterial resistance. This study investigated antimicrobial peptide resistance in methicillin resistant Staphylococcus aureus, including aspects related to the resilience of the resistant bacteria towards the peptides, the stability of resistance when selection pressures are removed, and whether resistance can be overcome by using the peptides with other membrane-permeabilising agents. Genotypically variant strains of S. aureus became equally resistant to the antibacterial peptides melittin and bac8c when grown in sub-lethal concentrations. Subculture of a melittin-resistant strain without melittin for 8 days lowered the minimal lethal concentration of the peptide from 170 µg ml-1 to 30 g ml-1. Growth for 24 h in 12 g ml-1 melittin restored the MLC to 100 g ml-1. Flow cytometry analysis of cationic fluorophore binding to melittin-naïve and melittin-resistant bacteria revealed that resistance coincided with decreased binding of cationic molecules, suggesting a reduction in nett negative charge on the membrane. Melittin was haemolytic at low concentrations but the truncated analogue of melittin, mel12-26, was confirmed to lack haemolytic activity. Although a previous report found that mel12-26 retained full bactericidal activity, we found it to lack significant activity when added to culture medium. However, electroporation in the presence of 50 µg ml-1 of mel12-26, killed 99.3% of the bacteria. Similarly, using a low concentration of the non-ionic detergent Triton X-100 to permeabilize bacteria to mel12-26 markedly increased its bactericidal activity. The observation that bactericidal activity of the non-membranolytic peptide mel12-26 was enhanced when the bacterial membrane was permeablised by detergents or electroporation, suggests that its principal mechanism in reducing bacterial survival may be through

  20. Grazing-Activated Production of Dimethyl Sulfide (DMS) by two clones of Emiliania huxleyi

    Science.gov (United States)

    Wolfe, Gordon V.; Steinke, Michael

    1996-01-01

    Emiliania huxleyi clones CCMP 370 and CCMP 373 produced similar amounts of dimethylsulfoniopropionate (DMSP) during axenic exponential growth, averaging 109 mM internal DMSP. Both clones had detectable DMSP lyase activity, as measured by production of dimethyl sulfide (DMS) during in vitro assays of crude cell preparations, but activities and conditions differed considerably between clones. Clone 373 had high activity; clone 370 had low activity and required chloride. For both strains, enzyme activity per cell was constant during exponential growth, but little DMS was produced by healthy cells. Rather, DMS production was activated when cells were subjected to physical or chemical stresses that caused cell lysis. We propose that DMSP lyase and DMSP are segregated within these cells and re-action only under conditions that result in cell stress or damage. Such activation occurs during microzooplankton grazing. When these clones were grazed by the dinoflagellate Oxyrrhis marina, DMS was produced; ungrazed cells, as well as those exposed to grazer exudates and associated bacteria, generated no DMS. Grazing of clone 373 produced much more DMS than grazing of clone 370, consistent with their relative in vitro DMSP lyase activities. DMS was only generated when cells were actually being grazed, indicating that ingested cells were responsible for the DMS formation. We suggest that even low levels of grazing can greatly accelerate DMS production.

  1. [Antibacterial activity of rare Streptomyces species against clinical resistant bacteria].

    Science.gov (United States)

    Boughachiche, Faiza; Reghioua, Sihem; Zerizer, Habiba; Boulahrouf, Abderrahmane

    2012-01-01

    In the search for new antibiotics from Steptomyces, investigating extremes habitats enhances the probability of isolating novel producers. In this context, the antibacterial activity of four Streptomyces strains isolated from Ezzmoul saltpans was studied. Two of them showed antibacterial activity against antibiotic's resistant bacteria (Bacillus cereus: β-lactamines and sulfamides resistant, Streptococcus faecalis: penicillin, tetracycline and cotrimoxazole resistant, and Staphylococcus aureus Mu 50: vancomycine resistant). The most active Streptomyces strain produces one type of polar bioactive molecules that resists to temperature variation and light exposition. Its activity appears in the first culture day and reaches its maximal value in the fourth day. The second strain presents themoresistant activity that reaches its maximal value in the first culture day. It produces two types of bioactive molecules, one is polar and the second is non polar (according to thin layer chromatography technique results).

  2. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo

    Directory of Open Access Journals (Sweden)

    M. M. Kathleen

    2016-01-01

    Full Text Available The administration of antimicrobials in aquaculture provides a selective pressure creating a reservoir of multiple resistant bacteria in the cultured fish and shrimps as well as the aquaculture environment. The objective of this study was to determine the extent of antibiotic resistance in aquaculture products and aquaculture’s surrounding environment in Sarawak, Malaysian Borneo. Ninety-four identified bacterial isolates constituted of 17 genera were isolated from sediment, water, and cultured organisms (fish and shrimp in selected aquaculture farms. These isolates were tested for their antibiotic resistance against 22 antibiotics from several groups using the disk diffusion method. The results show that the highest resistance was observed towards streptomycin (85%, n=20, while the lowest resistance was towards gentamicin (1.1%, n=90. The multiple antibiotic resistant (MAR index of the isolates tested ranged between 0 and 0.63. It was suggested that isolates with MAR index > 0.2 were recovered from sources with high risk of antibiotic resistant contamination. This study revealed low level of antibiotic resistance in the aquaculture bacterial isolates except for streptomycin and ampicillin (>50% resistance, n=94 which have been used in the aquaculture industry for several decades. Antibiotic resistant patterns should be continuously monitored to predict the emergence and widespread of MAR. Effective action is needed to keep the new resistance from further developing and spreading.

  3. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology

    OpenAIRE

    Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L.

    2013-01-01

    The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 ?m underneath the cell membrane, which run at angles diverging up to 40? relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-?m-long filaments. MreB filaments move along various tracks ...

  4. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    De; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    In the wake of the findings that Antarctic krills concentrate heavy metals at ppm level, (Yamamoto et al., 1987), the Antarctic waters from the Indian side were examined for the incidence of metal and antibiotic-resistant bacteria during...

  5. Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream

    Science.gov (United States)

    Mori, J. F.; Neu, T. R.; Lu, S.; Händel, M.; Totsche, K. U.; Küsel, K.

    2015-09-01

    Filamentous macroscopic algae were observed in slightly acidic to circumneutral (pH 5.9-6.5), metal-rich stream water that leaked out from a former uranium mining district (Ronneburg, Germany). These algae differed in color and morphology and were encrusted with Fe-deposits. To elucidate their potential interaction with Fe(II)-oxidizing bacteria (FeOB), we collected algal samples at three time points during summer 2013 and studied the algae-bacteria-mineral compositions via confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra, and a 16S and 18S rRNA gene-based bacterial and algae community analysis. Surprisingly, sequencing analysis of 18S rRNA gene regions of green and brown algae revealed high homologies with the freshwater algae Tribonema (99.9-100 %). CLSM imaging indicated a loss of active chloroplasts in the algae cells, which may be responsible for the change in color in oxidation under the putative oxygen-saturated conditions that occur in association with photosynthetic algae. Quantitative PCR (polymerase chain reaction) revealed even higher Gallionella-related 16S rRNA gene copy numbers on the surface of green algae compared to the brown algae. The latter harbored a higher microbial diversity, including some putative predators of algae. A loss of chloroplasts in the brown algae could have led to lower photosynthetic activities and reduced EPS production, which is known to affect predator colonization. Collectively, our results suggest the coexistence of oxygen-generating algae Tribonema sp. and strictly microaerophilic neutrophilic FeOB in a heavy metal-rich environment.

  6. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  7. Structural and functional properties of chimeric EspA-FliCi filaments of EPEC.

    Science.gov (United States)

    Crepin, Valerie F; Martinez, Eric; Shaw, Robert K; Frankel, Gad; Daniell, Sarah J

    2008-04-18

    Enteropathogenic Escherichia coli utilise a filamentous type III secretion system to translocate effector proteins into host gut epithelial cells. The primary constituent of the extracellular component of the filamentous type III secretion system is EspA. This forms a long flexible helical conduit between the bacterium and host and has a structure almost identical to that of the flagella filament. We have inserted the D3 domain of FliCi (from Salmonella typhimurium) into the outer domain of EspA and have studied the structure and function of modified filaments when expressed in an enteropathogenic E. coli espA mutant. We found that the chimeric protein EspA-FliCi filaments were biologically active as they supported protein secretion and translocation [assessed by their ability to trigger actin polymerisation beneath adherent bacteria (fluorescent actin staining test)]. The expressed filaments were recognised by both EspA and FliCi antisera. Visualisation and analysis of the chimeric filaments by electron microscopy after negative staining showed that, remarkably, EspA filaments are able to tolerate a large protein insertion without a significant effect on their helical architecture.

  8. Comparisons of actin filament disruptors and Rho kinase inhibitors as potential antiglaucoma medications

    OpenAIRE

    Tian, Baohe; Kaufman, Paul L

    2012-01-01

    Dynamics of the actin cytoskeleton in the trabecular meshwork play a crucial role in the regulation of trabecular outflow resistance. The actin filament disruptors and Rho kinase inhibitors affect the dynamics of the actomyosin system by either disrupting the actin filaments or inhibiting the Rho kinase-activated cellular contractility. Both approaches induce similar morphological changes and resistance decreases in the trabecular outflow pathway, and thus both have potential as antiglaucoma ...

  9. Filament heater current modulation for increased filament lifetime

    International Nuclear Information System (INIS)

    Paul, J.D.; Williams, H.E. III.

    1996-01-01

    The surface conversion H-minus ion source employs two 60 mil tungsten filaments which are approximately 17 centimeters in length. These filaments are heated to approximately 2,800 degrees centigrade by 95--100 amperes of DC heater current. The arc is struck at a 120 hertz rate, for 800 microseconds and is generally run at 30 amperes peak current. Although sputtering is considered a contributing factor in the demise of the filament, evaporation is of greater concern. If the peak arc current can be maintained with less average heater current, the filament evaporation rate for this arc current will diminish. In the vacuum of an ion source, the authors expect the filaments to retain much of their heat throughout a 1 millisecond (12% duty) loss of heater current. A circuit to eliminate 100 ampere heater currents from filaments during the arc pulse was developed. The magnetic field due to the 100 ampere current tends to hold electrons to the filament, decreasing the arc current. By eliminating this magnetic field, the arc should be more efficient, allowing the filaments to run at a lower average heater current. This should extend the filament lifetime. The circuit development and preliminary filament results are discussed

  10. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria

    Directory of Open Access Journals (Sweden)

    Gabriella Spengler

    2017-03-01

    Full Text Available Multidrug resistance (MDR has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR is efflux pump-mediated resistance. Because of the importance of the efflux-related multidrug resistance the development of new therapeutic approaches aiming to inhibit bacterial efflux pumps is a promising way to combat bacteria having over-expressed MDR efflux systems. The definition of an efflux pump inhibitor (EPI includes the ability to render the bacterium increasingly more sensitive to a given antibiotic or even reverse the multidrug resistant phenotype. In the recent years numerous EPIs have been developed, although so far their clinical application has not yet been achieved due to their in vivo toxicity and side effects. In this review, we aim to give a short overview of efflux mediated resistance in bacteria, EPI compounds of plant and synthetic origin, and the possible methods to investigate and screen EPI compounds in bacterial systems.

  11. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria.

    Science.gov (United States)

    Hölzel, Christina S; Schwaiger, Karin; Harms, Katrin; Küchenhoff, Helmut; Kunz, Anne; Meyer, Karsten; Müller, Christa; Bauer, Johann

    2010-05-01

    Within the last decades, the environmental spread of antibiotic resistant bacteria has become a topic of concern. In this study, liquid pig manure (n=305) and sewage sludge (n=111) - used as agricultural fertilizers between 2002 and 2005 - were investigated for the presence of Escherichia coli, Enterococcus faecalis and Enterococcus faecium. Bacteria were tested for their resistance against 40 chemotherapeutics including several "reserve drugs". E. coli (n=613) from pig manure were at a significantly higher degree resistant to streptomycin, doxycycline, spectinomycin, cotrimoxazole, and chloramphenicol than E. coli (n=116) from sewage sludge. Enterococci (Ent. faecalis, n=387, and Ent. faecium, n=183) from pig manure were significantly more often resistant to high levels of doxycycline, rifampicin, erythromycin, and streptomycin than Ent. faecalis (n=44) and Ent. faecium (n=125) from sewage sludge. Significant differences in enterococcal resistance were also seen for tylosin, chloramphenicol, gentamicin high level, fosfomycin, clindamicin, enrofloxacin, moxifloxacin, nitrofurantoin, and quinupristin/dalfopristin. By contrast, aminopenicillins were more effective in enterococci from pig manure, and mean MIC-values of piperacillin+tazobactam and third generation cefalosporines were significantly lower in E. coli from pig manure than in E. coli from sewage sludge. 13.4% (E. coli) to 25.3% (Ent. faecium) of pig manure isolates were high-level multiresistant to substances from more than three different classes of antimicrobial agents. In sewage sludge, high-level-multiresistance reached from 0% (Ent. faecalis) to 16% (Ent. faecium). High rates of (multi-) resistant bacteria in pig manure emphasize the need for a prudent - cautious - use of antibiotics in farm animals. Copyright 2010 Elsevier Inc. All rights reserved.

  12. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    Microsensor studies show that the marine environment in the size scale of bacteria is physically and chemically very different from the macroenvironment. The microbial world of the sediment-water interface is thus dominated by water viscosity and steep diffusion gradients. Because of the diverse...... metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea hydrothermal vents or along the Pacific coast of South America are presented here as examples....

  13. Antimicrobial resistance in Gram-positive bacteria from Timorese River Buffalo (Bubalus bubalis) skin microbiota.

    Science.gov (United States)

    Oliveira, Manuela; Monteiro, José L; Rana, Sílvia; Vilela, Cristina L

    2010-06-01

    The Timorese River Buffalo (Bubalus bubalis) plays a major role in the East Timor economy, as it is an important source of animal protein in human nutrition. They are widely spread throughout the country and are in direct contact with the populations. In spite of this proximity, information on their microbiota is scarce. This work aimed at characterizing the skin microbiota of the East Timorese River Buffalo and its antimicrobial resistance profile. Skin swab samples were taken from 46 animals in surveys conducted in three farms located in "Suco de Nairete", Lospalos district, during July and August 2006. Bacteria were isolated and identified according to conventional microbiological procedures. A total of 456 isolates were obtained, including Gram-positive (n = 243) and Gram-negative (n = 213) bacteria. Due to their importance as potential pathogens and as vehicles for antimicrobial resistance transmission, Gram-positive cocci (n = 27) and bacilli (n = 77) isolates were further characterized, and their antimicrobial resistance profile determined by the disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. This study shows the high bacterial diversity of B. bubalis skin microbiota, representing an important first step towards understanding its importance and epidemiologic role in animal health. It also points out the potential role of these animals as vectors of antimicrobial resistant bacteria dissemination and the importance of antimicrobial resistance monitoring in developing countries.

  14. Prevalence of antibiotic-resistant Gram-negative bacteria associated with the red-eared slider (Trachemys scripta elegans).

    Science.gov (United States)

    Liu, Dandan; Wilson, Cailin; Hearlson, Jodie; Singleton, Jennifer; Thomas, R Brent; Crupper, Scott S

    2013-09-01

    Free-ranging Red-eared Sliders (Trachemys scripta elegans) were captured from farm ponds located in the Flint Hills of Kansas and a zoo pond in Emporia, Kansas, USA, to evaluate their enteric bacterial flora and associated antibiotic resistance. Bacteria obtained from cloacal swabs were composed of six different Gram-negative genera. Although antibiotic resistance was present in turtles captured from both locations, 40 and 49% of bacteria demonstrated multiple antibiotic resistance to four of the antibiotics tested from the zoo captured and Flint Hills ponds turtles, respectively. These data illustrate environmental antibiotic resistance is widespread in the bacterial flora obtained from Red-eared Sliders in east central Kansas.

  15. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  16. RESISTANCE OF KARST CAVERNS NITROGEN-FIXING BACTERIA TO EXTREME FACTORS

    Directory of Open Access Journals (Sweden)

    Tashyrev O. B.

    2014-10-01

    Full Text Available To determine the studied bacteria resistance quantitative parameters of extreme factors such as toxic metals (Cu2+, organic xenobiotics (p-nitrochlorobenzene and UV-irradiation were the aim of the research. Six strains of nitrogen-fixing bacteria isolated from clays of two caverns Mushkarova Yama (Podolia, Ukraine and Kuybyshevskaya (Western Caucasus, Abkhazia and Azotobacter vinelandii УКМ В-6017 as a reference strain have been tested. For this purpose the maximum permissible concentration of Cu2+ and p-nitrochlorobenzene in the concentration gradient and lethal doses of UV by the survival caverns have been determined. Maximum permissible concentrations for strains were as 10 ppm Cu2+, 70–120 ppm of p-nitrochlorobenzene. The maximum doses of UV-irradiation varied in the range of 55–85 J/m2 (LD99.99. It is shown that three classes of extreme factors resistance parameters of karst caverns strains are similar to the strain of terrestrial soil ecosystems. The most active studied strains reduce the concentration of p-nitrochlorobenzene in the medium in 13 times. The ability of nitrogen-fixing bacteria to degrade p-nitrochlorobenzene could be used in creation new environmental biotechnology for industrial wastewater treatment from nitrochloroaromatic xenobiotics. Isolated strains could be used as destructors for soils bioremediation in agrobiotechnologies and to optimize plants nitrogen nutrition in terrestrial ecosystems.

  17. Intestinal carriage of multidrug-resistant bacteria among healthcare professionals in Germany

    Directory of Open Access Journals (Sweden)

    Jozsa, Katalin

    2017-11-01

    Full Text Available Healthcare professionals (HCP might be at increased risk of acquisition of multidrug-resistant bacteria (MDRB, i.e., methillicin-resistant (MRSA, vancomycin-resistant enterococci (VRE, and multidrug-resistant gram-negative bacteria (MDRGN and could be an unidentified source of MDRB transmission.The aim of this study was to determine the prevalence as well as risk factors of MDRB colonization among HCP.HCP (n=107 taking part in an antibiotic stewardship program, were voluntarily recruited to perform a rectal swab and to fill in a questionnaire to identify risk factors of MDRB carriage, i.e. being physician, gender, travel abroad within the previous 12 months, vegetarianism, regular consumption of raw meat, contact to domestic animals, household members with contact to livestock, work or fellowship abroad, as well as medical treatment abroad and antibiotic therapy within the previous 12 months. Selective solid media were used to determine the colonization rate with MRSA, VRE and MDRGN. MDRGN were further characterized by molecular analysis of underlying β-lactamases. None of the participants had an intestinal colonization with MRSA or VRE. 3.7% of the participants were colonized with extended-spectrum beta-lactamase (ESBL-producing , predominantly type. Neither additional flouroquinolone resistance nor carbapenem resistance was detected in any of these isolates. No risk factors were identified to have a significant impact of MDRB carriage among HCP.A colonization rate of 3.7% with ESBL-producing is of interest, but comparing it to previously published data with similar colonization rates in the healthy population in the same geographic area, it is probably less an occupational risk.

  18. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections

    DEFF Research Database (Denmark)

    Marques, Cátia; Gama, Luís Telo; Belas, Adriana

    2016-01-01

    for fluoroquinolone-resistant Proteus spp. isolated from companion animals from Belgium. CONCLUSIONS: This work brings new insights into the current status of antimicrobial resistance in bacteria isolated from companion animals with UTI in Europe and reinforces the need for strategies aiming to reduce resistance....

  19. Macropis fulvipes Venom component Macropin Exerts its Antibacterial and Anti-Biofilm Properties by Damaging the Plasma Membranes of Drug Resistant Bacteria.

    Science.gov (United States)

    Ko, Su Jin; Kim, Min Kyung; Bang, Jeong Kyu; Seo, Chang Ho; Luchian, Tudor; Park, Yoonkyung

    2017-11-29

    The abuse of antibiotics for disease treatment has led to the emergence of multidrug resistant bacteria. Antimicrobial peptides, found naturally in various organisms, have received increasing interest as alternatives to conventional antibiotics because of their broad spectrum antimicrobial activity and low cytotoxicity. In a previous report, Macropin, isolated from bee venom, exhibited antimicrobial activity against both gram-positive and negative bacteria. In the present study, Macropin was synthesized and its antibacterial and anti-biofilm activities were tested against bacterial strains, including gram-positive and negative bacteria, and drug resistant bacteria. Moreover, Macropin did not exhibit hemolytic activity and cytotoxicity to keratinocytes, whereas Melittin, as a positive control, showed very high toxicity. Circular dichroism assays showed that Macropin has an α-helical structure in membrane mimic environments. Macropin binds to peptidoglycan and lipopolysaccharide and kills the bacteria by disrupting their membranes. Moreover, the fractional inhibitory concentration index indicated that Macropin has additive and partially synergistic effects with conventional antibiotics against drug resistant bacteria. Thus, our study suggested that Macropin has potential for use of an antimicrobial agent for infectious bacteria, including drug resistant bacteria.

  20. Screening of metal-resistant coal mine bacteria for biofabrication of ...

    Indian Academy of Sciences (India)

    Additionally, IR study provided information about the bacterial proteins involved in either reduction of Ag(I) into silver nanoparticle or capping of reduced silver nanocrystal or both.Thus, majority of the bacteria found in the coal mines have the resistance against the antimicrobial metal ion, and the potential to reduce the ion ...

  1. The First Report of Drug Resistant Bacteria Isolated from the Brown-Banded Cockroach, Supella longipalpa, in Ahvaz, South-western Iran.

    Directory of Open Access Journals (Sweden)

    Babak Vazirianzadeh

    2014-06-01

    Full Text Available The brown-banded cockroach, Supella longipalpa is known as a carrier of pathogenic bacteria in urban environments, but its role is not well documented regarding the carriage of antibiotic-resistant pathogenic bacteria in Iran. The aim of this study was to determine the resistance bacteria isolated from the brown-banded cockroach in Ahvaz, south west of Iran.Totally 39 cockroaches were collected from kitchen area of houses and identified. All specimens were cultured to isolate the bacterial agents on blood agar and MacConky agar media. The microorganisms were identified using necessary differential and biochemical tests. Antimicrobial susceptibility tests were performed for isolated organisms by Kirby-Bauer's disk diffusion according to NCLI guideline, using 18 antibiotics.From the 39 collected S. langipalpa, 179 bacterial agents were isolated, 92 of alimentary ducts and 87 of external body surfaces. Isolated bacteria from cockroaches were identified as Enterobacter spp., Klebsiella spp., Citrobacter spp., Escherichia coli, Salmonella spp., Proteus spp., coagulase negative staphylococci, Serratia marcescens, Staphylococcus aureus, and Bacillus species. The pattern resistance rates were determined for gram negative bacilli and gram positive cocci regarding 18 antibiotics.The brown-banded cockroach can be involved in the spread of drug resistant bacteria and increases the possibility of contacting human environment to drug resistant bacteria. Therefore, the potential of removing this insect should be improved. This is the first original report of drug resistant bacteria isolated from the brown-banded cockroach of Iran.

  2. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    Science.gov (United States)

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Internal filament modulation in low-dielectric gap design for built-in selector-less resistive switching memory application

    Science.gov (United States)

    Chen, Ying-Chen; Lin, Chih-Yang; Huang, Hui-Chun; Kim, Sungjun; Fowler, Burt; Chang, Yao-Feng; Wu, Xiaohan; Xu, Gaobo; Chang, Ting-Chang; Lee, Jack C.

    2018-02-01

    Sneak path current is a severe hindrance for the application of high-density resistive random-access memory (RRAM) array designs. In this work, we demonstrate nonlinear (NL) resistive switching characteristics of a HfO x /SiO x -based stacking structure as a realization for selector-less RRAM devices. The NL characteristic was obtained and designed by optimizing the internal filament location with a low effective dielectric constant in the HfO x /SiO x structure. The stacking HfO x /SiO x -based RRAM device as the one-resistor-only memory cell is applicable without needing an additional selector device to solve the sneak path issue with a switching voltage of ~1 V, which is desirable for low-power operating in built-in nonlinearity crossbar array configurations.

  4. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  5. Antibiotic resistance and biofilm formation of some bacteria isolated from sediment, water and fish farms in Malaysia

    Science.gov (United States)

    Faja, Orooba Meteab; Usup, Gires; Ahmad, Asmat

    2018-04-01

    A total of 90 isolates of bacteria were isolated, from sediment (10) samples, water (10) samples and fish (12) samples (Sea bass, Snapper, Grouper and Tilapia). These include 22 isolates of bacteria from sediment, 28 isolates from water and 40 isolates from fish. All the isolates were tested for sensitivity to 13 antibiotics using disc diffusion method. The isolates showed high resistance to some antibiotics based on samples source. Isolates from sediment showed highest resistance toward novobiocin, kanamycin, ampicillin and streptomycin while isolates from water showed highest resistance against vancomycin, penicillin, streptomycin and tetracycline, in contrast, in fish sample showed highest resistance toward vancomycin, ampicillin, streptomycin and tetracycline. Most of the isolates showed biofilm formation ability with different degrees. Out of 22 bacteria isolates from water, two isolates were weak biofilm formers, six isolates moderate biofilm formers and fourteen isolates strong biofilm formers. While, out of 28 bacteria isolates from water one isolate was weak biofilm former, five isolates moderate biofilm formers and 22 strong biofilm formers Fish isolate showed three isolates (8%) moderate biofilm formers and 27 isolates strong biofilm formers. Biofilm formation was one of the factors that lead to antibiotic resistance of the bacterial isolates from these samples.

  6. Antibiotic resistance in bacteria isolated from vegetables with regards to the marketing stage (farm vs. supermarket).

    Science.gov (United States)

    Schwaiger, Karin; Helmke, Katharina; Hölzel, Christina Susanne; Bauer, Johann

    2011-08-15

    The aim of this study was to elucidate whether and to what extent fresh produce from Germany plays a role as a carrier and reservoir of antibiotic resistant bacteria. For this purpose, 1001 vegetables (fruit, root, bulbous vegetables, salads and cereals) were collected from 13 farms and 11 supermarkets in Germany and examined bacteriologically. Phenotypic resistance of Enterobacter cloacae (n=172); Enterobacter gergoviae (n=92); Pantoea agglomerans (n=96); Pseudomonas aeruginosa (n=295); Pseudomonas putida (n=106) and Enterococcus faecalis (n=100) against up to 30 antibiotics was determined by using the microdilution method. Resistance to ß-lactams was most frequently expressed by P. agglomerans and E. gergoviae against cefaclor (41% and 29%). Relatively high resistance rates were also observed for doxycycline (23%), erythromycin (21%) and rifampicin (65%) in E. faecalis, for spectinomycin (28%) and mezlocillin (12%) in E. cloacae, as well as for streptomycin (19%) in P. putida. In P. aeruginosa, relatively low resistance rates were observed for the aminoglycosides amikacin, apramicin, gentamicin, neomycin, netilmicin and tobramycin (bacteria isolated from farm samples were higher than those of the retail markets whenever significant differences were observed. This suggests that expressing resistance is at the expense of bacterial viability, since vegetables purchased directly at the farm are probably fresher than at the supermarket, and they have not been exposed to stress factors. However, this should not keep the customer from buying directly at the farm, since the overall resistance rates were not higher than observed in bacteria from human or animal origin. Instead, peeling or washing vegetables before eating them raw is highly recommended, since it reduces not only the risk of contact with pathogens, but also that of ingesting and spreading antibiotic resistant bacteria. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The effects of grazing intensity on soil processes in a Mediterranean protected area.

    Science.gov (United States)

    Panayiotou, Evaggelia; Dimou, Maria; Monokrousos, Nikolaos

    2017-08-08

    We investigated the temporal and among-site differentiation of soil functionality properties in fields under different grazing intensities (heavy and light) and compared them to those found in their adjacent hedgerows, consisting either of wooden shrubs (Rubus canescens) or of high trees (Populus sp.), during the cold and humid seasons of the year. We hypothesized that greater intensity of grazing would result in higher degradation of the soil system. The grazing factor had a significant effect on soil organic C and N, microbial biomass C, microbial biomass N, microbial activity, and β-glucosidase, while acid phosphatase and urease activity were not found to differ significantly among the management systems. The intensity of grazing affected mostly the chemical properties of soil (organic C and N) and altered significantly the composition of the soil microbial community, as lower C:N ratio of the microbial biomass indicates the dominance of bacteria over fungi in the heavily grazed fields. All estimated biological variables presented higher values in the humid period, although the pattern of differentiation was similar at both sampling times, revealing that site-specific variations were more pronounced than the time-specific ones. Our results indicate that not all C, N, and P dynamics were equally affected by grazing. Management plans applied to pastures, in order to improve soil quality properties and accelerate passive reforestation, should aim at the improvement of soil parameters related primarily to C and secondly to N cycle.

  8. Prediction of Ionizing Radiation Resistance in Bacteria Using a Multiple Instance Learning Model.

    Science.gov (United States)

    Aridhi, Sabeur; Sghaier, Haïtham; Zoghlami, Manel; Maddouri, Mondher; Nguifo, Engelbert Mephu

    2016-01-01

    Ionizing-radiation-resistant bacteria (IRRB) are important in biotechnology. In this context, in silico methods of phenotypic prediction and genotype-phenotype relationship discovery are limited. In this work, we analyzed basal DNA repair proteins of most known proteome sequences of IRRB and ionizing-radiation-sensitive bacteria (IRSB) in order to learn a classifier that correctly predicts this bacterial phenotype. We formulated the problem of predicting bacterial ionizing radiation resistance (IRR) as a multiple-instance learning (MIL) problem, and we proposed a novel approach for this purpose. We provide a MIL-based prediction system that classifies a bacterium to either IRRB or IRSB. The experimental results of the proposed system are satisfactory with 91.5% of successful predictions.

  9. Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system.

    Science.gov (United States)

    Xiong, Pei; Hu, Jiangyong

    2013-09-01

    In this study, an effective photocatalytic disinfection system was established using the newly emerged high power UVA/LED lamp. Crystallizing dish coated with TiO2 was prepared by 32-times impregnation-drying processes, and served as the supporting container for water samples. This study focused on the application of this UVA/LED system for the photocatalytic disinfection of selected antibiotic-resistant bacteria, Escherichia coli ATCC 700891. The disinfection performances were studied under various light intensities and illumination modes. Results show that higher light intensity could reach more significant inactivation of E. coli ATCC 700891. With the same UV dose, log-removal of antibiotic-resistant bacteria decreased with circle time in the studied range, while increased with duty circle. A "residual disinfecting effect" was found in the following dark period for bacteria collected at different phases of photocatalytic process. Residual disinfecting effect was found not significant for bacteria with 30 min periodic illumination. While residual disinfecting effect could kill almost all bacteria after 90 min UV periodic illumination within the following 240 min dark period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...

  11. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq

    Full Text Available Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66% were Gram negative and 17 (34% Gram positive. About half of the isolates were pigment producers and were able to grow at 4-37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria and Flavobacteria. The genus Pseudomonas (51.51%, 17 was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12% Alcaligenes and 4 (12.12% Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4 and Arthrobacter (23.52%, 4 were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2 and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11% were more resistant to heavy metals as compared to Gram negative (78.79% and showed maximum tolerance against iron and least tolerance against mercury.

  12. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic.

    Science.gov (United States)

    Møller, Annette K; Barkay, Tamar; Abu Al-Soud, Waleed; Sørensen, Søren J; Skov, Henrik; Kroer, Niels

    2011-03-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but levels of most isolates were not temperature dependent. Of the resistant isolates, 25% reduced Hg(II) to Hg(0). No relation between resistance level, ability to reduce Hg(II) and phylogenetic group was observed. An estimation of the potential bacterial reduction of Hg(II) in snow suggested that it was important in the deeper snow layers where light attenuation inhibited photoreduction. Thus, by reducing Hg(II) to Hg(0), mercury-resistant bacteria may limit the supply of substrate for methylation processes and, hence, contribute to lowering the risk that methylmercury is being incorporated into the Arctic food chains. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Filamentous sulfur bacteria, Beggiatoa spp., in arctic marine sediments (Svalbard, 79°N)

    DEFF Research Database (Denmark)

    Jørgensen, Bo Barker; Dunker, Rita; Grünke, Stefanie

    2010-01-01

    in this zone. The total living biomass of Beggiatoa filaments at one study site varied over 3 years between 1.13 and 3.36 g m-2. Because of their large size, Beggiatoa accounted for up to 15% of the total prokaryotic biomass, even though the filament counts at this site were rather low, comprising .../10 000 of the bacterial numbers on a cell basis....

  14. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria.

    Science.gov (United States)

    Buffet-Bataillon, Sylvie; Tattevin, Pierre; Maillard, Jean-Yves; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2016-01-01

    Biocides, primarily those containing quaternary ammonium compounds (QAC), are heavily used in hospital environments and various industries (e.g., food, water, cosmetic). To date, little attention has been paid to potential implications of QAC use in the emergence of antibiotic resistance, especially fluoroquinolone-resistant bacteria in patients and in the environment. QAC-induced overexpression of efflux pumps can lead to: cross resistance with fluoroquinolones mediated by multidrug efflux pumps; stress response facilitating mutation in the Quinolone Resistance Determining Region; and biofilm formation increasing the risk of transfer of mobile genetic elements carrying fluoroquinolone or QAC resistance determinants. By following the European Biocidal Product Regulation, manufacturers of QAC are required to ensure that their QAC-based biocidal products are safe and will not contribute to emerging bacterial resistance.

  15. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs

    DEFF Research Database (Denmark)

    Pedersen, Karl; Pedersen, Kristina; Jensen, Helene

    2007-01-01

    Pseudomonas aeruginosa, 25 Pasteurella multocida, 29 Proteus spp. and 449 Escherichia coli isolates from clinical submissions from dogs were determined by a broth-dilution method for determination of minimal inhibitory concentration. Data for consumption of antimicrobials were retrieved from Vet....... intermedius and Proteus isolates. Conclusions: This investigation provided data on occurrence of antimicrobial resistance in important pathogenic bacteria from dogs, which may be useful for the small animal practitioner. Resistance was low to the compounds that were most often used, but unfortunately...

  16. Endosulfan Resistance Profile of Soil Bacteria and Potential Application of Resistant Strains in Bioremediation

    Directory of Open Access Journals (Sweden)

    Chandini P.K.

    2014-05-01

    Full Text Available In the present study, bacterial strains were isolated from the soils of Wayanad District, Kerala, India and the isolates were tested for their tolerance to endosulfan and potential in bioremediation technology. Pesticide contamination in the soils, soil physico-chemical characteristics and socio-economic impacts of pesticide application were also analyzed. 28 pesticide compounds in the soil samples were analyzed and the results revealed that there was no pesticide residues in the soils. As per the survey conducted the pesticide application is very high in the study area and the level of awareness among the farmers was very poor regarding the method of application and its socio-economic and ecological impacts. A total of 9 bacterial strains were isolated with 50μg/ml of endosulfan in the isolating media and the results showed that most of the bacterial strains were highly resistance to endosulfan. Out of the 9 strains isolated 6 were highly resistant to endosulfan (500- 700μg/ml and the other 3 isolates showed the resistance of 250-500μg/ml. From the studied isolate, isolate 9 demonstrating prolific growth and high resistance was selected to check their capability to degrade endosulfan over time. Identification of the selected strain reveals that it belongs to the genus Bacillus. Results of endosulfan removal studies showed that with increase in time, the biomass of the bacterial strains increased. The complete disappearance of endosulfan from the spiked and inoculated broth during the first day of incubation (24 hour interval was observed. While the control flask showed the presence of endosulfan during the experimental period. Pesticide resistant bacteria are widely distributed in the soils of selected study area and the tolerance varied between bacteria even though they were isolated from the soils of the same area. The selected Bacillus species carry the ability to degrade endosulfan at accelerated rates and it could be useful in framing a

  17. Distribution of Gram Negative Bacteria and Evaluation of Resistance Profiles

    Directory of Open Access Journals (Sweden)

    Serap Pamukcuoglu

    2014-03-01

    Full Text Available Aim: In this study, we aimed to examine the distributon of Gram negative bacteria isolated from urine cultures of out-patients in Afyonkarahisar State Hospital and evaluate the antimicrobial resistance rates of these pathogens. Material and Method: Urine samples of out-patients which were sent to microbiology laboratory between 2012-2013 were retrospectively evaluated. The isolates were identified using conventional methods and/or automated Vitec 2.0 system. Antibiogram sensitivities were determined by Kirby-Bauer disc diffusion method or automated system and interpreted on the basis of Clinical and Laboratory Standards Institute (CSI criteria. Double disc sinergy test (DDST or Vitec 2.0 system was used to detect extended spectrum beta-lactamase (ESBL.When conventional methods could%u2019t be clarified according to their colony morphologies, gram staining patterns, biochemical test; automated system has been used. Results: A total of 671 isolates acquired from urine samples were studied. 427 Escherichia coli (63.6 %, 165 Klebsiella spp. (24.6 %, 22 Pseudomonas spp. (3.3 %, nine Acinetobacter spp. (1.3 %, 41 Proteus spp. (6.1 % and seven Serratia (1.0 % strains were identified among isolates. 97 E.coli (22.8 % and 41 Klebsiella (24.8 % isolates were ESBL positive. Most common bacteria were E.coli, 31.1 % of which were resistant to trimethoprim-sulfamethoxazole, 16 % to ciprofloxacin and 3.6 % to nitrofurantoin. Among Enterobacteriaceae, no resistance aganist carbapenems were detected. Moreover, aminoglicoside sensitivity rate was significantly high in this group. Discussion: Microorganisms that have progressively increasing antimicrobial resistance should be considered in the treatment of urinary tract infections. It is also important to use the most appropriate antibiotics to avoid unnecessary usage of these drugs in order to decrease drug resistance rates and ESBL production which may effect the success of the treatment.

  18. Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu.

    Science.gov (United States)

    Nachimuthu, Ramesh; Subramani, Ramkumar; Maray, Suresh; Gothandam, K M; Sivamangala, Karthikeyan; Manohar, Prasanth; Bozdogan, Bülent

    2016-10-01

    Carbapenem resistance is disseminating worldwide among Gram-negative bacteria. The aim of this study was to identify carbapenem-resistance level and to determine the mechanism of carbapenem resistance among clinical isolates from two centres in Tamil Nadu. In the present study, a total of 93 Gram-negative isolates, which is found to be resistant to carbapenem by disk diffusion test in two centres, were included. All isolates are identified at species level by 16S rRNA sequencing. Minimal inhibitory concentrations (MICs) of isolates for Meropenem were tested by agar dilution method. Presence of blaOXA, blaNDM, blaVIM, blaIMP and blaKPC genes was tested by PCR in all isolates. Amplicons were sequenced for confirmation of the genes. Among 93 isolates, 48 (%52) were Escherichia coli, 10 (%11) Klebsiella pneumoniae, nine (%10) Pseudomonas aeruginosa. Minimal inhibitory concentration results showed that of 93 suspected carbapenem-resistant isolates, 27 had meropenem MICs ≥ 2 μg/ml. The MIC range, MIC50 and MIC90 were 128 μg/ml, 0.12 and 16 μg/ml, respectively. Fig. 1 . Among meropenem-resistant isolates, E. coli were the most common (9/48, 22%), followed by K. pneumoniae (7/9, 77%), P. aeruginosa (6/10, 60%), Acinetobacter baumannii (2/2, 100%), Enterobacter hormaechei (2/3, 67%) and one Providencia rettgeri (1/1, 100%). PCR results showed that 16 of 93 carried blaNDM, three oxa181, and one imp4. Among blaNDM carriers, nine were E. coli, four Klebsiella pneumoniae, two E. hormaechei and one P. rettgeri. Three K. pneumoniae were OXA-181 carriers. The only imp4 carrier was P. aeruginosa. A total of seven carbapenem-resistant isolates were negatives by PCR for the genes studied. All carbapenem-resistance gene-positive isolates had meropenem MICs >2 μg/ml. Our results confirm the dissemination of NDM and emergence of OXA-181 beta-lactamase among Gram-negative bacteria in South India. This study showed the emergence of NDM producer in clinical isolates of E

  19. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts.

    Science.gov (United States)

    Friedman, Mendel

    2015-04-22

    Foodborne antibiotic-resistant pathogenic bacteria such as Campylobacter jejuni, Bacillus cereus, Clostridium perfringens, Escherichia coli, Salmonella enterica, Staphylococcus aureus, Vibrio cholerae, and Vibrio parahemolyticus can adversely affect animal and human health, but a better understanding of the factors involved in their pathogenesis is needed. To help meet this need, this overview surveys and interprets much of our current knowledge of antibiotic (multidrug)-resistant bacteria in the food chain and the implications for microbial food safety and animal and human health. Topics covered include the origin and prevalence of resistant bacteria in the food chain (dairy, meat, poultry, seafood, and herbal products, produce, and eggs), their inactivation by different classes of compounds and plant extracts and by the use of chlorine and physicochemical methods (heat, UV light, pulsed electric fields, and high pressure), the synergistic antimicrobial effects of combinations of natural antimicrobials with medicinal antibiotics, and mechanisms of antimicrobial activities and resistant effects. Possible areas for future research are suggested. Plant-derived and other safe natural antimicrobial compounds have the potential to control the prevalence of both susceptible and resistant pathogens in various environments. The collated information and suggested research will hopefully contribute to a better understanding of approaches that could be used to minimize the presence of resistant pathogens in animal feed and human food, thus reducing adverse effects, improving microbial food safety, and helping to prevent or treat animal and human infections.

  20. Mortality of fecal bacteria in seawater

    International Nuclear Information System (INIS)

    Garcia-Lara, J.; Menon, P.; Servais, P.; Billen, G.

    1991-01-01

    The authors propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloracetic acid-insoluble fraction in water samples to which [ 3 H]thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, they found that the actual rate of disappearance of fecal bacteria was 1 order of magnitude lower than the rate of loss of culturability on specific media. Minor adaptation of the procedure may facilitate assessment of the effect of protozoan grazing and bacteriophage lysis on the overall bacterial mortality rate

  1. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  2. Surveillance of Antibiotic-Resistant Bacteria from Wastewater Effluents Across the United States

    Science.gov (United States)

    This presentation will inform the audience of the purpose and importance of the antibiotic resistant bacteria surveillances that have been conducted to date. And an overview of why the EPA is looking into this problem in wastewater effluents.

  3. Antibiotic resistance in triclosan heterotrophic plate count bacteria from sewage water / Ilsé Coetzee

    OpenAIRE

    Coetzee, Ilsé

    2015-01-01

    The concentration of triclosan in antiseptics, disinfectants and preservatives in products exceeds the minimal lethal levels. Extensive use of triclosan and antibiotics results in bacterial resistance to their active ingredients. The precise relationship between use and resistance, however, has been challenging to define. The aim of the study was to identify and determine antibiotic resistance profiles of triclosan tolerant heterotrophic plate count bacteria isolates from sewag...

  4. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic

    DEFF Research Database (Denmark)

    Møller, Annette; Barkay, Tamar; Abu Al-Soud, Waleed

    2011-01-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial...... densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but...

  5. Herbivory enhances the resistance of mangrove forest to cordgrass invasion.

    Science.gov (United States)

    Zhang, Yihui; Meng, Hanyu; Wang, Yi; He, Qiang

    2018-06-01

    The biotic resistance hypothesis proposes that biotic interactions, such as competition and herbivory, resist the establishment and spread of non-native species. The relative and interactive role of competition and herbivory in resisting plant invasions, however, remains poorly understood. We investigated the interactive role of competition and herbivory (by the native rodent Rattus losea) in resisting Spartina alterniflora (cordgrass) invasions into mangrove forests. In southern China, although exotic cordgrass numerically dominates intertidal mudflats and open gaps in mangrove forests, intact forests appear to be highly resistant to cordgrass invasion. A field transplant and rodent exclusion experiment showed that while the impact of rodent grazing on cordgrass was weak on mangrove forest edges and open mudflats, rodent grazing strongly suppressed cordgrass in mangrove understory habitats. A greenhouse experiment confirmed a synergistic interaction between grazing and light availability (a proxy for mangrove shading and light competition) in suppressing cordgrass establishment, with the strongest impacts of grazing in low light conditions that likely weakened cordgrass to survive and resprout. When both were present, as in mangrove understory habitats, grazing and low light acted in concert to eliminate cordgrass establishment, resulting in resistance of mangrove forests to cordgrass invasion. Our results reveal that grazing by native herbivores can enhance the resistance of mangrove forests to cordgrass invasion in southern China, and suggest that investigating multifactor interactions may be critical to understanding community resistance to exotic invasions. © 2018 by the Ecological Society of America.

  6. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian maned-wolf (Chrysocyon brachyurus

    Directory of Open Access Journals (Sweden)

    Olney Vieira-da-Motta

    2013-12-01

    Full Text Available Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus, in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collected with swabs and kept in appropriate transport medium. Using routine microbiological techniques, the isolated bacteria were tested toward antimicrobial drugs by the agar disk diffusion method. Results showed that all samples from wild animals were sensitive toward all drugs tested. Conversely, the resistance profile of bacteria isolated from captive animals varied among strains and animal body site location. Escherichia coli samples from prepuce, anus and ear showed multi-resistance toward at least four drugs, especially against erythromycin and tetracycline, followed by Proteus mirabilis and P. vulgaris strains isolated from anus and ear. Among Gram-positive bacteria, strains of coagulase-negative staphylococci showed multi-resistance mainly toward erythromycin and amoxicillin. The work discusses these findings and suggests that profile of multi-resistance bacteria from captive subjects may be attributed to direct contact with human or through lifestyle factors such as feeding, predation or contact of animals with urban animals such as birds, rodents, and insects from surrounding environments.

  7. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian Maned-wolf (Chrysocyon brachyurus).

    Science.gov (United States)

    Vieira-da-Motta, Olney; Eckhardt-de-Pontes, Luiz Antonio; Petrucci, Melissa Paes; dos Santos, Israel Pereira; da Cunha, Isabel Candia Nunes; Morato, Ronaldo Gonçalves

    2013-12-01

    Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus), in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collected with swabs and kept in appropriate transport medium. Using routine microbiological techniques, the isolated bacteria were tested toward antimicrobial drugs by the agar disk diffusion method. Results showed that all samples from wild animals were sensitive toward all drugs tested. Conversely, the resistance profile of bacteria isolated from captive animals varied among strains and animal body site location. Escherichia coli samples from prepuce, anus and ear showed multi-resistance toward at least four drugs, especially against erythromycin and tetracycline, followed by Proteus mirabilis and P. vulgaris strains isolated from anus and ear. Among Gram-positive bacteria, strains of coagulase-negative staphylococci showed multi-resistance mainly toward erythromycin and amoxicillin. The work discusses these findings and suggests that profile of multi-resistance bacteria from captive subjects may be attributed to direct contact with human or through lifestyle factors such as feeding, predation or contact of animals with urban animals such as birds, rodents, and insects from surrounding environments.

  8. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters.

    Science.gov (United States)

    Leonard, Anne F C; Zhang, Lihong; Balfour, Andrew J; Garside, Ruth; Gaze, William H

    2015-09-01

    Infections caused by antibiotic resistant bacteria (ARB) are associated with poor health outcomes and are recognised globally as a serious health problem. Much research has been conducted on the transmission of ARB to humans. Yet the role the natural environment plays in the spread of ARB and antibiotic resistance genes is not well understood. Antibiotic resistant bacteria have been detected in natural aquatic environments, and ingestion of seawater during water sports is one route by which many people could be directly exposed. The aim was to estimate the prevalence of resistance to one clinically important class of antibiotics (third-generation cephalosporins (3GCs)) amongst Escherichia coli in coastal surface waters in England and Wales. Prevalence data was used to quantify ingestion of 3GC-resistant E. coli (3GCREC) by people participating in water sports in designated coastal bathing waters. A further aim was to use this value to derive a population-level estimate of exposure to these bacteria during recreational use of coastal waters in 2012. The prevalence of 3GC-resistance amongst E. coli isolated from coastal surface waters was estimated using culture-based methods. This was combined with the density of E. coli reported in designated coastal bathing waters along with estimations of the volumes of water ingested during various water sports reported in the literature to calculate the mean number of 3GCREC ingested during different water sports. 0.12% of E. coli isolated from surface waters were resistant to 3GCs. This value was used to estimate that in England and Wales over 6.3 million water sport sessions occurred in 2012 that resulted in the ingestion of at least one 3GCREC. Despite the low prevalence of resistance to 3GCs amongst E. coli in surface waters, there is an identifiable human exposure risk for water users, which varies with the type of water sport undertaken. The relative importance of this exposure is likely to be greater in areas where a

  9. Disinfectant-resistant bacteria in Buenos Aires city hospital wastewater Resistência bacteriana a desinfetantes em efluentes de um hospital em Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    L. Nuñez

    2007-12-01

    Full Text Available Large quantities of disinfectants are used in hospitals, externally on human skin or to eliminate microorganisms from inanimate objects. After use, residual quantities of these products reach the wastewater, exposing the bacteria that survive in hospital wastewaters to a wide range of biocides that could act as a selective pressure for the development of resistance. Increasing attention has been directed recently to the resistance of bacteria to disinfectants. The aim of this paper was to determine the disinfectant bacterial resistance pattern of the microflora released to the urban sewer system by hospital effluents. The characterization of the waste water microflora was performed by determination of the CFU of heterotrophic bacteria, fecal indicator bacteria, Pseudomonas sp. and Staphylococcus sp., in a Buenos Aires hospital effluent. The bacterial resistance to the disinfectants more frequently used in the hospital practice, glutaraldehyde, chlorhexidine and povidone-iodine, was then evaluated. Disinfectant resistant bacterial strains were isolated and typified. Between 10³ and 10(6 chlorexidine resistant bacteria/100 mL were isolated from the samples. Bacteria resistant to other disinfectants ranged between 10³ and 10(4 /100 mL. The bacterial population resistant to desinfectants to was mainly composed by Enterobacteriaceae, Staphylococcus spp, and Bacillus spp, which are highly associated to nosocomial infections. The results obtained show that the hospital effluents are of importance in the bacterial resistance selection process, particularly in the case of disinfectants.Os hospitais utilizam uma grande quantidade de desinfetantes para eliminar microorganismos tanto da pele humana como de superfícies inanimadas. Após sua utilização, esses produtos podem chegar ao esgoto em quantidades residuais. A pressão seletiva exercida pelos antimicrobianos nos efluentes hospitalares propicia a disseminação de linhagens resistentes. Além dos

  10. Off the hook - how bacteria survive protozoan grazing

    DEFF Research Database (Denmark)

    Matz, Carsten; Kjelleberg, S.

    2005-01-01

    Bacterial growth and survival in numerous environments are constrained by the action of bacteria-consuming protozoa. Recent findings suggest that bacterial adaptations against protozoan predation might have a significant role in bacterial persistence and diversification. We argue that selective p...... for microbial ecology and evolution at the interface of prokaryotes and eukaryotes....

  11. Soil microbes and soil respiration of Mongolian Steppe soils under grazing stress.

    Science.gov (United States)

    Bölter, Manfred; Krümmelbein, Julia; Horn, Rainer; Möller, Rolf; Scheltz, Annette

    2012-04-01

    Soils of Northern China were analysed for their microbiological and soil physical properties with respect to different grazing stress. An important factor for this is soil compaction and related aeration due to pore size shifts. Bulk density increases significantly with increasing grazing intensity and soil carbon contents show decreasing values from top to depth. Organic carbon (LOI) concentrations decrease significantly with increasing grazing intensity. The data on LOI (2-5.8%) approximate 10-30 mg C, our data on glucose show values between 0.4-1.2 mg, i.e. approx. 4% of total carbon. Numbers and biomass of bacteria show generally a decreasing trend of those data at grazed and ungrazed sites, numbers range between 0.4 and 8.7 x10(8) g(-1) d.wt., bacterial biomass between 0.4 and 3.8 microg Cg(-1). This need to be recorded in relation to soil compaction and herewith-hampered aeration and nutrient flow. The temperature-respiration data also allow getting an idea of the Q10-values for soil respiration. The data are between 2.24 (5-15 degrees C) and 1.2 (25-35 degrees C). Our data are presented with a general review of biological properties of Mongolian Steppe soils.

  12. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology.

    Science.gov (United States)

    Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L

    2013-08-01

    The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.

  13. Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria.

    Science.gov (United States)

    Kim, Ji-Hoon; Yu, Daeung; Eom, Sung-Hwan; Kim, Song-Hee; Oh, Junghwan; Jung, Won-Kyo; Kim, Young-Mog

    2017-06-08

    The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacterium acnes , Staphylococcus epidermidis , Staphylococcus aureus , and Pseudomonas aeruginosa . Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin). In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control). Chitosan-caffeic acid conjugate (CCA) showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL). Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P. aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC) indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC) values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris.

  14. The role of natural environments in the evolution of resistance traits in pathogenic bacteria

    OpenAIRE

    Martinez, Jose L.

    2009-01-01

    Antibiotics are among the most valuable compounds used for fighting human diseases. Unfortunately, pathogenic bacteria have evolved towards resistance. One important and frequently forgotten aspect of antibiotics and their resistance genes is that they evolved in non-clinical (natural) environments before the use of antibiotics by humans. Given that the biosphere is mainly formed by micro-organisms, learning the functional role of antibiotics and their resistance elements in nature has releva...

  15. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance

  16. The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance.

    Science.gov (United States)

    Dib, Leila; Hayek, Peter; Sadek, Helen; Beyrouthy, Berna; Khalaf, Roy A

    2008-06-01

    Candida albicans is a dimorphic pathogenic fungus that causes mucosal and systemic infections. C. albicans pathogenicity is attributed to its ability to exist in different morphologic states and to respond to stress by up regulating several key genes. DDR48 is a stress-associated gene involved in DNA repair and in response to antifungal drug exposure. One allele of DDR48 was knocked out by homologous recombination that inserted a marker cassette in its position. Furthermore, reintroducing DDR48 on a plasmid created a revertant strain. Strains were grown on filamentation inducing and noninducing media, subjected to an oxidative stress challenge, injected into mice to assess virulence, and assayed for antifungal susceptibility by the E-test method. DDR48 was found to be haploid insufficient and possibly essential, since only a heterozygote, but not a homozygous, null mutant was generated. The mutant was filamentation defective on all hyphal media tested including serum and corn meal agar. Discrepancies in drug resistance profiles also were present: compared with the parental strain, DDR48/ddr48 heterozygote strain was susceptible in a dose-dependent manner to itraconazole and fluconazole and susceptible to ketoconazole. The mutant also appeared to be hypersensitive to a potentially lethal hydrogen peroxide challenge. However, no reduction in virulence of the mutant was observed. The present findings provide evidence that DDR48 is essential for filamentation, stress response, and possibly viability of C. albicans, making it a prime target for antifungal drug design.

  17. Occurrence of tributyltin (TBT)-resistant bacteria is not related to TBT pollution in Mekong River and coastal sediment: with a hypothesis of selective pressure from suspended solid.

    Science.gov (United States)

    Suehiro, Fujiyo; Mochizuki, Hiroko; Nakamura, Shinji; Iwata, Hisato; Kobayashi, Takeshi; Tanabe, Shinsuke; Fujimori, Yoshifumi; Nishimura, Fumitake; Tuyen, Bui Cach; Tana, Touch Seang; Suzuki, Satoru

    2007-07-01

    Tributyltin (TBT) is organotin compound that is toxic to aquatic life ranging from bacteria to mammals. This study examined the concentration of TBT in sediment from and near the Mekong River and the distribution of TBT-resistant bacteria. TBT concentrations ranged from TBT-resistant bacteria ranged TBT-resistant bacteria ranged from TBT in the sediment and of TBT-resistant bacteria were unrelated, and chemicals other than TBT might induce TBT resistance. TBT-resistant bacteria were more abundant in the dry season than in the rainy season. Differences in the selection process of TBT-resistant bacteria between dry and rainy seasons were examined using an advection-diffusion model of a suspended solid (SS) that conveys chemicals. The estimated dilution-diffusion time over a distance of 120 km downstream from a release site was 20 days during dry season and 5 days during rainy season, suggesting that bacteria at the sediment surface could be exposed to SS for longer periods during dry season.

  18. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Matyar, Fatih [Cukurova University, Faculty of Education, Department of Science and Technology Education, 01330 Balcali, Adana (Turkey)], E-mail: fmatyar@cu.edu.tr; Kaya, Aysenur; Dincer, Sadik [Cukurova University, Faculty of Science and Letters, Department of Biology, 01330 Balcali, Adana (Turkey)

    2008-12-15

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 {mu}g/ml to > 3200 {mu}g/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for

  19. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    International Nuclear Information System (INIS)

    Matyar, Fatih; Kaya, Aysenur; Dincer, Sadik

    2008-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 μg/ml to > 3200 μg/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for public

  20. Prevalence and Antibiotic Resistance of Gram-Negative Pathogenic Bacteria Species Isolated from Periplaneta americana and Blattella germanica in Varanasi, India.

    Directory of Open Access Journals (Sweden)

    D Leshan Wannigama

    2014-06-01

    Full Text Available Cockroaches are among the medically important pests found within the human habitations that cause serious public health problems. They may harbor a number of pathogenic bacteria on the external surface with antibiotic resistance. Hence, they are regarded as major microbial vectors. This study investigates the prevalence and antibiotic resistance of Gram-negative pathogenic bacteria species isolated from Periplaneta americana and Blattella germanica in Varanasi, India.Totally, 203 adult cockroaches were collected form 44 households and 52 food-handling establishments by trapping. Bacteriological examination of external surfaces of Pe. americana and Bl. germanica were carried out using standard method and antibiotics susceptibility profiles of the isolates were determined using Kirby-Bauer disc diffusion methods.Among the places, we found that 54% had cockroache infestation in households and 77% in food- handling establishments. There was no significant different between the overall bacteria load of the external surface in Pe. americana (64.04% and Bl. germanica (35.96%. However the predominant bacteria on cockroaches were Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa. However, Kl. pneumoniae and Ps. aeruginosa were the most prevalent, drug-resistant strains were isolated from the cockroaches with 100% resistance to sulfamethoxazole/trimethoprim and ampicillin. For individual strains of bacteria, Escherichia coli was found to have multi-resistance to four antibiotic tested, Citrobacter freundii four, Enterobacter aerogenes and Proteus mirabilis to three.Cockroaches are uniformly distributed in domestic environment, which can be a possible vector for transmission of drug-resistant bacteria and food-borne diseases.

  1. Ecological aspects of the antimicrobial resistence in bacteria of importance to humn infections

    OpenAIRE

    Meirelles-Pereira,Frederico de; Pereira,Angela de Meirelles Santos; Silva,Márcio Cataldo Gomes da; Gonçalves,Verônica Dias; Brum,Paulo Roberto; Castro,Almeida Ribeiro de; Pereira,Alexandre Adler; Esteves,Francisco de Assis; Pereira,José Augusto Adler

    2002-01-01

    In view of the intimate relationship of humans with coastal lagoons (used for recreation, tourism, water supply, etc.), the discharge of domestic effluents may lead to the establishment of routes of dissemination of pathogenic microorganisms, including microorganisms carrying genes for resistance to antimicrobials, through the surrounding human communities. The objective of the present investigation was to relate the presence of antimicrobial-resistant bacteria to the environmental characteri...

  2. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  3. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections

    NARCIS (Netherlands)

    Marques, Cátia; Gama, Luís Telo; Belas, Adriana; Bergström, Karin; Beurlet, Stéphanie; Briend-Marchal, Alexandra; Broens, Els M|info:eu-repo/dai/nl/314627723; Costa, Marta; Criel, Delphine; Damborg, Peter; van Dijk, Marloes A M|info:eu-repo/dai/nl/413392058; van Dongen, A.M.|info:eu-repo/dai/nl/097672637; Dorsch, Roswitha; Espada, Carmen Martin; Gerber, Bernhard; Kritsepi-Konstantinou, Maria; Loncaric, Igor; Mion, Domenico; Misic, Dusan; Movilla, Rebeca; Overesch, Gudrun; Perreten, Vincent; Roura, Xavier; Steenbergen, Joachim; Timofte, Dorina; Wolf, Georg; Zanoni, Renato Giulio; Schmitt, Sarah; Guardabassi, Luca; Pomba, Constança

    2016-01-01

    BACKGROUND: There is a growing concern regarding the increase of antimicrobial resistant bacteria in companion animals. Yet, there are no studies comparing the resistance levels of these organisms in European countries. The aim of this study was to investigate geographical and temporal trends of

  4. Antibacterial Activity of Essential Oil of Sature jahortensis Against Multi-DrugResistant Bacteria

    Directory of Open Access Journals (Sweden)

    Saeide Saeidi

    2014-05-01

    Full Text Available Background: Development of resistance to many of the commonly used antibiotics is an impetus for further attempts to search for new antimicrobial agents. Objectives: In the present study, the antibacterial activity of Saturejahortensis essential oil against multi-drug resistant bacteria isolated from the urinary tract infections was investigated. Materials and Methods: During the years 2011 to 2012 a total of 36 strains of pathogenic bacteria including 12 Klebsiellapneumoniae, 12 Escherichia coli and 12 Staphylococcus aureus species were isolated from urine samples of hospitalized patients (Amir Al-Momenin Hospital, Zabol, South-eastern Iran suffering from urinary tract infections. After bacteriological confirmatory tests, the minimum inhibitory concentrations of the essential oil of Saturejahortensis were determined using micro-dilution method. Results: The antibiotic resistance profile of the E. coli isolates were as follows: ceftazidime (50% cefixime (41.6%, tetracycline (75%, erythromycin (58.3%. However K. pneumoniae isolates showed resistance to ceftazidime (33.3%, cefixime (58.3%, erythromycin (75% and S. aureus isolates were resistant to cefixime (33.3%, trimethoprim-sulfamethoxazole (41.66%, penicillin (50%, oxacillin (83.3%, ceftazidime (66.6% and vancomycin (8.3%. The essential oil of this plant had inhibitory effect against most isolates. More than 1/3 of the E. coli isolates showed the lowest MIC (10 ppm whereas more than 1/3 of the K. pneumoniae isolates showed the highest (250 ppm MIC values. In contrast ,equal number of S. aureus isolates showed the low MIC values (10 and 50 ppm, while the heighest MIC (250 ppm was seen in 1/3 of isolates and moderate MIC (100 ppm was seen in one isolate only. Conclusions: The Saturejahortensis essential oil has a potent antimicrobial activity against multi-drug resistant bacteria. The present study confirms the usefullness of this essential oil as antibacterial agent but further research is

  5. Water Quality Conditions Associated with Cattle Grazing and Recreation on National Forest Lands.

    Directory of Open Access Journals (Sweden)

    Leslie M Roche

    Full Text Available There is substantial concern that microbial and nutrient pollution by cattle on public lands degrades water quality, threatening human and ecological health. Given the importance of clean water on multiple-use landscapes, additional research is required to document and examine potential water quality issues across common resource use activities. During the 2011 grazing-recreation season, we conducted a cross sectional survey of water quality conditions associated with cattle grazing and/or recreation on 12 public lands grazing allotments in California. Our specific study objectives were to 1 quantify fecal indicator bacteria (FIB; fecal coliform and E. coli, total nitrogen, nitrate, ammonium, total phosphorus, and soluble-reactive phosphorus concentrations in surface waters; 2 compare results to a water quality regulatory benchmarks, b recommended maximum nutrient concentrations, and c estimates of nutrient background concentrations; and 3 examine relationships between water quality, environmental conditions, cattle grazing, and recreation. Nutrient concentrations observed throughout the grazing-recreation season were at least one order of magnitude below levels of ecological concern, and were similar to U.S. Environmental Protection Agency (USEPA estimates for background water quality conditions in the region. The relative percentage of FIB regulatory benchmark exceedances widely varied under individual regional and national water quality standards. Relative to USEPA's national E. coli FIB benchmarks-the most contemporary and relevant standards for this study-over 90% of the 743 samples collected were below recommended criteria values. FIB concentrations were significantly greater when stream flow was low or stagnant, water was turbid, and when cattle were actively observed at sampling. Recreation sites had the lowest mean FIB, total nitrogen, and soluble-reactive phosphorus concentrations, and there were no significant differences in FIB and

  6. Filament bundle location influence on coupling losses in superconducting composites

    International Nuclear Information System (INIS)

    Ito, Daisuke; Koizumi, Misao; Hamajima, Takataro; Nakane, Fumoto.

    1983-01-01

    The ac losses in multifilamentary superconducting composites with different superconducting filament bundle positions have been measured using the magnetization method in order to reveal the relation between filament bundle position and coupling losses. Loss components depending on dB/dt in a mixed matrix superconducting composite, whose filament bundle is located in a central region surrounded by an outer stabilizing copper sheath, has been compared with another superconducting composite whose stabilizing copper is located in a central region surrounded by an outer filament bundle. In both conductors, key parameters, such as filament twistpitch, wire diameter and amount of copper stabilizer, were almost the same. Applied magnetic field is 2 Tesla with 0.05-2 Tesla/sec field change rate. Experimental results indicate that coupling losses between filaments in the composite with the filament bundle located in the central region is smaller than the composite with the filament bundle located in the outer region. A similar conclusion was reached theoretically by B. Truck. Coupling loss values obtained by the experiment show good agreement with calculated values with the equations proposed by B. Truck. It is also pointed out that a copper stabilizer, divided by the CuNi barrier into small regions, like a honeycomb, causes anomalous increasing in the copper resistivity due to Ni diffusion during heat treatment. (author)

  7. Antimicrobial-resistant bacteria in a general intensive care unit in Saudi Arabia

    International Nuclear Information System (INIS)

    Nermin K. Saeed; Abdulmageed M. Kambal; Noura A. El-Khizzi

    2010-01-01

    To assess the prevalence of multi-drug resistant (MDR) bacteria causing infections in patients at the intensive care units (ICUs) of Riyadh Military Hospital (RMH), as well as their antimicrobial resistance patterns for one year. A retrospective, cohort investigation was performed. Laboratory records from January to December 2009 were studied for the prevalence of MDR Gram-negative and Gram-positive bacteria and their antimicrobial resistance in ICU patients from RMH, Riyadh, Kingdom of Saudi Arabia. A total of 1210 isolates were collected from various specimens such as: respiratory (469), blood (400), wound/tissue (235), urinary (56), nasal swabs (35), and cerebro-spinal fluid (15). Regardless of the specimen, there was a high rate of nosocomial MDR organisms isolated from patients enrolled in the General ICU (GICU) in Riyadh. Acinetobacter baumannii (A. baumannii) comprised 40.9%, Klebsiella pneumonia (K. pneumonia) - 19.4%, while Pseudomonas aeruginosa (P. aeruginosa) formed 16.3% of these isolates. The P. aeruginosa, A. baumannii, K. pneumoniae, Escherichia coli, Staphylococcus aureus (methycillin sensitive and methycillin resistant), and Staphylococccus coagulase negative are the most common isolates recovered from clinical specimens in the GICU of RMH. Respiratory tract specimens represented nearly 39% of all the specimens collected in the ICU. The most common MDR organisms isolated in this unit were A. baumannii, and K. pneumoniae (Author).

  8. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580 (Japan); Hiraishi, A. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan and Electronics-inspired Interdisciplinary Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580 (Japan)

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  9. Therapeutic Potential of a Scorpion Venom-Derived Antimicrobial Peptide and Its Homologs Against Antibiotic-Resistant Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Gaomin Liu

    2018-05-01

    Full Text Available The alarming rise in the prevalence of antibiotic resistance among pathogenic bacteria poses a unique challenge for the development of effective therapeutic agents. Antimicrobial peptides (AMPs have attracted a great deal of attention as a possible solution to the increasing problem of antibiotic-resistant bacteria. Marcin-18 was identified from the scorpion Mesobuthus martensii at both DNA and protein levels. The genomic sequence revealed that the marcin-18 coding gene contains a phase-I intron with a GT-AG splice junction located in the DNA region encoding the N-terminal part of signal peptide. The peptide marcin-18 was also isolated from scorpion venom. A protein sequence homology search revealed that marcin-18 shares extremely high sequence identity to the AMPs meucin-18 and megicin-18. In vitro, chemically synthetic marcin-18 and its homologs (meucin-18 and megicin-18 showed highly potent inhibitory activity against Gram-positive bacteria, including some clinical antibiotic-resistant strains. Importantly, in a mouse acute peritonitis model, these peptides significantly decreased the bacterial load in ascites and rescued nearly all mice heavily infected with clinical methicillin-resistant Staphylococcus aureus from lethal bacteremia. Peptides exerted antimicrobial activity via a bactericidal mechanism and killed bacteria through membrane disruption. Taken together, marcin-18 and its homologs have potential for development as therapeutic agents for treating antibiotic-resistant, Gram-positive bacterial infections.

  10. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    Science.gov (United States)

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  11. Antibiotic resistance monitoring: the Spanish programme. The VAV Network. Red de Vigilancia de Resistencias Antibióticas en Bacterias de Origen Veterinario.

    Science.gov (United States)

    Moreno, M A; Domínguez, L; Teshager, T; Herrero, I A; Porrero, M C

    2000-05-01

    Antimicrobial resistance is a problem in modern public health and antimicrobial use and especially misuse, the most important selecting force for bacterial antibiotic resistance. As this resistance must be monitored we have designed the Spanish network 'Red de Vigilancia de Resistencias Antibióticas en Bacterias de Origen Veterinario'. This network covers the three critical points of veterinary responsibility, bacteria from sick animals, bacteria from healthy animals and bacteria from food animals. Key bacteria, antimicrobials and animal species have been defined for each of these groups along with laboratory methods for testing antimicrobial susceptibility and for data analysis and reporting. Surveillance of sick animals was first implemented using Escherichia coli as the sentinel bacterium. Surveillance of E. coli and Enterococcus faecium from healthy pigs was implemented in 1998. In July 1999, data collection on Salmonella spp. was initiated in poultry slaughterhouses. Additionally, the prevalence of vancomycin resistant E. faecium was also monitored. This network has specific topics of interest related to methods of determining resistance, analysis and reporting of data, methods of use for veterinary practitioners and collaboration with public health authorities.

  12. Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    1999-01-01

    Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals...... animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption...... or humans. The emergence of resistant bacteria and resistance genes following the use of antimicrobial agents is relatively well documented and it seems evident that all antimicrobial agents will select for resistance. However, current knowledge regarding the occurrence of antimicrobial resistance in food...

  13. Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Demetrio L. Valle Jr.

    2015-07-01

    Conclusions: P. betle had the greatest potential value against both Gram-negative and Gram-positive multidrug-resistant bacteria. Favorable antagonistic activities were also exhibited by the ethanol extracts of Psidium guajava, Phyllanthus niruri and Ehretia microphylla.

  14. Mineralized remains of morphotypes of filamentous cyanobacteria in carbonaceous meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2005-09-01

    The quest for conclusive evidence of microfossils in meteorites has been elusive. Abiotic microstructures, mineral grains, and even coating artifacts may mimic unicellular bacteria, archaea and nanobacteria with simple spherical or rod morphologies (i.e., cocci, diplococci, bacilli, etc.). This is not the case for the larger and more complex microorganisms, colonies and microbial consortia and ecosystems. Microfossils of algae, cyanobacteria, and cyanobacterial and microbial mats have been recognized and described from many of the most ancient rocks on Earth. The filamentous cyanobacteria and sulphur-bacteria have very distinctive size ranges, complex and recognizable morphologies and visibly differentiated cellular microstructures. The taphonomic modes of fossilization and the life habits and processes of these microorganisms often result in distinctive chemical biosignatures associated with carbonization, silicification, calcification, phosphatization and metal-binding properties of their cell-walls, trichomes, sheaths and extracellular polymeric substances (EPS). Valid biogenicity is provided by the combination of a suite of known biogenic elements (that differ from the meteorite matrix) found in direct association with recognizable and distinct biological features and microstructures (e.g., uniseriate or multiseriate filaments, trichomes, sheaths and cells of proper size/size range); specialized cells (e.g., basal or apical cells, hormogonia, akinetes, and heterocysts); and evidence of growth characteristics (e.g., spiral filaments, robust or thin sheaths, laminated sheaths, true or false branching of trichomes, tapered or uniform filaments) and evidence of locomotion (e.g. emergent cells and trichomes, coiling hormogonia, and hollow or flattened and twisted sheaths). Since 1997 we have conducted Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) studies of freshly fractured interior surfaces of carbonaceous meteorites, terrestrial

  15. Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland

    Directory of Open Access Journals (Sweden)

    Yating He

    2017-01-01

    Full Text Available Grazing and cultivation are two important management practices worldwide that can cause significant soil organic carbon (SOC losses. However, it remains elusive how soil microbes have responded to soil carbon changes under these two practices. Based on a four-decade long field experiment, this study investigated the effects of grazing and cultivation on SOC stocks and microbial properties in the semi-arid grasslands of China. We hypothesize that grazing and cultivation would deplete SOC and depress microbial activities under both practices. However, our hypotheses were only partially supported. As compared with the adjacent indigenous grasslands, SOC and microbial biomass carbon (MBC were decreased by 20% or more under grazing and cultivation, which is consistent with the reduction of fungi abundance by 40% and 71%, respectively. The abundance of bacteria and actinomycetes was decreased under grazing but increased under cultivation, which likely enhanced microbial diversity in cultivation. Invertase activity decreased under the two treatments, while urease activity increased under grazing. These results suggest that nitrogen fertilizer input during cultivation may preferentially favor bacterial growth, in spite of SOC loss, due to rapid decomposition, while overgrazing may deteriorate the nitrogen supply to belowground microbes, thus stimulating the microbial production of nitrogen acquisition enzymes. This decade-long study demonstrated differential soil microbial responses under grazing and cultivation and has important applications for better management practices in the grassland ecosystem.

  16. Rapid determination of filamentous microorganisms in activated sludge; Determinacion rapida de microorganismos filamentosos en fangos activados

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Jimenez, C.; Estevez, F. [Empresa Municipal de Abastecimiento y Saneamiento de Aguas de Sevilla (Spain)

    1999-07-01

    Despite many methods available biomass estimation of a bioprocess may sometimes become laborious and impracticable. Samples containing filamentous organisms, as in Wastewater Treatment Plants, present special counting difficulties. If they are abundant they may need to be estimated separately. In this work a counting method for these organisms is show. The main goal is to improve chlorination of activated sludge suffering bulking or foaming through a quantitative record of filamentous bacteria. (Author) 12 refs.

  17. Fossilization of Iron-Oxidizing Bacteria at Hydrothermal Vents: a Useful Biosignature on Mars?

    Science.gov (United States)

    Leveille, R. J.; Lui, S.

    2009-05-01

    Iron oxidizing bacteria are ubiquitous in marine and terrestrial environments on Earth, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Putative microfossils of iron oxidizing bacteria have been found in jaspers as old as 490Ma and microbial iron oxidation may be an ancient metabolic pathway. In order to investigate the usefulness of mineralized iron oxidizing bacteria as a biosignature, we have examined mineral samples collected from relict hydrothermal systems along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic, neutrophilic iron oxidizing bacteria, isolated from Pacific hydrothermal vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and oxygen concentration (5 percent) in a controlled bioreactor system. Both natural samples and experimental products were examined with a combination of variable pressure scanning electron microscopy (SEM), field emission gun SEM, and in some cases by preparing samples with a focused ion beam (FIB) milling system. Natural seafloor samples display abundant filamentous forms often resembling, in both size and shape, the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Generally, these filamentous features are 1-5 microns in diameter and up to several microns in length. Some samples consist entirely of low- density, porous masses of silica encrusted filamentous forms. Presumably, these masses were formed by a rapid precipitation by the influx of silica-rich fluids into a microbial mat dominated by bacteria with filamentous morphologies. The presence of rare, amorphous (unmineralized) filamentous matter rich in C and Fe suggests that these bacteria were iron oxidizers. There is no evidence that sulfur oxidizers were present. Filamentous features sectioned by FIB milling show internal material within semi-hollow tubular-like features. Silica encrustations also show pseudo

  18. Antibiotic resistance shaping multi-level population biology of bacteria.

    Science.gov (United States)

    Baquero, Fernando; Tedim, Ana P; Coque, Teresa M

    2013-01-01

    Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi

  19. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater

    Directory of Open Access Journals (Sweden)

    Mohammad Zubair Alam

    2013-09-01

    Full Text Available This study reports the occurrence of antibiotic resistance and production of β-lactamases including extended spectrum beta-lactamases (ESβL in enteric bacteria isolated from hospital wastewater. Among sixty-nine isolates, tested for antibiotic sensitivity, 73.9% strains were resistant to ampicillin followed by nalidixic acid (72.5%, penicillin (63.8%, co-trimoxazole (55.1%, norfloxacin (53.6%, methicillin (52.7%, cefuroxime (39.1%, cefotaxime (23.2% and cefixime (20.3%. Resistance to streptomycin, chloramphenicol, nitrofurantoin, tetracycline, and doxycycline was recorded in less than 13% of the strains. The minimum inhibitory concentration (MIC showed a high level of resistance (800-1600 µg/mL to one or more antibiotics. Sixty three (91% isolates produced β-lactamases as determined by rapid iodometric test. Multiple antibiotic resistances were noted in both among ESβL and non-ESβL producers. The β-lactamases hydrolyzed multiple substrates including penicillin (78.8% isolates, ampicillin (62.3%, cefodroxil (52.2%, cefotoxime (21.7% and cefuroxime (18.8%. Fifteen isolates producing ESβLs were found multidrug resistant. Four ESβL producing isolates could transfer their R-plasmid to the recipient strain E. coli K-12 with conjugation frequency ranging from 7.0 x 10-3 to 8.8 x 10-4. The findings indicated that ESβL producing enteric bacteria are common in the waste water. Such isolates may disseminate the multiple antibiotic resistance traits among bacterial community through genetic exchange mechanisms and thus requires immediate attention.

  20. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater

    Science.gov (United States)

    Alam, Mohammad Zubair; Aqil, Farrukh; Ahmad, Iqbal; Ahmad, Shamim

    2013-01-01

    This study reports the occurrence of antibiotic resistance and production of β-lactamases including extended spectrum beta-lactamases (ESβL) in enteric bacteria isolated from hospital wastewater. Among sixty-nine isolates, tested for antibiotic sensitivity, 73.9% strains were resistant to ampicillin followed by nalidixic acid (72.5%), penicillin (63.8%), co-trimoxazole (55.1%), norfloxacin (53.6%), methicillin (52.7%), cefuroxime (39.1%), cefotaxime (23.2%) and cefixime (20.3%). Resistance to streptomycin, chloramphenicol, nitrofurantoin, tetracycline, and doxycycline was recorded in less than 13% of the strains. The minimum inhibitory concentration (MIC) showed a high level of resistance (800–1600 μg/mL) to one or more antibiotics. Sixty three (91%) isolates produced β-lactamases as determined by rapid iodometric test. Multiple antibiotic resistances were noted in both among ESβL and non-ESβL producers. The β-lactamases hydrolyzed multiple substrates including penicillin (78.8% isolates), ampicillin (62.3%), cefodroxil (52.2%), cefotoxime (21.7%) and cefuroxime (18.8%). Fifteen isolates producing ESβLs were found multidrug resistant. Four ESβL producing isolates could transfer their R-plasmid to the recipient strain E. coli K-12 with conjugation frequency ranging from 7.0 × 10−3 to 8.8 × 10−4. The findings indicated that ESβL producing enteric bacteria are common in the waste water. Such isolates may disseminate the multiple antibiotic resistance traits among bacterial community through genetic exchange mechanisms and thus requires immediate attention. PMID:24516448

  1. Resistance controllability and variability improvement in a TaO{sub x}-based resistive memory for multilevel storage application

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A., E-mail: amitknp@postech.ac.kr, E-mail: amit.knp02@gmail.com, E-mail: hwanghs@postech.ac.kr; Song, J.; Hwang, H., E-mail: amitknp@postech.ac.kr, E-mail: amit.knp02@gmail.com, E-mail: hwanghs@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 790-784 (Korea, Republic of); Deleruyelle, D.; Bocquet, M. [Im2np, UMR CNRS 7334, Aix-Marseille Université, Marseille (France)

    2015-06-08

    In order to obtain reliable multilevel cell (MLC) characteristics, resistance controllability between the different resistance levels is required especially in resistive random access memory (RRAM), which is prone to resistance variability mainly due to its intrinsic random nature of defect generation and filament formation. In this study, we have thoroughly investigated the multilevel resistance variability in a TaO{sub x}-based nanoscale (<30 nm) RRAM operated in MLC mode. It is found that the resistance variability not only depends on the conductive filament size but also is a strong function of oxygen vacancy concentration in it. Based on the gained insights through experimental observations and simulation, it is suggested that forming thinner but denser conductive filament may greatly improve the temporal resistance variability even at low operation current despite the inherent stochastic nature of resistance switching process.

  2. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  3. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  4. Mesozooplankton Graze on Cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic

    Directory of Open Access Journals (Sweden)

    Brandon J. Conroy

    2017-08-01

    Full Text Available Diazotrophic cyanobacteria, those capable of fixing di-nitrogen (N2, are considered one of the major sources of new nitrogen (N in the oligotrophic tropical ocean, but direct incorporation of diazotrophic N into food webs has not been fully examined. In the Amazon River-influenced western tropical North Atlantic (WTNA, diatom diazotroph associations (DDAs and the filamentous colonial diazotrophs Trichodesmium have seasonally high abundances. We sampled epipelagic mesozooplankton in the Amazon River plume and WTNA in May–June 2010 to investigate direct grazing by mesozooplankton on two DDA populations: Richelia associated with Rhizosolenia diatoms (het-1 and Hemiaulus diatoms (het-2, and on Trichodesmium using highly specific qPCR assays targeting nitrogenase genes (nifH. Both DDAs and Trichodesmium occurred in zooplankton gut contents, with higher detection of het-2 predominantly in calanoid copepods (2.33–16.76 nifH copies organism-1. Abundance of Trichodesmium was low (2.21–4.03 nifH copies organism-1, but they were consistently detected at high salinity stations (>35 in calanoid copepods. This suggests direct grazing on DDAs, Trichodesmium filaments and colonies, or consumption as part of sinking aggregates, is common. In parallel with the qPCR approach, a next generation sequencing analysis of 16S rRNA genes identified that cyanobacterial assemblage associated with zooplankton guts was dominated by the non-diazotrophic unicellular phylotypes Synechococcus (56% and Prochlorococcus (26%. However, in two separate calanoid copepod samples, two unicellular diazotrophs Candidatus Atelocyanobacterium thalassa (UCYN-A and Crocosphaera watsonii (UCYN-B were present, respectively, as a small component of cyanobacterial assemblages (<2%. This study represents the first evidence of consumption of DDAs, Trichodesmium, and unicellular cyanobacteria by calanoid copepods in an area of the WTNA known for high carbon export. These diazotroph populations

  5. Mutation-specific effects on thin filament length in thin filament myopathy.

    Science.gov (United States)

    Winter, Josine M de; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A; Pappas, Christopher T; Gregorio, Carol C; Stienen, Ger J M; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B; Engelen, Baziel G van; Voermans, Nicol C; Donkervoort, Sandra; Bönnemann, C G; Clarke, Nigel F; Beggs, Alan H; Granzier, Henk; Ottenheijm, Coen A C

    2016-06-01

    Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969. © 2016 American Neurological Association.

  6. 7 CFR 760.305 - Eligible grazing losses.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Eligible grazing losses. 760.305 Section 760.305... grazing losses. (a) A grazing loss due to drought is eligible for LFP only if the grazing loss for the... period for the specific type of grazing land or pastureland for the county.) (b) A grazing loss is not...

  7. A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria

    Science.gov (United States)

    Yin, Meili; Li, Zhenhua; Zhou, Li; Dong, Kai; Ren, Jinsong; Qu, Xiaogang

    2016-03-01

    Recently, antibiotic drug-resistant therapies have become very important due to the emergence of antibiotic-resistant bacterial strains. The development of novel antibacterial materials has received significant attention. Here, quaternized chitosan hydrogels incorporated with NaYF4:Er/Yb/Mn@photosensitizer-doped silica (UCNPs/MB) were synthesized for effective killing of both gram-positive oxacillin-resistant S. aureus (DR-S. aureus) and gram-negative kanamyclin-resistant E. coli (DR-E. coli) bacteria upon near-infrared (NIR) laser irradiation. In this system, the cationic macroporous nature of the hydrogel acts as a molecular ‘anion sponge’, which sucks the outer part of the anionic microbe membrane into the gel interior voids and causes microbe membrane disruption. By incorporating UCNPs/MB-doped silica into the hydrogel, we have combined photodynamic therapy (PDT) with quaternized chitosan to obtain a high therapeutic index via a synergistic effect. In vitro experiments have demonstrated that our system had excellent antibacterial efficiency to both DR-S. aureus and DR-E. coli bacteria. More importantly, our new synergistic treatment modality provided an excellent therapy platform for drug-resistant bacteria, which could improve antimicrobial efficiency.

  8. A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria

    International Nuclear Information System (INIS)

    Yin, Meili; Li, Zhenhua; Zhou, Li; Dong, Kai; Ren, Jinsong; Qu, Xiaogang

    2016-01-01

    Recently, antibiotic drug-resistant therapies have become very important due to the emergence of antibiotic-resistant bacterial strains. The development of novel antibacterial materials has received significant attention. Here, quaternized chitosan hydrogels incorporated with NaYF 4 :Er/Yb/Mn@photosensitizer-doped silica (UCNPs/MB) were synthesized for effective killing of both gram-positive oxacillin-resistant S. aureus (DR-S. aureus) and gram-negative kanamyclin-resistant E. coli (DR-E. coli) bacteria upon near-infrared (NIR) laser irradiation. In this system, the cationic macroporous nature of the hydrogel acts as a molecular ‘anion sponge’, which sucks the outer part of the anionic microbe membrane into the gel interior voids and causes microbe membrane disruption. By incorporating UCNPs/MB-doped silica into the hydrogel, we have combined photodynamic therapy (PDT) with quaternized chitosan to obtain a high therapeutic index via a synergistic effect. In vitro experiments have demonstrated that our system had excellent antibacterial efficiency to both DR-S. aureus and DR-E. coli bacteria. More importantly, our new synergistic treatment modality provided an excellent therapy platform for drug-resistant bacteria, which could improve antimicrobial efficiency. (paper)

  9. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.

    Science.gov (United States)

    Min, B R; Pinchak, W E; Anderson, R C; Hume, M E

    2006-10-01

    The role of ruminal bacteria in the frothy bloat complex common to cattle grazing winter wheat has not been previously determined. Two experiments, one in vitro and another in vivo, were designed to elucidate the effects of fresh wheat forage on bacterial growth, biofilm complexes, rumen fermentation end products, rumen bacterial diversity, and bloat potential. In Exp. 1, 6 strains of ruminal bacteria (Streptococcus bovis strain 26, Prevotella ruminicola strain 23, Eubacterium ruminantium B1C23, Ruminococcus albus SY3, Fibrobacter succinogenes ssp. S85, and Ruminococcus flavefaciens C94) were used in vitro to determine the effect of soluble plant protein from winter wheat forage on specific bacterial growth rate, biofilm complexes, VFA, and ruminal H2 and CH4 in mono or coculture with Methanobrevibacter smithii. The specific growth rate in plant protein medium containing soluble plant protein (3.27% nitrogen) was measured during a 24-h incubation at 39 degrees C in Hungate tubes under a CO2 gas phase. A monoculture of M. smithii was grown similarly, except under H2:CO2 (1:1), in a basal methanogen growth medium supplemented likewise with soluble plant protein. In Exp. 2, 6 ruminally cannulated steers grazing wheat forage were used to evaluate the influence of bloat on the production of biofilm complexes, ruminal microbial biodiversity patterns, and ruminal fluid protein fractions. In Exp. 1, cultures of R. albus (P bloated than for nonbloated steers when grazing wheat forage. The molecular analysis of the 16S rDNA showed that 2 different ruminal microbiota populations developed between bloated and nonbloated animals grazing wheat forage. Bloat in cattle grazing wheat pastures may be caused by increased production of biofilm, resulting from a diet-influenced switch in the rumen bacterial population.

  10. Alkanna tinctoria leaves extracts: a prospective remedy against multidrug resistant human pathogenic bacteria.

    Science.gov (United States)

    Khan, Usman Ali; Rahman, Hazir; Qasim, Muhammad; Hussain, Anwar; Azizllah, Azizullah; Murad, Waheed; Khan, Zakir; Anees, Muhammad; Adnan, Muhammad

    2015-04-23

    Plants are rich source of chemical compounds that are used to accomplish biological activity. Indigenously crude extracts of plants are widely used as herbal medicine for the treatment of infections by people of different ethnic groups. The present investigation was carried out to evaluate the biological potential of Alkanna tinctoria leaves extract from district Charsadda, Pakistan against multidrug resistant human pathogenic bacteria including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Anti-multi-drug resistant bacterial activity of aqueous, chloroform, ethanol and hexane extracts of Alkanna tinctoria leaves were evaluated by well diffusion method. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of different extracts were determined. Moreover qualitative phytochemicals screening of the studied extracts was performed. All four selected bacteria including A. baumannii, E. coli, P. aeruginosa and S. aureus were categorized as multi-drug resistant (MDR) as they were found to be resistant to 13, 10, 19 and 22 antibiotics belonging to different groups respectively. All the four extract showed potential activity against S. aureus as compare to positive control antibiotic (Imipenem). Similarly among the four extracts of Alkanna tinctoria leaves, aqueous extract showed best activity against A. baumannii (10±03 mm), P. aeruginosa (12±0.5 mm), and S. aureus (14±0.5 mm) as compare to Imipenem. The MICs and MBCs results also showed quantitative concentration of plant extracts to inhibit or kill MDR bacteria. When phytochemicals analysis was performed it was observed that aqueous and ethanol extracts showed phytochemicals with large number as well as volume, especially Alkaloides, Flavonoides and Charbohydrates. The undertaken study demonstrated that all the four extracts of Alkanna tinctoria leaves exhibited considerable antibacterial activity against MDR isolates. Finding from the

  11. Multicentre investigation of pathogenic bacteria and antibiotic resistance genes in Chinese patients with acute exacerbation of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Ma, Xiuqing; Cui, Junchang; Wang, Jing; Chang, Yan; Fang, Qiuhong; Bai, Changqing; Zhou, Xiumei; Zhou, Hong; Feng, Huasong; Wang, Ying; Zhao, Weiguo; Wen, Zhongguang; Wang, Ping; Liu, Yi; Yu, Ling; Li, Chunsun; Chen, Liangan

    2015-10-01

    A prospective observational study to investigate the distribution and antimicrobial resistance of pathogenic bacteria in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) in Beijing, China. Patients with AECOPD were recruited from 11 general hospitals. Sputum specimens were cultured and bacteria identified. Antibiotic susceptibility was determined for each isolate, and presence of antibiotic resistance genes was evaluated using polymerase chain reaction. Pathogenic bacteria were isolated from 109/318 patients (34.28%); 124 isolates of 22 pathogenic bacterial species were identified, including Klebsiella pneumoniae (16.94%), Pseudomonas aeruginosa (16.94%), Acinetobacter baumannii (11.29%), Streptococcus pneumoniae (8.87%), and Staphylococcus aureus (7.26%). S. aureus was sensitive to tigecycline, teicoplanin, vancomycin and linezolid but resistant to penicillin and levofloxacin. K.pneumoniae, P. aeruginosa, A. baumannii and E. coli were susceptible to amikacin and cefoperazone. K. pneumoniae and P. aeruginosa are the most common pathogenic bacteria in AECOPD cases in Beijing, China. Our antibiotic resistance findings may be helpful in selecting antibiotic therapy. © The Author(s) 2015.

  12. Isolation And Partial Characterization Of Bacteria Activity Associated With Gorgonian Euplexaura sp. Against Methicillin-Resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    Kristiana, R.; Ayuningrum, D.; Asagabaldan, M. A.; Nuryadi, H.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infection has emerged in around the world and has been resistance to ciprofloxacin, erythromycin, clindamycin. The aims of this study were to isolate, to investigate and to characterize bacterial symbionts gorgonian having activity against MRSA. Euplexaura sp. was collected from Panjang Island, Jepara, Indonesia by snorkling 2-5 m in depth. Bacterias were isolated by using spesific media with dilution method. Bacterias were conducted by using the streak method. Antibacterial activity was investigated by overlay method. The potent bacteria was identified by using molecular identification (DNA extraction, electrophoresis, PCR and phylogenetic analysis using 16S rDNA genes with actinobacteria-spesific primers) and bio-chemical test (among 5 isolated bacteria from gorgonian showed activity against MRSA). The strain PG-344 was the best candidat that has an inhibition zone against MRSA. The result of sequencing bacteria is 100% closely related with Virgibacillus salarius. This becomes a potential new bioactive compounds to against MRSA that can be a new drug discovery.

  13. Effect of Tetracycline Dose and Treatment Mode on Selection of Resistant Coliform Bacteria in Nursery Pigs

    Science.gov (United States)

    Græsbøll, Kaare; Damborg, Peter; Mellerup, Anders; Herrero-Fresno, Ana; Larsen, Inge; Holm, Anders; Nielsen, Jens Peter; Christiansen, Lasse Engbo; Angen, Øystein; Ahmed, Shahana

    2017-01-01

    ABSTRACT This study describes the results of a randomized clinical trial investigating the effect of oxytetracycline treatment dose and mode of administration on the selection of antibiotic-resistant coliform bacteria in fecal samples from nursery pigs. Nursery pigs (pigs of 4 to 7 weeks of age) in five pig herds were treated with oxytetracycline for Lawsonia intracellularis-induced diarrhea. Each group was randomly allocated to one of five treatment groups: oral flock treatment with a (i) high (20 mg/kg of body weight), (ii) medium (10 mg/kg), or (iii) low (5 mg/kg) dose, (iv) oral pen-wise (small-group) treatment (10 mg/kg), and (v) individual intramuscular injection treatment (10 mg/kg). All groups were treated once a day for 5 days. In all groups, treatment caused a rise in the numbers and proportions of tetracycline-resistant coliform bacteria right after treatment, followed by a significant drop by the time that the pigs left the nursery unit. The counts and proportions of tetracycline-resistant coliforms did not vary significantly between treatment groups, except immediately after treatment, when the highest treatment dose resulted in the highest number of resistant coliforms. A control group treated with tiamulin did not show significant changes in the numbers or proportions of tetracycline-resistant coliforms. Selection for tetracycline-resistant coliforms was significantly correlated to selection for ampicillin- and sulfonamide-resistant strains but not to selection for cefotaxime-resistant strains. In conclusion, the difference in the dose of oxytetracycline and the way in which the drug was applied did not cause significantly different levels of selection of tetracycline-resistant coliform bacteria under the conditions tested. IMPORTANCE Antimicrobial resistance is a global threat to human health. Treatment of livestock with antimicrobials has a direct impact on this problem, and there is a need to improve the ways that we use antimicrobials in

  14. Effect of Tetracycline Dose and Treatment Mode on Selection of Resistant Coliform Bacteria in Nursery Pigs.

    Science.gov (United States)

    Græsbøll, Kaare; Damborg, Peter; Mellerup, Anders; Herrero-Fresno, Ana; Larsen, Inge; Holm, Anders; Nielsen, Jens Peter; Christiansen, Lasse Engbo; Angen, Øystein; Ahmed, Shahana; Folkesson, Anders; Olsen, John Elmerdahl

    2017-06-15

    This study describes the results of a randomized clinical trial investigating the effect of oxytetracycline treatment dose and mode of administration on the selection of antibiotic-resistant coliform bacteria in fecal samples from nursery pigs. Nursery pigs (pigs of 4 to 7 weeks of age) in five pig herds were treated with oxytetracycline for Lawsonia intracellularis -induced diarrhea. Each group was randomly allocated to one of five treatment groups: oral flock treatment with a (i) high (20 mg/kg of body weight), (ii) medium (10 mg/kg), or (iii) low (5 mg/kg) dose, (iv) oral pen-wise (small-group) treatment (10 mg/kg), and (v) individual intramuscular injection treatment (10 mg/kg). All groups were treated once a day for 5 days. In all groups, treatment caused a rise in the numbers and proportions of tetracycline-resistant coliform bacteria right after treatment, followed by a significant drop by the time that the pigs left the nursery unit. The counts and proportions of tetracycline-resistant coliforms did not vary significantly between treatment groups, except immediately after treatment, when the highest treatment dose resulted in the highest number of resistant coliforms. A control group treated with tiamulin did not show significant changes in the numbers or proportions of tetracycline-resistant coliforms. Selection for tetracycline-resistant coliforms was significantly correlated to selection for ampicillin- and sulfonamide-resistant strains but not to selection for cefotaxime-resistant strains. In conclusion, the difference in the dose of oxytetracycline and the way in which the drug was applied did not cause significantly different levels of selection of tetracycline-resistant coliform bacteria under the conditions tested. IMPORTANCE Antimicrobial resistance is a global threat to human health. Treatment of livestock with antimicrobials has a direct impact on this problem, and there is a need to improve the ways that we use antimicrobials in livestock

  15. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Comas, J.; Rodriquez-Roda, I.

    2009-01-01

    The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation...... are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance...

  16. Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park.

    Science.gov (United States)

    Boomer, S M; Pierson, B K; Austinhirst, R; Castenholz, R W

    2000-09-01

    Novel red, filamentous, gliding bacteria formed deep red layers in several alkaline hot springs in Yellowstone National Park. Filaments contained densely layered intracellular membranes and bacteriochlorophyll a. The in vivo absorption spectrum of the red layer filaments was distinct from other phototrophs, with unusual bacteriochlorophyll a signature peaks in the near-infrared (IR) region (807 nm and 911 nm). These absorption peaks were similar to the wavelengths penetrating to the red layer of the mats as measured with in situ spectroradiometry. The filaments also demonstrated maximal photosynthetic uptake of radiolabeled carbon sources at these wavelengths. The red layer filaments displayed anoxygenic photoheterotrophy, as evidenced by the specific incorporation of acetate, not bicarbonate, and by the absence of oxygen production. Photoheterotrophy was unaffected by sulfide and oxygen, but was diminished by high-intensity visible light. Near-IR radiation supported photoheterotrophy. Morphologically and spectrally similar filaments were observed in several springs in Yellowstone National Park, including Octopus Spring. Taken together, these data suggest that the red layer filaments are most similar to the photoheterotroph, Heliothrix oregonensis. Notable differences include mat position and coloration, absorption spectra, and prominent intracellular membranes.

  17. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    Science.gov (United States)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  18. Antimicrobial Resistance Profiles of Bacteria Isolated from the Nasal Cavity of Camels in Samburu, Nakuru, and Isiolo Counties of Kenya

    Directory of Open Access Journals (Sweden)

    J. M. Mutua

    2017-01-01

    Full Text Available This study was designed to determine antimicrobial resistance profiles of bacteria isolated from the nasal cavity of healthy camels. A total of 255 nasal samples (swabs were collected in Isiolo, Samburu, and Nakuru counties, Kenya, from which 404 bacterial isolates belonging to various genera and species were recovered. The bacterial isolates included Bacillus (39.60%, coagulase-negative Staphylococcus (29.95%, Streptococcus species other than Streptococcus agalactiae (25.74%, coagulase-positive Staphylococcus (3.96%, and Streptococcus agalactiae (0.74%. Isolates were most susceptible to Gentamicin (95.8%, followed by Tetracycline (90.5%, Kanamycin and Chloramphenicol (each at 85.3%, Sulphamethoxazole (84.2%, Co-trimoxazole (82.1%, Ampicillin (78.9%, and finally Streptomycin (76.8%. This translated to low resistance levels. Multidrug resistance was also reported in 30.5% of the isolates tested. Even though the antibiotic resistance demonstrated in this study is low, the observation is significant, since the few resistant normal flora could be harboring resistance genes which can be transferred to pathogenic bacteria within the animal, to other animals’ bacteria and, most seriously, to human pathogens.

  19. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents.

    Science.gov (United States)

    Lawhon, S D; Taylor, A; Fajt, V R

    2013-11-01

    Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ≥ 16/8 μg/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ≥ 2 μg/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ≥ 32 μg/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ≥ 8 μg/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ≥ 32 μg/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ≥ 2 μg/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro.

  20. Resistance to antimicrobial agents used for animal therapy in pathogenic , zoonotic and indicator bacteria isolated from different food animals in Denmark: A baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP)

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Bager, Flemming; Jensen, N. E.

    1998-01-01

    was found. The occurrence of resistance varied by animal origin and bacterial species. In general, resistance was observed more frequently among isolates from pigs than from cattle and broilers. The association between the occurrence of resistance and the consumption of the antimicrobial is discussed......, as is the occurrence of resistance in other countries. The results of this study show the present level of resistance to antimicrobial agents among a number of bacterial species isolated from food animals in Denmark. Thus, the baseline for comparison with future prospective studies has been established, enabling......This study describes the establishment and first results of a continuous surveillance system of antimicrobial resistance among bacteria isolated from pigs, cattle and broilers in Denmark. The three categories of bacteria tested were: 1) indicator bacteria (Escherichia coli, Enterococcus faecalis...

  1. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Azithromycin, fluoroquinolone and chloramphenicol resistance of non-chlamydia conjunctival bacteria in rural community of Ethiopia

    Directory of Open Access Journals (Sweden)

    Bayeh Abera

    2014-01-01

    Full Text Available Aim: To determine profiles of non-chlamydia conjunctival bacteria and their antimicrobial susceptibility from adults who underwent trachomatous trichiasis surgery in rural areas of Ethiopia. Materials and Methods: A cross-sectional study was conducted in rural districts in West Gojjam administrative zone. Conjunctival swabs were collected during surgery and transported using Stuart transport broth (Oxoid, UK. Antibiotic susceptibility of conjunctival isolates was determined using the Kirby-Bauer disc-diffusion method. Results: Non-chlamydia pathogenic bacteria were recovered from conjunctiva of 438 (31% participants before treatment. The isolated conjunctival bacteria were Staphylococcus aureus, coagulase-negative Staphylococci, Streptococcus group (A, C, F and G, Enterococci, Streptococcus pneumoniae, Moraxella spp., Escherichia coli, Citrobacter spp., Proteus spp., Klebsiella spp., Pseudomonas spp. and Enterobacter spp. Overall, resistance rates of 57.8% to azithromycin and 68.5% to chloramphenicol were found. However, 86-94.4% sensitivity was demonstrated to ciprofloxacin and norfloxacin. Moderate sensitivity rates (61.8-78.4% were observed to ceftriaxone, tetracycline and cotrimoxazole. Conclusion: Fluoroquinolones that have activity against the majority of bacterial isolates were potent at in vitro. However, unacceptably high levels of resistance to azithromycin and chloramphenicol in rural community indicated a need for further study and antimicrobial resistance surveillance.

  3. Prevalence of antibiotic resistant coliform bacteria, Enterococcus spp. and Staphylococcus spp. in wastewater sewerage biofilm.

    Science.gov (United States)

    Lépesová, Kristína; Kraková, Lucia; Pangallo, Domenico; Medveďová, Alžbeta; Olejníková, Petra; Mackuľak, Tomáš; Tichý, Jozef; Grabic, Roman; Birošová, Lucia

    2018-03-28

    Urban wastewater contains different micropollutants and high number of different microorganisms. Some bacteria in wastewater can attach to the surfaces and form biofilm, which gives bacteria advantage in fight against environmental stress. This work is focused on bacterial community analysis in biofilms isolated from influent and effluent sewerage of wastewater treatment plant in Bratislava. Biofilm microbiota detection was performed by culture-independent and culture-dependent approaches. Composition of bacterial strains was detected by denaturing gradient gel electrophoresis fingerprinting coupled with the construction of 16S rRNA clone libraries. The biofilm collected at the inlet point was characterized primarily by the presence of Pseudomonas sp., Acinetobacter sp. and Janthinobacterium sp. clones, while in the biofilm isolated at outflow of wastewater treatment plant members of Pseudomonas genus were largely detected. Beside this analysis prevalence of antibiotics and resistant coliforms, Enterococcus spp. and Staphylococcus spp. in sewerage was studied. In influent wastewater were dominant antibiotics like azithromycin, clarithromycin and ciprofloxacin. Removal efficiency of these antibiotics notably azithromycin and clarithromycin were 30% in most cases. The highest number of resistant bacteria with predominance of coliforms was detected in sample of effluent biofilm. Multidrug resistant strains in effluent biofilm showed very good ability to form biofilm. Copyright © 2018. Published by Elsevier Ltd.

  4. Effect of tetracycline residues in pig manure slurry on tetracycline-resistant bacteria and resistance gene tet(M) in soil microcosms

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Wulff, Gitte; Vaclavik, Elvira

    2006-01-01

    and oxytetracycline were almost stable through out the experimental period, but the tetracycline concentrations had no effect on prevalence of tetracycline-resistant bacteria. The presented microcosm approach simulated natural farmland conditions well and supported results from previous field studies. (c) 2006...

  5. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Vitalij Novickij

    2018-01-01

    Full Text Available Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs (11–13 nm capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm-1 electric field pulses (100 μs × 8 separately and in combination with two pulsed magnetic field protocols: (1 high dB/dt 3.3 T × 50 and (2 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high dB/dt pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections.

  6. The grazing capacity of sweetveld: 2. A model to estimate grazing ...

    African Journals Online (AJOL)

    The relations between grazing capacity and three independent variables were investigated in the False Thornveld of the Eastern Cape. The variables were veld condition, rainfall and density of woody species. These relations were used to develop a preliminary model to assess grazing capacity in the veld type. Despite its ...

  7. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  8. Add-On Therapy with Ertapenem in Infections with Multidrug Resistant Gram-Negative Bacteria: Pediatric Experience

    Directory of Open Access Journals (Sweden)

    Sevgen Tanır Basaranoglu

    2017-01-01

    Full Text Available Optimal therapy for infections with carbapenem resistant GNB is not well established due to the weakness of data. Patients presenting with bloodstream infections caused by multidrug resistant Klebsiella pneumoniae were treated with a combination treatment. Optimal therapy for infections with carbapenem resistant Gram-negative bacteria is a serious problem in pediatric patients. We presented three cases who were successfully treated with addition of ertapenem to the combination treatment for bacteremia with multidrug resistant Klebsiella pneumoniae. Dual carbapenem treatment approach is a new approach for these infections and requires more data in children.

  9. Antiseptic and antibiotic resistance in Gram-negative bacteria causing urinary tract infection.

    Science.gov (United States)

    Stickler, D J; Thomas, B

    1980-01-01

    A collection of 802 isolates of Gram-negative bacteria causing urinary tract infections was made from general practice, antenatal clinics, and local hospitals. The organisms were tested for their sensitivity to chlorhexidine, cetrimide, glutaraldehyde, phenyl mercuric nitrate, a phenolic formulation, and a proprietary antiseptic containing a mixture of picloxydine, octyl phenoxy polyethoxyethanol, and benzalkonium chloride. Escherichia coli, the major species isolated, proved to be uniformly sensitive to these agents. Approximately 10% of the total number of isolates, however, exhibited a degree of resistance to the cationic agents. These resistant organisms were members of the genera Proteus, Providencia, and Pseudomonas; they were also generally resistant to five, six, or seven antibiotics. It is proposed therefore that an antiseptic policy which involves the intensive use of cationic antiseptics might lead to the selection of a flora of notoriously drug-resistant species. PMID:6769972

  10. BF-30 effectively inhibits ciprofloxacin-resistant bacteria in vitro and in a rat model of vaginosis.

    Science.gov (United States)

    Wang, Jing; Li, Bing; Li, Yang; Dou, Jie; Hao, Qingru; Tian, Yuwei; Wang, Hui; Zhou, Changlin

    2014-07-01

    Bacterial infections are becoming increasingly difficult to treat due to the increasing number of multidrug-resistant strains. Cathelicidin-BF (BF-30) is a cathelicidin-like antimicrobial peptide and exhibits broad antimicrobial activity against bacteria. In the present study, the antibacterial activity of BF-30 against ciprofloxacin-resistant Escherichia coli and Staphylococcus aureus was examined, and the protective effects of this peptide against these bacteria in rats with bacterial vaginosis were identified for the first time. The data showed that BF-30 had effective antimicrobial activities against ciprofloxacin-resistant E. coli and S. aureus. The minimal inhibitory concentrations for both bacterial strains were 16 μg/ml, and the minimal bactericidal concentrations were 64 and 128 μg/ml, respectively. A time course experiment showed that the CFU counts rapidly decreased after BF-30 treatment, and the bacteria were nearly eliminated within 4 h. BF-30 could reduce the fold change (CFU/ml) in local colonization by drug-resistant E. coli and S. aureus to 0.01 at a dose of 0.8 mg/kg/day in the rats' vaginal secretions. In addition, BF-30 induced membrane permeabilization and bound to the genomic DNA, interrupting protein synthesis. Taken together, our data demonstrate that BF-30 has potential therapeutic value for the prevention and treatment of bacterial vaginosis.

  11. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Nuntra Suwantarat

    2016-05-01

    Full Text Available Abstract Background Multidrug-resistant Gram-negative bacteria (MDRGN, including extended-spectrum β-lactamases (ESBLs and multidrug-resistant glucose-nonfermenting Gram-negative bacilli (nonfermenters, have emerged and spread throughout Southeast Asia. Methods We reviewed and summarized current critical knowledge on the epidemiology and molecular characterization of MDRGN in Southeast Asia by PubMed searches for publications prior to 10 March 2016 with the term related to “MDRGN definition” combined with specific Southeast Asian country names (Thailand, Singapore, Malaysia, Vietnam, Indonesia, Philippines, Laos, Cambodia, Myanmar, Brunei. Results There were a total of 175 publications from the following countries: Thailand (77, Singapore (35, Malaysia (32, Vietnam (23, Indonesia (6, Philippines (1, Laos (1, and Brunei (1. We did not find any publications on MDRGN from Myanmar and Cambodia. We did not include publications related to Shigella spp., Salmonella spp., and Vibrio spp. and non-human related studies in our review. English language articles and abstracts were included for analysis. After the abstracts were reviewed, data on MDRGN in Southeast Asia from 54 publications were further reviewed and included in this study. Conclusions MDRGNs are a major contributor of antimicrobial-resistant bacteria in Southeast Asia. The high prevalence of ESBLs has been a major problem since 2005 and is possibly related to the development of carbapenem resistant organisms in this region due to the overuse of carbapenem therapy. Carbapenem–resistant Acinetobacter baumannii is the most common pathogen associated with nosocomial infections in this region followed by carbapenem-resistant Pseudomonas aeruginosa. Although Southeast Asia is not an endemic area for carbapenem-resistant Enterobacteriaceae (CRE, recently, the rate of CRE detection has been increasing. Limited infection control measures, lack of antimicrobial control, such as the presence of

  12. Anaerobic bacteria and antibiotics: What kind of unexpected resistance could I find in my laboratory tomorrow?

    Science.gov (United States)

    Dubreuil, L; Odou, M F

    2010-12-01

    The purpose of this article is to set out some important considerations on the main emerging antibiotic resistance patterns among anaerobic bacteria. The first point concerns the Bacteroides fragilis group and its resistance to the combination of β-lactam+β-lactamase inhibitor. When there is overproduction of cephalosporinase, it results in increased resistance to the β-lactams while maintaining susceptibility to β-lactams/β-lactamase inhibitor combinations. However, if another resistance mechanism is added, such as a loss of porin, resistances to β-lactam+β-lactamase inhibitor combinations may occur. The second point is resistance to metronidazole occurring due to nim genes. PCR detection of nim genes alone is not sufficient for predicting resistance to metronidazole; actual MIC determinations are required. Therefore, it can be assumed that other resistance mechanisms can also be involved. Although metronidazole resistance remains rare for the B. fragilis group, it has nevertheless been detected worldwide and also been observed spreading to other species. In some cases where there is only a decreased susceptibility, clinical failures may occur. The last point concerns resistance of Clostridium species to glycopeptides and lipopeptides. Low levels of resistance have been detected with these antibiotics. Van genes have been detected not only in clostridia but also in other species. In conclusion, antibiotic resistance involves different mechanisms and affects many anaerobic species and is spreading worldwide. This demonstrates the need to continue with antibiotic resistance testing and surveys in anaerobic bacteria. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Virulence and antimicrobial resistance of common urinary bacteria from asymptomatic students of Niger Delta University, Amassoma, Bayelsa State, Nigeria

    Directory of Open Access Journals (Sweden)

    Adebola Onanuga

    2016-01-01

    Full Text Available Background: Asymptomatic bacteriuria frequently occurs among all ages with the possibility of developing into urinary tract infections, and the antimicrobial resistance patterns of the etiologic organisms are essential for appropriate therapy. Thus, we investigated the virulence and antimicrobial resistance patterns of common urinary bacteria in asymptomatic students of Niger Delta University, Amassoma, Bayelsa State, Nigeria in a cross-sectional study. Materials and Methods: Clean catch mid-stream early morning urine samples collected from 200 asymptomatic University students of aged ranges 15–30 years were cultured, screened and common bacteria were identified using standard microbiological procedures. The isolates were screened for hemolysin production and their susceptibility to antibiotics was determined using standard disc assay method. Results: A total prevalence rate of 52.0% significant bacteriuria was detected and it was significantly higher among the female with a weak association (χ2 = 6.01, phi = 0.173, P = 0.014. The Klebsiella pneumoniae and Staphylococcus aureus isolates were most frequently encountered among the isolated bacteria and 18 (12.7% of all the bacterial isolates produced hemolysins. All the bacterial isolates exhibited 50–100% resistance to the tested beta-lactam antibiotics, tetracycline and co-trimoxazole. The isolated bacteria were 85-100% multi-drug resistant. However, most of the isolates were generally susceptible to gentamicin and ofloxacin. The phenotypic detection of extended-spectrum beta-lactamases was 9 (9.6% among the tested Gram-negative bacterial isolates. Conclusions: The observed high proportions of multidrug resistant urinary bacteria among asymptomatic University students call for the need of greater control of antibiotic use in this study area.

  14. Evaluation of inhibitory effects of iranian propolis against filamentous bacteria

    International Nuclear Information System (INIS)

    Eshraghi, S.; Valafar, S.

    2008-01-01

    To investigate the antibacterial activities of propolis in samples collected from Zanjan province Iran, against 25 pathogenic strains of bacteria. In order to evaluate the biological properties of methanol extract of propolis using agar distribution methods (disk and drop plate). Seven concentrations of methanolic extract of propolis were prepared and added drop wise to the bacterial seed layer cultured agar media individually. The diameter of the clear zone formed in each concentration was measured and correlated to the ability of the extracts to inhibit the growth of bacteria. Nocardia asteroides and N. brasiliensis has nearly shown the same susceptibility to various concentrations of propolis extract, and the complete clear zones revealed that this effect was quite remarkable. For other bacteria, different degrees of susceptibility to propolis were observed. We came to this conclusion that zones formed by 50mg/ml Amikacin in agar was similar to that of 5% concentration of propolis, and that the potency of propolis is 80% of Amikacin potency, which is the most effective antibiotic against Nocardia. (author)

  15. Do antibiotic residues in soils play a role in amplification and transmission of antibiotic resistant bacteria in cattle populations?

    Directory of Open Access Journals (Sweden)

    Douglas Ruben Call

    2013-07-01

    Full Text Available When we consider factors that contribute to the emergence, amplification, and persistence of antibiotic resistant bacteria, the conventional assumption is that antibiotic use is the primary driver in these processes and that selection occurs primarily in the patient or animal. Evidence suggests that this may not always be the case. Experimental trials show that parenteral administration of a third-generation cephalosporin (ceftiofur in cattle has limited or short-term effects on the prevalence of ceftiofur-resistant bacteria in the gastrointestinal tract. While this response may be sufficient to explain a pattern of widespread resistance to cephalosporins, approximately two-thirds of ceftiofur metabolites are excreted in the urine raising the possibility that environmental selection plays an important additive role in the amplification and maintenance of antibiotic resistant E. coli on farms. Consequently, we present a rationale for an environmental selection hypothesis whereby excreted antibiotic residues such as ceftiofur are a significant contributor to the proliferation of antibiotic resistant bacteria in food animal systems. We also present a mathematical model of our hypothesized system as a guide for designing experiments to test this hypothesis. If supported for antibiotics such as ceftiofur, then there may be new approaches to combat the proliferation of antibiotic resistance beyond the prudent use mantra.

  16. Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria.

    Science.gov (United States)

    Adesoji, Ayodele T; Ogunjobi, Adeniyi A

    2016-01-01

    Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include bla TEM, bla SHV, and bla CTX by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with bla TEM being the most abundant (50/61) and bla CTX being detected least (3/61). Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, bla SHV + bla TEM or bla CTX + bla TEM, were observed in 11 and 1 isolate, respectively. In conclusion, classic bla TEM ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria.

  17. The Effect of Different Type of Herbivores, Grazing Types and Grazing Intensities on Alpine Basiphillous Vegetation of the Romanian Carpathians

    Science.gov (United States)

    Ballová, Zuzana; Pekárik, Ladislav; Šibík, Jozef

    2017-04-01

    The major purpose of the present study was to test the hypothesis that there are significant differences in vegetation structure, plant species composition, and soil chemical properties in relation to type of grazing animals, various levels of grazing intensity and grazing type, and if potential differences alter with ecosystem productivity (increase in more productive ecosystems). The study was conducted in three mountain ranges of the Romanian Carpathians with a predominance of alkaline substrates (the Bucegi Mts, the Little Retezat Mts and the Ceahlău Massif). Statistical analyses were performed in R statistical software environment. The effects of grazing animals (cattle, horses and sheep), grazing types (fence, regular, irregular) and grazing intensity (low, medium, high) on the community structure were tested using ordination methods. In the case of soil properties, General Linear Mixed Model was applied. Special statistical approach eliminated the differences between the examined mountains and sites. Type of grazing animal does not significantly influence species cover but it is related to specific species occurrence. According to our results, grazing horses had similar effects as cattle compared to sheep. Grazing in restricted areas (surrounded by fence) and regular unrestricted grazing were more similar if compared to irregular grazing. When comparing the intensity of grazing, high and medium intensity were more similar to each other than to the low intensity grazing. Cattle grazed sites had significantly higher lichens cover, while the sheep patches were covered with increased overall herb layer (forbs, graminoids and low shrubs together). Medium grazing intensity decreased the lichens cover, cover of overall herb layer, and total vegetation cover compared to high and low grazing intensity. Grazing type had important impact on the lichens cover and cover of overall herb layer. The lichens cover appeared to decrease while the cover of overall herb layer

  18. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact.

    Science.gov (United States)

    Trecarichi, Enrico M; Tumbarello, Mario

    2014-04-01

    In the recent years, several studies involving cancer patients have demonstrated a clear trend in the epidemiology of bacterial infections showing a shift in the prevalence from Gram-positive to Gram-negative bacteria and the extensive emergence of antimicrobial-resistant strains among Gram-negatives isolated from the blood. The aim of this systematic review was to examine the recent trends in epidemiology and antimicrobial resistance in Gram-negatives recovered from neutropenic cancer patients, with particular emphasis on the impact of antimicrobial resistance on the clinical outcome of severe infections caused by such microorganisms. Overall, from 2007 to date, the rate of Gram-negative bacteria recovery ranged from 24.7 to 75.8% (mean 51.3%) in cancer patient cohorts. Escherichia coli represented the most common species (mean frequency of isolation 32.1%) among the Gram-negatives, followed by Pseudomonas aeruginosa (mean frequency of isolation 20.1%). An increasing frequency of Acinetobacter spp. and Stenotrophomonas maltophilia was also reported. Increased rates of multidrug-resistant Gram-negative strains have been highlighted among Enterobacteriaceae and nonfermenting Gram-negative rods, despite discontinuation of fluoroquinolone-based antibacterial prophylaxis for neutropenic patients. In addition, antimicrobial resistance and/or the inadequacy of empirical antibiotic treatment have been frequently linked to a worse outcome in cancer patients with bloodstream infections caused by Gram-negative isolates. Sound knowledge of the local distribution of pathogens and their susceptibility patterns and prompt initiation of effective antimicrobial treatment for severe infections caused by Gram-negative bacteria are essential in cancer patients.

  19. Multidrug resistant bacteria isolated from septic arthritis in horses

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Motta

    Full Text Available ABSTRACT: Septic arthritis is a debilitating joint infectious disease of equines that requires early diagnosis and immediate therapeutic intervention to prevent degenerative effects on the articular cartilage, as well as loss of athletic ability and work performance of the animals. Few studies have investigated the etiological complexity of this disease, as well as multidrug resistance of isolates. In this study, 60 horses with arthritis had synovial fluid samples aseptically collected, and tested by microbiological culture and in vitro susceptibility test (disk diffusion using nine antimicrobials belonging to six different pharmacological groups. Bacteria were isolated in 45 (75.0% samples, as follows: Streptococcus equi subsp. equi (11=18.3%, Escherichia coli (9=15.0%, Staphylococcus aureus (6=10.0%, Streptococcus equi subsp. zooepidemicus (5=8.3%, Staphylococcus intermedius (2=3.3%, Proteus vulgaris (2=3.3%, Trueperella pyogenes (2=3.3%, Pseudomonas aeruginosa (2=3.3%, Klebsiella pneumoniae (1=1.7%, Rhodococcus equi (1=1.7%, Staphylococcus epidermidis (1=1.7%, Klebsiella oxytoca (1=1.7%, Nocardia asteroides (1=1.7%, and Enterobacter cloacae (1=1.7%. Ceftiofur was the most effective drug (>70% efficacy against the pathogens in the disk diffusion test. In contrast, high resistance rate (>70% resistance was observed to penicillin (42.2%, enrofloxacin (33.3%, and amikacin (31.2%. Eleven (24.4% isolates were resistant to three or more different pharmacological groups and were considered multidrug resistant strains. The present study emphasizes the etiological complexity of equine septic arthritis, and highlights the need to institute treatment based on the in vitro susceptibility pattern, due to the multidrug resistance of isolates. According to the available literature, this is the first report in Brazil on the investigation of the etiology. of the septic arthritis in a great number of horses associated with multidrug resistance of the isolates.

  20. Resistance to antibiotics in Lacid acid bacteria - strain Lactococcus

    Directory of Open Access Journals (Sweden)

    Filipić Brankica

    2015-01-01

    Full Text Available Lactic acid bacteria (LAB are widely used in the food industry, especially in the production of fermented dairy products and meat. The most studied species among Lis Lactococcus lactis. L. lactis strains are of great importance in the production of fermented dairy products such as yogurt, butter, fresh cheese and some kind of semi-hard cheese. Although L. lactis acquired the „Generally Regarded As Safe“ (GRAS status, many investigations indicated that lactococci may act as reservoirs of antibiotic resistance genes, which could be transferred to other bacterial species in human gastrointestinal tract includ­ing pathogens. The genome analysis of L. lactis indicated the presence of at least 40 putative drug transporter genes, and only four multidrug resistance (MDR transporters are functionally characterized: LmrA, LmrP, LmrCD i CmbT. LmrA is the first described MDR transporter in prokaryotes. LmrCD is responsible for resistance to cholate, which is an integral part of human bile and LmrCD is important for intestinal survival of lactococci that are used as probiotics. Secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. CmbT protein has an effect on the host cell resistance to lincomycin, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametox­azole. Since the food chain is an important way of transmitting resistance genes in human and animal population, it is of great importance to study the mechanisms of resistance in lactococci and other LAB, intended for the food industry. [Projekat Ministarstva nauke Republike Srbije, br. 173019: Izučavanje gena i molekularnih mehanizama u osnovi probiotičke aktivnosti bakterija mlečne kiseline izolovanih sa područja Zapadnog Balkana

  1. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    OpenAIRE

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to d...

  2. NethMap 2017: Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands / MARAN 2017: Monitoring of antimicrobial resistance and antibiotic usage in animals in the Netherlands in 2016

    NARCIS (Netherlands)

    de Greeff SC; Mouton JW; ZIA; I&V

    2017-01-01

    The number of bacteria that are resistant to antimicrobials is increasing worldwide. In the Netherlands, the number of resistant bacteria that can cause infections in humans has remained broadly stable. Nevertheless there is cause for concern and caution. Compared to 2015, in 2016 more 'outbreaks'

  3. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats

    Science.gov (United States)

    D'Amelio, E. D.; Cohen, Y.; Des Marais, D. J.

    1987-01-01

    An unidentified filamentous purple bacterium, probably belonging to a new genus or even a new family, is found in close association with the filamentous, mat-forming cyanobacterium Microcoleus chthonoplastes in a hypersaline pond at Guerrero Negro, Baja California Sur, Mexico, and in Solar Lake, Sinai, Egypt. This organism is a gliding, segmented trichome, 0.8-0.9 micrometer wide. It contains intracytoplasmic stacked lamellae which are perpendicular and obliquely oriented to the cell wall, similar to those described for the purple sulfur bacteria Ectothiorhodospira. These bacteria are found inside the cyanobacterial bundle, enclosed by the cyanobacterial sheath. Detailed transmission electron microscopical analyses carried out in horizontal sections of the upper 1.5 mm of the cyanobacterial mat show this cyanobacterial-purple bacterial association at depths of 300-1200 micrometers, corresponding to the zone below that of maximal oxygenic photosynthesis. Sharp gradients of oxygen and sulfide are established during the day at this microzone in the two cyanobacterial mats studied. The close association, the distribution pattern of this association and preliminary physiological experiments suggest a co-metabolism of sulfur by the two-membered community. This probable new genus of purple bacteria may also grow photoheterotrophically using organic carbon excreted by the cyanobacterium. Since the chemical gradients in the entire photic zone fluctuate widely in a diurnal cycle, both types of metabolism probably take place. During the morning and afternoon, sulfide migrates up to the photic zone allowing photoautotrophic metabolism with sulfide as the electron donor. During the day the photic zone is highly oxygenated and the purple bacteria may either use oxidized species of sulfur such as elemental sulfur and thiosulfate in the photoautotrophic mode or grow photoheterotrophically using organic carbon excreted by M. chthonoplastes. The new type of filamentous purple sulfur

  4. Stuttering Min oscillations within E. coli bacteria: a stochastic polymerization model

    International Nuclear Information System (INIS)

    Sengupta, Supratim; Derr, Julien; Sain, Anirban; Rutenberg, Andrew D

    2012-01-01

    We have developed a 3D off-lattice stochastic polymerization model to study the subcellular oscillation of Min proteins in the bacteria Escherichia coli, and used it to investigate the experimental phenomenon of Min oscillation stuttering. Stuttering was affected by the rate of immediate rebinding of MinE released from depolymerizing filament tips (processivity), protection of depolymerizing filament tips from MinD binding and fragmentation of MinD filaments due to MinE. Processivity, protection and fragmentation each reduce stuttering, speed oscillations and MinD filament lengths. Neither processivity nor tip protection were, on their own, sufficient to produce fast stutter-free oscillations. While filament fragmentation could, on its own, lead to fast oscillations with infrequent stuttering; high levels of fragmentation degraded oscillations. The infrequent stuttering observed in standard Min oscillations is consistent with short filaments of MinD, while we expect that mutants that exhibit higher stuttering frequencies will exhibit longer MinD filaments. Increased stuttering rate may be a useful diagnostic to find observable MinD polymerization under experimental conditions. (paper)

  5. Stuttering Min oscillations within E. coli bacteria: a stochastic polymerization model

    Science.gov (United States)

    Sengupta, Supratim; Derr, Julien; Sain, Anirban; Rutenberg, Andrew D.

    2012-10-01

    We have developed a 3D off-lattice stochastic polymerization model to study the subcellular oscillation of Min proteins in the bacteria Escherichia coli, and used it to investigate the experimental phenomenon of Min oscillation stuttering. Stuttering was affected by the rate of immediate rebinding of MinE released from depolymerizing filament tips (processivity), protection of depolymerizing filament tips from MinD binding and fragmentation of MinD filaments due to MinE. Processivity, protection and fragmentation each reduce stuttering, speed oscillations and MinD filament lengths. Neither processivity nor tip protection were, on their own, sufficient to produce fast stutter-free oscillations. While filament fragmentation could, on its own, lead to fast oscillations with infrequent stuttering; high levels of fragmentation degraded oscillations. The infrequent stuttering observed in standard Min oscillations is consistent with short filaments of MinD, while we expect that mutants that exhibit higher stuttering frequencies will exhibit longer MinD filaments. Increased stuttering rate may be a useful diagnostic to find observable MinD polymerization under experimental conditions.

  6. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains

    International Nuclear Information System (INIS)

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue

    2016-01-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200 mg/L), Zn (1800 mg/L) and Pb (1200 mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3 mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains + 3 mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd

  7. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue, E-mail: cmingxue@126.com

    2016-11-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200 mg/L), Zn (1800 mg/L) and Pb (1200 mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3 mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains + 3 mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd

  8. Simulating grazing practices in a complete livestock system model: estimating soil carbon storage and greenhouse gas emissions in grazed versus un-grazed agroecosystems using the Manure-DNDC model

    Science.gov (United States)

    Campbell, E. E.; Dorich, C.; Contosta, A.; Varner, R. K.

    2017-12-01

    In livestock agroecosystems, the combined contributions of enteric fermentation, manure management, and livestock grazing and/or feed production play an important role in agroecosystem carbon (C) storage and GHG losses, with complete livestock system models acting as important tools to evaluate the full impacts of these complex systems. The Manure-DeNitrification-DeComposition (DNDC) model is one such example, simulating impacts on C and nitrogen cycling, estimating methane, carbon dioxide, nitrous oxide, and ammonium dynamics in fields, manure storage, and enteric emissions. This allows the evaluation of differences in GHG and soil C impacts between conventional and organic dairy production systems, which differ in their use of grazed pasture versus confined feeding operations. However, Manure-DNDC has received limited testing in representing variations in grazed pasture management (i.e. intensive rotational grazing versus standard grazing practices). Using a set of forage biomass, soil C, and GHG emissions data collected at four sites across New England, we parameterized and validated Manure-DNDC estimations of GHG emissions and soil C in grazed versus un-grazed systems. Soil observations from these sites showed little effect from grazing practices, but larger soil carbon differences between farms. This may be due to spatial variation in SOC, making it difficult to measure and model, or due to controls of edaphic properties that make management moot. However, to further address these questions, model development will be needed to improve Manure-DNDC simulation of rotational grazing, as high stocking density grazing over short periods resulted in forage not re-growing sufficiently within the model. Furthermore, model simulations did not account for variation in interactions between livestock and soil given variability in field microclimates, perhaps requiring simulations that divide a single field into multiple paddocks to move towards more accurate evaluation of

  9. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.

    Science.gov (United States)

    Chung, Pooi Yin; Khanum, Ramona

    2017-08-01

    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed. Copyright © 2017. Published by Elsevier B.V.

  10. Dynamic Filament Formation by a Divergent Bacterial Actin-Like ParM Protein.

    Directory of Open Access Journals (Sweden)

    Anthony J Brzoska

    Full Text Available Actin-like proteins (Alps are a diverse family of proteins whose genes are abundant in the chromosomes and mobile genetic elements of many bacteria. The low-copy-number staphylococcal multiresistance plasmid pSK41 encodes ParM, an Alp involved in efficient plasmid partitioning. pSK41 ParM has previously been shown to form filaments in vitro that are structurally dissimilar to those formed by other bacterial Alps. The mechanistic implications of these differences are not known. In order to gain insights into the properties and behavior of the pSK41 ParM Alp in vivo, we reconstituted the parMRC system in the ectopic rod-shaped host, E. coli, which is larger and more genetically amenable than the native host, Staphylococcus aureus. Fluorescence microscopy showed a functional fusion protein, ParM-YFP, formed straight filaments in vivo when expressed in isolation. Strikingly, however, in the presence of ParR and parC, ParM-YFP adopted a dramatically different structure, instead forming axial curved filaments. Time-lapse imaging and selective photobleaching experiments revealed that, in the presence of all components of the parMRC system, ParM-YFP filaments were dynamic in nature. Finally, molecular dissection of the parMRC operon revealed that all components of the system are essential for the generation of dynamic filaments.

  11. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria.

    Science.gov (United States)

    Alexander, Johannes; Bollmann, Anna; Seitz, Wolfram; Schwartz, Thomas

    2015-04-15

    The dissemination of medically relevant antibiotic resistance genes (ARGs) (blaVIM-1, vanA, ampC, ermB, and mecA) and opportunistic bacteria (Enterococcus faecium/faecalis, Pseudomonas aeruginosa, Enterobacteriaceae, Staphylococcus aureus, and CNS) was determined in different anthropogenically influenced aquatic habitats in a selected region of Germany. Over a period of two years, four differently sized wastewater treatment plants (WWTPs) with and without clinical influence, three surface waters, four rain overflow basins, and three groundwater sites were analyzed by quantitative Polymerase Chain Reaction (qPCR). Results were calculated in cell equivalents per 100 ng of total DNA extracted from water samples and per 100 mL sample volume, which seems to underestimate the abundance of antibiotic resistance and opportunistic bacteria. High abundances of opportunistic bacteria and ARG were quantified in clinical wastewaters and influents of the adjacent WWTP. The removal capacities of WWTP were up to 99% for some, but not all investigated bacteria. The abundances of most ARG targets were found to be increased in the bacterial population after conventional wastewater treatment. As a consequence, downstream surface water and also some groundwater compartments displayed high abundances of all four ARGs. It became obvious that the dynamics of the ARG differed from the fate of the opportunistic bacteria. This underlines the necessity of an advanced microbial characterization of anthropogenically influenced environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Metal and antibiotic resistance of bacteria isolated from the Baltic Sea.

    Science.gov (United States)

    Moskot, Marta; Kotlarska, Ewa; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Fari, Karolina; Wegrzyn, Grzegorz; Wróbel, Borys

    2012-09-01

    The resistance of 49 strains of bacteria isolated from surface Baltic Sea waters to 11 antibiotics was analyzed and the resistance of selected strains to three metal ions (Ni2+, Mn2+, Zn2+) was tested. Most isolates belonged to Gammaproteobacteria (78%), while Alphaproteobacteria (8%), Actinobacteria (10%), and Bacteroidetes (4%) were less abundant. Even though previous reports suggested relationships between resistance and the presence of plasmids or the ability to produce pigments, no compelling evidence for such relationships was obtained for the strains isolated in this work. In particular, strains resistant to multiple antibiotics did not carry plasmids more frequently than sensitive strains. A relation between resistance and the four aminoglycosides tested (gentamycin, kanamycin, neomycin, and streptomycin), but not to spectinomycin, was demonstrated. This observation is of interest given that spectinomycin is not always classified as an aminoglycoside because it lacks a traditional sugar moiety. Statistical analysis indicated relationships between resistance to some antibiotics (ampicillin and erythromycin, chloramphenicol and erythromycin, chloramphenicol and tetracycline, erythromycin and tetracycline), suggesting the linkage of resistance genes for antibiotics belonging to different classes. The effects of NiSO4, ZnCl2 and MnCl2 on various media suggested that the composition of Marine Broth might result in low concentrations of Mn2+ due to chemical interactions that potentially lead to precipitation.

  13. ANTIMICROBIAL RESISTANCE AMONG ENTERIC BACTERIA ISOLATED FROM HUMAN AND ANIMAL WASTES AND IMPACTED SURFACE WATERS: COMPARISON WITH NARMS FINDINGS

    Science.gov (United States)

    Human infection with bacteria exhibiting mono or multiple antimicrobial resistance (MAR) has been a growing problem in the US, and studies have implicated livestock as a source of MAR bacteria primarily through foodborne transmission routes. However, waterborne transmission of...

  14. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    Energy Technology Data Exchange (ETDEWEB)

    Nada, H M.AL.M. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  15. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    International Nuclear Information System (INIS)

    Nada, H.M.AL.M.

    2008-01-01

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  16. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure.

    Science.gov (United States)

    Resende, Juliana Alves; Silva, Vânia Lúcia; de Oliveira, Tamara Lopes Rocha; de Oliveira Fortunato, Samuel; da Costa Carneiro, Jailton; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2014-02-01

    Anaerobic digestion figures as a sustainable alternative to avoid discharge of cattle manure in the environment, which results in biogas and biofertilizer. Persistence of potentially pathogenic and drug-resistant bacteria during anaerobic digestion of cattle manure was evaluated. Selective cultures were performed for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC). Antimicrobial susceptibility patterns were determined and a decay of all bacterial groups was observed after 60days. Multidrug-resistant bacteria were detected both the influent and effluent. GPC, the most prevalent group was highly resistant against penicillin and levofloxacin, whereas resistance to ampicillin, ampicillin-sulbactam and chloramphenicol was frequently observed in the ENT and NFR groups. The data point out the need of discussions to better address management of biodigesters and the implementation of sanitary and microbiological safe treatments of animal manures to avoid consequences to human, animal and environmental health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema

    DEFF Research Database (Denmark)

    Trojan, Daniela; Schreiber, Lars; Bjerg, Jesper Tataru

    2016-01-01

    Cable bacteria are long, multicellular filaments that can conduct electric currents over centimeter-scale distances. All cable bacteria identified to date belong to the deltaproteobacterial family Desulfobulbaceae and have not been isolated in pure culture yet. Their taxonomic delineation and exa...

  18. Levels and treatment options for enteric and antibiotic resistant bacteria in sewage from Sisimiut, Greenland

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Gunnarsdottir, Ragnhildur; Andersen, Henrik Rasmus

    2013-01-01

    Sewage treatment in Arctic towns is inadequate. Sewage contains pathogenic microorganisms, parasites, antibiotic resistant bacteria, and toxic compounds. Discharging of untreated sewage can thus have a negative effect on people’s health and the aquatic environment in the receiving water bodies....... Conventional treatment is challenging and expensive to implement in Arctic communities due to the cold climate and scattered population. In addition, advanced removal of nutrients may in many cases be overstated due to the low population density and large receiving water bodies. In this work we investigated......, the wastewater is very strong, suggesting a potential hygienic risk. In addition, a high fraction of antibiotic resistant bacteria and an increased toxicity in the sub-stream from the hospital, suggest that this stream contains toxic compounds, possibly antibiotic of nature that may affect the local Arctic...

  19. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    Science.gov (United States)

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  20. The extent of anthelmintic Resistance on Nematodes in communally grazed sheep and goats in a Semi-Arid area of North-west Province (RSA) / Tebogo Stanely Ramotshwane

    OpenAIRE

    Ramotshwane, Tebogo Stanely

    2011-01-01

    A survey was conducted to investigate the occurrence of anthelmintic resistance of nematodes in communally grazed sheep and goat herds in the Zeerust area of the North-West Province, Republic of South Africa. The fecal egg count reduction test (FECR%) tests were used to assess the sheep and goat small holder farmers. Efficacy of albendazole, ivermectin and closantel was done on both the treatment and control animals. Anthelmintic efficacy of 80% was considered a threshold for ...

  1. 25 CFR 166.307 - Will the grazing capacity be increased if I graze adjacent trust or non-trust rangelands not...

    Science.gov (United States)

    2010-04-01

    ... § 166.307 Will the grazing capacity be increased if I graze adjacent trust or non-trust rangelands not... trust or non-trust rangeland in common with the permitted land. Grazing capacity will be established... 25 Indians 1 2010-04-01 2010-04-01 false Will the grazing capacity be increased if I graze...

  2. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    Schaefer, Lothar; Hoefer, Markus; Kroeger, Roland

    2006-01-01

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  3. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Wu X

    2017-03-01

    Full Text Available Xiaozhe Wu,1 Zhan Li,1 Xiaolu Li,2,3 Yaomei Tian,1 Yingzi Fan,1 Chaoheng Yu,1 Bailing Zhou,1 Yi Liu,4 Rong Xiang,5 Li Yang1 1State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 2International Center for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 3Department of Plastic and Burn Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 4Department of Microbial Examination, Sichuan Center for Disease Control and Prevention, Chengdu, 5Nankai University School of Medicine, Tianjin, People’s Republic of China Abstract: Antibiotic-resistant bacteria present a great threat to public health. In this study, the synergistic effects of antimicrobial peptides (AMPs and antibiotics on several multidrug-resistant bacterial strains were studied, and their synergistic effects on azithromycin (AZT-resistance genes were analyzed to determine the relationships between antimicrobial resistance and these synergistic effects. A checkerboard method was used to evaluate the synergistic effects of AMPs (DP7 and CLS001 and several antibiotics (gentamicin, vancomycin [VAN], AZT, and amoxicillin on clinical bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The AZT-resistance genes (ermA, ermB, ermC, mefA, and msrA were identified in the resistant strains using quantitative polymerase chain reaction. For all the clinical isolates tested that were resistant to different antibiotics, DP7 had high antimicrobial activity (≤32 mg/L. When DP7 was combined with VAN or AZT, the effect was most frequently synergistic. When we studied the resistance genes of the AZT-resistant isolates, the synergistic effect of DP7–AZT occurred most frequently in highly resistant strains or strains carrying more than two AZT-resistance genes. A transmission electron microscopic analysis of the S. aureus

  4. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José [Comisión Chilena de Energía Nuclear, CCHEN, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile); Castillo, Fermin [Universidad Nacional Autónoma de México, Cuernavaca, México (Mexico); Veloso, Felipe [Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago (Chile); Auluck, S. K. H. [Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  5. Isolation and Identification of Cadmium and Lead Resistant Bacteria and their Bacterial Removal from Wastewater

    Directory of Open Access Journals (Sweden)

    Sanaz Abbasi

    2017-01-01

    Full Text Available Municipal and industrial effluents continually release into the environment heavy metals of a variety of physical and chemical forms and at various concentrations. Biological treatment processes have attracted a growing attention for the removal of heavy metals from these effluents. For the purposes of the present study, bacteria that are relatively resistant to heavy metals, such as cadmium and lead, were isolated from municipal waste and purified. They were then subjected to biochemical tests for identification and their minimum inhibitory concentrations were determined. Bacterial minimum inhibitory concentrations were initially measured in flasks containing 25, 50, 75, 100, 150, 300, 500, and 700 ppm of lead and cadmium before superior bacteria at populations of 108 CFU/ml were evaluated in terms of their ability to remove lead and cadmium at concentrations of 50, 100, 150, and 300 ppm from enriched municipal wastewater. Base on the results, Bacillus laterosporous and Yersinia pseudotuberculosis were identified as the resistant bacteria and the minimum lead and cadmium inhibitory concentrations for these bacteria were determined to be 300 and 500 ppm, respectively. Moreover, Bacillus laterosporous and Yersinia pseudotuberculosis recorded maximum removal efficiencies of around 50.6% and 45.7%, respectively, with wastewater containing 100 mg/l of lead and 36.18% and 21.41% in the case of cadmium from wastewater enriched with 100 mg/l of lead and 150 mg/l of cadmium.

  6. From Farms to Markets: Gram-Negative Bacteria Resistant to Third-Generation Cephalosporins in Fruits and Vegetables in a Region of North Africa

    Science.gov (United States)

    Mesbah Zekar, Ferielle; Granier, Sophie A.; Marault, Muriel; Yaici, Lydia; Gassilloud, Benoit; Manceau, Charles; Touati, Abdelaziz; Millemann, Yves

    2017-01-01

    The role of food in human exposure to antimicrobial-resistant bacteria is a growing food safety issue. The contribution of fruits and vegetables eaten raw to this exposure is still unclear. The evaluation of contamination levels of fruits, vegetables and the agricultural environment by third-generation cephalosporin (3GC)-resistant Gram-negative bacteria was performed by analyzing 491 samples of fruits and vegetables collected from 5 markets and 7 farms in Bejaia area, north-eastern Mediterranean coast of Algeria. Ninety soil samples and 45 irrigation water samples were also sampled in farms in order to assess them as potential inoculum sources. All samples were investigated at the same time on ceftazidime-containing selective media for 3GC-resistant Gram-negative bacteria detection and on Hektoen media, for Salmonella spp. presence. The bacteria isolated (n = 30) from fruits and vegetables, soil and irrigation water collected in the farms were almost all non-fermenting bacterial species (Stenotrophomonas, Acinetobacter, Pseudomonas, Ochrobactrum) except one strain of Enterobacter cloacae and two strains of Citrobacter murliniae, isolated on one cucumber and two tomato samples in the same farm. Greater diversity in bacterial species and antimicrobial resistance profiles was observed at markets: Enterobacteriaceae (n = 41) were as strongly represented as non-fermenting bacteria (n = 37). Among Enterobacteriaceae, E. cloacae (n = 21), and Klebsiella pneumoniae (n = 13) were the most common isolates. Most of the K. pneumoniae isolates were extended-spectrum beta-lactamase (ESBL) producers (n = 11). No Salmonella spp. was recovered in any sample. This study showed that fruits and vegetables including those which may be eaten up raw constitute a reservoir of 3GC-resistant Gram-negative bacteria and multi-drug resistant-bacteria in general that can be transferred to humans through food. The general public should be informed of this hazard for health in order to encourage

  7. From Farms to Markets: Gram-Negative Bacteria Resistant to Third-Generation Cephalosporins in Fruits and Vegetables in a Region of North Africa

    Directory of Open Access Journals (Sweden)

    Ferielle Mesbah Zekar

    2017-08-01

    Full Text Available The role of food in human exposure to antimicrobial-resistant bacteria is a growing food safety issue. The contribution of fruits and vegetables eaten raw to this exposure is still unclear. The evaluation of contamination levels of fruits, vegetables and the agricultural environment by third-generation cephalosporin (3GC-resistant Gram-negative bacteria was performed by analyzing 491 samples of fruits and vegetables collected from 5 markets and 7 farms in Bejaia area, north-eastern Mediterranean coast of Algeria. Ninety soil samples and 45 irrigation water samples were also sampled in farms in order to assess them as potential inoculum sources. All samples were investigated at the same time on ceftazidime-containing selective media for 3GC-resistant Gram-negative bacteria detection and on Hektoen media, for Salmonella spp. presence. The bacteria isolated (n = 30 from fruits and vegetables, soil and irrigation water collected in the farms were almost all non-fermenting bacterial species (Stenotrophomonas, Acinetobacter, Pseudomonas, Ochrobactrum except one strain of Enterobacter cloacae and two strains of Citrobacter murliniae, isolated on one cucumber and two tomato samples in the same farm. Greater diversity in bacterial species and antimicrobial resistance profiles was observed at markets: Enterobacteriaceae (n = 41 were as strongly represented as non-fermenting bacteria (n = 37. Among Enterobacteriaceae, E. cloacae (n = 21, and Klebsiella pneumoniae (n = 13 were the most common isolates. Most of the K. pneumoniae isolates were extended-spectrum beta-lactamase (ESBL producers (n = 11. No Salmonella spp. was recovered in any sample. This study showed that fruits and vegetables including those which may be eaten up raw constitute a reservoir of 3GC-resistant Gram-negative bacteria and multi-drug resistant-bacteria in general that can be transferred to humans through food. The general public should be informed of this hazard for health in order

  8. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in grassland establishment

    Science.gov (United States)

    Milchunas, Daniel G.; Vandever, Mark W.; Ball, Leonard O.; Hyberg, Skip

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat–fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area

  9. 36 CFR 293.7 - Grazing of livestock.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Grazing of livestock. 293.7...-PRIMITIVE AREAS § 293.7 Grazing of livestock. (a) The grazing of livestock, where such use was established..., shall be permitted to continue under the general regulations covering grazing of livestock on the...

  10. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Science.gov (United States)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  11. Conjugation Inhibitors and Their Potential Use to Prevent Dissemination of Antibiotic Resistance Genes in Bacteria

    Directory of Open Access Journals (Sweden)

    Elena Cabezón

    2017-11-01

    Full Text Available Antibiotic resistance has become one of the most challenging problems in health care. Bacteria conjugation is one of the main mechanisms whereby bacteria become resistant to antibiotics. Therefore, the search for specific conjugation inhibitors (COINs is of interest in the fight against the spread of antibiotic resistances in a variety of laboratory and natural environments. Several compounds, discovered as COINs, are promising candidates in the fight against plasmid dissemination. In this review, we survey the effectiveness and toxicity of the most relevant compounds. Particular emphasis has been placed on unsaturated fatty acid derivatives, as they have been shown to be efficient in preventing plasmid invasiveness in bacterial populations. Biochemical and structural studies have provided insights concerning their potential molecular targets and inhibitory mechanisms. These findings open a new avenue in the search of new and more effective synthetic inhibitors. In this pursuit, the use of structure-based drug design methods will be of great importance for the screening of ligands and binding sites of putative targets.

  12. Study of antagonistic effects of Lactobacillus strains as probiotics on multi drug resistant (MDR) bacteria isolated from urinary tract infections (UTIs).

    Science.gov (United States)

    Naderi, Atiyeh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Imani Fooladi, Abbas Ali; Abdollahpour Alitappeh, Meghdad; Saffarian, Parvaneh

    2014-03-01

    Urinary tract infection (UTI) caused by bacteria is one of the most frequent infections in human population. Inappropriate use of antibiotics, often leads to appearance of drug resistance in bacteria. However, use of probiotic bacteria has been suggested as a partial replacement. This study was aimed to assess the antagonistic effects of Lactobacillus standard strains against bacteria isolated from UTI infections. Among 600 samples; those with ≥10,000 cfu/ml were selected as UTI positive samples. Enterococcus sp., Klebsiella pneumoniae, Enterobacter sp., and Escherichia coli were found the most prevalent UTI causative agents. All isolates were screened for multi drug resistance and subjected to the antimicrobial effects of three Lactobacillus strains by using microplate technique and the MICs amounts were determined. In order to verify the origin of antibiotic resistance of isolates, plasmid curing using ethidium bromide and acridine orange was carried out. No antagonistic activity in Lactobacilli suspension was detected against test on Enterococcus and Enterobacter strains and K. pneumoniae, which were resistant to most antibiotics. However, an inhibitory effect was observed for E. coli which were resistant to 8-9 antibiotics. In addition, L. casei was determined to be the most effective probiotic. RESULTS from replica plating suggested one of the plasmids could be related to the gene responsible for ampicillin resistance. Treatment of E. coli with probiotic suspension was not effective on inhibition of the plasmid carrying hypothetical ampicillin resistant gene. Moreover, the plasmid profiles obtained from probiotic-treated isolates were identical to untreated isolates.

  13. Presence Of Multi Drug Resistant Coliform Bacteria Isolated From Biofilm Of Sachet And Borehole Waters Sold In Abakaliki Metropolis Ebonyi State Nigeria.

    Directory of Open Access Journals (Sweden)

    Okafor Collins Onyebuchi Okeke

    2015-06-01

    Full Text Available ABSTRACT This study investigated the presence of multi drug resistant coliform bacteria from biofilm of sachet and borehole waters sold in Abakaliki metropolis in Ebonyi State Nigeria. Five hundred 500 samples of water comprising 250 each from selected brand of sachet water retailers and borehole water dispensers from seven locations were sampled for the detection of coliform bacteria from biofilm and to determine their antimicrobial susceptibility using commercially prepared antibiotic discs. Results revealed a high faecal contamination level in sachet waters as Gospel 36 72 Aqua Rapha 30 60 and Bejoy 18 36 were the highest among the sachet water brands examined with Nene and Rock Tama sachet water brands having the lowest contamination level of 612 and 1326 respectively. Borehole samples results revealed that Aboffia had 27 76.93 samples contaminated with faecal bacteria while Azugwu 11 28.5 Azuiyiokwu 18 50 Azuiyiudene 2980 Kpirikpiri 24 66.63 PrescoNtezi 1646.15 and Udensi 22 61.54. Escherichia coli Enterobacter spp and Klebsiella spp were the major contaminants of both sachet and borehole water samples. The bacteria isolates from biofilm of sachet and borehole waters were susceptible to only three of the antibiotics used namely nitrofurantoin amoxycilin and ampicillin. The bacteria were completely resistant to ciprofloxacin tetracycline norbactinnorfloxacin ofloxacin cefuroxime and gentamicin. This showed that they exhibit multi-drug resistance pattern which is a common feature of medically important biofilm bacteria. We therefore report the presence of multi-drug resistant coliform bacteria from biofilm of sachet and borehole waters sold in Abakaliki metropolis Ebonyi State Nigeria.

  14. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    International Nuclear Information System (INIS)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-01-01

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at −1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process

  15. Prevalence of β-lactamase genes in domestic washing machines and dishwashers and the impact of laundering processes on antibiotic-resistant bacteria.

    Science.gov (United States)

    Rehberg, L; Frontzek, A; Melhus, Å; Bockmühl, D P

    2017-12-01

    To investigate the prevalence of β-lactamase genes in domestic washing machines and dishwashers, and the decontamination efficacy of laundering. For the first investigation, swab samples from washing machines (n = 29) and dishwashers (n = 24) were analysed by real-time quantitative PCR to detect genes encoding β-lactamases. To test the impact of laundering on resistant bacteria, cotton test swatches were artificially contaminated with susceptible and resistant strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus within a second investigation. They were washed in a domestic washing machine with or without activated oxygen bleach (AOB)-containing detergent at 20-50°C. β-Lactamase genes (most commonly of the AmpC- and OXA-type) were detected in 79% of the washing machines and in 96% of the dishwashers and Pseudomonadaceae dominated the microbiota. The level of bacterial reduction after laundering was ≥80% for all Ps. aeruginosa and Kl. pneumoniae strains, while it was only 37-61% for the methicillin-resistant Staph. aureus outbreak strain. In general, the reduction was tendentially higher for susceptible bacteria than for the resistant outbreak strains, especially for Staph. aureus. β-Lactamase genes seem to be frequently present in domestic appliances and may pose a potential risk for cross-contamination and horizontal transfer of genes encoding resistance against clinically important β-lactams. In general, higher temperatures and the use of AOB can improve the reduction of antibiotic-resistant bacteria, including Staph. aureus which appears to be less susceptible to the decontamination effect of laundering. Data on the presence of antibiotic-resistant bacteria in the domestic environment are limited. This study suggests that β-lactamase genes in washing machines and dishwashers are frequent, and that antibiotic-resistant strains are generally more resistant to the used washing conditions. © 2017 The Society for

  16. Relative feeding rates on free and particle-bound bacteria by freshwater macrozooplankton

    International Nuclear Information System (INIS)

    Schoenberg, S.A.; Maccubbin, A.E.

    1985-01-01

    Feeding suspensions of equivalent particle spectra were assembled with either free-living ( 3 H]thymidine. Clearance (ml ind -1 d -1 ) of attached bacteria was 3-29 x that of free bacteria for the cladocerans Acantholeberis, Chydorus, and Eubosmina. Pseudosida and Ceriodaphnia showed weaker discrimination or no selection, indicating a lower size threshold for filtration in these species. Feeding suspensions composed of isolated free bacteria yielded significantly higher or lower estimates of grazing than free bacteria with the full complement of particles, depending on species. Relative clearance (attached:free) tended to increase with body size within a species and varied for different particle environments. Bacteria associated with large particles may increase detrital energy flow to consumers in eutrophic environments

  17. 50 CFR 35.9 - Livestock grazing.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Livestock grazing. 35.9 Section 35.9... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.9 Livestock grazing. (a) The grazing of livestock, where established prior to the date of legislation which designates...

  18. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria.

    Science.gov (United States)

    Parkinson, Elizabeth I; Bair, Joseph S; Nakamura, Bradley A; Lee, Hyang Y; Kuttab, Hani I; Southgate, Emma H; Lezmi, Stéphane; Lau, Gee W; Hergenrother, Paul J

    2015-04-24

    Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections.

  19. 'Trade-off' in Antarctic bacteria: limnetic psychrotrophs concede multiple enzyme expressions for multiple metal resistance

    Digital Repository Service at National Institute of Oceanography (India)

    De; LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    The present study examines the metal and antibiotic resistant bacteria in ice and water from lakes east and west of the Indian base camp (Maitri) in Antarctica. The isolates from western and eastern lakes showed distinct geographical differences...

  20. Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest.

    Science.gov (United States)

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R; Topp, Edward

    2014-11-01

    The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    Directory of Open Access Journals (Sweden)

    Kimberly M. Webb

    2012-01-01

    Full Text Available Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  2. Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea.

    Science.gov (United States)

    Webb, Kimberly M; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn(2+)-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  3. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs.

    Science.gov (United States)

    Pedersen, Karl; Pedersen, Kristina; Jensen, Helene; Finster, Kai; Jensen, Vibeke F; Heuer, Ole E

    2007-10-01

    To study the occurrence of antimicrobial resistance among common bacterial pathogens from dogs and relate resistance patterns to data on consumption of antimicrobials. The antimicrobial susceptibility patterns of 201 Staphylococcus intermedius, 37 Streptococcus canis, 39 Pseudomonas aeruginosa, 25 Pasteurella multocida, 29 Proteus spp. and 449 Escherichia coli isolates from clinical submissions from dogs were determined by a broth-dilution method for determination of minimal inhibitory concentration. Data for consumption of antimicrobials were retrieved from VetStat, a national database for reporting antimicrobial prescriptions. The majority of the antimicrobials prescribed for dogs were broad-spectrum compounds, and extended-spectrum penicillins, cephalosporins and sulphonamides + trimethoprim together accounted for 81% of the total amount used for companion animals. Resistance to cephalosporins and amoxicillin with clavulanic acid was very low for all bacterial species examined, except for P. aeruginosa, and resistance to sulphonamides and trimethoprim was low for most species. Among the S. intermedius isolates, 60.2% were resistant to penicillin, 30.2% to fusidic acid and 27.9% to macrolides. Among E. coli isolates, the highest level of resistance was recorded for ampicillin, sulphonamides, trimethoprim, tetracyclines and streptomycin. Certain differences in resistance patterns between isolates from different sites or organs were noticed for E. coli, S. intermedius and Proteus isolates. This investigation provided data on occurrence of antimicrobial resistance in important pathogenic bacteria from dogs, which may be useful for the small animal practitioner. Resistance was low to the compounds that were most often used, but unfortunately, these compounds were broad-spectrum. Data on resistance and usage may form a background for the establishment of a set of recommendations for prudent use of antimicrobials for companion animals.

  4. Oxygen vacancy chain and conductive filament formation in hafnia

    Science.gov (United States)

    Xue, Kan-Hao; Miao, Xiang-Shui

    2018-04-01

    The stability and aggregation mechanisms of oxygen vacancy chains are studied for hafnia using self-energy corrected density functional theory. While oxygen vacancies tend not to align along the c-axis of monoclinic HfO2, oxygen vacancy chains along a-axis and b-axis are energetically favorable, with cohesive energies of 0.05 eV and 0.03 eV per vacancy, respectively. Nevertheless, with an increase of the cross section area, intensive oxygen vacancy chains become much more stable in hafnia, which yields phase separation into Hf-clusters and HfO2. Compared with disperse single vacancy chains, intensive oxygen vacancy chains made of 4, 6, and 8 single vacancy chains are energetically more favorable by 0.17, 0.20, and 0.30 eV per oxygen vacancy, respectively. On the other hand, while a single oxygen vacancy chain exhibits a tiny electronic energy gap of around 0.5 eV, metallic conduction emerges for the intensive vacancy chain made of 8 single vacancy chains, which possesses a filament cross section area of ˜0.4 nm2. This sets a lower area limit for Hf-cluster filaments from metallic conduction point of view, but in real hafnia resistive RAM devices the cross section area of the filaments can generally be much larger (>5 nm2) for the sake of energy minimization. Our work sets up a bridge between oxygen vacancy ordering and phase separation in hafnia, and shows a clear trend of filament stabilization with larger dimensions. The results could explain the threshold switching phenomenon in hafnia when a small AFM tip was used as the top electrode, as well as the undesired multimode operation in resistive RAM cells with 3 nm-thick hafnia.

  5. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, L.; Starch, W.; Lee, P.J.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J/sub c/) of Nb 45.6 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J/sub c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in the authors own laboratories without extrusion. Very high J/sub c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J/sub c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μ filament Nb-Ti composites

  6. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, Li; Lee, P.J.; Starch, W.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J /SUB c/ ) of Nb 46.5 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J /SUB c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in our own laboratories without extrusion. Very high J /SUB c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J /SUB c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μm filament Nb-Ti composites

  7. Presence and potential for horizontal transfer of antibiotic resistance in oxidase-positive bacteria populating raw salad vegetables.

    Science.gov (United States)

    Bezanson, G S; MacInnis, R; Potter, G; Hughes, T

    2008-09-30

    To assess whether domestically grown fresh salad vegetables constitute a possible reservoir of antibiotic resistance for Canadian consumers, aerobic bacteria capable of forming colonies at 30 degrees C on nutrient-limited media were recovered from a single sampling of Romaine lettuce, Savoy spinach and alfalfa sprouts, then examined for their susceptibility to ten antibiotics and the carriage of potentially mobile R-plasmids and integrons. Of the 140 isolates resistant to one or more antibiotic, 93.5 and 90.0% were resistant to ampicillin and cephalothin; 35.7% to chloramphenicol, 10.0% to streptomycin, 4.2% to nalidixic acid, 4.2% to kanamycin, and 2.8% to gentamicin. Gram-positive isolates accounted for less than 4% of the antibiotic resistant strains. A small portion (23.1%) of the predominant oxidase-positive, gram-negative isolates was resistant to two or more antimicrobials. Members of the Pseudomonas fluorescens/putida complex were most prevalent among the 34 resistant strains identified. Sphingobacterium spp. and Acinetobacter baumanni also were detected. Ten of 52 resistant strains carried plasmids, 3 of which were self-transmissible and bore resistance to ampicillin and kanamycin. Eighteen of 48 gave PCR evidence for integron DNA. Class 2 type integrons were the most prevalent, followed by class 1. We conclude that the foods examined here carry antibiotic resistant bacteria at the retail level. Further, our determination that resistant strains contain integron-specific DNA sequences and self-transmissible R-plasmids indicates their potential to influence the pool of antibiotic resistance in humans via lateral gene transfer subsequent to ingestion.

  8. Are bacteria an important food source for rotifers in eutrophic lakes?

    NARCIS (Netherlands)

    Ooms-Wilms, A.L.

    1997-01-01

    In situ grazing measurements using fluorescent particles of 0.5, 2.4 and 6.3 mu m diameter in eutrophic Lake Loosdrecht (The Netherlands) showed that Anuraeopsis fissa, a small rotifer, filtered the smallest, bacteria sized particles as efficiently or more efficiently than the larger particles. In

  9. Preliminary survey of antibiotic-resistant fecal indicator bacteria and pathogenic Escherichia coli from river-water samples collected in Oakland County, Michigan, 2003

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Aichele, Stephen S.

    2005-01-01

    A preliminary study was done in Oakland County, Michigan, to determine the concentration of fecal indicator bacteria (fecal coliform bacteria and enterococci), antibiotic resistance patterns of these two groups, and the presence of potentially pathogenic Escherichia coli (E. coli). For selected sites, specific members of these groups [E. coli, Enterococcus faecium (E. faecium) and Enterococcus faecalis (E. faecalis)] were isolated and tested for levels of resistance to specific antibiotics used to treat human infections by pathogens in these groups and for their potential to transfer these resistances. In addition, water samples from all sites were tested for indicators of potentially pathogenic E. coli by three assays: a growth-based assay for sorbitol-negative E. coli, an immunological assay for E. coli O157, and a molecular assay for three virulence and two serotype genes. Samples were also collected from two non-urbanized sites outside of Oakland County. Results from the urbanized Oakland County area were compared to those from these two non-urbanized sites. Fecal indicator bacteria concentrations exceeded State of Michigan recreational water-quality standards and (or) recommended U.S. Environmental Protection Agency (USEPA) standards in samples from all but two Oakland County sites. Multiple-antibiotic-resistant fecal coliform bacteria were found at all sites, including two reference sites from outside the county. Two sites (Stony Creek and Paint Creek) yielded fecal coliform isolates resistant to all tested antibiotics. Patterns indicative of extended-spectrum-β-lactamase (ESBL)- producing fecal coliform bacteria were found at eight sites in Oakland County and E. coli resistant to clinically significant antibiotics were recovered from the River Rouge, Clinton River, and Paint Creek. Vancomycin-resistant presumptive enterococci were found at six sites in Oakland County and were not found at the reference sites. Evidence of acquired antibiotic resistances was

  10. Outcome of Transplantation Using Organs From Donors Infected or Colonized With Carbapenem-Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Mularoni, A; Bertani, A; Vizzini, G; Gona, F; Campanella, M; Spada, M; Gruttadauria, S; Vitulo, P; Conaldi, P; Luca, A; Gridelli, B; Grossi, P

    2015-10-01

    Donor-derived infections due to multidrug-resistant bacteria are a growing problem in solid organ transplantation, and optimal management options are not clear. In a 2-year period, 30/214 (14%) recipients received an organ from 18/170 (10.5%) deceased donors with infection or colonization caused by a carbapenem-resistant gram-negative bacteria that was unknown at the time of transplantation. Among them, 14/30 recipients (47%) received a transplant from a donor with bacteremia or with infection/colonization of the transplanted organ and were considered at high risk of donor-derived infection transmission. The remaining 16/30 (53%) recipients received an organ from a nonbacteremic donor with colonization of a nontransplanted organ and were considered at low risk of infection transmission. Proven transmission occurred in 4 of the 14 high-risk recipients because donor infection was either not recognized, underestimated, or not communicated. These recipients received late, short or inappropriate posttransplant antibiotic therapy. Transmission did not occur in high-risk recipients who received appropriate and prompt antibiotic therapy for at least 7 days. The safe use of organs from donors with multidrug-resistant bacteria requires intra- and inter-institutional communication to allow appropriate management and prompt treatment of recipients in order to avoid transmission of infection. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Computational modeling of drug-resistant bacteria. Final report

    International Nuclear Information System (INIS)

    2015-01-01

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-high resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.

  12. Computational modeling of drug-resistant bacteria. Final report

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, Preston [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-03-12

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-high resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.

  13. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Batchelor, Miranda; Hopkins, Katie L; Liebana, Ernesto

    2008-01-01

    We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum ...

  14. Plasmids which make their host bacteria mutable as well as resistant to ultraviolet irradiation

    International Nuclear Information System (INIS)

    Arai, Toshihiko; Ando, Takao

    1980-01-01

    Some of the naturally occurring Iα, I zeta, M, N, O and T group plasmids increase both the mutability and UV resistance of their host bacteria, while group H and S plasmids only increase mutability. This suggests that these two plasmid-mediated repair functions are separable. The two functions have no direct relation to their restriction-modification systems and nitrofuran resistant functions. In addition, the close linking between the restriction-modification genes and these repair function genes was suggested in group N plasmids. (author)

  15. Thermal and Electrical Investigation of Conductive Polylactic Acid Based Filaments

    Science.gov (United States)

    Dobre, R. A.; Marcu, A. E.; Drumea, A.; Vlădescu, M.

    2018-06-01

    Printed electronics gain momentum as the involved technologies become affordable. The ability to shape electrostatic dissipative materials in almost any form is useful. The idea to use a general-purpose 3D printer to manufacture the electrical interconnections for a circuit is very attractive. The advantage of using a 3D printed structure over other technologies are mainly the lower price, less requirements concerning storage and use conditions, and the capability to build thicker traces while maintaining flexibility. The main element allowing this to happen is a printing filament with conductive properties. The paper shows the experiments that were performed to determine the thermal and electrical properties of polylactic acid (PLA) based ESD dissipative filament. Quantitative results regarding the thermal behavior of the DC resistance and the variation of the equivalent parallel impedance model parameters (losses resistance, capacitance, impedance magnitude and phase angle) with frequency are shown.. Using these results, new applications like printed temperature sensors can be imagined.

  16. Processive motions of MreB micro-filaments coordinate cell wall growth

    Science.gov (United States)

    Garner, Ethan

    2012-02-01

    Rod-shaped bacteria elongate by the action of cell-wall synthesis complexes linked to underlying dynamic MreB filaments, but how these proteins function to allow continued elongation as a rod remains unknown. To understand how the movement of these filaments relates to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-resolution particle tracking in Bacillus subtilis. We found that both MreB and the elongation machinery move in linear paths across the cell, moving at similar rates (˜20nm / second) and angles to the cell body, suggesting they function as single complexes. These proteins move circumferentially around the cell, principally perpendicular to its length. We find that the motions of these complexes are independent, as they can pause and reverse,and also as nearby complexes move independently in both directions across one surface of the cell. Inhibition of cell wall synthesis with antibiotics or depletions in the cell wall synthesis machinery blocked MreB movement, suggesting that the cell wall synthetic machinery is the motor in this system. We propose that bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that span the plasma membrane and insert radial hoops of new peptidoglycan during their transit.

  17. The occurrence of heavy metals and metal-resistant bacteria in water and bottom sediments of the Straszyn reservoir (Poland

    Directory of Open Access Journals (Sweden)

    Kulbat Eliza

    2017-01-01

    Full Text Available The aim of this study is to investigate the distribution of selected heavy metals and metal–resistant bacteria in water and bottom sediments of the surface drinking water reservoir for Gdańsk. The following sequence of metals in regard to metal concentration in sediments can be written down: Zn > Pb > Cu > Cd. The evaluation of metals accumulation was performed using the Müller index, to indicate the bottom sediment's contamination and geochemical classification of sediment quality according to Polish standards. The Müller geochemical index was changing in a wide range: < 1–4.1. Although the maximum value of Müller's geochemical index determined for copper indicates that the sediment is ‘strongly contaminated’, in general the analysed bottom sediments were classified as the I and II category according to Polish geochemical standards. From the microbiological side a significant part of heterotrophic bacteria isolated from the bottom sediment and surface water (raw and treated water showed a resistance to 0.2 mM and 2 mM concentrations of zinc, copper and lead. The highest percentages of metal–resistant bacteria were recorded in the sediments of the reservoir (60%–88%. The share of metal–resistant strains in the raw water was significantly lower (34%–61%. The results indicate also that water treatment processes may contribute to the selection of resistant strains.

  18. Coupling of the spatial dynamic of picoplankton and nanoflagellate grazing pressure and carbon flow of the microbial food web in the subtropical pelagic continental shelf ecosystem

    Science.gov (United States)

    Chiang, K.-P.; Tsai, A.-Y.; Tsai, P.-J.; Gong, G.-C.; Tsai, S.-F.

    2013-01-01

    In order to investigate the mechanism of spatial dynamics of picoplankton community (bacteria and Synechococcus spp.) and estimate the carbon flux of the microbial food web in the oligotrophic Taiwan Warm Current Water of subtropical marine pelagic ecosystem, we conducted size-fractionation experiments in five cruises by the R/V Ocean Research II during the summers of 2010 and 2011 in the southern East China Sea. We carried out culture experiments using surface water which, according to a temperature-salinity (T-S) diagram, is characterized as oligotrophic Taiwan Current Warm Water. We found a negative correlation bettween bacteria growth rate and temperature, indicating that the active growth of heterotrophic bacteria might be induced by nutrients lifted from deep layer by cold upwelling water. This finding suggests that the area we studied was a bottom-up control pelagic ecosystem. We suggest that the microbial food web of an oligotrophic ecosystem may be changed from top-down control to resource supply (bottom-up control) when a physical force brings nutrient into the oligotrophic ecosystem. Upwelling brings nutrient-rich water to euphotic zone and promotes bacteria growth, increasing the picoplankton biomass which increased the consumption rate of nanoflagellate. The net growth rate (growth rate-grazing rate) becomes negative when the densities of bacteria and Synechococcus spp. are lower than the threshold values. The interaction between growth and grazing will limit the abundances of bacteria (105-106 cells mL-1 and Synechococcus spp. (104-105 cells mL-1) within a narrow range, forming a predator-prey eddy. Meanwhile, 62% of bacteria production and 55% of Synechococcus spp. production are transported to higher trophic level (nanoflagellate), though the cascade effect might cause an underestimation of both percentages of transported carbon. Based on the increasing number of sizes we found in the size-fractionation experiments, we estimated that the predation

  19. Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal.

    Science.gov (United States)

    Shakya, S; Pradhan, B; Smith, L; Shrestha, J; Tuladhar, S

    2012-03-01

    Arsenic (As) contamination of groundwater is a serious Environmental Health Management issue of drinking water sources especially in Terai region of Nepal. Many studies have reported that due to natural abundance of arsenic in the environment, various bacteria have developed different resistance mechanisms for arsenic compound. In this study, the culturable arsenic-resistant bacteria indigenous to surfacewater as well as groundwater from Rautahat District of Nepal were randomly isolated by standard plate count method on the basis of viable growth on plate count agar amended with arsenate ranging from 0, 0.5, 10, 40, 80 to 160 milligram per liter (mg/l). With respect to the morphological and biochemical tests, nine morphologically distinct potent arsenate tolerant bacteria showed relatedness with Micrococcus varians, Micrococcus roseus, Micrococcus luteus, Pseudomonas maltophilia, Pseudomonas sp., Vibrio parahaemolyticus, Bacillus cereus, Bacillus smithii 1 and Bacillus smithii 2. The isolates were capable of tolerating more than 1000 mg/l of arsenate and 749 mg/l of arsenite. Likewise, bioaccumulation capability was highest with M. roseus (85.61%) and the least with B. smithii (47.88%) indicating the potential of the organisms in arsenic resistance and most probably in bioremediation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. ANTIBIOTIC RESISTANCE IN LACTIC ACID BACTERIA ISOLATED FROM FERMENTED DAIRY PRODUCTS AND BOZA

    Directory of Open Access Journals (Sweden)

    Gamze Başbülbül

    2015-06-01

    Full Text Available In this study, the resistance of 83 strains of lactic acid bacteria isolated from Turkish cheese, yogurt, kefir and boza samples to 6 antibiotics (gentamicin, tetracycline, chloramphenicol, erythromycin, vancomycin and ciprofloxacin was evaluated. The 83 isolates were identified by 16S rRNA gene sequencing and according to BLAST comparisons with sequences in the data banks, those strains showing the highest similarities with the isolates were Enterococcus faecium (10, Lactococcus lactis subsp. Lactis (10, Lactobacillus fermentum (6, Lactobacillus plantarum (6, Lactobacillus coryniformis (7, Lactobacillus casei (13, Leuconostoc mesenteroides (14, Pediococcus pentosaceus (10, Weisella confusa (7. Antimicrobial resistance of strains to 6 antibiotics was determined using the agar dilution method. The antibiotic resistance among all the isolates was detected against chloramphenicol (31,3 % of the isolates, tetracycline (30,1 %, erythromycin (2,4 %, ciprofloxacin (2,41%, vancomycin (73,5 %, intrinsic resistance. Overall 19,3 % of the isolates showed resistance against multiple antibiotics. Antibiotic resistance genes were studied by PCR and the following genes were detected; tet(M gene in Lactobacillus fermentum (1, Lactobacillus plantarum (1, Pediococcus pentosaceus (5, Enterococcus faecium (2, Weisella confusa (4 and the vancomycin resistance gene van(A in one Weisella confusa strain.

  1. Filament Substructures and their Interrelation

    Science.gov (United States)

    Lin, Y.; Martin, S. F.; Engvold, O.

    The main structural components of solar filaments, their spines, barbs, and legs at the extreme ends of the spine, are illustrated from recent high-resolution observations. The thread-like structures appear to be present in filaments everywhere and at all times. They are the fundamental elements of solar filaments. The interrelation of the spines, barbs and legs are discussed. From observations, we present a conceptual model of the magnetic field of a filament. We suggest that only a single physical model is needed to explain filaments in a continuous spectrum represented by active region filaments at one end and quiescent filaments at the other end.

  2. Isolation and partial characterization of soils actinomycetes with antimicrobial activity against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Romina Belén Parada

    2017-07-01

    Full Text Available Two hundred and thirty four actinobacteria strains were isolated from Argentinian and Peruvian soil in order to evaluate the antimicrobial activity against multidrug resistant bacteria On the basis of their antagonist activity against methicillin-resistant Staphylococcus aureus (MRSA and two vancomycin-resistant Enterococcus (EVR-Van A and  EVR Van B,13 strains were selected. The presence of NRPS, PKS-I and PKS-II genes were also investigated by PCR techniques. Among the 13 selected actinobacteria, strain AC69C displayed the higher activity in diffusion tests in solid medium and was further evaluated for the production of antagonist metabolites in liquid media. The best results were obtained using fermentation broth with carbohydrates, when starch and glucose were used in combination. Antimicrobial activities of 640 arbitrary units (AU, 320 AU, 320 AU and 80 AU were obtained against EVR-Van A, EVR-Van B, Listeria monocytogenes ATCC7644 and MRSA, respectively. PCR amplification of 16S rRNA gene and subsequent phylogenetic analysis of AC69C strain displayed a 100 % homology with Streptomyces antibioticus NRRL B-1701. It was not possible to establish a correlation between the amplified genes and antimicrobial activity of the 13 selected strains. The results of this work show the wide distribution of actinobacteria in soil and the importance of the isolation of strain to screen novel active metabolites against multidrug resistant bacteria of clinical origin.

  3. Vanillin selectively modulates the action of antibiotics against resistant bacteria.

    Science.gov (United States)

    Bezerra, Camila Fonseca; Camilo, Cicera Janaine; do Nascimento Silva, Maria Karollyna; de Freitas, Thiago Sampaio; Ribeiro-Filho, Jaime; Coutinho, Henrique Douglas Melo

    2017-12-01

    The treatment of infections caused by microorganisms that are resistant to antibiotics represent one of the main challenges of medicine today, especially due to the inefficacy of long-term drug therapy. In the search for new alternatives to treat these infections, many researchers have been looking for new substances derived from natural products to replace, or be used in combination with conventional antibiotics. Vanillin is a phenolic compound whose antimicrobial activity has been used in the elimination of pathogens present in fruits and vegetables. However, its antibacterial and modulating properties remain to be characterized. Therefore, this work aimed to evaluate the antibacterial activity and analyze the modulator activity of vanillin in association with conventional antibiotics. The antimicrobial activity of vanillin was evaluated using the microdilution method to determine the Minimum Inhibitory Concentration (MIC) Standard strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and multi-resistant strains of Escherichia coli 06, Staphylococcus aureus 10, Pseudomonas aeruginosa 24 were used in this study. The antibiotic modulating effect was analyzed by combining vanillin with Norfloxacin, Imipenem, Gentamicin, Erythromycin and Tetracycline against the following multiresistant bacteria strains: Escherichia coli 06, Staphylococcus aureus 10 and Pseudomonas aeruginosa 24. Data were analyzed using the ANOVA test of two tracks followed by the post hoc Bonferroni test. Vanillin presented CIMs ≥1024μg/mL against all tested strains demonstrating that it did not present significant antibacterial activity. However, modulated the activity of gentamicin and imipenem against S. aureus and E. coli, causing a synergistic effect, but did not affect the activity of norfloxacin, tetracycline and erythromycin against these same microorganisms. A synergistic effect was also obtained from the association of vanillin with norfloxacin against P

  4. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    Science.gov (United States)

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  5. A new methodology to assess antimicrobial resistance of bacteria in coastal waters; pilot study in a Mediterranean hydrosystem

    Science.gov (United States)

    Almakki, Ayad; Estèves, Kevin; Vanhove, Audrey S.; Mosser, Thomas; Aujoulat, Fabien; Marchandin, Hélène; Toubiana, Mylène; Monfort, Patrick; Jumas-Bilak, Estelle; Licznar-Fajardo, Patricia

    2017-10-01

    The global resistome of coastal waters has been less studied than that of other waters, including marine ones. Here we develop an original method for characterizing the antimicrobial resistance of bacterial communities in coastal waters. The method combines the determination of a new parameter, the community Inhibitory Concentration (c-IC) of antibiotics (ATBs), and the description of the taxonomic richness of the resistant bacteria. We test the method in a Mediterranean hydrosystem, in the Montpellier region, France. Three types of waters are analyzed: near coastal river waters (Lez), lagoon brackish waters (Mauguio), and lake freshwaters (Salagou). Bacterial communities are grown in vitro in various conditions of temperature, salinity, and ATB concentrations. From these experiments, we determine the concentrations of ATB that decrease the bacterial community abundance by 50% (c-IC50) and by 90% (c-IC90). In parallel, we determine the taxonomic repertory of the resistant growing bacteria communities (repertory of Operational Taxonomic Units [OTU]). Temperature and salinity influence the abundance of the cultivable bacteria in presence of ATBs and hence the c-ICs. Very low ATB concentrations can decrease the bacterial abundance significantly. Beside a few ubiquitous genera (Bacillus, Pseudomonas, Shewanella, Vibrio), most resistant OTUs are specific of a type of water. In brackish water, resistant OTUs are more diverse and their community structure less vulnerable to ATBs than those in freshwater. We anticipate that c-IC measurement combined with taxonomic description can be applied to any littoral region to characterize the resistant bacterial communities in the coastal waters. This would help us to evaluate the vulnerability of aquatic ecosystems to antimicrobial pressure.

  6. Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level

    Directory of Open Access Journals (Sweden)

    Christoph Jans

    2018-03-01

    Full Text Available Background: Antimicrobial resistance (AMR in bacteria is an increasing health concern. The spread of AMR bacteria (AMRB between animals and humans via the food chain and the exchange of AMR genes requires holistic approaches for risk mitigation. The AMRB exposure of humans via food is currently only poorly understood leaving an important gap for intervention design.Method: This study aimed to assess AMRB prevalence in retail food and subsequent exposure of Swiss consumers in a systematic literature review of data published between 1996 and 2016 covering the Swiss agriculture sector and relevant imported food.Results: Data from 313 out of 9,473 collected studies were extracted yielding 122,438 food samples and 38,362 bacteria isolates of which 30,092 samples and 8,799 isolates were AMR positive. A median AMRB prevalence of >50% was observed for meat and seafood harboring Campylobacter, Enterococcus, Salmonella, Escherichia coli, Listeria, and Vibrio spp. and to a lesser prevalence for milk products harboring starter culture bacteria. Gram-negative AMRB featured predominantly AMR against aminoglycosides, cephalosporins, fluoroquinolones, penicillins, sulfonamides, and tetracyclines observed at AMR exposures scores of levels 1 (medium and 2 (high for Campylobacter, Salmonella, E. coli in meat as well as Vibrio and E. coli in seafood. Gram-positive AMRB featured AMR against glycoproteins, lincosamides, macrolides and nitrofurans for Staphylococcus and Enterococcus in meat sources, Staphylococcus in seafood as well as Enterococcus and technologically important bacteria (incl. starters in fermented or processed dairy products. Knowledge gaps were identified for AMR prevalence in dairy, plant, fermented meat and novel food products and for the role of specific indicator bacteria (Staphylococcus, Enterococcus, starter culture bacteria and their mobile genetic elements in AMR gene transfer.Conclusion: Raw meat, milk, seafood, and certain fermented dairy

  7. Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level

    Science.gov (United States)

    Jans, Christoph; Sarno, Eleonora; Collineau, Lucie; Meile, Leo; Stärk, Katharina D. C.; Stephan, Roger

    2018-01-01

    Background: Antimicrobial resistance (AMR) in bacteria is an increasing health concern. The spread of AMR bacteria (AMRB) between animals and humans via the food chain and the exchange of AMR genes requires holistic approaches for risk mitigation. The AMRB exposure of humans via food is currently only poorly understood leaving an important gap for intervention design. Method: This study aimed to assess AMRB prevalence in retail food and subsequent exposure of Swiss consumers in a systematic literature review of data published between 1996 and 2016 covering the Swiss agriculture sector and relevant imported food. Results: Data from 313 out of 9,473 collected studies were extracted yielding 122,438 food samples and 38,362 bacteria isolates of which 30,092 samples and 8,799 isolates were AMR positive. A median AMRB prevalence of >50% was observed for meat and seafood harboring Campylobacter, Enterococcus, Salmonella, Escherichia coli, Listeria, and Vibrio spp. and to a lesser prevalence for milk products harboring starter culture bacteria. Gram-negative AMRB featured predominantly AMR against aminoglycosides, cephalosporins, fluoroquinolones, penicillins, sulfonamides, and tetracyclines observed at AMR exposures scores of levels 1 (medium) and 2 (high) for Campylobacter, Salmonella, E. coli in meat as well as Vibrio and E. coli in seafood. Gram-positive AMRB featured AMR against glycoproteins, lincosamides, macrolides and nitrofurans for Staphylococcus and Enterococcus in meat sources, Staphylococcus in seafood as well as Enterococcus and technologically important bacteria (incl. starters) in fermented or processed dairy products. Knowledge gaps were identified for AMR prevalence in dairy, plant, fermented meat and novel food products and for the role of specific indicator bacteria (Staphylococcus, Enterococcus), starter culture bacteria and their mobile genetic elements in AMR gene transfer. Conclusion: Raw meat, milk, seafood, and certain fermented dairy products

  8. Grass composition and rangeland condition of the major grazing ...

    African Journals Online (AJOL)

    One area represented lightly grazed government ranches or parks which were used as benchmarks, another area represented the seasonal grazing areas with an intermediate grazing pressure and the remaining were the heavily grazed roadsides, lakeshores and other communal grazing lands. The range condition ...

  9. Modelling nitrous oxide emissions from grazed grassland systems

    International Nuclear Information System (INIS)

    Wang Junye; Cardenas, Laura M.; Misselbrook, Tom H.; Cuttle, Steve; Thorman, Rachel E.; Li Changsheng

    2012-01-01

    Grazed grassland systems are an important component of the global carbon cycle and also influence global climate change through their emissions of nitrous oxide and methane. However, there are huge uncertainties and challenges in the development and parameterisation of process-based models for grazed grassland systems because of the wide diversity of vegetation and impacts of grazing animals. A process-based biogeochemistry model, DeNitrification-DeComposition (DNDC), has been modified to describe N 2 O emissions for the UK from regional conditions. This paper reports a new development of UK-DNDC in which the animal grazing practices were modified to track their contributions to the soil nitrogen (N) biogeochemistry. The new version of UK-DNDC was tested against datasets of N 2 O fluxes measured at three contrasting field sites. The results showed that the responses of the model to changes in grazing parameters were generally in agreement with observations, showing that N 2 O emissions increased as the grazing intensity increased. - Highlights: ► Parameterisation of grazing system using grazing intensity. ► Modification of UK D NDC for the UK soil and weather conditions. ► Validation of the UK D NDC against measured data of N 2 O emissions in three UK sites. ► Estimating influence of animal grazing practises on N 2 O emissions. - Grazing system was parameterised using grazing intensity and UK-DNDC model was modified and validated against measured data of N 2 O emissions in three UK sites.

  10. Lucerne varieties for continuous grazing

    DEFF Research Database (Denmark)

    Søegaard, Karen

    2012-01-01

    severe grazing with heifers in two cutting/grazing managements. Two new varieties, Verbena and Camporegio, and an older variety Luzelle were established in 2009 in pure stands and in two different mixtures with perennial ryegrass (Lolium perenne). Camporegio had the lowest yield, the lowest competitive...... strength, the lowest plant density in spring, and the density was most reduced during grazing. The results could not confirm significant differences between the new and the older varieties. The results for Luzelle were generally between Verbena and Camporegio. The varieties did not differ in herbage...

  11. Productivity of grasslands under continuous and rotational grazing

    NARCIS (Netherlands)

    Lantinga, E.A.

    1985-01-01

    In the Netherlands, rotational grazing, with grazing periods of 2 to 5 days, is the most common grazing system at present. In contrast with other countries of North-western Europe, the continuous grazing system is used here only to a limited extent. However, the results of numerous

  12. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    OpenAIRE

    Webb, Kimberly M.; DiRuggiero, Jocelyne

    2012-01-01

    Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-m...

  13. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis

    Science.gov (United States)

    Szwedziak, Piotr; Wong, Felix; Schaefer, Kaitlin; Izoré, Thierry; Renner, Lars D; Holmes, Matthew J; Sun, Yingjie; Bisson-Filho, Alexandre W; Walker, Suzanne; Amir, Ariel; Löwe, Jan

    2018-01-01

    MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape. PMID:29469806

  15. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    Directory of Open Access Journals (Sweden)

    Wolf Sarah

    2011-09-01

    Full Text Available Abstract Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2 and Fibrisoma limi (BUZ 3 with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82 were studied in mixed cultures under nutrient rich (carbon source present in medium and poor (carbon source absent in medium conditions. Findings F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action. The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc. The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Conclusions Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  16. Effects of grazing strategy on limiting nitrate leaching in grazed grass-clover pastures on coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Eriksen, Jørgen; Søegaard, Karen

    2012-01-01

    -term mean. The experiment was initiated in a 4-yr-old grass-clover sward in south Denmark. Three treatments were as follows grazing only (G), spring cut followed by grazing (CG) and both spring and autumn cuts with summer grazing (CGC). Nitrate leaching was calculated by extracting water isolates from 80 cm......Urinations of ruminants on grazed pastures increase the risk of nitrate leaching. The study investigated the effect of reducing the length of the grazing season on nitrate leaching from a coarse sandy, irrigated soil during 2006–2007 and 2007–2008. In both years, precipitation was above the long...... depth using ceramic suction cups. Because of considerable variation in measured nitrate concentrations, the 32 installed suction cups per treatment were insufficient to reveal differences between treatments. However, weighted nitrate leaching estimations for G, CG and CGC showed estimated mean nitrate N...

  17. SYMPATHETIC SOLAR FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Dai, Xinghua, E-mail: liuxying@spaceweather.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-08-10

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  18. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    Science.gov (United States)

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes. Images PMID:2019558

  19. Modern filaments for composite materials

    International Nuclear Information System (INIS)

    Krivelli-Viskonti, I.

    1982-01-01

    Analysis of modern state and ways to improve properties of different filaments for the forecast of the filament application in composite materials has been conducted. In the near future as before the greatest attention will be paid to fibre glass, as this material is widely used in the reinforcing of organic matrices. Carbon and kevlar filaments are the most prospective ones. For the service at medium, high or superhigh temperatures selection of matrix material is more significant than selection of filament. Organic matrices can not be used at temperatures > 250 deg C: this is already the range of metal matrix application. Though at temperatures above room one many filaments can be used, boron filaments and metal wire are the only reinforcing materials, inspite of the fact that carbon filaments are successfully used for metal matrix reinforcing. At very high temperatures only carbon filaments or silicon carbide ones can be used, but their cost is very high and besides economical problems there are many difficulties of technical character

  20. Two-stage phyto-microremediation of tannery effluent by Spirodela polyrrhiza (L.) Schleid. and chromium resistant bacteria.

    Science.gov (United States)

    Singh, Asha; Vyas, Dhiraj; Malaviya, Piyush

    2016-09-01

    Two-stage sequential treatment of tannery effluent was conducted employing a wetland plant, Spirodela polyrrhiza (L.) Schleid., and chromium (Cr) resistant bacterial strains. The bacterial strains were isolated from Cr-enriched environmental matrices and rhizosphere of Spirodela polyrrhiza. The phyto-rhizoremediation of tannery effluent by Spirodela and its rhizospheric bacteria (Cellulomonas biazotea APBR1-6, Bacillus safensis APBR2-12, Staphylococcus warneri APBR3-5, Microbacterium oleivorans APBR2-6), followed by microremediation by Cr resistant bacteria (Micrococcus luteus APBS5-1, Bacillus pumilus APBS5-2, Bacillus flexus APBE3-1, Virgibacillus sediminis APBS6-1) resulted in reduction of pollution parameters [COD (81.2%), total Cr (97.3%), Cr(VI) (99.3%), Pb(II) (97.0%), Ni (95.7%)]. The LC-MS analysis showed that many pollutants detected in untreated tannery effluent were diminished after bioremediation or long chains of alcohol polyethoxylates viz. C18EO6 in untreated effluent were broken down into smaller unit of alcohol polyethoxylate ((+)HHO[CH2CH2O]H), indicating that bacteria and Spirodela polyrrhiza, alongwith its rhizospheric associates utilized them as carbon and energy source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Characterization of multi-drug resistant ESBL producing nonfermenter bacteria isolated from patients blood samples using phenotypic methods in Shiraz (Iran

    Directory of Open Access Journals (Sweden)

    Maneli Amin Shahidi

    2015-10-01

    Full Text Available Background and Aim: The emergence of  nonfermenter bacteria that are resistant to multidrug resistant ESBL  are  nowadays a principal problem  for hospitalized patients. The present study aimed at surveying the emergence of nonfermenter bacteria resistant to multi-drug ESBL producing isolated from patients blood samples using BACTEC 9240 automatic system in Shiraz. Materials and Methods: In this cross-sectional study, 4825 blood specimens were collected from hospitalized patients in Shiraz (Iran, and positive samples were detected by means of  BACTEC 9240 automatic system. The isolates  containing nonfermenter bacteria were identified based on biochemical tests embedded in the API-20E system. Antibiotic sensitivity  test was performed  and identification of  ESBL producing strains were done  using phenotypic detection of extended spectrum beta-lactamase producing isolates(DDST according to CLSI(2013 guidelines.   Results: Out of 4825 blood samples, 1145 (24% specimen were gram-positive using BACTEC system. Among all isolated microorganisms, 206 isolates were non-fermenting gram- negative bacteria. The most common non-fermenter isolates were Pseudomonas spp. (48%, Acinetobacter spp. (41.7% ,and Stenotrophomonas spp. (8.2%. Seventy of them (81.4% were  Acinetobacter spp. which were ESBL positive. Among &beta-lactam antibiotics, Pseudomonas spp. showed  the best sensitivity to piperacillin-tazobactam (46.5%.  Conclusion: It was found that  &beta-lactam antibiotics are not effective against more than 40% of Pseudomonas spp. infections and 78% Acinetobacter infections. Emergence of multi-drug resistant strains that are resistant to most antibiotic classes is a major public health problem in Iran. To resolve this problem using of practical guidelines is critical.

  2. Surveillance of multidrug resistant suppurative infection causing bacteria in hospitalized patients in an Indian tertiary care hospital

    OpenAIRE

    Nabakishore Nayak; Rajesh K. Lenka; Rabindra N. Padhy

    2014-01-01

    Objective: To examine antibiograms of a cohort of suppurative bacteria isolated from wound-swabs from hospitalized patients of all economic groups of a typical Indian teaching hospital. Methods: In surveillance, antibiotic resistance patterns of 10 species of suppurative bacteria isolated from wound-swabs over a period of 24 months were recorded. Those were subjected to antibiotic sensitivity test, using 16 prescribed antibiotics of 5 different groups (3 aminoglycosides, 4 beta-lactams, 3 ...

  3. Bacteria isolated from pristine high altitude environments in the Argentinean Andean wetlands: plasmid profile and multiple antibiotic resistance

    International Nuclear Information System (INIS)

    Dib, J.R.; Martinez, M.A.; Sineriz, F.; Farias, M.E.

    2005-01-01

    Full text: Andean wetlands, placed in the North-Western Argentine at 4,600 m altitude, are attractive for both, environmental and biotechnology studies. Most of these wetlands are completely remote and inaccessible, having a high salinity and metal contents, a wide range of daily temperature changes, and an important intensity of solar UV-B radiation. Bacteria isolated from these environments were identified by 16SrDNA sequence and resulted in Gram-positive colored bacteria. Interesting features, to our knowledge never reported so far from bacteria isolates from these pristine high altitude lake-environments, such as similar plasmids profiles and multiple antibiotic resistances are the focus of this work. At least two plasmids were found in all isolates studied by using modifications of the alkaline Iysis method. Their preliminary characterization in this work includes size, incompatibility group through PCR, genetic transference to suitable hosts by transformation and conjugation, and studies of possible relationships of them with antibiotic resistances. (author)

  4. Grazing Affects Exosomal Circulating MicroRNAs in Cattle

    Science.gov (United States)

    Muroya, Susumu; Ogasawara, Hideki; Hojito, Masayuki

    2015-01-01

    Circulating microRNAs (c-miRNAs) are associated with physiological adaptation to acute and chronic aerobic exercise in humans. To investigate the potential effect of grazing movement on miRNA circulation in cattle, here we profiled miRNA expression in centrifugally prepared exosomes from the plasma of both grazing and housed Japanese Shorthorn cattle. Microarray analysis of the c-miRNAs resulted in detection of a total of 231 bovine exosomal miRNAs in the plasma, with a constant expression level of let-7g across the duration and cattle groups. Expression of muscle-specific miRNAs such as miR-1, miR-133a, miR-206, miR-208a/b, and miR-499 were undetectable, suggesting the mildness of grazing movement as exercise. According to validation by quantitative RT-PCR, the circulating miR-150 level in the grazing cattle normalized by the endogenous let-7g level was down-regulated after 2 and 4 months of grazing (P cattle equalized when the grazing cattle were returned to a housed situation. Likewise, the levels of miR-19b, miR-148a, miR-221, miR-223, miR-320a, miR-361, and miR-486 were temporarily lowered in the cattle at 1 and/or 2 month of grazing compared to those of the housed cattle (P cattle at 2 months of grazing (P = 0.044). The elevation of miR-451 level in the plasma was coincident with that in the biceps femoris muscle of the grazing cattle (P = 0.008), which suggests the secretion or intake of miR-451 between skeletal muscle cells and circulation during grazing. These results revealed that exosomal c-miRNAs in cattle were affected by grazing, suggesting their usefulness as molecular grazing markers and functions in physiological adaptation of grazing cattle associated with endocytosis, focal adhesion, axon guidance, and a variety of intracellular signaling, as predicted by bioinformatic analysis. PMID:26308447

  5. Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system.

    Directory of Open Access Journals (Sweden)

    Felix Dempwolff

    Full Text Available Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.

  6. Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system.

    Science.gov (United States)

    Dempwolff, Felix; Reimold, Christian; Reth, Michael; Graumann, Peter L

    2011-01-01

    Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.

  7. Effects of seasonal changes in feeding management under part-time grazing on the evolution of the composition and coagulation properties of raw milk from ewes.

    Science.gov (United States)

    Abilleira, E; Virto, M; Nájera, A I; Salmerón, J; Albisu, M; Pérez-Elortondo, F J; Ruiz de Gordoa, J C; de Renobales, M; Barron, L J R

    2010-09-01

    Ewe raw milk composition, rennet coagulation parameters, and curd texture were monitored throughout the milk production season in 11 commercial flocks reared under a part-time grazing system. Milking season lasted from February to July. During that period, the diet of the animals shifted from indoor feeding, consisting of concentrate and forage, to an outdoor grazing diet. Lean dry matter, fat, protein, calcium, and magnesium contents increased throughout the milking season, as did rennet coagulation time, curd firmness, and curd resistance to compression. However, lean dry matter, protein content, and curd resistance to compression stabilized when sheep started to graze. Principal component analysis correlated curd resistance to compression and proteins, whereas curd firmness was highly correlated with fat content and minerals. Discriminant analysis distributed milk samples according to the feeding management. Curd firmness, fat, and magnesium turned out to be discriminant variables. Those variables reflected the evolution of the composition and coagulation parameters when fresh pasture prevailed over other feeds in the diet of the flocks. The present study shows that seasonal changes associated with feeding management influence milk technological quality and that milk of good processing quality can be obtained under part-time grazing. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species.

    Science.gov (United States)

    Hacioglu, Nurcihan; Tosunoglu, Murat

    2014-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from aquatic animals (Lissotriton vulgaris, Pelophylax ridibundus, Emys orbicularis, Mauremys rivulata, and Natrix natrix) in Turkey (Kavak Delta). A total of 153 bacteria have been successfully isolated from cloaca and oral samples of the aquatic amphibians and reptilians which were found, namely, Aeromonas sp. (n = 29), Plesiomonas sp. (n = 7), Vibrio sp. (n = 12), Citrobacter sp. (n = 12), Enterobacter sp. (n = 11), Escherichia sp. (n = 22), Klebsiella sp. (n = 22), Edwardsiella sp. (n = 6), Hafnia sp. (n = 1), Proteus sp. (n = 19), Providencia sp. (n = 8), and Pseudomonas sp. (n = 4). In terms of antibiotic and heavy metal susceptibility testing, each isolate was tested against 12 antibiotics and 4 metals. There was a high incidence of resistance to cefoxitin (46.40 %), ampicillin (44.44 %), erythromycin (35.29 %), and a low incidence of resistance to gentamicin (6.53 %), kanamycin (8.49 %), chloramphenicol (9.15 %), and cefotaxime (10.45 %). The multiple antibiotic resistance index of each bacterial species indicated that bacteria from raised amphibians and reptiles have been exposed to tested antibiotics, with results ranging from 0 to 0.58. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from100 to >3,200 μg/mL. According to these results, a significant occurrence of bacteria in the internal organs of reptiles and amphibians, with a high incidence of resistance against antibiotics and heavy metals, may risk aquatic animals and the public health. These data appoint the importance of epidemiological surveillance and microbiological monitoring and reinforce the need to implement environment protection programs for amphibian and reptile species.

  9. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture

    DEFF Research Database (Denmark)

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance...... in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic....... used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have...

  10. Livestock grazing, wildlife habitat, and rangeland values

    Science.gov (United States)

    Paul R. Krausman; David E. Naugle; Michael R. Frisina; Rick Northrup; Vernon C. Bleich; William M. Block; Mark C. Wallace; Jeffrey D. Wright

    2009-01-01

    Livestock managers make and implement grazing management decisions to achieve a variety of objectives including livestock production, sustainable grazing, and wildlife habitat enhancement. Assessed values of grazing lands and ranches are often based on aesthetics and wildlife habitat or recreational values, which can exceed agricultural values, thus providing...

  11. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  12. [Analysis on the antimicrobial resistance of lactic acid bacteria isolated from the yogurt sold in China].

    Science.gov (United States)

    Fan, Qin; Liu, Shuliang; Li, Juan; Huang, Tingting

    2012-05-01

    To analyze the antimicrobial susceptibility of lactic acid bacteria (LAB) from yogurt, and to provide references for evaluating the safety of LAB and screening safe strains. The sensitivity of 43 LAB strains, including 14 strains of Streptococcus thermophilus, 12 strains of Lactobacillus acidophilus, 9 strains of Lactobacillus bulgaricus and 8 strains of Bifidobacterium, to 22 antibiotics were tested by agar plate dilution method. All 43 LAB strains were resistant to trimethoprim, nalidixic acid, ciprofloxacin, lomefloxacin, danofloxacin and polymyxin E. Their resistances to kanamycin, tetracycline, clindamycin, doxycycline and cephalothin were varied. The sensitivity to other antibiotics were sensitive or moderate. All isolates were multidrug-resistant. The antimicrobial resistance of tested LAB strains was comparatively serious, and continuously monitoring their antimicrobial resistance and evaluating their safety should be strengthened.

  13. In vitro ciprofloxacin resistance patterns of gram positive bacteria isolated from clinical specimens in a teaching hospital in Saudi Arabia

    International Nuclear Information System (INIS)

    Akhtar, N.; Alzahrani, A.; Obeid, O.El-Treify; Dassal, D.

    2009-01-01

    Over the last few decades the ever-increasing level of bacterial resistance to antimicrobials has been a cause of worldwide concern. Fluoroquinolones, particularly ciprofloxacin has been used indiscriminately for both gram-positive and gram-negative bacterial infections. The increased use of ciprofloxacin has led to a progressive loss of bacterial susceptibility to this antibiotic. Therefore it is necessary to have update knowledge of resistance pattern of bacteria to this antibiotic so that alternate appropriate antibiotics can be used for ciprofloxacin-resistant bacterial infections. Objective: To evaluate the trends of ciprofloxacin resistance pattern in commonly isolated gram positive bacteria over time in a Saudi Arabian teaching hospital. Methods: A retrospective analysis was carried out for ciprofloxacin susceptibility patterns of 5534 isolates of gram-positive bacteria isolated from clinical specimens submitted to microbiology laboratories at King Fahd Hospital of the University (KFHU), Al-Khobar, Saudi Arabia during the period from January 2002 to August 2005. Results: Increase in ciprofloxacin resistance rates with some fluctuations, among these isolates, were observed. For Staphylococcus aureus, it varied from 4.62, 1.83, 7.01 and 3.98%, methicillin resistant Staphylococcus aureus (MRSA) 97.92, 97.75, 87.01 and 88.26%, Streptococcus pyogenes 5.35, 4.47, 14.44 and 3.53% during the years 2002, 2003, 2004 and 2005 respectively. Cirprofloxacin resistance during the years 2002, 2004 and 2005 for other isolates was as follows: Streptococcus pneumoniae, 30.23, 23.02 and 26.47%; enterococcus group D, 43.05, 20.68 and 57.03% and non-enterococcus group D, 62.96, 76.92 and 87.50% respectively. Conclusion: Ciprofloxacin resistance in gram positive bacterial clinical isolates particularly Staphylococcus aureus, methicillin resistant Staphylococcus aureus (MRSA) enterococcus group D, and non-enterococcus group D, has greatly increased and ciprofloxacin no more remains

  14. Decellularized human amniotic membrane: more is needed for an efficient dressing for protection of burns against antibiotic-resistant bacteria isolated from burn patients.

    Science.gov (United States)

    Gholipourmalekabadi, M; Bandehpour, M; Mozafari, M; Hashemi, A; Ghanbarian, H; Sameni, M; Salimi, M; Gholami, M; Samadikuchaksaraei, A

    2015-11-01

    Human amniotic membranes (HAMs) have attracted the attention of burn surgeons for decades due to favorable properties such as their antibacterial activity and promising support of cell proliferation. On the other hand, as a major implication in the health of burn patients, the prevalence of bacteria resistant to multiple antibiotics is increasing due to overuse of antibiotics. The aim of this study was to investigate whether HAMs (both fresh and acellular) are an effective antibacterial agent against antibiotic-resistant bacteria isolated from burn patients. Therefore, a HAM was decellularized and tested for its antibacterial activity. Decellularization of the tissue was confirmed by hematoxylin and eosin (H&E) and 4,6-diamidino-2-phenylindole (DAPI) staining. In addition, the cyto-biocompatibility of the acellular HAM was proven by the cell viability test (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, MTT) and scanning electron microscopy (SEM). The resistant bacteria were isolated from burns, identified, and tested for their susceptibility to antibiotics using both the antibiogram and polymerase chain reaction (PCR) techniques. Among the isolated bacteria, three blaIMP gene-positive Pseudomonas aeruginosa strains were chosen for their high resistance to the tested antibiotics. The antibacterial activity of the HAM was also tested for Klebsiella pneumoniae (American Type Culture Collection (ATCC) 700603) as a resistant ATCC bacterium; Staphylococcus aureus (mecA positive); and three standard strains of ATCC bacteria including Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27833), and S. aureus (ATCC 25923). Antibacterial assay revealed that only the latter three bacteria were susceptible to the HAM. All the data obtained from this study suggest that an alternative strategy is required to complement HAM grafting in order to fully protect burns from nosocomial infections. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  15. Antibiotic resistance patterns of bacteria isolated from indwelling Foley catheters following tube cystostomy in goats with obstructive urolithiasis.

    Science.gov (United States)

    Chigerwe, Munashe; Mavangira, Vengai; Byrne, Barbara A; Angelos, John A

    2017-05-01

    Tube cystostomy is a surgical method used for managing obstructive urolithiasis and involves placement of a Foley catheter into the urinary bladder. We identified and evaluated the antibiotic resistance patterns of bacteria isolated from indwelling Foley catheters following tube cystostomy in goats with obstructive urolithiasis. Urine samples collected over a 10-y period from catheter tips at the time of removal were submitted for bacteriologic culture and antibiotic susceptibility testing. Resistance patterns to antibiotics, trends in the resistance patterns over the study period, and the probability of a bacterial isolate being resistant as a function of the identity of the isolate and antibiotic tested were determined. A total of 103 urine samples from 103 male goats with obstructive urolithiasis managed surgically with tube cystostomy were included in the study. Aerococcus (36.9%) and Enterococcus (30.1%) were isolated most frequently. The susceptibility patterns of all bacteria isolated did not change over the study period ( p > 0.05). Proportions of isolates resistant to 1, 2, and ≥3 antibiotics were 36.9%, 18.5%, and 23.3%, respectively. Thus, 41.8% of bacterial isolates were resistant to 2 or more antibiotics tested. The probability of Aerococcus spp., Escherichia coli, and Pseudomonas aeruginosa isolates to be resistant to ampicillin, ceftiofur, erythromycin, penicillin, or tetracycline ranged from 0.59 to 0.76.

  16. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Hotta Yasuaki

    2008-01-01

    Full Text Available Abstract Background Microbial fuel cells (MFCs are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. Results A laboratory-scale two-chamber microbial fuel cell (MFC was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Conclusion Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community.

  17. Mechanical and microstructural behaviour of alumina-zirconia ceramic filaments for high temperature applications; Comportement mecanique et microstructure de filaments ceramiques alumine-zircone pour applications a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Poulon-Quintin, A

    2002-04-01

    This thesis is a contribution to the development and to the study of two-phase alumina-zirconia ceramic filaments resistant to creep and chemical and microstructural degradation. The materials studied are experimental two-phase filaments (diameter of few millimeters) with a fibrillary structure obtained by coextrusion of sol-gels or of powder pastes and a nanocrystalline fiber of thin diameter (11{mu}m) with a homogeneous structure. They have been respectively perfected and chosen for their very promising microstructures and compositions concerning the creep resistance. This study is concentrated on the mechanical characterization at high temperature of these materials and especially on the understanding of the deformation and rupture mechanisms in relation with the microstructural evolution. The commercial fiber (Nextel 650) is a {alpha} alumina (grain size {>=}0.1{mu}m) in which the grains of the second phase zirconia are dispersed in a homogeneous way in intra (5-10 nm) as in inter-granular (20-30 nm). After a heat treatment at temperatures superior to 1200 C, it can be noted a strong grains growth preferentially to the axis of the fiber. The tensile properties decrease to a considerable extent with high temperatures ({>=}1000 C). The creep behaviour has been determined between 1000 and 1300 C (value of 2.5 for the stress exponent and of 850 kJ/mol for the activation energy). The evolution of the microstructure to a long grains microstructure is favourable for the creep resistance. A comparison with other fibers of compositions near the Nextel 650 fiber show that the Nextel 650 fiber has interesting properties for being used at high temperatures (until 1200 C). The study of co-extruded alumina-zirconia filaments with a fibrillary structure has at first required those of filaments which composition are each of the phases obtained from pastes (powder-thermoplastics or sol-gels). The composition of each of the phases has been optimized in order to adapt the

  18. Ecophysiology of Uncultured Filamentous Anaerobes Belonging to the Phylum KSB3 That Cause Bulking in Methanogenic Granular Sludge▿ †

    Science.gov (United States)

    Yamada, Takeshi; Kikuchi, Kae; Yamauchi, Toshihiro; Shiraishi, Koji; Ito, Tsukasa; Okabe, Satoshi; Hiraishi, Akira; Ohashi, Akiyoshi; Harada, Hideki; Kamagata, Yoichi; Nakamura, Kazunori; Sekiguchi, Yuji

    2011-01-01

    A filamentous bulking of a methanogenic granular sludge caused by uncultured filamentous bacteria of the candidate phylum KSB3 in an upflow anaerobic sludge blanket (UASB) system has been reported. To characterize the physiological traits of the filaments, a polyphasic approach consisting of rRNA-based activity monitoring of the KSB3 filaments using the RNase H method and substrate uptake profiling using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH) was conducted. On the basis of rRNA-based activity, the monitoring of a full-scale UASB reactor operated continuously revealed that KSB3 cells became active and predominant (up to 54% of the total 16S rRNA) in the sludge when the carbohydrate loading to the system increased. Batch experiments with a short incubation of the sludge with maltose, glucose, fructose, and maltotriose at relatively low concentrations (approximately 0.1 mM) in the presence of yeast extract also showed an increase in KSB3 rRNA levels under anaerobic conditions. MAR-FISH confirmed that the KSB3 cells took up radioisotopic carbons from [14C]maltose and [14C]glucose under the same incubation conditions in the batch experiments. These results suggest that one of the important ecophysiological characteristics of KSB3 cells in the sludge is carbohydrate degradation in wastewater and that high carbohydrate loadings may trigger an outbreak of KSB3 bacteria, causing sludge bulking in UASB systems. PMID:21257808

  19. Filamentous Morphology as a Means for Thermophilic Bacteria to Survive Steep Physical and Chemical Gradients in Yellowstone Hot Springs

    Science.gov (United States)

    Dong, Y.; Srivastava, V.; Bulone, V.; Keating, K. M.; Khetani, R. S.; Fields, C. J.; Inskeep, W.; Sanford, R. A.; Yau, P. M.; Imai, B. S.; Hernandez, A. G.; Wright, C.; Band, M.; Cann, I. K.; Ahrén, D.; Fouke, K. W.; Sivaguru, M.; Fried, G.; Fouke, B. W.

    2017-12-01

    The filamentous heat-loving bacterium Sulfurihydrogenibium yellowstonense makes up more than 90% of the microbial community that inhabits turbulent, dysoxic hot spring outflow channels (66-71°C, 6.2-6.5 pH, 0.5-0.75 m/s flow rate) at Mammoth Hot Spring in Yellowstone National Park. These environments contain abundantly available inorganic substrates (e.g., CO2, sulfide and thiosulfate) and are associated with extensive CaCO3 (travertine) precipitation driven in part by CO2 off-gassing. Evidence from integrated Meta-Omics analyses of DNA, RNA, and proteins (metagenomics, metatranscriptomics and metaproteomics) extracted from these S. yellowstonense-dominated communities have detected 1499 non-rRNA open reading frames (ORFs), their transcripts and cognate proteins. During chemoautotrophy and CO2 carbon fixation, chaperons facilitate enzymatic stability and functionalities under elevated temperature. High abundance transcripts and proteins for Type IV pili and exopolysaccharides (EPS) are consistent with S. yellowstonense forming strong (up to 0.5 m) intertwined microbial filaments (fettuccini streamers) composed of linked individual cells that withstand hydrodynamic shear forces and extremely rapid travertine mineralization. Their primary energy source is the oxidation of reduced sulfur (e.g., sulphide, sulfur or thiosulfate) and the simultaneous uptake of extremely low concentrations of dissolved O2 facilitated by bd-type cytochromes. Field observations indicate that the fettuccini microbial filaments build up ridged travertine platforms on the bottom of the springs, parallel to the water flow, where living filaments attach almost exclusively to the top of each ridge. This maximizes their access to miniscule amounts of dissolved oxygen, while optimizing their ability to rapidly form down-flow branched filaments and thus survive in these stressful environments that few other microbes can inhabit.

  20. Antibiotic resistance patterns in fecal bacteria isolated from Christmas shearwater (Puffinus nativitatis) and masked booby (Sula dactylatra) at remote Easter Island.

    Science.gov (United States)

    Ardiles-Villegas, Karen; González-Acuña, Daniel; Waldenström, Jonas; Olsen, Björn; Hernández, Jorge

    2011-09-01

    Antibiotic use and its implications have been discussed extensively in the past decades. This situation has global consequences when antibiotic resistance becomes widespread in the intestinal bacterial flora of stationary and migratory birds. This study investigated the incidence of fecal bacteria and general antibiotic resistance, with special focus on extended spectrum beta-lactamase (ESBL) isolates, in two species of seabirds at remote Easter Island. We identified 11 species of bacteria from masked booby (Sula dactylatra) and Christmas shearwater (Puffinus nativitatis); five species of gram-negative bacilli, four species of Streptococcus (Enterococcus), and 2 species of Staphylococcus. In addition, 6 types of bacteria were determined barely to the genus level. General antibiotic susceptibility was measured in the 30 isolated Enterobacteriaceae to 11 antibiotics used in human and veterinary medicine. The 10 isolates that showed a phenotypic ESBL profile were verified by clavulanic acid inhibition in double mixture discs with cefpodoxime, and two ESBL strains were found, one strain in masked booby and one strain in Christmas shearwater. The two bacteria harboring the ESBL type were identified as Serratia odorifera biotype 1, which has zoonotic importance. Despite minimal human presence in the masked booby and Christmas shearwater habitats, and the extreme geographic isolation of Easter Island, we found several multiresistant bacteria and even two isolates with ESBL phenotypes. The finding of ESBLs has animal and public health significance and is of potential concern, especially because the investigation was limited in size and indicated that antibiotic-resistant bacteria now are distributed globally.

  1. From Farms to Markets: Gram-Negative Bacteria Resistant to Third-Generation Cephalosporins in Fruits and Vegetables in a Region of North Africa

    OpenAIRE

    Mesbah Zekar, Ferielle; Granier, Sophie A.; Marault, Muriel; Yaici, Lydia; Gassilloud, Benoit; Manceau, Charles; Touati, Abdelaziz; Millemann, Yves

    2017-01-01

    The role of food in human exposure to antimicrobial-resistant bacteria is a growing food safety issue. The contribution of fruits and vegetables eaten raw to this exposure is still unclear. The evaluation of contamination levels of fruits, vegetables and the agricultural environment by third-generation cephalosporin (3GC)-resistant Gram-negative bacteria was performed by analyzing 491 samples of fruits and vegetables collected from 5 markets and 7 farms in Bejaia area, north-eastern Mediterra...

  2. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    Directory of Open Access Journals (Sweden)

    Nachiket P Marathe

    Full Text Available The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range. In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86% of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE, Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1 was resistant to 36 antibiotics, while P. rettgeri (OSR3 was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80% strains each, and 88/93 (95% strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides

  3. Fungi regulate response of N2O production to warming and grazing in a Tibetan grassland

    Science.gov (United States)

    Zhong, Lei; Wang, Shiping; Xu, Xingliang; Wang, Yanfen; Rui, Yichao; Zhou, Xiaoqi; Shen, Qinhua; Wang, Jinzhi; Jiang, Lili; Luo, Caiyun; Gu, Tianbao; Ma, Wenchao; Chen, Guanyi

    2018-03-01

    Lack of understanding of the effects of warming and winter grazing on soil fungal contribution to nitrous oxide (N2O) production has limited our ability to predict N2O fluxes under changes in climate and land use management, because soil fungi play an important role in driving terrestrial N cycling. Here, we examined the effects of 10 years' warming and winter grazing on soil N2O emissions potential in an alpine meadow. Our results showed that soil bacteria and fungi contributed 46 % and 54 % to nitrification, and 37 % and 63 % to denitrification, respectively. Neither warming nor winter grazing affected the activity of enzymes responsible for overall nitrification and denitrification. However, warming significantly increased the enzyme activity of bacterial nitrification and denitrification to 53 % and 55 %, respectively. Warming significantly decreased enzyme activity of fungal nitrification and denitrification to 47 % and 45 %, respectively, while winter grazing had no such effect. We conclude that soil fungi could be the main source for N2O production potential in the Tibetan alpine grasslands. Warming and winter grazing may not affect the potential for soil N2O production potential, but climate warming can alter biotic pathways responsible for N2O production. These findings indicate that characterizing how fungal nitrification/denitrification contributes to N2O production, as well as how it responds to environmental and land use changes, can advance our understanding of N cycling. Therefore, our results provide some new insights about ecological controls on N2O production and lead to refine greenhouse gas flux models.

  4. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    Science.gov (United States)

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  5. Impact of Manure Fertilization on the Abundance of Antibiotic-Resistant Bacteria and Frequency of Detection of Antibiotic Resistance Genes in Soil and on Vegetables at Harvest

    OpenAIRE

    Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Topp, Edward

    2013-01-01

    Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and ...

  6. Grazing function g and collimation angular acceptance

    Directory of Open Access Journals (Sweden)

    Stephen G. Peggs

    2009-11-01

    Full Text Available The grazing function g is introduced—a synchrobetatron optical quantity that is analogous (and closely connected to the Twiss and dispersion functions β, α, η, and η^{′}. It parametrizes the rate of change of total angle with respect to synchrotron amplitude for grazing particles, which just touch the surface of an aperture when their synchrotron and betatron oscillations are simultaneously (in time at their extreme displacements. The grazing function can be important at collimators with limited acceptance angles. For example, it is important in both modes of crystal collimation operation—in channeling and in volume reflection. The grazing function is independent of the collimator type—crystal or amorphous—but can depend strongly on its azimuthal location. The rigorous synchrobetatron condition g=0 is solved, by invoking the close connection between the grazing function and the slope of the normalized dispersion. Propagation of the grazing function is described, through drifts, dipoles, and quadrupoles. Analytic expressions are developed for g in perfectly matched periodic FODO cells, and in the presence of β or η error waves. These analytic approximations are shown to be, in general, in good agreement with realistic numerical examples. The grazing function is shown to scale linearly with FODO cell bend angle, but to be independent of FODO cell length. The ideal value is g=0 at the collimator, but finite nonzero values are acceptable. Practically achievable grazing functions are described and evaluated, for both amorphous and crystal primary collimators, at RHIC, the SPS (UA9, the Tevatron (T-980, and the LHC.

  7. [Analysis of pathogenic bacteria and drug resistance in neonatal purulent meningitis].

    Science.gov (United States)

    Zhu, Minli; Hu, Qianhong; Mai, Jingyun; Lin, Zhenlang

    2015-01-01

    To study the clinical characteristics, pathogenic bacteria, and antibiotics resistance of neonatal purulent meningitis in order to provide the guide for early diagnosis and appropriate treatment. A retrospective review was performed and a total of 112 cases of neonatal purulent meningitis (male 64, female 58) were identified in the neonatal intensive care unit of Yuying Children's Hospital of Wenzhou Medical University seen from January 1, 2004 to December 31, 2013. The clinical information including pathogenic bacterial distribution, drug sensitivity, head imageology and therapeutic outcome were analyzed. Numeration data were shown in ratio and chi square test was applied for group comparison. Among 112 cases, 46 were admitted from 2004 to 2008 and 66 from 2009 to 2013, 23 patients were preterm and 89 were term, 20 were early onset (occurring within 3 days of life) and 92 were late onset meningitis (occurring after 3 days of life). In 62 (55.4%) cases the pathogens were Gram-positive bacteria and in 50 (44.6%) were Gram-negative bacteria. The five most frequently isolated pathogens were Escherichia coli (32 cases, 28.6%), coagulase-negative staphylococcus (CNS, 20 cases, 17.9%), Streptococcus (18 cases, 16.1%, Streptococcus agalactiae 15 cases), Enterococci (13 cases, 11.6%), Staphylococcus aureus (9 cases, 8.0%). Comparison of pathogenic bacterial distribution between 2004-2008 and 2009-2013 showed that Gram-positive bacteria accounted for more than 50% in both period. Escherichia coli was the most common bacterium, followed by Streptococcus in last five years which was higher than the first five years (22.7% (15/66) vs. 6.5% (3/46), χ(2) = 5.278, P bacteria in early onset meningitis and higher than those in late onset meningitis (35.0% (7/20) vs. 12.0% (11/92), χ(2) = 4.872, P pathogens responsible for neonatal purulent meningitis over the past ten years. There were increasing numbers of cases with Streptococcus meningitis which are more common in early onset

  8. Effect of tetracycline dose and treatment-mode on selection of resistant coliform bacteria in nursery pigs

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Damborg, Peter; Mellerup, Anders

    2017-01-01

    This study describes results of a randomized clinical trial investigating the effect of oxytetracycline treatment dose and mode of administration on selection of antibiotic resistant coliform bacteria in fecal samples from nursery pigs. Nursery pigs (pigs of 4-7 weeks of age) were treated...... with oxytetracycline against Lawsonia intracellularis induced diarrhea in five pig herds. Each group was randomly allocated to one of five treatment groups: oral flock treatment with (i) high (20 mg/kg), (ii) medium (10 mg/kg) and (iii) low (5 mg/kg) dosage, (iv) oral-pen-wise (small group) treatment (10 mg...... significant changes in number or proportion of tetracycline resistant coliforms. Selection for tetracycline-resistant coliforms was significantly correlated to selection for ampicillin- and sulfonamide-resistant, but not to cefotaxime-resistant strains. In conclusion, difference in dose of oxytetracycline...

  9. Solar Filament Extraction and Characterizing

    Science.gov (United States)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  10. [BACTERIA WITHOUT BORDERS: A HIGH CARRIAGE RATE OF ANTIBIOTIC-RESISTANT BACTERIA AMONG SYRIAN CHILDREN HOSPITALIZED IN GALILEE MEDICAL CENTER].

    Science.gov (United States)

    Faour Kassem, Diana; Shahar, Naama; Ocampo, Smadar; Bader, Tarif; Zonis, Zeev; Glikman, Daniel

    2017-05-01

    As the civil war in Syria enters its fifth year, the Israeli government continues to provide humanitarian aid to Syrian civilians in Israeli hospitals. Many wounded Syrian children are treated at the Galilee Medical Center (GMC). Due to the patients' incomplete medical history and increasing infection rates in Syria, contact isolation and screening cultures for multi-drug resistant bacteria (MDR's) are conducted upon admission for all Syrian children. To describe the rate of MDR carriage in Syrian children and compare it to hospitalized Israeli children. Prospective collection of screening culture data of Syrian patients admitted to GMC between 6/2013-11/2014 and comparison with Israeli children admitted between 1-3/2014. Extended-spectrum beta- lactamase-producing Enterobateriaceae (ESBL), Vancomycin-resistant Enterococcus (VRE), Carbapenem-resistant Enterobacteriaceae (CRE), and Methicillin-resistant Staphylococcus aureus (MRSA) were considered MDR's. Of 47 pediatric Syrian patients, 41 were severely wounded. MDR's were found in 37 (79%) children; most of the isolates were ESBL+ Escherichia coli. Over half of the ESBL's were resistant to additional antibiotics such as sulfa and quinolones; no resistance to amikacin was found. In comparison, in 6 of 40 (15%) Israeli children, MDR's (all ESBL's) were found (p<0.001). In hospitalized Syrian children, contact isolation and screening cultures for MDR's have an important role in the prevention of nosocomial transmission and establishment of empiric antimicrobial protocols. In suspected infections in Syrian children, amikacin and carbapenems are the antimicrobials of choice. MDR's are carried to a lesser extent in Israeli children but due to their importance, further largescale research is needed.

  11. Composition of Ileal Bacterial Community in Grazing Goats Varies across Non-rumination, Transition and Rumination Stages of Life

    Directory of Open Access Journals (Sweden)

    Jinzhen Jiao

    2016-09-01

    Full Text Available The establishment of gut microbiota is increasingly recognized as a crucial action in neonatal development, host health and productivity. We hypothesized that the ileal microbiome shifted as goats matured, and this colonization process would be associated with host fermentation capacity. To this end, eighteen Liuyang black grazing goats were randomly slaughtered at d 0, 7, 28, 42 and 70. Ileal microbiota was profiled by Miseq sequencing of 16S rRNA gene of bacteria, and fermentation capacity volatile fatty acid, activities of amylase, carboxymethylcellulase (CMCase and xylanase was determined using digesta sample. Principal coordinate analysis (PCoA revealed that each age group harboured its distinct bacteria. Total bacteria copy number and most alpha diversity indexes increased (P < 0.01 from d 0 to 70. At the phylum level, abundances of Cyanobacteria (P = 0.018 and TM7 (P = 0.010 increased linearly, abundances of Bacteroidetes (P = 0.075 and Fibrobacteres (P = 0.076 tended to increase linearly, whist Proteobacteria abundance tended to decline quadratically (P = 0.052 with age. At the genus level, Enterococcus (30.9%, Lactobacillus (32.8% and Escherichia (2.0% dominated at d 0, while Prevotella, Butyrivibrio, Ruminococcus, SMB53 and Fibrobacter surged in abundance after d 20. The highest amylase activity was observed at d 42, while xylanase activity increased quadratically (P = 0.002 from d 28 to 70. Correlation analysis indicated that abundances of Bacteroides, Clostridium, Lactobacillus, Propionibacterium, Enterococcus and p-75-a5 positively correlated with enzyme activity. Collectively, ileal bacteria in grazing goats assemble into distinct communities throughout development, and might participate in the improvement of host fermentation capacity.

  12. Temporal symmetry of individual filaments in different spatial symmetry filaments pattern in a dielectric barrier discharge

    International Nuclear Information System (INIS)

    Dong, L. F.; Xiao, H.; Fan, W. L.; Yin, Z. Q.; Zhao, H. T.

    2010-01-01

    The temporal behavior of individual filament in different spatial symmetry filaments patterns in dielectric barrier discharge is investigated by using an optical method. A series of return maps of the discharge moments of individual filaments is given. It is found that the temporal symmetry of individual filament changes with the change of the spatial symmetry of filaments pattern as the applied voltage increases. The role of wall charges for this phenomenon is analyzed.

  13. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  14. Variability of cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant bacteria in two Brazilian intensive care units.

    Science.gov (United States)

    Damaceno, Quésia; Nicoli, Jacques R; Oliveira, Adriana

    2015-01-01

    To compare cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant organisms in two intensive care units. A prospective cohort study was performed in adult intensive care units of two hospitals in Belo Horizonte, Brazil (April 2012 to February 2013). Clinical and demographic data were first collected by reviewing patients' charts. Then, samples collected with nasal, groin, and perineum swabs were cultivated in selective media for 48 h at 37°C. After isolation, determination of antimicrobial susceptibility and biochemical identification were performed. A total of 53 cases of colonization were observed by the following bacteria in decreasing frequencies: imipenem-resistant Acinetobacter baumannii (50.9%), vancomycin-resistant Enterococcus faecalis (43.4%), extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (37.7%), imipenem-resistant Pseudomonas aeruginosa (32.1%), oxacillin-resistant Staphylococcus aureus (7.5%), and imipenem-resistant Klebsiella pneumoniae (5.7%). Among these colonization cases, 26 (49.0%) were followed by infection with bacteria phenotypically similar to those of the colonization. A relation between high population levels of colonization by most of the multidrug-resistant organisms at anatomical sites and a subsequent infection was observed. After colonization/infection, bacterial population levels decreased progressively and spontaneously until disappearance by day 45 in all the anatomical sites and for all the multidrug-resistant organisms. There was a correlation between high population levels of colonization by multidrug-resistant organisms at anatomical sites and a subsequent infection. Reduction in multidrug-resistant organism populations after colonization at anatomical sites could be a preventive measure to reduce evolution to infection as well as transmission of these bacteria between patients in intensive care unit.

  15. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  16. Duration of colonization with antimicrobial-resistant bacteria after ICU discharge.

    Science.gov (United States)

    Haverkate, Manon R; Derde, Lennie P G; Brun-Buisson, Christian; Bonten, Marc J M; Bootsma, Martin C J

    2014-04-01

    Readmission of patients colonized with antimicrobial-resistant bacteria (AMRB) is important in the nosocomial dynamics of AMRB. We assessed the duration of colonization after discharge from the intensive care unit (ICU) with highly resistant Enterobacteriaceae (HRE), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE). Data were obtained from a cluster-randomized trial in 13 ICUs in 8 European countries (MOSAR-ICU trial, 2008-2011). All patients were screened on admission and twice weekly for AMRB. All patients colonized with HRE, MRSA, or VRE and readmitted to the same ICU during the study period were included in the current analysis. Time between discharge and readmission was calculated, and the colonization status at readmission was assessed. Because of interval-censored data, a maximum likelihood analysis was used to calculate the survival function, taking censoring into account. A nonparametric two-sample test was used to test for differences in the survival curves. The MOSAR-ICU trial included 14,390 patients, and a total of 64,997 cultures were taken from 8,974 patients admitted for at least 3 days. One hundred twenty-five unique patients had 141 episodes with AMRB colonization and at least 1 readmission. Thirty-two patients were colonized with two or more AMRBs. Median times until clearance were 4.8 months for all AMRB together, 1.4 months for HRE, <1 month for MRSA, and 1.5 months for VRE. There were no significant differences between the survival curves. Fifty percent of the patients had lost colonization when readmitted 2 or more months after previous ICU discharge.

  17. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002 – 2004: the ARBAO-II study

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Mevius, Dik J; Schroeter, Andreas

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin - II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003-05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility...... of pathogenic and indicator bacteria from food animals using validated and harmonised methodologies. In this report the first data on the occurrence of antimicrobial resistance among bacteria causing infections in pigs are reported. Methods: Susceptibility data from 17,642 isolates of pathogens and indicator...... susceptible to all drugs tested with the exceptions of a low frequency of resistance to tetracycline and trimethoprim - sulphonamide. Data for S. suis were obtained from six countries. In general, a high level of resistance to tetracycline (48.0 - 92.0%) and erythromycin (29.1 - 75.0%) was observed in all...

  18. MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    International Nuclear Information System (INIS)

    Soler, R.; Oliver, R.; Ballester, J. L.

    2009-01-01

    Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10 4 K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.

  19. Antimicrobial resistance in bacteria from breeding dogs housed in kennels with differing neonatal mortality and use of antibiotics.

    Science.gov (United States)

    Milani, C; Corrò, M; Drigo, M; Rota, A

    2012-10-01

    This work examines the antimicrobial resistance of potentially pathogenic bacteria (Staphylococcus pseudintermedius, Streptococcus canis, Escherichia coli) found in the vaginal tract in prepartum mammary secretions and postpartum milk of bitches housed in breeding kennels (N = 20; 92 bitches). The kennels were divided into three categories: no routine antimicrobial administration around parturition (category 1); routine administration of one antibiotic around parturition (category 2); routine administration of multiple antimicrobials around parturition (category 3). Bacteriological cultures and antibiotic susceptibility tests were performed on vaginal specimens, prepartum mammary secretions, and postpartum milk. Stillbirths and neonatal deaths were recorded for each whelping and analyzed as "within-litter stillbirths" and "within-litter neonatal deaths" according to kennel category, by Pearson χ(2) test and the Kruskal-Wallis nonparametric test, respectively. The frequency of isolation and antimicrobial resistance of bacteria were analyzed according to kennel category by Pearson χ(2) test. Kennel category was not significantly associated with differing numbers of stillbirths or neonatal death events, nor was the frequency of isolation of potentially pathogenic bacteria in the three kennel categories significantly different. Kennel category 3 had a significantly higher frequency of isolation of multiresistant gram-positive bacterial strains. Our results show that intense administration of antibiotics to breeding bitches does not effectively reduce neonatal mortality; on the contrary, it induces multiresistance in potentially pathogenic bacteria. Breeders and veterinarians should be aware of the risk of selecting pathogenic bacteria by uncontrolled treatment in prepartum bitches. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    Science.gov (United States)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.