WorldWideScience

Sample records for gray-white matter differentiation

  1. Gray/White Matter Contrast in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Carme Uribe

    2018-03-01

    Full Text Available Gray/white matter contrast (GWC decreases with aging and has been found to be a useful MRI biomarker in Alzheimer’s disease (AD, but its utility in Parkinson’s disease (PD patients has not been investigated. The aims of the study were to test whether GWC is sensitive to aging changes in PD patients, if PD patients differ from healthy controls (HCs in GWC, and whether the use of GWC data would improve the sensitivity of cortical thickness analyses to differentiate PD patients from controls. Using T1-weighted structural images, we obtained individual cortical thickness and GWC values from a sample of 90 PD patients and 27 controls. Images were processed with the automated FreeSurfer stream. GWC was computed by dividing the white matter (WM by the gray matter (GM values and projecting the ratios onto a common surface. The sample characteristics were: 52 patients and 14 controls were males; mean age of 64.4 ± 10.6 years in PD and 64.7 ± 8.6 years in controls; 8.0 ± 5.6 years of disease evolution; 15.6 ± 9.8 UPDRS; and a range of 1.5–3 in Hoehn and Yahr (H&Y stage. In both PD and controls we observed significant correlations between GWC and age involving almost the entire cortex. When applying a stringent cluster-forming threshold of p < 0.0001, the correlation between GWC and age also involved the entire cortex in the PD group; in the control group, the correlation was found in the parahippocampal gyrus and widespread frontal and parietal areas. The GWC of PD patients did not differ from controls’, whereas cortical thickness analyses showed thinning in temporal and parietal cortices in the PD group. Cortical thinning remained unchanged after adjusting for GWC. GWC is a very sensitive measure for detecting aging effects, but did not provide additional information over other parameters of atrophy in PD.

  2. In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.

    Science.gov (United States)

    Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine

    2017-02-01

    Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.

  3. Local Directional Probability Optimization for Quantification of Blurred Gray/White Matter Junction in Magnetic Resonance Image

    Directory of Open Access Journals (Sweden)

    Xiaoxia Qu

    2017-09-01

    Full Text Available The blurred gray/white matter junction is an important feature of focal cortical dysplasia (FCD lesions. FCD is the main cause of epilepsy and can be detected through magnetic resonance (MR imaging. Several earlier studies have focused on computing the gradient magnitude of the MR image and used the resulting map to model the blurred gray/white matter junction. However, gradient magnitude cannot quantify the blurred gray/white matter junction. Therefore, we proposed a novel algorithm called local directional probability optimization (LDPO for detecting and quantifying the width of the gray/white matter boundary (GWB within the lesional areas. The proposed LDPO method mainly consists of the following three stages: (1 introduction of a hidden Markov random field-expectation-maximization algorithm to compute the probability images of brain tissues in order to obtain the GWB region; (2 generation of local directions from gray matter (GM to white matter (WM passing through the GWB, considering the GWB to be an electric potential field; (3 determination of the optimal local directions for any given voxel of GWB, based on iterative searching of the neighborhood. This was then used to measure the width of the GWB. The proposed LDPO method was tested on real MR images of patients with FCD lesions. The results indicated that the LDPO method could quantify the GWB width. On the GWB width map, the width of the blurred GWB in the lesional region was observed to be greater than that in the non-lesional regions. The proposed GWB width map produced higher F-scores in terms of detecting the blurred GWB within the FCD lesional region as compared to that of FCD feature maps, indicating better trade-off between precision and recall.

  4. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Presidential award proceedings

    International Nuclear Information System (INIS)

    Abe, Osamu; Yamasue, Hidenori; Kasai, Kiyoto

    2008-01-01

    Previous neuroimaging studies have revealed that frontolimbic dysfunction may contribute to the pathophysiology of major depressive disorder. We used voxel-based analysis to simultaneously elucidate regional changes in gray/white matter volume, mean diffusivity (MD), and fractional anisotropy (FA) in the central nervous system of patients with unipolar major depression. We studied 21 right-handed patients and 42 age- and gender-matched right-handed normal subjects without central nervous system disorders. All image processing and statistical analyses were performed using SPM5 software. Local areas showing significant gray matter volume reduction in depressive patients compared with normal controls were observed in the right parahippocampal gyrus, hippocampus, bilateral middle frontal gyri, bilateral anterior cingulate cortices, left parietal and occipital lobes, and right superior temporal gyrus. Local areas showing increased mean diffusivity in depressive patients were observed in the bilateral parahippocampal gyri, hippocampus, pons, cerebellum, left frontal and temporal lobes, and right frontal lobe. There was no significant difference between the 2 groups for fractional anisotropy and white matter volume in the entire brain. Although there was no local area in which FA and MD were significantly correlated with disease severity, FA tended to correlate negatively with depression days (total accumulated days in depressive state) in the right anterior cingulate and the left frontal white matter (FDR-corrected P=0.055 for both areas). These results suggest that the frontolimbic neural circuit may play an important role in the neuropathology of patients with major depression. (author)

  5. Gray, White Matter Concentration Changes and Their Correlation with Heterotopic Neurons in Temporal Lobe Epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk; Joo, Eun Yun; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-02-15

    To identify changes in gray and white matter concentrations (GMC, WMC), and their relation to heterotopic neuron numbers in mesial temporal lobe epilepsy (mTLE). The gray matter or white matter concentrations of 16 left and 15 right mTLE patients who achieved an excellent surgical outcome were compared with those of 24 healthy volunteers for the left group and with 23 healthy volunteers for the right group, by optimized voxel-based morphometry using unmodulated and modulated images. A histologic count of heterotopic neurons was obtained in the white matter of the anterior temporal lobe originating from the patients' surgical specimens. In addition, the number of heterotopic neurons were tested to determine if there was a correlation with the GMC or WMC. The GMCs of the left and right mTLE groups were reduced in the ipsilateral hippocampi, bilateral thalami, precentral gyri, and in the cerebellum. The WMCs were reduced in the ipsilateral white matter of the anterior temporal lobe, bilateral parahippocampal gyri, and internal capsules, but increased in the pons and bilateral precentral gyri. The heterotopic neuron counts in the left mTLE group showed a positive correlation (r = 0.819, p < 0.0001) with GMCs and a negative correlation (r = - 0.839, p < 0.0001) with WMCs in the white matter of the anterior temporal lobe. The present study shows the abnormalities of the cortico-thalamo- hippocampal network including a gray matter volume reduction in the anterior frontal lobes and an abnormality of brain tissue concentration in the pontine area. Furthermore, heterotopic neuron numbers were significantly correlated with GMC or WMC in the left white matter of anterior temporal lobe.

  6. Gray-white matter and cerebrospinal fluid volume differences in children with Specific Language Impairment and/or Reading Disability.

    Science.gov (United States)

    Girbau-Massana, Dolors; Garcia-Marti, Gracian; Marti-Bonmati, Luis; Schwartz, Richard G

    2014-04-01

    We studied gray-white matter and cerebrospinal fluid (CSF) alterations that may be critical for language, through an optimized voxel-based morphometry evaluation in children with Specific Language Impairment (SLI), compared to Typical Language Development (TLD). Ten children with SLI (8;5-10;9) and 14 children with TLD (8;2-11;8) participated. They received a comprehensive language and reading test battery. We also analyzed a subgroup of six children with SLI+RD (Reading Disability). Brain images from 3-Tesla MRIs were analyzed with intelligence, age, gender, and total intracranial volume as covariates. Children with SLI or SLI+RD exhibited a significant lower overall gray matter volume than children with TLD. Particularly, children with SLI showed a significantly lower volume of gray matter compared to children with TLD in the right postcentral parietal gyrus (BA4), and left and right medial occipital gyri (BA19). The group with SLI also exhibited a significantly greater volume of gray matter in the right superior occipital gyrus (BA19), which may reflect a brain reorganization to compensate for their lower volumes at medial occipital gyri. Children with SLI+RD, compared to children with TLD, showed a significantly lower volume of: (a) gray matter in the right postcentral parietal gyrus; and (b) white matter in the right inferior longitudinal fasciculus (RILF), which interconnects the temporal and occipital lobes. Children with TLD exhibited a significantly lower CSF volume than children with SLI and children with SLI+RD respectively, who had somewhat smaller volumes of gray matter allowing for more CSF volume. The significant lower gray matter volume at the right postcentral parietal gyrus and greater cerebrospinal fluid volume may prove to be unique markers for SLI. We discuss the association of poor knowledge/visual representations and language input to brain development. Our comorbid study showed that a significant lower volume of white matter in the right

  7. Ampullary adenocarcinoma – differentiation matters

    Directory of Open Access Journals (Sweden)

    Büchler Markus W

    2008-09-01

    Full Text Available Abstract The periampullary region gives rise to two main subtypes of adenocarcinoma that show either pancreatobiliary or intestinal differentiation. New data demonstrates that the histological subtype – more so than the anatomical location – is an important independent prognostic factor. This fuels the discussion about maintaining ampullary cancer as a separate entity.

  8. Differential rotation of viscous neutron matter

    International Nuclear Information System (INIS)

    Nitsch, J.; Pfarr, J.; Heintzmann, H.

    1976-08-01

    The reaction of homogeneous sphere of neutron matter set in rotational motion under the influence of an external torque acting on its surface is investigated. For neutron matter with a typical neutron star density of 10 15 gcm -3 and a temperature varying between 10 6 and 10 9 K originally in uniform rotation, a time dependent differential motion sets in, which lasts a time scale of hours to some decades, resulting finally in co-rotation. During these times the braking index of a magnetic neutron sphere very sensitively depends on time

  9. Differentiating burnout from depression: personality matters!

    Directory of Open Access Journals (Sweden)

    Martin Christoph Melchers

    2015-08-01

    Full Text Available Stress related affective disorders have been identified as a core health problem of the 21st century. In the endeavor to identify vulnerability factors, personality has been discussed as a major factor explaining and predicting disorders like depression or burnout. An unsolved question is whether there are specific personality factors allowing differentiation of burnout from depression. The present study tested the relation between one of the most prominent, biological personality theories, Cloninger’s Temperament and Character Inventory (TCI, and common measures of burnout (Maslach Burnout Inventory General and depression (Beck Depression Inventory 2 in a sample of German employees (N=944 and a sample of inpatients (N = 425. Although the same personality traits (harm avoidance and self-directedness were predominantly associated with burnout and depression, there was a much stronger association to depression than to burnout in both samples. Besides, we observed specific associations between personality traits and subcomponents of burnout. Our results underline differences in the association of burnout vs. depression to personality, which may mirror differences in scope: While symptoms of depression affect all aspects of life, burnout is supposed to be specifically related to the workplace and its requirements. The much stronger association of personality to depression can be important to select appropriate therapy methods and to develop a more specified treatment for burnout in comparison to depression.

  10. Differential isospin-fractionation in dilute asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Ma Hongru; Xu Jun; Yong Gaochan

    2007-01-01

    The differential isospin-fractionation (IsoF) during the liquid-gas phase transition in dilute asymmetric nuclear matter is studied as a function of nucleon momentum. Within a self-consistent thermal model it is shown that the neutron/proton ratio of the gas phase becomes smaller than that of the liquid phase for energetic nucleons, although the gas phase is overall more neutron-rich. Clear indications of the differential IsoF consistent with the thermal model predictions are demonstrated within a transport model for heavy-ion reactions. Future comparisons with experimental data will allow us to extract critical information about the momentum dependence of the isovector strong interaction

  11. Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age.

    Science.gov (United States)

    Padilla, Nelly; Junqué, Carme; Figueras, Francesc; Sanz-Cortes, Magdalena; Bargalló, Núria; Arranz, Angela; Donaire, Antonio; Figueras, Josep; Gratacos, Eduard

    2014-01-30

    Intrauterine growth restriction (IUGR) is associated with a high risk of abnormal neurodevelopment. Underlying neuroanatomical substrates are partially documented. We hypothesized that at 12 months preterm infants would evidence specific white-matter microstructure alterations and gray-matter differences induced by severe IUGR. Twenty preterm infants with IUGR (26-34 weeks of gestation) were compared with 20 term-born infants and 20 appropriate for gestational age preterm infants of similar gestational age. Preterm groups showed no evidence of brain abnormalities. At 12 months, infants were scanned sleeping naturally. Gray-matter volumes were studied with voxel-based morphometry. White-matter microstructure was examined using tract-based spatial statistics. The relationship between diffusivity indices in white matter, gray matter volumes, and perinatal data was also investigated. Gray-matter decrements attributable to IUGR comprised amygdala, basal ganglia, thalamus and insula bilaterally, left occipital and parietal lobes, and right perirolandic area. Gray-matter volumes positively correlated with birth weight exclusively. Preterm infants had reduced FA in the corpus callosum, and increased FA in the anterior corona radiata. Additionally, IUGR infants had increased FA in the forceps minor, internal and external capsules, uncinate and fronto-occipital white matter tracts. Increased axial diffusivity was observed in several white matter tracts. Fractional anisotropy positively correlated with birth weight and gestational age at birth. These data suggest that IUGR differentially affects gray and white matter development preferentially affecting gray matter. At 12 months IUGR is associated with a specific set of structural gray-matter decrements. White matter follows an unusual developmental pattern, and is apparently affected by IUGR and prematurity combined. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, Henrik; Ipsen, J. H.; Markvorsen, Steen

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes are examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  13. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, H.; Ipsen, John Hjort; Markvorsen, S

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes axe examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  14. Differential diagnosis of the epileptogenic supratentorial brain tumors in children

    Directory of Open Access Journals (Sweden)

    V. S. Khalilov

    2015-01-01

    Full Text Available Fifty-six out of 79 pediatric patients with supratentorial brain tumors were noted to have symptomatic epilepsy. Dysembryoplastic neuroepithelial tumors (DNET, diffuse astrocytomas (DA, and gangliogliomas (GG were the most epileptogenic tumors. Seizures were new-onset in all our noted cases of DNET and in 4 patients with GG and the only clinical tumor sign in 6 of 8 cases of DNET. The neuroimaging features of the MRI pattern of DNET, DA, and GG were an iso/hypointense signal on Tl-weighted magnetic resonance images and a signal, the intensity of which varied from heterogeneous to cerebrospinal fluid, on T2-weighted FLAIR images. Cases of DNET and GG displayed no mass effect or perifocal edema, a trend towards location in the temporoinsular regions, and a frequent concurrence with local gray-white matter differentiation disorders and atrophy. The FLAIR images clearly showed the so-called foam-like (multicystic structure with pericystic changes. No significant change in the dimensions of the identified DNET and GG was observed during the follow up period. In low-grade DA, tumor growth was reduced and it is difficult to differentiate minimal perifocal edema from tumor-like tissue. The sensitivity of these tumors to contrast enhancement is ambiguous. Along with DNET (that was epileptogenic in 100% of cases, DA (91,7% and GG (80% were the most common epileptogenic brain tumors.

  15. What is modified gravity and how to differentiate it from particle dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier; Kuntz, Ibere [University of Sussex, Physics and Astronomy, Brighton (United Kingdom)

    2017-02-15

    An obvious criterion to classify theories of modified gravity is to identify their gravitational degrees of freedom and their coupling to the metric and the matter sector. Using this simple idea, we show that any theory which depends on the curvature invariants is equivalent to general relativity in the presence of new fields that are gravitationally coupled to the energy-momentum tensor. We show that they can be shifted into a new energy-momentum tensor. There is no a priori reason to identify these new fields as gravitational degrees of freedom or matter fields. This leads to an equivalence between dark matter particles gravitationally coupled to the standard model fields and modified gravity theories designed to account for the dark matter phenomenon. Due to this ambiguity, it is impossible to differentiate experimentally between these theories and any attempt of doing so should be classified as a mere interpretation of the same phenomenon. (orig.)

  16. Enhancement of multiple cranial and spinal nerves in vanishing white matter: expanding the differential diagnosis.

    Science.gov (United States)

    Eluvathingal Muttikkal, Thomas Jose; Montealegre, Denia Ramirez; Matsumoto, Julie Ann

    2018-03-01

    Abnormal cranial or spinal nerve contrast enhancement on MRI in cases of suspected pediatric leukodystrophy is recognized as an important clue to the diagnosis of either metachromatic leukodystrophy or globoid cell leukodystrophy (Krabbe disease). We report a case of genetically confirmed childhood vanishing white matter with enhancement of multiple cranial and spinal nerves in addition to the more typical intracranial findings. This case expands the limited differential diagnosis of cranial nerve or spinal nerve enhancement in cases of suspected leukodystrophy and may aid in more efficient work-up and earlier diagnosis of vanishing white matter.

  17. "Detecting Differential Item Functioning and Differential Step Functioning due to Differences that ""Should"" Matter"

    Directory of Open Access Journals (Sweden)

    Tess Miller

    2010-07-01

    Full Text Available This study illustrates the use of differential item functioning (DIF and differential step functioning (DSF analyses to detect differences in item difficulty that are related to experiences of examinees, such as their teachers' instructional practices, that are relevant to the knowledge, skill, or ability the test is intended to measure. This analysis is in contrast to the typical use of DIF or DSF to detect differences related to characteristics of examinees, such as gender, language, or cultural knowledge, that should be irrelevant. Using data from two forms of Ontario's Grade 9 Assessment of Mathematics, analyses were performed comparing groups of students defined by their teachers' instructional practices. All constructed-response items were tested for DIF using the Mantel Chi-Square, standardized Liu Agresti cumulative common log-odds ratio, and standardized Cox's noncentrality parameter. Items exhibiting moderate to large DIF were subsequently tested for DSF. In contrast to typical DIF or DSF analyses, which inform item development, these analyses have the potential to inform instructional practice.

  18. Differentiating Patients with Parkinson's Disease from Normal Controls Using Gray Matter in the Cerebellum.

    Science.gov (United States)

    Zeng, Ling-Li; Xie, Liang; Shen, Hui; Luo, Zhiguo; Fang, Peng; Hou, Yanan; Tang, Beisha; Wu, Tao; Hu, Dewen

    2017-02-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders in the world. Previous studies have focused on the basal ganglia and cerebral cortices. To date, the cerebellum has not been systematically investigated in patients with PD. In the current study, 45 probable PD patients and 40 age- and gender-matched healthy controls underwent structural magnetic resonance imaging, and we used support vector machines combining with voxel-based morphometry to explore the cerebellar structural changes in the probable PD patients relative to healthy controls. The results revealed that the gray matter alterations were primarily located within the cerebellar Crus I, implying a possible important role of this region in PD. Furthermore, the gray matter alterations in the cerebellum could differentiate the probable PD patients from healthy controls with accuracies of more than 95 % (p cerebellum in the clinical diagnosis of PD.

  19. Differential diagnosis of white matter diseases in the tropics: An overview

    Directory of Open Access Journals (Sweden)

    Pandit Lekha

    2009-01-01

    Full Text Available In hospitals in the tropics, the availability of magnetic resonance imaging (MRI facilities in urban areas and especially in teaching institutions have resulted in white matter diseases being frequently reported in a variety of clinical settings. Unlike the west where multiple sclerosis (MS is the commonest white matter disease encountered, in the tropics, there are myriad causes for the same. Infectious and post infectious disorders probably account for the vast majority of these diseases. Human immunodeficiency virus (HIV infection tops the list of infective conditions. Central nervous system (CNS tuberculosis occasionally presents with patchy parenchymal lesions unaccompanied by meningeal involvement. Human T cell leukemia virus (HTLV infection and cystic inflammatory lesions such as neurocysticercosis are important causes to be considered in the differential diagnosis. Diagnosing post infectious demyelinating disorders is equally challenging since more than a third of cases seen in the tropics do not present with history of past infection or vaccinations. Metabolic and deficiency disorders such as Wernicke′s encephalopathy, osmotic demyelinating syndrome associated with extra pontine lesions and Vitamin B12 deficiency states can occassionaly cause confusion in diagnosis. This review considers a few important disorders which manifest with white matter changes on MRI and create diagnostic difficulties in a population in the tropics.

  20. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks

    Directory of Open Access Journals (Sweden)

    R. Guerrero

    2018-01-01

    Full Text Available White matter hyperintensities (WMH are a feature of sporadic small vessel disease also frequently observed in magnetic resonance images (MRI of healthy elderly subjects. The accurate assessment of WMH burden is of crucial importance for epidemiological studies to determine association between WMHs, cognitive and clinical data; their causes, and the effects of new treatments in randomized trials. The manual delineation of WMHs is a very tedious, costly and time consuming process, that needs to be carried out by an expert annotator (e.g. a trained image analyst or radiologist. The problem of WMH delineation is further complicated by the fact that other pathological features (i.e. stroke lesions often also appear as hyperintense regions. Recently, several automated methods aiming to tackle the challenges of WMH segmentation have been proposed. Most of these methods have been specifically developed to segment WMH in MRI but cannot differentiate between WMHs and strokes. Other methods, capable of distinguishing between different pathologies in brain MRI, are not designed with simultaneous WMH and stroke segmentation in mind. Therefore, a task specific, reliable, fully automated method that can segment and differentiate between these two pathological manifestations on MRI has not yet been fully identified. In this work we propose to use a convolutional neural network (CNN that is able to segment hyperintensities and differentiate between WMHs and stroke lesions. Specifically, we aim to distinguish between WMH pathologies from those caused by stroke lesions due to either cortical, large or small subcortical infarcts. The proposed fully convolutional CNN architecture, called uResNet, that comprised an analysis path, that gradually learns low and high level features, followed by a synthesis path, that gradually combines and up-samples the low and high level features into a class likelihood semantic segmentation. Quantitatively, the proposed CNN

  1. The value of T1-weighted images in the differentiation between MS, white matter lesions, and subcortical arteriosclerotic encephalopathy (SAE)

    Energy Technology Data Exchange (ETDEWEB)

    Uhlenbrock, D.; Sehlen, S.

    1989-07-01

    The aim of the study was to define reliable criteria for the differentiation of MR imaging between patients with MS and with 'vascular' white matter lesions/SAE. We examined 35 patients with proven MS according to the Poser criteria and 35 patients with other white matter lesions and/or SAE. The result is that with MR a differentiation can be achieved provided that T1-weighted spin-echo sequences are included and the different pattern of distribution is considered. MS plaques are predominantly located in the subependymal region, vascular white matter lesions are mainly located in the water-shed of the superficial middle cerebral branches and the deep perforating long medullary vessels in the centrum semiovale. Infratentorial lesions are more often seen in MS. Confluence at the lateral ventricles is frequently accompanied by confluent abnormalities around the third ventricle, Sylvian aqueduct, and fourth ventricle, which is uncommon in SAE. In MS many lesions visible on T2-weighted images have a cellular or intracellular composition that renders them visible also on T1-weighted ones as regions with low signal intensity and more or less distinct boundary. 'Vascular' white matter lesions and SAE mainly represent demyelination and can therefore be seen on T2-weighted images, but corresponding low signal intensity lesions on T1-weighted images are uncommon. In some exceptions there are such lesions with low signal representing lacunar infarcts or widened Virchow-Robin-spaces. (orig.).

  2. Differential recycling of coral and algal dissolved organic matter via the sponge loop

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; van Oevelen, D.; Struck, U.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.

    Corals and macroalgae release large quantities of dissolved organic matter (DOM), one of the largest sources of organic matter produced on coral reefs. By rapidly taking up DOM and transforming it into particulate detritus, coral reef sponges are proposed to play a key role in transferring the

  3. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers

    Science.gov (United States)

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F.

    2015-01-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. PMID:22277302

  4. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers.

    Science.gov (United States)

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F

    2012-04-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Value of analyzing deep gray matter and occipital lobe perfusion to differentiate dementia with Lewy bodies from Alzheimer's disease.

    Science.gov (United States)

    Shimizu, Soichiro; Hanyu, Haruo; Hirao, Kentaro; Sato, Tomohiko; Iwamoto, Toshihiko; Koizumi, Kiyoshi

    2008-12-01

    Dementia with Lewy bodies (DLB) is generally characterized by a decrease in regional cerebral blood flow (rCBF) in the occipital lobe. However, not all patients with DLB have this feature. We explored characteristics of rCBF pattern changes to improve the identification of DLB, in addition to occipital hypoperfusion. The study population comprised 30 patients with probable DLB and 49 patients with probable Alzheimer's disease (AD) who underwent single-photon emission computed tomography. The data were analyzed using Neurological Statistical Image Analysis Software (NEUROSTAT). We established a template of the region of interest (ROI) presenting the parietal lobe, posterior cingulate, striatum, thalamus, and occipital lobe on the standard brain atlas. We then compared the mean Z scores in each ROI between DLB and AD. Moreover, we investigated the value of analyzing relative rCBF changes in both the deep gray matter and occipital lobe in differentiating DLB from AD. The DLB group showed a significant relative rCBF increase in the bilateral striatum and thalamus, and a significant relative rCBF decrease in the bilateral occipital lobe when compared with the AD group. Receiver-operating characteristic analysis revealed that determining the hyperperfusion in the thalamus together with the hypoperfusion in the occipital lobe enabled a more accurate differentiation between DLB and AD than studying individual areas. Studying the relative increase of rCBF in the deep gray matter, and the relative decrease of that in the occipital lobe achieved a high differentiation between DLB and AD. This suggests that determining both an increase and a decrease in rCBF pattern may be important in differentiating between the two diseases.

  6. Value of analyzing deep gray matter and occipital lobe perfusion to differentiate dementia with Lewy bodies from Alzheimer's disease

    International Nuclear Information System (INIS)

    Shimizu, Soichiro; Hanyu, Haruo; Hirao, Kentaro; Sato, Tomohiko; Iwamoto, Toshihiko; Koizumi, Kiyoshi

    2008-01-01

    Dementia with Lewy bodies (DLB) is generally characterized by a decrease in regional cerebral blood flow (rCBF) in the occipital lobe. However, not all patients with DLB have this feature. We explored characteristics of rCBF pattern changes to improve the identification of DLB, in addition to occipital hypoperfusion. The study population comprised 30 patients with probable DLB and 49 patients with probable Alzheimer's disease (AD) who underwent single-photon emission computed tomography. The data were analyzed using Neurological Statistical Image Analysis Soft-ware (NEUROSTAT). We established a template of the region of interest (ROI) presenting the parietal lobe, posterior cingulate, striatum, thalamus, and occipital lobe on the standard brain atlas. We then compared the mean Z scores in each ROI between DLB and AD. Moreover, we investigated the value of analyzing relative rCBF changes in both the deep gray matter and occipital lobe in differentiating DLB from AD. The DLB group showed a significant relative rCBF increase in the bilateral striatum and thalamus, and a significant relative rCBF decrease in the bilateral occipital lobe when compared with the AD group. Receiver-operating characteristic analysis revealed that determining the hyperperfusion in the thalamus together with the hypoperfusion in the occipital lobe enabled a more accurate differentiation between DLB and AD than studying individual areas. Studying the relative increase of rCBF in the deep gray matter, and the relative decrease of that in the occipital lobe achieved a high differentiation between DLB and AD. This suggests that determining both an increase and a decrease in rCBF pattern may be important in differentiating between the two diseases. (author)

  7. Chinese Traditionality Matters: Effects of Differentiated Empowering Leadership on Followers’ Trust in Leaders and Work Outcomes

    OpenAIRE

    Li, S-L; Huo, Y; Long, L-R

    2015-01-01

    From the perspective of the integrative model of organizational trust, this study proposes a multi-level model for whether, how, and when differentiated empowering leadership influences followers’ trust in leaders and their work outcomes. Drawing on a sample of 372 followers from 97 teams in China, it was found that the negative effect of differentiated empowering leadership on followers’ trust in leaders became salient when followers’ Chinese traditionality was low. Moreover, followers’ trus...

  8. Search for black matter through the detection of gravitational micro-lenses in differential photometry

    International Nuclear Information System (INIS)

    Le Guillou, L.

    2003-09-01

    The nature of dark matter is an open question. The search for gravitational microlensing effects is an interesting tool because this effect is strongly dependent on the mass of objects whether they are luminous or not, however this detection method is only sensitive to compact forms of dark matter (MACHOS - massive astronomical halo compact objects), and as a consequence no-baryonic matter like neutrinos or WIMPS (weakly interacting massive particles) can not be detected this way. In the first chapter the author reviews the plausible candidates to black matter. The use of the microlensing effect as a probe of the galactic halo is presented in the second chapter. The third chapter is dedicated to the series of experiments worldwide that focus on the detection of MACHOS. In the fourth chapter the author shows how the DIA (difference image analysis) method may be promising in the study of gravitational microlensing effects. The main part of this work has been the use of the DIA method to process five-year data set collected by the Eros experiment in the small Magellanic cloud (SMC). The data processing line and the results are presented in the fifth and sixth chapters. The results are consistent with previous results given by Eros and they confirm the disparity of the durations of micro-lenses detected in the large and small Magellanic clouds. (A.C.)

  9. Why Classroom Climate Matters for Children High in Anxious Solitude: A Study of Differential Susceptibility

    Science.gov (United States)

    Hughes, Kathleen; Coplan, Robert J.

    2018-01-01

    The goal of the current study was to examine the complex links among anxious solitude, classroom climate, engagement, achievement, and gender. In particular, drawing upon the differential susceptibility hypothesis (Belsky, 1997), we investigated if children high in anxious solitude were particularly sensitive and responsive to the classroom…

  10. A matter of identity — Phenotype and differentiation potential of human somatic stem cells

    Directory of Open Access Journals (Sweden)

    S.E.P. New

    2015-07-01

    Full Text Available Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the “identity” and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs, pediatric adipose-derived stem cells (p-ADSCs in parallel with human neural stem cells (NSCs. We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic

  11. Differential diagnosis among pituitary and juxtasellar tumors on the basis of NMR images

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Tohru; Asato, Renin; Handa, Hajime

    1984-08-01

    Proton nuclear magnetic resonance (NMR) scans were performed on 18 patients with pituitary and parasellar tumors and compared with X-ray computed tomography (CT) scans. NMR images were also compared with the operative findings and the pathological changes in the tumors. NMR scans lack bone artifacts and are superior to X-ray CT scans in terms of soft-tissue contrasts, including the marked gray-white-matter contrast. Pituitary adenomas exhibited a high-intensity on SRsub(2000/1000) and a low-intensity on IRsub(1400/400). The diverse histological changes in tumor tissue are not reflected in the changes in the NMR images. Meningiomas were seen as high-intensity on SRsub(2000/1000) and as low-intensity on IRsub(1400/400). On IR images, meningiomas exhibited a higher intensity than pituitary adenomas. Rathke's cleft cyst showed a high-intensity on SRsub(2000/1000) and a high-intensity with a peripheral low-intensity on IRsub(1400/400). These findings on the NMR scans may contribute to the differential diagnosis, because tumors in parasellar regions have, in general, longer T/sub 1/ relaxation times than brain tissues. Craniopharyngiomas were demonstrated to have two components, a solid part and a cystic part. Both were shown as high-intensity on SRsub(2000/1000). The solid part was seen as low-intensity on IRsub(1600/600) and IRsub(1400/400). The cystic part was shown to be low-intensity on IRsub(1400/400). Cystic-membrane and intracystic-niveau formation were revealed on IRsub(1600/600). In many cases, the craniopharyngioma contains small or large calcifications. It is a drawback of the NMR scans that such calcifications are not visualized. (J.P.N.).

  12. Differential diagnosis among pituitary and juxtasellar tumors on the basis of NMR images

    International Nuclear Information System (INIS)

    Ueda, Tohru; Asato, Renin; Handa, Hajime

    1984-01-01

    Proton nuclear magnetic resonance (NMR) scans were performed on 18 patients with pituitary and parasellar tumors and compared with X-ray computed tomography (CT) scans. NMR images were also compared with the operative findings and the pathological changes in the tumors. NMR scans lack bone artifacts and are superior to X-ray CT scans in terms of soft-tissue contrasts, including the marked gray-white-matter contrast. Pituitary adenomas exhibited a high-intensity on SRsub(2000/1000) and a low-intensity on IRsub(1400/400). The diverse histological changes in tumor tissue are not reflected in the changes in the NMR images. Meningiomas were seen as high-intensity on SRsub(2000/1000) and as low-intensity on IRsub(1400/400). On IR images, meningiomas exhibited a higher intensity than pituitary adenomas. Rathke's cleft cyst showed a high-intensity on SRsub(2000/1000) and a high-intensity with a peripheral low-intensity on IRsub(1400/400). These findings on the NMR scans may contribute to the differential diagnosis, because tumors in parasellar regions have, in general, longer T 1 relaxation times than brain tissues. Craniopharyngiomas were demonstrated to have two components, a solid part and a cystic part. Both were shown as high-intensity on SRsub(2000/1000). The solid part was seen as low-intensity on IRsub(1600/600) and IRsub(1400/400). The cystic part was shown to be low-intensity on IRsub(1400/400). Cystic-membrane and intracystic-niveau formation were revealed on IRsub(1600/600). In many cases, the craniopharyngioma contains small or large calcifications. It is a drawback of the NMR scans that such calcifications are not visualized. (J.P.N.)

  13. Colour-coded fractional anisotropy images: differential visualisation of white-matter tracts - preliminary experience

    International Nuclear Information System (INIS)

    Murata, T.; Higano, S.; Tamura, H.; Mugikura, S.; Takahashi, S.

    2002-01-01

    Diffusion-tensor analysis allows quantitative assessment of diffusion anisotropy. Fractional anisotropy (FA) is commonly used to quantify anisotropy. One of the limitations of FA imaging is, however, that it does not contain information about the directionality of anisotropy and it is therefore difficult to identify white-matter tracts on FA images. Our purpose was to describe a simple method of making composite images containing information about both magnitude and direction of diffusion anisotropy. The composite colour-coded FA images enabled us to identify different adjacent fibre bundles of similar degrees of diffusion anisotropy, and might be helpful in assessment of these fasciculi. (orig.)

  14. The regulation of health care providers' payments when horizontal and vertical differentiation matter.

    Science.gov (United States)

    Bardey, David; Canta, Chiara; Lozachmeur, Jean-Marie

    2012-09-01

    This paper analyzes the regulation of payment schemes for health care providers competing in both quality and product differentiation of their services. The regulator uses two instruments: a prospective payment per patient and a cost reimbursement rate. When the regulator can only use a prospective payment, the optimal price involves a trade-off between the level of quality provision and the level of horizontal differentiation. If this pure prospective payment leads to underprovision of quality and overdifferentiation, a mixed reimbursement scheme allows the regulator to improve the allocation efficiency. This is true for a relatively low level of patients' transportation costs. We also show that if the regulator cannot commit to the level of the cost reimbursement rate, the resulting allocation can dominate the one with full commitment. This occurs when the transportation cost is low or high enough, and the full commitment solution either implies full or zero cost reimbursement. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes.

    Science.gov (United States)

    Lee, Seung-Jin; Kim, Jae-Hong

    2014-01-01

    Ceramic ultrafiltration membranes has drawn increasing attention in drinking water treatment sectors as an alternative to traditional polymeric counterparts, yet only limited information has been made available about the characteristics of ceramic membrane fouling by natural organic matter. The effects of solution chemistry including ionic strength, divalent ion concentration and pH on the flux behavior were comparatively evaluated for ceramic and polymeric ultrafiltration of synthetic water containing model natural organic matter. Filtration characteristics were further probed via resistance-in-series model analysis, fouling visualization using quantum dots, batch adsorption test, contact angle measurement, solute-membrane surface adhesion force measurement, and quantitative comparison of fouling characteristics between ceramic and polymeric membranes. The results collectively suggested that the effects of solution chemistry on fouling behavior of ceramic membranes were generally similar to polymeric counterparts in terms of trends, while the extent varied significantly depending on water quality parameters. Lower fouling tendency and enhanced cleaning efficiency were observed with the ceramic membrane, further promoting the potential for ceramic membrane application to surface water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    Science.gov (United States)

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. © 2016 John Wiley & Sons Ltd.

  17. Why classroom climate matters for children high in anxious solitude: A study of differential susceptibility.

    Science.gov (United States)

    Hughes, Kathleen; Coplan, Robert J

    2018-03-01

    The goal of the current study was to examine the complex links among anxious solitude, classroom climate, engagement, achievement, and gender. In particular, drawing upon the differential susceptibility hypothesis (Belsky, 1997), we investigated if children high in anxious solitude were particularly sensitive and responsive to the classroom environment. Participants were N = 712 children in Grade 3, drawn from the National Institute of Child and Human Development (NICHD) Study of Early Child Care and Youth Development data set. Classroom climate and engagement were assessed using the Classroom Observation Scale (NICHD, 1998). Teachers completed the Teacher Report Form (Achenbach, 1991) as a measure of anxious solitude and the Academic Rating Scale (NICHD, 2010) as a measure of achievement. Hypothesized associations among variables were tested by way of a moderated-mediation model. Among the results, engagement was found to mediate the relation between classroom climate and achievement. In addition, anxious solitude and gender were found to moderate the relation between classroom climate and engagement. Support for the differential susceptibility hypothesis was found, suggesting that children high in anxious solitude may be more reactive (both positively and negatively) to elements of the classroom environment. In addition, gender differences were observed, indicating that boys may be more responsive to the classroom environment as compared with girls. Implications for future research and educational policies are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Effect Of Superfluidity And Differential Rotation Of Quark Matter On Magetic Field Evolution in Neutron Star And Black Hole

    Science.gov (United States)

    Aurongzeb, Deeder

    2010-11-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin

  19. When problem size matters: differential effects of brain stimulation on arithmetic problem solving and neural oscillations.

    Directory of Open Access Journals (Sweden)

    Bruno Rütsche

    Full Text Available The problem size effect is a well-established finding in arithmetic problem solving and is characterized by worse performance in problems with larger compared to smaller operand size. Solving small and large arithmetic problems has also been shown to involve different cognitive processes and distinct electroencephalography (EEG oscillations over the left posterior parietal cortex (LPPC. In this study, we aimed to provide further evidence for these dissociations by using transcranial direct current stimulation (tDCS. Participants underwent anodal (30min, 1.5 mA, LPPC and sham tDCS. After the stimulation, we recorded their neural activity using EEG while the participants solved small and large arithmetic problems. We found that the tDCS effects on performance and oscillatory activity critically depended on the problem size. While anodal tDCS improved response latencies in large arithmetic problems, it decreased solution rates in small arithmetic problems. Likewise, the lower-alpha desynchronization in large problems increased, whereas the theta synchronization in small problems decreased. These findings reveal that the LPPC is differentially involved in solving small and large arithmetic problems and demonstrate that the effects of brain stimulation strikingly differ depending on the involved neuro-cognitive processes.

  20. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    Energy Technology Data Exchange (ETDEWEB)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  1. Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals

    International Nuclear Information System (INIS)

    Wallenborn, J. Grace; Schladweiler, Mette J.; Richards, Judy H.; Kodavanti, Urmila P.

    2009-01-01

    Biological mechanisms underlying the association between particulate matter (PM) exposure and increased cardiovascular health effects are under investigation. Water-soluble metals reaching systemic circulation following pulmonary exposure are likely exerting a direct effect. However, it is unclear whether specific PM-associated metals may be driving this. We hypothesized that exposure to equimolar amounts of five individual PM-associated metals would cause differential pulmonary and cardiac effects. We exposed male WKY rats (14 weeks old) via a single intratracheal instillation (IT) to saline or 1 μmol/kg body weight of zinc, nickel, vanadium, copper, or iron in sulfate form. Responses were analyzed 4, 24, 48, or 96 h after exposure. Pulmonary effects were assessed by bronchoalveolar lavage fluid levels of total cells, macrophages, neutrophils, protein, albumin, and activities of lactate dehydrogenase, γ-glutamyl transferase, and n-acetyl glucosaminidase. Copper induced earlier pulmonary injury/inflammation, while zinc and nickel produced later effects. Vanadium or iron exposure induced minimal pulmonary injury/inflammation. Zinc, nickel, or copper increased serum cholesterol, red blood cells, and white blood cells at different time points. IT of nickel and copper increased expression of metallothionein-1 (MT-1) in the lung. Zinc, nickel, vanadium, and iron increased hepatic MT-1 expression. No significant changes in zinc transporter-1 (ZnT-1) expression were noted in the lung or liver; however, zinc increased cardiac ZnT-1 at 24 h, indicating a possible zinc-specific cardiac effect. Nickel exposure induced an increase in cardiac ferritin 96 h after IT. This data set demonstrating metal-specific cardiotoxicity is important in linking metal-enriched anthropogenic PM sources with adverse health effects.

  2. Differential electrocardiogram efffects in normal and hypertensive rats after inhalation exposure to transition metal rich particulate matter

    Science.gov (United States)

    Inhalation of particulate matter (PM) associated with air pollution causes adverse effects on cardiac function including heightened associations with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. Some of these effects have been attributable to transitio...

  3. Conceptual elaboration versus direct lexical access in WAIS-similarities: differential effects of white-matter lesions and gray matter volumes.

    Science.gov (United States)

    Fernaeus, Sven-Erik; Hellström, Åke

    2017-09-18

    Wechsler Adult Intelligence Scale (WAIS) subscale Similarities have been classified as a test of either verbal comprehension or of inductive reasoning. The reason may be that items divide into two categories. We tested the hypothesis of heterogeneity of items in WAIS-Similarities. Consecutive patients at a memory clinic and healthy controls participated in the study. White-matter hyperintensities (WMHs) and normalized temporal lobe volumes were measured based on Magnetic resonance Imaging (MRI), and tests of verbal memory and attention were used in addition to WAIS-Similarities to collect behavioural data. Factor analysis supported the hypothesis that two factors are involved in the performance of WAIS-similarities: (1) semiautomatic lexical access and (2) conceptual elaboration. These factors were highly correlated but provided discriminative diagnostic information: In logistic regression analyses, scores of the lexical access factor and of the conceptual elaboration factor discriminated patients with mild cognitive impairment from Alzheimer's disease patients and from healthy controls, respectively. High scores of WMH, indicating periventricular white-matter lesions, predicted factor scores of direct lexical access but not those of conceptual elaboration, which were predicted only by medial and lateral temporal lobe volumes.

  4. The effective differential cross section for elastic scattering of electrons by atoms and its use for Monte Carlo simulation of electron passage through matter

    International Nuclear Information System (INIS)

    Sheikin, E G

    2010-01-01

    The effective differential cross section (DCS) for elastic scattering of electrons by atoms is proposed that reproduces known energy dependences for the first and second transport cross sections but provides a total elastic cross section that is significantly small compared with the known energy dependences. The number of elastic collisions of electrons in matter when using the effective DCS in Monte Carlo simulations is significantly lower than that when using the real DCS. The results of our Monte Carlo simulation of electron propagation in aluminium using the proposed DCS are in good agreement with experimental data.

  5. Differential dynamic optical microscopy for the characterization of soft matter: liquid crystal dynamics, volume phase transition of hydrogels, and phase transition of binary mixtures

    Science.gov (United States)

    Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan; Smith, Michael H.; Lyon, L. Andrew

    2011-03-01

    The structure and dynamics of soft matter were studied by differential dynamic optical microscopy. One can retrieve q-space information through image processing and Fourier analysis, even when the feature sizes in real space image are too small to be resolved or even visible in an optical microscope. The temporal sequence of real space images were Fourier transformed, and analyzed for the temporal and spatial fluctuations of power spectrum. Here, we present the results on liquid crystal dynamics and their elastic properties, volume phase transition of hydrogels when their dimensions are sub-micron, and critical opalescence of binary mixtures (water/2,6-lutidine).

  6. Lives matter. Do votes? Invited commentary on "Black lives matter: Differential mortality and the racial composition of the U.S. electorate, 1970-2004".

    Science.gov (United States)

    Purtle, Jonathan

    2015-07-01

    Racial health disparities in the United States are produced and perpetuated through public policies that differentially allocate risks and resources for health. Elected officials have the ability modify the structural determinants of racial health disparities through policy decisions and, through voting, the electorate can influence the extent to which these policy decisions promote health equity. In this commentary, I synthesize research on the voting behavior of electorates and policy decisions and present strategies to foster sociopolitical environments that are conducive to the implementation and enforcement of racial health disparity reduction initiatives. There is a need for research that contributes to a more comprehensive understanding of the role of voting in health policy making processes and further development of empirically-based policy advocacy strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Executive Functions in Healthy Older Adults Are Differentially Related to Macro- and Microstructural White Matter Characteristics of the Cerebral Lobes

    Directory of Open Access Journals (Sweden)

    Sarah Hirsiger

    2017-11-01

    Full Text Available Aging is associated with microstructural white matter (WM changes. WM microstructural characteristics, measured with diffusion tensor imaging (DTI, are different in normal appearing white matter (NAWM and WM hyperintensities (WMH. It is largely unknown how the microstructural properties of WMH are associated with cognition and if there are regional effects for specific cognitive domains. We therefore examined within 200 healthy older participants (a differences in microstructural characteristics of NAWM and WMH per cerebral lobe; and (b the association of macrostructural (WMH volume and microstructural characteristics (within NAWM and WMH separately of each lobe with measures of executive function and processing speed. Multi-modal imaging (i.e., T1, DTI, and FLAIR was used to assess WM properties. The Stroop and the Trail Making Test were used to measure inhibition, task-switching (both components of executive function, and processing speed. We observed that age was associated with deterioration of white matter microstructure of the NAWM, most notably in the frontal lobe. Older participants had larger WMH volumes and lowest fractional anisotropy values within WMH were found in the frontal lobe. Task-switching was associated with cerebral NAWM volume and NAWM volume of all lobes. Processing speed was associated with total NAWM volume, and microstructural properties of parietal NAWM, the parietal WMH, and the temporal NAWM. Task-switching was related to microstructural properties of WMH of the frontal lobe and WMH volume of the parietal lobe. Our results confirm that executive functioning and processing speed are uniquely associated with macro- and microstructural properties of NAWM and WMH. We further demonstrate for the first time that these relationships differ by lobar region. This warrants the consideration of these distinct WM indices when investigating cognitive function.

  8. Differentiating therapy-induced leukoencephalopathy from unmyelinated white matter in children treated for acute lymphoblastic leukemia (ALL)

    Science.gov (United States)

    Reddick, Wilburn E.; Glass, John O.; Pui, Ching-Hon

    2003-05-01

    Reliably detecting subtle therapy-induced leukoencephalopathy in children treated for cancer is a challenging task due to its nearly identical MR properties and location with unmyelinated white matter. T1, T2, PD, and FLAIR images were collected for 44 children aged 1.7-18.7 (median 5.9) years near the start of therapy for ALL. The ICBM atlas and corresponding apriori maps were spatially normalized to each patient and resliced using SPM99 software. A combined imaging set consisting of MR images and WM, GM and CSF apriori maps were then analyzed with a Kohonen Self-Organizing Map. Vectors from hyperintense regions were compared to normal appearing genu vectors from the same patient. Analysis of the distributions of the differences, calculated on T2 and FLAIR images, revealed two distinct groups. The first large group, assumed normal unmyelinated white matter, consisted of 37 patients with changes in FLAIR ranging from 80 to 147 (mean 117-/+17) and T2 ranging from 92 to 217 (mean 144-/+28). The second group, assumed leukoencephalopathy, consisted of seven patients with changes in FLAIR ranging from 154 to 196 (mean 171-/+19) and T2 ranging from 190 to 287 (mean 216-/+33). A threshold was established for both FLAIR (change > 150) and T2 (change > 180).

  9. Perturbation of a slowly rotating black hole by a stationary axisymmetric ring of matter. II. Penrose processes, circular orbits, and differential mass formulae

    International Nuclear Information System (INIS)

    Will, C.M.

    1975-01-01

    We present a detailed description of the phenomenon of energy extraction (''Penrose'') from a slowly rotating black hole perturbed by a stationary axisymmetric ring of matter, and show that the gravitational interaction between the ring and the particles used in the Penrose process must be taken into account. For the case of a black-hole-ring configuration of ''minimum enregy'' we show that a Penrose process can extract further energy, but that by measns of their gravitational forces, the particles used in the process cause the radius of the ring to change, releasing precisely sufficient gravitational potential energy to make up for that extracted. By analyzing the properties of circular test-particle orbits in black-hole-ring spacetimes, we show quantitatively how this change in radius is produced. A ''differential mass formula'' relating the total masses of neighboring black-hole-ring configurations is also derived

  10. Differential impact of white matter hyperintensities on long-term outcomes in ischemic stroke patients with large artery atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Minyoul Baik

    Full Text Available The presence of white matter hyperintensity (WMH is related to poor long-term outcomes in stroke patients. However, the long-term outcome is unknown in patients with both large artery atherosclerosis (LAA and WMH.We investigated the impact of WMH on long-term outcome in patients with LAA. Consecutive patients in a prospective stroke registry were included. Patients were followed for a median of 7.7 years (interquartile range, 5.6-9.7. The degree of WMH was assessed by Fazekas grade on fluid-attenuated inversion recovery images. Total WMH burden was calculated by summation of Fazekas scores in periventricular and deep white matter. Severe WMH was defined as total burden score ≥ 3.Among 2529 patients, 639 patients (25.3% were classified with the LAA subtype. After applying exclusion criteria, the data from 538 patients were analyzed. The mean patient age was 65.7 ± 10.3 years. Severe WMHs were found in 243 patients (45.2%. During follow-up, 200 patients (37.2% died. Cox regression analysis showed that LAA patients with severe WMH had a 1.50-fold (95% CI, 1.12-2.00, p = 0.007 higher death rate compared to those without. In the older age group (≥65 years, Cox regression revealed that patients with severe WMH had a 1.75-fold (95% CI, 1.15-2.65, p = 0.008 higher 5-year death rate, whereas the younger age group did not have this association.The degree of WMH might be a surrogate marker for long-term outcome in patients with LAA. Atherosclerotic burdens in both small and large arteries might impact long-term prognosis in ischemic stroke patients.

  11. Interprofessional collaboration - a matter of differentiation and integration? Theoretical reflections based in the context of Norwegian childcare.

    Science.gov (United States)

    Willumsen, Elisabeth

    2008-08-01

    This paper presents a selection of theoretical approaches illuminating some aspects of interprofessional collaboration, which will be related to theory of contingency as well as to the concepts of differentiation and integration. Theories that describe collaboration on an interpersonal as well as inter-organizational level are outlined and related to dynamic and contextual factors. Implications for the organization of welfare services are elucidated and a categorization of internal and external collaborative forms is proposed. A reflection model is presented in order to analyse the degree of integration in collaborative work and may serve as an analytical tool for addressing the linkage between different levels of collaboration and identifying opportunities and limitations. Some implications related to the legal mandate(s) given to childcare agencies are discussed in relation to the context of childcare in Norway.

  12. Differential Effect of Left vs. Right White Matter Hyperintensity Burden on Functional Decline: The Northern Manhattan Study

    Directory of Open Access Journals (Sweden)

    Mandip S. Dhamoon

    2017-09-01

    Full Text Available Asymmetry of brain dysfunction may disrupt brain network efficiency. We hypothesized that greater left-right white matter hyperintensity volume (WMHV asymmetry was associated with functional trajectories.Methods: In the Northern Manhattan Study, participants underwent brain MRI with axial T1, T2, and fluid attenuated inversion recovery sequences, with baseline interview and examination. Volumetric WMHV distribution across 14 brain regions was determined separately by combining bimodal image intensity distribution and atlas based methods. Participants had annual functional assessments with the Barthel index (BI, range 0–100 over a mean of 7.3 years. Generalized estimating equations (GEE models estimated associations of regional WMHV and regional left-right asymmetry with baseline BI and change over time, adjusted for baseline medical risk factors, sociodemographics, and cognition, and stroke and myocardial infarction during follow-up.Results: Among 1,195 participants, greater WMHV asymmetry in the parietal lobes (−8.46 BI points per unit greater WMHV on the right compared to left, 95% CI −3.07, −13.86 and temporal lobes (−2.48 BI points, 95% CI −1.04, −3.93 was associated with lower overall function. Greater WMHV asymmetry in the parietal lobes (−1.09 additional BI points per year per unit greater WMHV on the left compared to right, 95% CI −1.89, −0.28 was independently associated with accelerated functional decline.Conclusions: In this large population-based study with long-term repeated measures of function, greater regional WMHV asymmetry was associated with lower function and functional decline. In addition to global WMHV, WHMV asymmetry may be an important predictor of long-term functional status.

  13. Differential Effect of Left vs. Right White Matter Hyperintensity Burden on Functional Decline: The Northern Manhattan Study.

    Science.gov (United States)

    Dhamoon, Mandip S; Cheung, Ying-Kuen; Bagci, Ahmet; Alperin, Noam; Sacco, Ralph L; Elkind, Mitchell S V; Wright, Clinton B

    2017-01-01

    Asymmetry of brain dysfunction may disrupt brain network efficiency. We hypothesized that greater left-right white matter hyperintensity volume (WMHV) asymmetry was associated with functional trajectories. Methods: In the Northern Manhattan Study, participants underwent brain MRI with axial T1, T2, and fluid attenuated inversion recovery sequences, with baseline interview and examination. Volumetric WMHV distribution across 14 brain regions was determined separately by combining bimodal image intensity distribution and atlas based methods. Participants had annual functional assessments with the Barthel index (BI, range 0-100) over a mean of 7.3 years. Generalized estimating equations (GEE) models estimated associations of regional WMHV and regional left-right asymmetry with baseline BI and change over time, adjusted for baseline medical risk factors, sociodemographics, and cognition, and stroke and myocardial infarction during follow-up. Results: Among 1,195 participants, greater WMHV asymmetry in the parietal lobes (-8.46 BI points per unit greater WMHV on the right compared to left, 95% CI -3.07, -13.86) and temporal lobes (-2.48 BI points, 95% CI -1.04, -3.93) was associated with lower overall function. Greater WMHV asymmetry in the parietal lobes (-1.09 additional BI points per year per unit greater WMHV on the left compared to right, 95% CI -1.89, -0.28) was independently associated with accelerated functional decline. Conclusions: In this large population-based study with long-term repeated measures of function, greater regional WMHV asymmetry was associated with lower function and functional decline. In addition to global WMHV, WHMV asymmetry may be an important predictor of long-term functional status.

  14. Black lives matter: Differential mortality and the racial composition of the U.S. electorate, 1970-2004.

    Science.gov (United States)

    Rodriguez, Javier M; Geronimus, Arline T; Bound, John; Dorling, Danny

    2015-07-01

    Excess mortality in marginalized populations could be both a cause and an effect of political processes. We estimate the impact of mortality differentials between blacks and whites from 1970 to 2004 on the racial composition of the electorate in the US general election of 2004 and in close statewide elections during the study period. We analyze 73 million US deaths from the Multiple Cause of Death files to calculate: (1) Total excess deaths among blacks between 1970 and 2004, (2) total hypothetical survivors to 2004, (3) the probability that survivors would have turned out to vote in 2004, (4) total black votes lost in 2004, and (5) total black votes lost by each presidential candidate. We estimate 2.7 million excess black deaths between 1970 and 2004. Of those, 1.9 million would have survived until 2004, of which over 1.7 million would have been of voting-age. We estimate that 1 million black votes were lost in 2004; of these, 900,000 votes were lost by the defeated Democratic presidential nominee. We find that many close state-level elections over the study period would likely have had different outcomes if voting age blacks had the mortality profiles of whites. US black voting rights are also eroded through felony disenfranchisement laws and other measures that dampen the voice of the US black electorate. Systematic disenfranchisement by population group yields an electorate that is unrepresentative of the full interests of the citizenry and affects the chance that elected officials have mandates to eliminate health inequality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Paleocene Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic

    Science.gov (United States)

    Schouten, Stefan; Woltering, Martijn; Rijpstra, W. Irene C.; Sluijs, Appy; Brinkhuis, Henk; Sinninghe Damsté, Jaap S.

    2007-06-01

    A study of upper Paleocene-lower Eocene (P-E) sediments deposited on the Lomonosov Ridge in the central Arctic Ocean reveals relatively high abundances of terrestrial biomarkers. These include dehydroabietane and simonellite derived from conifers (gymnosperms) and a tetra-aromatic triterpenoid derived from angiosperms. The relative percentage of the angiosperm biomarker of the summed angiosperm + conifer biomarkers was increased at the end of the Paleocene-Eocene thermal maximum (PETM), different when observed with pollen counts which showed a relative decrease in angiosperm pollen. Stable carbon isotopic analysis of these biomarkers shows that the negative carbon isotope excursion (CIE) during the PETM amounts to 3‰ for both conifer biomarkers, dehydroabietane and simonellite, comparable to the magnitude of the CIE inferred from marine carbonates, but significantly lower than the 4.5‰ of the terrestrial C 29n-alkane [M. Pagani, N. Pedentchouk, M. Huber, A. Sluijs, S. Schouten, H. Brinkhuis, J.S. Sinninghe Damsté, G.R. Dickens, and the IODP Expedition 302 Expedition Scientists (2006), Arctic's hydrology during global warming at the Paleocene-Eocene thermal maximum. Nature, 442, 671-675.], which is a compound sourced by both conifers and angiosperms. Conspicuously, the angiosperm-sourced aromatic triterpane shows a much larger CIE of 6‰ and suggests that angiosperms increased in their carbon isotopic fractionation during the PETM. Our results thus indicate that the 4.5‰ C 29n-alkane CIE reported previously represents the average CIE of conifers and angiosperms at this site and suggest that the large and variable CIE observed in terrestrial records may be partly explained by the variable contributions of conifers and angiosperms. The differential response in isotopic fractionation of angiosperms and conifers points to different physiological responses of these vegetation types to the rise in temperature, humidity, and greenhouse gases during the PETM.

  16. Differential cross section study of fragment production, at small angle, in relativistic heavy ion collisions. Application at a calculation of heavy ion beam transport in the matter

    International Nuclear Information System (INIS)

    Morel, P.

    1992-02-01

    Relativistic heavy ion collisions present the opportunity of creating in laboratory small volumes of hot, dense nuclear matter. On the experimental point of view, the collision events are characterized by a great number of fragments, especially in the direction of the projectile. The first part is devoted to a survey of relativistic heavy ion physics. Then, we present two experimental set-ups which permit, in particular, the analyse of light fragment production at small angles. We present experimental results concerning light projectiles on Ca, Nb, Pb targets, with energies from 200 A.MeV up to 600 A.MeV. Different aspects of the collision are put in evidence. Momentum and charge differential cross section are extrapolated to other projectile/target systems; that is used in a transport calculation of Ne ions in a target of biological interest (water), with a collimator. We show that nuclear fragmentation produces a dispersion in the spatial and energy distributions, and that one light fragments have a range greater than the projectile range. That last point causes a distortion of the Bragg curve, and that distortion must be taken into account for the application of heavy ions to radiotherapy problems. 95 figs., 8 tabs

  17. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry.

    Directory of Open Access Journals (Sweden)

    Marjorie Dole

    Full Text Available In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG and the superior temporal Sulcus (STS in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution

  18. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry.

    Science.gov (United States)

    Dole, Marjorie; Meunier, Fanny; Hoen, Michel

    2013-01-01

    In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG) and the superior temporal Sulcus (STS) in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution anomalies and the

  19. Quantifying Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Quantifying Matter explains how scientists learned to measure matter and quantify some of its most fascinating and useful properties. It presents many of the most important intellectual achievements and technical developments that led to the scientific interpretation of substance. Complete with full-color photographs, this exciting new volume describes the basic characteristics and properties of matter. Chapters include:. -Exploring the Nature of Matter. -The Origin of Matter. -The Search for Substance. -Quantifying Matter During the Scientific Revolution. -Understanding Matter's Electromagnet

  20. Search for black matter through the detection of gravitational micro-lenses in differential photometry; Recherche de matiere noire galactique par detection de microlentilles gravitationnelles en photometrie differentielle

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, L

    2003-09-01

    The nature of dark matter is an open question. The search for gravitational microlensing effects is an interesting tool because this effect is strongly dependent on the mass of objects whether they are luminous or not, however this detection method is only sensitive to compact forms of dark matter (MACHOS - massive astronomical halo compact objects), and as a consequence no-baryonic matter like neutrinos or WIMPS (weakly interacting massive particles) can not be detected this way. In the first chapter the author reviews the plausible candidates to black matter. The use of the microlensing effect as a probe of the galactic halo is presented in the second chapter. The third chapter is dedicated to the series of experiments worldwide that focus on the detection of MACHOS. In the fourth chapter the author shows how the DIA (difference image analysis) method may be promising in the study of gravitational microlensing effects. The main part of this work has been the use of the DIA method to process five-year data set collected by the Eros experiment in the small Magellanic cloud (SMC). The data processing line and the results are presented in the fifth and sixth chapters. The results are consistent with previous results given by Eros and they confirm the disparity of the durations of micro-lenses detected in the large and small Magellanic clouds. (A.C.)

  1. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    Directory of Open Access Journals (Sweden)

    Maren Strenziok

    Full Text Available Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the

  2. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    Science.gov (United States)

    Strenziok, Maren; Greenwood, Pamela M; Santa Cruz, Sophia A; Thompson, James C; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to

  3. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Cross, Janet V; Franco-Lira, Maricela; Aragón-Flores, Mariana; Kavanaugh, Michael; Torres-Jardón, Ricardo; Chao, Chih-Kai; Thompson, Charles; Chang, Jing; Zhu, Hongtu; D'Angiulli, Amedeo

    2013-01-01

    Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrP(C)) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrP(C) and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 ± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrP(C) (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrP(C) compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public

  4. The value of diffusion tensor imaging in the differential diagnosis of subcortical ischemic vascular dementia and Alzheimer's disease in patients with only mild white matter alterations on T2-weighted images

    International Nuclear Information System (INIS)

    Fu, Jian-Liang; Zhang, Ting; Chang, Cheng; Zhang, Yu-Zhen; Li, Wen-Bin

    2012-01-01

    Background: Diffusion tensor imaging (DTI) is a form of functional magnetic resonance imaging (MRI) that allows examination of the microstructural integrity of white matter in the brain. Dementia is a neurodegenerative disease, and DTI can provide indirect insights of the microstructural characteristics of brains in individuals with different forms of dementia. Purpose: To evaluate the value of DTI in the diagnosis and differential diagnosis of patients with subcortical ischemic vascular dementia (SIVD) and Alzheimer's disease (AD). Material and Methods: The study included 40 patients (20 AD patients and 20 SIVD patients) and 20 normal controls (NC). After routine MRI and DTI, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were measured and compared in regions of interest (ROI). Results: Compared to NC and AD patients, SIVD patients had lower FA values and higher ADC values in the inferior-fronto-occipital fascicles (IFOF), genu of the corpus callosum (GCC), splenium of the corpus callosum (SCC), and superior longitudinal fasciculus (SLF). Compared to controls and SIVD patients, AD patients had lower FA values in the anterior frontal lobe, temporal lobe, hippocampus, IFOF, GCC, and CF; and higher ADC values in the temporal lobe and hippocampus. Conclusion: DTI can be used to estimate the white matter impairment in dementia patients. There were significant regional reductions of FA values and heightened ADC values in multiple regions in SIVD patients compared to AD patients. When compared with conventional MRI, DTI may provide a more objective method for the differential diagnosis of SIVD and AD disease patients who have only mild white matter alterations on T2-weighted imaging

  5. The value of diffusion tensor imaging in the differential diagnosis of subcortical ischemic vascular dementia and Alzheimer's disease in patients with only mild white matter alterations on T2-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jian-Liang; Zhang, Ting (Dept. of Neurology, Shanghai Jiaotong Univ. Affiliated Sixth People' s Hospital, Shanghai (China)); Chang, Cheng; Zhang, Yu-Zhen; Li, Wen-Bin (Inst. of Diagnostic and Interventional Radiology, Shanghai Jiaotong Univ. Affiliated Sixth People' s Hospital, Shanghai (China)), Email: liwenbin@sh163.net

    2012-04-15

    Background: Diffusion tensor imaging (DTI) is a form of functional magnetic resonance imaging (MRI) that allows examination of the microstructural integrity of white matter in the brain. Dementia is a neurodegenerative disease, and DTI can provide indirect insights of the microstructural characteristics of brains in individuals with different forms of dementia. Purpose: To evaluate the value of DTI in the diagnosis and differential diagnosis of patients with subcortical ischemic vascular dementia (SIVD) and Alzheimer's disease (AD). Material and Methods: The study included 40 patients (20 AD patients and 20 SIVD patients) and 20 normal controls (NC). After routine MRI and DTI, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were measured and compared in regions of interest (ROI). Results: Compared to NC and AD patients, SIVD patients had lower FA values and higher ADC values in the inferior-fronto-occipital fascicles (IFOF), genu of the corpus callosum (GCC), splenium of the corpus callosum (SCC), and superior longitudinal fasciculus (SLF). Compared to controls and SIVD patients, AD patients had lower FA values in the anterior frontal lobe, temporal lobe, hippocampus, IFOF, GCC, and CF; and higher ADC values in the temporal lobe and hippocampus. Conclusion: DTI can be used to estimate the white matter impairment in dementia patients. There were significant regional reductions of FA values and heightened ADC values in multiple regions in SIVD patients compared to AD patients. When compared with conventional MRI, DTI may provide a more objective method for the differential diagnosis of SIVD and AD disease patients who have only mild white matter alterations on T2-weighted imaging

  6. DOES IT MATTER WHERE I LIVE IN WESTERN-EUROPE - AN ANALYSIS OF REGIONAL MORTALITY DIFFERENTIALS IN BELGIUM, GERMANY AND THE NETHERLANDS

    NARCIS (Netherlands)

    VANDERVEEN, WJ

    1994-01-01

    Regional differentials in life expectancy at birth during the 1980s in Belgium, The Netherlands and some parts of the former Federal Republic of Germany are presented and commented upon. Life expectancy at birth during the 1980s was highest in The Netherlands, and lowest in some parts of southern

  7. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase + and OLIG2 + oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho + oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1 + and GRIN2A + hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2 + granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling was performed. • CPZ decreased

  8. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Hasegawa-Baba, Yasuko [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase{sup +} and OLIG2{sup +} oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho{sup +} oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1{sup +} and GRIN2A{sup +} hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2{sup +} granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling

  9. Dark Matter

    Directory of Open Access Journals (Sweden)

    Einasto J.

    2011-06-01

    Full Text Available I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic web.

  10. Differential chemical fractionation of dissolved organic matter during sorption by Fe mineral phases in a tropical soil from the Luquillo Critical Zone Observatory

    Science.gov (United States)

    Plante, A. F.; Coward, E.; Ohno, T.; Thompson, A.

    2017-12-01

    Fe-bearing mineral phases contribute substantially to adsorption and stabilization of soil organic matter (SOM), due largely to their high specific surface area (SSA) and reactivity. While the importance of adsorption onto mineral surfaces has been well-elucidated, selectivity of various mineral and organic phases remains poorly understood. The goals of this work were to: 1) quantify the contributions of Fe-minerals of varying crystallinity to dissolved organic matter (DOM) sorption, and 2) characterize the molecular fractionation of DOM induced by reactions at the mineral interface, using a highly-weathered Oxisol from the Luquillo Critical Zone Observatory (LCZO). Three selective dissolution experiments targeting Fe-mineral phases were followed by specific surface area (SSA) analysis of the residues and characterization of extracted DOM by high resolution mass spectrometry (FT-ICR-MS). Fe-depleted extraction residue samples, untreated control soil samples, and Fe-enriched ferrihydrite-coated soil samples were then subjected to a batch sorption experiment with litter-derived DOM. Results of selective dissolution experiments indicated that a substantial proportion of soil SSA was derived from extracted Fe-bearing phases, and FT-ICR-MS analysis of extracted DOM revealed distinct chemical signatures. Sorbed C concentrations were well correlated with Fe contents induced by treatments, and thus SSA. Molecular characterization of the DOM post-sorption indicated that poorly crystalline Fe phases preferentially adsorbed highly unsaturated aromatic compounds, and higher-crystallinity Fe phases were associated with more aliphatic compounds. These findings suggests that molecular fractionation via organomineral complexation may act as a physicochemical filter of DOM released to the critical zone.

  11. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  12. Speech Matters

    DEFF Research Database (Denmark)

    Hasse Jørgensen, Stina

    2011-01-01

    About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011.......About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011....

  13. Memory Matters

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Memory Matters KidsHealth / For Kids / Memory Matters What's in ... of your complex and multitalented brain. What Is Memory? When an event happens, when you learn something, ...

  14. Dark Matter

    Indian Academy of Sciences (India)

    What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.

  15. D matter

    International Nuclear Information System (INIS)

    Shiu, Gary; Wang Liantao

    2004-01-01

    We study the properties and phenomenology of particlelike states originating from D branes whose spatial dimensions are all compactified. They are nonperturbative states in string theory and we refer to them as D matter. In contrast to other nonperturbative objects such as 't Hooft-Polyakov monopoles, D-matter states could have perturbative couplings among themselves and with ordinary matter. The lightest D particle (LDP) could be stable because it is the lightest state carrying certain (integer or discrete) quantum numbers. Depending on the string scale, they could be cold dark matter candidates with properties similar to that of WIMPs or wimpzillas. The spectrum of excited states of D matter exhibits an interesting pattern which could be distinguished from that of Kaluza-Klein modes, winding states, and string resonances. We speculate about possible signatures of D matter from ultrahigh energy cosmic rays and colliders

  16. Dark Matter

    International Nuclear Information System (INIS)

    Holt, S. S.; Bennett, C. L.

    1995-01-01

    These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database

  17. White matter abnormalities in the anterior temporal lobe suggest the side of the seizure foci in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Y.; Yagishita, A. [Tokyo Metropolitan Neurological Hospital, Department of Neuroradiology, Fuchu, Tokyo (Japan); Arai, N. [Tokyo Metropolitan Neurological Institute, Department of Clinical Neuropathology, Fuchu, Tokyo (Japan)

    2006-07-15

    White matter abnormalities in the anterior temporal lobe (WAATL) are sometimes observed on magnetic resonance (MR) images of patients with temporal lobe epilepsy (TLE). Our purpose was to determine whether WAATL could indicate if the seizure foci are ipsilateral on electroencephalograms (EEG) in TLE patients. We reviewed 112 consecutive patients with medically intractable TLE. We compared the side of seizure foci on EEG (preoperative and intraoperative) and MR images. Both loss of gray-white matter demarcation and increased signal intensity changes in the anterior white matter (positive WAATL) were observed in 54 of 112 patients (48.2%) with TLE. WAATL were present on the same side as the seizure foci on preoperative intracranial EEG with subdural electrodes (iEEG) and on intraoperative electrocorticography (ECG) in all the patients. In 47 patients, MR images showed WAATL and focal lesions that were possibly epileptogenic for TLE. In 2 of the 47 patients, the seizure foci on iEEG and ECG were contralateral to the focal lesion; in the remaining 45 patients, the seizure foci on surface EEG (sEEG) and ECG and the focal lesion were on the same side. In three patients, no focal lesions were seen but WAATL were present on the same side as the seizure foci on sEEG and ECG. In four patients, MR images showed focal lesions for which epileptogenicity was questionable, and WAATL on the same side as the seizure foci on EEG. WAATL are clinically useful because they indicate the side of the seizure foci. (orig.)

  18. White matter abnormalities in the anterior temporal lobe suggest the side of the seizure foci in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Adachi, Y.; Yagishita, A.; Arai, N.

    2006-01-01

    White matter abnormalities in the anterior temporal lobe (WAATL) are sometimes observed on magnetic resonance (MR) images of patients with temporal lobe epilepsy (TLE). Our purpose was to determine whether WAATL could indicate if the seizure foci are ipsilateral on electroencephalograms (EEG) in TLE patients. We reviewed 112 consecutive patients with medically intractable TLE. We compared the side of seizure foci on EEG (preoperative and intraoperative) and MR images. Both loss of gray-white matter demarcation and increased signal intensity changes in the anterior white matter (positive WAATL) were observed in 54 of 112 patients (48.2%) with TLE. WAATL were present on the same side as the seizure foci on preoperative intracranial EEG with subdural electrodes (iEEG) and on intraoperative electrocorticography (ECG) in all the patients. In 47 patients, MR images showed WAATL and focal lesions that were possibly epileptogenic for TLE. In 2 of the 47 patients, the seizure foci on iEEG and ECG were contralateral to the focal lesion; in the remaining 45 patients, the seizure foci on surface EEG (sEEG) and ECG and the focal lesion were on the same side. In three patients, no focal lesions were seen but WAATL were present on the same side as the seizure foci on sEEG and ECG. In four patients, MR images showed focal lesions for which epileptogenicity was questionable, and WAATL on the same side as the seizure foci on EEG. WAATL are clinically useful because they indicate the side of the seizure foci. (orig.)

  19. Exploring the mirror matter interpretation of the DAMA experiment: Has the dark matter problem been solved?

    OpenAIRE

    Foot, R.

    2004-01-01

    The self consistency between the impressive DAMA annual modulation signal and the differential energy spectrum is an important test for dark matter candidates.Mirror matter-type dark matter passes this test while other dark matter candidates, including standard (spin-independent) WIMPs and mini-electric charged particle dark matter, do not do so well.We argue that the unique properties of mirror matter-type dark matter seem to be just those required to fully explain the data, suggesting that ...

  20. Dark Matter

    International Nuclear Information System (INIS)

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-01-01

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter

  1. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  2. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  3. Dirac matter

    CERN Document Server

    Rivasseau, Vincent; Fuchs, Jean-Nöel

    2017-01-01

    This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...

  4. Partial differential equations

    CERN Document Server

    Levine, Harold

    1997-01-01

    The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.

  5. Quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Csernai, L.; Kampert, K. H.

    1994-10-15

    Precisely one decade ago the GSI (Darmstadt)/LBL (Berkeley) Collaboration at the Berkeley Bevalac reported clear evidence for collective sidewards flow in high energy heavy ion collisions. This milestone observation clearly displayed the compression and heating up of nuclear matter, providing new insights into how the behaviour of nuclear matter changes under very different conditions. This year, evidence for azimuthally asymmetric transverse flow at ten times higher projectile energy (11 GeV per nucleon gold on gold collisions) was presented by the Brookhaven E877 collaboration at the recent European Research Conference on ''Physics of High Energy Heavy Ion Collisions'', held in Helsinki from 17-22 June.

  6. Dark Matter

    Indian Academy of Sciences (India)

    As if this was not enough, it turns out that if our knowledge of ... are thought to contain dark matter, although the evidences from them are the .... protons, electrons, neutrons ... ratio of protons to neutrons was close to unity then as they were in ...

  7. Quantum matter

    International Nuclear Information System (INIS)

    Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin

    2008-01-01

    The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)

  8. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  9. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  10. Interstellar matter

    International Nuclear Information System (INIS)

    Mezger, P.G.

    1978-01-01

    An overview of the formation of our galaxy is presented followed by a summary of recent work in star formation and related topics. Selected discussions are given on interstellar matter including absorption characteristics of dust, the fully ionised component of the ISM and the energy density of lyc-photons in the solar neighbourhood and the diffuse galactic IR radiation

  11. Dark Matter

    Indian Academy of Sciences (India)

    The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...

  12. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Dark Matter

    International Nuclear Information System (INIS)

    Audouze, J.; Tran Thanh Van, J.

    1988-01-01

    The book begins with the papers devoted to the experimental search of signatures of the dark matter which governs the evolution of the Universe as a whole. A series of contributions describe the presently considered experimental techniques (cryogenic detectors, supraconducting detectors...). A real dialogue concerning these techniques has been instaured between particle physicists and astrophysicists. After the progress report of the particle physicists, the book provides the reader with an updated situation concerning the research in cosmology. The second part of the book is devoted to the analysis of the backgrounds at different energies such as the possible role of the cooling flows in the constitution of massive galactic halos. Any search of dark matter implies necessarily the analysis of the spatial distributions of the large scale structures of the Universe. This report is followed by a series of statistical analyses of these distributions. These analyses concern mainly universes filled up with cold dark matter. The last paper of this third part concerns the search of clustering in the spatial distribution of QSOs. The presence of dark matter should affect the solar neighborhood and related to the existence of galactic haloes. The contributions are devoted to the search of such local dark matter. Primordial nucleosynthesis provides a very powerful tool to set up quite constraining limitations on the overall baryonic density. Even if on takes into account the inhomogeneities in density possibly induced by the Quark-Hadron transition, this baryonic density should be much lower than the overall density deduced from the dynamical models of Universe or the inflationary theories

  14. Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Lee, Seung Mu

    1989-02-01

    This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.

  15. Quark matter

    International Nuclear Information System (INIS)

    Csernai, L.; Kampert, K.H.

    1994-01-01

    Precisely one decade ago the GSI (Darmstadt)/LBL (Berkeley) Collaboration at the Berkeley Bevalac reported clear evidence for collective sidewards flow in high energy heavy ion collisions. This milestone observation clearly displayed the compression and heating up of nuclear matter, providing new insights into how the behaviour of nuclear matter changes under very different conditions. This year, evidence for azimuthally asymmetric transverse flow at ten times higher projectile energy (11 GeV per nucleon gold on gold collisions) was presented by the Brookhaven E877 collaboration at the recent European Research Conference on ''Physics of High Energy Heavy Ion Collisions'', held in Helsinki from 17-22 June

  16. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...

  17. Media Matter

    Directory of Open Access Journals (Sweden)

    Holger Pötzsch

    2017-02-01

    Full Text Available The present contribution maps materialist advances in media studies. Based on the assumption that matter and materiality constitute significant aspects of communication processes and practices, I introduce four fields of inquiry - technology, political economy, ecology, and the body - and argue that these perspectives enable a more comprehensive understanding of the implications of contemporary technologically afforded forms of interaction. The article shows how each perspective can balance apologetic and apocalyptic approaches to the impact of in particular digital technologies, before it demonstrates the applicability of an integrated framework with reference to the techno-politics of NSA surveillance and the counter-practices of WikiLeaks.

  18. Play Matters

    DEFF Research Database (Denmark)

    Sicart (Vila), Miguel Angel

    ? In Play Matters, Miguel Sicart argues that to play is to be in the world; playing is a form of understanding what surrounds us and a way of engaging with others. Play goes beyond games; it is a mode of being human. We play games, but we also play with toys, on playgrounds, with technologies and design......, but not necessarily fun. Play can be dangerous, addictive, and destructive. Along the way, Sicart considers playfulness, the capacity to use play outside the context of play; toys, the materialization of play--instruments but also play pals; playgrounds, play spaces that enable all kinds of play; beauty...

  19. Image quality and radiation dose of brain computed tomography in children: effects of decreasing tube voltage from 120 kVp to 80 kVp

    International Nuclear Information System (INIS)

    Park, Ji Eun; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin

    2017-01-01

    Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose. (orig.)

  20. Image quality and radiation dose of brain computed tomography in children: effects of decreasing tube voltage from 120 kVp to 80 kVp.

    Science.gov (United States)

    Park, Ji Eun; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin

    2017-05-01

    Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose.

  1. Image quality and radiation dose of brain computed tomography in children: effects of decreasing tube voltage from 120 kVp to 80 kVp

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun [Kyung Hee University Hospital, Department of Radiology, Graduate School, Seoul (Korea, Republic of); Choi, Young Hun [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of)

    2017-05-15

    Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose. (orig.)

  2. Image quality at synthetic brain magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi; Cho, Seung Hyun; Kim, Won Hwa; Kim, Hye Jung [Kyungpook National University Hospital, Department of Radiology, Daegu (Korea, Republic of); Choi, Young Hun; Cheon, Jung-Eun; Kim, In-One [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, Seoul (Korea, Republic of); Cho, Hyun-Hae [Ewha Womans University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun-Kyoung [Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of); Park, Sook-Hyun [Kyungpook National University Hospital, Department of Pediatrics, Daegu (Korea, Republic of); Hwang, Moon Jung [GE Healthcare, MR Applications and Workflow, Seoul (Korea, Republic of)

    2017-11-15

    The clinical application of the multi-echo, multi-delay technique of synthetic magnetic resonance imaging (MRI) generates multiple sequences in a single acquisition but has mainly been used in adults. To evaluate the image quality of synthetic brain MR in children compared with that of conventional images. Twenty-nine children (median age: 6 years, range: 0-16 years) underwent synthetic and conventional imaging. Synthetic (T2-weighted, T1-weighted and fluid-attenuated inversion recovery [FLAIR]) images with settings matching those of the conventional images were generated. The overall image quality, gray/white matter differentiation, lesion conspicuity and image degradations were rated on a 5-point scale. The relative contrasts were assessed quantitatively and acquisition times for the two imaging techniques were compared. Synthetic images were inferior due to more pronounced image degradations; however, there were no significant differences for T1- and T2-weighted images in children <2 years old. The quality of T1- and T2-weighted images were within the diagnostically acceptable range. FLAIR images showed greatly reduced quality. Gray/white matter differentiation was comparable or better in synthetic T1- and T2-weighted images, but poorer in FLAIR images. There was no effect on lesion conspicuity. Synthetic images had equal or greater relative contrast. Acquisition time was approximately two-thirds of that for conventional sequences. Synthetic T1- and T2-weighted images were diagnostically acceptable, but synthetic FLAIR images were not. Lesion conspicuity and gray/white matter differentiation were comparable to conventional MRI. (orig.)

  3. MRI of laminar heterotopic grey matter

    International Nuclear Information System (INIS)

    Vahldiek, G.; Terwey, B.; Hanefeld, F.; Sperner, J.

    1990-01-01

    In one baby and 2 infants who presented with psychomotor retardation and epilepsy laminar heterotopic grey matter was demonstrated via magnetic resonance imaging. Laminar heterotopia is a rare migrational disorder with bilateral symmetric ribbons of grey matter within the centrum semiovale, separated from ventricular walls and from obviously normal-sized cortex by broad layers of white matter. The heterotopic grey matter has a signal intensity which is isointense compared with that of normal cortex irrespective of image weighting. On account of this signal behaviour differentiation against other white matter diseases is easy. The knowledge of these pathognomonic findings facilitates correct diagnosis, especially during the first and the second year of life, when signal intensities of white and grey matter differ from normal findings because of the occasionally delayed myelination process. Therefore, further diagnostic procedures can be avoided and early counseling of parents is possible. (orig.) [de

  4. White matter alterations in neurodegenerative and vascular dementia

    International Nuclear Information System (INIS)

    Supprian, T.; Kessler, H.; Falkai, P.; Retz, W.; Roesler, M.; Grunwald, I.; Reith, W.

    2003-01-01

    Due to a significant overlap of the two syndromes, differentiation of degenerative dementia of the Alzheimer-type from vascular dementia may be difficult even when imaging studies are available. White matter changes occur in many patients suffering from Alzheimer's disease. Little is known about the impact of white matter changes on the course and clinical presentation of Alzheimer's disease. High sensitivity of MRI in the detection of white matter alterations may account for over-diagnosing vascular dementia. The clinical significance of white matter alterations in dementia is still a matter of debate. The article reviews current concepts about the role of white matter alterations in dementia. (orig.) [de

  5. Compact bifluid hybrid stars: hadronic matter mixed with self-interacting fermionic asymmetric dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Somnath; Basu, D.N. [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Atta, Debasis [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Government General Degree College, West Bengal (India); Imam, Kouser [HBNI, Variable Energy Cyclotron Centre, Kolkata (India); Aliah University, Department of Physics, Kolkata (India); Samanta, C. [Virginia Military Institute, Department of Physics and Astronomy, Lexington, VA (United States)

    2017-07-15

    The masses and radii of non-rotating and rotating configurations of pure hadronic stars mixed with self-interacting fermionic asymmetric dark matter are calculated within the two-fluid formalism of stellar structure equations in general relativity. The Equation of State (EoS) of nuclear matter is obtained from the density dependent M3Y effective nucleon-nucleon interaction. We consider the dark matter particle mass of 1 GeV. The EoS of self-interacting dark matter is taken from two-body repulsive interactions of the scale of strong interactions. We explore the conditions of equal and different rotational frequencies of nuclear matter and dark matter and find that the maximum mass of differentially rotating stars with self-interacting dark matter to be ∝1.94 M {sub CircleDot} with radius ∝10.4 km. (orig.)

  6. Marginal Matter

    Science.gov (United States)

    van Hecke, Martin

    2013-03-01

    All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.

  7. Constraint Differentiation

    DEFF Research Database (Denmark)

    Mödersheim, Sebastian Alexander; Basin, David; Viganò, Luca

    2010-01-01

    We introduce constraint differentiation, a powerful technique for reducing search when model-checking security protocols using constraint-based methods. Constraint differentiation works by eliminating certain kinds of redundancies that arise in the search space when using constraints to represent...... results show that constraint differentiation substantially reduces search and considerably improves the performance of OFMC, enabling its application to a wider class of problems....

  8. Differential manifolds

    CERN Document Server

    Kosinski, Antoni A

    2007-01-01

    The concepts of differential topology form the center of many mathematical disciplines such as differential geometry and Lie group theory. Differential Manifolds presents to advanced undergraduates and graduate students the systematic study of the topological structure of smooth manifolds. Author Antoni A. Kosinski, Professor Emeritus of Mathematics at Rutgers University, offers an accessible approach to both the h-cobordism theorem and the classification of differential structures on spheres.""How useful it is,"" noted the Bulletin of the American Mathematical Society, ""to have a single, sho

  9. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...

  10. Baryonic matter and beyond

    OpenAIRE

    Fukushima, Kenji

    2014-01-01

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  11. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  12. Front Matter

    Directory of Open Access Journals (Sweden)

    HLRC Editor

    2016-08-01

    Full Text Available Higher Learning Research Communications (HLRC, ISSN: 2157-6254 [Online] is published collaboratively by Walden University (USA, Universidad Andrés Bello (Chile, Universidad Europea de Madrid (Spain and Istanbul Bilgi University (Turkey. Written communication to HLRC should be addressed to the office of the Executive Director at Laureate Education, Inc. 701 Brickell Ave Ste. 1700, Miami, FL 33131, USA. HLRC is designed for open access and online distribution through www.hlrcjournal.com. The views and statements expressed in this journal do not necessarily reflect the views of Laureate Education, Inc. or any of its affiliates (collectively “Laureate”. Laureate does not warrant the accuracy, reliability, currency or completeness of those views or statements and does not accept any legal liability arising from any reliance on the views, statements and subject matter of the journal. Acknowledgements The Guest Editors gratefully acknowledge the substantial contribution of the readers for the blind peer review of essays submitted for this special issue as exemplars of individuals from around the world who have come together in a collective endeavor for the common good: Robert Bringle (Indiana University Purdue University Indianapolis, US, Linda Buckley (University of the Pacific, US, Guillermo Calleja (Universidad Rey Juan Carlos, Spain, Eva Egron-Polak (International Association of Universities, France, Heather Friesen (Abu Dhabi University, UAE, Saran Gill (National University of Malaysia, Malaysia, Chester Haskell (higher education consultant, US, Kanokkarn Kaewnuch (National Institute for Development Administration, Thailand, Gil Latz (Indiana University Purdue University Indianapolis, US, Molly Lee (higher education consultant, Malaysia, Deane Neubauer (East-West Center at University of Hawaii, US, Susan Sutton (Bryn Mawr College, US, Francis Wambalaba (United States International University, Kenya, and Richard Winn (higher education

  13. Gauge Coupling Unification with Partly Composite Matter

    International Nuclear Information System (INIS)

    Gherghetta, Tony

    2005-01-01

    It is shown how gauge coupling unification can occur in models with partly composite matter. The particle states which are composite only contribute small logarithmns to the running of gauge couplings, while the elementary states contribute the usual large logarithmns. This introduces a new differential running contribution to the gauge couplings from partly composite SU(5) matter multiplets. In particular, for partly supersymmetric models, the incomplete SU(5) elementary matter multiplets restore gauge coupling unification even though the usual elementary gaugino and Higgsino contributions need not be present

  14. Differential games

    CERN Document Server

    Friedman, Avner

    2006-01-01

    This volume lays the mathematical foundations for the theory of differential games, developing a rigorous mathematical framework with existence theorems. It begins with a precise definition of a differential game and advances to considerations of games of fixed duration, games of pursuit and evasion, the computation of saddle points, games of survival, and games with restricted phase coordinates. Final chapters cover selected topics (including capturability and games with delayed information) and N-person games.Geared toward graduate students, Differential Games will be of particular interest

  15. Differential Geometry

    CERN Document Server

    Stoker, J J

    2011-01-01

    This classic work is now available in an unabridged paperback edition. Stoker makes this fertile branch of mathematics accessible to the nonspecialist by the use of three different notations: vector algebra and calculus, tensor calculus, and the notation devised by Cartan, which employs invariant differential forms as elements in an algebra due to Grassman, combined with an operation called exterior differentiation. Assumed are a passing acquaintance with linear algebra and the basic elements of analysis.

  16. Conducting compositions of matter

    Science.gov (United States)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  17. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  18. Product Differentiation and Industrial Structure.

    OpenAIRE

    Shaked, Avner; Sutton, John

    1987-01-01

    Some recent literature on "vertical product differentiation" has d eveloped the idea that if the nature of technology and tastes in some industry take a certain form, then the industry must necessarily be "concentrated" and must remain so, no matter how large the economy becomes. The present paper develops this idea further and looks at so me of its implications. This approach offers a simple unified framewo rk within which to reexplore many issues that arise in considering th e relationship ...

  19. Soil organic matter studies

    International Nuclear Information System (INIS)

    1977-01-01

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies

  20. Early Head CT Findings Are Associated With Outcomes After Pediatric Out-of-Hospital Cardiac Arrest.

    Science.gov (United States)

    Starling, Rebecca M; Shekdar, Karuna; Licht, Dan; Nadkarni, Vinay M; Berg, Robert A; Topjian, Alexis A

    2015-07-01

    Head CT after out-of-hospital cardiac arrest is often obtained to evaluate intracranial pathology. Among children admitted to the PICU following pediatric out-of-hospital cardiac arrest, we hypothesized that loss of gray-white matter differentiation and basilar cistern and sulcal effacement are associated with mortality and unfavorable neurologic outcome. Retrospective, cohort study. Single, tertiary-care center PICU. Seventy-eight patients less than 18 years old who survived out-of-hospital cardiac arrest to PICU admission and had a head CT within 24 hours of return of spontaneous circulation were evaluated from July 2005 through May 2012. None. Median time to head CT from return of spontaneous circulation was 3.3 hours (1.0, 6.0). Median patient age was 2.3 years (0.4, 9.5). Thirty-nine patients (50%) survived, of whom 29 (74%) had favorable neurologic outcome. Nonsurvivors were more likely than survivors to have 1) loss of gray-white matter differentiation (Hounsfield unit ratios, 0.96 [0.88, 1.07] vs 1.1 [1.07, 1.2]; p pediatric out-of-hospital cardiac arrest. Select patients may have favorable outcomes despite these findings.

  1. Comparison of a T1-weighted inversion-recovery-, gradient-echo- and spin-echo sequence for imaging of the brain at 3.0 Tesla

    International Nuclear Information System (INIS)

    Stehling, C.; Niederstadt, T.; Kraemer, S.; Kugel, H.; Schwindt, W.; Heindel, W.; Bachmann, R.

    2005-01-01

    Purpose: The increased T1 relaxation times at 3.0 Tesla lead to a reduced T1 contrast, requiring adaptation of imaging protocols for high magnetic fields. This prospective study assesses the performance of three techniques for T1-weighted imaging (T1w) at 3.0 T with regard to gray-white differentiation and contrast-to-noise-ratio (CNR). Materials and Methods: Thirty-one patients were examined at a 3.0 T system with axial T1 w inversion recovery (IR), spin-echo (SE) and gradient echo (GE) sequences and after contrast enhancement (CE) with CE-SE and CE-GE sequences. For qualitative analysis, the images were ranked with regard to artifacts, gray-white differentiation, image noise and overall diagnostic quality. For quantitative analysis, the CNR was calculated, and cortex and basal ganglia were compared with the white matter. Results: In the qualitative analysis, IR was judged superior to SE and GE for gray-white differentiation, image noise and overall diagnostic quality, but inferior to the GE sequence with regard to artifacts. CE-GE proved superior to CE-SE in all categories. In the quantitative analysis, CNR of the based ganglia was highest for IR, followed by GE and SE. For the CNR of the cortex, no significant difference was found between IR (16.9) and GE (15.4) but both were superior to the SE (9.4). The CNR of the cortex was significantly higher for CE-GE compared to CE-SE (12.7 vs. 7.6, p<0.001), but the CNR of the basal ganglia was not significantly different. Conclusion: For unenhanced T1w imaging at 3.0 T, the IR technique is, despite increased artifacts, the method of choice due to its superior gray-white differentiation and best overall image quality. For CE-studies, GE sequences are recommended. For cerebral imaging, SE sequences give unsatisfactory results at 3.0 T. (orig.)

  2. Baryonic Dark Matter

    OpenAIRE

    Silk, Joseph

    1994-01-01

    In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

  3. Grammar of the matter

    International Nuclear Information System (INIS)

    Jacob, M.

    1992-01-01

    In this paper, the author describes the structure of the matter and presents the families of elementary particles (fermions) and the interaction messengers (bosons) with their properties. He presents the actual status and future trends of research on nuclear matter

  4. Dark matter detectors

    International Nuclear Information System (INIS)

    Forster, G.

    1995-01-01

    A fundamental question of astrophysics and cosmology is the nature of dark matter. Astrophysical observations show clearly the existence of some kind of dark matter, though they cannot yet reveal its nature. Dark matter can consist of baryonic particles, or of other (known or unknown) elementary particles. Baryonic dark matter probably exists in the form of dust, gas, or small stars. Other elementary particles constituting the dark matter can possibly be measured in terrestrial experiments. Possibilities for dark matter particles are neutrinos, axions and weakly interacting massive particles (WIMPs). While a direct detection of relic neutrinos seems at the moment impossible, there are experiments looking for baryonic dark matter in the form of Massive Compact Halo Objects, and for particle dark matter in the form of axions and WIMPS. (orig.)

  5. Gravitational closure of matter field equations

    Science.gov (United States)

    Düll, Maximilian; Schuller, Frederic P.; Stritzelberger, Nadine; Wolz, Florian

    2018-04-01

    The requirement that both the matter and the geometry of a spacetime canonically evolve together, starting and ending on shared Cauchy surfaces and independently of the intermediate foliation, leaves one with little choice for diffeomorphism-invariant gravitational dynamics that can equip the coefficients of a given system of matter field equations with causally compatible canonical dynamics. Concretely, we show how starting from any linear local matter field equations whose principal polynomial satisfies three physicality conditions, one may calculate coefficient functions which then enter an otherwise immutable set of countably many linear homogeneous partial differential equations. Any solution of these so-called gravitational closure equations then provides a Lagrangian density for any type of tensorial geometry that features ultralocally in the initially specified matter Lagrangian density. Thus the given system of matter field equations is indeed closed by the so obtained gravitational equations. In contrast to previous work, we build the theory on a suitable associated bundle encoding the canonical configuration degrees of freedom, which allows one to include necessary constraints on the geometry in practically tractable fashion. By virtue of the presented mechanism, one thus can practically calculate, rather than having to postulate, the gravitational theory that is required by specific matter field dynamics. For the special case of standard model matter one obtains general relativity.

  6. Condensation of galactic cold dark matter

    International Nuclear Information System (INIS)

    Visinelli, Luca

    2016-01-01

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M_χc"2≈10"−"2"4 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  7. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  8. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  9. Nonthermal Supermassive Dark Matter

    Science.gov (United States)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  10. Nonthermal Supermassive Dark Matter

    International Nuclear Information System (INIS)

    Chung, D.J.; Chung, D.J.; Kolb, E.W.; Kolb, E.W.; Riotto, A.

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well. copyright 1998 The American Physical Society

  11. Nonthermal Supermassive Dark Matter

    OpenAIRE

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  12. Matter and Energy

    CERN Document Server

    Karam, P Andrew

    2011-01-01

    In Matter and Energy, readers will learn about the many forms of energy, the wide variety of particles in nature, and Albert Einstein's world-changing realization of how matter can be changed into pure energy. The book also examines the recent discoveries of dark matter and dark energy and the future of the universe.

  13. Differential discriminator

    International Nuclear Information System (INIS)

    Dukhanov, V.I.; Mazurov, I.B.

    1981-01-01

    A principal flowsheet of a differential discriminator intended for operation in a spectrometric circuit with statistical time distribution of pulses is described. The differential discriminator includes four integrated discriminators and a channel of piled-up signal rejection. The presence of the rejection channel enables the discriminator to operate effectively at loads of 14x10 3 pulse/s. The temperature instability of the discrimination thresholds equals 250 μV/ 0 C. The discrimination level changes within 0.1-5 V, the level shift constitutes 0.5% for the filling ratio of 1:10. The rejection coefficient is not less than 90%. Alpha spectrum of the 228 Th source is presented to evaluate the discriminator operation with the rejector. The rejector provides 50 ns time resolution

  14. Differential topology

    CERN Document Server

    Margalef-Roig, J

    1992-01-01

    ...there are reasons enough to warrant a coherent treatment of the main body of differential topology in the realm of Banach manifolds, which is at the same time correct and complete. This book fills the gap: whenever possible the manifolds treated are Banach manifolds with corners. Corners add to the complications and the authors have carefully fathomed the validity of all main results at corners. Even in finite dimensions some results at corners are more complete and better thought out here than elsewhere in the literature. The proofs are correct and with all details. I see this book as a reliable monograph of a well-defined subject; the possibility to fall back to it adds to the feeling of security when climbing in the more dangerous realms of infinite dimensional differential geometry. Peter W. Michor

  15. Differential belongings

    DEFF Research Database (Denmark)

    Oldrup, Helene

    2014-01-01

    This paper explores suburban middle-class residents’ narratives about housing choice, everyday life and belonging in residential areas of Greater Copenhagen, Denmark, to understand how residential processes of social differentiation are constituted. Using Savage et al.’s concepts of discursive...... and not only to the area itself. In addition, rather than seeing suburban residential areas as homogenous, greater attention should be paid to differences within such areas....

  16. Secretly asymmetric dark matter

    Science.gov (United States)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  17. Dark Matter Caustics

    International Nuclear Information System (INIS)

    Natarajan, Aravind

    2010-01-01

    The continuous infall of dark matter with low velocity dispersion in galactic halos leads to the formation of high density structures called caustics. Dark matter caustics are of two kinds : outer and inner. Outer caustics are thin spherical shells surrounding galaxies while inner caustics have a more complicated structure that depends on the dark matter angular momentum distribution. The presence of a dark matter caustic in the plane of the galaxy modifies the gas density in its neighborhood which may lead to observable effects. Caustics are also relevant to direct and indirect dark matter searches.

  18. Dark Matter Searches

    International Nuclear Information System (INIS)

    Moriyama, Shigetaka

    2008-01-01

    Recent cosmological as well as historical observations of rotational curves of galaxies strongly suggest the existence of dark matter. It is also widely believed that dark matter consists of unknown elementary particles. However, astrophysical observations based on gravitational effects alone do not provide sufficient information on the properties of dark matter. In this study, the status of dark matter searches is investigated by observing high-energy neutrinos from the sun and the earth and by observing nuclear recoils in laboratory targets. The successful detection of dark matter by these methods facilitates systematic studies of its properties. Finally, the XMASS experiment, which is due to start at the Kamioka Observatory, is introduced

  19. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  20. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  1. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  2. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  3. Sterile neutrino dark matter

    CERN Document Server

    Merle, Alexander

    2017-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  4. Differential geometry

    CERN Document Server

    Ciarlet, Philippe G

    2007-01-01

    This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and

  5. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  6. Differential topology

    CERN Document Server

    Guillemin, Victor

    2010-01-01

    Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea-transversality-the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main

  7. Strategies for dark matter detection

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The present status of alternative forms of dark matter, both baryonic and nonbaryonic, is reviewed. Alternative arguments are presented for the predominance of either cold dark matter (CDM) or of baryonic dark matter (BDM). Strategies are described for dark matter detection, both for dark matter that consists of weakly interacting relic particles and for dark matter that consists of dark stellar remnants

  8. Stars of strange matter

    International Nuclear Information System (INIS)

    Bethe, H.A.; Brown, G.E.; Cooperstein, J.

    1987-01-01

    We investigate suggestions that quark matter with strangeness per baryon of order unity may be stable. We model this matter at nuclear matter densities as a gas of close packed Λ-particles. From the known mass of the Λ-particle we obtain an estimate of the energy and chemical potential of strange matter at nuclear densities. These are sufficiently high to preclude any phase transition from neutron matter to strange matter in the region near nucleon matter density. Including effects from gluon exchange phenomenologically, we investigate higher densities, consistently making approximations which underestimate the density of transition. In this way we find a transition density ρ tr > or approx.7ρ 0 , where ρ 0 is nuclear matter density. This is not far from the maximum density in the center of the most massive neutron stars that can be constructed. Since we have underestimated ρ tr and still find it to be ∝7ρ 0 , we do not believe that the transition from neutron to quark matter is likely in neutron stars. Moreover, measured masses of observed neutron stars are ≅1.4 M sun , where M sun is the solar mass. For such masses, the central (maximum) density is ρ c 0 . Transition to quark matter is certainly excluded for these densities. (orig.)

  9. Hidden charged dark matter

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches

  10. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  11. Diseases of white matter

    International Nuclear Information System (INIS)

    Holland, B.A.

    1987-01-01

    The diagnosis of white matter abnormalities was revolutionized by the advent of computed tomography (CT), which provided a noninvasive method of detection and assessment of progression of a variety of white matter processes. However, the inadequacies of CT were recognized early, including its relative insensitivity to small foci of abnormal myelin in the brain when correlated with autopsy findings and its inability to image directly white matter diseases of the spinal cord. Magnetic resonance imaging (MRI), on the other hand, sensitive to the slight difference in tissue composition of normal gray and white matter and to subtle increase in water content associated with myelin disorders, is uniquely suited for the examination of white matter pathology. Its clinical applications include the evaluation of the normal process of myelination in childhood and the various white matter diseases, including disorders of demyelination and dysmyelination

  12. Detecting dark matter

    International Nuclear Information System (INIS)

    Dixon, Roger L.

    2000-01-01

    Dark matter is one of the most pressing problems in modern cosmology and particle physic research. This talk will motivate the existence of dark matter by reviewing the main experimental evidence for its existence, the rotation curves of galaxies and the motions of galaxies about one another. It will then go on to review the corroborating theoretical motivations before combining all the supporting evidence to explore some of the possibilities for dark matter along with its expected properties. This will lay the ground work for dark matter detection. A number of differing techniques are being developed and used to detect dark matter. These will be briefly discussed before the focus turns to cryogenic detection techniques. Finally, some preliminary results and expectations will be given for the Cryogenic Dark Matter Search (CDMS) experiment

  13. Clumpy cold dark matter

    Science.gov (United States)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  14. Hybrid Dark Matter

    OpenAIRE

    Chao, Wei

    2018-01-01

    Dark matter can be produced in the early universe via the freeze-in or freeze-out mechanisms. Both scenarios were investigated in references, but the production of dark matters via the combination of these two mechanisms are not addressed. In this paper we propose a hybrid dark matter model where dark matters have two components with one component produced thermally and the other one produced non-thermally. We present for the first time the analytical calculation for the relic abundance of th...

  15. The quark matter

    International Nuclear Information System (INIS)

    Rho, Mannque.

    1980-04-01

    The present status of our understanding of the physics of hadronic (nuclear or neutron) matter under extreme conditions, in particular at high densities is discussed. This is a problem which challenges three disciplines of physics: nuclear physics, astrophysics and particle physics. It is generally believed that we now have a correct and perhaps ultimate theory of the strong interactions, namely quantum chromodynamics (QCD). The constituents of this theory are quarks and gluons, so highly dense matters should be describable in terms of these constituents alone. This is a question that addresses directly to the phenomenon of quark confinement, one of the least understood aspects in particle physics. For nuclear physics, the possibility of a phase change between nuclear matter and quark matter introduces entirely new degrees of freedom in the description of nuclei and will bring perhaps a deeper understanding of nuclear dynamics. In astrophysics, the properties of neutron stars will be properly understood only when the equation of state of 'neutron' matter at densities exceeding that of nuclear matter can be realiably calculated. Most fascinating is the possibility of quark stars existing in nature, not entirely an absurd idea. Finally the quark matter - nuclear matter phase transition must have occured in the early stage of universe when matter expanded from high temperature and density; this could be an essential ingredient in the big-bang cosmology

  16. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  17. Searching for dark matter

    Science.gov (United States)

    Mateo, Mario

    1994-01-01

    Three teams of astronomers believe they have independently found evidence for dark matter in our galaxy. A brief history of the search for dark matter is presented. The use of microlensing-event observation for spotting dark matter is described. The equipment required to observe microlensing events and three groups working on dark matter detection are discussed. The three groups are the Massive Compact Halo Objects (MACHO) Project team, the Experience de Recherche d'Objets Sombres (EROS) team, and the Optical Gravitational Lensing Experiment (OGLE) team. The first apparent detections of microlensing events by the three teams are briefly reported.

  18. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  19. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  20. Superball dark matter

    CERN Document Server

    Kusenko, A

    1999-01-01

    Supersymmetric models predict a natural dark-matter candidate, stable baryonic Q-balls. They could be copiously produced in the early Universe as a by-product of the Affleck-Dine baryogenesis. I review the cosmological and astrophysical implications, methods of detection, and the present limits on this form of dark matter.

  1. Baryonic Dark Matter

    OpenAIRE

    De Paolis, F.; Jetzer, Ph.; Ingrosso, G.; Roncadelli, M.

    1997-01-01

    Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.

  2. Dark matter detection - II

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  3. Dark matter and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed

  4. Matter in transition

    International Nuclear Information System (INIS)

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; Taylor, Washington

    2016-01-01

    We explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, where a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU(N) require Weierstrass models that cannot be realized from the standard SU(N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.

  5. CONFERENCE: Quark matter 88

    International Nuclear Information System (INIS)

    Jacob, Maurice

    1988-01-01

    The 'Quark Matter' Conference caters for physicists studying nuclear matter under extreme conditions. The hope is that relativistic (high energy) heavy ion collisions allow formation of the long-awaited quark-gluon plasma, where the inter-quark 'colour' force is no longer confined inside nucleon-like dimensions

  6. Dark matter detection - I

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  7. Dark matter detection - III

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the missing mass of the universe has become one of the big challenges of todays particle physics and cosmology. Astronomical observations show that only 1% of the matter of the Universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the Universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world- wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  8. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  9. Asymmetric dark matter

    International Nuclear Information System (INIS)

    Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M.

    2009-01-01

    We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h 0 →aa decays, while the second predicts a light charged Higgs-like scalar decaying to τν. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.

  10. Inelastic dark matter

    International Nuclear Information System (INIS)

    Smith, David; Weiner, Neal

    2001-01-01

    Many observations suggest that much of the matter of the universe is nonbaryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Δm∼100 keV), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories

  11. Baryonic dark matter

    International Nuclear Information System (INIS)

    Uson, Juan M.

    2000-01-01

    Many searches for baryonic dark matter have been conducted but, so far, all have been unsuccessful. Indeed, no more than 1% of the dark matter can be in the form of hydrogen burning stars. It has recently been suggested that most of the baryons in the universe are still in the form of ionized gas so that it is possible that there is no baryonic dark matter. Although it is likely that a significant fraction of the dark matter in the Milky Way is in a halo of non-baryonic matter, the data do not exclude the possibility that a considerable amount, perhaps most of it, could be in a tenuous halo of diffuse ionized gas

  12. Macro Dark Matter

    CERN Document Server

    Jacobs, David M; Lynn, Bryan W.

    2015-01-01

    Dark matter is a vital component of the current best model of our universe, $\\Lambda$CDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm$^2$, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space; ho...

  13. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  14. An allometric scaling law between gray matter and white matter of cerebral cortex

    International Nuclear Information System (INIS)

    He Jihuan

    2006-01-01

    An allometric scaling relationship between cortical white and gray volumes is derived from a general model that describes brain's remarkable efficiency and prodigious communications between brain areas. The model assumes that (1) a cell's metabolic rate depends upon cell's surface; (2) the overall basal metabolic rates of brain areas depend upon their fractal structures; (3) differential brain areas have same basal metabolic rate at slow wave sleep. The obtained allometric exponent scaling white matter to gray matter is 1.2, which is very much close to Zhang and Sejnowski's observation data

  15. Age-differentiated work systems

    CERN Document Server

    Frieling, Ekkehart; Wegge, Jürgen

    2013-01-01

    The disproportionate aging of the population of working age in many nations around the world is a unique occurrence in the history of humankind. In the light of demographic change, it is becoming increasingly important to develop and use the potential of older employees. This edited volume Age-differentiated Work Systems provides a final report on a six-year priority program funded by the German Research Foundation (DFG) and presents selected research findings of 17 interdisciplinary project teams. The idea is that it will serve both as a reference book and overview of the current state of research in ergonomics, occupational psychology and related disciplines. It provides new models, methods, and procedures for analyzing and designing age-differentiated work systems with the aim of supporting subject matter experts from different areas in their decisions on labor and employment policies. Therefore over 40 laboratory experiments involving 2,000 participants and 50 field studies involving over 25,000 employees...

  16. Differentiating Speech Delay from Disorder: Does It Matter?

    Science.gov (United States)

    Dodd, Barbara

    2011-01-01

    Aim: The cognitive-linguistic abilities of 2 subgroups of children with speech impairment were compared to better understand underlying deficits that might influence effective intervention. Methods: Two groups of 23 children, aged 3;3 to 5;6, performed executive function tasks assessing cognitive flexibility and nonverbal rule abstraction.…

  17. Exothermic dark matter

    International Nuclear Information System (INIS)

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-01-01

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass ∼few GeV and splittings ∼5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  18. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  19. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  20. Light, Matter, and Geometry

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    Interaction of light and matter produces the appearance of materials. To deal with the immense complexity of nature, light and matter is modelled at a macroscopic level in computer graphics. This work is the first to provide the link between the microscopic physical theories of light and matter...... of a material and determine the contents of the material. The book is in four parts. Part I provides the link between microscopic and macroscopic theories of light. Part II describes how to use the properties of microscopic particles to compute the macroscopic properties of materials. Part III illustrates...

  1. QED coherence in matter

    CERN Document Server

    Preparata, Giuliano

    1995-01-01

    Up until now the dominant view of condensed matter physics has been that of an "electrostatic MECCANO" (erector set, for Americans). This book is the first systematic attempt to consider the full quantum-electrodynamical interaction (QED), thus greatly enriching the possible dynamical mechanisms that operate in the construction of the wonderful variety of condensed matter systems, including life itself.A new paradigm is emerging, replacing the "electrostatic MECCANO" with an "electrodynamic NETWORK," which builds condensed matter through the long range (as opposed to the "short range" nature o

  2. Nuclear matter revisited

    International Nuclear Information System (INIS)

    Negele, J.W.; Zabolitzky, J.G.

    1978-01-01

    It is stated that at the Workshop on Nuclear and Dense Matter held at the University of Illinois in May 1977 significant progress was reported that largely resolves many of the questions raised in this journal Vol. 6, p.149, 1976. These include perturbative versus variational methods as applied to nuclear matter, exact solutions for bosons, what is known as the fermion 'homework problem', and various other considerations regarding nuclear matter, including the use of variational methods as opposed to perturbation theory. (15 references) (U.K.)

  3. MATTER IN THE BEAM: WEAK LENSING, SUBSTRUCTURES, AND THE TEMPERATURE OF DARK MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, Hareth S.; Elahi, Pascal J.; Lewis, Geraint F. [Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW 2006 (Australia); Power, Chris, E-mail: hareth@physics.usyd.edu.au [International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2016-08-01

    Warm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows that the weak lensing magnification, convergence, and shear distributions can be used to distinguish between CDM and WDM models. WDM models increase the probability of weak magnifications, with the differences being significant to ≳5 σ , while leaving no significant imprint on the shear distribution. WDM clusters analyzed in this work are more homogeneous than CDM ones, and the fractional decrease in the amount of material in haloes is proportional to the average increase in the magnification. This difference arises from matter that would be bound in compact haloes in CDM being smoothly distributed over much larger volumes at lower densities in WDM. Moreover, the signature does not solely lie in the probability distribution function but in the full spatial distribution of the convergence field.

  4. Dark matter: the astrophysical case

    International Nuclear Information System (INIS)

    Silk, J.

    2012-01-01

    The identification of dark matter is one of the most urgent problems in cosmology. I describe the astrophysical case for dark matter, from both an observational and a theoretical perspective. This overview will therefore focus on the observational motivations rather than the particle physics aspects of dark matter constraints on specific dark matter candidates. First, however, I summarize the astronomical evidence for dark matter, then I highlight the weaknesses of the standard cold dark matter model (LCDM) to provide a robust explanation of some observations. The greatest weakness in the dark matter saga is that we have not yet identified the nature of dark matter itself

  5. Cosmological radio emission induced by WIMP Dark Matter

    International Nuclear Information System (INIS)

    Fornengo, N.; Regis, M.; Lineros, R.; Taoso, M.

    2012-01-01

    We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs

  6. Cosmological radio emission induced by WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, N.; Regis, M. [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I-10125 Torino (Italy); Lineros, R.; Taoso, M., E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: mtaoso@phas.ubc.ca [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-03-01

    We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.

  7. Matter-antimatter and matter-matter interactions at intermediate energies

    International Nuclear Information System (INIS)

    Santos, Antonio Carlos Fontes dos

    2002-01-01

    This article presents some of the recent experimental advances on the study on antimatter-matter and matter-matter interactions, and some of the subtle differences stimulated a great theoretical efforts for explanation of the results experimentally observed

  8. Little composite dark matter.

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-01-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.

  9. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  10. Dark matter search

    International Nuclear Information System (INIS)

    Bernabei, R.

    2003-01-01

    Some general arguments on the particle Dark Matter search are addressed. The WIMP direct detection technique is mainly considered and recent results obtained by exploiting the annual modulation signature are summarized. (author)

  11. Mind Over Matter: Methamphetamine

    Science.gov (United States)

    ... Teaching Guide and Series / Methamphetamine Mind Over Matter: Methamphetamine (Meth) Print Order Free Publication in: English Spanish ... paranoia, aggressiveness, and hallucinations. The Brain's Response to Methamphetamine Hi, my name's Sara Bellum. Welcome to my ...

  12. Matter Tracking Information System -

    Data.gov (United States)

    Department of Transportation — The Matter Tracking Information System (MTIS) principle function is to streamline and integrate the workload and work activity generated or addressed by our 300 plus...

  13. Lectures on dark matter

    International Nuclear Information System (INIS)

    Seljak, U.

    2001-01-01

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  14. Prevention Research Matters

    Centers for Disease Control (CDC) Podcasts

    Prevention Research Matters is a series of one-on-one interviews with researchers from 26 university prevention research centers across the country. Their work focuses on preventing and controlling chronic diseases like obesity, cancer, and heart disease.

  15. Dynamics of interstellar matter

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1975-01-01

    A review of the dynamics of interstellar matter is presented, considering the basic equations of fluid flow, plane waves, shock waves, spiral structure, thermal instabilities and early star cocoons. (B.R.H.)

  16. Lectures on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Seljak, U [Department of Physics, Princeton University, Princeton, NJ (United States)

    2001-11-15

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  17. Dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R [Dipto. di Fisica, Universita di Roma ' Tor Vergata' and INFN, sez. Roma2, Rome (Italy)

    2003-08-15

    Some general arguments on the particle Dark Matter search are addressed. The WIMP direct detection technique is mainly considered and recent results obtained by exploiting the annual modulation signature are summarized. (author)

  18. Soft Active Matter

    OpenAIRE

    Marchetti, M. C.; Joanny, J. -F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi

    2012-01-01

    In this review we summarize theoretical progress in the field of active matter, placing it in the context of recent experiments. Our approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of the review is to integrate the several approaches proposed in the literature, from semi-microscopic t...

  19. DARK MATTER: Optical shears

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Evidence for dark matter continues to build up. Last year (December 1993, page 4) excitement rose when the French EROS (Experience de Recherche d'Objets Sombres) and the US/Australia MACHO collaborations reported hints that small inert 'brown dwarf stars could provide some of the Universe's missing matter. In the 1930s, astronomers first began to suspect that there is a lot more to the Universe than meets the eye

  20. Charming dark matter

    Science.gov (United States)

    Jubb, Thomas; Kirk, Matthew; Lenz, Alexander

    2017-12-01

    We have considered a model of Dark Minimal Flavour Violation (DMFV), in which a triplet of dark matter particles couple to right-handed up-type quarks via a heavy colour-charged scalar mediator. By studying a large spectrum of possible constraints, and assessing the entire parameter space using a Markov Chain Monte Carlo (MCMC), we can place strong restrictions on the allowed parameter space for dark matter models of this type.

  1. Dynamics of Soft Matter

    CERN Document Server

    García Sakai, Victoria; Chen, Sow-Hsin

    2012-01-01

    Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or micr

  2. Matter-antimatter Cosmology

    Science.gov (United States)

    Omnes, R.

    1973-01-01

    The possible existence of antimatter on a large scale in the universe is evaluated. As a starting point, an attempt was made to understand the origin of matter as being essentially analogous to the origin of backgound thermal radiation. Several theories and models are examined, with particular emphasis on nucleon-antinucleon interactions at intermediate energies. Data also cover annihilation interaction with the matter-antimatter boundary to produce the essential fluid motion known as coalesence.

  3. Matter and cosmology

    International Nuclear Information System (INIS)

    Effenberger, R.

    1974-09-01

    The author summarizes some of the many questions and answers which have been raised over the years regarding the nature of matter, the origin of its forms and the associated concept of cosmology including the formation of the universe, our place in it and its course of evolution. An examination of the development of the classical concept of matter and its subsequent transformations within the space-time fields of relativity and quantum theory is also presented

  4. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs

  5. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos

  6. Soil organic matter

    International Nuclear Information System (INIS)

    1976-01-01

    The nature, content and behaviour of the organic matter, or humus, in soil are factors of fundamental importance for soil productivity and the development of optimum conditions for growth of crops under diverse temperate, tropical and arid climatic conditions. In the recent symposium on soil organic matter studies - as in the two preceding ones in 1963 and 1969 - due consideration was given to studies involving the use of radioactive and stable isotopes. However, the latest symposium was a departure from previous efforts in that non-isotopic approaches to research on soil organic matter were included. A number of papers dealt with the behaviour and functions of organic matter and suggested improved management practices, the use of which would contribute to increasing agricultural production. Other papers discussed the turnover of plant residues, the release of plant nutrients through the biodegradation of organic compounds, the nitrogen economy and the dynamics of transformation of organic forms of nitrogen. In addition, consideration was given to studies on the biochemical transformation of organic matter, characterization of humic acids, carbon-14 dating and the development of modern techniques and their impact on soil organic matter research

  7. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  8. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  9. Decompressive craniectomy in herpes simplex encephalitis

    Directory of Open Access Journals (Sweden)

    Muhammed Jasim Abdul Jalal

    2015-01-01

    Full Text Available Intracranial hypertension is a common cause of morbidity in herpes simplex encephalitis (HSE. HSE is the most common form of acute viral encephalitis. Hereby we report a case of HSE in which decompressive craniectomy was performed to treat refractory intracranial hypertension. A 32-year-old male presented with headache, vomiting, fever, and focal seizures involving the right upper limb. Cerebrospinal fluid-meningoencephalitic profile was positive for herpes simplex. Magnetic resonance image of the brain showed swollen and edematous right temporal lobe with increased signal in gray matter and subcortical white matter with loss of gray, white differentiation in T2-weighted sequences. Decompressive craniectomy was performed in view of refractory intracranial hypertension. Decompressive surgery for HSE with refractory hypertension can positively affect patient survival, with good outcomes in terms of cognitive functions.

  10. Concentrated Differential Privacy

    OpenAIRE

    Dwork, Cynthia; Rothblum, Guy N.

    2016-01-01

    We introduce Concentrated Differential Privacy, a relaxation of Differential Privacy enjoying better accuracy than both pure differential privacy and its popular "(epsilon,delta)" relaxation without compromising on cumulative privacy loss over multiple computations.

  11. Inclusive differentiated instruction

    Directory of Open Access Journals (Sweden)

    Jerković Ljiljana S.

    2017-01-01

    Full Text Available Inclusive differentiated instruction is a new model of didactic instruction, theoretically described and established in this paper for the first time, after being experimentally verified through teaching of the mother tongue (instruction in reading and literature. Inclusive individually planned instruction is based on a phenomenological and constructivist didactic instructional paradigm. This type of teaching is essentially developmental and person-oriented. The key stages of inclusive differentiated instruction of literature are: 1 recognition of individual students' potential and educational needs regarding reading and work on literary texts; 2 planning and preparation of inclusive individually planned instruction in reading and literature; 3 actual class teaching of lessons thus prepared; and 4 evaluation of the student achievement following inclusive differentiated instruction in reading and literature. A highly important element of the planning and preparation of inclusive differentiated instruction is the creation of student profiles and inclusive individualized syllabi. Individualized syllabi specify the following: 1. a brief student profile; 2. the student position on the continuum of the learning outcomes of instruction in the Serbian language; 3. reverse-engineered macro-plan stages of instruction in the Serbian language (3.1. identifying expected outcomes and fundamental qualities of learners' work, 3.2. defining acceptable proofs of their realisation, 3.3. planning learning and teaching experiences, and 3.4. providing material and technical requisites for teaching; 4 the contents and procedure of individualized lessons targeting the student; 5 a plan of syllabus implementation monitoring and evaluation. The continuum of the learning outcomes of inclusive differentiated instruction in literature exists at three main levels, A, B and C. The three levels are: A reading techniques and learning about the main literary theory concepts; B

  12. Neutrino interactions in hot and dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.

    1998-01-01

    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star. copyright 1998 The American Physical Society

  13. Imperfect Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Mirzagholi, Leila; Vikman, Alexander, E-mail: l.mirzagholi@physik.uni-muenchen.de, E-mail: alexander.vikman@lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig Maximilian University Munich, Theresienstr. 37, Munich, D-80333 Germany (Germany)

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  14. Entropy, matter, and cosmology.

    Science.gov (United States)

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.

  15. Imperfect Dark Matter

    International Nuclear Information System (INIS)

    Mirzagholi, Leila; Vikman, Alexander

    2015-01-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models

  16. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  17. Imperfect Dark Matter

    Science.gov (United States)

    Mirzagholi, Leila; Vikman, Alexander

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  18. Neutrino neutral current interactions in nuclear matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Wehrberger, K.

    1991-01-01

    Detailed knowledge of neutrino transport properties in matter is crucial for an understanding of the evolution of supernovae and of neutron star cooling. We investigate screening of neutrino scattering from a dense degenerate gas of electrons, protons and neutrons. We take into account correlations induced by the Coulomb interactions of the electrons and protons, and the strong interactions of the protons and neutrons. Nuclear matter is described by the σω model of quantum hadrodynamics. Results are presented for typical astrophysical scenarios. The differential cross section is strongly reduced at large energy transfer, where electrons dominate, and slightly reduced for small energy transfer, where nucleons dominate. At large densities, the nucleon effective mass is considerably lower than the free mass, and the region dominated by nucleons extends to larger energy transfer than for free nucleons. (orig.)

  19. Space-time-matter analytic and geometric structures

    CERN Document Server

    Brüning, Jochen

    2018-01-01

    At the boundary of mathematics and mathematical physics, this monograph explores recent advances in the mathematical foundations of string theory and cosmology. The geometry of matter and the evolution of geometric structures as well as special solutions, singularities and stability properties of the underlying partial differential equations are discussed.

  20. The Role of the Introductory Matter in Bilingual Dictionaries of ...

    African Journals Online (AJOL)

    rbr

    learner's dictionaries and bilingual English–Arabic dictionaries, and to determine to what ... Here, one has to differentiate between an introduction in a book and one in a .... study will analyze, compare and criticize the introductory matter in a set of .... designed for native speakers of English, especially for comprehension and.

  1. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  2. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  3. Thermal Properties of Matter

    Science.gov (United States)

    Khachan, Joe

    2018-02-01

    The ancient Greeks believed that all matter was composed of four elements: earth, water, air, and fire. By a remarkable coincidence (or perhaps not), today we know that there are four states of matter: solids (e.g. earth), liquids (e.g. water), gasses (e.g. air) and plasma (e.g. ionized gas produced by fire). The plasma state is beyond the scope of this book and we will only look at the first three states. Although on the microscopic level all matter is made from atoms or molecules, everyday experience tells us that the three states have very different properties. The aim of this book is to examine some of these properties and the underlying physics.

  4. Asymmetric Higgsino dark matter.

    Science.gov (United States)

    Blum, Kfir; Efrati, Aielet; Grossman, Yuval; Nir, Yosef; Riotto, Antonio

    2012-08-03

    In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

  5. Cerebral white matter hypoplasia

    International Nuclear Information System (INIS)

    Dietrich, R.B.; Shields, W.D.; Sankar, R.

    1990-01-01

    This paper demonstrates the MR imaging findings in children with cerebral white matter hypoplasia (CWMH). The MR studies of four children, aged 3-7 y (mean age, 2.3 y) with a diagnosis of CWMH were reviewed. In all cases multiplanar T1-weighted and T2-weighted spin-echo images were obtained. All children had similar histories of severe developmental delay and nonprogressive neurologic deficits despite normal gestational and birth histories. In two cases there was a history of maternal cocaine abuse. Autopsy correlation was available in one child. The MR images of all four children demonstrated diffuse lack of white matter and enlarged ventricles but normal-appearing gray matter. The corpus callosum, although completely formed, was severely thinned. There was no evidence of gliosis or porencephaly, and the distribution of myelin deposition was normal for age in all cases. Autopsy finding in one child correlated exactly with the MR finding

  6. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  7. Matter and memory

    CERN Document Server

    Bergson, Henri

    1991-01-01

    Since the end of the last century," Walter Benjamin wrote, "philosophy has made a series of attempts to lay hold of the 'true' experience as opposed to the kind that manifests itself in the standardized, denatured life of the civilized masses. It is customary to classify these efforts under the heading of a philosophy of life. Towering above this literature is Henri Bergson's early monumental work, Matter and Memory."Along with Husserl's Ideas and Heidegger's Being and Time, Bergson's work represents one of the great twentieth-century investigations into perception and memory, movement and time, matter and mind. Arguably Bergson's most significant book, Matter and Memory is essential to an understanding of his philosophy and its legacy.This new edition includes an annotated bibliography prepared by Bruno Paradis.Henri Bergson (1859-1941) was awarded the Nobel Prize in 1927. His works include Time and Free Will, An Introduction to Metaphysics, Creative Evolution, and The Creative Mind.

  8. Interacting hot dark matter

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Davidson, S.

    1997-01-01

    We discuss the viability of a light particle (∼30eV neutrino) with strong self-interactions as a dark matter candidate. The interaction prevents the neutrinos from free-streaming during the radiation-dominated regime so galaxy-sized density perturbations can survive. Smaller scale perturbations are damped due to neutrino diffusion. We calculate the power spectrum in the imperfect fluid approximation, and show that it is damped at the length scale one would estimate due to neutrino diffusion. The strength of the neutrino-neutrino coupling is only weakly constrained by observations, and could be chosen by fitting the power spectrum to the observed amplitude of matter density perturbations. The main shortcoming of our model is that interacting neutrinos cannot provide the dark matter in dwarf galaxies. copyright 1997 The American Physical Society

  9. Interacting warm dark matter

    International Nuclear Information System (INIS)

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo

    2013-01-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ m α ρ e β form, where ρ m and ρ e are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w m and w e of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used

  10. Neutrons for probing matter

    International Nuclear Information System (INIS)

    Torres, F. Ed.; Mazzucchetti, D.

    2008-01-01

    The authors tell the story of the French Orphee reactor located in Saclay from the decision to build it in the seventies, to its commissioning in 1980, to its upgrading in the nineties and to its today's operating life. As early as its feasibility studies Orphee has been designed as a dual-purpose reactor: scientific research for instance in crystallography and magnetism, and industrial uses like neutron radiography, silicon doping or radionuclide production. This book is divided into 4 parts: 1) the neutron: an explorer of the matter, 2) the Orphee reactor: a neutron source, 3) the adventurers of the matter: Leon Brillouin laboratory's staff, and 4) the perspectives for neutrons

  11. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  12. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Science.gov (United States)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  13. Interacting dark matter disguised as warm dark matter

    International Nuclear Information System (INIS)

    Boehm, Celine; Riazuelo, Alain; Hansen, Steen H.; Schaeffer, Richard

    2002-01-01

    We explore some of the consequences of dark-matter-photon interactions on structure formation, focusing on the evolution of cosmological perturbations and performing both an analytical and a numerical study. We compute the cosmic microwave background anisotropies and matter power spectrum in this class of models. We find, as the main result, that when dark matter and photons are coupled, dark matter perturbations can experience a new damping regime in addition to the usual collisional Silk damping effect. Such dark matter particles (having quite large photon interactions) behave like cold dark matter or warm dark matter as far as the cosmic microwave background anisotropies or matter power spectrum are concerned, respectively. These dark-matter-photon interactions leave specific imprints at sufficiently small scales on both of these two spectra, which may allow us to put new constraints on the acceptable photon-dark-matter interactions. Under the conservative assumption that the abundance of 10 12 M · galaxies is correctly given by the cold dark matter, and without any knowledge of the abundance of smaller objects, we obtain the limit on the ratio of the dark-matter-photon cross section to the dark matter mass σ γ-DM /m DM -6 σ Th /(100 GeV)≅6x10 -33 cm 2 GeV -1

  14. Energy Matters, July 1999

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, E.

    1999-07-09

    This issue of Energy Matters focuses on selling an energy-efficient project to management. There are also articles on combined heat and power systems, inspecting steam traps for efficient system, root cause failure analysis on AC induction motors, and performance optimization tips.

  15. Little composite dark matter

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-02-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.

  16. Matter: the fundamental particles

    CERN Multimedia

    Landua, Rolf

    2007-01-01

    "The largest particle physics centre in the world is located in Europe. It straddles the Franco-Swiss border, near Geneva. At CERN - the European Organisation for Nuclear Research , which is focused on the science of nuclear matter rather than on the exploitation of atomic energy - there are over 6 500 scientists." (1 page)

  17. Why Philosophy Matters

    Science.gov (United States)

    Mason, Richard

    2005-01-01

    The motives of philosophers tend to be personal. Philosophy has mattered politically as part of continuing political debates. Its effects on politics, religion and the development of the sciences have been evident. Philosophy has been supposed to have special educational value, from its contents or from the benefits of its methods and arguments.…

  18. with dark matter

    Indian Academy of Sciences (India)

    2012-11-16

    Nov 16, 2012 ... November 2012 physics pp. 1271–1274. Radiative see-saw formula in ... on neutrino physics, dark matter and all fermion masses and mixings. ... as such, high-energy accelerators cannot directly test the underlying origin of ...

  19. The Birth of Matter

    CERN Multimedia

    2005-01-01

    To mark the World Year of Physics, the Physics Section of the University of Geneva is organising a series of lectures for the uninitiated. Each lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de Musique de Genève, of how these signals from the farthest reaches of the Universe can be used to create 'cosmic music'. The fourth lecture in the series, entitled 'The Birth of Matter', will take place on Tuesday 3 May 2005 and will be given by CERN's theoretical physicist, John Ellis. Where does matter come from? Where do the structures that surround us, such as galaxies, come from? Are we living in a world of invisible matter? Why is the universe so old and so big? John Ellis will show how elementary particle physics and, in particular, the LHC under construction at CERN, can answer these questions. The Birth of Matter Professor John Ellis Tuesday 3 May, starting 8.00 p.m. Main Auditorium...

  20. The Birth of Matter

    CERN Multimedia

    2005-01-01

    To mark the World Year of Physics, the Physics Section of the University of Geneva is organising a series of lectures for the uninitiated. Each lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de Musique de Genève, of how these signals from the farthest reaches of the Universe can be used to create "cosmic music". The fourth lecture in the series, entitled "The Birth of Matter", will take place on Tuesday 3 May 2005 and will be given by CERN's theoretical physicist, John Ellis. Where does matter come from? Where do the structures that surround us, such as galaxies, come from? Are we living in a world of invisible matter? Why is the universe so old and so big? John Ellis will show how elementary particle physics and, in particular, the LHC under construction at CERN, can answer these questions. The Birth of Matter Professor John Ellis Tuesday 3 May, starting 8.00 p.m. Main Audito...

  1. Exceptional composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Universite Paris Saclay, CEA, CNRS, Institut de Physique Theorique, Gif-sur-Yvette (France); Carmona, Adrian [CERN, Theoretical Physics Department, Geneva (Switzerland); Chala, Mikael [Universitat de Valencia y IFIC, Universitat de Valencia-CSIC, Departament de Fisica Teorica, Burjassot, Valencia (Spain)

    2017-07-15

    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G{sub 2}. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z{sub 2} symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV. (orig.)

  2. The origin of matter

    International Nuclear Information System (INIS)

    Cline, J.

    2004-01-01

    The author presents the issue of how matter triumphed over anti-matter in the formation of the universe. Theories focus on the nature of asymmetry that might have created an excess of matter over anti-matter. Sakharov and Kuzmin listed 3 conditions that must be met for baryogenesis to take place. First the baryon number must not be conserved: there must be some interactions that change the number of baryons, baryon-number violation can rise from an interaction between quarks and leptons. Secondly, 2 symmetries that relate particles to antiparticles must be violated. The CP violation in Kaon decay is too weak to create enough baryon asymmetry, so physicists believe that larger sources of CP violation await discovery. Thirdly, there must be the loss of thermal equilibrium of the universe. In thermal equilibrium, baryons are decaying but inverse processes are also taking place, quarks are fusing to form baryons, rates being equal no baryon asymmetry is generated. But if thermal equilibrium is broken, to say temperature is decreasing, at a certain temperature a pair of quarks will no longer have enough energy to produce a heavy particle which generates baryon asymmetry. (A.C.)

  3. Elliott on Mind Matters.

    Science.gov (United States)

    Maattanen, Pentti

    2000-01-01

    Argues that David Elliott's conception of the human mind presented in his book "Music Matters" is not coherent. Outlines three alternatives to Elliott's theory of mind. Suggests that the principles associated with the pragmatism of Charles Sanders Pierce would complement Elliott's ideas in his book. (CMK)

  4. Simplified Dark Matter Models

    OpenAIRE

    Morgante, Enrico

    2018-01-01

    I review the construction of Simplified Models for Dark Matter searches. After discussing the philosophy and some simple examples, I turn the attention to the aspect of the theoretical consistency and to the implications of the necessary extensions of these models.

  5. Condensed matter physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)

  6. 6d Conformal matter

    International Nuclear Information System (INIS)

    Zotto, Michele Del; Heckman, Jonathan J.; Tomasiello, Alessandro; Vafa, Cumrun

    2015-01-01

    A single M5-brane probing G, an ADE-type singularity, leads to a system which has G×G global symmetry and can be viewed as “bifundamental” (G,G) matter. For the A N series, this leads to the usual notion of bifundamental matter. For the other cases it corresponds to a strongly interacting (1,0) superconformal system in six dimensions. Similarly, an ADE singularity intersecting the Hořava-Witten wall leads to a superconformal matter system with E 8 ×G global symmetry. Using the F-theory realization of these theories, we elucidate the Coulomb/tensor branch of (G,G ′ ) conformal matter. This leads to the notion of fractionalization of an M5-brane on an ADE singularity as well as fractionalization of the intersection point of the ADE singularity with the Hořava-Witten wall. Partial Higgsing of these theories leads to new 6d SCFTs in the infrared, which we also characterize. This generalizes the class of (1,0) theories which can be perturbatively realized by suspended branes in IIA string theory. By reducing on a circle, we arrive at novel duals for 5d affine quiver theories. Introducing many M5-branes leads to large N gravity duals.

  7. States of Matter

    Indian Academy of Sciences (India)

    Deepak Dhar. States of Matter. Deepak Dhar. Keywords. Solid, liquid, gas, glasses, powders. D Dhar is a theoretical physicist at the Tata. Institute of Funamental. Research, Mumbai. His research interests are mainly in the area of non- equilibrium statistical physics. All of us have read about solid, liquid and gaseous.

  8. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters

  9. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  10. Little composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Reuven; Weiler, Andreas [Technische Universitaet Muenchen, First Physik-Department, Garching (Germany); Perez, Gilad [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel)

    2018-02-15

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ{sub DM} ∝ O(1%), thus evading direct detection. (orig.)

  11. Dark matter axions '96

    International Nuclear Information System (INIS)

    Sikivie, P.

    1996-01-01

    This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions' energy spectra and galactic halos' properties

  12. Condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)

  13. Matter and cosmology

    International Nuclear Information System (INIS)

    Effenberger, R.

    1975-07-01

    The author looks empirically at the processes by which the various forms of matter, the chemical elements, come into existence. In doing so he examines unification within relativity and quantum mechanics, atomic and nuclear structure, the quantum idea as a unifying concept, particle physics and finally nucleosynthesis and a viable nucleosynthetic theory

  14. Soft Matter Characterization

    CERN Document Server

    Borsali, Redouane

    2008-01-01

    Progress in basic soft matter research is driven largely by the experimental techniques available. Much of the work is concerned with understanding them at the microscopic level, especially at the nanometer length scales that give soft matter studies a wide overlap with nanotechnology. This 2 volume reference work, split into 4 parts, presents detailed discussions of many of the major techniques commonly used as well as some of those in current development for studying and manipulating soft matter. The articles are intended to be accessible to the interdisciplinary audience (at the graduate student level and above) that is or will be engaged in soft matter studies or those in other disciplines who wish to view some of the research methods in this fascinating field. Part 1 contains articles with a largely (but, in most cases, not exclusively) theoretical content and/or that cover material relevant to more than one of the techniques covered in subsequent volumes. It includes an introductory chapter on some of t...

  15. Dibaryons and nuclear matter

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, L.; Popa, V.

    1992-01-01

    We discuss some recent ideas concerning the structure and the properties of the dibaryonic resonances, with special emphasis on their behaviour when produced in dense nuclear matter. Some features of their de-excitation mechanism and consequent experimentally identifiable signatures are predicted. (Author)

  16. Dark matter and its detection

    International Nuclear Information System (INIS)

    Bi Xiaojun; Qin Bo

    2011-01-01

    We first explain the concept of dark matter,then review the history of its discovery and the evidence of its existence. We describe our understanding of the nature of dark matter particles, the popular dark matter models,and why the weakly interacting massive particles (called WIMPs) are the most attractive candidates for dark matter. Then we introduce the three methods of dark matter detection: colliders, direct detection and indirect detection. Finally, we review the recent development of dark matter detection, including the new results from DAMA, CoGent, PAMELA, ATIC and Fermi. (authors)

  17. Gray Matter Is Targeted in First-Attack Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Schutzer, Steven E.; Angel, Thomas E.; Liu, Tao; Schepmoes, Athena A.; Xie, Fang; Bergquist, Jonas P.; Vecsei, Lazlo' ; Zadori, Denes; Camp, David G.; Holland, Bart K.; Smith, Richard D.; Coyle, Patricia K.

    2013-09-10

    The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We found that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation.

  18. Symposium on Differential Geometry and Differential Equations

    CERN Document Server

    Berger, Marcel; Bryant, Robert

    1987-01-01

    The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.

  19. Why does Safety Culture Matter?

    International Nuclear Information System (INIS)

    Dahlgren-Persson, Kerstin

    2008-01-01

    Dr. Kerstin Dahlgren-Persson, from the IAEA presented a plenary paper on 'Why does safety culture matter?'. The paper discussed the main conclusions of a 1998 IAEA conference on shortcomings in safety management. The conference included case studies of TVA, Cooper, Peach Bottom, Millstone, Ontario Hydro, Barsebaeck and Oskarshamn. Common symptoms included insularity; disproportionate focus on technical issues, high initial performance, lack of corporate oversight, changing management direction and cost cutting, repeat problems, and regulatory dissatisfaction. Behind these symptoms was lack of senior utility leadership with the insight, knowledge and ability to manage the unique interaction between the technology, economics, human factors and safety in a changing nuclear environment. Shortcomings relating to the regulator included lack of criteria for when regulatory actions should be taken in response to degradations in safety management, and the inability of some regulators to influence at the senior utility management level. The paper also made the following key points: - Human error is not always symptomatic of a poor safety culture. Effective root cause analysis (such as that carried out for the Columbia accident investigation) is essential to correctly differentiate between situational issues at a point in time and those rooted in organizational culture. - Leaders change culture by holding different assumptions and by making them visible through their words and action. - Regulators should consider how their regulatory strategy influences licensees. For example, a prescriptive strategy can foster a compliance based approach

  20. Dark matter, hot and cold

    International Nuclear Information System (INIS)

    Shafi, Qaisar

    1993-01-01

    Cosmologists responded enthusiastically to the announcement at the Washington meeting of the American Physical Society in April 1992 that the Cosmic Background Explorer (COBE) had succeeded in detecting primordial anisotropies in the cosmic microwave background radiation (CMB - June 1992, page 1). The COBE satellite was launched in November 1989 into an orbit approximately 900 km above the Earth, carrying instruments to make precise measurements of the spectrum and anisotropy of the CMB. Data from the Far-lnfra Red Absolute Spectrophotometer (FIRAS) beautifully shows the CMB spectrum to be that of a black body at a temperature of 2.73±0.06K. An even more important result, at least from the viewpoint of theories of large scale structure formation (LSS), comes from the Differential Microwave Radiometer (DMR) which provided the first evidence for CMB anisotropy. Some anisotropy on the angular slice probed by COBE is expected in any reasonable model of LSS. COBE's measurement of the quadrupole anisotropy at six parts per million provides an important clue for developing a 'standard model' of LSS. The COBE numbers are in remarkably good agreement with the predictions of a particularly simple class of LSS models proposed almost a decade ago, with far reaching implications for dark matter searches

  1. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki

    2002-01-01

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  2. Automatic differentiation bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, G.F. [comp.

    1992-07-01

    This is a bibliography of work related to automatic differentiation. Automatic differentiation is a technique for the fast, accurate propagation of derivative values using the chain rule. It is neither symbolic nor numeric. Automatic differentiation is a fundamental tool for scientific computation, with applications in optimization, nonlinear equations, nonlinear least squares approximation, stiff ordinary differential equation, partial differential equations, continuation methods, and sensitivity analysis. This report is an updated version of the bibliography which originally appeared in Automatic Differentiation of Algorithms: Theory, Implementation, and Application.

  3. Exact series solution to the two flavor neutrino oscillation problem in matter

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy

    2004-01-01

    In this paper, we present a real nonlinear differential equation for the two flavor neutrino oscillation problem in matter with an arbitrary density profile. We also present an exact series solution to this nonlinear differential equation. In addition, we investigate numerically the convergence of this solution for different matter density profiles such as constant and linear profiles as well as the Preliminary Reference Earth Model describing the Earth's matter density profile. Finally, we discuss other methods used for solving the neutrino flavor evolution problem

  4. Socioeconomic status, white matter, and executive function in children.

    Science.gov (United States)

    Ursache, Alexandra; Noble, Kimberly G

    2016-10-01

    A growing body of evidence links socioeconomic status (SES) to children's brain structure. Few studies, however, have specifically investigated relations of SES to white matter structure. Further, although several studies have demonstrated that family SES is related to development of brain areas that support executive functions (EF), less is known about the role that white matter structure plays in the relation of SES to EF. One possibility is that white matter differences may partially explain SES disparities in EF (i.e., a mediating relationship). Alternatively, SES may differentially shape brain-behavior relations such that the relation of white matter structure to EF may differ as a function of SES (i.e., a moderating relationship). In a diverse sample of 1082 children and adolescents aged 3-21 years, we examined socioeconomic disparities in white matter macrostructure and microstructure. We further investigated relations between family SES, children's white matter volume and integrity in tracts supporting EF, and performance on EF tasks. Socioeconomic status was associated with fractional anisotropy (FA) and volume in multiple white matter tracts. Additionally, family income moderated the relation between white matter structure and cognitive flexibility. Specifically, across multiple tracts of interest, lower FA or lower volume was associated with reduced cognitive flexibility among children from lower income families. In contrast, children from higher income families showed preserved cognitive flexibility in the face of low white matter FA or volume. SES factors did not mediate or moderate links between white matter and either working memory or inhibitory control. This work adds to a growing body of literature suggesting that the socioeconomic contexts in which children develop not only shape cognitive functioning and its underlying neurobiology, but may also shape the relations between brain and behavior.

  5. Non-baryonic dark matter

    International Nuclear Information System (INIS)

    Berkes, I.

    1996-01-01

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author)

  6. Is old organic matter simple organic matter?

    Science.gov (United States)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  7. Direct search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  8. Particle Dark Matter: An Overview

    International Nuclear Information System (INIS)

    Roszkowski, Leszek

    2009-01-01

    Dark matter in the Universe is likely to be made up of some new, hypothetical particle which would be a part of an extension of the Standard Model of particle physics. In this overview, I will first briefly review well motivated particle candidates for dark matter. Next I will focus my attention on the neutralino of supersymmetry which is the by far most popular dark matter candidate. I will discuss some recent progress and comment on prospects for dark matter detection.

  9. Topological hierarchy matters — topological matters with superlattices of defects

    International Nuclear Information System (INIS)

    He Jing; Kou Su-Peng

    2016-01-01

    Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. (topical review)

  10. Flipped dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Hagelin, J.S.; Kelley, S.; Nanopoulos, D.V.; Olive, K.A.

    1988-08-04

    We study candidates for dark matter in a minimal flipped SU(5) x U(1) supersymmetric GUT. Since the model has no R-parity, spin-1/2 supersymmetric partners of conventional particles mix with other neutral fermions including neutrinos, and can decay into them. The lighest particle which is predominantly a gaugino/higgsino mixture decays with a lifetime tau/sub chi/ approx. = 1-10/sup 9/ s. The model contains a scalar 'flaton' field whose coherent oscillations decay before cosmological nucleosynthesis, and whose pseudoscalar partner contributes negligibly to ..cap omega.. if it is light enough to survive to the present epoch. The fermionic 'flatino' partner of the flaton has a lifetime tau/sub PHI/ approx. = 10/sup 28/-10/sup 34/ yr and is a viable candiate for metastable dark matter with ..cap omega.. < or approx. 1.

  11. Deuterium in organic matter

    International Nuclear Information System (INIS)

    Straaten, C.M. van der.

    1981-01-01

    In order to obtain an insight in the processes governing the macroclimate on earth, a knowledge is required of the behaviour of climates in the past. It is well known that D/H ratio of rain varies with temperature determined by latitude as well as by season. Because land plants use this water during the assimilation process, it is expected that the D/H variations are propagated in the organic plant matter. The D/H palaeoclimatic method has therefore been applied to peat to distinguish between the chemical constituents and trace the stable hydrogen fraction in the organic matter. The relation between the hydrogen isotopic composition of precipitation and climatic factors such as the temperature have also been studied. (Auth.)

  12. A matter of quarks

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Quarks are understood to interact through the 'colour' force, carried by gluons. Under normal conditions these quarks are confined - frozen together in 'colourless' states such as protons, neutrons and other strongly interacting particles. However if the quarks are compressed tightly together and/or are 'heated' by increasing their energy, they should eventually break loose from their colour bonds to form a new kind of matter – the so-called quark-gluon plasma. Although QGP has not yet been synthesized in the Laboratory, it was most likely the stuff of the Universe 10 -5 second after the Big Bang. Thus the search for this 'new' matter is attracting a growing number of physicists, theorists and experimenters from both the particle physics and nuclear physics fields

  13. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  14. Hyperons in dense matter

    International Nuclear Information System (INIS)

    Dapo, Haris

    2009-01-01

    The hyperon-nucleon YN low momentum effective interaction (V low k ) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V low k can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V low k one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V low k potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three-body force with a density-dependent interaction. This

  15. Compressed Baryonic Matter of Astrophysics

    OpenAIRE

    Guo, Yanjun; Xu, Renxin

    2013-01-01

    Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.

  16. Normal matter storage of antiprotons

    International Nuclear Information System (INIS)

    Campbell, L.J.

    1987-01-01

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs

  17. Hadrons in dense matter. Proceedings

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2000-03-01

    The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules

  18. Dark Matter Searches at LHC

    CERN Document Server

    Terashi, Koji; The ATLAS collaboration

    2017-01-01

    This talk will present dark matter searches at the LHC in the PIC2017 conference. The main emphasis is placed on the direct dark matter searches while the interpretation of searches for SUSY and invisible Higgs signals for the dark matter is also presented.

  19. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  20. Baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  1. Matter in general relativity

    Science.gov (United States)

    Ray, J. R.

    1982-01-01

    Two theories of matter in general relativity, the fluid theory and the kinetic theory, were studied. Results include: (1) a discussion of various methods of completing the fluid equations; (2) a method of constructing charged general relativistic solutions in kinetic theory; and (3) a proof and discussion of the incompatibility of perfect fluid solutions in anisotropic cosmologies. Interpretations of NASA gravitational experiments using the above mentioned results were started. Two papers were prepared for publications based on this work.

  2. Nuclear matter theory

    International Nuclear Information System (INIS)

    Negele, J.W.

    1977-01-01

    Recent advances in variational and perturbative theories are surveyed which offer genuine promise that nuclear matter will soon become a viable tool for investigating nuclear interactions. The basic elements of the hypernetted chain expansion for Jastrow variational functions are briefly reviewed, and comparisons of variational and perturbative results for a series of increasingly complicated systems are presented. Prospects for investigating realistic forces are assessed and the unresolved, open problems are summarized

  3. Dark Matter remains obscure

    CERN Multimedia

    Fabio Capello

    2011-01-01

    It is one of the hidden secrets that literally surround the Universe. Experiments have shown no result so far because trying to capture particles that do not seem to interact with ordinary matter is no trivial exercise. The OSQAR experiment at CERN is dedicated to the search for axions, one of the candidates for Dark Matter. For its difficult challenge, OSQAR counts on one of the world’s most powerful magnets borrowed from the LHC. In a recent publication, the OSQAR collaboration was able to confirm that no axion signal appears out of the background. In other words: the quest is still on.   The OSQAR experiment installed in the SM18 hall. (Photo by F. Capello) The OSQAR “Light Shining Through a Wall” experiment was officially launched in 2007 with the aim of detecting axions, that is, particles that might be the main components of Dark Matter. OSQAR uses the powerful LHC dipole magnet to intensify the predicted photon-axion conversions in the presence of strong m...

  4. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  5. Solving Linear Differential Equations

    NARCIS (Netherlands)

    Nguyen, K.A.; Put, M. van der

    2010-01-01

    The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend

  6. Open and closed string worldsheets from free large N gauge theories with adjoint and fundamental matter

    International Nuclear Information System (INIS)

    Yaakov, Itamar

    2006-01-01

    We extend Gopakumar's prescription for constructing closed string worldsheets from free field theory diagrams with adjoint matter to open and closed string worldsheets arising from free field theories with fundamental matter. We describe the extension of the gluing mechanism and the electrical circuit analogy to fundamental matter. We discuss the generalization of the existence and uniqueness theorem of Strebel differentials to open Riemann surfaces. Two examples are computed of correlators containing fundamental matter, and the resulting worldsheet OPE's are computed. Generic properties of Gopakumar's construction are discussed

  7. Dark matter in the universe

    International Nuclear Information System (INIS)

    Kormendy, J.; Knapp, G.R.

    1987-01-01

    Until recently little more was known than that dark matter appears to exist; there was little systematic information about its properties. Only in the past several years was progress made to the point where dark matter density distributions can be measured. For example, with accurate rotation curves extending over large ranges in radius, decomposing the effects of visible and dark matter to measure dark matter density profiles can be tried. Some regularities in dark matter behaviour have already turned up. This volume includes review and invited papers, poster papers, and the two general discussions. (Auth.)

  8. Dark Matter Detection: Current Status

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2011-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. This talk focuses on the status of current efforts to detect dark matter by testing the hypothesis that WIMPs exist in the galactic halo. WIMP searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates.

  9. Central nervous system hypoxia in children due to near drowning

    International Nuclear Information System (INIS)

    Fitch, S.J.; Gerald, B.; Magill, H.L.; Tonkin, I.L.D.

    1985-01-01

    Fourteen children who experienced acute, profound central nervous system hypoxia secondary to near drowning, aspiration, or respiratory arrest underwent CT examination. During the first week after the episode, the most frequent finding was a loss of gray-white matter differentiation. Other findings included effacement of sulci and cisterns, focal areas of edema in the cerebral cortex or basal ganglia, and hemorrhagic infarctions of the basal ganglia. Subsequent CT scans obtained from two weeks to five months after the hypoxic episode showed progression of cerebral loss from cortical infarction with gyral hemorrhage and enhancement to global parenchymal atrophy. The prognosis is poor in these patients: seven children experienced severe neurologic deficits and seven died

  10. Hemimegalencephaly. A Case Report

    International Nuclear Information System (INIS)

    Sánchez Lozano, Ada; Rojas Fuentes, Joan Omar; Rodríguez Roque, María Octavina

    2015-01-01

    Hemimegalencephaly is a disorder of neuronal proliferation that causes an overgrowth of all or part of a cerebral hemisphere. Its pathogenesis is still unknown. We present the case of an adult patient with a history of childhood-onset epilepsy, which was refractory to medical treatment and associated with moderate mental retardation. He was admitted to the hospital for seizure control. Magnetic resonance imaging showed hemispheric asymmetry with enlarged right cerebral hemisphere and poor gray-white matter differentiation. The objective of this paper is to present a rare cause of epilepsy that is usually diagnosed during childhood. Hemimegalencephaly should be suspected in cases of early onset of difficult-to-control epilepsy, especially when associated with macrocephaly and delayed psychomotor development. Timely indication for neuroimaging allows establishing the diagnosis and providing other treatment options. (author)

  11. Cerebral CT appearances of toxic encephalopathy of tetramine

    International Nuclear Information System (INIS)

    Zheng Wenlong; Wu Aiqin; Xu Chongyong; Ying Binyu; Hong Ruizhen

    2003-01-01

    Objective: To investigate the cerebral CT appearances of toxic encephalopathy of tetramine and improve the recognition on this disease. Methods: Four cases of toxic encephalopathy of tetramine were collected and their cerebral CT appearances were retrospectively analyzed. Results: Cerebral CT appearances in acute phase (within 8 days): (1) cerebral edema in different degree. CT abnormalities consisted of cortical hypodensities and complete loss of gray-white matter differentiation. The CT value were in 11-13 HU, and to be watery density in serious case, (2) subarachnoid hemorrhage. It demonstrated the signs of poisoning hypoxic ischemic encephalopathy in chronic phase. Conclusion: The cerebral CT appearances of toxic encephalopathy of tetramine had some character in acute phase and it can predict the serious degree of intoxication, but there was no characteristic findings in chronic phase

  12. Dark matter wants Linear Collider

    International Nuclear Information System (INIS)

    Matsumoto, S.; Asano, M.; Fujii, K.; Takubo, Y.; Honda, T.; Saito, T.; Yamamoto, H.; Humdi, R.S.; Ito, H.; Kanemura, S; Nabeshima, T.; Okada, N.; Suehara, T.

    2011-01-01

    One of the main purposes of physics at the International Linear Collider (ILC) is to study the property of dark matter such as its mass, spin, quantum numbers, and interactions with particles of the standard model. We discuss how the property can or cannot be investigated at the ILC using two typical cases of dark matter scenario: 1) most of new particles predicted in physics beyond the standard model are heavy and only dark matter is accessible at the ILC, and 2) not only dark matter but also other new particles are accessible at the ILC. We find that, as can be easily imagined, dark matter can be detected without any difficulties in the latter case. In the former case, it is still possible to detect dark matter when the mass of dark matter is less than a half mass of the Higgs boson.

  13. Antiprotons are another matter

    International Nuclear Information System (INIS)

    Hynes, M.V.

    1987-01-01

    Theories of gravity abound, whereas experiments in gravity are few in number. An important experiment in gravity that has not been performed is the measurement of the gravitational acceleration of antimatter. Although there have been attempts to infer these properties from those of normal matter, none of these theoretical arguments are compelling. Modern theories of gravity that attempt to unify gravity with the other forces of nature predict that in principle antimatter can fall differently than normal matter in the Earth's field. Some of these supergravity theories predict that antimatter will fall faster, and that normal matter will fall with a small Baryon-number dependance in the earth's field. All of these predictions violate the Weak Equivalence Principle, a cornerstone of General Relativity, but are consistent with CPT conservation. In our approved experiment at LEAR (PS-200) we will test the Weak Equivalence Principle for antimatter by measuring the gravitational acceleration of the antiproton. Through a series of deceleration stages, antiprotons from LEAR will be lowered in energy to ∼4 Kelvin at which energy the gravitational effect will be measureable. The measurement will employ the time-of-flight technique wherein the antiprotons are released vertically in a drift tube. The spectrum of time-of-flight measurements can be used to extract the gravitational acceleration experienced by the particles. The system will be calibrated using H - ions which simulates the electromagnetic behavior of the antiproton, yet is a baryon to ∼0.1%. To extract the gravitational acceleration of the antiproton relative to the H - ion with a statistical precision of 1% will require the release of ∼10 6 to 10 7 particles

  14. Matter and antimatter

    International Nuclear Information System (INIS)

    Schopper, H.

    1989-01-01

    For many years the physicist Herwig Schopper has been contributing in leading positions - either as director of DESY in Hamburg or as general director of CERN in Geneva - to the development of a fascinating field of modern physics. His book is the first comprehensive presentation of experimental particle physics for non-physicists. The search for the smallest constituents of matter, i.e. the exploration of the microcosmos, apart from the advance of the man into space belongs to the most exciting scientific-technical adventures of our century. Contrarily to the stars, atoms, atomic nuclei, and quarks cannot be seen. How objects are studied which are by thousands smaller than the smallest atomic nucleus? Can matter be decomposed in ever smaller constituents, or does there exist a limit? What is matter, and what is of consequence for the mysterious antimatter. Do the laws of the infinitely small also determine the development of the universe since its origin? Such and other questions - expressions of human curiosity - Schopper wants to answer with his generally understandable book. Thereby the 'machines' and the experiments of high-energy physics play a decicive role in the presentation. The author describes the development of the accelerators - in Europe, as well as in the Soviet Union, Japan, or in the USA -, and he shows, why for the investigation of the smallest immense experimental facilities - the 1989 finished LEP storage ring at CERN has a circumference of 27 kilometers - are necessary. Schopper explains how the 'machines' work and how the single experiments run. His book satisfies the curiosity of all those, who want to know more about the world of the quarks. (orig.) With 96 figs [de

  15. Antiprotons are another matter

    International Nuclear Information System (INIS)

    Hynes, M.V.

    1988-01-01

    Theories of gravity abound whereas experiments in gravity are few in number. An important experiment in gravity that has not been performed is the measurement of the gravitational acceleration of antimatter. Although there have been attempts to infer this property from those of normal matter, none of these theoretical arguments are compelling. Modern theories of gravity that attempt to unify gravity with the other forces of nature predict that in principle antimatter can fall differently than normal matter in the Earth's field. Some of these supergravity theories predict that antimatter will fall faster and that normal matter will fall with a small Baryon-number dependence in the Earth's field. All of these predictions violate the Weak Equivalence Principle, a cornerstone of General Relativity, but are consistent with CPT conservation. In our approved experiment at LEAR (PS-200) we will test the Weak Equivalence Principle for antimatter by measuring the gravitational acceleration of the antiproton. Through a series of deceleration stages, antiprotons from LEAR will be lowered in energy to ≅ 4 Kelvin at which energy the gravitational effect will be measureable. The measurement will employ the time-of-flight technique wherein the antiprotons are released vertically in a drift tube. The spectrum of time-of-flight measurements can be used to extract the gravitational acceleration experienced by the particles. The system will be calibrated using H - ions which simulate the electromagnetic behavior of the antiproton yet are baryons to ≅ 0.1%. To extract the gravitational acceleration of the antiproton relative to the H - ion with a statistical precision of 1% will require the release of ≅ 10 6 -10 7 particles. (orig.)

  16. Interaction of the radiation with matter

    International Nuclear Information System (INIS)

    2013-01-01

    This third chapter presents the ionization, excitation, activation and radiation breaking; radiation directly and indirectly ionizing; interaction of the electromagnetic radiation with matter; interaction of neutrons with matter; interaction of radiation directly ionizing with matter; interaction of electrons with matter, interaction of alpha particle with matter; interaction of fission fragments with matter; travel time and integrated processes of interaction: energy dissipation

  17. Why international primacy matters

    International Nuclear Information System (INIS)

    Huntington, S.P.

    1993-01-01

    Does international primacy matter? The answer seems so obvious that one first wonders why someone as intelligent, perceptive, and knowledgeable as Robert Jervis raises the question. On further thought, however, one sees that while the answer may be obvious for most people, the reasons why it is obvious may not be all that clear and may have been forgotten or lost in the other concerns of political scientists and economists studying international relations. By posing this question at this time of change in world affairs Jervis has constructively forced us to rethink why primacy is of central importance. This issue involves several subordinate questions

  18. Kaons in nuclear matter

    International Nuclear Information System (INIS)

    Kolomeitsev, E.E.

    1997-02-01

    The subject of the doctoral thesis is examination of the properties of kaons in nuclear matter. A specific method is explained that has been developed for the scientific objectives of the thesis and permits description of the kaon-nucleon interactions and kaon-nucleon scattering in a vacuum. The main challenge involved was to find approaches that would enable application of the derived relations out of the kaon mass shell, connected with the second objective, namely to possibly find methods which are independent of models. The way chosen to achieve this goal relied on application of reduction formulas as well as current algebra relations and the PCAC hypothesis. (orig./CB) [de

  19. Discrete dark matter

    CERN Document Server

    Hirsch, M; Peinado, E; Valle, J W F

    2010-01-01

    We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while reactor angle equal to zero gives no CP violation in neutrino oscillations.

  20. Matter and energy

    International Nuclear Information System (INIS)

    Rocha, A.F.G. da

    1976-01-01

    Rutherford's and Bhor's atomic models are presented, as well as the general configuration of the atom. In the study of energy, emphasis is given to its forms and unities, to equivalence between mass and energy and to the energy levels of the atom. Electrons and nuclear constituents, nuclear forces, stability and nuclear potential barrier are studied. The concepts of radioactive state, activity and nuclear decay are analysed, as well as nuclear reactions, fission, radioisotope production and cosmic rays. Interactions between radiation and matter are also analysed [pt

  1. Cool quark matter

    CERN Document Server

    Kurkela, Aleksi

    2016-07-20

    We generalize the state-of-the-art perturbative Equation of State of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to order g^5 in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated using a dimensionally reduced effective theory, while the soft non-zero modes are resummed using the Hard Thermal Loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.

  2. The condensed matter physics

    International Nuclear Information System (INIS)

    Sapoval, B.

    1988-01-01

    The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr

  3. Light, Matter, and Geometry

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2008-01-01

    This thesis is about physically-based modelling of the appearance of materials. When a material is graphically rendered, its appearance is computed by considering the interaction of light and matter at a macroscopic level. In particular, the shape and the macroscopic optical properties of the mat......) a model which finds the appearance of ice given temperature, salinity, density, and mineral and algal contents of the ice; and (3) a model which finds the appearance of milk given fat and protein contents of the milk....

  4. Topology in Condensed Matter

    CERN Document Server

    Monastyrsky, M I

    2006-01-01

    This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

  5. Cosmology and Dark Matter

    CERN Document Server

    Tkachev, Igor

    2017-01-01

    This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.

  6. Heterogeneous Active Matter

    Science.gov (United States)

    Kolb, Thomas; Klotsa, Daphne

    Active systems are composed of self-propelled (active) particles that locally convert energy into motion and exhibit emergent collective behaviors, such as fish schooling and bird flocking. Most works so far have focused on monodisperse, one-component active systems. However, real systems are heterogeneous, and consist of several active components. We perform molecular dynamics simulations of multi-component active matter systems and report on their emergent behavior. We discuss the phase diagram of dynamic states as well as parameters where we see mixing versus segregation.

  7. Span of control matters.

    Science.gov (United States)

    Cathcart, Deb; Jeska, Susan; Karnas, Joan; Miller, Sue E; Pechacek, Judy; Rheault, Lolita

    2004-09-01

    Prompted by manager concerns about span of control, a large, integrated health system set out to determine if span of control really mattered. Was there something to it, or was it just an excuse for poor performance? A team of middle managers studied the problem and ultimately demonstrated a strong relationship between span of control and employee engagement. Consequently, it was decided to add 4 management positions to note the effect. One year later, positive changes were observed in employee engagement scores in all 4 areas. This study suggests careful review of manager spans of control to address the untoward effects of large spans of control on employee engagement.

  8. Mirror matter as self-interacting dark matter

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Nussinov, S.; Teplitz, V.L.

    2002-01-01

    It has been argued that the observed core density profile of galaxies is inconsistent with having a dark matter particle that is collisionless and that alternative dark matter candidates which are self-interacting may explain observations better. One new class of self-interacting dark matter that has been proposed in the context of mirror universe models of particle physics is the mirror hydrogen atom, whose stability is guaranteed by the conservation of mirror baryon number. We show that the effective transport cross section for mirror hydrogen atoms has the right order of magnitude for solving the 'cuspy' halo problem. Furthermore, the suppression of dissipation effects for mirror atoms due to a higher mirror mass scale prevents the mirror halo matter from collapsing into a disk, strengthening the argument for mirror matter as galactic dark matter

  9. Phase transition from nuclear matter to color superconducting quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Horikawa, T.; Ishii, N.; Thomas, A.W

    2003-06-02

    We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-diquark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.

  10. Functional Determinants for Radially Separable Partial Differential Operators

    Directory of Open Access Journals (Sweden)

    G. V. Dunne

    2007-01-01

    Full Text Available Functional determinants of differential operators play a prominent role in many fields of theoretical and mathematical physics, ranging from condensed matter physics, to atomic, molecular and particle physics. They are, however, difficult to compute reliably in non-trivial cases. In one dimensional problems (i.e. functional determinants of ordinary differential operators, a classic result of Gel’fand and Yaglom greatly simplifies the computation of functional determinants. Here I report some recent progress in extending this approach to higher dimensions (i.e., functional determinants of partial differential operators, with applications in quantum field theory. 

  11. Mapping White Matter Microstructure in the One Month Human Brain.

    Science.gov (United States)

    Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L

    2017-08-29

    White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.

  12. Inheritance of silicate differentiation during lunar origin by giant impact

    Science.gov (United States)

    Warren, Paul H.

    1992-01-01

    It is pointed out that the implication of the popular giant impact model of lunar origin (e.g., Hartmann and Davis, 1975; Cameron and Ward, 1976; Stevenson, 1987) is that any depth-related silicate differentiation within the impactor (and/or the earth) at the time of the impact must be partly inherited by the preferentially peripheral matter that forms the moon. This paper presents calculations of the magnitude of the net differentiation of the protolunar matter for a variety of elements and scenarios, with different assumptions regarding the geometries of the 'sampled' peripheral zones, the relative proportions of the earth-derived to impactor-derived matter in the final moon, and the degree to which the impactor mantle had crystallized prior to the giant impact. It is shown that these differention effects constrain the overall plausibility of the giant impact hypothesis.

  13. Matter reflects Antimatter

    CERN Document Server

    Bianconi, A.; Cristiano, A.; Leali, M.; Lodi Rizzini, E.; Venturelli, L.; Zurlo, N.

    2008-01-01

    It is common belief that the interaction between antimatter and ordinary solid matter is dominated by annihilation. However, non-destructive processes may play a relevant role too. One century ago E. Rutherford wrote about the "diffuse reflection" of alpha and beta particles by thin layers of different metals: "The observations ... of Geiger and Marsden on the scattering of alpha rays indicate that some of the alpha particles must suffer a deflexion of more than a right angle at a single encounter.... It will be shown that the main deductions from the theory are independent of whether the central charge is supposed to be positive or negative". Although the theory of electromagnetic scattering is in first approximation independent of the relative sign of the colliding particles, in the case where projectile antiprotons are shot against a wall of solid matter the Rutherford diffuse reflection mechanism competes with the annihilation process. So it is not obvious at all that a relevant part of an antiproton beam...

  14. Commission on Legal Matters

    CERN Multimedia

    Staff Association

    2016-01-01

    What is a commission within the Staff Association (SA)? A commission is a working group of the CERN Staff Council, led by a staff representative. The commission is composed mainly of staff representatives, but interested members of the SA can apply to participate in the work of a commission. What is the commission on legal matters? The commission on legal matters works on texts governing the employment conditions of staff (Employed Members of Personnel and Associated Members of Personnel). This covers legal documents such as the Staff Rules and Regulations, administrative and operational circulars, as well as any other document relating to employment conditions. How is the work organised in this commission? The revision process of the text is generally done along following lines: The HR department, and its legal experts, proposes new texts or modifications to existing texts. A schedule for the study of these texts is established each year and this calendar by the commission to plan its work. The new or modi...

  15. Dark matter candidates

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of? Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs

  16. Baryonic dark matter

    International Nuclear Information System (INIS)

    Lynden-Bell, D.; Gilmore, G.

    1990-01-01

    Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small Ω B . However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then Ω should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman α clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with Ω B = 1 cosmological nucleosynthesis

  17. Levitating dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Kaloper, Nemanja [Department of Physics, University of California, Davis, CA 95616 (United States); Padilla, Antonio, E-mail: kaloper@physics.ucdavis.edu, E-mail: antonio.padilla@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  18. Levitating dark matter

    Science.gov (United States)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  19. Radiative accidental matter

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, D. Aristizabal [IFPA, Dép. AGO, Université de Liège,Bât B5, Sart Tilman B-4000 Liège 1 (Belgium); Universidad Técnica Federico Santa María - Departamento de Física,Casilla 110-V, Avda. España 1680, Valparaíso (Chile); Simoes, C.; Wegman, D. [IFPA, Dép. AGO, Université de Liège,Bât B5, Sart Tilman B-4000 Liège 1 (Belgium)

    2016-07-25

    Accidental matter models are scenarios where the beyond-the-standard model physics preserves all the standard model accidental and approximate symmetries up to a cutoff scale related with lepton number violation. We study such scenarios assuming that the new physics plays an active role in neutrino mass generation, and show that this unavoidably leads to radiatively induced neutrino masses. We systematically classify all possible models and determine their viability by studying electroweak precision data, big bang nucleosynthesis and electroweak perturbativity, finding that the latter places the most stringent constraints on the mass spectra. These results allow the identification of minimal radiative accidental matter models for which perturbativity is lost at high scales. We calculate radiative charged-lepton flavor violating processes in these setups, and show that μ→eγ has a rate well within MEG sensitivity provided the lepton-number violating scale is at or below 5×10{sup 5} GeV, a value (naturally) assured by the radiative suppression mechanism. Sizeable τ→μγ branching fractions within SuperKEKB sensitivity are possible for lower lepton-number breaking scales. We thus point out that these scenarios can be tested not only in direct searches but also in lepton flavor-violating experiments.

  20. Matter-antimatter asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The Conference is devoted to a multidisciplinary study of matter-antimatter asymmetry and, in particular, from the point of view of particle physics, astrophysics and cosmology. A number of topics, such as the practical applications of antimatter in medical imaging, of particular interest to non-specialists, will also be briefly covered. More than thirty years after the discovery of CP violation in the kaon system, precision experiments with kaons at CERN and Fermilab have demonstrated the existence of direct CP violation, opening a window on a hitherto poorly explored part of particle physics. On the one hand, two experiments devoted mainly to CP violation in B mesons, BABAR and Belle, are beginning to test CP violation in the Standard Model in a decisive way. On the other hand, balloon experiments and the space-based AMS project are circumscribing precise limits on the cosmological abundance of antimatter. Finally, the fundamental problem of cosmological matter-antimatter asymmetry at a Grand Unification scale or at the Electroweak phase transition has been the object of intense theoretical activity in recent years. This document gathers most of the slides that have been presented in the plenary and parallel sessions.

  1. Fundamentals of differential beamforming

    CERN Document Server

    Benesty, Jacob; Pan, Chao

    2016-01-01

    This book provides a systematic study of the fundamental theory and methods of beamforming with differential microphone arrays (DMAs), or differential beamforming in short. It begins with a brief overview of differential beamforming and some popularly used DMA beampatterns such as the dipole, cardioid, hypercardioid, and supercardioid, before providing essential background knowledge on orthogonal functions and orthogonal polynomials, which form the basis of differential beamforming. From a physical perspective, a DMA of a given order is defined as an array that measures the differential acoustic pressure field of that order; such an array has a beampattern in the form of a polynomial whose degree is equal to the DMA order. Therefore, the fundamental and core problem of differential beamforming boils down to the design of beampatterns with orthogonal polynomials. But certain constraints also have to be considered so that the resulting beamformer does not seriously amplify the sensors’ self noise and the mism...

  2. Dark matter in the universe

    International Nuclear Information System (INIS)

    Opher, Reuven

    2001-01-01

    We treat here the problem of dark matter in galaxies. Recent articles seem to imply that we are entering into the precision era of cosmology, implying that all of the basic physics of cosmology is known. However, we show here that recent observations question the pillar of the standard model: the presence of nonbaryonic 'dark matter' in galaxies. Using Newton's law of gravitation, observations indicate that most of the matter in galaxies in invisible or dark. From the observed abundances of light elements, dark matter in galaxies must be primarily nonbaryonic. The standard model and its problems in explaining nonbaryonic dark matter will first be discussed. This will be followed by a discussion of a modification of Newton's law of gravitation to explain dark matter in galaxies. (author)

  3. Vector Differential Calculus

    OpenAIRE

    HITZER, Eckhard MS

    2002-01-01

    This paper treats the fundamentals of the vector differential calculus part of universal geometric calculus. Geometric calculus simplifies and unifies the structure and notation of mathematics for all of science and engineering, and for technological applications. In order to make the treatment self-contained, I first compile all important geometric algebra relationships,which are necesssary for vector differential calculus. Then differentiation by vectors is introduced and a host of major ve...

  4. Differential models in ecology

    International Nuclear Information System (INIS)

    Barco Gomez, Carlos; Barco Gomez, German

    2002-01-01

    The models mathematical writings with differential equations are used to describe the populational behavior through the time of the animal species. These models can be lineal or no lineal. The differential models for unique specie include the exponential pattern of Malthus and the logistical pattern of Verlhust. The lineal differential models to describe the interaction between two species include the competition relationships, predation and symbiosis

  5. Nonlocal gravity simulates dark matter

    OpenAIRE

    Hehl, Friedrich W.; Mashhoon, Bahram

    2009-01-01

    A nonlocal generalization of Einstein's theory of gravitation is constructed within the framework of the translational gauge theory of gravity. In the linear approximation, the nonlocal theory can be interpreted as linearized general relativity but in the presence of "dark matter" that can be simply expressed as an integral transform of matter. It is shown that this approach can accommodate the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.

  6. Baryonic dark matter and Machos

    International Nuclear Information System (INIS)

    Griest, K.

    2000-01-01

    A brief description of the status of baryons in the Universe is given, along with recent results from the MACHO collaboration and their meaning. A dark matter halo consisting of baryons in the form of Machos is ruled out, leaving an elementary particle as the prime candidate for the dark matter. The observed microlensing events may make up around 20% of the dark matter in the Milky Way, or may indicate an otherwise undetected component of the Large Magellanic Cloud

  7. Dark Matter in Quantum Gravity

    OpenAIRE

    Calmet, Xavier; Latosh, Boris

    2018-01-01

    We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.

  8. Comprehensive asymmetric dark matter model

    OpenAIRE

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-01-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical...

  9. Quark matter or new particles?

    Science.gov (United States)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  10. Phase transitions in nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references

  11. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  12. Introduction to differentiable manifolds

    CERN Document Server

    Auslander, Louis

    2009-01-01

    The first book to treat manifold theory at an introductory level, this text surveys basic concepts in the modern approach to differential geometry. The first six chapters define and illustrate differentiable manifolds, and the final four chapters investigate the roles of differential structures in a variety of situations.Starting with an introduction to differentiable manifolds and their tangent spaces, the text examines Euclidean spaces, their submanifolds, and abstract manifolds. Succeeding chapters explore the tangent bundle and vector fields and discuss their association with ordinary diff

  13. Poorly Differentiated Thyroid Carcinoma.

    Science.gov (United States)

    Setia, Namrata; Barletta, Justine A

    2014-12-01

    Poorly differentiated thyroid carcinoma (PDTC) has been recognized for the past 30 years as an entity showing intermediate differentiation and clinical behavior between well-differentiated thyroid carcinomas (ie, papillary thyroid carcinoma and follicular thyroid carcinoma) and anaplastic thyroid carcinoma; however, there has been considerable controversy around the definition of PDTC. In this review, the evolution in the definition of PDTC, current diagnostic criteria, differential diagnoses, potentially helpful immunohistochemical studies, and molecular alterations are discussed with the aim of highlighting where the diagnosis of PDTC currently stands. Published by Elsevier Inc.

  14. Supersymmetric dark matter: Indirect detection

    International Nuclear Information System (INIS)

    Bergstroem, L.

    2000-01-01

    Dark matter detection experiments are improving to the point where they can detect or restrict the primary particle physics candidates for non baryonic dark matter. The methods for detection are usually categorized as direct, i.e., searching for signals caused by passage of dark matter particles in terrestrial detectors, or indirect. Indirect detection methods include searching for antimatter and gamma rays, in particular gamma ray lines, in cosmic rays and high-energy neutrinos from the centre of the Earth or Sun caused by accretion and annihilation of dark matter particles. A review is given of recent progress in indirect detection, both on the theoretical and experimental side

  15. Collapsing stage of 'bosonic matter'

    International Nuclear Information System (INIS)

    Manoukian, E.B.; Muthaporn, C.; Sirininlakul, S.

    2006-01-01

    We prove rigorously that for 'bosonic matter', if deflation occurs upon collapse as more and more such matter is put together, then for a non-vanishing probability of having the negatively charged particles, with Coulomb interactions, within a sphere of radius R, the latter necessarily cannot decrease faster than N -1/3 for large N, where N denotes the number of the negatively charged particles. This is in clear distinction with matter (i.e., matter with the exclusion principle) which inflates and R necessarily increases not any slower than N 1/3 for large N

  16. Galactic searches for dark matter

    International Nuclear Information System (INIS)

    Strigari, Louis E.

    2013-01-01

    For nearly a century, more mass has been measured in galaxies than is contained in the luminous stars and gas. Through continual advances in observations and theory, it has become clear that the dark matter in galaxies is not comprised of known astronomical objects or baryonic matter, and that identification of it is certain to reveal a profound connection between astrophysics, cosmology, and fundamental physics. The best explanation for dark matter is that it is in the form of a yet undiscovered particle of nature, with experiments now gaining sensitivity to the most well-motivated particle dark matter candidates. In this article, I review measurements of dark matter in the Milky Way and its satellite galaxies and the status of Galactic searches for particle dark matter using a combination of terrestrial and space-based astroparticle detectors, and large scale astronomical surveys. I review the limits on the dark matter annihilation and scattering cross sections that can be extracted from both astroparticle experiments and astronomical observations, and explore the theoretical implications of these limits. I discuss methods to measure the properties of particle dark matter using future experiments, and conclude by highlighting the exciting potential for dark matter searches during the next decade, and beyond

  17. Dark matter. A light move

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Muenchen Univ. (Germany). Arnold Sommerfeld Center; Max-Planck-Institut fuer Physik, Muenchen (Germany); Doebrich, Babette [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  18. Dark energy and dark matter

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    2003-01-01

    It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this Letter we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy become a constant at late times and one readily realizes that the present-day dark matter abundance is not very sensitive to its value when dark matter particles decouple from the thermal bath. We show that the dependence of the present abundance of cold dark matter on the parameters of the model differs drastically from the familiar results where no connection between dark energy and dark matter is present. In particular, we analyze the case in which the cold dark matter particle is the lightest supersymmetric particle

  19. Dark matter. A light move

    International Nuclear Information System (INIS)

    Redondo, Javier; Doebrich, Babette

    2013-11-01

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  20. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  1. Searching dark matter at LHC

    International Nuclear Information System (INIS)

    Nojiri, Mihoko M.

    2007-01-01

    We now believe that the dark matter in our Universe must be an unknown elementary particle, which is charge neutral and weakly interacting. The standard model must be extended to include it. The dark matter was likely produced in the early universe from the high energy collisions of the particles. Now LHC experiment starting from 2008 will create such high energy collision to explore the nature of the dark matter. In this article we explain how dark matter and LHC physics will be connected in detail. (author)

  2. Brain grey matter volume alterations in late-life depression.

    Science.gov (United States)

    Du, Mingying; Liu, Jia; Chen, Ziqi; Huang, Xiaoqi; Li, Jing; Kuang, Weihong; Yang, Yanchun; Zhang, Wei; Zhou, Dong; Bi, Feng; Kendrick, Keith M; Gong, Qiyong

    2014-11-01

    Voxel-based morphometry (VBM) studies have demonstrated that grey matter abnormalities are involved in the pathophysiology of late-life depression (LLD), but the findings are inconsistent and have not been quantitatively reviewed. The aim of the present study was to conduct a meta-analysis that integrated the reported VBM studies, to determine consistent grey matter alterations in individuals with LLD. A systematic search was conducted to identify VBM studies that compared patients with LLD and healthy controls. We performed a meta-analysis using the effect size signed differential mapping method to quantitatively estimate regional grey matter abnormalities in patients with LLD. We included 9 studies with 11 data sets comprising 292 patients with LLD and 278 healthy controls in our meta-analysis. The pooled and subgroup meta-analyses showed robust grey matter reductions in the right lentiform nucleus extending into the parahippocampus, the hippocampus and the amygdala, the bilateral medial frontal gyrus and the right subcallosal gyrus as well as a grey matter increase in the right lingual gyrus. Meta-regression analyses showed that mean age and the percentage of female patients with LLD were not significantly related to grey matter changes. The analysis techniques, patient characteristics and clinical variables of the studies included were heterogeneous, and most participants were medicated. The present meta-analysis is, to our knowledge, the first to overcome previous inconsistencies in the VBM studies of LLD and provide robust evidence for grey matter alterations within fronto-striatal-limbic networks, thereby implicating them in the pathophysiology of LLD. The mean age and the percentage of female patients with LLD did not appear to have a measurable impact on grey matter changes, although we cannot rule out the contributory effects of medication.

  3. Some preliminary formulations toward a new theory of matter

    International Nuclear Information System (INIS)

    Shekhawat, V.

    1976-01-01

    Matter is pictured as a primitive fluid substratum having the fundamental property of fluctuating at a constant frequency. From this are derived the discrete properties of space and time, and it follows that, at the microlevel, talk of pure space and pure time involves ambiguities. A new interpretation of Planck's constant emerges according to which it is a quantum of matter-time combination. Thus, a quantum of matter-space combination should exist. On pursuing further the hydrodynamic model, such a constant is in fact discovered as the drag-quantum of the quantum fluid. A fourth-degree differential equation is considered which, with the help of this new constant, generates spectra of frequency, mass, and fine structure constants. The theory seems to answer some important fundamental questions

  4. Partial differential equations & boundary value problems with Maple

    CERN Document Server

    Articolo, George A

    2009-01-01

    Partial Differential Equations and Boundary Value Problems with Maple presents all of the material normally covered in a standard course on partial differential equations, while focusing on the natural union between this material and the powerful computational software, Maple. The Maple commands are so intuitive and easy to learn, students can learn what they need to know about the software in a matter of hours- an investment that provides substantial returns. Maple''s animation capabilities allow students and practitioners to see real-time displays of the solutions of partial differential equations.  Maple files can be found on the books website. Ancillary list: Maple files- http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747327  Provides a quick overview of the software w/simple commands needed to get startedIncludes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equationsIncorporates an early introduction to Sturm-L...

  5. Skew differential fields, differential and difference equations

    NARCIS (Netherlands)

    van der Put, M

    2004-01-01

    The central question is: Let a differential or difference equation over a field K be isomorphic to all its Galois twists w.r.t. the group Gal(K/k). Does the equation descend to k? For a number of categories of equations an answer is given.

  6. Osteoblastic cells: differentiation and trans-differentiation

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem; Saeed, Hamid

    2008-01-01

    The osteoblast is the bone forming cell and is derived from mesenchymal stem cells (MSC) present among the bone marrow stroma. MSC are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts and adipocytes. Understanding the mechanisms underlying osteoblast different...

  7. Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li [Fudan University, Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Shanghai (China); Shandong University, Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-cerebral Vascular Diseases, Jinan, Shandong (China); Wang, Shanshan; Yao, Bin; Li, Lili; Guo, Lingfei; Zhang, Xinjuan; Wang, Guangbin [Shandong University, Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-cerebral Vascular Diseases, Jinan, Shandong (China); Xu, Xiaofei [Erasmus University Rotterdam, Laboratory of Experimental Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Zhao, Lianxin [Shandong University, Department of Radiology, Qilu Hospital, Jinan, Shandong (China); Chen, Weibo; Chan, Queenie [Philips Healthcare, Shanghai (China)

    2015-04-01

    The purpose of this study was to address the feasibility of characterizing the contrast both between and within grey matter and white matter using the phase difference enhanced (PADRE) technique. PADRE imaging was performed in 33 healthy volunteers. Vessel enhancement (VE), tissue enhancement (TE), and PADRE images were reconstructed from source images and were evaluated with regard to differentiation of grey-to-white matter interface, the stria of Gennari, and the two layers, internal sagittal stratum (ISS) and external sagittal stratum (ESS), of optic radiation. White matter regions showed decreased signal intensity compared to grey matter regions. Discrimination was sharper between white matter and cortical grey matter in TE images than in PADRE images, but was poorly displayed in VE images. The stria of Gennari was observed on all three image sets. Low-signal-intensity bands displayed in VE images representing the optic radiation were delineated as two layers of different signal intensities in TE and PADRE images. Statistically significant differences in phase shifts were found between frontal grey and white matter, as well as between ISS and ESS (p < 0.01). The PADRE technique is capable of identifying grey-to-white matter interface, the stria of Gennari, and ISS and ESS, with improved contrast in PADRE and TE images compared to VE images. (orig.)

  8. Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T

    International Nuclear Information System (INIS)

    Yang, Li; Wang, Shanshan; Yao, Bin; Li, Lili; Guo, Lingfei; Zhang, Xinjuan; Wang, Guangbin; Xu, Xiaofei; Zhao, Lianxin; Chen, Weibo; Chan, Queenie

    2015-01-01

    The purpose of this study was to address the feasibility of characterizing the contrast both between and within grey matter and white matter using the phase difference enhanced (PADRE) technique. PADRE imaging was performed in 33 healthy volunteers. Vessel enhancement (VE), tissue enhancement (TE), and PADRE images were reconstructed from source images and were evaluated with regard to differentiation of grey-to-white matter interface, the stria of Gennari, and the two layers, internal sagittal stratum (ISS) and external sagittal stratum (ESS), of optic radiation. White matter regions showed decreased signal intensity compared to grey matter regions. Discrimination was sharper between white matter and cortical grey matter in TE images than in PADRE images, but was poorly displayed in VE images. The stria of Gennari was observed on all three image sets. Low-signal-intensity bands displayed in VE images representing the optic radiation were delineated as two layers of different signal intensities in TE and PADRE images. Statistically significant differences in phase shifts were found between frontal grey and white matter, as well as between ISS and ESS (p < 0.01). The PADRE technique is capable of identifying grey-to-white matter interface, the stria of Gennari, and ISS and ESS, with improved contrast in PADRE and TE images compared to VE images. (orig.)

  9. Nucleons, Nuclear Matter and Quark Matter: A unified NJL approach

    Energy Technology Data Exchange (ETDEWEB)

    S. Lawley; W. Bentz; A.W. Thomas

    2006-02-10

    We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.

  10. Might dark matter not be concentric with luminous matter

    International Nuclear Information System (INIS)

    Xu Chongming; Lu Tan.

    1986-12-01

    In this paper, an idea on dark matter nonconcentric with luminous matter is proposed. This case could influence the rotation curve of galaxy differently in its different direction. Recently, Rubin and Ford's observation on rotation curve of Hickson 88a has been explained by means of the idea. Some possible observational predictions have also been given. (author)

  11. Nucleons, nuclear matter and quark matter: a unified NJL approach

    Energy Technology Data Exchange (ETDEWEB)

    Lawley, S [Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide SA 5005 (Australia); Bentz, W [Department of Physics, School of Science, Tokai University Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A W [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2006-05-01

    We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.

  12. White matter lesion progression

    DEFF Research Database (Denmark)

    Hofer, Edith; Cavalieri, Margherita; Bis, Joshua C

    2015-01-01

    10 cohorts. To assess the relative contribution of genetic factors to progression of WML, we compared in 7 cohorts risk models including demographics, vascular risk factors plus single-nucleotide polymorphisms that have been shown to be associated cross-sectionally with WML in the current......BACKGROUND AND PURPOSE: White matter lesion (WML) progression on magnetic resonance imaging is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants...... associated with WML progression in elderly participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. METHODS: Heritability of WML progression was calculated in the Framingham Heart Study. The genome-wide association study included 7773 elderly participants from...

  13. Superheavy dark matter

    CERN Document Server

    Riotto, Antonio

    2000-01-01

    It is usually thought that the present mass density of the Universe is dominated by a weakly interacting massive particle (WIMP), a fossil relic of the early Universe. Theoretical ideas and experimental efforts have focused mostly on production and detection of thermal relics, with mass typically in the range a few GeV to a hundred GeV. Here, we will review scenarios for production of nonthermal dark matter whose mass may be in the range 10/sup 12/ to 10/sup 19/ GeV, much larger than the mass of thermal wimpy WIMPS. We will also review recent related results in understanding the production of very heavy fermions through preheating after inflation. (19 refs).

  14. Management does matter

    DEFF Research Database (Denmark)

    Kroustrup, Jonas

    studies approach the paper acknowledges that management and project management technologies does matter, but comes in many shapes, and is performed differently in various socio-technical settings. The field of STS offers a new ground for a participatory and practice oriented approach to the development......The positivist and managerialist approaches to project management research has historically defined practice as a ‘technical’ discipline. This has recently been challenged by critical project management studies, who advocates for an opening of the field research to also include the social...... and organizational dynamics of projects. Following the topic of the panel this paper will discuss how these two positions, although seemingly different, both places the project manager as an omnipotent subject of control. The consequences becomes either a priori explanations or ideological pitfalls. From a science...

  15. Ultralight particle dark matter

    International Nuclear Information System (INIS)

    Ringwald, A.

    2013-10-01

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  16. Supergravity and matter

    International Nuclear Information System (INIS)

    Adamietz, P.; Binetruy, P.; Girardi, G.; Grimm, R.

    1992-07-01

    The properties of a linear multiplet in interaction with supergravity and matter are presented, with a special emphasis on the coupling of Chern-Simons forms, relevant for the problem of the chiral and conformal anomalies in relation with Kaehler transformations and the corresponding anomaly cancellations. The linear supermultiplet describes an antisymmetric tensor gauge field together with a dilaton and a Majorana spinor. In particular, these fields are found among the massless modes of superstring theories. The general properties of this supermultiplet is reviewed in the Kaehler superspace formalism and the complete supersymmetric action is constructed. This includes the classically Kaehler invariant component field action for all the kinetic terms as well as a Green-Schwarz type action which exhibits a non-holomorphic gauge coupling function. (author) 32 refs

  17. Ultralight particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2013-10-15

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  18. PREFACE: Quark Matter 2008

    Science.gov (United States)

    Jan-e~Alam; Subhasis~Chattopadhyay; Tapan~Nayak

    2008-10-01

    Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose

  19. Quark matter 93

    Energy Technology Data Exchange (ETDEWEB)

    Otterlund, Ingvar; Ruuskanen, Vesa

    1993-12-15

    In his welcome address to the 10th International Conference on Ultra- Relativistic Nucleus-Nucleus Collisions (Quark Matter '93), held in Borlange, Sweden, from 20-24 June, Hans-Ake Gustafsson was puzzled why this year's conference was billed as the tenth in the series. He had tried to count but could only find eight forerunners - Bielefeld (1982), Brookhaven (1983), Helsinki (1984), Asilomar (1986), Nordkirchen (1987), Lenox (1988), Menton (1990), Gatlinburg (1991), making this year's meeting at Borlange the ninth. The answer was given by Helmut Satz in his introductory talk, pointing out that at the time of the Bielefeld meeting, a few conferences dealing with similar topics had already been held. The Bielefeld organizers thus did not consider their conference the first. Whatever its pedigree, the Borlange meeting covered particle production in highly excited and compressed nuclear matter, fluctuations and correlations, quark phenomena (quantum chromodynamics - QCD) in nuclear collisions, probes and signatures of Quark-Gluon Plasma (QGP), future collider experiments and instrumentation. The theoretical talks were split between the fundamental properties of the hot and dense matter at or near equilibrium, and the interface between theory and experiment. The phenomenological modelling of heavy ion collisions seems to reproduce at least all the main features of the data with hadrons, resonances and strings as the degrees of freedom. However secondary interactions among the produced hadrons or strings need to be added. Hydrodynamic calculations lead to results which reproduce the main features of the collisions. With increasing collision energy, the parton degrees of freedom become more important. Klaus Geiger described an ambitious scheme treating the whole nucleus-nucleus collision in terms of a kinetic parton (quark/gluon) cascade. The initial parton distribution at the beginning of the collision is determined from the quark-gluon nuclear structure and the

  20. Quark matter 93

    International Nuclear Information System (INIS)

    Otterlund, Ingvar; Ruuskanen, Vesa

    1993-01-01

    In his welcome address to the 10th International Conference on Ultra- Relativistic Nucleus-Nucleus Collisions (Quark Matter '93), held in Borlange, Sweden, from 20-24 June, Hans-Ake Gustafsson was puzzled why this year's conference was billed as the tenth in the series. He had tried to count but could only find eight forerunners - Bielefeld (1982), Brookhaven (1983), Helsinki (1984), Asilomar (1986), Nordkirchen (1987), Lenox (1988), Menton (1990), Gatlinburg (1991), making this year's meeting at Borlange the ninth. The answer was given by Helmut Satz in his introductory talk, pointing out that at the time of the Bielefeld meeting, a few conferences dealing with similar topics had already been held. The Bielefeld organizers thus did not consider their conference the first. Whatever its pedigree, the Borlange meeting covered particle production in highly excited and compressed nuclear matter, fluctuations and correlations, quark phenomena (quantum chromodynamics - QCD) in nuclear collisions, probes and signatures of Quark-Gluon Plasma (QGP), future collider experiments and instrumentation. The theoretical talks were split between the fundamental properties of the hot and dense matter at or near equilibrium, and the interface between theory and experiment. The phenomenological modelling of heavy ion collisions seems to reproduce at least all the main features of the data with hadrons, resonances and strings as the degrees of freedom. However secondary interactions among the produced hadrons or strings need to be added. Hydrodynamic calculations lead to results which reproduce the main features of the collisions. With increasing collision energy, the parton degrees of freedom become more important. Klaus Geiger described an ambitious scheme treating the whole nucleus-nucleus collision in terms of a kinetic parton (quark/gluon) cascade. The initial parton distribution at the beginning of the collision is determined from the quark-gluon nuclear structure

  1. Environmental psychology matters.

    Science.gov (United States)

    Gifford, Robert

    2014-01-01

    Environmental psychology examines transactions between individuals and their built and natural environments. This includes investigating behaviors that inhibit or foster sustainable, climate-healthy, and nature-enhancing choices, the antecedents and correlates of those behaviors, and interventions to increase proenvironmental behavior. It also includes transactions in which nature provides restoration or inflicts stress, and transactions that are more mutual, such as the development of place attachment and identity and the impacts on and from important physical settings such as home, workplaces, schools, and public spaces. As people spend more time in virtual environments, online transactions are coming under increasing research attention. Every aspect of human existence occurs in one environment or another, and the transactions with and within them have important consequences both for people and their natural and built worlds. Environmental psychology matters.

  2. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ablyazimov, T. [Joint Institute for Nuclear Research (JINR-LIT), Dubna (Russian Federation). Lab. of Information Technologies; Abuhoza, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt (Germany); Adak, R.P. [Bose Institute, Kolkata (India). Dept. of Physics; and others

    2017-03-15

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s{sub NN}) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ{sub B} > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  3. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    International Nuclear Information System (INIS)

    Ablyazimov, T.; Adak, R.P.

    2017-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s_N_N) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  4. Partial differential equations and their applications

    International Nuclear Information System (INIS)

    Gauthier-Villars

    1998-01-01

    This book is dedicated to the French mathematician J.L.Lions. It represents a compilation of articles from about 80 authors. The topics treated are diverse but the more or less commune matter is the study of the characteristics of some partial differential equations. Stability, optimal approximation, numerical resolution, particular applications are among the subjects reviewed. An article deals with the MHD stability of fusion plasmas in tokamaks, another presents the scientific and technical challenges of nuclear energy in France. The latter that contains no equations can be considered as an enjoyable break in a sea of about 40 mathematical articles. (A.C.)

  5. Lifting the Differentiation Embargo.

    Science.gov (United States)

    Latif, Anne-Louise; Holyoake, Tessa L

    2016-09-22

    Effective differentiation therapy for acute myeloid leukemia (AML) has been restricted to a small subset of patients with one defined genetic abnormality. Using an unbiased small molecule screen, Sykes et al. now identify a mechanism of de-repression of differentiation in several models of AML driven by distinct genetic drivers. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Lifting the differentiation embargo

    OpenAIRE

    Latif, Anne-Louise; Holyoake, Tessa

    2016-01-01

    Effective differentiation therapy for acute myeloid leukemia (AML) has been restricted to a small subset of patients with one defined genetic abnormality. Using an unbiased small molecule screen, Sykes et al. now identify a mechanism of de-repression of differentiation in several models of AML driven by distinct genetic drivers.

  7. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  8. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  9. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  10. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  11. Linking Diversity and Differentiation

    Directory of Open Access Journals (Sweden)

    Hans-Rolf Gregorius

    2010-03-01

    Full Text Available Generally speaking, the term differentiation refers to differences between collections for the distribution of specified traits of their members, while diversity deals with (effective numbers of trait states (types. Counting numbers of types implies discrete traits such as alleles and genotypes in population genetics or species and taxa in ecology. Comparisons between the concepts of differentiation and diversity therefore primarily refer to discrete traits. Diversity is related to differentiation through the idea that the total diversity of a subdivided collection should be composed of the diversity within the subcollections and a complement called “diversity between subcollections”. The idea goes back to the perception that the mixing of differentiated collections increases diversity. Several existing concepts of “diversity between subcollections” are based on this idea. Among them, β-diversity and fixation (inadvertently called differentiation are the most prominent in ecology and in population genetics, respectively. The pertaining measures are shown to quantify the effect of differentiation in terms of diversity components, though from a dual perspective: the classical perspective of differentiation between collections for their type compositions, and the reverse perspective of differentiation between types for their collection affiliations. A series of measures of diversity-oriented differentiation is presented that consider this dual perspective at two levels of diversity partitioning: the overall type or subcollection diversity and the joint type-subcollection diversity. It turns out that, in contrast with common notions, the measures of fixation (such as FST or GST refer to the perspective of type rather than subcollection differentiation. This unexpected observation strongly suggests that the popular interpretations of fixation measures must be reconsidered.

  12. The dark side of matter

    International Nuclear Information System (INIS)

    Cline, D.

    2003-01-01

    The number of baryons (protons and neutrons) of the universe can be deduced from the relative abundances of light elements (deuterium, helium and lithium) that were generated during the very first minutes of the cosmic history. This calculation has shown that the baryonic matter represents only 5% of the total mass of the universe. As for neutrinos (hot dark matter), their very low mass restraints their contribution to only 0,3%. The spinning movement of galaxies requires the existence of huge quantity of matter that seems invisible (black matter). Astrophysicists have recently discovered that the universal expansion is accelerating and that the space geometry is euclidean, from these 2 facts they have deduced a value of the mass-energy density that implies the existence of something different from dark matter called dark energy and that is expected to represent about 70% of the mass of the universe. Physicists face the challenge of detecting black matter and black energy. The first attempt for detecting black matter began in 1997 when the UKDMC detector entered into service. Now more than half a dozen of detectors are searching for dark matter but till now in vain. A new generation of detectors (CDMS-2, ZEPLIN-2, CRESST-2 and Edelweiss-2) combining detection, new methods of particle discrimination and the study of the evolution of the signal over very long periods of time are progressively entering into operation. (A.C.)

  13. Exponential Potential versus Dark Matter

    Science.gov (United States)

    1993-10-15

    scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the

  14. Introduction: Teaching Black Lives Matter

    OpenAIRE

    Paula Austin; Erica Cardwell; Christopher Kennedy; Robyn Spencer

    2016-01-01

    An introduction to Radical Teacher, Issue 106: Teaching Black Lives Matter. This issue brings together a diverse collection of articles exploring educator’s responses, strategies, and stories on how #BlackLivesMatter has informed their teaching practice, the content of their courses, and their personal relationship to colleagues, family, friends, and self.

  15. Introduction: Teaching Black Lives Matter

    Directory of Open Access Journals (Sweden)

    Paula Austin

    2016-11-01

    Full Text Available An introduction to Radical Teacher, Issue 106: Teaching Black Lives Matter. This issue brings together a diverse collection of articles exploring educator’s responses, strategies, and stories on how #BlackLivesMatter has informed their teaching practice, the content of their courses, and their personal relationship to colleagues, family, friends, and self.

  16. Nuclear matter and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sick, I [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)

    1998-06-01

    We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)

  17. High density matter at RHIC

    Indian Academy of Sciences (India)

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at ...

  18. Quark Matter '87: Concluding remarks

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1988-03-01

    This year marked the beginning of the experimental program at BNL and CERN to probe the properties of ultra dense hadronic matter and to search for the quark-gluon plasma phase of matter. Possible implications of the preliminary findings are discussed. Problems needing further theoretical and experimental study are pointed out. 50 refs

  19. Indirect searches for dark matter

    Indian Academy of Sciences (India)

    The current status of indirect searches for dark matter has been reviewed in a schematic way here. The main relevant experimental results of the recent years have been listed and the excitements and disappointments that their phenomenological interpretations in terms of almost-standard annihilating dark matter have ...

  20. Z2 SIMP dark matter

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Chu, Xiaoyong

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z 2 symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model

  1. Advances in Soft Matter Mechanics

    CERN Document Server

    Li, Shaofan

    2012-01-01

    "Advances in Soft Matter Mechanics" is a compilation and selection of recent works in soft matter mechanics by a group of active researchers in the field. The main objectives of this book are first to disseminate the latest developments in soft matter mechanics in the field of applied and computational mechanics, and second to introduce soft matter mechanics as a sub-discipline of soft matter physics. As an important branch of soft matter physics, soft matter mechanics has developed rapidly in recent years. A number of the novel approaches discussed in this book are unique, such as the coarse grained finite element method for modeling colloidal adhesion, entropic elasticity, meshfree simulations of liquid crystal elastomers, simulations of DNA, etc. The book is intended for researchers and graduate students in the field of mechanics, condensed matter physics and biomaterials. Dr. Shaofan Li is a professor of the University of California-Berkeley, U.S.A; Dr. Bohua Sun is a professor of Cape Peninsula Universit...

  2. Order and disorder in matter

    CERN Document Server

    Careri, Giorgio

    1984-01-01

    Order and Disorder in Matter offers a comprehensive and up-to-date view of structures and processes in matter, in terms of the evolving concepts of order and disorder. Particular emphasis is given to the recent evolution of these concepts and their relationship to the more complex systems in nature.

  3. Condensed matter physics in electrochemistry

    International Nuclear Information System (INIS)

    Kornyshev, A.A.

    1991-01-01

    Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs

  4. White matter hyperintensities and changes in white matter integrity in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Wang, Liya; Mao, Hui; Goldstein, Felicia C.; Levey, Allan I.; Lah, James J.; Meltzer, Carolyn C.; Holder, Chad A.

    2011-01-01

    White matter hyperintensities (WMHs) are a risk factor for Alzheimer's disease (AD). This study investigated the relationship between WMHs and white matter changes in AD using diffusion tensor imaging (DTI) and the sensitivity of each DTI index in distinguishing AD with WMHs. Forty-four subjects with WMHs were included. Subjects were classified into three groups based on the Scheltens rating scale: 15 AD patients with mild WMHs, 12 AD patients with severe WMHs, and 17 controls with mild WMHs. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (D R ), and axial diffusivity (D A ) were analyzed using the region of interest and tract-based spatial statistics methods. Sensitivity and specificity of DTI indices in distinguishing AD groups from the controls were evaluated. AD patients with mild WMHs exhibited differences from control subjects in most DTI indices in the medial temporal and frontal areas; however, differences in DTI indices from AD patients with mild WMHs and AD patients with severe WMHs were found in the parietal and occipital areas. FA and D R were more sensitive measurements than MD and D A in differentiating AD patients from controls, while MD was a more sensitive measurement in distinguishing AD patients with severe WMHs from those with mild WMHs. WMHs may contribute to the white matter changes in AD brains, specifically in temporal and frontal areas. Changes in parietal and occipital lobes may be related to the severity of WMHs. D R may serve as an imaging marker of myelin deficits associated with AD. (orig.)

  5. Dark matter versus Mach's principle.

    Science.gov (United States)

    von Borzeszkowski, H.-H.; Treder, H.-J.

    1998-02-01

    Empirical and theoretical evidence show that the astrophysical problem of dark matter might be solved by a theory of Einstein-Mayer type. In this theory up to global Lorentz rotations the reference system is determined by the motion of cosmic matter. Thus one is led to a "Riemannian space with teleparallelism" realizing a geometric version of the Mach-Einstein doctrine. The field equations of this gravitational theory contain hidden matter terms where the existence of hidden matter is inferred safely from its gravitational effects. It is argued that in the nonrelativistic mechanical approximation they provide an inertia-free mechanics where the inertial mass of a body is induced by the gravitational action of the comic masses. Interpreted form the Newtonian point of view this mechanics shows that the effective gravitational mass of astrophysical objects depends on r such that one expects the existence of dark matter.

  6. Dark matter and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy); Pascoli, S [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy)

    2001-11-15

    Dark matter constitutes a key-problem at the interface between Particle Physics, Astrophysics and Cosmology. Indeed, the observational facts which have been accumulated in the last years on dark matter point to the existence of an amount of non-baryonic dark matter. Since the Standard Model of Particle Physics does not possess any candidate for such non-baryonic dark matter, this problem constitutes a major indication for new Physics beyond the Standard Model. We analyze the most important candidates for non-baryonic dark matter in the context of extensions of the Standard Model (in particular supersymmetric models). The recent hints for the presence of a large amount of unclustered 'vacuum' energy (cosmological constant?) is discussed from the Astrophysical and Particle Physics perspective. (author)

  7. In search of dark matter

    CERN Document Server

    Freeman, Kenneth C

    2006-01-01

    The dark matter problem is one of the most fundamental and profoundly difficult to solve problems in the history of science. Not knowing what makes up most of the known universe goes to the heart of our understanding of the Universe and our place in it. In Search of Dark Matter is the story of the emergence of the dark matter problem, from the initial erroneous ‘discovery’ of dark matter by Jan Oort to contemporary explanations for the nature of dark matter and its role in the origin and evolution of the Universe. Written for the educated non-scientist and scientist alike, it spans a variety of scientific disciplines, from observational astronomy to particle physics. Concepts that the reader will encounter along the way are at the cutting edge of scientific research. However the themes are explained in such a way that no prior understanding of science beyond a high school education is necessary.

  8. Dark matter search with XENON1T

    NARCIS (Netherlands)

    Aalbers, J.

    2018-01-01

    Most matter in the universe consists of 'dark matter' unknown to particle physics. Deep underground detectors such as XENON1T attempt to detect rare collisions of dark matter with ordinary atoms. This thesis describes the first dark matter search of XENON1T, how dark matter signals would appear in

  9. Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2010-01-01

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  10. Unified origin for baryonic visible matter and antibaryonic dark matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean

    2010-11-19

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  11. Matter and dark matter from false vacuum decay

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Schmitz, K.; Vertongen, G.

    2010-08-15

    We study tachyonic preheating associated with the spontaneous breaking of B-L, the difference of baryon and lepton number. Reheating occurs through the decays of heavy Majorana neutrinos which are produced during preheating and in decays of the Higgs particles of B-L breaking. Baryogenesis is an interplay of nonthermal and thermal leptogenesis, accompanied by thermally produced gravitino dark matter. The proposed mechanism simultaneously explains the generation of matter and dark matter, thereby relating the absolute neutrino mass scale to the gravitino mass. (orig.)

  12. Matter and dark matter from false vacuum decay

    International Nuclear Information System (INIS)

    Buchmueller, W.; Schmitz, K.; Vertongen, G.

    2010-08-01

    We study tachyonic preheating associated with the spontaneous breaking of B-L, the difference of baryon and lepton number. Reheating occurs through the decays of heavy Majorana neutrinos which are produced during preheating and in decays of the Higgs particles of B-L breaking. Baryogenesis is an interplay of nonthermal and thermal leptogenesis, accompanied by thermally produced gravitino dark matter. The proposed mechanism simultaneously explains the generation of matter and dark matter, thereby relating the absolute neutrino mass scale to the gravitino mass. (orig.)

  13. Dipolar dark matter

    International Nuclear Information System (INIS)

    Masso, Eduard; Mohanty, Subhendra; Rao, Soumya

    2009-01-01

    If dark matter (DM) has nonzero direct or transition, electric or magnetic dipole moment then it can scatter nucleons electromagnetically in direct detection experiments. Using the results from experiments like XENON, CDMS, DAMA, and COGENT, we put bounds on the electric and magnetic dipole moments of DM. If DM consists of Dirac fermions with direct dipole moments, then DM of mass less than 10 GeV is consistent with the DAMA signal and with null results of other experiments. If on the other hand DM consists of Majorana fermions then they can have only nonzero transition moments between different mass eigenstates. We find that Majorana fermions with masses 38 χ < or approx. 100-200 GeV and mass splitting of the order of (150-200) keV can explain the DAMA signal and the null observations from other experiments and in addition give the observed relic density of DM by dipole-mediated annihilation. The absence of the heavier DM state in the present Universe can be explained by dipole-mediated radiative decay. This parameter space for the mass and for dipole moments is allowed by limits from L3 but may have observable signals at LHC.

  14. Quark matter and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Fields, B.; Thomas, D.

    1992-01-01

    The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin

  15. Superstring dark matter

    International Nuclear Information System (INIS)

    Campbell, B.A.; Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Hagelin, J.S.; Olive, K.A.

    1986-02-01

    It is argued that the lightest supersymmetric particle (LSP) emerging from the superstring theory is a mixture of neutral gauginos and matter fermions. Their mixing matrix is calculated in a plausible minimal low-energy model abstracted from the superstring and the composition of the LSP chi is exhibited. Its relic cosmological density is computed and it is found that it lies within a factor 2 of the critical density required for closure, over a wide range of possible input parameters. The flux of neutrinos from LSP annihilation in the Sun is computed and it is found that it straddles the upper bound from proton decay detectors. Acceptable fluxes are obtained if m chi is less than m/sub t/, in which case the superstring relic can have the critical density for a present Hubble expansion rate H 0 greater than or approximately equal to 50 km/s/Mpc only if m/sub t/ is greater than or approximately 40 GeV. 25 refs., 3 figs., 1 tab

  16. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  17. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  18. Differential Equations as Actions

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....

  19. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  20. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  1. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  2. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  3. The Evolution of Galaxies by the Incompatibility between Dark Matter and Baryonic Matter

    OpenAIRE

    Chung, Ding-Yu

    2001-01-01

    In this paper, the evolution of galaxies is by the incompatibility between dark matter and baryonic matter. Due to the structural difference, baryonic matter and dark matter are incompatible to each other as oil droplet and water in emulsion. In the interfacial zone between dark matter and baryonic matter, this incompatibility generates the modification of Newtonian dynamics to keep dark matter and baryonic matter apart. The five periods of baryonic structure development in the order of incre...

  4. The search for dark matter

    International Nuclear Information System (INIS)

    Smith, Nigel; Spooner, Neil

    2000-01-01

    Experiments housed deep underground are searching for new particles that could simultaneously solve one of the biggest mysteries in astrophysics and reveal what lies beyond the Standard Model of particle physics. Physicists are very particular about balancing budgets. Energy, charge and momentum all have to be conserved and often money as well. Astronomers were therefore surprised and disturbed to learn in the 1930s that our own Milky Way galaxy behaved as if it contained more matter than could be seen with telescopes. This puzzling non-luminous matter became known as ''dark matter'' and we now know that over 90% of the matter in the entire universe is dark. In later decades the search for this dark matter shifted from the heavens to the Earth. In fact, the search for dark matter went underground. Today there are experiments searching for dark matter hundreds and thousands of metres below ground in mines, road tunnels and other subterranean locations. These experiments are becoming more sensitive every year and are beginning to test various new models and theories in particle physics and cosmology. (UK)

  5. AMS-02 fits dark matter

    Science.gov (United States)

    Balázs, Csaba; Li, Tong

    2016-05-01

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  6. Phases of cannibal dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marco [New High Energy Theory Center, Department of Physics, Rutgers University,136 Frelinghuisen Road, Piscataway, NJ 08854 (United States); Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY 10003 (United States)

    2016-12-13

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  7. Dark matter and dark radiation

    International Nuclear Information System (INIS)

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-01

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant α-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α-circumflex -3 for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  8. AMS-02 fits dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balázs, Csaba; Li, Tong [ARC Centre of Excellence for Particle Physics at the Tera-scale,School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800 (Australia)

    2016-05-05

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  9. Eco matters; In & Out

    Directory of Open Access Journals (Sweden)

    Editorial

    2016-11-01

    Full Text Available In vitro culture of cells and tissues were undertaken to understand the intricacies of cellular biology per se until recently, when such in vitro grown cells and tissues have started evolving as tools of regenerative medicine. Only after such clinical applications of in vitro cultured cells and tissues became a possibility, various criteria about the compatibility of in vitro environments to the cells and tissues have gained significant attention. Among the in vitro cultured cells, chondrocytes pop up as one of the most approved cell-based products by regulatory authorities of many countries including the USA, Europe and Japan [1]. In this procedure, it has been reported by several studies that human articular chondrocytes (HACs when cultured as monolayer, they tend to de-differentiate [2] whereas 3D cultures help to establish the native hyaline phenotype [3]. Variations of such significance in the in vitro behaviour of other cell types have also been reported in literature [4-9] which clearly demonstrate that in vitro environments play a crucial role in maintaining cells with the proper phenotype and functionality for clinical transplantation. Another major factor which needs to be studied thoroughly iscellular senescence in the in vitro environment. Though cells derived from older individuals may share cellular and molecular phenotypes with in vitro senescent cells, in vitro acquired cellular senescence is a proven phenomenon [10]. While the 'Hayflick limit' specifies a particular number of maximum population doubling for a specific cell type in vitro, the same cell type in vivo may undergo more than the Hayflick limit specified population doubling in a lifetime without senescence [11] creating the need for improvising current in vitro cell culture techniques to reflect what occurs in vivo. Given the above background, the goal of in vitro cell and tissue engineering is to grow cells with optimal functionality while simultaneously preventing

  10. Particle Dark Matter: Status and Searches

    OpenAIRE

    Sandick, Pearl

    2010-01-01

    A brief overview is given of the phenomenology of particle dark matter and the properties of some of the most widely studied dark matter candidates. Recent developments in direct and indirect dark matter searches are discussed.

  11. Probes for dark matter physics

    Science.gov (United States)

    Khlopov, Maxim Yu.

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.

  12. Comprehensive asymmetric dark matter model

    Science.gov (United States)

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-05-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical constraints. Importantly, it incorporates a deep reason for why the dark matter mass scale is related to the proton mass, a key consideration in ADM models. Our starting point is the idea of mirror matter, which offers an explanation for dark matter by duplicating the standard model with a dark sector related by a Z2 parity symmetry. However, the dark sector need not manifest as a symmetric copy of the standard model in the present day. By utilizing the mechanism of "asymmetric symmetry breaking" with two Higgs doublets in each sector, we develop a model of ADM where the mirror symmetry is spontaneously broken, leading to an electroweak scale in the dark sector that is significantly larger than that of the visible sector. The weak sensitivity of the ordinary and dark QCD confinement scales to their respective electroweak scales leads to the necessary connection between the dark matter and proton masses. The dark matter is composed of either dark neutrons or a mixture of dark neutrons and metastable dark hydrogen atoms. Lepton asymmetries are generated by the C P -violating decays of heavy Majorana neutrinos in both sectors. These are then converted by sphaleron processes to produce the observed ratio of visible to dark matter in the universe. The dynamics responsible for the kinetic decoupling of the two sectors emerges as an important issue that we only partially solve.

  13. Phase transition to QGP matter : confined vs deconfined matter

    CERN Multimedia

    Maire, Antonin

    2015-01-01

    Simplified phase diagram of the nuclear phase transition, from the regular hadronic matter to the QGP phase. The sketch is meant to describe the transition foreseen along the temperature axis, at low baryochemical potential, µB.

  14. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  15. Criticality in cell differentiation

    Indian Academy of Sciences (India)

    Indrani Bose

    2017-11-09

    Nov 9, 2017 ... Differentiation is mostly based on binary decisions with the progenitor cells ..... accounts for the dominant part of the remaining variation ... significant loss in information. ..... making in vitro: emerging concepts and novel tools.

  16. Differentiation of subdural effusions

    International Nuclear Information System (INIS)

    Wetterling, T.; Rama, B.

    1989-01-01

    Although X-ray computerized tomography facilitates the diagnosis of intracranial disorders, differentiation of the lesions like extracerebral effusions is often unsatisfactory. Epidural and acute subdural haematoma shown as hyperdensity in CT requires an emergency neurosurgical operation, so that differentiation of these hyperdense effusions may not be required. But the discrimination of the effusions shown as hypodensity in CT (chronic subdural haematoma, subdural hygroma, subdural empyema as well as arachnoid cysts) is urgent because of the different treatment of these effusions. The clinical differentiation is hampered by unspecific neurologic symptoms and the lack of adequate laboratory tests. Some aspects facilitating the diagnostic decision are presented. Recent magnetic resonance (MR) studies promise further progress in differentiating between subdural effusions. (orig.) [de

  17. Alternative dark matter candidates. Axions

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2017-01-01

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10 9 GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  18. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Matter-Wave Tractor Beams

    DEFF Research Database (Denmark)

    Gorlach, Alexey A.; Gorlach, Maxim A.; Lavrinenko, Andrei

    2017-01-01

    Optical and acoustic tractor beams are currently the focus of intense research due to their counterintuitive property of exerting a pulling force on small scattering objects. In this Letter we propose a matter-wave tractor beam and utilize the de Broglie waves of nonrelativistic matter particles...... are compared, and the matter-wave pulling force is found to have exclusive properties of dragging slow particles in short-range potentials. We envisage that the use of tractor beams could lead to the unprecedented precision in manipulation with atomic-scale quantum objects....

  20. Alternative dark matter candidates. Axions

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2017-01-15

    The axion is arguably one of the best motivated candidates for dark matter. For a decay constant >or similar 10{sup 9} GeV, axions are dominantly produced non-thermally in the early universe and hence are ''cold'', their velocity dispersion being small enough to fit to large scale structure. Moreover, such a large decay constant ensures the stability at cosmological time scales and its behaviour as a collisionless fluid at cosmological length scales. Here, we review the state of the art of axion dark matter predictions and of experimental efforts to search for axion dark matter in laboratory experiments.

  1. Dark matter in the universe

    International Nuclear Information System (INIS)

    Bahcall, J.; Piran, T.; Weinberg, S.

    1988-01-01

    If standard gravitational theory is correct, then most of the matter in the universe is in an unidentified form which does not emit enough light to have been detected by current instrumentation. This proceedings was devoted to a discussion of the so-called ''missing matter'' problem in the universe. The goal of the School was to make current research work on unseen matter accessible to students or facilities without prior experience in this area. Due to the pedagogical nature of the School and the strong interactions between students and the lecturers, the written lectures included in this volume often contain techniques and explanations not found in more formal journal publications

  2. Constraining Dark Matter with ATLAS

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  3. Indirect detection of dark matter

    International Nuclear Information System (INIS)

    Carr, J; Lamanna, G; Lavalle, J

    2006-01-01

    This article is an experimental review of the status and prospects of indirect searches for dark matter. Experiments observe secondary particles such as positrons, antiprotons, antideuterons, gamma-rays and neutrinos which could originate from annihilations of dark matter particles in various locations in the galaxy. Data exist from some experiments which have been interpreted as hints of evidence for dark matter. These data and their interpretations are reviewed together with the new experiments which are planned to resolve the puzzles and make new measurements which could give unambiguous results

  4. Mathematical models of granular matter

    CERN Document Server

    Mariano, Paolo; Giovine, Pasquale

    2008-01-01

    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  5. Sterile neutrinos as dark matter

    International Nuclear Information System (INIS)

    Dodelson, S.; Widrow, L.M.

    1994-01-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed (sterile) neutrinos. We consider a single generation of neutrinos with a Dirac mass μ and a Majorana mass M for the right-handed component. If M much-gt μ (standard hot dark matter corresponds to M=0), then sterile neutrinos are produced via oscillations in the early Universe with energy density independent of M. However, M is crucial in determining the large scale structure of the Universe; for M∼100 eV, sterile neutrinos make an excellent warm dark matter candidate

  6. Mixed dark matter from technicolor

    DEFF Research Database (Denmark)

    Belyaev, Alexander; T. Frandsen, Mads; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal...... abundance alone we find a lower bound of MW on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC....

  7. Probing nuclear matter with dileptons

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-06-01

    Dileptons are shown to be of interest in helping probe extreme conditions of temperature and density in nuclear matter. The current state of experimental knowledge about dileptons is briefly described, and their use in upcoming experiments with light ions at CERN SPS are reviewed, including possible signatures of quark matter formation. Use of dileptons in an upcoming experiment with a new spectrometer at Berkeley is also discussed. This experiment will probe the nuclear matter equation of state at high temperature and density. 16 refs., 8 figs

  8. Casting light on dark matter

    International Nuclear Information System (INIS)

    Ellis, John

    2012-01-01

    The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles, whereas indirect searches may require greater sensitivity, at least within the CMSSM.

  9. Dark matter, a hidden universe

    International Nuclear Information System (INIS)

    Trodden, M.; Feng, J.

    2011-01-01

    The main candidates to dark matter are particles called WIMPs for weakly interacting massive particles. 4 experiments (CDMS in Minnesota (Usa), DAMA at Gran Sasso (Italy), CoGeNT in Minnesota (Usa) and PAMELA onboard a Russian satellite) have claimed to have detected them. New clues suggest that it could exist new particles interacting via new forces. The observation that dwarf galaxies are systematically more spherical than massive galaxies might be a sign of the existence of new forces between dark matter components. Dark matter could not be as inert as previously thought. (A.C.)

  10. On paragrassmann differential calculus

    International Nuclear Information System (INIS)

    Filippov, A.T.; Isaev, A.P.; Kurdikov, A.B.

    1992-01-01

    The paper significantly extends and generalizes our previous paper. Here we discuss explicit general constructions for paragrassmann calculus with one and many variables. For one variable nondegenerate differentiation algebras are identified and shown to be equivalent to the algebra of (p+1)x(p+1) complex matrices. For many variables we give a general construction of the differentiation algebras. Some particular examples are related to the multiparametric quantum deformations of the harmonic oscillators. 18 refs

  11. Differential forms of supermanifolds

    International Nuclear Information System (INIS)

    Beresin, P.A.

    1979-01-01

    The theory of differential and pseUdo-differential forms on supermanifolds is constructed. The definition and notations of superanalogy of the Pontryagin and Chern characteristic classes are given. The theory considered is purely local. The scheme suggested here generalizes the so-called Weil homomorphism for superspace which lays on the basis of the Chern and Potryagin characteristic class theory. The theory can be extended to the global supermanifolds

  12. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  13. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  14. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  15. Soliton matter as a model of dense nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1985-01-01

    We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures

  16. Yes, research matters.

    Directory of Open Access Journals (Sweden)

    Mari L Shinohara

    2017-08-01

    Full Text Available My father was diagnosed with stomach cancer recently. Luckily, it was still at an early stage, and endoscopic surgery successfully took care of it. My father was fortunate; since people with stomach cancer do not show clear symptoms in the early stages, the disease is often not diagnosed until it becomes advanced. In his case, the diagnosis started from a suggestion by his doctor to check whether he had a gastric infection with Helicobacter pylori, a bacterial species found in the digestive tract. In Japan, where he lives, a majority of gastric cancer patients (more than 99% have been infected with H. pylori [1], and the causative role of this bacterial species in promoting gastric cancer is very well established. Now, scientific understanding connecting gastric cancer to H. pylori is saving the lives of many people, including my father. Thinking about this recent personal experience, I wonder if the connection between bacteria and cancer might have been considered a crazy idea decades ago. Research makes it possible to connect seemingly unrelated matters. My laboratory works on seemingly unrelated research topics, such as fungal infections and autoimmunity. However, my question is the same whatever the topic: How do leukocytes elicit and regulate inflammation when they detect infections or endogenous signals? In fact, host receptors detecting pathogens can induce autoimmunity, and autoimmunity alters host sensitivity to pathogens due to the imbalance in the immune system. We are beginning to gain some insight into this question, as revealed by some of our recent studies. For example, the NLR family, pyrin domain containing 3 (NLRP3 inflammasome, which is known to sense a wide variety of pathogens, can also change the course of experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. In particular, our study suggested that disease treatment approaches need to be changed based on the activation status of the NLRP

  17. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    Science.gov (United States)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  18. Matter, dark matter, and anti-matter in search of the hidden universe

    CERN Document Server

    Mazure, Alain

    2012-01-01

    For over ten years, the dark side of the universe has been headline news. Detailed studies of the rotation of spiral galaxies, and 'mirages' created by clusters of galaxies bending the light from very remote objects, have convinced astronomers of the presence of large quantities of dark (unseen) matter in the cosmos. Moreover, in the 1990s, it was discovered that some four to five billion years ago the expansion of the universe entered a phase of acceleration. This implies the existence of dark energy. The nature of these 'dark; ingredients remains a mystery, but they seem to comprise about 95 percent of the matter/energy content of the universe. As for ordinary matter, although we are immersed in a sea of dark particles, including primordial neutrinos and photons from 'fossil' cosmological radiation, both we and our environment are made of ordinary, baryonic matter. Strangely, even if 15-20 percent of matter is baryonic matter, this represents only 4-5 percent of the total matter/energy content of the cosmos...

  19. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  20. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  2. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    Ryu, C.; Boshier, M. G.

    2015-01-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  3. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  4. From Matter to Life: Chemistry?!

    Indian Academy of Sciences (India)

    chemistry came along at milder temperatures; particles formed atoms; these ... Chemistry is the science of matter and of its transformations, and life is its highest ..... information. The progression from elementary particles to the nucleus, the.

  5. Magnetic monopoles and strange matter

    International Nuclear Information System (INIS)

    Sanudo, J.; Segui, A.

    1985-07-01

    We show that, if the density of grand unified monopoles at T approx. = 200 MeV is of the order of or greater than 4.4 * 10 21 cm -3 , they annihilate all of the strange matter produced in the quagmahadron phase transition which the Universe undergoes at this temperature. We also study gravitational capture of monopoles by lumps of strange matter. This yields upper limits on the density of monopoles for different sizes of strange ball. (author)

  6. Recovering bituminous matter from shale

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, H D

    1922-08-29

    A process is described for obtaining valuable hydro-carbons from bituminous solids such as shale and the like, which comprises digesting a mixture of such a bituminous solid with a hydro-carbon liquid, the digestion being conducted at temperature high enough to effectively liquefy heavy bituminous matter contained in the solid but insufficiently high to effect substantial distillation of heavy bituminous matter, separating a resultant liquid mixture of hydrocarbons from the residue of such bituminous solid and refining the liquid mixture.

  7. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  8. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    Fiorilla, Salvatore

    2012-01-01

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  9. Transport properties of dense matter

    International Nuclear Information System (INIS)

    Itoh, Naoki; Mitake, Shinichi; Iyetomi, Hiroshi; Ichimaru, Setsuo

    1983-01-01

    Transport coefficients, electrical and thermal conductivities in particular, are essential physical quantities for the theories of stellar structure. Since the discoveries of pulsars and X-ray stars, an accurate evaluation of the transport coefficients in the dense matter has become indispensable to the quantitative understanding of the observed neutron stars. The authors present improved calculations of the electrical and thermal conductivities of the dense matter in the liquid metal phase, appropriate to white dwarfs and neutron stars. (Auth.)

  10. A History of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco [U. Amsterdam, GRAPPA; Hooper, Dan [Fermilab

    2016-05-16

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  11. Make dark matter charged again

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.

  12. Dark matter and global symmetries

    Directory of Open Access Journals (Sweden)

    Yann Mambrini

    2016-09-01

    Full Text Available General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left–Right, Singlet Fermionic, Zee–Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i global symmetries are broken at the Planck scale, that (ii the non-renormalizable operators mediating dark matter decay have O(1 couplings, that (iii the dark matter is a singlet field, and that (iv the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV–TeV, including the WIMP regime.

  13. Strange matter in compact stars

    Science.gov (United States)

    Klähn, Thomas; Blaschke, David B.

    2018-02-01

    We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  14. Strange matter in compact stars

    Directory of Open Access Journals (Sweden)

    Klähn Thomas

    2018-01-01

    Full Text Available We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  15. Self-Destructing Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval [Cornell U., LEPP; Harnik, Roni [Fermilab; Telem, Ofri [Cornell U., LEPP; Zhang, Yue [Northwestern U.

    2017-12-01

    We present Self-Destructing Dark Matter (SDDM), a new class of dark matter models which are detectable in large neutrino detectors. In this class of models, a component of dark matter can transition from a long-lived state to a short-lived one by scattering off of a nucleus or an electron in the Earth. The short-lived state then decays to Standard Model particles, generating a dark matter signal with a visible energy of order the dark matter mass rather than just its recoil. This leads to striking signals in large detectors with high energy thresholds. We present a few examples of models which exhibit self destruction, all inspired by bound state dynamics in the Standard Model. The models under consideration exhibit a rich phenomenology, possibly featuring events with one, two, or even three lepton pairs, each with a fixed invariant mass and a fixed energy, as well as non-trivial directional distributions. This motivates dedicated searches for dark matter in large underground detectors such as Super-K, Borexino, SNO+, and DUNE.

  16. Plasma dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, J.D.; Foot, R., E-mail: j.clarke5@pgrad.unimelb.edu.au, E-mail: rfoot@unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, Victoria 3010 Australia (Australia)

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless 'dark photon' (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  17. Enlightening Students about Dark Matter

    Science.gov (United States)

    Hamilton, Kathleen; Barr, Alex; Eidelman, Dave

    2018-01-01

    Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.

  18. Dark matter in spiral galaxies

    International Nuclear Information System (INIS)

    Albada, T.S. van; Sancisi, R.

    1986-01-01

    Mass models of spiral galaxies based on the observed light distribution, assuming constant M/L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M/L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to 'conspire' to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results. (author)

  19. Lectures on differential Galois theory

    CERN Document Server

    Magid, Andy R

    1994-01-01

    Differential Galois theory studies solutions of differential equations over a differential base field. In much the same way that ordinary Galois theory is the theory of field extensions generated by solutions of (one variable) polynomial equations, differential Galois theory looks at the nature of the differential field extension generated by the solutions of differential equations. An additional feature is that the corresponding differential Galois groups (of automorphisms of the extension fixing the base and commuting with the derivation) are algebraic groups. This book deals with the differential Galois theory of linear homogeneous differential equations, whose differential Galois groups are algebraic matrix groups. In addition to providing a convenient path to Galois theory, this approach also leads to the constructive solution of the inverse problem of differential Galois theory for various classes of algebraic groups. Providing a self-contained development and many explicit examples, this book provides ...

  20. Ordinary Dark Matter versus Mysterious Dark Matter in Galactic Rotation

    Science.gov (United States)

    Gallo, C. F.; Feng, James

    2008-04-01

    To theoretically describe the measured rotational velocity curves of spiral galaxies, there are two different approaches and conclusions. (1) ORDINARY DARK MATTER. We assume Newtonian gravity/dynamics and successfully find (via computer) mass distributions in bulge/disk configurations that duplicate the measured rotational velocities. There is ordinary dark matter within the galactic disk towards the cooler periphery which has lower emissivity/opacity. There are no mysteries in this scenario based on verified physics. (2) MYSTERIOUS DARK MATTER. Others INaccurately assume the galactic mass distributions follow the measured light distributions, and then the measured rotational velocity curves are NOT duplicated. To alleviate this discrepancy, speculations are invoked re ``Massive Peripheral Spherical Halos of Mysterious Dark Matter.'' But NO matter has been detected in this UNtenable Halo configuration. Many UNverified ``Mysteries'' are invoked as necessary and convenient. CONCLUSION. The first approach utilizing Newtonian gravity/dynamics and searching for the ordinary mass distributions within the galactic disk simulates reality and agrees with data.

  1. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  2. Advanced differential quadrature methods

    CERN Document Server

    Zong, Zhi

    2009-01-01

    Modern Tools to Perform Numerical DifferentiationThe original direct differential quadrature (DQ) method has been known to fail for problems with strong nonlinearity and material discontinuity as well as for problems involving singularity, irregularity, and multiple scales. But now researchers in applied mathematics, computational mechanics, and engineering have developed a range of innovative DQ-based methods to overcome these shortcomings. Advanced Differential Quadrature Methods explores new DQ methods and uses these methods to solve problems beyond the capabilities of the direct DQ method.After a basic introduction to the direct DQ method, the book presents a number of DQ methods, including complex DQ, triangular DQ, multi-scale DQ, variable order DQ, multi-domain DQ, and localized DQ. It also provides a mathematical compendium that summarizes Gauss elimination, the Runge-Kutta method, complex analysis, and more. The final chapter contains three codes written in the FORTRAN language, enabling readers to q...

  3. Differentiation of real functions

    CERN Document Server

    Bruckner, Andrew

    1994-01-01

    Topics related to the differentiation of real functions have received considerable attention during the last few decades. This book provides an efficient account of the present state of the subject. Bruckner addresses in detail the problems that arise when dealing with the class \\Delta ' of derivatives, a class that is difficult to handle for a number of reasons. Several generalized forms of differentiation have assumed importance in the solution of various problems. Some generalized derivatives are excellent substitutes for the ordinary derivative when the latter is not known to exist; others are not. Bruckner studies generalized derivatives and indicates "geometric" conditions that determine whether or not a generalized derivative will be a good substitute for the ordinary derivative. There are a number of classes of functions closely linked to differentiation theory, and these are examined in some detail. The book unifies many important results from the literature as well as some results not previously pub...

  4. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang

    2002-01-01

    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  5. Arithmetic differential equations on $GL_n$, I: differential cocycles

    OpenAIRE

    Buium, Alexandru; Dupuy, Taylor

    2013-01-01

    The theory of differential equations has an arithmetic analogue in which derivatives are replaced by Fermat quotients. One can then ask what is the arithmetic analogue of a linear differential equation. The study of usual linear differential equations is the same as the study of the differential cocycle from $GL_n$ into its Lie algebra given by the logarithmic derivative. However we prove here that there are no such cocycles in the context of arithmetic differential equations. In sequels of t...

  6. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  7. Numerical differential protection

    CERN Document Server

    Ziegler, Gerhard

    2012-01-01

    Differential protection is a fast and selective method of protection against short-circuits. It is applied in many variants for electrical machines, trans?formers, busbars, and electric lines.Initially this book covers the theory and fundamentals of analog and numerical differential protection. Current transformers are treated in detail including transient behaviour, impact on protection performance, and practical dimensioning. An extended chapter is dedicated to signal transmission for line protection, in particular, modern digital communication and GPS timing.The emphasis is then pla

  8. Does relevance matter in academic policy research

    DEFF Research Database (Denmark)

    Dredge, Dianne

    2015-01-01

    A reflection on whether relevance matters in tourism policy research, and if so, to whom/what should it matter......A reflection on whether relevance matters in tourism policy research, and if so, to whom/what should it matter...

  9. Searches for Dark Matter at the LHC

    CERN Document Server

    Butler, John; The ATLAS collaboration

    2018-01-01

    The existance of a new form of matter, Dark Matter, has been established by a large body of astrophysical measurements. The particle nature of Dark Matter is one of the most intriguing and important open issues in physics today. A review of searches for Dark Matter by the LHC experiments is presented

  10. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    Science.gov (United States)

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  11. Dark matter, neutron stars, and strange quark matter.

    Science.gov (United States)

    Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R

    2010-10-01

    We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.

  12. Did LIGO Detect Dark Matter?

    Science.gov (United States)

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  13. The mystery of dark matter

    International Nuclear Information System (INIS)

    Khalatbari, Azar

    2015-01-01

    As only 0.5 per cent (the shining part) of the Universe is seen by telescopes, and corresponds to a tenth of ordinary matter or 5 per cent of the cosmos, astrophysicists postulated that the remaining 95 per cent are made of dark matter and dark energy. But always more researchers put the existence of this dark matter and energy into question again. They notably think of giving up Newton's law of universal gravitation, and also the basic assumption of cosmology, i.e. the homogeneous character of the Universe. The article recalls the emergence of the notion of dark matter to explain the fact that stars stay within a galaxy, whereas with their observed speed and the application of the gravitational theory they should escape their galaxy. Then, the issue has been to find evidence of the existence of dark matter. Neutrinos were supposed to be a clue, but only for a while. The notion of dark energy was introduced more recently by researchers who, by the observation of supernovae, noticed that the Universe expansion was accelerated in time. Then, after having discussed the issues raised by the possible existence of dark energy, the article explains how and why a new non homogeneous cosmology emerged. It also evokes current and future researches in this field. In an interview, an astrophysicist outlines why we should dare to modify Newton's law

  14. Molecular dynamics for dense matter

    International Nuclear Information System (INIS)

    Maruyama, Toshiki; Chiba, Satoshi; Watanabe, Gentaro

    2012-01-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear “pasta”, i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid–gas phase transition is not plausible at lower temperatures. (author)

  15. Molecular dynamics for dense matter

    Science.gov (United States)

    Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi

    2012-08-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.

  16. Inflationary imprints on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo, E-mail: sami.nurmi@helsinki.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland)

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z{sub 2} symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ{sup †}Φ s{sup 2}. Dark matter relic density is generated non-thermally for λ ∼< 10{sup −7}. We show that the dark matter yield crucially depends on the inflationary scale. For H∼ 10{sup 10} GeV we find that the singlet self-coupling and mass should lie in the regime λ{sub s}∼> 10{sup −9} and m{sub s}∼< 50 GeV to avoid dark matter overproduction.

  17. Production of Purely Gravitational Dark Matter

    OpenAIRE

    Ema, Yohei; Nakayama, Kazunori; Tang, Yong

    2018-01-01

    In the purely gravitational dark matter scenario, the dark matter particle does not have any interaction except for gravitational one. We study the gravitational particle production of dark matter particle in such a minimal setup and show that correct amount of dark matter can be produced depending on the inflation model and the dark matter mass. In particular, we carefully evaluate the particle production rate from the transition epoch to the inflaton oscillation epoch in a realistic inflati...

  18. Administrative court control in taxation matters

    OpenAIRE

    Nataša Zunić Kovačević

    2016-01-01

    Starting with the current organisation of administrative court control in taxation matters, this paper, after a brief overview of the normative legal framework of control in such matters, provides an analysis of certain indicators of administrative and administrative court control implementation in taxation matters. The experience of the application of administrative control in taxation matters and an analysis of accessible indicators of recent administrative court control in taxation matters...

  19. Window in the dark matter exclusion limits

    International Nuclear Information System (INIS)

    Zaharijas, Gabrijela; Farrar, Glennys R.

    2005-01-01

    We consider the cross section limits for light dark matter cadnidates (m=0.4 to 10 GeV). We calculate the interaction of dark matter in the crust above underground dark matter detectors and find that in the intermediate cross section range, the energy loss of dark matter is sufficient to fall below the energy threshold of current underground experiments. This implies the existence of a window in the dark matter exclusion limits in the micro-barn range

  20. Differential SPR immunosensing

    NARCIS (Netherlands)

    Berger, Charles E.H.; Berger, C.E.H.; Greve, Jan

    2000-01-01

    In this work we describe a surface plasmon resonance (SPR) sensor with a differential detection of the SPR angle, and demonstrate it. The angle of incidence is modulated by a simple piezo-electric actuator, and the reflectance signal is measured with a lockin-amplifier. When the conditions for SPR

  1. Analyticity without Differentiability

    Science.gov (United States)

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  2. Inequalities for Differential Forms

    CERN Document Server

    Agarwal, Ravi P

    2009-01-01

    Presents a series of local and global estimates and inequalities for differential forms, in particular the ones that satisfy the A-harmonic equations. This work focuses on the Hardy-Littlewood, Poincare, Cacciooli, imbedded and reverse Holder inequalities. It is for researchers, instructors and graduate students

  3. Paragrassmann differential calculus

    International Nuclear Information System (INIS)

    Filippov, A.T.; Isaev, A.P.; Kurdikov, A.V.

    1993-01-01

    This paper significantly extends and generalizes the paragrassmann calculus previous paper. Explicit general constructions for paragrassmann calculus with one and many vaiables are discussed. A general construction of many-variable differentiation algebras is given. Some particular examples are related to multi-parametric quantum deformation of the harmonic oscillators

  4. Surveillance for Secure Differentiation

    DEFF Research Database (Denmark)

    Hamilton, William B; Brickman, Joshua M

    2017-01-01

    The precise place and time where embryonic differentiation begins is regulated by regionalized signaling. In this issue of Cell Stem Cell, Wang et al. (2017) investigate how converging Wnt and Nodal signals promote mesendoderm through a p53, Wnt3 feed-forward loop, pointing to a mechanism by which...

  5. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...

  6. Differentiated Duopoly Revisited

    OpenAIRE

    Onozaki, Tamotsu

    2012-01-01

    The present paper explores what happens in the analytical results of a duopoly model with product differentiation when heterogeneity of production cost is introduced. It is shown that there is a possibility that the price strategy is dominant over the quantity strategy even if goods are substitutes.

  7. Molecular Typing and Differentiation

    Science.gov (United States)

    In this chapter, general background and bench protocols are provided for a number of molecular typing techniques in common use today. Methods for the molecular typing and differentiation of microorganisms began to be widely adopted following the development of the polymerase chai...

  8. Klasseledelse, inklusion og differentiering

    DEFF Research Database (Denmark)

    Jørgensen, Christina; Mottelson, Martha

    2014-01-01

    Kapitlet behandler forholdet mellem de tre begreber klasseledelse, inklusion og differentiering og ser på, hvordan de folder sig ud i folkeskolens praksis. Der tages afsæt i en definition af klasseledelse som alle de redskaber, læreren tager i anvendelse med henblik på at få timen til tage form p...

  9. Differentiation in Classroom Practice

    DEFF Research Database (Denmark)

    Mottelson, Martha

    Differentiation in School Practice is an ongoing research project currently being carried out in UCC’s research department by myself and my coworker Christina Jørgensen. The project includes a field study of everyday life in a Danish 5th grade classroom with the aim to observe, describe and analyze...

  10. Invariant differential operators

    CERN Document Server

    Dobrev, Vladimir K

    2016-01-01

    With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory.

  11. Invariant differential operators

    CERN Document Server

    Dobrev, Vladimir K

    With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory.

  12. Automatic differentiation of functions

    International Nuclear Information System (INIS)

    Douglas, S.R.

    1990-06-01

    Automatic differentiation is a method of computing derivatives of functions to any order in any number of variables. The functions must be expressible as combinations of elementary functions. When evaluated at specific numerical points, the derivatives have no truncation error and are automatically found. The method is illustrated by simple examples. Source code in FORTRAN is provided

  13. Perceptual dimensions differentiate emotions.

    Science.gov (United States)

    Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M

    2015-08-26

    Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.

  14. Global atmospheric chemistry – which air matters

    Directory of Open Access Journals (Sweden)

    M. J. Prather

    2017-07-01

    Full Text Available An approach for analysis and modeling of global atmospheric chemistry is developed for application to measurements that provide a tropospheric climatology of those heterogeneously distributed, reactive species that control the loss of methane and the production and loss of ozone. We identify key species (e.g., O3, NOx, HNO3, HNO4, C2H3NO5, H2O, HOOH, CH3OOH, HCHO, CO, CH4, C2H6, acetaldehyde, acetone and presume that they can be measured simultaneously in air parcels on the scale of a few km horizontally and a few tenths of a km vertically. As a first step, six global models have prepared such climatologies sampled at the modeled resolution for August with emphasis on the vast central Pacific Ocean basin. Objectives of this paper are to identify and characterize differences in model-generated reactivities as well as species covariances that could readily be discriminated with an unbiased climatology. A primary tool is comparison of multidimensional probability densities of key species weighted by the mass of such parcels or frequency of occurrence as well as by the reactivity of the parcels with respect to methane and ozone. The reactivity-weighted probabilities tell us which parcels matter in this case, and this method shows skill in differentiating among the models' chemistry. Testing 100 km scale models with 2 km measurements using these tools also addresses a core question about model resolution and whether fine-scale atmospheric structures matter to the overall ozone and methane budget. A new method enabling these six global chemistry–climate models to ingest an externally sourced climatology and then compute air parcel reactivity is demonstrated. Such an objective climatology containing these key species is anticipated from the NASA Atmospheric Tomography (ATom aircraft mission (2015–2020, executing profiles over the Pacific and Atlantic Ocean basins. This modeling study addresses a core part of the design of ATom.

  15. Generalized calculus with applications to matter and forces

    CERN Document Server

    Campos, L M B C

    2014-01-01

    Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: •Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of ...

  16. Dark matter structures and emission of very long gravitational waves

    International Nuclear Information System (INIS)

    Bisnovatyi-Kogan, G.S.

    2005-01-01

    Formation of large structure in the Universe as a result of gravitational instability in cold dark matter is investigated in a simple analytical model. Collapse of the rotating spheroid is approximated by a system of ordinary differential equations describing its dynamics. The gravitational potential is approximated by the one of the uniform Maclaurin spheroid. Development of gravitational instability and collapse in the dark matter medium do not lead to any shock formation or radiation, but is characterized by non-collisional relaxation, which is accompanied by the mass and angular momentum losses. Phenomenological account of these processes is done in this model. Formation of the equilibrium configuration dynamics of collapse is investigated. A very long gravitational wave emission during the collapse is estimated, and their possible connection with the observed gravitational lenses is discussed

  17. Finance and growth in a bank-based economy : Is it quantity or quality that matters?

    NARCIS (Netherlands)

    Koetter, Michael; Wedow, Michael

    2010-01-01

    Most finance-growth studies approximate the size of financial systems rather than the quality of intermediation to explain economic growth differentials. Furthermore, the neglect of systematic differences in cross-country studies could drive the result that finance matters. We suggest a measure of

  18. Dark matter from split seesaw

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-01-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  19. Topological gravity with minimal matter

    International Nuclear Information System (INIS)

    Li Keke

    1991-01-01

    Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)

  20. Introduction. Cosmology meets condensed matter.

    Science.gov (United States)

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.