WorldWideScience

Sample records for gray scale images

  1. Fuzzy Matching Based on Gray-scale Difference for Quantum Images

    Science.gov (United States)

    Luo, GaoFeng; Zhou, Ri-Gui; Liu, XingAo; Hu, WenWen; Luo, Jia

    2018-05-01

    Quantum image processing has recently emerged as an essential problem in practical tasks, e.g. real-time image matching. Previous studies have shown that the superposition and entanglement of quantum can greatly improve the efficiency of complex image processing. In this paper, a fuzzy quantum image matching scheme based on gray-scale difference is proposed to find out the target region in a reference image, which is very similar to the template image. Firstly, we employ the proposed enhanced quantum representation (NEQR) to store digital images. Then some certain quantum operations are used to evaluate the gray-scale difference between two quantum images by thresholding. If all of the obtained gray-scale differences are not greater than the threshold value, it indicates a successful fuzzy matching of quantum images. Theoretical analysis and experiments show that the proposed scheme performs fuzzy matching at a low cost and also enables exponentially significant speedup via quantum parallel computation.

  2. MIA - a free and open source software for gray scale medical image analysis

    OpenAIRE

    Wöllny, Gert; Kellman, Peter; Ledesma Carbayo, María Jesús; Skinner, Matthew M.; Hublin, Jean-Jaques; Hierl, Thomas

    2013-01-01

    Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also a...

  3. A Parallel Algorithm for Connected Component Labelling of Gray-scale Images on Homogeneous Multicore Architectures

    International Nuclear Information System (INIS)

    Niknam, Mehdi; Thulasiraman, Parimala; Camorlinga, Sergio

    2010-01-01

    Connected component labelling is an essential step in image processing. We provide a parallel version of Suzuki's sequential connected component algorithm in order to speed up the labelling process. Also, we modify the algorithm to enable labelling gray-scale images. Due to the data dependencies in the algorithm we used a method similar to pipeline to exploit parallelism. The parallel algorithm method achieved a speedup of 2.5 for image size of 256 x 256 pixels using 4 processing threads.

  4. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M. [Los Alamos National Lab., NM (United States); Hopper, T. [Federal Bureau of Investigation, Washington, DC (United States)

    1993-05-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI`s Integrated Automated Fingerprint Identification System.

  5. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M. (Los Alamos National Lab., NM (United States)); Hopper, T. (Federal Bureau of Investigation, Washington, DC (United States))

    1993-01-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI's Integrated Automated Fingerprint Identification System.

  6. QR code based noise-free optical encryption and decryption of a gray scale image

    Science.gov (United States)

    Jiao, Shuming; Zou, Wenbin; Li, Xia

    2017-03-01

    In optical encryption systems, speckle noise is one major challenge in obtaining high quality decrypted images. This problem can be addressed by employing a QR code based noise-free scheme. Previous works have been conducted for optically encrypting a few characters or a short expression employing QR codes. This paper proposes a practical scheme for optically encrypting and decrypting a gray-scale image based on QR codes for the first time. The proposed scheme is compatible with common QR code generators and readers. Numerical simulation results reveal the proposed method can encrypt and decrypt an input image correctly.

  7. Comparison of 12-bit and 8-bit gray scale resolution in MR imaging of the CNS

    International Nuclear Information System (INIS)

    Smith, H.J.; Bakke, S.J.; Smevik, B.; Hald, J.K.; Moen, G.; Rudenhed, B.; Abildgaard, A.

    1992-01-01

    A reduction in gray scale resolution of digital images from 12 to 8 bits per pixel usually means halving the storage space needed for the images. Theoretically, important diagnostic information may be lost in the process. We compared the sensitivity and specificity achieved by 4 radiologists in reading laser-printed films of original 12-bit MR images and cathode ray tube displays of the same images which had been compressed to 8 bits per pixel using a specially developed computer program. Receiver operating characteristics (ROC) curves showed no significant differences between film reading and screen reading. A paired 2-tailed t-test, applied on the data for actually positive cases, showed that the combined, average performance of the reviewers was significantly better at screen reading than at film reading. No such differences were found for actually negative cases. Some individual differences were found, but it is concluded that gray scale resolution of MR images may be reduced from 12 to 8 bits per pixel without any significant reduction in diagnostic information. (orig.)

  8. Histogram and gray level co-occurrence matrix on gray-scale ultrasound images for diagnosing lymphocytic thyroiditis.

    Science.gov (United States)

    Shin, Young Gyung; Yoo, Jaeheung; Kwon, Hyeong Ju; Hong, Jung Hwa; Lee, Hye Sun; Yoon, Jung Hyun; Kim, Eun-Kyung; Moon, Hee Jung; Han, Kyunghwa; Kwak, Jin Young

    2016-08-01

    The objective of the study was to evaluate whether texture analysis using histogram and gray level co-occurrence matrix (GLCM) parameters can help clinicians diagnose lymphocytic thyroiditis (LT) and differentiate LT according to pathologic grade. The background thyroid pathology of 441 patients was classified into no evidence of LT, chronic LT (CLT), and Hashimoto's thyroiditis (HT). Histogram and GLCM parameters were extracted from the regions of interest on ultrasound. The diagnostic performances of the parameters for diagnosing and differentiating LT were calculated. Of the histogram and GLCM parameters, the mean on histogram had the highest Az (0.63) and VUS (0.303). As the degrees of LT increased, the mean decreased and the standard deviation and entropy increased. The mean on histogram from gray-scale ultrasound showed the best diagnostic performance as a single parameter in differentiating LT according to pathologic grade as well as in diagnosing LT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Analysis on imaging features of mammography in computer radiography and investigation on gray scale transform and energy subtraction

    International Nuclear Information System (INIS)

    Feng Shuli

    2003-01-01

    In this dissertation, a novel transform method based on human visual response features for gray scale mammographic imaging in computer radiography (CR) is presented. The parameters for imaging quality on CR imaging for mammography were investigated experimentally. In addition, methods for image energy subtraction and a novel method of image registration for mammography of CR imaging are presented. Because the images are viewed and investigated by humans, the method of displaying differences in gray scale images is more convenient if the gray scale differences are displayed in a manner commensurate with human visual response principles. Through transformation of image gray scale with this method, the contrast of the image will be enhanced and the capability for humans to extract the useful information from the image will be increased. Tumors and microcalcifications are displayed in a form for humans to view more simply after transforming the image. The method is theoretically and experimentally investigated. Through measurement of the parameters of a geometrically blurred image, MTF, DQE, and ROC on CR imaging, and also comparison with the imaging quality of screen-film systems, the results indicate that CR imaging qualities in DQE and ROC are better than those of screen-film systems. In geometric blur of the image and MTF, the differences in image quality between CR and the screen-film system are very small. The results suggest that the CR system can replace the screen-film system for mammography imaging. In addition, the results show that the optimal imaging energy for CR mammography is about 24 kV. This condition indicates that the imaging energy of the CR system is lower than that of the screen-film system and, therefore, the x-ray dose to the patient for mammography with the CR system is lower than that with the screen-film system. Based on the difference of penetrability of x ray with different wavelength, and the fact that the part of the x-ray beam will pass

  10. MIA - A free and open source software for gray scale medical image analysis.

    Science.gov (United States)

    Wollny, Gert; Kellman, Peter; Ledesma-Carbayo, María-Jesus; Skinner, Matthew M; Hublin, Jean-Jaques; Hierl, Thomas

    2013-10-11

    Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large.Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers.One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development.Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don't provide an clear approach when one wants to shape a new command line tool from a prototype shell script. The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by

  11. Low gray scale values of computerized images of carotid plaques associated with increased levels of triglyceride-rich lipoproteins and with increased plaque lipid content

    DEFF Research Database (Denmark)

    Grønholdt, Marie-Louise M.; Nordestgaard, Børge; Weibe, Britt M.

    1997-01-01

    Relatioin between low gray scale values in computerized images of carotid plaques and 1) plasma levels of triglyceride-rich lipoproteins and 2) plaque lipid content......Relatioin between low gray scale values in computerized images of carotid plaques and 1) plasma levels of triglyceride-rich lipoproteins and 2) plaque lipid content...

  12. The effects of gray scale image processing on digital mammography interpretation performance.

    Science.gov (United States)

    Cole, Elodia B; Pisano, Etta D; Zeng, Donglin; Muller, Keith; Aylward, Stephen R; Park, Sungwook; Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Walsh, Ruth; Baker, Jay; Gimenez, Edgardo I; Freimanis, Rita

    2005-05-01

    To determine the effects of three image-processing algorithms on diagnostic accuracy of digital mammography in comparison with conventional screen-film mammography. A total of 201 cases consisting of nonprocessed soft copy versions of the digital mammograms acquired from GE, Fischer, and Trex digital mammography systems (1997-1999) and conventional screen-film mammograms of the same patients were interpreted by nine radiologists. The raw digital data were processed with each of three different image-processing algorithms creating three presentations-manufacturer's default (applied and laser printed to film by each of the manufacturers), MUSICA, and PLAHE-were presented in soft copy display. There were three radiologists per presentation. Area under the receiver operating characteristic curve for GE digital mass cases was worse than screen-film for all digital presentations. The area under the receiver operating characteristic for Trex digital mass cases was better, but only with images processed with the manufacturer's default algorithm. Sensitivity for GE digital mass cases was worse than screen film for all digital presentations. Specificity for Fischer digital calcifications cases was worse than screen film for images processed in default and PLAHE algorithms. Specificity for Trex digital calcifications cases was worse than screen film for images processed with MUSICA. Specific image-processing algorithms may be necessary for optimal presentation for interpretation based on machine and lesion type.

  13. Page segmentation and text extraction from gray-scale images in microfilm format

    Science.gov (United States)

    Yuan, Qing; Tan, Chew Lim

    2000-12-01

    The paper deals with a suitably designed system that is being used to separate textual regions from graphics regions and locate textual data from textured background. We presented a method based on edge detection to automatically locate text in some noise infected grayscale newspaper images with microfilm format. The algorithm first finds the appropriate edges of textual region using Canny edge detector, and then by edge merging it makes use of edge features to do block segmentation and classification, afterwards feature aided connected component analysis was used to group homogeneous textual regions together within the scope of its bounding box. We can obtain an efficient block segmentation with reduced memory size by introducing the TLC. The proposed method has been used to locate text in a group of newspaper images with multiple page layout. Initial results are encouraging, we would expand the experiment data to over 300 microfilm images with different layout structures, promising result is anticipated with corresponding modification on the prototype of former algorithm to make it more robust and suitable to different cases.

  14. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT

    Directory of Open Access Journals (Sweden)

    Tahmineh Razi

    2014-06-01

    Full Text Available Background and aims. Cone-beam computed tomography (CBCT is an imaging system which has many advantages over computed tomography (CT. In CT scan, Hounsfield Unit (HU is proportional to the degree of x-ray attenuation by the tissue. In CBCT, the degree of x-ray attenuation is shown by gray scale (voxel value. The aim of the present study was to investigate the relationship between gray scale in CBCT and Hounsfield Unit (HU in CT scan. Materials and methods. In this descriptive study, the head of a sheep was scanned with 3 CBCT and one medical CT scanner. Gray scales and HUs were detected on images. Reconstructed data were analyzed to investigate relationship between CBCT gray scales and HUs. Results. A strong correlation between gray scales of CBCT and HUs of CT scan was determined. Conclusion. Considering the fact that gray scale in CBCT is the criteria in measurement of bone density before implant treatments, it is recommended because of the lower dose and cost compared to CT scan.

  15. MR imaging of heterotopic gray matter

    International Nuclear Information System (INIS)

    Kryst-Widzgowska, T.; Kozlowski, P.; Poniatowska, R.

    1994-01-01

    Six patients with heterotopic gray matter were evaluated with MR. 5 patients had history of seizures. 4 cases were suspected of the cerebral tumor. In the MR examination areas of heterotopic gray matter were found along the posterior horn of the lateral ventricle on the one side in 4 cases and bilateraly in 2 cases. In 3 cases another brain abnormalities were also detected including: hypoplasia of corpus callosum, hypoplasia of brain hemisphere, cavum septi pellucidi. MR is a modality of choice in the assessment of abnormal gray matter migration. (author)

  16. Determining the Number of Colors or Gray Levels in an Image Using Approximate Bayes Factors: The Pseudolikelihood Information Criterion (PLIC)

    National Research Council Canada - National Science Library

    Stanford, Derek C; Raftery, Adrian E

    2001-01-01

    .... This is motivated by medical and satellite image segmentation, and may also be useful for color and gray scale image quantization, the display and storage of computer-generated holograms, and the use...

  17. Underwater Image Enhancement by Adaptive Gray World and Differential Gray-Levels Histogram Equalization

    Directory of Open Access Journals (Sweden)

    WONG, S.-L.

    2018-05-01

    Full Text Available Most underwater images tend to be dominated by a single color cast. This paper presents a solution to remove the color cast and improve the contrast in underwater images. However, after the removal of the color cast using Gray World (GW method, the resultant image is not visually pleasing. Hence, we propose an integrated approach using Adaptive GW (AGW and Differential Gray-Levels Histogram Equalization (DHE that operate in parallel. The AGW is applied to remove the color cast while DHE is used to improve the contrast of the underwater image. The outputs of both chromaticity components of AGW and intensity components of DHE are combined to form the enhanced image. The results of the proposed method are compared with three existing methods using qualitative and quantitative measures. The proposed method increased the visibility of underwater images and in most cases produces better quantitative scores when compared to the three existing methods.

  18. Histogram-based adaptive gray level scaling for texture feature classification of colorectal polyps

    Science.gov (United States)

    Pomeroy, Marc; Lu, Hongbing; Pickhardt, Perry J.; Liang, Zhengrong

    2018-02-01

    Texture features have played an ever increasing role in computer aided detection (CADe) and diagnosis (CADx) methods since their inception. Texture features are often used as a method of false positive reduction for CADe packages, especially for detecting colorectal polyps and distinguishing them from falsely tagged residual stool and healthy colon wall folds. While texture features have shown great success there, the performance of texture features for CADx have lagged behind primarily because of the more similar features among different polyps types. In this paper, we present an adaptive gray level scaling and compare it to the conventional equal-spacing of gray level bins. We use a dataset taken from computed tomography colonography patients, with 392 polyp regions of interest (ROIs) identified and have a confirmed diagnosis through pathology. Using the histogram information from the entire ROI dataset, we generate the gray level bins such that each bin contains roughly the same number of voxels Each image ROI is the scaled down to two different numbers of gray levels, using both an equal spacing of Hounsfield units for each bin, and our adaptive method. We compute a set of texture features from the scaled images including 30 gray level co-occurrence matrix (GLCM) features and 11 gray level run length matrix (GLRLM) features. Using a random forest classifier to distinguish between hyperplastic polyps and all others (adenomas and adenocarcinomas), we find that the adaptive gray level scaling can improve performance based on the area under the receiver operating characteristic curve by up to 4.6%.

  19. Currency recognition using a smartphone: Comparison between color SIFT and gray scale SIFT algorithms

    Directory of Open Access Journals (Sweden)

    Iyad Abu Doush

    2017-10-01

    Full Text Available Banknote recognition means classifying the currency (coin and paper to the correct class. In this paper, we developed a dataset for Jordanian currency. After that we applied automatic mobile recognition system using a smartphone on the dataset using scale-invariant feature transform (SIFT algorithm. This is the first attempt, to the best of the authors knowledge, to recognize both coins and paper banknotes on a smartphone using SIFT algorithm. SIFT has been developed to be the most robust and efficient local invariant feature descriptor. Color provides significant information and important values in the object description process and matching tasks. Many objects cannot be classified correctly without their color features. We compared between two approaches colored local invariant feature descriptor (color SIFT approach and gray image local invariant feature descriptor (gray SIFT approach. The evaluation results show that the color SIFT approach outperforms the gray SIFT approach in terms of processing time and accuracy.

  20. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    Science.gov (United States)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  1. Differences in quantitative assessment of myocardial scar and gray zone by LGE-CMR imaging using established gray zone protocols.

    Science.gov (United States)

    Mesubi, Olurotimi; Ego-Osuala, Kelechi; Jeudy, Jean; Purtilo, James; Synowski, Stephen; Abutaleb, Ameer; Niekoop, Michelle; Abdulghani, Mohammed; Asoglu, Ramazan; See, Vincent; Saliaris, Anastasios; Shorofsky, Stephen; Dickfeld, Timm

    2015-02-01

    Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging is the gold standard for myocardial scar evaluation. Heterogeneous areas of scar ('gray zone'), may serve as arrhythmogenic substrate. Various gray zone protocols have been correlated to clinical outcomes and ventricular tachycardia channels. This study assessed the quantitative differences in gray zone and scar core sizes as defined by previously validated signal intensity (SI) threshold algorithms. High quality LGE-CMR images performed in 41 cardiomyopathy patients [ischemic (33) or non-ischemic (8)] were analyzed using previously validated SI threshold methods [Full Width at Half Maximum (FWHM), n-standard deviation (NSD) and modified-FWHM]. Myocardial scar was defined as scar core and gray zone using SI thresholds based on these methods. Scar core, gray zone and total scar sizes were then computed and compared among these models. The median gray zone mass was 2-3 times larger with FWHM (15 g, IQR: 8-26 g) compared to NSD or modified-FWHM (5 g, IQR: 3-9 g; and 8 g. IQR: 6-12 g respectively, p zone extent (percentage of total scar that was gray zone) also varied significantly among the three methods, 51 % (IQR: 42-61 %), 17 % (IQR: 11-21 %) versus 38 % (IQR: 33-43 %) for FWHM, NSD and modified-FWHM respectively (p zone and scar core. Infarct core and total myocardial scar mass also differ using these methods. Further evaluation of the most accurate quantification method is needed.

  2. Application of cone beam computed tomography gray scale values in the diagnosis of cysts and tumors

    Directory of Open Access Journals (Sweden)

    Aarfa Nasim

    2018-01-01

    Full Text Available Background: Studies have unveiled that in CBCT the degree of x-ray attenuation is shown by gray scale (voxel value that is used in determining the pathologic lesion. Gray value is to assess the density or quality of bone and the density varies depending on radiation attenuation. CBCT gray values are considered approximate values and its measurement allows differentiation of soft tissue and fluid with that of hard tissue. Aim and Objective: We aimed to evaluate the application of CBCT gray scale value of cysts and tumors to assess the difference of bony changes and to determine the significance in diagnosing the contents of the lesions. Materials and Methods: The study was conducted in the department of Oral Medicine and Radiology. Patient clinically diagnosed either with cysts or tumors over a period of 18 months were included in the study. The gray scale reading was taken and radiological diagnosis was made which was further compared with the histopathological report of cysts and tumors. Results: CBCT gray scale value was found to be effective and superior to conventional radiographic tool and more useful in diagnosing the nature of cysts and tumors pre-operatively. Conclusion: CBCT gray value can be considered as a major tool in diagnosis of cyst and tumor and other soft or hard tissue lesion without any microscopic evaluation. CBCT gray scale measurement is superior to conventional intraoral radiographic methods for diagnosing the nature of lytic lesion of jaw.

  3. Hand Vein Images Enhancement Based on Local Gray-level Information Histogram

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-06-01

    Full Text Available Based on the Histogram equalization theory, this paper presents a novel concept of histogram to realize the contrast enhancement of hand vein images, avoiding the lost of topological vein structure or importing the fake vein information. Firstly, we propose the concept of gray-level information histogram, the fundamental characteristic of which is that the amplitudes of the components can objectively reflect the contribution of the gray levels and information to the representation of image information. Then, we propose the histogram equalization method that is composed of an automatic histogram separation module and an intensity transformation module, and the histogram separation module is a combination of the proposed prompt multiple threshold procedure and an optimum peak signal-to-noise (PSNR calculation to separate the histogram into small-scale detail, the use of the intensity transformation module can enhance the vein images with vein topological structure and gray information preservation for each generated sub-histogram. Experimental results show that the proposed method can achieve extremely good contrast enhancement effect.

  4. Computer-aided mass detection in mammography: False positive reduction via gray-scale invariant ranklet texture features

    International Nuclear Information System (INIS)

    Masotti, Matteo; Lanconelli, Nico; Campanini, Renato

    2009-01-01

    In this work, gray-scale invariant ranklet texture features are proposed for false positive reduction (FPR) in computer-aided detection (CAD) of breast masses. Two main considerations are at the basis of this proposal. First, false positive (FP) marks surviving our previous CAD system seem to be characterized by specific texture properties that can be used to discriminate them from masses. Second, our previous CAD system achieves invariance to linear/nonlinear monotonic gray-scale transformations by encoding regions of interest into ranklet images through the ranklet transform, an image transformation similar to the wavelet transform, yet dealing with pixels' ranks rather than with their gray-scale values. Therefore, the new FPR approach proposed herein defines a set of texture features which are calculated directly from the ranklet images corresponding to the regions of interest surviving our previous CAD system, hence, ranklet texture features; then, a support vector machine (SVM) classifier is used for discrimination. As a result of this approach, texture-based information is used to discriminate FP marks surviving our previous CAD system; at the same time, invariance to linear/nonlinear monotonic gray-scale transformations of the new CAD system is guaranteed, as ranklet texture features are calculated from ranklet images that have this property themselves by construction. To emphasize the gray-scale invariance of both the previous and new CAD systems, training and testing are carried out without any in-between parameters' adjustment on mammograms having different gray-scale dynamics; in particular, training is carried out on analog digitized mammograms taken from a publicly available digital database, whereas testing is performed on full-field digital mammograms taken from an in-house database. Free-response receiver operating characteristic (FROC) curve analysis of the two CAD systems demonstrates that the new approach achieves a higher reduction of FP marks

  5. Intra- and interobserver reliability of gray scale/dynamic range evaluation of ultrasonography using a standardized phantom

    International Nuclear Information System (INIS)

    Lee, Song; Choi, Joon Il; Park, Michael Yong; Yeo, Dong Myung; Byun, Jae Young; Jung, Seung Eun; Rha, Sung Eun; Oh, Soon Nam; Lee, Young Joon

    2014-01-01

    To evaluate intra- and interobserver reliability of the gray scale/dynamic range of the phantom image evaluation of ultrasonography using a standardized phantom, and to assess the effect of interactive education on the reliability. Three radiologists (a resident, and two board-certified radiologists with 2 and 7 years of experience in evaluating ultrasound phantom images) performed the gray scale/dynamic range test for an ultrasound machine using a standardized phantom. They scored the number of visible cylindrical structures of varying degrees of brightness and made a pass or fail decision. First, they scored 49 phantom images twice from a 2010 survey with limited knowledge of phantom images. After this, the radiologists underwent two hours of interactive education for the phantom images and scored another 91 phantom images from a 2011 survey twice. Intra- and interobserver reliability before and after the interactive education session were analyzed using K analyses. Before education, the K-value for intraobserver reliability for the radiologist with 7 years of experience, 2 years of experience, and the resident was 0.386, 0.469, and 0.465, respectively. After education, the K-values were improved (0.823, 0.611, and 0.711, respectively). For interobserver reliability, the K-value was also better after the education for the 3 participants (0.067, 0.002, and 0.547 before education; 0.635, 0.667, and 0.616 after education, respectively). The intra- and interobserver reliability of the gray scale/dynamic range was fair to substantial. Interactive education can improve reliability. For more reliable results, double- checking of phantom images by multiple reviewers is recommended.

  6. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...

  7. An allometric scaling law between gray matter and white matter of cerebral cortex

    International Nuclear Information System (INIS)

    He Jihuan

    2006-01-01

    An allometric scaling relationship between cortical white and gray volumes is derived from a general model that describes brain's remarkable efficiency and prodigious communications between brain areas. The model assumes that (1) a cell's metabolic rate depends upon cell's surface; (2) the overall basal metabolic rates of brain areas depend upon their fractal structures; (3) differential brain areas have same basal metabolic rate at slow wave sleep. The obtained allometric exponent scaling white matter to gray matter is 1.2, which is very much close to Zhang and Sejnowski's observation data

  8. Multifractal analysis of 2D gray soil images

    Science.gov (United States)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil Images. Nonlinear Process in Geophysics, 15, 881-891, 2008. Tarquis, A.M., R.J. Heck, D. Andina, A. Alvarez and J.M. Antón. Multifractal analysis and thresholding of 3D soil images. Ecological Complexity, 6, 230-239, 2009. Tarquis, A.M.; D. Giménez, A. Saa, M.C. Díaz. and J.M. Gascó. Scaling and Multiscaling of Soil Pore Systems Determined by Image Analysis. Scaling Methods in Soil Systems. Pachepsky, Radcliffe and Selim Eds., 19-33, 2003. CRC Press, Boca Ratón, Florida. Acknowledgements First author acknowledges the financial support obtained from Soil Imaging Laboratory (University of Gueplh, Canada) in 2014.

  9. [Comparison of film-screen combinations in contrast-detail diagram and with interactive image analysis. 3: Trimodal histograms of gray scale distribution in bar groups of lead pattern images].

    Science.gov (United States)

    Hagemann, G; Eichbaum, G; Stamm, G

    1998-05-01

    The following four screen film combinations were compared: a) a combination of anticrossover film and UV-light emitting screens, b) a combination of blue-light emitting screens and film and c) two conventional green fluorescing screen film combinations. Radiographs of a specially designed plexiglass phantom (0.2 x 0.2 x 0.12 m3) with bar patterns of lead and plaster and of air, respectively were obtained using the following parameters: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminum prefilter, a grid with 40 lines/cm (12:1) and a focus-detector distance of 1.15 m. Image analysis was performed using an Ibas system and a Zeiss Kontron computer. Display conditions were the following: display distance 0.12 m, a vario film objective 35/70 (Zeiss), a video camera tube with a PbO photocathode, 625 lines (Siemens Heimann), an Ibas image matrix of 512 x 512 pixels with a spatial resolution of ca. 7 cycles/mm, the projected matrix area was 5000 micron 2. Maxima in the histograms of a grouped bar pattern were estimated as mean values from the bar and gap regions ("mean value method"). They were used to calculate signal contrast, standard deviations of the means and scatter fraction. Comparing the histograms with respect to spatial resolution and kV setting a clear advantage of the UVR system becomes obvious. The quantitative analysis yielded a maximum spatial resolution of approx. 3 cycles/mm for the UVR system at 60 kV which decreased to half of this value at 117 kV caused by the increasing influence of scattered radiation. A ranking of screen-film systems with respect to image quality and dose requirement is presented. For its evaluation an interactive image analysis using the mean value method was found to be superior to signal/noise ratio measurements and visual analysis in respect to diagnostic relevance and saving of time.

  10. Image scaling curve generation

    NARCIS (Netherlands)

    2012-01-01

    The present invention relates to a method of generating an image scaling curve, where local saliency is detected in a received image. The detected local saliency is then accumulated in the first direction. A final scaling curve is derived from the detected local saliency and the image is then

  11. Image scaling curve generation.

    NARCIS (Netherlands)

    2011-01-01

    The present invention relates to a method of generating an image scaling curve, where local saliency is detected in a received image. The detected local saliency is then accumulated in the first direction. A final scaling curve is derived from the detected local saliency and the image is then

  12. Improving the Calibration of Image Sensors Based on IOFBs, Using Differential Gray-Code Space Encoding

    Directory of Open Access Journals (Sweden)

    Carlos Luna Vázquez

    2012-07-01

    Full Text Available This paper presents a fast calibration method to determine the transfer function for spatial correspondences in image transmission devices with Incoherent Optical Fiber Bundles (IOFBs, by performing a scan of the input, using differential patterns generated from a Gray code (Differential Gray-Code Space Encoding, DGSE. The results demonstrate that this technique provides a noticeable reduction in processing time and better quality of the reconstructed image compared to other, previously employed techniques, such as point or fringe scanning, or even other known space encoding techniques.

  13. A comparison of methods to evaluate gray scale response of tomosynthesis systems using a software breast phantom

    Science.gov (United States)

    Sousa, Maria A. Z.; Bakic, Predrag R.; Schiabel, Homero; Maidment, Andrew D. A.

    2017-03-01

    Digital breast tomosynthesis (DBT) has been shown to be an effective imaging tool for breast cancer diagnosis as it provides three-dimensional images of the breast with minimal tissue overlap. The quality of the reconstructed image depends on many factors that can be assessed using uniform or realistic phantoms. In this paper, we created four models of phantoms using an anthropomorphic software breast phantom and compared four methods to evaluate the gray scale response in terms of the contrast, noise and detectability of adipose and glandular tissues binarized according to phantom ground truth. For each method, circular regions of interest (ROIs) were selected with various sizes, quantity and positions inside a square area in the phantom. We also estimated the percent density of the simulated breast and the capability of distinguishing both tissues by receiver operating characteristic (ROC) analysis. Results shows a sensitivity of the methods to the ROI size, placement and to the slices considered.

  14. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    Science.gov (United States)

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation.

    Science.gov (United States)

    Mukherjee, Pratik; Miller, Jeffrey H; Shimony, Joshua S; Philip, Joseph V; Nehra, Deepika; Snyder, Abraham Z; Conturo, Thomas E; Neil, Jeffrey J; McKinstry, Robert C

    2002-10-01

    Conventional MR imaging findings of human brain development are thought to result from decreasing water content, increasing macromolecular concentration, and myelination. We use diffusion-tensor MR imaging to test theoretical models that incorporate hypotheses regarding how these maturational processes influence water diffusion in developing gray and white matter. Experimental data were derived from diffusion-tensor imaging of 167 participants, ages 31 gestational weeks to 11 postnatal years. An isotropic diffusion model was applied to the gray matter of the basal ganglia and thalamus. A model that assumes changes in the magnitude of diffusion while maintaining cylindrically symmetric anisotropy was applied to the white matter of the corpus callosum and internal capsule. Deviations of the diffusion tensor from the ideal model predictions, due to measurement noise, were estimated by using Monte Carlo simulations. Developing gray matter of the basal ganglia and developing white matter of the internal capsule and corpus callosum largely conformed to theory, with only small departures from model predictions in older children. However, data from the thalamus substantially diverged from predicted values, with progressively larger deviations from the model with increasing participant age. Changes in water diffusion during maturation of central gray and white matter structures can largely be explained by theoretical models incorporating simple assumptions regarding the influence of brain water content and myelination, although deviations from theory increase as the brain matures. Diffusion-tensor MR imaging is a powerful method for studying the process of brain development, with both scientific and clinical applications.

  16. 3D shape recovery from image focus using gray level co-occurrence matrix

    Science.gov (United States)

    Mahmood, Fahad; Munir, Umair; Mehmood, Fahad; Iqbal, Javaid

    2018-04-01

    Recovering a precise and accurate 3-D shape of the target object utilizing robust 3-D shape recovery algorithm is an ultimate objective of computer vision community. Focus measure algorithm plays an important role in this architecture which convert the color values of each pixel of the acquired 2-D image dataset into corresponding focus values. After convolving the focus measure filter with the input 2-D image dataset, a 3-D shape recovery approach is applied which will recover the depth map. In this document, we are concerned with proposing Gray Level Co-occurrence Matrix along with its statistical features for computing the focus information of the image dataset. The Gray Level Co-occurrence Matrix quantifies the texture present in the image using statistical features and then applies joint probability distributive function of the gray level pairs of the input image. Finally, we quantify the focus value of the input image using Gaussian Mixture Model. Due to its little computational complexity, sharp focus measure curve, robust to random noise sources and accuracy, it is considered as superior alternative to most of recently proposed 3-D shape recovery approaches. This algorithm is deeply investigated on real image sequences and synthetic image dataset. The efficiency of the proposed scheme is also compared with the state of art 3-D shape recovery approaches. Finally, by means of two global statistical measures, root mean square error and correlation, we claim that this approach -in spite of simplicity generates accurate results.

  17. A novel quantum LSB-based steganography method using the Gray code for colored quantum images

    Science.gov (United States)

    Heidari, Shahrokh; Farzadnia, Ehsan

    2017-10-01

    As one of the prevalent data-hiding techniques, steganography is defined as the act of concealing secret information in a cover multimedia encompassing text, image, video and audio, imperceptibly, in order to perform interaction between the sender and the receiver in which nobody except the receiver can figure out the secret data. In this approach a quantum LSB-based steganography method utilizing the Gray code for quantum RGB images is investigated. This method uses the Gray code to accommodate two secret qubits in 3 LSBs of each pixel simultaneously according to reference tables. Experimental consequences which are analyzed in MATLAB environment, exhibit that the present schema shows good performance and also it is more secure and applicable than the previous one currently found in the literature.

  18. Granulomatous Prostatitis: Gray-scale Transrectal Ultrasonography and Color Doppler Ultrasonography Findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Jung; Lim, Joo Won; Lee, Dong Ho; Ko, Young Tae; Kim, Eui Jong [Kyung Hee University Medical Center, Seoul (Korea, Republic of)

    2007-12-15

    We report here three cases of granulomatous prostatitis. All cases were confirmed by a transrectal ultrasonography (TRUS)-guided core biopsy of the prostate. Two cases received intravesical BCG therapy for a bladder tumor, and one case had no known predisposing condition. Gray-scale TRUS showed low echoic nodules in the outer gland in all cases. Color Doppler ultrasonography (CDUS) showed several dot-like blood flows within the low echoic nodules in two cases and several dot-like blood flows and short linear blood flows within the low echoic nodules in one case. Gray-scale TRUS findings of granulomatous prostatitis are similar to findings of prostate cancer. On CDUS, several dot-like blood flows or short linear blood flows were noted within the low echoic nodules in patients with granulomatous prostatitis. If low echoic nodules with dot-like or short linear blood flows are noted in patients with genitourinary tract tuberculosis or previous BCG therapy, granulomatous prostatitis should be included in the differential diagnosis. However, a prostatic biopsy is required for a final diagnosis

  19. Gray-scale contrast-enhanced utrasonography in detecting sentinel lymph nodes: An animal study

    International Nuclear Information System (INIS)

    Wang Yuexiang; Cheng Zhigang; Li Junlai; Tang Jie

    2010-01-01

    Objective: To investigate the usefulness of gray-scale contrast-enhanced ultrasonography for detecting sentinel lymph nodes. Methods: Contrast-enhanced ultrasonography was performed in five normal dogs (four female and one male) after subcutaneous administration of a sonographic contrast agent (Sonovue, Bracco, Milan, Italy). Four distinct regions in each animal were examined. After contrast-enhanced ultrasonography, 0.8 ml of blue dye was injected into the same location as Sonovue and the sentinel lymph nodes were detected by surgical dissection. The findings of contrast-enhanced ultrasonography were compared with those of the blue dye. Results: Twenty-one sentinel lymph nodes were detected by contrast-enhanced ultrasonography while 23 were identified by blue dye with surgical dissection. Compared with the blue dye, the detection rate of enhanced ultrasonography for the sentinel lymph nodes is 91.3% (21/23). Two patterns of enhancement in the sentinel lymph nodes were observed: complete enhancement (5 sentinel lymph nodes) and partial enhancement (16 sentinel lymph nodes). The lymphatic channels were demonstrated as hyperechoic linear structures leading from the injection site and could be readily followed to their sentinel lymph nodes. Histopathologic examination showed proliferation of lymphatic follicles or lymphatic sinus in partial enhanced sentinel lymph nodes while normal lymphatic tissue was demonstrated in completely enhanced sentinel lymph nodes. Conclusions: Sonovue combined with gray-scale contrast-enhanced ultrasonography may provide a feasible method for detecting sentinel lymph nodes.

  20. LSB-based Steganography Using Reflected Gray Code for Color Quantum Images

    Science.gov (United States)

    Li, Panchi; Lu, Aiping

    2018-02-01

    At present, the classical least-significant-bit (LSB) based image steganography has been extended to quantum image processing. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel LSB-based steganography using reflected Gray code for colored quantum images, and the embedding capacity of this scheme is up to 4 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 4-bit segments. For the four bits in each segment, the first bit is embedded in the second LSB of B channel of the cover image, and and the remaining three bits are embedded in LSB of RGB channels of each color pixel simultaneously using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSB of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.

  1. Comparison between a new computer program and the reference software for gray-scale median analysis of atherosclerotic carotid plaques.

    Science.gov (United States)

    Casella, Ivan Benaduce; Fukushima, Rodrigo Bono; Marques, Anita Battistini de Azevedo; Cury, Marcus Vinícius Martins; Presti, Calógero

    2015-03-01

    To compare a new dedicated software program and Adobe Photoshop for gray-scale median (GSM) analysis of B-mode images of carotid plaques. A series of 42 carotid plaques generating ≥50% diameter stenosis was evaluated by a single observer. The best segment for visualization of internal carotid artery plaque was identified on a single longitudinal view and images were recorded in JPEG format. Plaque analysis was performed by both programs. After normalization of image intensity (blood = 0, adventitial layer = 190), histograms were obtained after manual delineation of plaque. Results were compared with nonparametric Wilcoxon signed rank test and Kendall tau-b correlation analysis. GSM ranged from 00 to 100 with Adobe Photoshop and from 00 to 96 with IMTPC, with a high grade of similarity between image pairs, and a highly significant correlation (R = 0.94, p < .0001). IMTPC software appears suitable for the GSM analysis of carotid plaques. © 2014 Wiley Periodicals, Inc.

  2. Automatic adjustment of display window (gray-level condition) for MR images using neural networks

    International Nuclear Information System (INIS)

    Ohhashi, Akinami; Nambu, Kyojiro.

    1992-01-01

    We have developed a system to automatically adjust the display window width and level (WWL) for MR images using neural networks. There were three main points in the development of our system as follows: 1) We defined an index for the clarity of a displayed image, and called 'EW'. EW is a quantitative measure of the clarity of an image displayed in a certain WWL, and can be derived from the difference between gray-level with the WWL adjusted by a human expert and with a certain WWL. 2) We extracted a group of six features from a gray-level histogram of a displayed image. We designed two neural networks which are able to learn the relationship between these features and the desired output (teaching signal), 'EQ', which is normalized to 0 to 1.0 from EW. Two neural networks were used to share the patterns to be learned; one learns a variety of patterns with less accuracy, and the other learns similar patterns with accuracy. Learning was performed using a back-propagation method. As a result, the neural networks after learning are able to provide a quantitative measure, 'Q', of the clarity of images displayed in the designated WWL. 3) Using the 'Hill climbing' method, we have been able to determine the best possible WWL for a displaying image. We have tested this technique for MR brain images. The results show that this system can adjust WWL comparable to that adjusted by a human expert for the majority of test images. The neural network is effective for the automatic adjustment of the display window for MR images. We are now studying the application of this method to MR images of another regions. (author)

  3. Gray Scale Operation Of A Multichannel Optical Convolver Using The Semetex Magnetooptic Spatial Light Modulator

    Science.gov (United States)

    Davis, Jeffrey A.; Day, Timothy; Lilly, Roger A.; Taber, Donald B.; Liu, Hua-Kuang; Davis, J. A.; Day, T.; Lilly, R. A.; Taber, D. B.; Liu, H.-K.

    1988-02-01

    We present a new multichannel optical correlator/convolver architecture which uses an acoustooptic light modulator (AOLM) for the input channel and a Semetex magnetooptic spatial light modulator (MOSLM) for the set of parallel reference channels. Details of the anamorphic optical system are discussed. Experimental results illustrate use of the system as a convolver for performing digital multiplication by analog convolution (DMAC). A limited gray scale capability for data stored by the MOSLM is demonstrated by implementing this DMAC algorithm with trinary logic. Use of the MOSLM allows the number of parallel channels for the convolver to be increased significantly compared with previously reported techniques while retaining the capability for updating both channels at high speeds.

  4. Hepatic hemangiomas: spectrum of US appearances on gray-scale, power doppler, and contrast-enhanced US

    International Nuclear Information System (INIS)

    Kim, Kyoung Won; Kim, Tae Kyoung; Han Joon Koo; Kim, Ah Young; Lee, Hyun Ju; Park, Seong Ho; Kim, Young Hoon; Choi, Byung Ihn

    2000-01-01

    Because US plays a key role in the initial evaluation of hepatic hemangiomas, knowledge of the entire spectrum of US appearances of these tumors is important. Most hemangiomas have a distinctive US appearance, and even with those with atypical appearances on conventional gray-scale US, specific diagnoses can be made using pulse-inversion harmonic US with contrast agents. In this essay, we review the spectrum of US appearances of hepatic hemangiomas on conventional gray-scale, power Doppler, and pulse-inversion harmonic US with contrast agents. (author)

  5. Study of the Gray Scale, Polychromatic, Distortion Invariant Neural Networks Using the Ipa Model.

    Science.gov (United States)

    Uang, Chii-Maw

    Research in the optical neural network field is primarily motivated by the fact that humans recognize objects better than the conventional digital computers and the massively parallel inherent nature of optics. This research represents a continuous effort during the past several years in the exploitation of using neurocomputing for pattern recognition. Based on the interpattern association (IPA) model and Hamming net model, many new systems and applications are introduced. A gray level discrete associative memory that is based on object decomposition/composition is proposed for recognizing gray-level patterns. This technique extends the processing ability from the binary mode to gray-level mode, and thus the information capacity is increased. Two polychromatic optical neural networks using color liquid crystal television (LCTV) panels for color pattern recognition are introduced. By introducing a color encoding technique in conjunction with the interpattern associative algorithm, a color associative memory was realized. Based on the color decomposition and composition technique, a color exemplar-based Hamming net was built for color image classification. A shift-invariant neural network is presented through use of the translation invariant property of the modulus of the Fourier transformation and the hetero-associative interpattern association (IPA) memory. To extract the main features, a quadrantal sampling method is used to sampled data and then replace the training patterns. Using the concept of hetero-associative memory to recall the distorted object. A shift and rotation invariant neural network using an interpattern hetero-association (IHA) model is presented. To preserve the shift and rotation invariant properties, a set of binarized-encoded circular harmonic expansion (CHE) functions at the Fourier domain is used as the training set. We use the shift and symmetric properties of the modulus of the Fourier spectrum to avoid the problem of centering the CHE

  6. A Simple and Robust Gray Image Encryption Scheme Using Chaotic Logistic Map and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Adelaïde Nicole Kengnou Telem

    2014-01-01

    Full Text Available A robust gray image encryption scheme using chaotic logistic map and artificial neural network (ANN is introduced. In the proposed method, an external secret key is used to derive the initial conditions for the logistic chaotic maps which are employed to generate weights and biases matrices of the multilayer perceptron (MLP. During the learning process with the backpropagation algorithm, ANN determines the weight matrix of the connections. The plain image is divided into four subimages which are used for the first diffusion stage. The subimages obtained previously are divided into the square subimage blocks. In the next stage, different initial conditions are employed to generate a key stream which will be used for permutation and diffusion of the subimage blocks. Some security analyses such as entropy analysis, statistical analysis, and key sensitivity analysis are given to demonstrate the key space of the proposed algorithm which is large enough to make brute force attacks infeasible. Computing validation using experimental data with several gray images has been carried out with detailed numerical analysis, in order to validate the high security of the proposed encryption scheme.

  7. Reconstructing the CT number array from gray-level images and its application in PACS

    Science.gov (United States)

    Chen, Xu; Zhuang, Tian-ge; Wu, Wei

    2001-08-01

    Although DICOM compliant computed tomography has been prevailing in medical fields nowadays, there are some incompliant ones, from which we could hardly get the raw data and make an apropos interpretation due to the proprietary image format. Under such condition, one usually uses frame grabbers to capture CT images, the results of which could not be freely adjusted by radiologists as the original CT number array could. To alleviate the inflexibility, a new method is presented in this paper to reconstruct the array of CT number from several gray-level images acquired under different window settings. Its feasibility is investigated and a few tips are put forward to correct the errors caused respectively by 'Border Effect' and some hardware problems. The accuracy analysis proves it a good substitution for original CT number array acquisition. And this method has already been successfully used in our newly developing PACS and accepted by the radiologists in clinical use.

  8. A Fixed-Pattern Noise Correction Method Based on Gray Value Compensation for TDI CMOS Image Sensor.

    Science.gov (United States)

    Liu, Zhenwang; Xu, Jiangtao; Wang, Xinlei; Nie, Kaiming; Jin, Weimin

    2015-09-16

    In order to eliminate the fixed-pattern noise (FPN) in the output image of time-delay-integration CMOS image sensor (TDI-CIS), a FPN correction method based on gray value compensation is proposed. One hundred images are first captured under uniform illumination. Then, row FPN (RFPN) and column FPN (CFPN) are estimated based on the row-mean vector and column-mean vector of all collected images, respectively. Finally, RFPN are corrected by adding the estimated RFPN gray value to the original gray values of pixels in the corresponding row, and CFPN are corrected by subtracting the estimated CFPN gray value from the original gray values of pixels in the corresponding column. Experimental results based on a 128-stage TDI-CIS show that, after correcting the FPN in the image captured under uniform illumination with the proposed method, the standard-deviation of row-mean vector decreases from 5.6798 to 0.4214 LSB, and the standard-deviation of column-mean vector decreases from 15.2080 to 13.4623 LSB. Both kinds of FPN in the real images captured by TDI-CIS are eliminated effectively with the proposed method.

  9. Utilization of a liquid crystal spatial light modulator in a gray scale detour phase method for Fourier holograms.

    Science.gov (United States)

    Makey, Ghaith; El-Daher, Moustafa Sayem; Al-Shufi, Kanj

    2012-11-10

    This paper introduces a new modification for the well-known binary detour phase method, which is largely used to represent Fourier holograms; the modification utilizes gray scale level control provided by a liquid crystal spatial light modulator to improve the traditional binary detour phase. Results are shown by both simulation and experiment.

  10. Three-dimensional volumetric gray-scale uterine cervix histogram prediction of days to delivery in full term pregnancy.

    Science.gov (United States)

    Kim, Ji Youn; Kim, Hai-Joong; Hahn, Meong Hi; Jeon, Hye Jin; Cho, Geum Joon; Hong, Sun Chul; Oh, Min Jeong

    2013-09-01

    Our aim was to figure out whether volumetric gray-scale histogram difference between anterior and posterior cervix can indicate the extent of cervical consistency. We collected data of 95 patients who were appropriate for vaginal delivery with 36th to 37th weeks of gestational age from September 2010 to October 2011 in the Department of Obstetrics and Gynecology, Korea University Ansan Hospital. Patients were excluded who had one of the followings: Cesarean section, labor induction, premature rupture of membrane. Thirty-four patients were finally enrolled. The patients underwent evaluation of the cervix through Bishop score, cervical length, cervical volume, three-dimensional (3D) cervical volumetric gray-scale histogram. The interval days from the cervix evaluation to the delivery day were counted. We compared to 3D cervical volumetric gray-scale histogram, Bishop score, cervical length, cervical volume with interval days from the evaluation of the cervix to the delivery. Gray-scale histogram difference between anterior and posterior cervix was significantly correlated to days to delivery. Its correlation coefficient (R) was 0.500 (P = 0.003). The cervical length was significantly related to the days to delivery. The correlation coefficient (R) and P-value between them were 0.421 and 0.013. However, anterior lip histogram, posterior lip histogram, total cervical volume, Bishop score were not associated with days to delivery (P >0.05). By using gray-scale histogram difference between anterior and posterior cervix and cervical length correlated with the days to delivery. These methods can be utilized to better help predict a cervical consistency.

  11. The suitability of gray-scale electronic readers for dermatology journals.

    Science.gov (United States)

    Choi, Jae Eun; Kim, Dai Hyun; Seo, Soo Hong; Kye, Young Chul; Ahn, Hyo Hyun

    2014-12-01

    The rapid development of information and communication technology has replaced traditional books by electronic versions. Most print dermatology journals have been replaced with electronic journals (e-journals), which are readily used by clinicians and medical students. The objectives of this study were to determine whether e-readers are appropriate for reading dermatology journals, to conduct an attitude study of both medical personnel and students, and to find a way of improving e-book use in the field of dermatology. All articles in the Korean Journal of Dermatology published from January 2010 to December 2010 were utilized in this study. Dermatology house officers, student trainees in their fourth year of medical school, and interns at Korea University Medical Center participated in the study. After reading the articles with Kindle 2, their impressions and evaluations were recorded using a questionnaire with a 5-point Likert scale. The results demonstrated that gray-scale e-readers might not be suitable for reading dermatology journals, especially for case reports compared to the original articles. Only three of the thirty-one respondents preferred e-readers to printed papers. The most common suggestions from respondents to encourage usage of e-books in the field of dermatology were the introduction of a color display, followed by the use of a touch screen system, a cheaper price, and ready-to-print capabilities. In conclusion, our study demonstrated that current e-readers might not be suitable for reading dermatology journals. However, they may be utilized in selected situations according to the type and topic of the papers.

  12. VARIETY OF GRAY-SCALE SONOGRAPHIC APPEARANCE OF UNTREATED LIVER METASTASES ALI HADIDI

    Directory of Open Access Journals (Sweden)

    ALI HADIDI

    1982-07-01

    Full Text Available Encountered wit h b izarre patterns o f l i v e r metas t a s es dec l i ned our accuracy rate s o the humi liation o f mist ake s motivated me to re-assess t he value o f hepatic sonography in patients s u spe c t ed o f having metastatic l i ver neoplasms . 43 pat ients , who had no t recieved any prior the r a phy , had been studied by gray-scale ult r a s ound . The echographic evidence i n accordance with o ur e x p e r ~ e n ce can be categorized as fo l l ows : I l a rge echo g enic or ~c ho poor area , II d iscrete masse s wi t.h high-level e c hoes spreaded t hroughout a lobe o f the l i ve r , III e cho f ree mass with i r regular mar q i.n , r .J d i f f use a lterat ion of the homogeneous e cho pattern of t he liver , V Bull ' s - eye ,VI abscess like,VII sol id echogenic mass vei th a centra l hyperechoic hor izontal l i ne , VIII echogenic mass ".;i t;l two l a t eral hypo e choic marg i n s, rX isodense e chog eni c a r ea bounded by an hypoechoic c i r c l e . The f e at u r e s seen i n l iver ultra sonography of t he entire pat t e r ns , a nd those s e en as new c r i teria are presented ~

  13. Local Directional Probability Optimization for Quantification of Blurred Gray/White Matter Junction in Magnetic Resonance Image

    Directory of Open Access Journals (Sweden)

    Xiaoxia Qu

    2017-09-01

    Full Text Available The blurred gray/white matter junction is an important feature of focal cortical dysplasia (FCD lesions. FCD is the main cause of epilepsy and can be detected through magnetic resonance (MR imaging. Several earlier studies have focused on computing the gradient magnitude of the MR image and used the resulting map to model the blurred gray/white matter junction. However, gradient magnitude cannot quantify the blurred gray/white matter junction. Therefore, we proposed a novel algorithm called local directional probability optimization (LDPO for detecting and quantifying the width of the gray/white matter boundary (GWB within the lesional areas. The proposed LDPO method mainly consists of the following three stages: (1 introduction of a hidden Markov random field-expectation-maximization algorithm to compute the probability images of brain tissues in order to obtain the GWB region; (2 generation of local directions from gray matter (GM to white matter (WM passing through the GWB, considering the GWB to be an electric potential field; (3 determination of the optimal local directions for any given voxel of GWB, based on iterative searching of the neighborhood. This was then used to measure the width of the GWB. The proposed LDPO method was tested on real MR images of patients with FCD lesions. The results indicated that the LDPO method could quantify the GWB width. On the GWB width map, the width of the blurred GWB in the lesional region was observed to be greater than that in the non-lesional regions. The proposed GWB width map produced higher F-scores in terms of detecting the blurred GWB within the FCD lesional region as compared to that of FCD feature maps, indicating better trade-off between precision and recall.

  14. MR imaging of heterotopic gray matter; Heterotopia istoty szarej mozgu w obrazie MR

    Energy Technology Data Exchange (ETDEWEB)

    Kryst-Widzgowska, T.; Kozlowski, P.; Poniatowska, R. [Instytut Psychiatrii i Neurologii, Warsaw (Poland)

    1994-12-31

    Six patients with heterotopic gray matter were evaluated with MR. 5 patients had history of seizures. 4 cases were suspected of the cerebral tumor. In the MR examination areas of heterotopic gray matter were found along the posterior horn of the lateral ventricle on the one side in 4 cases and bilateraly in 2 cases. In 3 cases another brain abnormalities were also detected including: hypoplasia of corpus callosum, hypoplasia of brain hemisphere, cavum septi pellucidi. MR is a modality of choice in the assessment of abnormal gray matter migration. (author). 6 refs, 4 figs.

  15. Use of gray-scale ultrasonography in the diagnosis of reproductive disease in the bitch: 18 cases (1981-1984)

    International Nuclear Information System (INIS)

    Poffenbarger, E.M.; Feeney, D.A.

    1986-01-01

    Gray-scale ultrasonography was utilized in addition to radiography in the diagnosis of reproductive disease in 18 bitches. In 72% of the cases, ultrasonography was considered diagnostic because it revealed information on organ architecture, relationships of radiographically silhouetting soft tissue structures, and fetal viability that was unobtainable by radiography alone. In the remainder of the cases, ultrasonography was contributory to the diagnostic process by supporting the clinical and radiographic diagnoses. The benefits of ultrasonography are discussed, as is the ultrasonographic appearance of a variety of reproductive tract diseases

  16. Imaging the functional connectivity of the Periaqueductal Gray during genuine and sham electroacupuncture treatment

    Directory of Open Access Journals (Sweden)

    Tu Peichi

    2010-11-01

    Full Text Available Abstract Background Electroacupuncture (EA is currently one of the most popular acupuncture modalities. However, the continuous stimulation characteristic of EA treatment presents challenges to the use of conventional functional Magnetic Resonance Imaging (fMRI approaches for the investigation of neural mechanisms mediating treatment response because of the requirement for brief and intermittent stimuli in event related or block designed task paradigms. A relatively new analysis method, functional connectivity fMRI (fcMRI, has great potential for studying continuous treatment modalities such as EA. In a previous study, we found that, compared with sham acupuncture, EA can significantly reduce Periaqueductal Gray (PAG activity when subsequently evoked by experimental pain. Given the PAG's important role in mediating acupuncture analgesia, in this study we investigated functional connectivity with the area of the PAG we previously identified and how that connectivity was affected by genuine and sham EA. Results Forty-eight subjects, who were randomly assigned to receive either genuine or sham EA paired with either a high or low expectancy manipulation, completed the study. Direct comparison of each treatment mode's functional connectivity revealed: significantly greater connectivity between the PAG, left posterior cingulate cortex (PCC, and precuneus for the contrast of genuine minus sham; significantly greater connectivity between the PAG and right anterior insula for the contrast of sham minus genuine; no significant differences in connectivity between different contrasts of the two expectancy levels. Conclusions Our findings indicate the intrinsic functional connectivity changes among key brain regions in the pain matrix and default mode network during genuine EA compared with sham EA. We speculate that continuous genuine EA stimulation can modify the coupling of spontaneous activity in brain regions that play a role in modulating pain

  17. Experimentally induced acute uric acid nephropathy in rabbits: Findings of high resolution gray scale and doppler ultrasonographies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Chung, Soo Young; Lee, Kyung Won; Kim, Hong Dae; Ko, Eun Young; Won, Mi Sook; Noh, Jung Woo [Hallym University College of Medicine, Seoul (Korea, Republic of); Park, Moon Hyang [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2001-12-15

    To evaluate changes of the high-resolution (HR) gray scale and doppler ultrasonographic (US) characteristics of experimentally induced acute uric acid (UA) nephropathy in rabbits. Acute UA nephropathy was induced in ten rabbits using supersaturated lithium carbonate solution. The rabbits were divided in two groups. Group I consisted of five rabbits, and they were injected with a single dose of 150 ml of saturated UA over one hour. During tis period, serial US studies of the kidneys of these rabbits were performed every ten minutes. Group II consisted of the remaining five rabbits, and three injections of 50 ml of saturated UA solution were given on the first, fifth and eight day and follow-up was done upto twenty fifth day. Sequential HR and Doppler US, renal biopsy and blood sampling were performed on day 1, 5, 8, 21, and 25 in the group II rabbits. In group I, HR and Doppler US examination revealed the normal resistive index without significant abnormality. On the other hand, US studies of group II showed poor renal corticomedullary differentiation, decreased renal blood flow and elevated resistive index. There was statistically significant correlation among US findings, histologic characteristics and chemical index (BUN, creatinine) of renal function. In addition, sequentially increased size and volume of the kidney were noted in both groups. HR gray scale and doppler US characteristics of experimentally induced acute UA nephropathy in rabbits were similar to those of acute renal failure caused by other well-known causes.

  18. Experimentally induced acute uric acid nephropathy in rabbits: Findings of high resolution gray scale and doppler ultrasonographies

    International Nuclear Information System (INIS)

    Yang, Ik; Chung, Soo Young; Lee, Kyung Won; Kim, Hong Dae; Ko, Eun Young; Won, Mi Sook; Noh, Jung Woo; Park, Moon Hyang

    2001-01-01

    To evaluate changes of the high-resolution (HR) gray scale and doppler ultrasonographic (US) characteristics of experimentally induced acute uric acid (UA) nephropathy in rabbits. Acute UA nephropathy was induced in ten rabbits using supersaturated lithium carbonate solution. The rabbits were divided in two groups. Group I consisted of five rabbits, and they were injected with a single dose of 150 ml of saturated UA over one hour. During tis period, serial US studies of the kidneys of these rabbits were performed every ten minutes. Group II consisted of the remaining five rabbits, and three injections of 50 ml of saturated UA solution were given on the first, fifth and eight day and follow-up was done upto twenty fifth day. Sequential HR and Doppler US, renal biopsy and blood sampling were performed on day 1, 5, 8, 21, and 25 in the group II rabbits. In group I, HR and Doppler US examination revealed the normal resistive index without significant abnormality. On the other hand, US studies of group II showed poor renal corticomedullary differentiation, decreased renal blood flow and elevated resistive index. There was statistically significant correlation among US findings, histologic characteristics and chemical index (BUN, creatinine) of renal function. In addition, sequentially increased size and volume of the kidney were noted in both groups. HR gray scale and doppler US characteristics of experimentally induced acute UA nephropathy in rabbits were similar to those of acute renal failure caused by other well-known causes.

  19. Contrast Enhancement Method Based on Gray and Its Distance Double-Weighting Histogram Equalization for 3D CT Images of PCBs

    Directory of Open Access Journals (Sweden)

    Lei Zeng

    2016-01-01

    Full Text Available Cone beam computed tomography (CBCT is a new detection method for 3D nondestructive testing of printed circuit boards (PCBs. However, the obtained 3D image of PCBs exhibits low contrast because of several factors, such as the occurrence of metal artifacts and beam hardening, during the process of CBCT imaging. Histogram equalization (HE algorithms cannot effectively extend the gray difference between a substrate and a metal in 3D CT images of PCBs, and the reinforcing effects are insignificant. To address this shortcoming, this study proposes an image enhancement algorithm based on gray and its distance double-weighting HE. Considering the characteristics of 3D CT images of PCBs, the proposed algorithm uses gray and its distance double-weighting strategy to change the form of the original image histogram distribution, suppresses the grayscale of a nonmetallic substrate, and expands the grayscale of wires and other metals. The proposed algorithm also enhances the gray difference between a substrate and a metal and highlights metallic materials. The proposed algorithm can enhance the gray value of wires and other metals in 3D CT images of PCBs. It applies enhancement strategies of changing gray and its distance double-weighting mechanism to adapt to this particular purpose. The flexibility and advantages of the proposed algorithm are confirmed by analyses and experimental results.

  20. The role of gray and white matter segmentation in quantitative proton MR spectroscopic imaging.

    Science.gov (United States)

    Tal, Assaf; Kirov, Ivan I; Grossman, Robert I; Gonen, Oded

    2012-12-01

    Since the brain's gray matter (GM) and white matter (WM) metabolite concentrations differ, their partial volumes can vary the voxel's ¹H MR spectroscopy (¹H-MRS) signal, reducing sensitivity to changes. While single-voxel ¹H-MRS cannot differentiate between WM and GM signals, partial volume correction is feasible by MR spectroscopic imaging (MRSI) using segmentation of the MRI acquired for VOI placement. To determine the magnitude of this effect on metabolic quantification, we segmented a 1-mm³ resolution MRI into GM, WM and CSF masks that were co-registered with the MRSI grid to yield their partial volumes in approximately every 1 cm³ spectroscopic voxel. Each voxel then provided one equation with two unknowns: its i- metabolite's GM and WM concentrations C(i) (GM) , C(i) (WM) . With the voxels' GM and WM volumes as independent coefficients, the over-determined system of equations was solved for the global averaged C(i) (GM) and C(i) (WM) . Trading off local concentration differences offers three advantages: (i) higher sensitivity due to combined data from many voxels; (ii) improved specificity to WM versus GM changes; and (iii) reduced susceptibility to partial volume effects. These improvements made no additional demands on the protocol, measurement time or hardware. Applying this approach to 18 volunteered 3D MRSI sets of 480 voxels each yielded N-acetylaspartate, creatine, choline and myo-inositol C(i) (GM) concentrations of 8.5 ± 0.7, 6.9 ± 0.6, 1.2 ± 0.2, 5.3 ± 0.6 mM, respectively, and C(i) (WM) concentrations of 7.7 ± 0.6, 4.9 ± 0.5, 1.4 ± 0.1 and 4.4 ± 0.6mM, respectively. We showed that unaccounted voxel WM or GM partial volume can vary absolute quantification by 5-10% (more for ratios), which can often double the sample size required to establish statistical significance. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Hot Spots Detection of Operating PV Arrays through IR Thermal Image Using Method Based on Curve Fitting of Gray Histogram

    Directory of Open Access Journals (Sweden)

    Jiang Lin

    2016-01-01

    Full Text Available The overall efficiency of PV arrays is affected by hot spots which should be detected and diagnosed by applying responsible monitoring techniques. The method using the IR thermal image to detect hot spots has been studied as a direct, noncontact, nondestructive technique. However, IR thermal images suffer from relatively high stochastic noise and non-uniformity clutter, so the conventional methods of image processing are not effective. The paper proposes a method to detect hotspots based on curve fitting of gray histogram. The result of MATLAB simulation proves the method proposed in the paper is effective to detect the hot spots suppressing the noise generated during the process of image acquisition.

  2. Document image binarization using "multi-scale" predefined filters

    Science.gov (United States)

    Saabni, Raid M.

    2018-04-01

    Reading text or searching for key words within a historical document is a very challenging task. one of the first steps of the complete task is binarization, where we separate foreground such as text, figures and drawings from the background. Successful results of this important step in many cases can determine next steps to success or failure, therefore it is very vital to the success of the complete task of reading and analyzing the content of a document image. Generally, historical documents images are of poor quality due to their storage condition and degradation over time, which mostly cause to varying contrasts, stains, dirt and seeping ink from reverse side. In this paper, we use banks of anisotropic predefined filters in different scales and orientations to develop a binarization method for degraded documents and manuscripts. Using the fact, that handwritten strokes may follow different scales and orientations, we use predefined sets of filter banks having various scales, weights, and orientations to seek a compact set of filters and weights in order to generate diffrent layers of foregrounds and background. Results of convolving these fiters on the gray level image locally, weighted and accumulated to enhance the original image. Based on the different layers, seeds of components in the gray level image and a learning process, we present an improved binarization algorithm to separate the background from layers of foreground. Different layers of foreground which may be caused by seeping ink, degradation or other factors are also separated from the real foreground in a second phase. Promising experimental results were obtained on the DIBCO2011 , DIBCO2013 and H-DIBCO2016 data sets and a collection of images taken from real historical documents.

  3. Variations in performance of LCDs are still evident after DICOM gray-scale standard display calibration.

    LENUS (Irish Health Repository)

    Lowe, Joanna M

    2010-07-01

    Quality assurance in medical imaging is directly beneficial to image quality. Diagnostic images are frequently displayed on secondary-class displays that have minimal or no regular quality assurance programs, and treatment decisions are being made from these display types. The purpose of this study is to identify the impact of calibration on physical and psychophysical performance of liquid crystal displays (LCDs) and the extent of potential variance across various types of LCDs.

  4. SD LMS L-Filters for Filtration of Gray Level Images in Timespatial Domain Based on GLCM Features

    Directory of Open Access Journals (Sweden)

    Robert Hudec

    2008-01-01

    Full Text Available In this paper, the new kind of adaptive signal-dependent LMS L-filter for suppression of a mixed noise in greyscale images is developed. It is based on the texture parameter measurement as modification of spatial impulse detector structure. Moreover, the one of GLCM (Gray Level Co-occurrence Matrix features, namely, the contrast or inertia adjusted by threshold as switch between partial filters is utilised. Finally, at the positions of partial filters the adaptive LMS versions of L-filters are chosen.

  5. Accuracy of Gray-scale and Three-dimensional Power Doppler ...

    African Journals Online (AJOL)

    and Gynecology, Ahmadi Kuwait Oil Company Hospital, Ahmadi, Kuwait ... Subjects and Methods: Fifty pregnant women ≥28 weeks' gestation with suspected MAP were ... and build upon the work non‑commercially, as long as the author is credited and the ... 3D power Doppler images were analyzed using virtual organ.

  6. Currency recognition using a smartphone: Comparison between color SIFT and gray scale SIFT algorithms

    OpenAIRE

    Iyad Abu Doush; Sahar AL-Btoush

    2017-01-01

    Banknote recognition means classifying the currency (coin and paper) to the correct class. In this paper, we developed a dataset for Jordanian currency. After that we applied automatic mobile recognition system using a smartphone on the dataset using scale-invariant feature transform (SIFT) algorithm. This is the first attempt, to the best of the authors knowledge, to recognize both coins and paper banknotes on a smartphone using SIFT algorithm. SIFT has been developed to be the most robust a...

  7. Illuminant direction estimation for a single image based on local region complexity analysis and average gray value.

    Science.gov (United States)

    Yi, Jizheng; Mao, Xia; Chen, Lijiang; Xue, Yuli; Compare, Angelo

    2014-01-10

    Illuminant direction estimation is an important research issue in the field of image processing. Due to low cost for getting texture information from a single image, it is worthwhile to estimate illuminant direction by employing scenario texture information. This paper proposes a novel computation method to estimate illuminant direction on both color outdoor images and the extended Yale face database B. In our paper, the luminance component is separated from the resized YCbCr image and its edges are detected with the Canny edge detector. Then, we divide the binary edge image into 16 local regions and calculate the edge level percentage in each of them. Afterward, we use the edge level percentage to analyze the complexity of each local region included in the luminance component. Finally, according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model, we calculate the illuminant directions of the luminance component's three local regions, which meet the requirements of lower complexity and larger average gray value, and synthesize them as the final illuminant direction. Unlike previous works, the proposed method requires neither all of the information of the image nor the texture that is included in the training set. Experimental results show that the proposed method works better at the correct rate and execution time than the existing ones.

  8. Multi-scale glycemic variability: a link to gray matter atrophy and cognitive decline in type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Xingran Cui

    Full Text Available Type 2 diabetes mellitus (DM accelerates brain aging and cognitive decline. Complex interactions between hyperglycemia, glycemic variability and brain aging remain unresolved. This study investigated the relationship between glycemic variability at multiple time scales, brain volumes and cognition in type 2 DM.Forty-three older adults with and 26 without type 2 DM completed 72-hour continuous glucose monitoring, cognitive tests and anatomical MRI. We described a new analysis of continuous glucose monitoring, termed Multi-Scale glycemic variability (Multi-Scale GV, to examine glycemic variability at multiple time scales. Specifically, Ensemble Empirical Mode Decomposition was used to identify five unique ultradian glycemic variability cycles (GVC1-5 that modulate serum glucose with periods ranging from 0.5-12 hrs.Type 2 DM subjects demonstrated greater variability in GVC3-5 (period 2.0-12 hrs than controls (P<0.0001, during the day as well as during the night. Multi-Scale GV was related to conventional markers of glycemic variability (e.g. standard deviation and mean glycemic excursions, but demonstrated greater sensitivity and specificity to conventional markers, and was associated with worse long-term glycemic control (e.g. fasting glucose and HbA1c. Across all subjects, those with greater glycemic variability within higher frequency cycles (GVC1-3; 0.5-2.0 hrs had less gray matter within the limbic system and temporo-parietal lobes (e.g. cingulum, insular, hippocampus, and exhibited worse cognitive performance. Specifically within those with type 2 DM, greater glycemic variability in GVC2-3 was associated with worse learning and memory scores. Greater variability in GVC5 was associated with longer DM duration and more depression. These relationships were independent of HbA1c and hypoglycemic episodes.Type 2 DM is associated with dysregulation of glycemic variability over multiple scales of time. These time-scale-dependent glycemic fluctuations

  9. Evaluation of cost functions for gray value matching of two-dimensional images in radiotherapy

    NARCIS (Netherlands)

    Dekker, Niels; Ploeger, Lennert S.; van Herk, Marcel

    2003-01-01

    In external beam radiotherapy, portal imaging is applied for verification of the patient setup. Current automatic methods for portal image registration, which are often based on segmentation of anatomical structures, are especially successful for images of the pelvic region. For portal images of

  10. Large scale fusion of gray matter and resting-state functional MRI reveals common and shared biological markers across the psychosis spectrum in the B-SNIP cohort

    Directory of Open Access Journals (Sweden)

    Zheng eWang

    2015-12-01

    Full Text Available To investigate whether aberrant interactions between brain structure and function present similarly or differently across probands with psychotic illnesses (schizophrenia (SZ, schizoaffective disorder (SAD, and bipolar I disorder with psychosis (BP and whether these deficits are shared with their first-degree non-psychotic relatives. A total of 1199 subjects were assessed, including 220 SZ, 147 SAD, 180 psychotic BP, 150 first-degree relatives of SZ, 126 SAD relatives, 134 BP relatives and 242 healthy controls. All subjects underwent structural MRI (sMRI and resting-state functional MRI (rs-fMRI scanning. Joint independent analysis (jICA was used to fuse sMRI gray matter (GM and rs-fMRI amplitude of low frequency fluctuations (ALFF data to identify the relationship between the two modalities. Joint ICA revealed two significantly fused components. The association between functional brain alteration in a prefrontal-striatal-thalamic-cerebellar network and structural abnormalities in the default mode network (DMN was found to be common across psychotic diagnoses and correlated with cognitive function, social function and Schizo-Bipolar Scale (SBS scores. The fused alteration in the temporal lobe was unique to SZ and SAD. The above effects were not seen in any relative group (including those with cluster-A personality. Using a multivariate fused approach involving two widely used imaging markers we demonstrate both shared and distinct biological traits across the psychosis spectrum. Further, our results suggest that the above traits are psychosis biomarkers rather than endophenotypes.

  11. [Research on K-means clustering segmentation method for MRI brain image based on selecting multi-peaks in gray histogram].

    Science.gov (United States)

    Chen, Zhaoxue; Yu, Haizhong; Chen, Hao

    2013-12-01

    To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.

  12. H-1 chemical shift imaging of the brain in guanidino methyltransferase deficiency, a creatine deficiency syndrome; guanidinoacetate accumulation in the gray matter

    NARCIS (Netherlands)

    Sijens, PE; Verbruggen, KT; Meiners, LC; Soorani-Lunsing, RJ; Rake, JP; Oudkerk, M

    MR spectroscopy results in a mild case of guanidinoacetate methyltransferase (GAMT) deficiency are presented. The approach differs from previous MRS studies in the acquisition of a chemical shift imaging spectral map showing gray and white matter with the corresponding spectra in one overview. MR

  13. Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: Converging results from multimodal magnetic resonance imaging

    NARCIS (Netherlands)

    de Ruiter, Michiel B.; Reneman, Liesbeth; Boogerd, Willem; Veltman, Dick J.; Caan, Matthan; Douaud, Gwenaëlle; Lavini, Cristina; Linn, Sabine C.; Boven, Epie; van Dam, Frits S. A. M.; Schagen, Sanne B.

    2012-01-01

    The neural substrate underlying cognitive impairments after chemotherapy is largely unknown. Here, we investigated very late (>9 years) effects of adjuvant high-dose chemotherapy on brain white and gray matter in primary breast cancer survivors (n = 17) with multimodal magnetic resonance imaging

  14. Gender classification from face images by using local binary pattern and gray-level co-occurrence matrix

    Science.gov (United States)

    Uzbaş, Betül; Arslan, Ahmet

    2018-04-01

    Gender is an important step for human computer interactive processes and identification. Human face image is one of the important sources to determine gender. In the present study, gender classification is performed automatically from facial images. In order to classify gender, we propose a combination of features that have been extracted face, eye and lip regions by using a hybrid method of Local Binary Pattern and Gray-Level Co-Occurrence Matrix. The features have been extracted from automatically obtained face, eye and lip regions. All of the extracted features have been combined and given as input parameters to classification methods (Support Vector Machine, Artificial Neural Networks, Naive Bayes and k-Nearest Neighbor methods) for gender classification. The Nottingham Scan face database that consists of the frontal face images of 100 people (50 male and 50 female) is used for this purpose. As the result of the experimental studies, the highest success rate has been achieved as 98% by using Support Vector Machine. The experimental results illustrate the efficacy of our proposed method.

  15. Global gray matter changes in posterior cortical atrophy: A serial imaging study

    NARCIS (Netherlands)

    Lehmann, M.; Barnes, J.; Ridgway, G.R.; Ryan, N.S.; Warrington, E.K.; Crutch, S.J.; Fox, N.C.

    2012-01-01

    Background: Posterior cortical atrophy (PCA) is a neurodegenerative condition predominantly associated with Alzheimer's disease (AD) pathology. Cross-sectional imaging studies have shown different atrophy patterns in PCA patients compared with typical amnestic Alzheimer's disease (tAD) patients,

  16. Generalized probabilistic scale space for image restoration.

    Science.gov (United States)

    Wong, Alexander; Mishra, Akshaya K

    2010-10-01

    A novel generalized sampling-based probabilistic scale space theory is proposed for image restoration. We explore extending the definition of scale space to better account for both noise and observation models, which is important for producing accurately restored images. A new class of scale-space realizations based on sampling and probability theory is introduced to realize this extended definition in the context of image restoration. Experimental results using 2-D images show that generalized sampling-based probabilistic scale-space theory can be used to produce more accurate restored images when compared with state-of-the-art scale-space formulations, particularly under situations characterized by low signal-to-noise ratios and image degradation.

  17. Emerging factors associated with the decline of a gray fox population and multi-scale land cover associations of mesopredators in the Chicago metropolitan area.

    Energy Technology Data Exchange (ETDEWEB)

    Willingham, Alison N.; /Ohio State U.

    2008-01-01

    Statewide surveys of furbearers in Illinois indicate gray (Urocyon cinereoargenteus) and red (Vulpes vulpes) foxes have experienced substantial declines in relative abundance, whereas other species such as raccoons (Procyon lotor) and coyotes (Canis latrans) have exhibited dramatic increases during the same time period. The cause of the declines of gray and red foxes has not been identified, and the current status of gray foxes remains uncertain. Therefore, I conducted a large-scale predator survey and tracked radiocollared gray foxes from 2004 to 2007 in order to determine the distribution, survival, cause-specific mortality sources and land cover associations of gray foxes in an urbanized region of northeastern Illinois, and examined the relationships between the occurrence of gray fox and the presence other species of mesopredators, specifically coyotes and raccoons. Although generalist mesopredators are common and can reach high densities in many urban areas their urban ecology is poorly understood due to their secretive nature and wariness of humans. Understanding how mesopredators utilize urbanized landscapes can be useful in the management and control of disease outbreaks, mitigation of nuisance wildlife issues, and gaining insight into how mesopredators shape wildlife communities in highly fragmented areas. I examined habitat associations of raccoons, opossums (Didelphis virginiana), domestic cats (Felis catus), coyotes, foxes (gray and red), and striped skunks (Mephitis mephitis) at multiple spatial scales in an urban environment. Gray fox occurrence was rare and widely dispersed, and survival estimates were similar to other studies. Gray fox occurrence was negatively associated with natural and semi-natural land cover types. Fox home range size increased with increasing urban development suggesting that foxes may be negatively influenced by urbanization. Gray fox occurrence was not associated with coyote or raccoon presence. However, spatial avoidance and

  18. Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Paquin, M-Ê; El Mendili, M M; Gros, C; Dupont, S M; Cohen-Adad, J; Pradat, P-F

    2018-01-01

    There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls ( P = .004) compared with spinal cord atrophy ( P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline ( R = 0.56 for gray matter and R = 0.55 for spinal cord; P amyotrophic lateral sclerosis. © 2018 by American Journal of Neuroradiology.

  19. Store Image: Scale implementation Part 3

    Directory of Open Access Journals (Sweden)

    Ronel du Preez

    2008-10-01

    Full Text Available This paper is the final in the three-part series regarding store image. The purposes of this article are to (1 implement the developed scale to assess whether it illustrates acceptable psychometric properties of reliability and validity, (2 assess the model fit of the developed scale and (3 formulate recommendations for future research. Results indicated that the Apparel Store Image Scale (ASIS show acceptable reliability and model fit. A refined definition of store image was proposed together with a Final Model of Apparel Store Image. Recommendations for future research are made.

  20. Measures of Morphological Complexity of Gray Matter on Magnetic Resonance Imaging for Control Age Grouping

    OpenAIRE

    Pham, Tuan; Abe, Taishi; Oka, Ryuichi; Chen, Yung-Fu

    2015-01-01

    Current brain-age prediction methods using magnetic resonance imaging (MRI) attempt to estimate the physiological brain age via some kind of machine learning of chronological brain age data to perform the classification task. Such a predictive approach imposes greater risk of either over-estimate or under-estimate, mainly due to limited training data. A new conceptual framework for more reliable MRI-based brain-age prediction is by systematic brain-age grouping via the implementation of the p...

  1. Measures of Morphological Complexity of Gray Matter on Magnetic Resonance Imaging for Control Age Grouping

    Directory of Open Access Journals (Sweden)

    Tuan D. Pham

    2015-12-01

    Full Text Available Current brain-age prediction methods using magnetic resonance imaging (MRI attempt to estimate the physiological brain age via some kind of machine learning of chronological brain age data to perform the classification task. Such a predictive approach imposes greater risk of either over-estimate or under-estimate, mainly due to limited training data. A new conceptual framework for more reliable MRI-based brain-age prediction is by systematic brain-age grouping via the implementation of the phylogenetic tree reconstruction and measures of information complexity. Experimental results carried out on a public MRI database suggest the feasibility of the proposed concept.

  2. Imaging of olfactory bulb and gray matter volumes in brain areas associated with olfactory function in patients with Parkinson's disease and multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shun, E-mail: shchen_2013@163.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China); Tan, Hong-yu, E-mail: honhyutan@21cn.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China); Wu, Zhuo-hua, E-mail: zhh88@126.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China); Sun, Chong-peng, E-mail: Suncp2002@gmail.com [Imaging Center, The First Affiliated Hospital of Guangzhou Medical College (China); He, Jian-xun, E-mail: xundog@163.com [Imaging Center, The First Affiliated Hospital of Guangzhou Medical College (China); Li, Xin-chun, E-mail: xinchunli@163.com [Imaging Center, The First Affiliated Hospital of Guangzhou Medical College (China); Shao, Ming, E-mail: yimshao@126.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China)

    2014-03-15

    We explored if magnetic resonance imaging sequences might aid in the clinical differential diagnosis of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). We measured the volumes of the olfactory bulb, the olfactory tract, and olfaction-associated cortical gray matter in 20 IPD patients, 14 MSA patients, and 12 normal subjects, using high-resolution magnetic resonance imaging sequences in combination with voxel-based statistical analysis. We found that, compared to normal subjects and MSA patients, the volumes of the olfactory bulb and tract were significantly reduced in IPD patients. The gray matter volume of IPD patients decreased in the following order: the olfactory area to the right of the piriform cortex, the right amygdala, the left entorhinal cortex, and the left occipital lobe. Further, the total olfactory bulb volume of IPD patients was associated with the duration of disease. The entorhinal cortical gray matter volume was negatively associated with the UPDRS III score. Conclusion: Structural volumes measured by high-resolution magnetic resonance imaging may potentially be used for differential diagnosis of IPD from MSA.

  3. Imaging of olfactory bulb and gray matter volumes in brain areas associated with olfactory function in patients with Parkinson's disease and multiple system atrophy

    International Nuclear Information System (INIS)

    Chen, Shun; Tan, Hong-yu; Wu, Zhuo-hua; Sun, Chong-peng; He, Jian-xun; Li, Xin-chun; Shao, Ming

    2014-01-01

    We explored if magnetic resonance imaging sequences might aid in the clinical differential diagnosis of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). We measured the volumes of the olfactory bulb, the olfactory tract, and olfaction-associated cortical gray matter in 20 IPD patients, 14 MSA patients, and 12 normal subjects, using high-resolution magnetic resonance imaging sequences in combination with voxel-based statistical analysis. We found that, compared to normal subjects and MSA patients, the volumes of the olfactory bulb and tract were significantly reduced in IPD patients. The gray matter volume of IPD patients decreased in the following order: the olfactory area to the right of the piriform cortex, the right amygdala, the left entorhinal cortex, and the left occipital lobe. Further, the total olfactory bulb volume of IPD patients was associated with the duration of disease. The entorhinal cortical gray matter volume was negatively associated with the UPDRS III score. Conclusion: Structural volumes measured by high-resolution magnetic resonance imaging may potentially be used for differential diagnosis of IPD from MSA

  4. National Image Interpretablility Rating Scales

    OpenAIRE

    2003-01-01

    Interactive Media Element This presentation media demonstrates the NIIRS scale and resolution numbers and presents a problem statement to help the student gain an intuitive understanding of the numbers. Last modified: 5/18/2009 ME3XXX Military Applications of Unmanned Air Vehicles/Remotely Operated Aircraft (UAV/ROA)

  5. Gray and white matter asymmetries in healthy individuals aged 21-29 years: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Sasaki, Hiroki; Kasai, Kiyoto; Yoshioka, Naoki; Ohtomo, Kuni

    2011-10-01

    The hemispheres of the human brain are functionally and structurally asymmetric. The study of structural asymmetries provides important clues to the neuroanatomical basis of lateralized brain functions. Previous studies have demonstrated age-related changes in morphology and diffusion properties of brain tissue. In this study, we simultaneously explored gray and white matter asymmetry using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) in 109 young healthy individuals (58 females and 51 males). To eliminate the potential confounding effects of aging and handedness, we restricted the study to right-handed subjects aged 21-29 years. VBM and voxel-based analysis of fractional anisotropy (FA) maps derived from DTI revealed a number of gray matter volume asymmetries (including the right frontal and left occipital petalias and leftward asymmetry of the planum temporale) and white matter FA asymmetries (including leftward asymmetry of the arcuate fasciculus, cingulum, and corticospinal tract). There was no significant effect of sex on gray and white matter asymmetry. Leftward volume asymmetry of the planum temporale and leftward FA asymmetry of the arcuate fasciculus were simultaneously demonstrated. Post hoc analysis showed that the gray matter volume of the planum temporale and FA of the arcuate fasciculus were positively related (Pearson correlation coefficient, 0.43; P < 0.0001). The results of our study demonstrate gray and white matter asymmetry in right-handed healthy young adults and suggest that leftward volume asymmetry of the planum temporale and leftward FA asymmetry of the arcuate fasciculus may be related. Copyright © 2010 Wiley-Liss, Inc.

  6. Using Imagers for Scaling Ecological Observations

    OpenAIRE

    Graham, Eric; Hicks, John; Riordan, Erin; Wang, Eric; Yuen, Eric

    2009-01-01

    Stationary and mobile ground-based cameras can be used to scale ecological observations, relating pixel information in images to in situ measurements. Currently there are four CENS projects that involve using cameras for scaling ecological observations: 1. Scaling from one individual to the landscape. Pan-Tilt-Zoom cameras can be zoomed in on a tight focus on individual plants and parts of individuals and then zoomed out to get a landscape view, composed of the same and similar species. 2...

  7. Correlation among body height, intelligence, and brain gray matter volume in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kotozaki, Yuka; Nouchi, Rui; Wu, Kai; Fukuda, Hiroshi; Kawashima, Ryuta

    2012-01-16

    A significant positive correlation between height and intelligence has been demonstrated in children. Additionally, intelligence has been associated with the volume of gray matter in the brains of children. Based on these correlations, we analyzed the correlation among height, full-scale intelligence quotient (IQ) and gray matter volume applying voxel-based morphometry using data from the brain magnetic resonance images of 160 healthy children aged 5-18 years of age. As a result, body height was significantly positively correlated with brain gray matter volume. Additionally, the regional gray matter volume of several regions such as the bilateral prefrontal cortices, temporoparietal region, and cerebellum was significantly positively correlated with body height and that the gray matter volume of several of these regions was also significantly positively correlated with full-scale intelligence quotient (IQ) scores after adjusting for age, sex, and socioeconomic status. Our results demonstrate that gray and white matter volume may mediate the correlation between body height and intelligence in healthy children. Additionally, the correlations among gray and white matter volume, height, and intelligence may be at least partially explained by the effect of insulin-like growth factor-1 and growth hormones. Given the importance of the effect of environmental factors, especially nutrition, on height, IQ, and gray matter volume, the present results stress the importance of nutrition during childhood for the healthy maturation of body and brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Blood oxygen level-dependent magnetic resonance imaging for detecting pathological patterns in patients with lupus nephritis: a preliminary study using gray-level co-occurrence matrix analysis.

    Science.gov (United States)

    Shi, Huilan; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng

    2018-01-01

    Objective Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) is a noninvasive technique useful in patients with renal disease. The current study was performed to determine whether BOLD MRI can contribute to the diagnosis of renal pathological patterns. Methods BOLD MRI was used to obtain functional magnetic resonance parameter R2* values. Gray-level co-occurrence matrixes (GLCMs) were generated for gray-scale maps. Several GLCM parameters were calculated and used to construct algorithmic models for renal pathological patterns. Results Histopathology and BOLD MRI were used to examine 12 patients. Two GLCM parameters, including correlation and energy, revealed differences among four groups of renal pathological patterns. Four Fisher's linear discriminant formulas were constructed using two variables, including the correlation at 45° and correlation at 90°. A cross-validation test showed that the formulas correctly predicted 28 of 36 samples, and the rate of correct prediction was 77.8%. Conclusions Differences in the texture characteristics of BOLD MRI in patients with lupus nephritis may be detected by GLCM analysis. Discriminant formulas constructed using GLCM parameters may facilitate prediction of renal pathological patterns.

  9. An algorithm for automatic detection of chromosome aberrations induced by radiation using features of gray level profile across the main axis of chromosome image

    International Nuclear Information System (INIS)

    Kawashima, Hironao; Imai, Katsuhiro; Fukuoka, Hideya; Yamamoto, Mikio; Hayata, Isamu.

    1990-01-01

    A simple algorithm for detecting chromosome aberrations induced by radiation is developed. Microscopic images of conventional Giemsa stained chromosomes of rearranged chromosomes (abnormal chromosomes) including dicentric chromosomes, ordinary acentric fragments, small acentric fragments, and acentric rings are used as samples. Variation of width along the main axis and gray level profile across the main axis of the chromosome image are used as features for classification. In 7 microscopic images which include 257 single chromosomes, 90.0% (231 chromosomes) are correctly classified into 6 categories and 23 of 26 abnormal chromosomes are correctly identified. As a result of discrimination between a normal and an abnormal chromosome, 95.3% of abnormal chromosomes are detected. (author)

  10. Ultrasound analysis of gray-scale median value of carotid plaques is a useful reference index for cerebro-cardiovascular events in patients with type 2 diabetes.

    Science.gov (United States)

    Ariyoshi, Kyoko; Okuya, Shigeru; Kunitsugu, Ichiro; Matsunaga, Kimie; Nagao, Yuko; Nomiyama, Ryuta; Takeda, Komei; Tanizawa, Yukio

    2015-01-01

    Measurements of plaque echogenicity, the gray-scale median (GSM), were shown to correlate inversely with risk factors for cerebro-cardiovascular disease (CVD). The eicosapentaenoic acid (EPA)/arachidonic acid (AA) ratio is a potential predictor of CVD risk. In the present study, we assessed the usefulness of carotid plaque GSM values and EPA/AA ratios in atherosclerotic diabetics. A total of 84 type 2 diabetics with carotid artery plaques were enrolled. On admission, platelet aggregation and lipid profiles, including EPA and AA, were examined. Using ultrasound, mean intima media thickness and plaque score were measured in carotid arteries. Plaque echogenicity was evaluated using computer-assisted quantification of GSM. The patients were then further observed for approximately 3 years. Gray-scale median was found to be a good marker of CVD events. On multivariate logistic regression analysis, GSM <32 and plaque score ≥5 were significantly associated with past history and onset of CVD during the follow-up period, the odds ratios being 7.730 (P = 0.014) and 4.601 (P = 0.046), respectively. EPA/AA showed a significant correlation with GSM (P = 0.012) and high-density lipoprotein cholesterol (P = 0.039), and an inverse correlation with platelet aggregation (P = 0.046) and triglyceride (P = 0.020). Although most patients with CVD had both low GSM and low EPA/AA values, an association of EPA/AA with CVD events could not be statistically confirmed. The present results suggest the GSM value to be useful as a reference index for CVD events in high-risk atherosclerotic diabetics. Associations of the EPA/AA ratio with known CVD risk factors warrant a larger and more extensive study to show the usefulness of this parameter.

  11. White and gray matter abnormalities in idiopathic rapid eye movement sleep behavior disorder: a diffusion-tensor imaging and voxel-based morphometry study.

    Science.gov (United States)

    Scherfler, Christoph; Frauscher, Birgit; Schocke, Michael; Iranzo, Alex; Gschliesser, Viola; Seppi, Klaus; Santamaria, Joan; Tolosa, Eduardo; Högl, Birgit; Poewe, Werner

    2011-02-01

    We applied diffusion-tensor imaging (DTI) including measurements of mean diffusivity (MD), a parameter of brain tissue integrity, fractional anisotropy (FA), a parameter of neuronal fiber integrity, as well as voxel-based morphometry (VBM), a measure of gray and white matter volume, to detect brain tissue changes in patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). Magnetic resonance imaging (MRI) was performed in 26 patients with iRBD (mean disease duration, 9.2 ± 6.4 years) and 14 age-matched healthy control subjects. Statistical parametric mapping (SPM) was applied to objectively identify focal changes of MRI parameters throughout the entire brain volume. SPM localized significant decreases of FA in the tegmentum of the midbrain and rostral pons and increases of MD within the pontine reticular formation overlapping with a cluster of decreased FA in the midbrain (p < 0.001). VBM revealed increases of gray matter densities in both hippocampi of iRBD patients (p < 0.001). The observed changes in the pontomesencephalic brainstem localized 2 areas harboring key neuronal circuits believed to be involved in the regulation of REM sleep and overlap with areas of structural brainstem damage causing symptomatic RBD in humans. Bilateral increases in gray matter density of the hippocampus suggest functional neuronal reorganization in this brain area in iRBD. This study indicates that DTI detects distinct structural brainstem tissue abnormalities in iRBD in the regions where REM is modulated. Further studies should explore the relationship between MRI pathology and the risk of patients with iRBD of developing alpha-synuclein-related neurodegenerative diseases like Parkinson disease. Copyright © 2010 American Neurological Association.

  12. Influence of soft tissues on mandibular gray scale levels Influência dos tecidos moles sobre os níveis de cinza mandibulares

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Couto Souza

    2004-03-01

    Full Text Available The purpose of this study was to analyze the gray levels, expressed in pixels, of the mandibular retromolar region, with regard to the influence of muscular and fat soft tissues near this region. Fifteen dry mandibles were X-rayed with the presence of soft tissue simulators. The radiographs were digitized and evaluated by Digora® software. A one cm thick layer of wax was used as a simulator of the muscular soft tissue. Animal fat samples of different thicknesses - 0.5, 1.0, 1.5 and 2.0 cm - were used as a simulator of the fat soft tissue. Results showed that the fat soft tissue simulator influenced the gray level values in pixels of the mandibular retromolar region when analyzed in different thicknesses using the Digora® digitized image software.O presente trabalho foi desenvolvido com o objetivo de analisar os níveis de cinza, expressos em "pixels", da região retromolar mandibular, considerando a influência dos tecidos moles muscular e, principalmente, adiposo adjacentes a essa região. Para o estudo, 15 mandíbulas secas foram tecnicamente radiografadas, sendo que as radiografias obtidas foram escaneadas e avaliadas pelo programa de imagens digitalizadas Digora®. Como simuladores dos tecidos muscular e adiposo, foram utilizadas cera utilidade na espessura de 1,0 cm e amostras de gordura animal em espessuras diferentes de 0,5; 1,0; 1,5 e 2,0 cm. Os resultados mostraram que o tecido adiposo foi capaz de influenciar a análise dos valores de níveis de cinza em "pixels" da região retromolar mandibular quando estudado em espessuras diferentes pelo programa de imagens digitalizadas Digora®.

  13. The gray area: exploring attitudes toward infidelity and the development of the Perceptions of Dating Infidelity Scale.

    Science.gov (United States)

    Wilson, Karen; Mattingly, Brent A; Clark, Eddie M; Weidler, Daniel J; Bequette, Amanda W

    2011-01-01

    Prior research has distinguished between emotional versus sexual infidelity. Two studies examined the development of the Perceptions of Dating Infidelity Scale (PDIS) to assess attitudes toward specific behaviors that constitute these types of infidelity in romantic relationships. Exploratory and confirmatory factor analyses indicated three factors to the scale: Ambiguous, Deceptive, and Explicit behaviors. In both studies, there were gender differences on ratings of the behaviors. The construct validity of the scale was assessed with measures of sociosexual orientation, guilt, and coping with unwanted sexual situations. It was found that the Ambiguous behaviors were positively correlated with avoidance of unwanted sexual situations, while the Deceptive and Explicit scales were positively correlated with guilt and avoidance and negatively associated with an unrestricted sociosexual orientation and acting on attractions toward friends.

  14. Multi-Scale Pattern Recognition for Image Classification and Segmentation

    NARCIS (Netherlands)

    Li, Y.

    2013-01-01

    Scale is an important parameter of images. Different objects or image structures (e.g. edges and corners) can appear at different scales and each is meaningful only over a limited range of scales. Multi-scale analysis has been widely used in image processing and computer vision, serving as the basis

  15. A Gray-code-based color image representation method using TSNAM%TSNAM彩色图像的格雷码表示

    Institute of Scientific and Technical Information of China (English)

    郑运平; 张佳婧

    2012-01-01

    为了提高彩色图像模式的表示效率,借助于三角形和正方形布局问题的思想,将格雷码和位平面分解方法应用到彩色图像的三角形和正方形NAM表示方法(TSNAM)中,提出了一种基于格雷码的TSNAM彩色图像表示方法(GTSNAM).给出了GTSNAM表示算法的形式化描述,并对其存储结构、总数据量和时空复杂性进行了分析.理论分析和实验结果表明,与最新提出的TSNAM表示方法和经典的线性四元树(LQT)表示方法相比,GTSNAM表示方法具有更少的子模式数(或节点数),能够更有效地减少数据存储空间,因而是一种有效的彩色图像表示方法.%Inspired by an idea obtained from the triangle and the square packing problems, a new Gray-code-based color image representation method using a non-symmetry and anti-packing pattern representation model with the triangle and the square subpatterns (TSNAM) , also called the GTSNAM representation method, was proposed to improve the representation efficiency of color images by applying the Gray code and the bit-plane decomposition method. Also, a concrete algorithm of GTSNAM for color images was presented, and the storage structure, the total data amount, and the time and space complexities of the proposed algorithm were analyzed. By comparing the GTSNAM algorithm with those of the classic linear quadtree (LQT) and the latest TSNAM, which is not based on the Gray code, the theoretical and experimental results show that the former can greatly reduce the number of subpatterns or nodes and simultaneously save the storage space much more effectively than the latter ones. The GTSNAM algorithm is therefore shown to be a better method to represent color images.

  16. GPU accelerated edge-region based level set evolution constrained by 2D gray-scale histogram.

    Science.gov (United States)

    Balla-Arabé, Souleymane; Gao, Xinbo; Wang, Bin

    2013-07-01

    Due to its intrinsic nature which allows to easily handle complex shapes and topological changes, the level set method (LSM) has been widely used in image segmentation. Nevertheless, LSM is computationally expensive, which limits its applications in real-time systems. For this purpose, we propose a new level set algorithm, which uses simultaneously edge, region, and 2D histogram information in order to efficiently segment objects of interest in a given scene. The computational complexity of the proposed LSM is greatly reduced by using the highly parallelizable lattice Boltzmann method (LBM) with a body force to solve the level set equation (LSE). The body force is the link with image data and is defined from the proposed LSE. The proposed LSM is then implemented using an NVIDIA graphics processing units to fully take advantage of the LBM local nature. The new algorithm is effective, robust against noise, independent to the initial contour, fast, and highly parallelizable. The edge and region information enable to detect objects with and without edges, and the 2D histogram information enable the effectiveness of the method in a noisy environment. Experimental results on synthetic and real images demonstrate subjectively and objectively the performance of the proposed method.

  17. SU-E-I-100: Heterogeneity Studying for Primary and Lymphoma Tumors by Using Multi-Scale Image Texture Analysis with PET-CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dengwang [Shandong Normal University, Jinan, Shandong Province (China); Wang, Qinfen [Shandong Normal University, Jinan, Shandong (China); Li, H; Chen, J [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2014-06-01

    Purpose: The purpose of this research is studying tumor heterogeneity of the primary and lymphoma by using multi-scale texture analysis with PET-CT images, where the tumor heterogeneity is expressed by texture features. Methods: Datasets were collected from 12 lung cancer patients, and both of primary and lymphoma tumors were detected with all these patients. All patients underwent whole-body 18F-FDG PET/CT scan before treatment.The regions of interest (ROI) of primary and lymphoma tumor were contoured by experienced clinical doctors. Then the ROI of primary and lymphoma tumor is extracted automatically by using Matlab software. According to the geometry size of contour structure, the images of tumor are decomposed by multi-scale method.Wavelet transform was performed on ROI structures within images by L layers sampling, and then wavelet sub-bands which have the same size of the original image are obtained. The number of sub-bands is 3L+1.The gray level co-occurrence matrix (GLCM) is calculated within different sub-bands, thenenergy, inertia, correlation and gray in-homogeneity were extracted from GLCM.Finally, heterogeneity statistical analysis was studied for primary and lymphoma tumor using the texture features. Results: Energy, inertia, correlation and gray in-homogeneity are calculated with our experiments for heterogeneity statistical analysis.Energy for primary and lymphomatumor is equal with the same patient, while gray in-homogeneity and inertia of primaryare 2.59595±0.00855, 0.6439±0.0007 respectively. Gray in-homogeneity and inertia of lymphoma are 2.60115±0.00635, 0.64435±0.00055 respectively. The experiments showed that the volume of lymphoma is smaller than primary tumor, but thegray in-homogeneity and inertia were higher than primary tumor with the same patient, and the correlation with lymphoma tumors is zero, while the correlation with primary tumor isslightly strong. Conclusion: This studying showed that there were effective heterogeneity

  18. Structural Gray Matter Changes in the Hippocampus and the Primary Motor Cortex on An-Hour-to-One- Day Scale Can Predict Arm-Reaching Performance Improvement

    Directory of Open Access Journals (Sweden)

    Midori Kodama

    2018-06-01

    Full Text Available Recent studies have revealed rapid (e.g., hours to days training-induced cortical structural changes using magnetic resonance imaging (MRI. Currently, there is great interest in studying how such a rapid brain structural change affects behavioral improvement. Structural reorganization contributes to memory or enhanced information processing in the brain and may increase its capability of skill learning. If the gray matter (GM is capable of such rapid structural reorganization upon training, the extent of volume increase may characterize the learning process. To shed light on this issue, we conducted a case series study of 5-day visuomotor learning using neuroanatomical imaging, and analyzed the effect of rapid brain structural change on motor performance improvement via regression analysis. Participants performed an upper-arm reaching task under left-right mirror-reversal for five consecutive days; T1-weighted MR imaging was performed before training, after the first and fifth days, and 1 week and 1 month after training. We detected increase in GM volume on the first day (i.e., a few hours after the first training session in the primary motor cortex (M1, primary sensory cortex (S1, and in the hippocampal areas. Notably, regression analysis revealed that individual differences in such short-term increases were associated with the learning levels after 5 days of training. These results suggest that GM structural changes are not simply a footprint of previous motor learning but have some relationship with future motor learning. In conclusion, the present study provides new insight into the role of structural changes in causing functional changes during motor learning.

  19. Optimal Scale Edge Detection Utilizing Noise within Images

    Directory of Open Access Journals (Sweden)

    Adnan Khashman

    2003-04-01

    Full Text Available Edge detection techniques have common problems that include poor edge detection in low contrast images, speed of recognition and high computational cost. An efficient solution to the edge detection of objects in low to high contrast images is scale space analysis. However, this approach is time consuming and computationally expensive. These expenses can be marginally reduced if an optimal scale is found in scale space edge detection. This paper presents a new approach to detecting objects within images using noise within the images. The novel idea is based on selecting one optimal scale for the entire image at which scale space edge detection can be applied. The selection of an ideal scale is based on the hypothesis that "the optimal edge detection scale (ideal scale depends on the noise within an image". This paper aims at providing the experimental evidence on the relationship between the optimal scale and the noise within images.

  20. Enhancement of image contrast in linacgram through image processing

    International Nuclear Information System (INIS)

    Suh, Hyun Suk; Shin, Hyun Kyo; Lee, Re Na

    2000-01-01

    Conventional radiation therapy portal images gives low contrast images. The purpose of this study was to enhance image contrast of a linacgram by developing a low--cost image processing method. Chest linacgram was obtained by irradiating humanoid phantom and scanned using Diagnostic-Pro scanner for image processing. Several types of scan method were used in scanning. These include optical density scan, histogram equalized scan, linear histogram based scan, linear histogram independent scan, linear optical density scan, logarithmic scan, and power square root scan. The histogram distribution of the scanned images were plotted and the ranges of the gray scale were compared among various scan types. The scanned images were then transformed to the gray window by pallette fitting method and the contrast of the reprocessed portal images were evaluated for image improvement. Portal images of patients were also taken at various anatomic sites and the images were processed by Gray Scale Expansion (GSE) method. The patient images were analyzed to examine the feasibility of using the GSE technique in clinic. The histogram distribution showed that minimum and maximum gray scale ranges of 3192 and 21940 were obtained when the image was scanned using logarithmic method and square root method, respectively. Out of 256 gray scale, only 7 to 30% of the steps were used. After expanding the gray scale to full range, contrast of the portal images were improved. Experiment performed with patient image showed that improved identification of organs were achieved by GSE in portal images of knee joint, head and neck, lung, and pelvis. Phantom study demonstrated that the GSE technique improved image contrast of a linacgram. This indicates that the decrease in image quality resulting from the dual exposure, could be improved by expanding the gray scale. As a result, the improved technique will make it possible to compare the digitally reconstructed radiographs (DRR) and simulation image for

  1. Multivariate imaging-genetics study of MRI gray matter volume and SNPs reveals biological pathways correlated with brain structural differences in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Sabin Khadka

    2016-07-01

    Full Text Available Background: Attention Deficit Hyperactivity Disorder (ADHD is a prevalent neurodevelopmental disorder affecting children, adolescents, and adults. Its etiology is not well-understood, but it is increasingly believed to result from diverse pathophysiologies that affect the structure and function of specific brain circuits. Although one of the best-studied neurobiological abnormalities in ADHD is reduced fronto-striatal-cerebellar gray matter volume, its specific genetic correlates are largely unknown. Methods: In this study, T1-weighted MR images of brain structure were collected from 198 adolescents (63 ADHD-diagnosed. A multivariate parallel independent component analysis technique (Para-ICA identified imaging-genetic relationships between regional gray matter volume and single nucleotide polymorphism data. Results: Para-ICA analyses extracted 14 components from genetic data and 9 from MR data. An iterative cross-validation using randomly-chosen sub-samples indicated acceptable stability of these ICA solutions. A series of partial correlation analyses controlling for age, sex, and ethnicity revealed two genotype-phenotype component pairs significantly differed between ADHD and non-ADHD groups, after a Bonferroni correction for multiple comparisons. The brain phenotype component not only included structures frequently found to have abnormally low volume in previous ADHD studies, but was also significantly associated with ADHD differences in symptom severity and performance on cognitive tests frequently found to be impaired in patients diagnosed with the disorder. Pathway analysis of the genotype component identified several different biological pathways linked to these structural abnormalities in ADHD. Conclusions: Some of these pathways implicate well-known dopaminergic neurotransmission and neurodevelopment hypothesized to be abnormal in ADHD. Other more recently implicated pathways included glutamatergic and GABA-eric physiological systems

  2. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features

    Science.gov (United States)

    Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei

    2018-06-01

    Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.

  3. Comparison of liquid crystal display monitors calibrated with gray-scale standard display function and with γ 2.2 and iPad: observer performance in detection of cerebral infarction on brain CT.

    Science.gov (United States)

    Yoshimura, Kumiko; Nihashi, Takashi; Ikeda, Mitsuru; Ando, Yoshio; Kawai, Hisashi; Kawakami, Kenichi; Kimura, Reiko; Okada, Yumiko; Okochi, Yoshiyuki; Ota, Naotoshi; Tsuchiya, Kenichi; Naganawa, Shinji

    2013-06-01

    The purpose of the study was to compare observer performance in the detection of cerebral infarction on a brain CT using medical-grade liquid crystal display (LCD) monitors calibrated with the gray-scale standard display function and with γ 2.2 and using an iPad with a simulated screen setting. We amassed 97 sample sets, from 47 patients with proven cerebral infarction and 50 healthy control subjects. Nine radiologists independently assessed brain CT on a gray-scale standard display function LCD, a γ 2.2 LCD, and an iPad in random order over 4-week intervals. Receiver operating characteristic (ROC) analysis was performed by using the continuous scale, and the area under the ROC curve (A(z)) was calculated for each monitor. The A(z) values for gray-scale standard display function LCD, γ 2.2 LCD, and iPad were 0.875, 0.884, and 0.839, respectively. The difference among the three monitors was very small. There was no significant difference between gray-scale standard display function LCD and γ 2.2 LCD. However, the A(z) value was statistically significantly smaller for the iPad than the γ 2.2 LCD (p iPad was poorer than that using the other LCDs, the difference was small. Therefore, the iPad could not substitute for other LCD monitors. However, owing to the promising potential advantages of tablet PCs, such as portability, further examination is needed into the clinical use of tablet PCs.

  4. Small scale imaging using ultrasonic tomography

    International Nuclear Information System (INIS)

    Zakaria, Z.; Abdul Rahim, R.; Megat Ali, M.S.A.; Baharuddin, M.Y.; Jahidin, A.H.

    2009-01-01

    Ultrasound technology progressed through the 1960 from simple A-mode and B-mode scans to today M-mode and Doppler two dimensional (2-D) and even three dimensional (3-D) systems. Modern ultrasound imaging has its roots in sonar technology after it was first described by Lord John Rayleigh over 100 years ago on the interaction of acoustic waves with media. Tomography technique was developed as a diagnostic tool in the medical area since the early of 1970s. This research initially focused on how to retrieve a cross sectional images from living and non-living things. After a decade, the application of tomography systems span into the industrial area. However, the long exposure time of medical radiation-based method cannot tolerate the dynamic changes in industrial process two phase liquid/ gas flow system. An alternative system such as a process tomography systems, can give information on the nature of the flow regime characteristic. The overall aim of this paper is to investigate the use of a small scale ultrasonic tomography method based on ultrasonic transmission mode tomography for online monitoring of liquid/ gas flow in pipe/ vessel system through ultrasonic transceivers application. This non-invasive technique applied sixteen transceivers as the sensing elements to cover the pipe/ vessel cross section. The paper also details the transceivers selection criteria, hardware setup, the electronic measurement circuit and also the image reconstruction algorithm applied. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases. (author)

  5. How reliable are gray matter disruptions in specific reading disability across multiple countries and languages? Insights from a large-scale voxel-based morphometry study.

    Science.gov (United States)

    Jednoróg, Katarzyna; Marchewka, Artur; Altarelli, Irene; Monzalvo Lopez, Ana Karla; van Ermingen-Marbach, Muna; Grande, Marion; Grabowska, Anna; Heim, Stefan; Ramus, Franck

    2015-05-01

    The neural basis of specific reading disability (SRD) remains only partly understood. A dozen studies have used voxel-based morphometry (VBM) to investigate gray matter volume (GMV) differences between SRD and control children, however, recent meta-analyses suggest that few regions are consistent across studies. We used data collected across three countries (France, Poland, and Germany) with the aim of both increasing sample size (236 SRD and controls) to obtain a clearer picture of group differences, and of further assessing the consistency of the findings across languages. VBM analysis reveals a significant group difference in a single cluster in the left thalamus. Furthermore, we observe correlations between reading accuracy and GMV in the left supramarginal gyrus and in the left cerebellum, in controls only. Most strikingly, we fail to replicate all the group differences in GMV reported in previous studies, despite the superior statistical power. The main limitation of this study is the heterogeneity of the sample drawn from different countries (i.e., speaking languages with varying orthographic transparencies) and selected based on different assessment batteries. Nevertheless, analyses within each country support the conclusions of the cross-linguistic analysis. Explanations for the discrepancy between the present and previous studies may include: (1) the limited suitability of VBM to reveal the subtle brain disruptions underlying SRD; (2) insufficient correction for multiple statistical tests and flexibility in data analysis, and (3) publication bias in favor of positive results. Thus the study echoes widespread concerns about the risk of false-positive results inherent to small-scale VBM studies. © 2015 Wiley Periodicals, Inc.

  6. Properties of Brownian Image Models in Scale-Space

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup

    2003-01-01

    Brownian images) will be discussed in relation to linear scale-space theory, and it will be shown empirically that the second order statistics of natural images mapped into jet space may, within some scale interval, be modeled by the Brownian image model. This is consistent with the 1/f 2 power spectrum...... law that apparently governs natural images. Furthermore, the distribution of Brownian images mapped into jet space is Gaussian and an analytical expression can be derived for the covariance matrix of Brownian images in jet space. This matrix is also a good approximation of the covariance matrix......In this paper it is argued that the Brownian image model is the least committed, scale invariant, statistical image model which describes the second order statistics of natural images. Various properties of three different types of Gaussian image models (white noise, Brownian and fractional...

  7. Developing a nomogram based on multiparametric magnetic resonance imaging for forecasting high-grade prostate cancer to reduce unnecessary biopsies within the prostate-specific antigen gray zone.

    Science.gov (United States)

    Niu, Xiang-Ke; Li, Jun; Das, Susant Kumar; Xiong, Yan; Yang, Chao-Bing; Peng, Tao

    2017-02-01

    Since 1980s the application of Prostate specific antigen (PSA) brought the revolution in prostate cancer diagnosis. However, it is important to underline that PSA is not the ideal screening tool due to its low specificity, which leads to the possible biopsy for the patient without High-grade prostate cancer (HGPCa). Therefore, the aim of this study was to establish a predictive nomogram for HGPCa in patients with PSA 4-10 ng/ml based on Prostate Imaging Reporting and Data System version 2 (PI-RADS v2), MRI-based prostate volume (PV), MRI-based PV-adjusted Prostate Specific Antigen Density (adjusted-PSAD) and other traditional classical parameters. Between January 2014 and September 2015, Of 151 men who were eligible for analysis were formed the training cohort. A prediction model for HGPCa was built by using backward logistic regression and was presented on a nomogram. The prediction model was evaluated by a validation cohort between October 2015 and October 2016 (n = 74). The relationship between the nomogram-based risk-score as well as other parameters with Gleason score (GS) was evaluated. All patients underwent 12-core systematic biopsy and at least one core targeted biopsy with transrectal ultrasonographic guidance. The multivariate analysis revealed that patient age, PI-RADS v2 score and adjusted-PSAD were independent predictors for HGPCa. Logistic regression (LR) model had a larger AUC as compared with other parameters alone. The most discriminative cutoff value for LR model was 0.36, the sensitivity, specificity, positive predictive value and negative predictive value were 87.3, 78.4, 76.3, and 90.4%, respectively and the diagnostic performance measures retained similar values in the validation cohort (AUC 0.82 [95% CI, 0.76-0.89]). For all patients with HGPCa (n = 50), adjusted-PSAD and nomogram-based risk-score were positively correlated with the GS of HGPCa in PSA gray zone (r = 0.455, P = 0.002 and r = 0.509, P = 0

  8. A NDVI assisted remote sensing image adaptive scale segmentation method

    Science.gov (United States)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  9. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study

    International Nuclear Information System (INIS)

    Lv, Xiao-Fei; Zheng, Xiao-Li; Zhang, Wei-Dong; Liu, Li-Zhi; Zhang, You-Ming; Chen, Ming-Yuan; Li, Li

    2014-01-01

    Evidence is accumulating that temporal lobe radiation necrosis in patients with nasopharyngeal carcinoma (NPC) after radiotherapy (RT) could involve gray matter (GM). The purpose of the study was to assess the radiation-induced GM volume differences between NPC patients who had and had not received RT and the effect of time after RT on GM volume differences in those patients who had received RT. We used magnetic resonance imaging voxel-based morphometry (VBM) to assess differences in GM volume between 30 NPC patients with normal-appearing whole-brain GM after RT and 15 control patients with newly diagnosed but not yet medically treated NPC. Correlation analyses were used to investigate the relationship between GM volume changes and time after RT. Patients who had received RT had GM volume decreases in the bilateral superior temporal gyrus, left middle temporal gyrus, right fusiform gyrus, right precentral gyrus, and right inferior parietal lobule (p 100 voxels). Moreover, the correlation analysis indicated that regional GM volume loss in the left superior temporal gyrus, left middle temporal gyrus, and right fusiform gyrus were negatively related to the mean dose to the ipsilateral temporal lobe, respectively. These results indicate that GM volume deficits in bilateral temporal lobes in patients who had received RT might be radiation-induced. Our findings might provide new insight into the pathogenesis of radiation-induced structural damage in normal-appearing brain tissue. Yet this is an exploratory study, whose findings should therefore be taken with caution. (orig.)

  10. Henry Gray, plagiarist.

    Science.gov (United States)

    Richardson, Ruth

    2016-03-01

    The first edition of Anatomy Descriptive and Surgical (1858) was greeted with accolades, but also provoked serious controversy concerning Henry Gray's failure to acknowledge the work of earlier anatomists. A review in the Medical Times (1859) accused Gray of intellectual theft. The journal took the unusual step of substantiating its indictment by publishing twenty parallel texts from Gray and from a pre-existing textbook, Quain's Anatomy. At the recent "Vesalius Continuum" conference in Zakynthos, Greece (2014) Professor Brion Benninger disputed the theft by announcing from the floor the results of a computer analysis of both texts, which he reported exonerated Gray by revealing no evidence of plagiarism. The analysis has not been forthcoming, however, despite requests. Here the historian of Gray's Anatomy supplements the argument set out in the Medical Times 150 years ago with data suggesting unwelcome personality traits in Henry Gray, and demonstrating the utility of others' work to his professional advancement. Fair dealing in the world of anatomy and indeed the genuineness of the lustre of medical fame are important matters, but whether quantitative evidence has anything to add to the discussion concerning Gray's probity can be assessed only if Benninger makes public his computer analysis. © 2015 Wiley Periodicals, Inc.

  11. Retrospective analysis of cytopathology using gray level co-occurrence matrix algorithm for thyroid malignant nodules in the ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Ju; Lee, Jin Soo [Dept. of Radiology, Inje University Haeundae Paik Hospital, Busan (Korea, Republic of); Kang, Se Sik; Kim, Chang Soo [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2017-06-15

    This study evaluated the applicability of computer-aided diagnosis by retrospective analysis of GLCM algorithm based on cytopathological diagnosis of normal and malignant nodules in thyroid ultrasound images. In the experiment, the recognition rate and ROC curve of thyroid malignant nodule were analyzed using 6 parameters of GLCM algorithm. Experimental results showed 97% energy, 93% contrast, 92% correlation, 92% homogeneity, 100% entropy and 100% variance. Statistical analysis showed that the area under the curve of each parameter was more than 0.947 (p = 0 .001) in t he ROC curve, which was s ignificant in the recognition of thyroid malignant nodules. In the GLCM, the cut-off value of each parameter can be used to predict the disease through analysis of quantitative computer-aided diagnosis.

  12. Non-invasive Estimation of Temperature during Physiotherapeutic Ultrasound Application Using the Average Gray-Level Content of B-Mode Images: A Metrological Approach.

    Science.gov (United States)

    Alvarenga, André V; Wilkens, Volker; Georg, Olga; Costa-Félix, Rodrigo P B

    2017-09-01

    Healing therapies that make use of ultrasound are based on raising the temperature in biological tissue. However, it is not possible to heal impaired tissue by applying a high dose of ultrasound. The temperature of the tissue is ultimately the physical quantity that has to be assessed to minimize the risk of undesired injury. Invasive temperature measurement techniques are easy to use, despite the fact that they are detrimental to human well being. Another approach to assessing a rise in tissue temperature is to derive the material's general response to temperature variations from ultrasonic parameters. In this article, a method for evaluating temperature variations is described. The method is based on the analytical study of an ultrasonic image, in which gray-level variations are correlated to the temperature variations in a tissue-mimicking material. The physical assumption is that temperature variations induce wave propagation changes modifying the backscattered ultrasound signal, which are expressed in the ultrasonographic images. For a temperature variation of about 15°C, the expanded uncertainty for a coverage probability of 0.95 was found to be 2.5°C in the heating regime and 1.9°C in the cooling regime. It is possible to use the model proposed in this article in a straightforward manner to monitor temperature variation during a physiotherapeutic ultrasound application, provided the tissue-mimicking material approach is transferred to actual biological tissue. The novelty of such approach resides in the metrology-based investigation outlined here, as well as in its ease of reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study

    Directory of Open Access Journals (Sweden)

    Takashi Itahashi

    2015-01-01

    Full Text Available Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI or diffusion tensor imaging (DTI, and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA, to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder.

  14. Imaging scatterometry of butterfly wing scales

    NARCIS (Netherlands)

    Stavenga, D. G.; Leertouwer, H. L.; Pirih, P.; Wehling, M. F.

    2009-01-01

    We describe an imaging scatterometer allowing hemispherical reflectance measurements as a function of the angle of incidence. The heart of the scatterometer is an ellipsoidal reflector, which compresses the hemispherical reflection into a cone-shaped beam that can be imaged by a normal optical

  15. [A voxel-based morphometric analysis of brain gray matter in online game addicts].

    Science.gov (United States)

    Weng, Chuan-bo; Qian, Ruo-bing; Fu, Xian-ming; Lin, Bin; Ji, Xue-bing; Niu, Chao-shi; Wang, Ye-han

    2012-12-04

    To explore the possible brain mechanism of online game addiction (OGA) in terms of brain morphology through voxel-based morphometric (VBM) analysis. Seventeen subjects with OGA and 17 age- and gender-matched healthy controls (HC group) were recruited from Department of Psychology at our hospital during February-December 2011. The internet addiction scale (IAS) was used to measure the degree of OGA tendency. Magnetic resonance imaging (MRI) scans were performed to acquire 3-dimensional T1-weighted images. And FSL 4.1 software was employed to confirm regional gray matter volume changes. For the regions where OGA subjects showed significantly different gray matter volumes from the controls, the gray matter volumes of these areas were extracted, averaged and regressed against the scores of IAS. The OGA group had lower gray matter volume in left orbitofrontal cortex (OFC), left medial prefrontal cortex (mPFC), bilateral insula (INS), left posterior cingulate cortex (PCC) and left supplementary motor area (SMA). Gray matter volumes of left OFC and bilateral INS showed a negative correlation with the scores of IAS (r = -0.65, r = -0.78, P online game addicts and they may be correlated with the occurrence and maintenance of OGA.

  16. Altered Gray Matter Volume and Resting-State Connectivity in Individuals With Internet Gaming Disorder: A Voxel-Based Morphometry and Resting-State Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-01-01

    Neuroimaging studies on the characteristics of individuals with Internet gaming disorder (IGD) have been accumulating due to growing concerns regarding the psychological and social problems associated with Internet use. However, relatively little is known about the brain characteristics underlying IGD, such as the associated functional connectivity and structure. The aim of this study was to investigate alterations in gray matter (GM) volume and functional connectivity during resting state in individuals with IGD using voxel-based morphometry and a resting-state connectivity analysis. The participants included 20 individuals with IGD and 20 age- and sex-matched healthy controls. Resting-state functional and structural images were acquired for all participants using 3 T magnetic resonance imaging. We also measured the severity of IGD and impulsivity using psychological scales. The results show that IGD severity was positively correlated with GM volume in the left caudate (p < 0.05, corrected for multiple comparisons), and negatively associated with functional connectivity between the left caudate and the right middle frontal gyrus (p < 0.05, corrected for multiple comparisons). This study demonstrates that IGD is associated with neuroanatomical changes in the right middle frontal cortex and the left caudate. These are important brain regions for reward and cognitive control processes, and structural and functional abnormalities in these regions have been reported for other addictions, such as substance abuse and pathological gambling. The findings suggest that structural deficits and resting-state functional impairments in the frontostriatal network may be associated with IGD and provide new insights into the underlying neural mechanisms of IGD. PMID:29636704

  17. Altered Gray Matter Volume and Resting-State Connectivity in Individuals With Internet Gaming Disorder: A Voxel-Based Morphometry and Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Ji-Woo Seok

    2018-03-01

    Full Text Available Neuroimaging studies on the characteristics of individuals with Internet gaming disorder (IGD have been accumulating due to growing concerns regarding the psychological and social problems associated with Internet use. However, relatively little is known about the brain characteristics underlying IGD, such as the associated functional connectivity and structure. The aim of this study was to investigate alterations in gray matter (GM volume and functional connectivity during resting state in individuals with IGD using voxel-based morphometry and a resting-state connectivity analysis. The participants included 20 individuals with IGD and 20 age- and sex-matched healthy controls. Resting-state functional and structural images were acquired for all participants using 3 T magnetic resonance imaging. We also measured the severity of IGD and impulsivity using psychological scales. The results show that IGD severity was positively correlated with GM volume in the left caudate (p < 0.05, corrected for multiple comparisons, and negatively associated with functional connectivity between the left caudate and the right middle frontal gyrus (p < 0.05, corrected for multiple comparisons. This study demonstrates that IGD is associated with neuroanatomical changes in the right middle frontal cortex and the left caudate. These are important brain regions for reward and cognitive control processes, and structural and functional abnormalities in these regions have been reported for other addictions, such as substance abuse and pathological gambling. The findings suggest that structural deficits and resting-state functional impairments in the frontostriatal network may be associated with IGD and provide new insights into the underlying neural mechanisms of IGD.

  18. Ultrasound Imaging and its modeling

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2002-01-01

    Modern medical ultrasound scanners are used for imaging nearly all soft tissue structures in the body. The anatomy can be studied from gray-scale B-mode images, where the reflectivity and scattering strength of the tissues are displayed. The imaging is performed in real time with 20 to 100 images...

  19. Subjective assessment of impairment in scale-space-coded images

    NARCIS (Netherlands)

    Ridder, de H.; Majoor, G.M.M.

    1988-01-01

    Direct category scaling and a scaling procedure in accordance with Functional Measurement Theory (Anderson, 1982) have been used to assess impairment in scale-space-coded illlages, displayed on a black-and-white TV monitor. The image of a complex scene was passed through a Gaussian filter of limited

  20. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiao-Fei; Zheng, Xiao-Li; Zhang, Wei-Dong; Liu, Li-Zhi; Zhang, You-Ming [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Sun Yat-sen University Cancer Center, Department of Medical Imaging and Interventional Radiology, Guangzhou (China); Chen, Ming-Yuan [Sun Yat-sen University Cancer Center, Department of Nasopharyngeal Carcinoma, Guangzhou (China); Li, Li [Sun Yat-sen University Cancer Center, Department of Medical Imaging and Interventional Radiology, Guangzhou (China)

    2014-05-15

    Evidence is accumulating that temporal lobe radiation necrosis in patients with nasopharyngeal carcinoma (NPC) after radiotherapy (RT) could involve gray matter (GM). The purpose of the study was to assess the radiation-induced GM volume differences between NPC patients who had and had not received RT and the effect of time after RT on GM volume differences in those patients who had received RT. We used magnetic resonance imaging voxel-based morphometry (VBM) to assess differences in GM volume between 30 NPC patients with normal-appearing whole-brain GM after RT and 15 control patients with newly diagnosed but not yet medically treated NPC. Correlation analyses were used to investigate the relationship between GM volume changes and time after RT. Patients who had received RT had GM volume decreases in the bilateral superior temporal gyrus, left middle temporal gyrus, right fusiform gyrus, right precentral gyrus, and right inferior parietal lobule (p < 0.001, uncorrected, cluster size >100 voxels). Moreover, the correlation analysis indicated that regional GM volume loss in the left superior temporal gyrus, left middle temporal gyrus, and right fusiform gyrus were negatively related to the mean dose to the ipsilateral temporal lobe, respectively. These results indicate that GM volume deficits in bilateral temporal lobes in patients who had received RT might be radiation-induced. Our findings might provide new insight into the pathogenesis of radiation-induced structural damage in normal-appearing brain tissue. Yet this is an exploratory study, whose findings should therefore be taken with caution. (orig.)

  1. Learning scale-variant and scale-invariant features for deep image classification

    NARCIS (Netherlands)

    van Noord, Nanne; Postma, Eric

    Convolutional Neural Networks (CNNs) require large image corpora to be trained on classification tasks. The variation in image resolutions, sizes of objects and patterns depicted, and image scales, hampers CNN training and performance, because the task-relevant information varies over spatial

  2. Scale selection for supervised image segmentation

    DEFF Research Database (Denmark)

    Li, Yan; Tax, David M J; Loog, Marco

    2012-01-01

    schemes are usually unsupervised, as they do not take into account the actual segmentation problem at hand. In this paper, we consider the problem of selecting scales, which aims at an optimal discrimination between user-defined classes in the segmentation. We show the deficiency of the classical...

  3. Large Scale Asset Extraction for Urban Images

    KAUST Repository

    Affara, Lama Ahmed; Nan, Liangliang; Ghanem, Bernard; Wonka, Peter

    2016-01-01

    Object proposals are currently used for increasing the computational efficiency of object detection. We propose a novel adaptive pipeline for interleaving object proposals with object classification and use it as a formulation for asset detection. We first preprocess the images using a novel and efficient rectification technique. We then employ a particle filter approach to keep track of three priors, which guide proposed samples and get updated using classifier output. Tests performed on over 1000 urban images demonstrate that our rectification method is faster than existing methods without loss in quality, and that our interleaved proposal method outperforms current state-of-the-art. We further demonstrate that other methods can be improved by incorporating our interleaved proposals. © Springer International Publishing AG 2016.

  4. Large Scale Asset Extraction for Urban Images

    KAUST Repository

    Affara, Lama Ahmed

    2016-09-16

    Object proposals are currently used for increasing the computational efficiency of object detection. We propose a novel adaptive pipeline for interleaving object proposals with object classification and use it as a formulation for asset detection. We first preprocess the images using a novel and efficient rectification technique. We then employ a particle filter approach to keep track of three priors, which guide proposed samples and get updated using classifier output. Tests performed on over 1000 urban images demonstrate that our rectification method is faster than existing methods without loss in quality, and that our interleaved proposal method outperforms current state-of-the-art. We further demonstrate that other methods can be improved by incorporating our interleaved proposals. © Springer International Publishing AG 2016.

  5. Gray matter and white matter abnormalities in online game addiction

    International Nuclear Information System (INIS)

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-01-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA

  6. Gray matter and white matter abnormalities in online game addiction

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Chuan-Bo, E-mail: send007@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); School of Neurosurgery, Anhui Medical University, 81 Meishang Road, Hefei, Anhui Province 230032 (China); Qian, Ruo-Bing, E-mail: rehomail@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Fu, Xian-Ming, E-mail: 506537677@qq.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Lin, Bin, E-mail: 274722758@qq.com [School of Neurosurgery, Anhui Medical University, 81 Meishang Road, Hefei, Anhui Province 230032 (China); Han, Xiao-Peng, E-mail: hanxiaopeng@163.com [Department of Psychology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Niu, Chao-Shi, E-mail: niuchaoshi@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Wang, Ye-Han, E-mail: wangyehan@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China)

    2013-08-15

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA.

  7. Gray matter and white matter abnormalities in online game addiction.

    Science.gov (United States)

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-08-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Developing and validating a psychometric scale for image quality assessment

    International Nuclear Information System (INIS)

    Mraity, H.; England, A.; Hogg, P.

    2014-01-01

    Purpose: Using AP pelvis as a catalyst, this paper explains how a psychometric scale for image quality assessment can be created using Bandura's theory for self-efficacy. Background: Establishing an accurate diagnosis is highly dependent upon the quality of the radiographic image. Image quality, as a construct (i.e. set of attributes that makes up the image quality), continues to play an essential role in the field of diagnostic radiography. The process of assessing image quality can be facilitated by using criteria, such as the European Commission (EC) guidelines for quality criteria as published in 1996. However, with the advent of new technology (Computed Radiography and Digital Radiography), some of the EC criteria may no longer be suitable for assessing the visual quality of a digital radiographic image. Moreover, a lack of validated visual image quality scales in the literature can also lead to significant variations in image quality evaluation. Creating and validating visual image quality scales, using a robust methodology, could reduce variability and improve the validity and reliability of perceptual image quality evaluations

  9. Henry Gray's Anatomy.

    Science.gov (United States)

    Pearce, J M S

    2009-04-01

    Little is generally known of Henry Gray, the author of Gray's Anatomy, and even less of his colleague Henry Vandyke Carter, who played a vital role in the dissections and illustrations leading to the production of the first volume in 1859. This essay attempts to sketch briefly the salient, know aspects of these two men and their divergent careers. It traces succinctly the subsequent fate of the unique anatomy book that has influenced and instructed almost every student of medicine. (c) 2009 Wiley-Liss, Inc.

  10. Image classification independent of orientation and scale

    Science.gov (United States)

    Arsenault, Henri H.; Parent, Sebastien; Moisan, Sylvain

    1998-04-01

    The recognition of targets independently of orientation has become fairly well developed in recent years for in-plane rotation. The out-of-plane rotation problem is much less advanced. When both out-of-plane rotations and changes of scale are present, the problem becomes very difficult. In this paper we describe our research on the combined out-of- plane rotation problem and the scale invariance problem. The rotations were limited to rotations about an axis perpendicular to the line of sight. The objects to be classified were three kinds of military vehicles. The inputs used were infrared imagery and photographs. We used a variation of a method proposed by Neiberg and Casasent, where a neural network is trained with a subset of the database and a minimum distances from lines in feature space are used for classification instead of nearest neighbors. Each line in the feature space corresponds to one class of objects, and points on one line correspond to different orientations of the same target. We found that the training samples needed to be closer for some orientations than for others, and that the most difficult orientations are where the target is head-on to the observer. By means of some additional training of the neural network, we were able to achieve 100% correct classification for 360 degree rotation and a range of scales over a factor of five.

  11. Low contrast detectability for color patterns variation of display images

    International Nuclear Information System (INIS)

    Ogura, Akio

    1998-01-01

    In recent years, the radionuclide images are acquired in digital form and displayed with false colors for signal intensity. This color scales for signal intensity have various patterns. In this study, low contrast detectability was compared the performance of gray scale cording with three color scales: the hot color scale, prism color scale and stripe color scale. SPECT images of brain phantom were displayed using four color patterns. These printed images and display images were evaluated with ROC analysis. Display images were indicated higher detectability than printed images. The hot scale and gray scale images indicated better Az of ROC than prism scale images because the prism scale images showed higher false positive rate. (author)

  12. Large scale particle image velocimetry with helium filled soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bosbach, Johannes; Kuehn, Matthias; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)

    2009-03-15

    The application of particle image velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of computational fluid dynamics simulations. (orig.)

  13. Large scale particle image velocimetry with helium filled soap bubbles

    Science.gov (United States)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  14. Modification of grey scale in computer tomographic images

    International Nuclear Information System (INIS)

    Hemmingsson, A.; Jung, B.

    1980-01-01

    Optimum perception of minute but relevant attenuation differences in CT images often requires display window settings so narrow that a considerable fraction of the image appears completely black or white and consequently without structure. In order to improve the display characteristics two principles of grey scale modification are presented. In one method the pixel contents are displayed unchanged within a selectable attenuation band but moved towards the limits of the band for pixels that are outside it. In the other the grey scale is arranged to a constant number of pixels per grey scale interval. (Auth.)

  15. Planck scale still safe from stellar images

    International Nuclear Information System (INIS)

    Coule, D H

    2003-01-01

    The recent paper of Lieu and Hillman (2003 Astrophys. J. Lett. 585 L77) suggesting that a possible (birefringence-like) phase difference ambiguity coming from Planck effects would alter stellar images of distant sources is questioned. Instead for division of wavefront interference and diffraction phenomena, initial (lateral) coherence is developed simply by propagation of rays (cf the van Cittert-Zernike theorem). This case is strongly immune to quantum gravity influences that could tend to reduce phase coherence. The phase ambiguity, if actually present, could reduce any underlying polarization of the light rays. However, we argue that, as expected since any inherent quantum discreteness of space should become increasingly negligible over larger distances, such a phase ambiguity is rapidly cancelled if a more realistic constantly fluctuating quantum 'buffeting' occurs

  16. Two-dimensional DFA scaling analysis applied to encrypted images

    Science.gov (United States)

    Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.

    2015-01-01

    The technique of detrended fluctuation analysis (DFA) has been widely used to unveil scaling properties of many different signals. In this paper, we determine scaling properties in the encrypted images by means of a two-dimensional DFA approach. To carry out the image encryption, we use an enhanced cryptosystem based on a rule-90 cellular automaton and we compare the results obtained with its unmodified version and the encryption system AES. The numerical results show that the encrypted images present a persistent behavior which is close to that of the 1/f-noise. These results point to the possibility that the DFA scaling exponent can be used to measure the quality of the encrypted image content.

  17. Multi scales based sparse matrix spectral clustering image segmentation

    Science.gov (United States)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  18. Gray matter heterotopias: MR and clinical features

    International Nuclear Information System (INIS)

    Moon, Tae Myung; Yoon, Jeong Hee; Chung, Chun Phil

    1995-01-01

    To evaluate types of gray matter heterotopias, associated brain anomalies, and its correlation with the patterns of seizure. We evaluated retrospectively 19 patients (male:female=10:9, mean age 21 years) with gray matter heterotopias on brain MRI. Using 1.0T superconducting MR unit, spin echo T1-, proton -density and T2-weighted images in axial, coronal and sagittal planes were obtained. Types of gray matter heterotopias were single subependymal in four patients, multiple subependymal in one, focal subcortical in eight, diffuse subcortical in two, mixed multiple subependymal and focal subcortical in four. Associated anomalies were seen in 11 patients: other neuronal migration anomalies in eight patients, corpus callosum agenesis in two, and combined holoprosencephaly and Dandy-Walker malformation in one. Fifteen patients had seizure. The patterns of seizure were not correlated with the types of heterotopias. In addition to subependymal, focal subcortical, and diffuse subcortical types, gray matter heterotopias included mixed variant of multiple subependymal and subcortical type. Schizencephaly was the most common form of accompanying anomalies, and patterns of seizure were not correlated with types of gray matter heterotopias, even though main clinical manifestation was seizure

  19. Comment on "An improved gray Lattice Boltzmann model for simulating fluid flow in multi-scale porous media": Intrinsic links between LBE Brinkman schemes

    Science.gov (United States)

    Ginzburg, Irina

    2016-02-01

    In this Comment on the recent work (Zhu and Ma, 2013) [11] by Zhu and Ma (ZM) we first show that all three local gray Lattice Boltzmann (GLB) schemes in the form (Zhu and Ma, 2013) [11]: GS (Chen and Zhu, 2008; Gao and Sharma, 1994) [1,4], WBS (Walsh et al., 2009) [12] and ZM, fail to get constant Darcy's velocity in series of porous blocks. This inconsistency is because of their incorrect definition of the macroscopic velocity in the presence of the heterogeneous momentum exchange, while the original WBS model (Walsh et al., 2009) [12] does this properly. We improve the GS and ZM schemes for this and other related deficiencies. Second, we show that the ;discontinuous velocity; they recover on the stratified interfaces with their WBS scheme is inherent, in different degrees, to all LBE Brinkman schemes, including ZM scheme. None of them guarantees the stress and the velocity continuity by their implicit interface conditions, even in the frame of the two-relaxation-times (TRT) collision operator where these two properties are assured in stratified Stokes flow, Ginzburg (2007) [5]. Third, the GLB schemes are presented in work (Zhu and Ma, 2013) [11] as the alternative ones to direct, Brinkman-force based (BF) schemes (Freed, 1998; Nie and Martys, 2007) [3,8]. Yet, we show that the BF-TRT scheme (Ginzburg, 2008) [6] gets the solutions of any of the improved GLB schemes for specific, viscosity-dependent choice of its one or two local relaxation rates. This provides the principal difference between the GLB and BF: while the BF may respect the linearity of the Stokes-Brinkman equation rigorously, the GLB-TRT cannot, unless it reduces to the BF via the inverse transform of the relaxation rates. Furthermore, we show that, in limited parameter space, ;gray; schemes may run one another. From the practical point of view, permeability values obtained with the GLB are viscosity-dependent, unlike with the BF. Finally, the GLB shares with the BF a so-called anisotropy (Ginzburg

  20. Gray matter alterations and correlation of nutritional intake with the gray matter volume in prediabetes

    Science.gov (United States)

    Hou, Yi-Cheng; Lai, Chien-Han; Wu, Yu-Te; Yang, Shwu-Huey

    2016-01-01

    Abstract The neurophysiology of prediabetes plays an important role in preventive medicine. The dysregulation of glucose metabolism is likely linked to changes in neuron-related gray matter. Therefore, we designed this study to investigate gray matter alterations in medication-naive prediabetic patients. We expected to find alterations in the gray matter of prediabetic patients. A total of 64 prediabetic patients and 54 controls were enrolled. All subjects received T1 scans using a 3-T magnetic resonance imaging machine. Subjects also completed nutritional intake records at the 24-hour and 3-day time points to determine their carbohydrate, protein, fat, and total calorie intake. We utilized optimized voxel-based morphometry to estimate the gray matter differences between the patients and controls. In addition, the preprandial serum glucose level and the carbohydrate, protein, fat, and total calorie intake levels were tested to determine whether these parameters were correlated with the gray matter volume. Prediabetic patients had lower gray matter volumes than controls in the right anterior cingulate gyrus, right posterior cingulate gyrus, left insula, left super temporal gyrus, and left middle temporal gyrus (corrected P prediabetic patients. PMID:27336893

  1. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  2. Normal gray and white matter volume after weight restoration in adolescents with anorexia nervosa.

    Science.gov (United States)

    Lázaro, Luisa; Andrés, Susana; Calvo, Anna; Cullell, Clàudia; Moreno, Elena; Plana, M Teresa; Falcón, Carles; Bargalló, Núria; Castro-Fornieles, Josefina

    2013-12-01

    The aim of this study was to determine whether treated, weight-stabilized adolescents with anorexia nervosa (AN) present brain volume differences in comparison with healthy controls. Thirty-five adolescents with weight-recovered AN and 17 healthy controls were assessed by means of psychopathology scales and magnetic resonance imaging. Axial three-dimensional T1-weighted images were obtained in a 1.5 Tesla scanner and analyzed using optimized voxel-based morphometry (VBM). There were no significant differences between controls and weight-stabilized AN patients with regard to global volumes of either gray or white brain matter, or in the regional VBM study. Differences were not significant between patients with psychopharmacological treatment and without, between those with amenorrhea and without, as well as between patients with restrictive versus purgative AN. The present findings reveal no global or regional gray or white matter abnormalities in this sample of adolescents following weight restoration. Copyright © 2013 Wiley Periodicals, Inc.

  3. Perceptual security of encrypted images based on wavelet scaling analysis

    Science.gov (United States)

    Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.

    2016-08-01

    The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using the detrended fluctuation analysis based on wavelets, a modern technique that has been successfully used recently for a wide range of natural phenomena and technological processes. As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode and two versions of a cryptosystem based on cellular automata, with the encryption process applied both fully and partially by selecting different bitplanes. In all cases, the results show that the encrypted images in which no understandable information can be visually appreciated and whose pixels look totally random present a persistent scaling behavior with the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA with wavelets is applied. This suggests that the scaling exponents of the encrypted images can be used as a perceptual security criterion in the sense that when their values are close to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual point of view.

  4. Multi-scale and multi-orientation medical image analysis

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Deserno, T.M.

    2011-01-01

    Inspired by multi-scale and multi-orientation mechanisms recognized in the first stages of our visual system, this chapter gives a tutorial overview of the basic principles. Images are discrete, measured data. The optimal aperture for an observation with as little artefacts as possible, is derived

  5. Scaling images using their background ratio. An application in statistical comparisons of images

    International Nuclear Information System (INIS)

    Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J

    2003-01-01

    Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases

  6. Scaling images using their background ratio. An application in statistical comparisons of images.

    Science.gov (United States)

    Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J

    2003-06-07

    Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases.

  7. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  8. The Internet And Gray Marketing

    OpenAIRE

    Soumava Bandyopadhyay

    2010-01-01

    The purpose of this conceptual paper is to investigate the nature, extent, and outcomes of gray marketing on the Internet.  We examined the current state of Internet-based gray marketing in several product categories and found the phenomenon to be on the rise.  Next, we developed a series of propositions to address evolving trends in online gray marketing, regarding actions of intermediaries and manufacturers, response by consumers, and outcomes on marketing strategy.

  9. Partial pressure (or fugacity) of carbon dioxide, pH (total scale), salinity and other variables collected from time series observations from Mooring_GraysRf_81W_31N in the Gray's Reef National Marine Sanctuary, North Atlantic Ocean from 2006-07-18 to 2015-10-15 (NODC Accession 0109904)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109904 includes chemical, meteorological, physical and time series data collected from MOORING GRAYSRF_81W_31N and Mooring_GraysRf_81W_31N in the...

  10. Multi-scale analysis of lung computed tomography images

    CERN Document Server

    Gori, I; Fantacci, M E; Preite Martinez, A; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C

    2007-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  11. Creation of the physical appearance and the body image rating scale for the Czech context

    Directory of Open Access Journals (Sweden)

    Lenka Šrámková

    2015-01-01

    Full Text Available Problem and methods: Physical appearance is one of the key components of selfperception from early childhood. An individual’s perceived physical attractiveness is largely conditioned by geographical, cultural and historical factors. Every culture develops its own criteria of attractiveness and any deviations to those are often a cause of ostracism, for example through exclusion or rejection. Still, there are certain universal principles of attractiveness (e.g. a higher waist-hip ratio, facial symmetry, sexually dimorphic features, which exist across cultures and time periods with little variation. To measure a person’s level of satisfaction with his/her physical appearance, psychologists regularly employ figure rating scales. The primary goal of our work was to develop and verify an updated visual body rating scale called the Basic Olomouc Body Rating (BOBR, making sure that it is widely usable, valid and reliable. The scale was created using the method of document analysis of academic papers according body-rating scales and a method of interview with potential probands. In the pilot data gathering phase, a group of respondents was presented with the 3 scales commonly used in the European context, i.e. FDS (Stunkard, Sorensen & Schulsinger, 1983, CDRS (Thompson & Gray, 1995 and BIAS-BD (Gardner, Jappe & Gardner, 2009. The purpose of this was to get feedback on these scales and find out if people are able to use these scales to rate themselves. New schematic figure rating scale for both men and women which would do away with the limitations of the scales used so far was developed. Results: The result is creation of a body-rating scale widely usable in further research and practical consulting. The paper briefly summarizes results of an additional study – the goal definition phase was followed by online research on the subject of body image and the self-perceived sexual attractiveness. Altogether, 5,616 respondents from the Czech Republic

  12. Large Scale Visual Recommendations From Street Fashion Images

    OpenAIRE

    Jagadeesh, Vignesh; Piramuthu, Robinson; Bhardwaj, Anurag; Di, Wei; Sundaresan, Neel

    2014-01-01

    We describe a completely automated large scale visual recommendation system for fashion. Our focus is to efficiently harness the availability of large quantities of online fashion images and their rich meta-data. Specifically, we propose four data driven models in the form of Complementary Nearest Neighbor Consensus, Gaussian Mixture Models, Texture Agnostic Retrieval and Markov Chain LDA for solving this problem. We analyze relative merits and pitfalls of these algorithms through extensive e...

  13. Imaging and Patterning on Nanometer Scale Using Coherent EUV Light

    International Nuclear Information System (INIS)

    Wachulak, P.W.; Fiedorowicz, H.; Bartnik, A.; Marconi, M.C.; Menoni, C.S.; Rocca, J.J.

    2010-01-01

    Extreme ultraviolet (EUV) covers wavelength range from about 5 nm to 50 nm. That is why EUV is especially applicable for imaging and patterning on nanometer scale length. In the paper periodic nanopatterning realized by interference lithography and high resolution holographic nanoimaging performed in a Gabor in-line scheme are presented. In the experiments a compact table top EUV laser was used. Preliminary studies on using a laser plasma EUV source for nanoimaging are presented as well. (author)

  14. Comparison of gray-scale contrast-enhanced ultrasonography with contrast-enhanced computed tomography in different grading of blunt hepatic and splenic trauma: an animal experiment.

    Science.gov (United States)

    Tang, Jie; Li, Wenxiu; Lv, Faqin; Zhang, Huiqin; Zhang, Lihai; Wang, Yuexiang; Li, Junlai; Yang, Li

    2009-04-01

    To compare the diagnostic value of contrast-enhanced ultrasonography (CEUS) with contrast-enhanced computed tomography (CECT) for the detection of different grading of solid organ injuries in blunt abdominal trauma in animals. A self-made miniature tools were used as models to simulate a blunt hepatic or splenic trauma in 16 and 14 anesthetized dogs, respectively. Baseline ultrasound, CEUS and CECT were used to detect traumatic injuries of livers and spleens. The degree of injuries was determined by CEUS according to the American Association for the Surgery of Trauma (AAST) scale and the results compared with injury scale based on CECT evaluation. CEUS showed 22 hepatic injury sites in 16 animals and 17 splenic injury sites in other 14 animals. According to AAST scale, 2 grade I, 4 grade II, 3 grade III, 5 grade IV and 2 grade V hepatic lesions were present in 16 animals; 2 grade I, 4 grade II, 6 grade III and 2 grade IV splenic lesions in 14 animals. On CECT scan, 21 hepatic and 17 splenic injuries were demonstrated. According to Becker CT scaling for hepatic injury, 1 grade I, 2 grade II, 4 grade III, 5 grade IV and 2 grade V hepatic injuries were present. On the basis of Buntain spleen scaling, 2 grade I, 5 grade II, 5 grade III, 2 grade IV splenic injuries were showed. After Spearman rank correlation analysis, the agreement of CEUS with CECT on the degree of hepatic and splenic injury is 93.3% and 92.9%, respectively. CT is currently considered as the reference method for grading blunt abdominal trauma, according to experiment results, CEUS grading showed high levels of concordance with CECT. CEUS can accurately determine the degree of injury and will play an important role in clinical application.

  15. Gray Matter Is Targeted in First-Attack Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Schutzer, Steven E.; Angel, Thomas E.; Liu, Tao; Schepmoes, Athena A.; Xie, Fang; Bergquist, Jonas P.; Vecsei, Lazlo' ; Zadori, Denes; Camp, David G.; Holland, Bart K.; Smith, Richard D.; Coyle, Patricia K.

    2013-09-10

    The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We found that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation.

  16. Grays Harbor Paper

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, B. [Grays Harbor Paper, Hoquiam, WA (United States)

    2009-07-01

    Wood waste biomass boilers are used at Grays Harbor Paper in Hoquiam, Washington. This presentation showed that large volumes of biomass are left after a traditional clearcut. The opportunities and challenges of collecting branches, tops and stumps from this wet coastal climate were outlined. The paper described some of the low-tech methods for picking up branches, stumps and woody debris. It included several photographs of custom logging machines for timber harvest, including a brush grapple slasher, a shearer shovel, chippers, grinders, slicesaws, trucks, trailers and caterpillar log loaders for handling slash. The slash recovery program relies on innovative harvesting machines that convert scattered logging slash into bundles that can be easily collected, transported, and stored for use in existing facilities that utilize wood fiber for fuel. figs.

  17. Color Processing using Max-trees : A Comparison on Image Compression

    NARCIS (Netherlands)

    Tushabe, Florence; Wilkinson, M.H.F.

    2012-01-01

    This paper proposes a new method of processing color images using mathematical morphology techniques. It adapts the Max-tree image representation to accommodate color and other vectorial images. The proposed method introduces three new ways of transforming the color image into a gray scale image

  18. Why Does Hair Turn Gray?

    Science.gov (United States)

    ... out, but people with naturally lighter hair are just as likely to go gray. From the time a person notices a few gray hairs, it may take more than 10 years for all of that person's hair to turn ... really believe that this happens. Just in case, try not to freak out your ...

  19. Novel Amdovirus in Gray Foxes

    Science.gov (United States)

    Li, Linlin; Pesavento, Patricia A.; Woods, Leslie; Clifford, Deana L.; Luff, Jennifer; Wang, Chunlin

    2011-01-01

    We used viral metagenomics to identify a novel parvovirus in tissues of a gray fox (Urocyon cinereoargenteus). Nearly full genome characterization and phylogenetic analyses showed this parvovirus (provisionally named gray fox amdovirus) to be distantly related to Aleutian mink disease virus, representing the second viral species in the Amdovirus genus. PMID:22000359

  20. Large-Scale Image Analytics Using Deep Learning

    Science.gov (United States)

    Ganguly, S.; Nemani, R. R.; Basu, S.; Mukhopadhyay, S.; Michaelis, A.; Votava, P.

    2014-12-01

    High resolution land cover classification maps are needed to increase the accuracy of current Land ecosystem and climate model outputs. Limited studies are in place that demonstrates the state-of-the-art in deriving very high resolution (VHR) land cover products. In addition, most methods heavily rely on commercial softwares that are difficult to scale given the region of study (e.g. continents to globe). Complexities in present approaches relate to (a) scalability of the algorithm, (b) large image data processing (compute and memory intensive), (c) computational cost, (d) massively parallel architecture, and (e) machine learning automation. In addition, VHR satellite datasets are of the order of terabytes and features extracted from these datasets are of the order of petabytes. In our present study, we have acquired the National Agricultural Imaging Program (NAIP) dataset for the Continental United States at a spatial resolution of 1-m. This data comes as image tiles (a total of quarter million image scenes with ~60 million pixels) and has a total size of ~100 terabytes for a single acquisition. Features extracted from the entire dataset would amount to ~8-10 petabytes. In our proposed approach, we have implemented a novel semi-automated machine learning algorithm rooted on the principles of "deep learning" to delineate the percentage of tree cover. In order to perform image analytics in such a granular system, it is mandatory to devise an intelligent archiving and query system for image retrieval, file structuring, metadata processing and filtering of all available image scenes. Using the Open NASA Earth Exchange (NEX) initiative, which is a partnership with Amazon Web Services (AWS), we have developed an end-to-end architecture for designing the database and the deep belief network (following the distbelief computing model) to solve a grand challenge of scaling this process across quarter million NAIP tiles that cover the entire Continental United States. The

  1. Image scale measurement with correlation filters in a volume holographic optical correlator

    Science.gov (United States)

    Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2013-08-01

    A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.

  2. Development of a body image scale for Brazilian women

    Directory of Open Access Journals (Sweden)

    Catiane Souza

    2017-12-01

    Full Text Available Body image is an important parameter of body satisfaction and needs to be evaluated with instruments developed and validated for a specific population. The aim of this study was to develop and validate a scale to assess body image in Brazilian women. A scale consisting of 11 silhouettes was prepared. Content validation was performed by seven experts from different health areas. To assess repeatability (two consecutive assessments and reproducibility (reassessment after one week, an intentional sample stratified into four groups according to the characterization of Brazilian women regarding nutritional status was selected. Participants were 125 women aged 18-55 years and body mass index (BMI between 18.5 and 38.6 kg/m2. The Kappa coefficient (k was used to assess repeatability and reproducibility, considering the isolated responses of the current body, ideal body and the difference between them, assumed as satisfactory when k≥0.6. For all trials, α=0.05. During the content validation phase, the instrument developed was changed following the evaluators’ suggestions and it was considered very suitable by six of seven evaluators. The Kappa coefficient was good in isolated issues and in the difference between them in both repeatability and reproducibility. The Body Image Scale was considered a valid content, with good repeatability and reproducibility. Considering the instrument as low cost and of rapid implementation/evaluation, it may be used to evaluate the body image of Brazilian women with BMI between 18.5 and 38.6 kg/m2, in different contexts.

  3. Cognitive Implications of Deep Gray Matter Iron in Multiple Sclerosis.

    Science.gov (United States)

    Fujiwara, E; Kmech, J A; Cobzas, D; Sun, H; Seres, P; Blevins, G; Wilman, A H

    2017-05-01

    Deep gray matter iron accumulation is increasingly recognized in association with multiple sclerosis and can be measured in vivo with MR imaging. The cognitive implications of this pathology are not well-understood, especially vis-à-vis deep gray matter atrophy. Our aim was to investigate the relationships between cognition and deep gray matter iron in MS by using 2 MR imaging-based iron-susceptibility measures. Forty patients with multiple sclerosis (relapsing-remitting, n = 16; progressive, n = 24) and 27 healthy controls were imaged at 4.7T by using the transverse relaxation rate and quantitative susceptibility mapping. The transverse relaxation rate and quantitative susceptibility mapping values and volumes (atrophy) of the caudate, putamen, globus pallidus, and thalamus were determined by multiatlas segmentation. Cognition was assessed with the Brief Repeatable Battery of Neuropsychological Tests. Relationships between cognition and deep gray matter iron were examined by hierarchic regressions. Compared with controls, patients showed reduced memory ( P processing speed ( P = .02) and smaller putamen ( P deep gray matter iron accumulation in the current multiple sclerosis cohort. Atrophy and iron accumulation in deep gray matter both have negative but separable relationships to cognition in multiple sclerosis. © 2017 by American Journal of Neuroradiology.

  4. Imaging optical scattering of butterfly wing scales with a microscope.

    Science.gov (United States)

    Fu, Jinxin; Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan

    2017-08-06

    A new optical method is proposed to investigate the reflectance of structurally coloured objects, such as Morpho butterfly wing scales and cholesteric liquid crystals. Using a reflected-light microscope and a digital single-lens reflex (DSLR) camera, we have successfully measured the two-dimensional reflection pattern of individual wing scales of Morpho butterflies. We demonstrate that this method enables us to measure the bidirectional reflectance distribution function (BRDF). The scattering image observed in the back focal plane of the objective is projected onto the camera sensor by inserting a Bertrand lens in the optical path of the microscope. With monochromatic light illumination, we quantify the angle-dependent reflectance spectra from the wing scales of Morpho rhetenor by retrieving the raw signal from the digital camera sensor. We also demonstrate that the polarization-dependent reflection of individual wing scales is readily observed using this method, using the individual wing scales of Morpho cypris . In an effort to show the generality of the method, we used a chiral nematic fluid to illustrate the angle-dependent reflectance as seen by this method.

  5. Image Processing for Binarization Enhancement via Fuzzy Reasoning

    Science.gov (United States)

    Dominguez, Jesus A. (Inventor)

    2009-01-01

    A technique for enhancing a gray-scale image to improve conversions of the image to binary employs fuzzy reasoning. In the technique, pixels in the image are analyzed by comparing the pixel's gray scale value, which is indicative of its relative brightness, to the values of pixels immediately surrounding the selected pixel. The degree to which each pixel in the image differs in value from the values of surrounding pixels is employed as the variable in a fuzzy reasoning-based analysis that determines an appropriate amount by which the selected pixel's value should be adjusted to reduce vagueness and ambiguity in the image and improve retention of information during binarization of the enhanced gray-scale image.

  6. Regional gray matter correlates of vocational interests.

    Science.gov (United States)

    Schroeder, David H; Haier, Richard J; Tang, Cheuk Ying

    2012-05-16

    Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations. First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic ("blue-collar") interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability. Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations.

  7. The ``gray cortex``: an early sign of stress fracture

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, M.E. [Dept. of Radiology, Univ. of Maryland Medical Center, Baltimore, MD (United States)

    1995-04-01

    The purpose of this report is to describe an early radiographic sign of stress fracture, the ``gray cortex.`` The imaging findings in three patients with tibial stress fractures were reviewed. The ``gray cortex`` sign was evident on the initial conventional radiographs in all three cases. It was prospectively reported as a sign of stress fracture in two patients and was evident on the initial radiographs (taken elsewhere) of the third patient, who was referred for additional workup of a possible neoplasm. Special imaging studies (technetium-99m bone scan, computed tomography, and magnetic resonance imaging) confirmed the diagnosis in all three cases. (orig.)

  8. The ''gray cortex'': an early sign of stress fracture

    International Nuclear Information System (INIS)

    Mulligan, M.E.

    1995-01-01

    The purpose of this report is to describe an early radiographic sign of stress fracture, the ''gray cortex.'' The imaging findings in three patients with tibial stress fractures were reviewed. The ''gray cortex'' sign was evident on the initial conventional radiographs in all three cases. It was prospectively reported as a sign of stress fracture in two patients and was evident on the initial radiographs (taken elsewhere) of the third patient, who was referred for additional workup of a possible neoplasm. Special imaging studies (technetium-99m bone scan, computed tomography, and magnetic resonance imaging) confirmed the diagnosis in all three cases. (orig.)

  9. Distributed Component Forests : Hierarchical Image Representations Suitable for Tera-Scale Images

    NARCIS (Netherlands)

    Wilkinson, M.H.F.; Gazagnes, Simon; Suen, Ching Y.

    2018-01-01

    The standard representations know as component trees, used in morphological connected attribute filtering and multi-scale analysis, are unsuitable for cases in which either the image itself, or the tree do not fit in the memory of a single compute node. Recently, a new structure has been developed

  10. Image editing with Adobe Photoshop 6.0.

    Science.gov (United States)

    Caruso, Ronald D; Postel, Gregory C

    2002-01-01

    The authors introduce Photoshop 6.0 for radiologists and demonstrate basic techniques of editing gray-scale cross-sectional images intended for publication and for incorporation into computerized presentations. For basic editing of gray-scale cross-sectional images, the Tools palette and the History/Actions palette pair should be displayed. The History palette may be used to undo a step or series of steps. The Actions palette is a menu of user-defined macros that save time by automating an action or series of actions. Converting an image to 8-bit gray scale is the first editing function. Cropping is the next action. Both decrease file size. Use of the smallest file size necessary for the purpose at hand is recommended. Final file size for gray-scale cross-sectional neuroradiologic images (8-bit, single-layer TIFF [tagged image file format] at 300 pixels per inch) intended for publication varies from about 700 Kbytes to 3 Mbytes. Final file size for incorporation into computerized presentations is about 10-100 Kbytes (8-bit, single-layer, gray-scale, high-quality JPEG [Joint Photographic Experts Group]), depending on source and intended use. Editing and annotating images before they are inserted into presentation software is highly recommended, both for convenience and flexibility. Radiologists should find that image editing can be carried out very rapidly once the basic steps are learned and automated. Copyright RSNA, 2002

  11. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Eun Yeon; Tae, Woo Suk; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  12. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    International Nuclear Information System (INIS)

    Joo, Eun Yeon; Tae, Woo Suk; Kim, Sung Tae; Hong, Seung Bong

    2009-01-01

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  13. Digital image processing for real-time neutron radiography and its applications

    International Nuclear Information System (INIS)

    Fujine, Shigenori

    1989-01-01

    The present paper describes several digital image processing approaches for the real-time neutron radiography (neutron television-NTV), such as image integration, adaptive smoothing and image enhancement, which have beneficial effects on image improvements, and also describes how to use these techniques for applications. Details invisible in direct images of NTV are able to be revealed by digital image processing, such as reversed image, gray level correction, gray scale transformation, contoured image, subtraction technique, pseudo color display and so on. For real-time application a contouring operation and an averaging approach can also be utilized effectively. (author)

  14. Multi-scale imaging and elastic simulation of carbonates

    Science.gov (United States)

    Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed

    2016-05-01

    for this current unresolved phase is important. In this work we take a multi-scale imaging approach by first extracting a smaller 0.5" core and scanning at approx 13 µm, then further extracting a 5mm diameter core scanned at 5 μm. From this last scale, region of interests (containing unresolved areas) are identified for scanning at higher resolutions using Focalised Ion Beam (FIB/SEM) scanning technique reaching 50 nm resolution. Numerical simulation is run on such a small unresolved section to obtain a better estimate of the effective moduli which is then used as input for simulations performed using CT-images. Results are compared with expeirmental acoustic test moduli obtained also at two scales: 1.5" and 0.5" diameter cores.

  15. Japanese version of cutaneous body image scale: translation and validation.

    Science.gov (United States)

    Higaki, Yuko; Watanabe, Ikuko; Masaki, Tomoko; Kamo, Toshiko; Kawashima, Makoto; Satoh, Toshihiko; Saitoh, Shiroh; Nohara, Michiko; Gupta, Madhulika A

    2009-09-01

    Cutaneous body image, defined as the individual's mental perception of the appearance of their skin, hair and nails, is an important psychodermatological element in skin diseases. To measure individuals' cutaneous body image, a practical and accurate instrument is necessary. In this study, we translated the Cutaneous Body Image Scale (CBIS), a 7-item instrument originally created by Gupta et al. in 2004, into Japanese using a forward- and back-translation method and evaluated the reliability and validity of the instrument by psychometric tests. A total of 298 healthy adults (64 men and 234 women, aged 28.9 +/- 9.9 years) and 165 dermatology patients (56.7% eczema/dermatitis, 9.8% acne, 7.5% alopecia, 6.9% psoriasis, 19.1% skin tumor/fleck/other) (30 men and 135 women, aged 37.9 +/- 15.2 years) responded to the Japanese version of the CBIS. The internal-consistency reliability of the instrument was high (Cronbach's alpha, healthy adults 0.88, patients 0.84). The CBIS measure demonstrates good test-retest reliability (healthy adults gamma = 0.92, P emotions" and "global" scores of Skindex-16 in healthy adults (gamma = -0.397 and -0.373, respectively) and in patients (gamma = -0.431 and -0.38, respectively). A stepwise multiple regression analysis revealed that an emotional aspect of skin-condition related quality of life was the best predictor of cutaneous body image in both healthy adults and patients (beta = -0.31 and -0.41, respectively) followed by "body dissatisfaction" (beta = -0.17, and -0.23, respectively). Adjusted R(2) was 0.246 in healthy adults and 0.264 in patients. These were consistent with the results from the original the CBIS. These results suggest that the Japanese version of the CBIS is a reliable and valid instrument to measure the cutaneous body image of Japanese adults and also dermatology patients.

  16. Solving the problem of imaging resolution: stochastic multi-scale image fusion

    Science.gov (United States)

    Karsanina, Marina; Mallants, Dirk; Gilyazetdinova, Dina; Gerke, Kiril

    2016-04-01

    Structural features of porous materials define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, gas exchange between biologically active soil root zone and atmosphere, etc.) and solute transport. To characterize soil and rock microstructure X-ray microtomography is extremely useful. However, as any other imaging technique, this one also has a significant drawback - a trade-off between sample size and resolution. The latter is a significant problem for multi-scale complex structures, especially such as soils and carbonates. Other imaging techniques, for example, SEM/FIB-SEM or X-ray macrotomography can be helpful in obtaining higher resolution or wider field of view. The ultimate goal is to create a single dataset containing information from all scales or to characterize such multi-scale structure. In this contribution we demonstrate a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images representing macro, micro and nanoscale spatial information on porous media structure. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Potential practical applications of this method are abundant in soil science, hydrology and petroleum engineering, as well as other geosciences. This work was partially supported by RSF grant 14-17-00658 (X-ray microtomography study of shale

  17. The Gray whale: Eschrichtius robustus

    National Research Council Canada - National Science Library

    Jones, Mary Lou; Leatherwood, Stephen; Swartz, Steven L

    1984-01-01

    .... Section II documents historical aspects of gray whale exploitation and the economic importance of these whales to humans, beginning with aboriginal societies in Asia and North America, and leading...

  18. Niobium in gray cast iron

    International Nuclear Information System (INIS)

    Castello Branco, C.H.; Beckert, E.A.

    1984-03-01

    The potential for utilization of niobium in gray cast iron is appraised and reviewed. Experiments described in literature indicate that niobium provides structural refinement of the eutectic cells and also promotes pearlite formation. (Author) [pt

  19. Nondestructive chemical imaging of wood at the micro-scale: advanced technology to complement macro-scale evaluations

    Science.gov (United States)

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Carol Hirschmugl

    2013-01-01

    Chemical images help understanding of wood properties, durability, and cell wall deconstruction for conversion of lignocellulose to biofuels, nanocellulose and other value added chemicals in forest biorefineries. We describe here a new method for nondestructive chemical imaging of wood and wood-based materials at the micro-scale to complement macro-scale methods based...

  20. Improved Wallis Dodging Algorithm for Large-Scale Super-Resolution Reconstruction Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-03-01

    Full Text Available A sub-block algorithm is usually applied in the super-resolution (SR reconstruction of images because of limitations in computer memory. However, the sub-block SR images can hardly achieve a seamless image mosaicking because of the uneven distribution of brightness and contrast among these sub-blocks. An effectively improved weighted Wallis dodging algorithm is proposed, aiming at the characteristic that SR reconstructed images are gray images with the same size and overlapping region. This algorithm can achieve consistency of image brightness and contrast. Meanwhile, a weighted adjustment sequence is presented to avoid the spatial propagation and accumulation of errors and the loss of image information caused by excessive computation. A seam line elimination method can share the partial dislocation in the seam line to the entire overlapping region with a smooth transition effect. Subsequently, the improved method is employed to remove the uneven illumination for 900 SR reconstructed images of ZY-3. Then, the overlapping image mosaic method is adopted to accomplish a seamless image mosaic based on the optimal seam line.

  1. Structure of the medical digital image

    International Nuclear Information System (INIS)

    Baltadzhiev, D.

    1997-01-01

    In up-to-date medical practice diagnostic imaging techniques are the most powerful tools available to clinicians. The modern medical equipment is entirely based on digital technology. In this article the principle of generating medical images is presented. The concept for gray scale where medical images are commonly presented is described. The patterns of gray images transformation into colour scale are likewise outlined. Basic notions from medical imaging terminology such as image matrix, pixel, spatial and contrast resolution power, bit, byte and the like are explained. Also an example is given of how the binary system treats images. On the basis of digital technology the obtained medical images lend themselves readily to additional processing, reconstruction (including 3D) and storage for subsequent utilization. The ceaseless progress of computerized communications promote easy and prompt access for clinicians to the diagnostic images needed as well as realization of expert consultations by teleconference contact (author)

  2. Fast processing of foreign fiber images by image blocking

    Directory of Open Access Journals (Sweden)

    Yutao Wu

    2014-08-01

    Full Text Available In the textile industry, it is always the case that cotton products are constitutive of many types of foreign fibers which affect the overall quality of cotton products. As the foundation of the foreign fiber automated inspection, image process exerts a critical impact on the process of foreign fiber identification. This paper presents a new approach for the fast processing of foreign fiber images. This approach includes five main steps, image block, image pre-decision, image background extraction, image enhancement and segmentation, and image connection. At first, the captured color images were transformed into gray-scale images; followed by the inversion of gray-scale of the transformed images ; then the whole image was divided into several blocks. Thereafter, the subsequent step is to judge which image block contains the target foreign fiber image through image pre-decision. Then we segment the image block via OSTU which possibly contains target images after background eradication and image strengthening. Finally, we connect those relevant segmented image blocks to get an intact and clear foreign fiber target image. The experimental result shows that this method of segmentation has the advantage of accuracy and speed over the other segmentation methods. On the other hand, this method also connects the target image that produce fractures therefore getting an intact and clear foreign fiber target image.

  3. Coupled binary embedding for large-scale image retrieval.

    Science.gov (United States)

    Zheng, Liang; Wang, Shengjin; Tian, Qi

    2014-08-01

    Visual matching is a crucial step in image retrieval based on the bag-of-words (BoW) model. In the baseline method, two keypoints are considered as a matching pair if their SIFT descriptors are quantized to the same visual word. However, the SIFT visual word has two limitations. First, it loses most of its discriminative power during quantization. Second, SIFT only describes the local texture feature. Both drawbacks impair the discriminative power of the BoW model and lead to false positive matches. To tackle this problem, this paper proposes to embed multiple binary features at indexing level. To model correlation between features, a multi-IDF scheme is introduced, through which different binary features are coupled into the inverted file. We show that matching verification methods based on binary features, such as Hamming embedding, can be effectively incorporated in our framework. As an extension, we explore the fusion of binary color feature into image retrieval. The joint integration of the SIFT visual word and binary features greatly enhances the precision of visual matching, reducing the impact of false positive matches. Our method is evaluated through extensive experiments on four benchmark datasets (Ukbench, Holidays, DupImage, and MIR Flickr 1M). We show that our method significantly improves the baseline approach. In addition, large-scale experiments indicate that the proposed method requires acceptable memory usage and query time compared with other approaches. Further, when global color feature is integrated, our method yields competitive performance with the state-of-the-arts.

  4. Spatial scales of pollution from variable resolution satellite imaging.

    Science.gov (United States)

    Chudnovsky, Alexandra A; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(2.5) as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM(2.5) and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM(2.5) ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM(2.5) levels and wind speed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Spatial scales of pollution from variable resolution satellite imaging

    International Nuclear Information System (INIS)

    Chudnovsky, Alexandra A.; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM 2.5 as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM 2.5 and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM 2.5 ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM 2.5 levels and wind speed. - Highlights: ► The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. ► High resolution MAIAC AOD 1 km retrieval can be used to investigate within-city PM 2.5 variability. ► Low pollution days exhibit higher spatial variability of AOD and PM 2.5 then moderate pollution days. ► AOD spatial variability within urban area is higher during the lower wind speed conditions. - The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. The new high-resolution MAIAC AOD retrieval has the potential to capture PM 2.5 variability at the intra-urban scale.

  6. Prefrontal gray matter volume mediates genetic risks for obesity.

    Science.gov (United States)

    Opel, N; Redlich, R; Kaehler, C; Grotegerd, D; Dohm, K; Heindel, W; Kugel, H; Thalamuthu, A; Koutsouleris, N; Arolt, V; Teuber, A; Wersching, H; Baune, B T; Berger, K; Dannlowski, U

    2017-05-01

    Genetic and neuroimaging research has identified neurobiological correlates of obesity. However, evidence for an integrated model of genetic risk and brain structural alterations in the pathophysiology of obesity is still absent. Here we investigated the relationship between polygenic risk for obesity, gray matter structure and body mass index (BMI) by the use of univariate and multivariate analyses in two large, independent cohorts (n=330 and n=347). Higher BMI and higher polygenic risk for obesity were significantly associated with medial prefrontal gray matter decrease, and prefrontal gray matter was further shown to significantly mediate the effect of polygenic risk for obesity on BMI in both samples. Building on this, the successful individualized prediction of BMI by means of multivariate pattern classification algorithms trained on whole-brain imaging data and external validations in the second cohort points to potential clinical applications of this imaging trait marker.

  7. Medial frontal white and gray matter contributions to general intelligence.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Ohtani

    Full Text Available The medial orbitofrontal cortex (mOFC and rostral anterior cingulate cortex (rACC are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA, which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%-34% of the variance in IQ, in comparison to 11%-16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence.

  8. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  9. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  10. Structural imaging of the brain reveals decreased total brain and total gray matter volumes in obese but not in lean women with polycystic ovary syndrome compared to body mass index-matched counterparts.

    Science.gov (United States)

    Ozgen Saydam, Basak; Has, Arzu Ceylan; Bozdag, Gurkan; Oguz, Kader Karli; Yildiz, Bulent Okan

    2017-07-01

    To detect differences in global brain volumes and identify relations between brain volume and appetite-related hormones in women with polycystic ovary syndrome (PCOS) compared to body mass index-matched controls. Forty subjects participated in this study. Cranial magnetic resonance imaging and measurements of fasting ghrelin, leptin and glucagon-like peptide 1 (GLP-1), as well as GLP-1 levels during mixed-meal tolerance test (MTT), were performed. Total brain volume and total gray matter volume (GMV) were decreased in obese PCOS compared to obese controls (p lean PCOS and controls did not show a significant difference. Secondary analyses of regional brain volumes showed decreases in GMV of the caudate nucleus, ventral diencephalon and hippocampus in obese PCOS compared to obese controls (p lean patients with PCOS had lower GMV in the amygdala than lean controls (p PCOS, suggests volumetric reductions in global brain areas in obese women with PCOS. Functional studies with larger sample size are needed to determine physiopathological roles of these changes and potential effects of long-term medical management on brain structure of PCOS.

  11. Development and validation of a psychometric scale for assessing PA chest image quality: A pilot study

    International Nuclear Information System (INIS)

    Mraity, H.; England, A.; Akhtar, I.; Aslam, A.; De Lange, R.; Momoniat, H.; Nicoulaz, S.; Ribeiro, A.; Mazhir, S.; Hogg, P.

    2014-01-01

    Purpose: To develop and validate a psychometric scale for assessing image quality perception for chest X-ray images. Methods: Bandura's theory was used to guide scale development. A review of the literature was undertaken to identify items/factors which could be used to evaluate image quality using a perceptual approach. A draft scale was then created (22 items) and presented to a focus group (student and qualified radiographers). Within the focus group the draft scale was discussed and modified. A series of seven postero-anterior chest images were generated using a phantom with a range of image qualities. Image quality perception was confirmed for the seven images using signal-to-noise ratio (SNR 17.2–36.5). Participants (student and qualified radiographers and radiology trainees) were then invited to independently score each of the seven images using the draft image quality perception scale. Cronbach alpha was used to test interval reliability. Results: Fifty three participants used the scale to grade image quality perception on each of the seven images. Aggregated mean scale score increased with increasing SNR from 42.1 to 87.7 (r = 0.98, P < 0.001). For each of the 22 individual scale items there was clear differentiation of low, mid and high quality images. A Cronbach alpha coefficient of >0.7 was obtained across each of the seven images. Conclusion: This study represents the first development of a chest image quality perception scale based on Bandura's theory. There was excellent correlation between the image quality perception scores derived using the scale and the SNR. Further research will involve a more detailed item and factor analysis

  12. Mapping Gray Matter Development: Implications for Typical Development and Vulnerability to Psychopathology

    Science.gov (United States)

    Gogtay, Nitin; Thompson, Paul M.

    2010-01-01

    Recent studies with brain magnetic resonance imaging (MRI) have scanned large numbers of children and adolescents repeatedly over time, as their brains develop, tracking volumetric changes in gray and white matter in remarkable detail. Focusing on gray matter changes specifically, here we explain how earlier studies using lobar volumes of specific…

  13. Regional Gray Matter Volume Deficits in Adolescents with First-Episode Psychosis

    Science.gov (United States)

    Janssen, Joost; Parellada, Mara; Moreno, Dolores; Graell, Montserrat; Fraguas, David; Zabala, Arantzazu; Vazquez, Veronica Garcia; Desco, Manuel; Arango, Celso

    2008-01-01

    The regional gray matter volumes of adolescents with first-episode psychosis are compared with those of a control group. Magnetic resonance imaging was conducted on 70 patients with early onset FEP and on 51 individuals without FEP. Findings revealed that volume deficits in the left medial frontal gray matter were common in individuals with…

  14. Image Correlation Pattern Optimization for Micro-Scale In-Situ Strain Measurements

    Science.gov (United States)

    Bomarito, G. F.; Hochhalter, J. D.; Cannon, A. H.

    2016-01-01

    The accuracy and precision of digital image correlation (DIC) is a function of three primary ingredients: image acquisition, image analysis, and the subject of the image. Development of the first two (i.e. image acquisition techniques and image correlation algorithms) has led to widespread use of DIC; however, fewer developments have been focused on the third ingredient. Typically, subjects of DIC images are mechanical specimens with either a natural surface pattern or a pattern applied to the surface. Research in the area of DIC patterns has primarily been aimed at identifying which surface patterns are best suited for DIC, by comparing patterns to each other. Because the easiest and most widespread methods of applying patterns have a high degree of randomness associated with them (e.g., airbrush, spray paint, particle decoration, etc.), less effort has been spent on exact construction of ideal patterns. With the development of patterning techniques such as microstamping and lithography, patterns can be applied to a specimen pixel by pixel from a patterned image. In these cases, especially because the patterns are reused many times, an optimal pattern is sought such that error introduced into DIC from the pattern is minimized. DIC consists of tracking the motion of an array of nodes from a reference image to a deformed image. Every pixel in the images has an associated intensity (grayscale) value, with discretization depending on the bit depth of the image. Because individual pixel matching by intensity value yields a non-unique scale-dependent problem, subsets around each node are used for identification. A correlation criteria is used to find the best match of a particular subset of a reference image within a deformed image. The reader is referred to references for enumerations of typical correlation criteria. As illustrated by Schreier and Sutton and Lu and Cary systematic errors can be introduced by representing the underlying deformation with under

  15. Computed gray levels in multislice and cone-beam computed tomography.

    Science.gov (United States)

    Azeredo, Fabiane; de Menezes, Luciane Macedo; Enciso, Reyes; Weissheimer, Andre; de Oliveira, Rogério Belle

    2013-07-01

    Gray level is the range of shades of gray in the pixels, representing the x-ray attenuation coefficient that allows for tissue density assessments in computed tomography (CT). An in-vitro study was performed to investigate the relationship between computed gray levels in 3 cone-beam CT (CBCT) scanners and 1 multislice spiral CT device using 5 software programs. Six materials (air, water, wax, acrylic, plaster, and gutta-percha) were scanned with the CBCT and CT scanners, and the computed gray levels for each material at predetermined points were measured with OsiriX Medical Imaging software (Geneva, Switzerland), OnDemand3D (CyberMed International, Seoul, Korea), E-Film (Merge Healthcare, Milwaukee, Wis), Dolphin Imaging (Dolphin Imaging & Management Solutions, Chatsworth, Calif), and InVivo Dental Software (Anatomage, San Jose, Calif). The repeatability of these measurements was calculated with intraclass correlation coefficients, and the gray levels were averaged to represent each material. Repeated analysis of variance tests were used to assess the differences in gray levels among scanners and materials. There were no differences in mean gray levels with the different software programs. There were significant differences in gray levels between scanners for each material evaluated (P <0.001). The software programs were reliable and had no influence on the CT and CBCT gray level measurements. However, the gray levels might have discrepancies when different CT and CBCT scanners are used. Therefore, caution is essential when interpreting or evaluating CBCT images because of the significant differences in gray levels between different CBCT scanners, and between CBCT and CT values. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION

    OpenAIRE

    Kanika Kapoor and Shaveta Arora

    2015-01-01

    Histogram equalization is a nonlinear technique for adjusting the contrast of an image using its histogram. It increases the brightness of a gray scale image which is different from the mean brightness of the original image. There are various types of Histogram equalization techniques like Histogram Equalization, Contrast Limited Adaptive Histogram Equalization, Brightness Preserving Bi Histogram Equalization, Dualistic Sub Image Histogram Equalization, Minimum Mean Brightness Error Bi Histog...

  17. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.

    Science.gov (United States)

    Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di

    2018-03-06

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.

  18. Image-Based Fine-Scale Infrastructure Monitoring

    Science.gov (United States)

    Detchev, Ivan Denislavov

    Monitoring the physical health of civil infrastructure systems is an important task that must be performed frequently in order to ensure their serviceability and sustainability. Additionally, laboratory experiments where individual system components are tested on the fine-scale level provide essential information during the structural design process. This type of inspection, i.e., measurements of deflections and/or cracks, has traditionally been performed with instrumentation that requires access to, or contact with, the structural element being tested; performs deformation measurements in only one dimension or direction; and/or provides no permanent visual record. To avoid the downsides of such instrumentation, this dissertation proposes a remote sensing approach based on a photogrammetric system capable of three-dimensional reconstruction. The proposed system is low-cost, consists of off-the-shelf components, and is capable of reconstructing objects or surfaces with homogeneous texture. The scientific contributions of this research work address the drawbacks in currently existing literature. Methods for in-situ multi-camera system calibration and system stability analysis are proposed in addition to methods for deflection/displacement monitoring, and crack detection and characterization in three dimensions. The mathematical model for the system calibration is based on a single or multiple reference camera(s) and built-in relative orientation constraints where the interior orientation and the mounting parameters for all cameras are explicitly estimated. The methods for system stability analysis can be used to comprehensively check for the cumulative impact of any changes in the system parameters. They also provide a quantitative measure of this impact on the reconstruction process in terms of image space units. Deflection/displacement monitoring of dynamic surfaces in three dimensions is achieved with the system by performing an innovative sinusoidal fitting

  19. Neighborhood Discriminant Hashing for Large-Scale Image Retrieval.

    Science.gov (United States)

    Tang, Jinhui; Li, Zechao; Wang, Meng; Zhao, Ruizhen

    2015-09-01

    With the proliferation of large-scale community-contributed images, hashing-based approximate nearest neighbor search in huge databases has aroused considerable interest from the fields of computer vision and multimedia in recent years because of its computational and memory efficiency. In this paper, we propose a novel hashing method named neighborhood discriminant hashing (NDH) (for short) to implement approximate similarity search. Different from the previous work, we propose to learn a discriminant hashing function by exploiting local discriminative information, i.e., the labels of a sample can be inherited from the neighbor samples it selects. The hashing function is expected to be orthogonal to avoid redundancy in the learned hashing bits as much as possible, while an information theoretic regularization is jointly exploited using maximum entropy principle. As a consequence, the learned hashing function is compact and nonredundant among bits, while each bit is highly informative. Extensive experiments are carried out on four publicly available data sets and the comparison results demonstrate the outperforming performance of the proposed NDH method over state-of-the-art hashing techniques.

  20. The Picture of Dorian Gray

    NARCIS (Netherlands)

    Wilde, Oscar

    2005-01-01

    On its first publication The Picture of Dorian Gray was regarded as dangerously modern in its depiction of fin-de-sicle decadence. In this updated version of the Faust story, the tempter is Lord Henry Wotton, who lives selfishly for amoral pleasure; Dorian's good angel is the portrait painter Basil

  1. Paulette Gray, Ph.D.

    Science.gov (United States)

    Paulette S. Gray, Ph.D. is the Director for the Division of Extramural Activities (DEA). As the director of the division, she is responsible for the overall scientific, fiscal, and administrative management of the division, including broad strategic planning, development, implementation, and evaluation.

  2. Tsenseerimata Dorian Gray? / Udo Uibo

    Index Scriptorium Estoniae

    Uibo, Udo, 1956-

    2011-01-01

    Harvardi ülikooli kirjastus üllitas 2011. a. kevadel Oscar Wilde'i ainsaks jäänud romaani "Dorian Gray portree" esialgse versiooni, mis on varustatud toimetaja Nicholas Frankeli põhjalike kommentaaridega ja kus eessõna manifesteerib jõuliselt autori esteetilisi vaateid

  3. Longitudinal Study of Gray Matter Changes in Parkinson Disease.

    Science.gov (United States)

    Jia, X; Liang, P; Li, Y; Shi, L; Wang, D; Li, K

    2015-12-01

    The pathology of Parkinson disease leads to morphological brain volume changes. So far, the progressive gray matter volume change across time specific to patients with Parkinson disease compared controls remains unclear. Our aim was to investigate the pattern of gray matter changes in patients with Parkinson disease and to explore the progressive gray matter volume change specific to patients with Parkinson disease with disease progression by using voxel-based morphometry analysis. Longitudinal cognitive assessment and structural MR imaging of 89 patients with Parkinson disease (62 men) and 55 healthy controls (33 men) were from the Parkinson's Progression Markers Initiative data base, including the initial baseline and 12-month follow-up data. Two-way analysis of covariance was performed with covariates of age, sex, years of education, imaging data from multiple centers, and total intracranial volume by using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra tool from SPM8 software. Gray matter volume changes for patients with Parkinson disease were detected with decreased gray matter volume in the frontotemporoparietal areas and the bilateral caudate, with increased gray matter volume in the bilateral limbic/paralimbic areas, medial globus pallidus/putamen, and the right occipital cortex compared with healthy controls. Progressive gray matter volume decrease in the bilateral caudate was found for both patients with Parkinson disease and healthy controls, and this caudate volume was positively associated with cognitive ability for both groups. The progressive gray matter volume increase specific to the patients with Parkinson disease was identified close to the left ventral lateral nucleus of thalamus, and a positive relationship was found between the thalamic volume and the tremor scores in a subgroup with tremor-dominant patients with Parkinson disease. The observed progressive changes in gray matter volume in Parkinson disease may provide

  4. Evaluation of Subependymal Gray Matter Heterotopias on Fetal MRI.

    Science.gov (United States)

    Nagaraj, U D; Peiro, J L; Bierbrauer, K S; Kline-Fath, B M

    2016-04-01

    Subependymal grey matter heterotopias are seen in a high proportion of children with Chiari II malformation and are potentially clinically relevant. However, despite its growing use, there is little in the literature describing its detection on fetal MRI. Our aim was to evaluate the accuracy in diagnosing subependymal gray matter heterotopias in fetuses with spinal dysraphism on fetal MR imaging. This study is a retrospective analysis of 203 fetal MRIs performed at a single institution for spinal dysraphism during a 10-year period. Corresponding obstetric sonography, postnatal imaging, and clinical/operative reports were reviewed. Of the fetal MRIs reviewed, 95 fetuses were included in our analysis; 23.2% (22/95) were suspected of having subependymal gray matter heterotopias on fetal MR imaging prospectively. However, only 50% (11/22) of these cases were confirmed on postnatal brain MR imaging. On postnatal brain MR imaging, 28.4% (27/95) demonstrated imaging findings consistent with subependymal gray matter heterotopia. Only 40.7% (11/27) of these cases were prospectively diagnosed on fetal MR imaging. Fetal MR imaging is limited in its ability to identify subependymal gray matter heterotopias in fetuses with spinal dysraphism. It is believed that this limitation relates to a combination of factors, including artifacts from fetal motion, the very small size of fetal neuroanatomy, differences in imaging techniques, and, possibly, irregularity related to denudation of the ependyma/subependyma in the presence of spinal dysraphism and/or stretching of the germinal matrix in ventriculomegaly. © 2016 by American Journal of Neuroradiology.

  5. GRAY CNVUFAC, Black-Body Radiation View Factors with Self-Shadowing

    International Nuclear Information System (INIS)

    Wong, R.L.

    1991-01-01

    Description of program or function: CNVUFAC, the General Dynamics heat-transfer radiation view program, was adapted for use on the LLNL computer system. The input and output were modified, and a node incrementing logic added for compatibility with TRUMP (NESC 771) thermal analyzer and related codes. The program performs the multiple integration necessary to evaluate the geometric black-body radiation node to node view factors. CNVUFAC uses an elemental area summation scheme to evaluate the multiple integrals. The program permits shadowing and self-shadowing. The basic configuration shapes that can be considered are cylinders, cones, spheres, ellipsoids, flat plates, disks, toroids, and polynomials of revolution. Portions of these shapes can also be considered. Card-image output containing node number and view factor information is generated for input to GRAY, a related code. GRAY performs the matrix manipulations necessary to convert black-body radiation heat-transfer view factors to gray-body view factors as required by thermal analyzer codes. The black-body view factors contain only geometric relationships. GRAY allows the effects of multiple gray-body reflections to be included. The resulting effective gray-body view factors can then be used with the corresponding fourth-power temperature differences to obtain the net radiative heat flux. GRAY accepts a matrix input or the card-image output generated by CNVUFAC. The resulting card-image GRAY output is in a form usable by TRUMP

  6. Efficient 2-D DCT Computation from an Image Representation Point of View

    OpenAIRE

    Papakostas, G.A.; Koulouriotis, D.E.; Karakasis, E.G.

    2009-01-01

    A novel methodology that ensures the computation of 2-D DCT coefficients in gray-scale images as well as in binary ones, with high computation rates, was presented in the previous sections. Through a new image representation scheme, called ISR (Image Slice Representation) the 2-D DCT coefficients can be computed in significantly reduced time, with the same accuracy.

  7. Alexithymia is related to differences in gray matter volume: a voxel-based morphometry study.

    Science.gov (United States)

    Ihme, Klas; Dannlowski, Udo; Lichev, Vladimir; Stuhrmann, Anja; Grotegerd, Dominik; Rosenberg, Nicole; Kugel, Harald; Heindel, Walter; Arolt, Volker; Kersting, Anette; Suslow, Thomas

    2013-01-23

    Alexithymia has been characterized as the inability to identify and describe feelings. Functional imaging studies have revealed that alexithymia is linked to reactivity changes in emotion- and face-processing-relevant brain areas. In this respect, anterior cingulate cortex (ACC), amygdala, anterior insula and fusiform gyrus (FFG) have been consistently reported. However, it remains to be clarified whether alexithymia is also associated with structural differences. Voxel-based morphometry on T1-weighted magnetic resonance images was used to investigate gray matter volume in 17 high alexithymics (HA) and 17 gender-matched low alexithymics (LA), which were selected from a sample of 161 healthy volunteers on basis of the 20-item Toronto Alexithymia Scale. Data were analyzed as statistic parametric maps for the comparisons LA>HA and HA>LA in a priori determined regions of interests (ROIs), i.e., ACC, amygdala, anterior insula and FFG. Moreover, an exploratory whole brain analysis was accomplished. For the contrast LA>HA, significant clusters were detected in the ACC, left amygdala and left anterior insula. Additionally, the whole brain analysis revealed volume differences in the left middle temporal gyrus. No significant differences were found for the comparison HA>LA. Our findings suggest that high compared to low alexithymics show less gray matter volume in several emotion-relevant brain areas. These structural differences might contribute to the functional alterations found in previous imaging studies in alexithymia. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Interpretations of NMR images

    International Nuclear Information System (INIS)

    Shi, J.Z.; McFarland, W.D.; Chen, S.S.; Sadhu, V.K.

    1986-01-01

    Two color display schemes are generally considered in medical images: pseudo-color and color composite. Psuedo-color technique maps the intensity means of a single monochrome image into a three dimensional color space, the gray level is thus replaced by the assigned color. Such a psuedo-color assignment is somewhat arbitrary but may be advantageous if the monochrome image is composed of simple intensity patterns. A good example of psuedo-color application is in nuclear medicine: The change of gray levels can be simply determined and the isocounts from two regions with different surroundings can be readily recognized. However, the use of psuedo-color in CT or MR imaging is controversial because it does not give additional information and may exaggerate insignificant gray scale differences. The color composite technique maps three parametric image data into a three dimensional color space, and thus three monochrome images are merged to form a single color image. The color composite technique increases the number of ways information can be displayed and provides both quantitative and qualitative data about the object or event represented. This paper describes the application of color composite in NMR images

  9. Large Scale Metric Learning for Distance-Based Image Classification on Open Ended Data Sets

    NARCIS (Netherlands)

    Mensink, T.; Verbeek, J.; Perronnin, F.; Csurka, G.; Farinella, G.M.; Battiato, S.; Cipolla, R,

    2013-01-01

    Many real-life large-scale datasets are open-ended and dynamic: new images are continuously added to existing classes, new classes appear over time, and the semantics of existing classes might evolve too. Therefore, we study large-scale image classification methods that can incorporate new classes

  10. Multi-scale learning based segmentation of glands in digital colonrectal pathology images.

    Science.gov (United States)

    Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen

    2016-02-01

    Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

  11. Detecting content adaptive scaling of images for forensic applications

    Science.gov (United States)

    Fillion, Claude; Sharma, Gaurav

    2010-01-01

    Content-aware resizing methods have recently been developed, among which, seam-carving has achieved the most widespread use. Seam-carving's versatility enables deliberate object removal and benign image resizing, in which perceptually important content is preserved. Both types of modifications compromise the utility and validity of the modified images as evidence in legal and journalistic applications. It is therefore desirable that image forensic techniques detect the presence of seam-carving. In this paper we address detection of seam-carving for forensic purposes. As in other forensic applications, we pose the problem of seam-carving detection as the problem of classifying a test image in either of two classes: a) seam-carved or b) non-seam-carved. We adopt a pattern recognition approach in which a set of features is extracted from the test image and then a Support Vector Machine based classifier, trained over a set of images, is utilized to estimate which of the two classes the test image lies in. Based on our study of the seam-carving algorithm, we propose a set of intuitively motivated features for the detection of seam-carving. Our methodology for detection of seam-carving is then evaluated over a test database of images. We demonstrate that the proposed method provides the capability for detecting seam-carving with high accuracy. For images which have been reduced 30% by benign seam-carving, our method provides a classification accuracy of 91%.

  12. Gray Code for Cayley Permutations

    Directory of Open Access Journals (Sweden)

    J.-L. Baril

    2003-10-01

    Full Text Available A length-n Cayley permutation p of a total ordered set S is a length-n sequence of elements from S, subject to the condition that if an element x appears in p then all elements y < x also appear in p . In this paper, we give a Gray code list for the set of length-n Cayley permutations. Two successive permutations in this list differ at most in two positions.

  13. Research of the effectiveness of parallel multithreaded realizations of interpolation methods for scaling raster images

    Science.gov (United States)

    Vnukov, A. A.; Shershnev, M. B.

    2018-01-01

    The aim of this work is the software implementation of three image scaling algorithms using parallel computations, as well as the development of an application with a graphical user interface for the Windows operating system to demonstrate the operation of algorithms and to study the relationship between system performance, algorithm execution time and the degree of parallelization of computations. Three methods of interpolation were studied, formalized and adapted to scale images. The result of the work is a program for scaling images by different methods. Comparison of the quality of scaling by different methods is given.

  14. A REGION-BASED MULTI-SCALE APPROACH FOR OBJECT-BASED IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    T. Kavzoglu

    2016-06-01

    Full Text Available Within the last two decades, object-based image analysis (OBIA considering objects (i.e. groups of pixels instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient. Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.

  15. Multi-scale Adaptive Gain Control of IR Images

    NARCIS (Netherlands)

    Schutte, K.

    1997-01-01

    IR imagery tends to have a higher dynamic range then typical display devices such as a CRT. Global methods such as stretching and histogram equalization improve the visibility of many images, but some information in the images stays hidden for a human operator. This paper reports about the

  16. Conservative image transformations with restoration and scale-space properties

    NARCIS (Netherlands)

    Weickert, J.A.; Haar Romenij, ter B.M.; Viergever, M.A.; Delogne, P.

    1996-01-01

    Many image processing applications require to solve problems such as denoising with edge enhancement, preprocessing for segmentation, or the completion of interrupted lines. This may be accomplished by applying a suitable nonlinear anisotropic diffusion process to the image. Its diffusion tensor is

  17. Effect of image scaling and segmentation in digital rock characterisation

    Science.gov (United States)

    Jones, B. D.; Feng, Y. T.

    2016-04-01

    Digital material characterisation from microstructural geometry is an emerging field in computer simulation. For permeability characterisation, a variety of studies exist where the lattice Boltzmann method (LBM) has been used in conjunction with computed tomography (CT) imaging to simulate fluid flow through microscopic rock pores. While these previous works show that the technique is applicable, the use of binary image segmentation and the bounceback boundary condition results in a loss of grain surface definition when the modelled geometry is compared to the original CT image. We apply the immersed moving boundary (IMB) condition of Noble and Torczynski as a partial bounceback boundary condition which may be used to better represent the geometric definition provided by a CT image. The IMB condition is validated against published work on idealised porous geometries in both 2D and 3D. Following this, greyscale image segmentation is applied to a CT image of Diemelstadt sandstone. By varying the mapping of CT voxel densities to lattice sites, it is shown that binary image segmentation may underestimate the true permeability of the sample. A CUDA-C-based code, LBM-C, was developed specifically for this work and leverages GPU hardware in order to carry out computations.

  18. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.

    Science.gov (United States)

    St-Arnaud, Karl; Aubertin, Kelly; Strupler, Mathias; Madore, Wendy-Julie; Grosset, Andrée-Anne; Petrecca, Kevin; Trudel, Dominique; Leblond, Frédéric

    2018-01-01

    Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm 2 and a spectral resolution of 6 cm -1 over

  19. Second order statistical analysis of US image texture

    International Nuclear Information System (INIS)

    Tanzi, F.; Novario, R.

    1999-01-01

    The study reports the sonographic image texture of the neonatal heart in different stages of development by calculating numerical parameters extracted from the gray scale co-occurrence matrix. To show pixel values differences and enhance texture structure, images were equalized and then the gray level range was reduced to 16 to allow sufficiently high occupancy frequency of the co-occurrence matrix. Differences are so little significant that they may be due to different factors affecting image texture and the variability introduced by manual ROI positioning; therefore no definitive conclusions can be drawn as to considering this kind of analysis capable of discriminating different stages of myocardial development [it

  20. Classification of high-resolution remote sensing images based on multi-scale superposition

    Science.gov (United States)

    Wang, Jinliang; Gao, Wenjie; Liu, Guangjie

    2017-07-01

    Landscape structures and process on different scale show different characteristics. In the study of specific target landmarks, the most appropriate scale for images can be attained by scale conversion, which improves the accuracy and efficiency of feature identification and classification. In this paper, the authors carried out experiments on multi-scale classification by taking the Shangri-la area in the north-western Yunnan province as the research area and the images from SPOT5 HRG and GF-1 Satellite as date sources. Firstly, the authors upscaled the two images by cubic convolution, and calculated the optimal scale for different objects on the earth shown in images by variation functions. Then the authors conducted multi-scale superposition classification on it by Maximum Likelyhood, and evaluated the classification accuracy. The results indicates that: (1) for most of the object on the earth, the optimal scale appears in the bigger scale instead of the original one. To be specific, water has the biggest optimal scale, i.e. around 25-30m; farmland, grassland, brushwood, roads, settlement places and woodland follows with 20-24m. The optimal scale for shades and flood land is basically as the same as the original one, i.e. 8m and 10m respectively. (2) Regarding the classification of the multi-scale superposed images, the overall accuracy of the ones from SPOT5 HRG and GF-1 Satellite is 12.84% and 14.76% higher than that of the original multi-spectral images, respectively, and Kappa coefficient is 0.1306 and 0.1419 higher, respectively. Hence, the multi-scale superposition classification which was applied in the research area can enhance the classification accuracy of remote sensing images .

  1. Changes in the white-gray matter density difference in computed tomography associated with maturation

    International Nuclear Information System (INIS)

    Tsuchiya, Setsuko; Maruyama, Hiroshi; Maruyama, Kazuko

    1980-01-01

    The attenuation of the x-ray beam in infantile brain tissue is markedly lower than in adults, so the CT image in infants, particularly in the newborn, seems to indicate demyelinating diseases. Therefore, the evaluation of nonpathological scans of infants and adults was performed in order to establish baseline numerical data on white and gray matter differentiation associated with maturation. One hundred and nine normal cases with no motion artifacts were selected. The age distribution was from 39 weeks to 40 years, as shown in Fig. 1. The Hitachi CT-H 250 tomograph was used for all the patient scans. The x-ray tube was operated at 120 kV and 30 mA. The thickness of each slice was 10 mm. The patients were scanned parallel with the canthomeatal line. The CT numbers are displayed on the EMI scale, in which water is zero and bone is +500. The mean CT numbers and the standard deviation were calculated by means of a computer on a horizontal plane through the pineal body; the following regions were selected for computation: White matter: preventricular frontal area. 44 mm 2 (36 pixels). Gray matter: head of the caudate nucleus and the thalamus. 24 mm 2 (20 pixels). The mean CT number for white matter was 13.5 +- 0.5 in the newborn and 16.8 +- 0.4 in adults. These numbers increased very rapidly during the 2nd month after birth and reached the adult value by 13 years. On the other hand, the mean CT number for gray matter was 15.6 +- 0.6 in the newborn and 19.7 +- 0.4 in adults. These numbers increased only gradually after birth and reached maximum value at 20 years, These results are probably due to a decrease in the water content per unit of volume and an increase in brain solids (protein, RNA and myelin) rather than to a decrease in the extracellular space associated with maturation. The difference between the average white and gray value was also studied. The white-gray difference was lowest (1.6 units) at 2 months and highest (2.9 units) in adults. (author)

  2. An alternative to scale-space representation for extracting local features in image recognition

    DEFF Research Database (Denmark)

    Andersen, Hans Jørgen; Nguyen, Phuong Giang

    2012-01-01

    In image recognition, the common approach for extracting local features using a scale-space representation has usually three main steps; first interest points are extracted at different scales, next from a patch around each interest point the rotation is calculated with corresponding orientation...... and compensation, and finally a descriptor is computed for the derived patch (i.e. feature of the patch). To avoid the memory and computational intensive process of constructing the scale-space, we use a method where no scale-space is required This is done by dividing the given image into a number of triangles...... with sizes dependent on the content of the image, at the location of each triangle. In this paper, we will demonstrate that by rotation of the interest regions at the triangles it is possible in grey scale images to achieve a recognition precision comparable with that of MOPS. The test of the proposed method...

  3. Correlation between white matter damage and gray matter lesions in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Xue-mei Han

    2017-01-01

    Full Text Available We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe (superior frontal, middle frontal, precentral, and orbital gyri, right parietal lobe (postcentral and inferior parietal gyri, right temporal lobe (caudate nucleus, right occipital lobe (middle occipital gyrus, right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.

  4. Large-scale retrieval for medical image analytics: A comprehensive review.

    Science.gov (United States)

    Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting

    2018-01-01

    Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Image Mosaic Techniques OptimizationUsing Wavelet

    Institute of Scientific and Technical Information of China (English)

    ZHOUAn-qi; CUILi

    2014-01-01

    This essay concentrates on two key procedures of image mosaic——image registration and imagefusion.Becauseof the character of geometric transformation invariance of edge points, wecalculate the angle difference of the direction vector ofedge points in different images anddraw an angle difference histogramto adjust the rotationproblem. Through this way, algorithm based on gray information is expandedandcan be used in images withdisplacementand rotation. Inthe term of image fusion, wavelet multi-scale analysis is used to fuse spliced images. In order to choose the best method of imagefusion,weevaluate the results of different methods of image fusion by cross entropy.

  6. Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues.

    Directory of Open Access Journals (Sweden)

    Muhammad Attique

    Full Text Available Characterization of tissues like brain by using magnetic resonance (MR images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii a segmentation method (both hard and soft segmentation to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM, white matter (WM, and cerebrospinal fluid (CSF using prior anatomical knowledge. Results have been successfully validated on human T2-weighted (T2 brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described.

  7. Hybrid of two-photon microscopy and optical multimodality imaging for multi-scale imaging of small animals

    Science.gov (United States)

    Li, Tianmeng; Hui, Hui; Ma, He; Yang, Xin; Tian, Jie

    2018-02-01

    Non-invasive imaging technologies, such as magnetic resonance imaging (MRI) and optical multimodality imaging methods, are commonly used for diagnosing and supervising the development of inflammatory bowel disease (IBD). These in vivo imaging methods can provide morphology changes information of IBD in macro-scale. However, it is difficult to investigate the intestinal wall in molecular and cellular level. State-of-art light-sheet and two-photon microscopy have the ability to acquire the changes for IBD in micro-scale. The aim of this work is to evaluate the size of the enterocoel and the thickness of colon wall using both MRI for in vivo imaging, and light-sheet and two-photon microscope for in vitro imaging. C57BL/6 mice were received 3.5% Dextran sodium sulfate (DSS) in the drinking water for 5 days to build IBD model. Mice were imaged with MRI on days 0, 6 to observe colitis progression. After MRI imaging, the mice were sacrificed to take colons for tissue clearing. Then, light-sheet and two-photon microscopies are used for in vitro imaging of the cleared samples. The experimental group showed symptoms of bloody stools, sluggishness and weight loss. It showed that the colon wall was thicker while the enterocoel was narrower compare to control group. The more details are observed using light-sheet and two-photon microscope. It is demonstrated that hybrid of MRI in macro-scale and light-sheet and two-photon microscopy in micro-scale imaging is feasible for colon inflammation diagnosing and supervising.

  8. The Children's Body Image Scale: reliability and use with international standards for body mass index.

    Science.gov (United States)

    Truby, Helen; Paxton, Susan J

    2008-03-01

    To test the reliability of the Children's Body Image Scale (CBIS) and assess its usefulness in the context of new body size charts for children. Participants were 281 primary schoolchildren with 50% being retested after 3 weeks. The CBIS figure scale was compared with a range of international body mass index (BMI) reference standards. Children had a high degree of body image dissatisfaction. The test-retest reliability of the CBIS was supported. The CBIS is a useful tool for assessing body image in children with sound scale properties. It can also be used to identify the body size of children, which lies outside the healthy weight range of BMI.

  9. Image quality at synthetic brain magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi; Cho, Seung Hyun; Kim, Won Hwa; Kim, Hye Jung [Kyungpook National University Hospital, Department of Radiology, Daegu (Korea, Republic of); Choi, Young Hun; Cheon, Jung-Eun; Kim, In-One [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, Seoul (Korea, Republic of); Cho, Hyun-Hae [Ewha Womans University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun-Kyoung [Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of); Park, Sook-Hyun [Kyungpook National University Hospital, Department of Pediatrics, Daegu (Korea, Republic of); Hwang, Moon Jung [GE Healthcare, MR Applications and Workflow, Seoul (Korea, Republic of)

    2017-11-15

    The clinical application of the multi-echo, multi-delay technique of synthetic magnetic resonance imaging (MRI) generates multiple sequences in a single acquisition but has mainly been used in adults. To evaluate the image quality of synthetic brain MR in children compared with that of conventional images. Twenty-nine children (median age: 6 years, range: 0-16 years) underwent synthetic and conventional imaging. Synthetic (T2-weighted, T1-weighted and fluid-attenuated inversion recovery [FLAIR]) images with settings matching those of the conventional images were generated. The overall image quality, gray/white matter differentiation, lesion conspicuity and image degradations were rated on a 5-point scale. The relative contrasts were assessed quantitatively and acquisition times for the two imaging techniques were compared. Synthetic images were inferior due to more pronounced image degradations; however, there were no significant differences for T1- and T2-weighted images in children <2 years old. The quality of T1- and T2-weighted images were within the diagnostically acceptable range. FLAIR images showed greatly reduced quality. Gray/white matter differentiation was comparable or better in synthetic T1- and T2-weighted images, but poorer in FLAIR images. There was no effect on lesion conspicuity. Synthetic images had equal or greater relative contrast. Acquisition time was approximately two-thirds of that for conventional sequences. Synthetic T1- and T2-weighted images were diagnostically acceptable, but synthetic FLAIR images were not. Lesion conspicuity and gray/white matter differentiation were comparable to conventional MRI. (orig.)

  10. Pharmacokinetic, medical imaging to the scale of DNA

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Medical imaging techniques and labelled compounds allow to follow simple molecules in their way through living organisms. The absorption of sugar, fatty acids, medicament substances by tissues can then be localized and quantified. A new imaging procedure has been developed to visualize the progress of DNA or RNA sequences in living organisms. This technique is based on tomography and the use of fluorine 18 as tracer. This isotope presents the advantages of emitting intense flux of positrons in a reduced time of 2 hours and of letting the oligonucleotide interact freely with patient's DNA sequences. This technique could be an efficient tool for new gene therapies. (A.C.)

  11. Interpretation of archaeological small-scale features in spectral images

    DEFF Research Database (Denmark)

    Grøn, Ole; Palmer, Susanna; Stylegar, Frans-Arne

    2011-01-01

    The paper's focus is the use of spectral images for the distinction of small archaeological anomalies on the basis of the authors work. Special attention is given to the ground-truthing perspective in the discussion of a number of cases from Norway. Different approaches to pattern-recognition are......The paper's focus is the use of spectral images for the distinction of small archaeological anomalies on the basis of the authors work. Special attention is given to the ground-truthing perspective in the discussion of a number of cases from Norway. Different approaches to pattern...

  12. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers

    Science.gov (United States)

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F.

    2015-01-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. PMID:22277302

  13. Microscopic imaging ellipsometry of submicron-scale bacterial cells

    African Journals Online (AJOL)

    MIE can detect very thin layers and measure their precise ... for future applications especially in the field of biological imaging since it ... a quarter-wave plate and rotates with the range of angles from 5º ... calibrated first by using a flat substrate like glass,. Si, or Au. .... more sensitive detection of the boundary of the structure ...

  14. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    Science.gov (United States)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  15. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    Science.gov (United States)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  16. Development of multi-dimensional body image scale for malaysian female adolescents.

    Science.gov (United States)

    Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.

  17. Adaptive Spot Detection With Optimal Scale Selection in Fluorescence Microscopy Images.

    Science.gov (United States)

    Basset, Antoine; Boulanger, Jérôme; Salamero, Jean; Bouthemy, Patrick; Kervrann, Charles

    2015-11-01

    Accurately detecting subcellular particles in fluorescence microscopy is of primary interest for further quantitative analysis such as counting, tracking, or classification. Our primary goal is to segment vesicles likely to share nearly the same size in fluorescence microscopy images. Our method termed adaptive thresholding of Laplacian of Gaussian (LoG) images with autoselected scale (ATLAS) automatically selects the optimal scale corresponding to the most frequent spot size in the image. Four criteria are proposed and compared to determine the optimal scale in a scale-space framework. Then, the segmentation stage amounts to thresholding the LoG of the intensity image. In contrast to other methods, the threshold is locally adapted given a probability of false alarm (PFA) specified by the user for the whole set of images to be processed. The local threshold is automatically derived from the PFA value and local image statistics estimated in a window whose size is not a critical parameter. We also propose a new data set for benchmarking, consisting of six collections of one hundred images each, which exploits backgrounds extracted from real microscopy images. We have carried out an extensive comparative evaluation on several data sets with ground-truth, which demonstrates that ATLAS outperforms existing methods. ATLAS does not need any fine parameter tuning and requires very low computation time. Convincing results are also reported on real total internal reflection fluorescence microscopy images.

  18. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-01-01

    structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination

  19. Clinical and Morphological Aspects of Gray Matter Heterotopia Type Developmental Malformations

    International Nuclear Information System (INIS)

    Zając-Mnich, Monika; Kostkiewicz, Agnieszka; Guz, Wiesław; Dziurzyńska-Białek, Ewa; Solińska, Anna; Stopa, Joanna; Kucharska-Miąsik, Iwona

    2014-01-01

    Gray matter heterotopia (GMH) is a malformation of the central nervous system characterized by interruption of normal neuroblasts migration between the 7 th and 16 th week of fetal development. The aim of the study was the analysis of clinical symptoms, prevalence rate and the most common concurrent central nervous system (CNS) developmental disorders as well as assessment of characteristic morphological changes of gray matter heterotopia in children hospitalized in our institution between the year 2001 and 2012. We performed a retrospective analysis of patients’ data who were hospitalized in our institution between the year 2001 and 2012. We assessed clinical data and imaging exams in children diagnosed with gray matter heterotopia confirmed in MRI (magnetic resonance imaging). GMH occurred in 26 children hospitalized in our institution between the year 2001 and 2012. Among children with gray matter heterotopia most common clinical symptoms were: epilepsy, intellectual disability and hemiparesis. The commonest location of heterotopic gray matter were fronto-parietal areas of brain parenchyma, mostly subependymal region. Gray matter heterotopia occurred with other developmental disorders of the central nervous system rather than solely and in most cases it was bilateral. Schizencephaly and abnormalities of the corpus callosum were the most often developmental disorders accompanying GMH. 1. Subependymal gray matter heterotopia was more common than subcortical GMH. Subependymal GMH showed tendency to localize in the region of the bodies of the lateral ventricles. The least common was laminar GMH. 2. Gray matter heterotopia occurred more often with other developmental disorders of the central nervous system rather than solely. The most frequent concurrent disorders of the central nervous system were: schizencephaly, developmental abnormalities of the corpus callosum, arachnoid cyst, abnormalities of the septum pellucidum and the fornix. 3. GMH foci were more often

  20. Examining the effect of psychopathic traits on gray matter volume in a community substance abuse sample.

    Science.gov (United States)

    Cope, Lora M; Shane, Matthew S; Segall, Judith M; Nyalakanti, Prashanth K; Stevens, Michael C; Pearlson, Godfrey D; Calhoun, Vince D; Kiehl, Kent A

    2012-11-30

    Psychopathy is believed to be associated with brain abnormalities in both paralimbic (i.e., orbitofrontal cortex, insula, temporal pole, parahippocampal gyrus, posterior cingulate) and limbic (i.e., amygdala, hippocampus, anterior cingulate) regions. Recent structural imaging studies in both community and prison samples are beginning to support this view. Sixty-six participants, recruited from community corrections centers, were administered the Hare psychopathy checklist-revised (PCL-R), and underwent magnetic resonance imaging (MRI). Voxel-based morphometry was used to test the hypothesis that psychopathic traits would be associated with gray matter reductions in limbic and paralimbic regions. Effects of lifetime drug and alcohol use on gray matter volume were covaried. Psychopathic traits were negatively associated with gray matter volumes in right insula and right hippocampus. Additionally, psychopathic traits were positively associated with gray matter volumes in bilateral orbital frontal cortex and right anterior cingulate. Exploratory regression analyses indicated that gray matter volumes within right hippocampus and left orbital frontal cortex combined to explain 21.8% of the variance in psychopathy scores. These results support the notion that psychopathic traits are associated with abnormal limbic and paralimbic gray matter volume. Furthermore, gray matter increases in areas shown to be functionally impaired suggest that the structure-function relationship may be more nuanced than previously thought. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Parallel implementation of Gray Level Co-occurrence Matrices and Haralick texture features on cell architecture

    NARCIS (Netherlands)

    Shahbahrami, A.; Pham, T.A.; Bertels, K.L.M.

    2011-01-01

    Texture features extraction algorithms are key functions in various image processing applications such as medical images, remote sensing, and content-based image retrieval. The most common way to extract texture features is the use of Gray Level Co-occurrence Matrices (GLCMs). The GLCM contains the

  2. Gray matter perfusion correlates with disease severity in ALS.

    Science.gov (United States)

    Rule, Randall R; Schuff, Norbert; Miller, Robert G; Weiner, Michael W

    2010-03-09

    The goal of this study is to determine if regional brain perfusion, as measured by arterial spin labeling (ASL) MRI, is correlated with clinical measures of amyotrophic lateral sclerosis (ALS) disease severity. The presence of such a relationship would indicate a possible role for ASL perfusion as a marker of disease severity and upper motor neuron involvement in ALS. Disease severity was assessed in 16 subjects with ALS (age 54 +/- 11) using the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) and the pulmonary function measure, forced vital capacity (FVC). Upper motor neuron involvement was assessed by testing rapid tapping of the fingers and feet. Magnetic resonance perfusion images were coregistered with structural T1-weighted MRI, corrected for partial volume effects using the structural images and normalized to a study-specific atlas. Correlations between perfusion and ALS disease severity were analyzed, using statistical parametric mapping, and including age as a factor. Analyses were adjusted for multiple clusters. ALS severity, as measured by the ALSFRS and FVC, was correlated with gray matter perfusion. This correlation was predominantly observed in the hemisphere contralateral to the more affected limbs. ALSFRS scores correlated with perfusion in the contralateral frontal and parietal lobe (p frontal lobe (p frontal lobe (p Upper motor neuron involvement, as measured by rapid finger tapping, correlated bilaterally with perfusion in the middle cingulate gyrus (p < 0.001). Amyotrophic lateral sclerosis (ALS) severity is correlated with brain perfusion as measured by arterial spin labeling (ASL) perfusion. This correlation appears to be independent of brain atrophy. ASL perfusion may be a useful tool for monitoring disease progression and assessing treatment effects in ALS.

  3. Large-Scale medical image analytics: Recent methodologies, applications and Future directions.

    Science.gov (United States)

    Zhang, Shaoting; Metaxas, Dimitris

    2016-10-01

    Despite the ever-increasing amount and complexity of annotated medical image data, the development of large-scale medical image analysis algorithms has not kept pace with the need for methods that bridge the semantic gap between images and diagnoses. The goal of this position paper is to discuss and explore innovative and large-scale data science techniques in medical image analytics, which will benefit clinical decision-making and facilitate efficient medical data management. Particularly, we advocate that the scale of image retrieval systems should be significantly increased at which interactive systems can be effective for knowledge discovery in potentially large databases of medical images. For clinical relevance, such systems should return results in real-time, incorporate expert feedback, and be able to cope with the size, quality, and variety of the medical images and their associated metadata for a particular domain. The design, development, and testing of the such framework can significantly impact interactive mining in medical image databases that are growing rapidly in size and complexity and enable novel methods of analysis at much larger scales in an efficient, integrated fashion. Copyright © 2016. Published by Elsevier B.V.

  4. Self-scaling minority carrier lifetime imaging using periodically modulated electroluminescence

    Science.gov (United States)

    Kropp, Timo; Berner, Marcel; Werner, Jürgen H.

    2017-11-01

    We present a straightforward self-scaling imaging technique to extract the effective minority carrier lifetime image of silicon solar cells using periodically modulated electroluminescence. This novel modulation technique overcomes main limiting factors linked to camera integration time. Our approach is based on comparing three luminescence images taken during current modulation. One image is taken while periodically injecting excess charge carriers with a pulsed current stimulation followed by an open-circuit luminescence decay. A second image with the same injection profile is taken while additionally extracting excess charge carriers at the falling edge, accelerating the luminescence decay. Both images are normalized to a steady-state image. The camera integration time is several orders of magnitude longer than the modulation period length, and no synchronization of image acquisition is needed. The intensity difference between both modulated images is used for determining a calibration factor to convert the steady-state image into the effective minority carrier lifetime image: Our modulation method enables carrier lifetime images completely independent of the image integration time. First carrier lifetime images show good agreement with data from time resolved electroluminescence.

  5. Use of a Cutaneous Body Image (CBI) scale to evaluate self perception of body image in acne vulgaris.

    Science.gov (United States)

    Amr, Mostafa; Kaliyadan, Feroze; Shams, Tarek

    2014-01-01

    Skin disorders such as acne, which have significant cosmetic implications, can affect the self-perception of cutaneous body image. There are many scales which measure self-perception of cutaneous body image. We evaluated the use of a simple Cutaneous Body Image (CBI) scale to assess self-perception of body image in a sample of young Arab patients affected with acne. A total of 70 patients with acne answered the CBI questionnaire. The CBI score was correlated with the severity of acne and acne scarring, gender, and history of retinoids use. There was no statistically significant correlation between CBI and the other parameters - gender, acne/acne scarring severity, and use of retinoids. Our study suggests that cutaneous body image perception in Arab patients with acne was not dependent on variables like gender and severity of acne or acne scarring. A simple CBI scale alone is not a sufficiently reliable tool to assess self-perception of body image in patients with acne vulgaris.

  6. Large-Scale Partial-Duplicate Image Retrieval and Its Applications

    Science.gov (United States)

    2016-04-23

    tree based image retrieval , a semantic-aware co-indexing algorithm is proposed to jointly embed two strong cues into the inverted indexes: 1) local...based image retrieval , a semantic-aware co-indexing algorithm is proposed to jointly embed two strong cues into the inverted indexes: 1) local...Distribution Unlimited UU UU UU UU 23-04-2016 23-Jan-2012 22-Jan-2016 Final Report: Large-Scale Partial-Duplicate Image Retrieval and Its Applications

  7. Large Scale Hierarchical K-Means Based Image Retrieval With MapReduce

    Science.gov (United States)

    2014-03-27

    flat vocabulary on MapReduce. In 2013, Moise and Shestakov [32, 40], have been researching large scale indexing and search with MapReduce. They...time will be greatly reduced, however image retrieval performance will almost certainly suffer. Moise and Shestakov ran tests with 100M images on 108...43–72, 2005. [32] Diana Moise , Denis Shestakov, Gylfi Gudmundsson, and Laurent Amsaleg. Indexing and searching 100m images with map-reduce. In

  8. A review of parallel computing for large-scale remote sensing image mosaicking

    OpenAIRE

    Chen, Lajiao; Ma, Yan; Liu, Peng; Wei, Jingbo; Jie, Wei; He, Jijun

    2015-01-01

    Interest in image mosaicking has been spurred by a wide variety of research and management needs. However, for large-scale applications, remote sensing image mosaicking usually requires significant computational capabilities. Several studies have attempted to apply parallel computing to improve image mosaicking algorithms and to speed up calculation process. The state of the art of this field has not yet been summarized, which is, however, essential for a better understanding and for further ...

  9. Web tools for large-scale 3D biological images and atlases

    Directory of Open Access Journals (Sweden)

    Husz Zsolt L

    2012-06-01

    Full Text Available Abstract Background Large-scale volumetric biomedical image data of three or more dimensions are a significant challenge for distributed browsing and visualisation. Many images now exceed 10GB which for most users is too large to handle in terms of computer RAM and network bandwidth. This is aggravated when users need to access tens or hundreds of such images from an archive. Here we solve the problem for 2D section views through archive data delivering compressed tiled images enabling users to browse through very-large volume data in the context of a standard web-browser. The system provides an interactive visualisation for grey-level and colour 3D images including multiple image layers and spatial-data overlay. Results The standard Internet Imaging Protocol (IIP has been extended to enable arbitrary 2D sectioning of 3D data as well a multi-layered images and indexed overlays. The extended protocol is termed IIP3D and we have implemented a matching server to deliver the protocol and a series of Ajax/Javascript client codes that will run in an Internet browser. We have tested the server software on a low-cost linux-based server for image volumes up to 135GB and 64 simultaneous users. The section views are delivered with response times independent of scale and orientation. The exemplar client provided multi-layer image views with user-controlled colour-filtering and overlays. Conclusions Interactive browsing of arbitrary sections through large biomedical-image volumes is made possible by use of an extended internet protocol and efficient server-based image tiling. The tools open the possibility of enabling fast access to large image archives without the requirement of whole image download and client computers with very large memory configurations. The system was demonstrated using a range of medical and biomedical image data extending up to 135GB for a single image volume.

  10. Large-scale imaging of retinal output activity

    CERN Document Server

    Litke, A M; Dabrowski, W; Grillo, A A; Grybos, P; Kachiguine, S; Rahman, M; Taylor, G

    2003-01-01

    A system is being developed to study how the retina processes, encodes and communicates information about the visual world to the brain. It will image the activity of retinal output neurons over a region of live retina approaching that used for significant neural computation in the visual cortex. A prototype system consisting of 61 microelectrodes, covering an area of 0.17 mm**2, is described, including some first results with monkey retina. The plans and status for a system with 512 microelectrodes, covering an area of 1.7 mm**2, are also given.

  11. Automatic Matching of Large Scale Images and Terrestrial LIDAR Based on App Synergy of Mobile Phone

    Science.gov (United States)

    Xia, G.; Hu, C.

    2018-04-01

    The digitalization of Cultural Heritage based on ground laser scanning technology has been widely applied. High-precision scanning and high-resolution photography of cultural relics are the main methods of data acquisition. The reconstruction with the complete point cloud and high-resolution image requires the matching of image and point cloud, the acquisition of the homonym feature points, the data registration, etc. However, the one-to-one correspondence between image and corresponding point cloud depends on inefficient manual search. The effective classify and management of a large number of image and the matching of large image and corresponding point cloud will be the focus of the research. In this paper, we propose automatic matching of large scale images and terrestrial LiDAR based on APP synergy of mobile phone. Firstly, we develop an APP based on Android, take pictures and record related information of classification. Secondly, all the images are automatically grouped with the recorded information. Thirdly, the matching algorithm is used to match the global and local image. According to the one-to-one correspondence between the global image and the point cloud reflection intensity image, the automatic matching of the image and its corresponding laser radar point cloud is realized. Finally, the mapping relationship between global image, local image and intensity image is established according to homonym feature point. So we can establish the data structure of the global image, the local image in the global image, the local image corresponding point cloud, and carry on the visualization management and query of image.

  12. "Mr. Database" : Jim Gray and the History of Database Technologies.

    Science.gov (United States)

    Hanwahr, Nils C

    2017-12-01

    Although the widespread use of the term "Big Data" is comparatively recent, it invokes a phenomenon in the developments of database technology with distinct historical contexts. The database engineer Jim Gray, known as "Mr. Database" in Silicon Valley before his disappearance at sea in 2007, was involved in many of the crucial developments since the 1970s that constitute the foundation of exceedingly large and distributed databases. Jim Gray was involved in the development of relational database systems based on the concepts of Edgar F. Codd at IBM in the 1970s before he went on to develop principles of Transaction Processing that enable the parallel and highly distributed performance of databases today. He was also involved in creating forums for discourse between academia and industry, which influenced industry performance standards as well as database research agendas. As a co-founder of the San Francisco branch of Microsoft Research, Gray increasingly turned toward scientific applications of database technologies, e. g. leading the TerraServer project, an online database of satellite images. Inspired by Vannevar Bush's idea of the memex, Gray laid out his vision of a Personal Memex as well as a World Memex, eventually postulating a new era of data-based scientific discovery termed "Fourth Paradigm Science". This article gives an overview of Gray's contributions to the development of database technology as well as his research agendas and shows that central notions of Big Data have been occupying database engineers for much longer than the actual term has been in use.

  13. The Effect of Illumination on Gray Color

    Science.gov (United States)

    Da Pos, Osvaldo; Baratella, Linda; Sperandio, Gabriele

    2010-01-01

    The present study explored the perceptual process of integration of luminance information in the production of the gray color of an object placed in an environment viewed from a window. The mean luminance of the object was varied for each mean luminance of the environment. Participants matched the gray color of the object with that of Munsell…

  14. Final Technical Report for SISGR: Ultrafast Molecular Scale Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hersam, Mark C. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Guest, Jeffrey R. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Guisinger, Nathan P. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Hla, Saw Wai [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Schatz, George C. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Seideman, Tamar [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Van Duyne, Richard P. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry

    2017-04-10

    The Northwestern-Argonne SISGR program utilized newly developed instrumentation and techniques including integrated ultra-high vacuum tip-enhanced Raman spectroscopy/scanning tunneling microscopy (UHV-TERS/STM) and surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS) to advance the spatial and temporal resolution of chemical imaging for the study of photoinduced dynamics of molecules on plasmonically active surfaces. An accompanying theory program addressed modeling of charge transfer processes using constrained density functional theory (DFT) in addition to modeling of SE-FSRS, thereby providing a detailed description of the excited state dynamics. This interdisciplinary and highly collaborative research resulted in 62 publications with ~ 48% of them being co-authored by multiple SISGR team members. A summary of the scientific accomplishments from this SISGR program is provided in this final technical report.

  15. Gray model prediction of the sea wall profile survey in the first process of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zang Deyan

    1998-01-01

    Based on gray system theory, the information about deformation observation of the first stage Qinshan nuclear power plant is analysed and predicted as well. The gray system theory is applied to engineering prediction and a large-scale building deformation observation. It is convenient to apply the model and it a has high degree of accuracy

  16. Brain gray matter structural network in myotonic dystrophy type 1.

    Directory of Open Access Journals (Sweden)

    Atsuhiko Sugiyama

    Full Text Available This study aimed to investigate abnormalities in structural covariance network constructed from gray matter volume in myotonic dystrophy type 1 (DM1 patients by using graph theoretical analysis for further clarification of the underlying mechanisms of central nervous system involvement. Twenty-eight DM1 patients (4 childhood onset, 10 juvenile onset, 14 adult onset, excluding three cases from 31 consecutive patients who underwent magnetic resonance imaging in a certain period, and 28 age- and sex- matched healthy control subjects were included in this study. The normalized gray matter images of both groups were subjected to voxel based morphometry (VBM and Graph Analysis Toolbox for graph theoretical analysis. VBM revealed extensive gray matter atrophy in DM1 patients, including cortical and subcortical structures. On graph theoretical analysis, there were no significant differences between DM1 and control groups in terms of the global measures of connectivity. Betweenness centrality was increased in several regions including the left fusiform gyrus, whereas it was decreased in the right striatum. The absence of significant differences between the groups in global network measurements on graph theoretical analysis is consistent with the fact that the general cognitive function is preserved in DM1 patients. In DM1 patients, increased connectivity in the left fusiform gyrus and decreased connectivity in the right striatum might be associated with impairment in face perception and theory of mind, and schizotypal-paranoid personality traits, respectively.

  17. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: A voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Peng Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Liu Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie Binbin, E-mail: niebb@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Li Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Shan Baoci, E-mail: shanbc@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Wang Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China)

    2011-11-15

    Purpose: To investigate cerebral and cerebellar gray matter abnormalities in patients with first-episode major depressive disorder (MDD). Materials and methods: We examined the structural difference in regional gray matter density (GMD) between 22 first-episode MDD patients and 30 age-, gender- and education-matched healthy controls by optimized voxel-based morphometry (VBM) based on magnetic resonance imaging. Results: Compared with healthy controls, MDD patients showed decreased GMD in the right medial and left lateral orbitofrontal cortex, right dorsolateral prefrontal cortex (DLPFC), bilateral temporal pole, right superior temporal gyrus, bilateral anterior insular cortex, left parahippocampal gyrus, and left cerebellum. In addition, in MDD patients, there was a negative correlation between GMD values of the right DLPFC and the score of the depression rating scale. Conclusions: Our findings provided additional support for the involvement of limbic-cortical circuits in the pathophysiology of MDD and preliminary evidence that a defect involving the cerebellum may also be implicated.

  18. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Peng Jing; Liu Jiangtao; Nie Binbin; Li Yang; Shan Baoci; Wang Gang; Li Kuncheng

    2011-01-01

    Purpose: To investigate cerebral and cerebellar gray matter abnormalities in patients with first-episode major depressive disorder (MDD). Materials and methods: We examined the structural difference in regional gray matter density (GMD) between 22 first-episode MDD patients and 30 age-, gender- and education-matched healthy controls by optimized voxel-based morphometry (VBM) based on magnetic resonance imaging. Results: Compared with healthy controls, MDD patients showed decreased GMD in the right medial and left lateral orbitofrontal cortex, right dorsolateral prefrontal cortex (DLPFC), bilateral temporal pole, right superior temporal gyrus, bilateral anterior insular cortex, left parahippocampal gyrus, and left cerebellum. In addition, in MDD patients, there was a negative correlation between GMD values of the right DLPFC and the score of the depression rating scale. Conclusions: Our findings provided additional support for the involvement of limbic-cortical circuits in the pathophysiology of MDD and preliminary evidence that a defect involving the cerebellum may also be implicated.

  19. MASTICATORY MUSCLE MYOSITIS IN A GRAY WOLF (CANIS LUPUS).

    Science.gov (United States)

    Kent, Marc; Glass, Eric N; Castro, Fernando A; Miller, Andrew D; de Lahunta, Alexander

    2017-03-01

    A 10-yr-old male, neutered gray wolf ( Canis lupus ) was presented for atrophy of the temporalis and masseter muscles. Clinical signs and magnetic resonance imaging were consistent with a myopathy. Positive serology for antibody titers directed against Type 2M myofibers, and the observation of a mixed mononuclear inflammatory cell infiltrate along with eosinophils and neutrophils within the temporalis muscle, were diagnostic for masticatory muscle myositis. Importantly, protozoal myositis was excluded based on other clinicopathologic data. The case highlights the potential for immune-mediated polymyositis in canids other than the domesticated dog ( Canis lupus familaris). Additionally, awareness of a diet in which raw meat is used should prompt a thorough investigation for an underlying infectious myositis in the gray wolf.

  20. Validity and reliability of the Multidimensional Body Image Scale in Malaysian university students.

    Science.gov (United States)

    Gan, W Y; Mohd, Nasir M T; Siti, Aishah H; Zalilah, M S

    2012-12-01

    This study aimed to evaluate the validity and reliability of the Multidimensional Body Image Scale (MBIS), a seven-factor, 62-item scale developed for Malaysian female adolescents. This scale was evaluated among male and female Malaysian university students. A total of 671 university students (52.2% women and 47.8% men) completed a self-administered questionnaire on MBIS, Eating Attitude Test-26, and Rosenberg Self-Esteem Scale. Their height and weight were measured. Results in confirmatory factor analysis showed that the 62-item MBIS reported poor fit to the data, xhi2/df = 4.126, p self-esteem. Also, this scale discriminated well between participants with and without disordered eating. The MBIS-46 demonstrated good reliability and validity for the evaluation of body image among university students. Further studies need to be conducted to confirm the validation results of the 46-item MBIS.

  1. Image recognition of shape defects in hot steel rolling

    NARCIS (Netherlands)

    Balmashnova, E.; Bruurmijn, L.C.M.; Dissanayake, R.; Duits, R.; Kampmeijer, L.; Noorden, van T.L.; Boon, M.A.A.

    2013-01-01

    A frequently occurring issue in hot rolling of steel is so-called tail pinching. Prominent features of a pinched tail are ripple-like defects and a pointed tail. In this report two algorithms are presented to detect those features accurately in 2D gray scale images of steel strips. The two ripple

  2. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness

    Science.gov (United States)

    Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier

    2017-01-01

    In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed

  3. High-resolution electron microscope image analysis approach for superconductor YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Xu, J.; Lu, F.; Jia, C.; Hua, Z.

    1991-01-01

    In this paper, an HREM (High-resolution electron microscope) image analysis approach has been developed. The image filtering, segmentation and particles extraction based on gray-scale mathematical morphological operations, are performed on the original HREM image. The final image is a pseudocolor image, with the background removed, relatively uniform brightness, filtered slanting elongation, regular shape for every kind of particle, and particle boundaries that no longer touch each other so that the superconducting material structure can be shown clearly

  4. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    Science.gov (United States)

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software

  5. Graphical user interface to optimize image contrast parameters used in object segmentation - biomed 2009.

    Science.gov (United States)

    Anderson, Jeffrey R; Barrett, Steven F

    2009-01-01

    Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This

  6. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  7. Voxel-Based Morphometry and fMRI Revealed Differences in Brain Gray Matter in Breastfed and Milk Formula-Fed Children.

    Science.gov (United States)

    Ou, X; Andres, A; Pivik, R T; Cleves, M A; Snow, J H; Ding, Z; Badger, T M

    2016-04-01

    Infant diets may have significant impact on brain development in children. The aim of this study was to evaluate brain gray matter structure and function in 8-year-old children who were predominantly breastfed or fed cow's milk formula as infants. Forty-two healthy children (breastfed: n = 22, 10 boys and 12 girls; cow's milk formula: n = 20, 10 boys and 10 girls) were studied by using structural MR imaging (3D T1-weighted imaging) and blood oxygen level-dependent fMRI (while performing tasks involving visual perception and language functions). They were also administered standardized tests evaluating intelligence (Reynolds Intellectual Assessment Scales) and language skills (Clinical Evaluation of Language Fundamentals). Total brain gray matter volume did not differ between the breastfed and cow's milk formula groups. However, breastfed children had significantly higher (P left inferior temporal lobe and left superior parietal lobe compared with cow's milk formula-fed children. Breastfed children showed significantly more brain activation in the right frontal and left/right temporal lobes on fMRI when processing the perception task and in the left temporal/occipital lobe when processing the visual language task than cow's milk formula-fed children. The imaging findings were associated with significantly better performance for breastfed than cow's milk formula-fed children on both tasks. Our findings indicated greater regional gray matter development and better regional gray matter function in breastfed than cow's milk formula-fed children at 8 years of age and suggested that infant diets may have long-term influences on brain development in children. © 2016 by American Journal of Neuroradiology.

  8. Eileen Gray: a child of Japonism?

    OpenAIRE

    Starr, Ruth

    2008-01-01

    Exhibited at the Glucksman Memorial Symposium on June 12th 2008 My interest is in Gray's lacquer work and the influences on that work in the context of nineteenth-century fashion of Japonisme. Gray (1878-1976) had an appreciation of the Japanese characteristics of lacquer - perhaps absorbed from private and public Irish collections of Japanese art. Gray also had a twenty-year working collaboration with Seizo Sugawara (1884-1937) from Jahoji, Japan - a town famous for its lacquer work. Suga...

  9. Different regional gray matter loss in recent onset PTSD and non PTSD after a single prolonged trauma exposure.

    Directory of Open Access Journals (Sweden)

    Yunchun Chen

    Full Text Available OBJECTIVE: Gray matter loss in the limbic structures was found in recent onset post traumatic stress disorder (PTSD patients. In the present study, we measured regional gray matter volume in trauma survivors to verify the hypothesis that stress may cause different regional gray matter loss in trauma survivors with and without recent onset PTSD. METHOD: High resolution T1-weighted magnetic resonance imaging (MRI were obtained from coal mine flood disaster survivors with (n = 10 and without (n = 10 recent onset PTSD and 20 no trauma exposed normal controls. The voxel-based morphometry (VBM method was used to measure the regional gray matter volume in three groups, the correlations of PTSD symptom severities with the gray matter volume in trauma survivors were also analyzed by multiple regression. RESULTS: Compared with normal controls, recent onset PTSD patients had smaller gray matter volume in left dorsal anterior cingulate cortex (ACC, and non PTSD subjects had smaller gray matter volume in the right pulvinar and left pallidum. The gray matter volume of the trauma survivors correlated negatively with CAPS scores in the right frontal lobe, left anterior and middle cingulate cortex, bilateral cuneus cortex, right middle occipital lobe, while in the recent onset PTSD, the gray matter volume correlated negatively with CAPS scores in bilateral superior medial frontal lobe and right ACC. CONCLUSION: The present study identified gray matter loss in different regions in recent onset PTSD and non PTSD after a single prolonged trauma exposure. The gray matter volume of left dorsal ACC associated with the development of PTSD, while the gray matter volume of right pulvinar and left pallidum associated with the response to the severe stress. The atrophy of the frontal and limbic cortices predicts the symptom severities of the PTSD.

  10. VisualRank: applying PageRank to large-scale image search.

    Science.gov (United States)

    Jing, Yushi; Baluja, Shumeet

    2008-11-01

    Because of the relative ease in understanding and processing text, commercial image-search systems often rely on techniques that are largely indistinguishable from text-search. Recently, academic studies have demonstrated the effectiveness of employing image-based features to provide alternative or additional signals. However, it remains uncertain whether such techniques will generalize to a large number of popular web queries, and whether the potential improvement to search quality warrants the additional computational cost. In this work, we cast the image-ranking problem into the task of identifying "authority" nodes on an inferred visual similarity graph and propose VisualRank to analyze the visual link structures among images. The images found to be "authorities" are chosen as those that answer the image-queries well. To understand the performance of such an approach in a real system, we conducted a series of large-scale experiments based on the task of retrieving images for 2000 of the most popular products queries. Our experimental results show significant improvement, in terms of user satisfaction and relevancy, in comparison to the most recent Google Image Search results. Maintaining modest computational cost is vital to ensuring that this procedure can be used in practice; we describe the techniques required to make this system practical for large scale deployment in commercial search engines.

  11. The wavelet/scalar quantization compression standard for digital fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  12. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    Science.gov (United States)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  13. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  14. Occipital Lobe Gray Matter Volume in Male Patients with Chronic Schizophrenia: A Quantitative MRI Study

    Science.gov (United States)

    Onitsuka, Toshiaki; McCarley, Robert W.; Kuroki, Noriomi; Dickey, Chandlee C.; Kubicki, Marek; Demeo, Susan S.; Frumin, Melissa; Kikinis, Ron; Jolesz, Ferenc A.; Shenton, Martha E.

    2008-01-01

    Schizophrenia is characterized by deficits in cognition as well as visual perception. There have, however, been few magnetic resonance imaging (MRI) studies of the occipital lobe as an anatomically defined region of interest in schizophrenia. To examine whether or not patients with chronic schizophrenia show occipital lobe volume abnormalities, we measured gray matter volumes for both the primary visual area (PVA) and the visual association areas (VAA) using MRI based neuroanatomical landmarks and three-dimensional information. PVA and VAA gray matter volumes were measured using high-spatial resolution MRI in 25 male patients diagnosed with chronic schizophrenia and in 28 male normal controls. Chronic schizophrenia patients showed reduced bilateral VAA gray matter volume (11%), compared with normal controls, whereas patients showed no group difference in PVA gray matter volume. These results suggest that reduced bilateral VAA may be a neurobiological substrate of some of the deficits observed in early visual processing in schizophrenia. PMID:17350226

  15. Large-Scale Query-by-Image Video Retrieval Using Bloom Filters

    OpenAIRE

    Araujo, Andre; Chaves, Jason; Lakshman, Haricharan; Angst, Roland; Girod, Bernd

    2016-01-01

    We consider the problem of using image queries to retrieve videos from a database. Our focus is on large-scale applications, where it is infeasible to index each database video frame independently. Our main contribution is a framework based on Bloom filters, which can be used to index long video segments, enabling efficient image-to-video comparisons. Using this framework, we investigate several retrieval architectures, by considering different types of aggregation and different functions to ...

  16. Development of multi-dimensional body image scale for malaysian female adolescents

    OpenAIRE

    Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965...

  17. Bayesian multi-scale smoothing of photon-limited images with applications to astronomy and medicine

    Science.gov (United States)

    White, John

    Multi-scale models for smoothing Poisson signals or images have gained much attention over the past decade. A new Bayesian model is developed using the concept of the Chinese restaurant process to find structures in two-dimensional images when performing image reconstruction or smoothing. This new model performs very well when compared to other leading methodologies for the same problem. It is developed and evaluated theoretically and empirically throughout Chapter 2. The newly developed Bayesian model is extended to three-dimensional images in Chapter 3. The third dimension has numerous different applications, such as different energy spectra, another spatial index, or possibly a temporal dimension. Empirically, this method shows promise in reducing error with the use of simulation studies. A further development removes background noise in the image. This removal can further reduce the error and is done using a modeling adjustment and post-processing techniques. These details are given in Chapter 4. Applications to real world problems are given throughout. Photon-based images are common in astronomical imaging due to the collection of different types of energy such as X-Rays. Applications to real astronomical images are given, and these consist of X-ray images from the Chandra X-ray observatory satellite. Diagnostic medicine uses many types of imaging such as magnetic resonance imaging and computed tomography that can also benefit from smoothing techniques such as the one developed here. Reducing the amount of radiation a patient takes will make images more noisy, but this can be mitigated through the use of image smoothing techniques. Both types of images represent the potential real world use for these methods.

  18. Iso-precision scaling of digitized mammograms to facilitate image analysis

    International Nuclear Information System (INIS)

    Karssmeijer, N.; van Erning, L.

    1991-01-01

    This paper reports on a 12 bit CCD camera equipped with a linear sensor of 4096 photodiodes which is used to digitize conventional mammographic films. An iso-precision conversion of the pixel values is preformed to transform the image data to a scale on which the image noise is equal at each level. For this purpose film noise and digitization noise have been determined as a function of optical density and pixel size. It appears that only at high optical densities digitization noise is comparable to or larger than film noise. The quantization error caused by compression of images recorded with 12 bits per pixel to 8 bit images by an iso-precision conversion has been calculated as a function of the number of quantization levels. For mammograms digitized in a 4096 2 matrix the additional error caused by such a scale transform is only about 1.5 percent. An iso-precision scale transform can be advantageous when automated procedures for quantitative image analysis are developed. Especially when detection of signals in noise is aimed at, a constant noise level over the whole pixel value range is very convenient. This is demonstrated by applying local thresholding to detect small microcalcifications. Results are compared to those obtained by using logarithmic or linearized scales

  19. Quantitative analysis of geomorphic processes using satellite image data at different scales

    Science.gov (United States)

    Williams, R. S., Jr.

    1985-01-01

    When aerial and satellite photographs and images are used in the quantitative analysis of geomorphic processes, either through direct observation of active processes or by analysis of landforms resulting from inferred active or dormant processes, a number of limitations in the use of such data must be considered. Active geomorphic processes work at different scales and rates. Therefore, the capability of imaging an active or dormant process depends primarily on the scale of the process and the spatial-resolution characteristic of the imaging system. Scale is an important factor in recording continuous and discontinuous active geomorphic processes, because what is not recorded will not be considered or even suspected in the analysis of orbital images. If the geomorphic process of landform change caused by the process is less than 200 m in x to y dimension, then it will not be recorded. Although the scale factor is critical, in the recording of discontinuous active geomorphic processes, the repeat interval of orbital-image acquisition of a planetary surface also is a consideration in order to capture a recurring short-lived geomorphic process or to record changes caused by either a continuous or a discontinuous geomorphic process.

  20. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Naveed ur Rehman

    2015-05-01

    Full Text Available A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA, discrete wavelet transform (DWT and non-subsampled contourlet transform (NCT. A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  1. Wavelet/scalar quantization compression standard for fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.

  2. Derivative-based scale invariant image feature detector with error resilience.

    Science.gov (United States)

    Mainali, Pradip; Lafruit, Gauthier; Tack, Klaas; Van Gool, Luc; Lauwereins, Rudy

    2014-05-01

    We present a novel scale-invariant image feature detection algorithm (D-SIFER) using a newly proposed scale-space optimal 10th-order Gaussian derivative (GDO-10) filter, which reaches the jointly optimal Heisenberg's uncertainty of its impulse response in scale and space simultaneously (i.e., we minimize the maximum of the two moments). The D-SIFER algorithm using this filter leads to an outstanding quality of image feature detection, with a factor of three quality improvement over state-of-the-art scale-invariant feature transform (SIFT) and speeded up robust features (SURF) methods that use the second-order Gaussian derivative filters. To reach low computational complexity, we also present a technique approximating the GDO-10 filters with a fixed-length implementation, which is independent of the scale. The final approximation error remains far below the noise margin, providing constant time, low cost, but nevertheless high-quality feature detection and registration capabilities. D-SIFER is validated on a real-life hyperspectral image registration application, precisely aligning up to hundreds of successive narrowband color images, despite their strong artifacts (blurring, low-light noise) typically occurring in such delicate optical system setups.

  3. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    OpenAIRE

    Pe?a-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process,...

  4. Alignment of the measurement scale mark during immersion hydrometer calibration using an image processing system.

    Science.gov (United States)

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-10-24

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.

  5. Optimized VBM in patients with Alzheimer's disease: gray matter loss and its correlation with cognitive function

    International Nuclear Information System (INIS)

    Choi, Seon Hyeong; Moon, Won Jin; Chung, Eun Chul; Lee, Min Hee; Roh, Hong Gee; Park, Kwang Bo; Na, Duck Ryul

    2005-01-01

    To investigate the regional changes in gray matter volume by using optimized voxel based morphometry in the whole brain of patients with Alzheimer's disease (AD) and to determine its correlation with cognitive function. Nineteen patients with AD (mean mini mental state examination (MMSE) score = 20.4) and 19 age-matched control subjects (mean MMSE score 29) participated in this prospective study. T1-weighted 3D-SPGR scans were obtained for each subject. These T1-weighted images were spatially normalized into study-specific T1 template and segmented into gray matter, white matter and CSF. After the images were modulated and smoothed, all of the gray matter images were compared with control images by using voxel-wise statistical parametric test (two-sample-test). In patients with AD, total gray matter volume was significantly smaller than normal control (552 ± 39 mL vs. 632 ± 51 mL, ρ 0.001). Significant gray matter loss was seen in both the hippocampus and amygdala complexs, and the parahippocampi and frontoparietal cortices (ρ < 0.01, family wise error corrected). Left cerebral atrophy was more prominent than the right. Loss of gray matter volume in both the superior frontal gyri and left inferior temporal gyrus had a strong correlation with lower MMSE score. Optimized VBM was able to visualize pathologic changes of AD in vivo. In AD there was widespread gray matter volume loss in the frontoparietal lobes as well as the medial temporal lobes and had a strong correlation between volume loss of specific cortical areas and MMSE score

  6. Generating descriptive visual words and visual phrases for large-scale image applications.

    Science.gov (United States)

    Zhang, Shiliang; Tian, Qi; Hua, Gang; Huang, Qingming; Gao, Wen

    2011-09-01

    Bag-of-visual Words (BoWs) representation has been applied for various problems in the fields of multimedia and computer vision. The basic idea is to represent images as visual documents composed of repeatable and distinctive visual elements, which are comparable to the text words. Notwithstanding its great success and wide adoption, visual vocabulary created from single-image local descriptors is often shown to be not as effective as desired. In this paper, descriptive visual words (DVWs) and descriptive visual phrases (DVPs) are proposed as the visual correspondences to text words and phrases, where visual phrases refer to the frequently co-occurring visual word pairs. Since images are the carriers of visual objects and scenes, a descriptive visual element set can be composed by the visual words and their combinations which are effective in representing certain visual objects or scenes. Based on this idea, a general framework is proposed for generating DVWs and DVPs for image applications. In a large-scale image database containing 1506 object and scene categories, the visual words and visual word pairs descriptive to certain objects or scenes are identified and collected as the DVWs and DVPs. Experiments show that the DVWs and DVPs are informative and descriptive and, thus, are more comparable with the text words than the classic visual words. We apply the identified DVWs and DVPs in several applications including large-scale near-duplicated image retrieval, image search re-ranking, and object recognition. The combination of DVW and DVP performs better than the state of the art in large-scale near-duplicated image retrieval in terms of accuracy, efficiency and memory consumption. The proposed image search re-ranking algorithm: DWPRank outperforms the state-of-the-art algorithm by 12.4% in mean average precision and about 11 times faster in efficiency.

  7. The effect of illumination on gray color

    Directory of Open Access Journals (Sweden)

    Gabriele Sperandio

    2010-01-01

    Full Text Available The present study explored the perceptual process of integration of luminance information in the production of the gray color of an object placed in an environment viewed from a window. The mean luminance of the object was varied for each mean luminance of the environment. Participants matched the gray color of the object with that of Munsell chips in a viewing box. The results show that the Munsell values so obtained are linear measures of gray color. The results support the possibility that the gray color of the object derives from an additive integration of the information about mean luminance of the object and about mean luminance of the environment, with the weights of this information varying with the mean luminances.

  8. Electrochemical conversion of micropollutants in gray water

    NARCIS (Netherlands)

    Butkovskyi, A.; Jeremiasse, A.W.; Hernandez Leal, L.; Zande, van der T.; Rijnaarts, H.; Zeeman, G.

    2014-01-01

    Electrochemical conversion of micropollutants in real gray water effluent was studied for the first time. Six compounds that are frequently found in personal care and household products, namely methylparaben, propylparaben, bisphenol A, triclosan, galaxolide, and 4- methylbenzilidene camphor

  9. Laboratory Characterization of Gray Masonry Concrete

    National Research Council Canada - National Science Library

    Williams, Erin M; Akers, Stephen A; Reed, Paul A

    2007-01-01

    Personnel of the Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, conducted a laboratory investigation to characterize the strength and constitutive property behavior of a gray masonry concrete...

  10. Multi-scale image segmentation method with visual saliency constraints and its application

    Science.gov (United States)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works

  11. MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle)

    Science.gov (United States)

    2015-12-01

    Range Finder /Laser Designator, Synthetic Aperture Radar/Ground Moving Target Indicator, communications relay, and Hellfire Missiles. Ground equipment...equipment strength . Each Gray Eagle company will consist of 125 soldiers within the Divisional CAB and the NTC. Each unit will have three identical...will bring these companies to full Gray Eagle System equipment strength . Each Gray Eagle company will consist of 125 soldiers within the divisional

  12. Gray matter alterations and correlation of nutritional intake with the gray matter volume in prediabetes

    OpenAIRE

    Hou, Yi-Cheng; Lai, Chien-Han; Wu, Yu-Te; Yang, Shwu-Huey

    2016-01-01

    Abstract The neurophysiology of prediabetes plays an important role in preventive medicine. The dysregulation of glucose metabolism is likely linked to changes in neuron-related gray matter. Therefore, we designed this study to investigate gray matter alterations in medication-naive prediabetic patients. We expected to find alterations in the gray matter of prediabetic patients. A total of 64 prediabetic patients and 54 controls were enrolled. All subjects received T1 scans using a 3-T magnet...

  13. Louis Harold Gray (1905-1965)

    International Nuclear Information System (INIS)

    Tomljenovic, I.

    2003-01-01

    15th CGPM (Conference General de Poids et Mesures) conference of 1975 accepted gray (Gy) as the unit of absorbed dose in honour of British physicist and radiation biologist Louis Harold Gray. This unit is a part of the SI system for units and measures. The idea of the article is to give a closer look into the life and work of this great scientist. (author)

  14. Front-end vision and multi-scale image analysis multi-scale computer vision theory and applications, written in Mathematica

    CERN Document Server

    Romeny, Bart M Haar

    2008-01-01

    Front-End Vision and Multi-Scale Image Analysis is a tutorial in multi-scale methods for computer vision and image processing. It builds on the cross fertilization between human visual perception and multi-scale computer vision (`scale-space') theory and applications. The multi-scale strategies recognized in the first stages of the human visual system are carefully examined, and taken as inspiration for the many geometric methods discussed. All chapters are written in Mathematica, a spectacular high-level language for symbolic and numerical manipulations. The book presents a new and effective

  15. Magnified Image Spatial Spectrum (MISS) microscopy for nanometer and millisecond scale label-free imaging

    Science.gov (United States)

    Majeed, Hassaan; Ma, Lihong; Lee, Young Jae; Kandel, Mikhail; Min, Eunjung; Jung, Woonggyu; Best-Popescu, Catherine; Popescu, Gabriel

    2018-03-01

    Label-free imaging of rapidly moving, sub-diffraction sized structures has important applications in both biology and material science, as it removes the limitations associated with fluorescence tagging. However, unlabeled nanoscale particles in suspension are difficult to image due to their transparency and fast Brownian motion. Here we describe a novel interferometric imaging technique referred to as Magnified Image Spatial Spectrum (MISS) microscopy, which overcomes these challenges. The MISS microscope provides quantitative phase information and enables dynamic light scattering investigations with an overall optical path length sensitivity of 0.95 nm at 833 frames per second acquisition rate. Using spatiotemporal filtering, we find that the sensitivity can be further pushed down to 0.001-0.01 nm. We demonstrate the instrument's capability through colloidal nanoparticle sizing down to 20 nm diameter and measurements of live neuron membrane dynamics. MISS microscopy is implemented as an upgrade module to an existing microscope, which converts it into a powerful light scattering instrument. Thus, we anticipate that MISS will be adopted broadly for both material and life sciences applications.

  16. A novel iris transillumination grading scale allowing flexible assessment with quantitative image analysis and visual matching.

    Science.gov (United States)

    Wang, Chen; Brancusi, Flavia; Valivullah, Zaheer M; Anderson, Michael G; Cunningham, Denise; Hedberg-Buenz, Adam; Power, Bradley; Simeonov, Dimitre; Gahl, William A; Zein, Wadih M; Adams, David R; Brooks, Brian

    2018-01-01

    To develop a sensitive scale of iris transillumination suitable for clinical and research use, with the capability of either quantitative analysis or visual matching of images. Iris transillumination photographic images were used from 70 study subjects with ocular or oculocutaneous albinism. Subjects represented a broad range of ocular pigmentation. A subset of images was subjected to image analysis and ranking by both expert and nonexpert reviewers. Quantitative ordering of images was compared with ordering by visual inspection. Images were binned to establish an 8-point scale. Ranking consistency was evaluated using the Kendall rank correlation coefficient (Kendall's tau). Visual ranking results were assessed using Kendall's coefficient of concordance (Kendall's W) analysis. There was a high degree of correlation among the image analysis, expert-based and non-expert-based image rankings. Pairwise comparisons of the quantitative ranking with each reviewer generated an average Kendall's tau of 0.83 ± 0.04 (SD). Inter-rater correlation was also high with Kendall's W of 0.96, 0.95, and 0.95 for nonexpert, expert, and all reviewers, respectively. The current standard for assessing iris transillumination is expert assessment of clinical exam findings. We adapted an image-analysis technique to generate quantitative transillumination values. Quantitative ranking was shown to be highly similar to a ranking produced by both expert and nonexpert reviewers. This finding suggests that the image characteristics used to quantify iris transillumination do not require expert interpretation. Inter-rater rankings were also highly similar, suggesting that varied methods of transillumination ranking are robust in terms of producing reproducible results.

  17. Experimental congruence of interval scale production from paired comparisons and ranking for image evaluation

    Science.gov (United States)

    Handley, John C.; Babcock, Jason S.; Pelz, Jeff B.

    2003-12-01

    Image evaluation tasks are often conducted using paired comparisons or ranking. To elicit interval scales, both methods rely on Thurstone's Law of Comparative Judgment in which objects closer in psychological space are more often confused in preference comparisons by a putative discriminal random process. It is often debated whether paired comparisons and ranking yield the same interval scales. An experiment was conducted to assess scale production using paired comparisons and ranking. For this experiment a Pioneer Plasma Display and Apple Cinema Display were used for stimulus presentation. Observers performed rank order and paired comparisons tasks on both displays. For each of five scenes, six images were created by manipulating attributes such as lightness, chroma, and hue using six different settings. The intention was to simulate the variability from a set of digital cameras or scanners. Nineteen subjects, (5 females, 14 males) ranging from 19-51 years of age participated in this experiment. Using a paired comparison model and a ranking model, scales were estimated for each display and image combination yielding ten scale pairs, ostensibly measuring the same psychological scale. The Bradley-Terry model was used for the paired comparisons data and the Bradley-Terry-Mallows model was used for the ranking data. Each model was fit using maximum likelihood estimation and assessed using likelihood ratio tests. Approximate 95% confidence intervals were also constructed using likelihood ratios. Model fits for paired comparisons were satisfactory for all scales except those from two image/display pairs; the ranking model fit uniformly well on all data sets. Arguing from overlapping confidence intervals, we conclude that paired comparisons and ranking produce no conflicting decisions regarding ultimate ordering of treatment preferences, but paired comparisons yield greater precision at the expense of lack-of-fit.

  18. Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients

    Science.gov (United States)

    Adulteration and fraud for powdered foods and ingredients are rising food safety risks that threaten consumers’ health. In this study, a newly developed line-scan macro-scale Raman imaging system using a 5 W 785 nm line laser as excitation source was used to authenticate the food powders. The system...

  19. Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors

    DEFF Research Database (Denmark)

    van der Lijn, F.; de Bruijne, M.; Hoogendam, Y.Y.

    2009-01-01

    We propose a novel cerebellum segmentation method for MRI, based on a combination of statistical models of the structure's expected location in the brain and its local appearance. The appearance model is obtained from a k-nearest-neighbor classifier, which uses a set of multi-scale local image...

  20. Small-scale anomaly detection in panoramic imaging using neural models of low-level vision

    Science.gov (United States)

    Casey, Matthew C.; Hickman, Duncan L.; Pavlou, Athanasios; Sadler, James R. E.

    2011-06-01

    Our understanding of sensory processing in animals has reached the stage where we can exploit neurobiological principles in commercial systems. In human vision, one brain structure that offers insight into how we might detect anomalies in real-time imaging is the superior colliculus (SC). The SC is a small structure that rapidly orients our eyes to a movement, sound or touch that it detects, even when the stimulus may be on a small-scale; think of a camouflaged movement or the rustle of leaves. This automatic orientation allows us to prioritize the use of our eyes to raise awareness of a potential threat, such as a predator approaching stealthily. In this paper we describe the application of a neural network model of the SC to the detection of anomalies in panoramic imaging. The neural approach consists of a mosaic of topographic maps that are each trained using competitive Hebbian learning to rapidly detect image features of a pre-defined shape and scale. What makes this approach interesting is the ability of the competition between neurons to automatically filter noise, yet with the capability of generalizing the desired shape and scale. We will present the results of this technique applied to the real-time detection of obscured targets in visible-band panoramic CCTV images. Using background subtraction to highlight potential movement, the technique is able to correctly identify targets which span as little as 3 pixels wide while filtering small-scale noise.

  1. Cross-Cultural Adaptation of the Male Genital Self-Image Scale in Iranian Men

    Directory of Open Access Journals (Sweden)

    Mohsen Saffari

    2016-03-01

    Conclusion: The MGSIS-I is a useful instrument to assess genital self-image in Iranian men, a concept that has been associated with sexual function. Further investigation is needed to identify the applicability of the scale in other cultures or populations.

  2. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    Science.gov (United States)

    Li, Dengwang; Li, Hongsheng; Wan, Honglin; Chen, Jinhu; Gong, Guanzhong; Wang, Hongjun; Wang, Liming; Yin, Yong

    2012-08-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5-8% for mono-modality and 10-14% for multi-modality registration under the same condition. Furthermore, clinical application by adaptive

  3. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Li Dengwang; Wan Honglin; Li Hongsheng; Chen Jinhu; Gong Guanzhong; Yin Yong; Wang Hongjun; Wang Liming

    2012-01-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5–8% for mono-modality and 10–14% for multi-modality registration under the same condition. Furthermore, clinical application by

  4. Scale-space for empty catheter segmentation in PCI fluoroscopic images.

    Science.gov (United States)

    Bacchuwar, Ketan; Cousty, Jean; Vaillant, Régis; Najman, Laurent

    2017-07-01

    In this article, we present a method for empty guiding catheter segmentation in fluoroscopic X-ray images. The guiding catheter, being a commonly visible landmark, its segmentation is an important and a difficult brick for Percutaneous Coronary Intervention (PCI) procedure modeling. In number of clinical situations, the catheter is empty and appears as a low contrasted structure with two parallel and partially disconnected edges. To segment it, we work on the level-set scale-space of image, the min tree, to extract curve blobs. We then propose a novel structural scale-space, a hierarchy built on these curve blobs. The deep connected component, i.e. the cluster of curve blobs on this hierarchy, that maximizes the likelihood to be an empty catheter is retained as final segmentation. We evaluate the performance of the algorithm on a database of 1250 fluoroscopic images from 6 patients. As a result, we obtain very good qualitative and quantitative segmentation performance, with mean precision and recall of 80.48 and 63.04% respectively. We develop a novel structural scale-space to segment a structured object, the empty catheter, in challenging situations where the information content is very sparse in the images. Fully-automatic empty catheter segmentation in X-ray fluoroscopic images is an important and preliminary step in PCI procedure modeling, as it aids in tagging the arrival and removal location of other interventional tools.

  5. Large-Scale Multi-Resolution Representations for Accurate Interactive Image and Volume Operations

    KAUST Repository

    Sicat, Ronell B.

    2015-11-25

    The resolutions of acquired image and volume data are ever increasing. However, the resolutions of commodity display devices remain limited. This leads to an increasing gap between data and display resolutions. To bridge this gap, the standard approach is to employ output-sensitive operations on multi-resolution data representations. Output-sensitive operations facilitate interactive applications since their required computations are proportional only to the size of the data that is visible, i.e., the output, and not the full size of the input. Multi-resolution representations, such as image mipmaps, and volume octrees, are crucial in providing these operations direct access to any subset of the data at any resolution corresponding to the output. Despite its widespread use, this standard approach has some shortcomings in three important application areas, namely non-linear image operations, multi-resolution volume rendering, and large-scale image exploration. This dissertation presents new multi-resolution representations for large-scale images and volumes that address these shortcomings. Standard multi-resolution representations require low-pass pre-filtering for anti- aliasing. However, linear pre-filters do not commute with non-linear operations. This becomes problematic when applying non-linear operations directly to any coarse resolution levels in standard representations. Particularly, this leads to inaccurate output when applying non-linear image operations, e.g., color mapping and detail-aware filters, to multi-resolution images. Similarly, in multi-resolution volume rendering, this leads to inconsistency artifacts which manifest as erroneous differences in rendering outputs across resolution levels. To address these issues, we introduce the sparse pdf maps and sparse pdf volumes representations for large-scale images and volumes, respectively. These representations sparsely encode continuous probability density functions (pdfs) of multi-resolution pixel

  6. Multi-level discriminative dictionary learning with application to large scale image classification.

    Science.gov (United States)

    Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua

    2015-10-01

    The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.

  7. X-ray Tomography and Chemical Imaging within Butterfly Wing Scales

    International Nuclear Information System (INIS)

    Chen Jianhua; Lee Yaochang; Tang, M.-T.; Song Yenfang

    2007-01-01

    The rainbow like color of butterfly wings is associated with the internal and surface structures of the wing scales. While the photonic structure of the scales is believed to diffract specific lights at different angle, there is no adequate probe directly answering the 3-D structures with sufficient spatial resolution. The NSRRC nano-transmission x-ray microscope (nTXM) with tens nanometers spatial resolution is able to image biological specimens without artifacts usually introduced in sophisticated sample staining processes. With the intrinsic deep penetration of x-rays, the nTXM is capable of nondestructively investigating the internal structures of fragile and soft samples. In this study, we imaged the structure of butterfly wing scales in 3-D view with 60 nm spatial resolution. In addition, synchrotron-radiation-based Fourier transform Infrared (FT-IR) microspectroscopy was employed to analyze the chemical components with spatial information of the butterfly wing scales. Based on the infrared spectral images, we suggest that the major components of scale structure were rich in protein and polysaccharide

  8. 基于多尺度区间插值小波法的牛肉图像中大理石花纹分割%Application of multi-scale interval interpolation wavelet in beef image of marbling segmentation

    Institute of Scientific and Technical Information of China (English)

    张彦娥; 魏颖慧; 梅树立; 朱梦婷

    2016-01-01

    The richness of the marbling in beef, as an important index of beef quality, can be used to characterize the beef fat content. In particular, the area ratio of marbling, big fat density, and small fat density are the main indicators for most existing beef grade determination. Researchers have investigated that computer vision and image processing is applicable to the automatic grading of beef marbling, and thus plays a great role in promoting the development of the beef industry. However, images may be polluted when experiencing acquisition, transmitting and other processing. Consequently, the quality of the images may be reduced, and thereby, more uncertainties emerge. Importantly, the texture of the beef marbling image becomes blurred and texture contour is not clear. It will further affect the subsequent procedures of texture segmentation and extraction. Therefore, it is necessary to use the de-noising method with better edge preserving property to keep the edge and texture information of the image. In this study, we aimed to use the method of multi-scale interval interpolation wavelet to de-noise images, and thereby to smooth the gray values to segment and extract the regions of beef muscle, large and small fat particles from the beef marbling image. Here, we used the method of multi-scale interval interpolation wavelet to solve the partial differential equation, thus to de-noise images. Specifically, from this method, the edge-preserving smoothing for different object area can be realized, so that the texture and edge of beef marble were made more clearly. In addition, in this method, we chose the external collocation points adaptively, thus the computational efficiency can be greatly improved. In particular, extension method based on Center Similarity Transformation can be used to solve the boundary effect effectively. Firstly, on the basis of the objective evaluation index of the image, the PSNR (Peak Signal to Noise Ratio) mean value of the image de

  9. Deep multi-scale convolutional neural network for hyperspectral image classification

    Science.gov (United States)

    Zhang, Feng-zhe; Yang, Xia

    2018-04-01

    In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.

  10. Detecting Multi-scale Structures in Chandra Images of Centaurus A

    Science.gov (United States)

    Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.

    1999-12-01

    Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.

  11. Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope

    Science.gov (United States)

    Glenn, D. R.; Fu, R. R.; Kehayias, P.; Le Sage, D.; Lima, E. A.; Weiss, B. P.; Walsworth, R. L.

    2017-08-01

    Remanent magnetization in geological samples may record the past intensity and direction of planetary magnetic fields. Traditionally, this magnetization is analyzed through measurements of the net magnetic moment of bulk millimeter to centimeter sized samples. However, geological samples are often mineralogically and texturally heterogeneous at submillimeter scales, with only a fraction of the ferromagnetic grains carrying the remanent magnetization of interest. Therefore, characterizing this magnetization in such cases requires a technique capable of imaging magnetic fields at fine spatial scales and with high sensitivity. To address this challenge, we developed a new instrument, based on nitrogen-vacancy centers in diamond, which enables direct imaging of magnetic fields due to both remanent and induced magnetization, as well as optical imaging, of room-temperature geological samples with spatial resolution approaching the optical diffraction limit. We describe the operating principles of this device, which we call the quantum diamond microscope (QDM), and report its optimized image-area-normalized magnetic field sensitivity (20 µTṡµm/Hz1/2), spatial resolution (5 µm), and field of view (4 mm), as well as trade-offs between these parameters. We also perform an absolute magnetic field calibration for the device in different modes of operation, including three-axis (vector) and single-axis (projective) magnetic field imaging. Finally, we use the QDM to obtain magnetic images of several terrestrial and meteoritic rock samples, demonstrating its ability to resolve spatially distinct populations of ferromagnetic carriers.

  12. Automatic anatomically selective image enhancement in digital chest radiography

    International Nuclear Information System (INIS)

    Sezan, M.I.; Minerbo, G.N.; Schaetzing, R.

    1989-01-01

    The authors develop a technique for automatic anatomically selective enhancement of digital chest radiographs. Anatomically selective enhancement is motivated by the desire to simultaneously meet the different enhancement requirements of the lung field and the mediastinum. A recent peak detection algorithm and a set of rules are applied to the image histogram to determine automatically a gray-level threshold between the lung field and mediastinum. The gray-level threshold facilitates anatomically selective gray-scale modification and/or unsharp masking. Further, in an attempt to suppress possible white-band or black-band artifacts due to unsharp masking at sharp edges, local-contrast adaptivity is incorporated into anatomically selective unsharp masking by designing an anatomy-sensitive emphasis parameter which varies asymmetrically with positive and negative values of the local image contrast

  13. Analysis of image versus position, scale and direction reveals pattern texture anisotropy

    Directory of Open Access Journals (Sweden)

    Roland eLehoucq

    2015-01-01

    Full Text Available Pattern heterogeneities and anisotropies often carry significant physical information. We provide a toolbox which: (i cumulates analysis in terms of position, direction and scale; (ii is as general as possible; (iii is simple and fast to understand, implement, execute and exploit.It consists in dividing the image into analysis boxes at a chosen scale; in each box an ellipse (the inertia tensor is fitted to the signal and thus determines the direction in which the signal is more present. This tensor can be averaged in position and/or be used to study the dependence with scale. This choice is formally linked with Leray transforms and anisotropic wavelet analysis. Such protocol is intutively interpreted and consistent with what the eye detects: relevant scales, local variations in space, priviledged directions. It is fast and parallelizable.Its several variants are adaptable to the user's data and needs. It is useful to statistically characterize anisotropies of 2D or 3D patterns in which individual objects are not easily distinguished, with only minimal pre-processing of the raw image, and more generally applies to data in higher dimensions.It is less sensitive to edge effects, and thus better adapted for a multiscale analysis down to small scale boxes, than pair correlation function or Fourier transform.Easy to understand and implement,it complements more sophisticated methods such as Hough transform or diffusion tensor imaging.We use it on various fracture patterns (sea ice cover, thin sections of granite, granular materials, to pinpoint the maximal anisotropy scales. The results are robust to noise and to user choices. This toolbox could turn also useful for granular materials, hard condensed matter, geophysics, thin films, statistical mechanics, characterisation of networks, fluctuating amorphous systems, inhomogeneous and disordered systems, or medical imaging, among others.

  14. Gray Matter Volume Reduction Is Associated with Cognitive Impairment in Neuromyelitis Optica.

    Science.gov (United States)

    Wang, Q; Zhang, N; Qin, W; Li, Y; Fu, Y; Li, T; Shao, J; Yang, L; Shi, F-D; Yu, C

    2015-10-01

    Whether gray matter impairment occurs in neuromyelitis optica is a matter of ongoing debate, and the association of gray matter impairment with cognitive deficits remains largely unknown. The purpose of this study was to investigate gray matter volume reductions and their association with cognitive decline in patients with neuromyelitis optica. This study included 50 patients with neuromyelitis optica and 50 sex-, age-, handedness-, and education-matched healthy subjects who underwent high-resolution structural MR imaging examinations and a battery of cognitive assessments. Gray matter volume and cognitive differences were compared between the 2 groups. The correlations of the regional gray matter volume with cognitive scores and clinical variables were explored in the patients with neuromyelitis optica. Compared with healthy controls (635.9 ± 51.18 mL), patients with neuromyelitis optica (602.8 ± 51.03 mL) had a 5.21% decrease in the mean gray matter volume of the whole brain (P optica affected the frontal and temporal cortices and the right thalamus (false discovery rate correction, P optica (Alphasim correction, P optica had impairments in memory, information processing speed, and verbal fluency (P optica and is associated with cognitive impairment and disease severity in this group. © 2015 by American Journal of Neuroradiology.

  15. LSB-Based Steganography Using Reflected Gray Code

    Science.gov (United States)

    Chen, Chang-Chu; Chang, Chin-Chen

    Steganography aims to hide secret data into an innocuous cover-medium for transmission and to make the attacker cannot recognize the presence of secret data easily. Even the stego-medium is captured by the eavesdropper, the slight distortion is hard to be detected. The LSB-based data hiding is one of the steganographic methods, used to embed the secret data into the least significant bits of the pixel values in a cover image. In this paper, we propose an LSB-based scheme using reflected-Gray code, which can be applied to determine the embedded bit from secret information. Following the transforming rule, the LSBs of stego-image are not always equal to the secret bits and the experiment shows that the differences are up to almost 50%. According to the mathematical deduction and experimental results, the proposed scheme has the same image quality and payload as the simple LSB substitution scheme. In fact, our proposed data hiding scheme in the case of G1 (one bit Gray code) system is equivalent to the simple LSB substitution scheme.

  16. Análise dos níveis de cinza de 4 resinas compostas micro-híbridas utilizando um sistema de radiografia digital direto =Analisys of the gray scale levels for 4 micro-hibrids composite resins using a radiograph direct digital system

    Directory of Open Access Journals (Sweden)

    Pereira, Ary Salazar Rubim et al.

    2005-01-01

    Full Text Available O objetivo deste estudo foi analisar os diferentes níveis de cinza de quatro resinas compostas micro-híbridas, através do sistema de radiografia digital direto Sens-a-Ray. As resinas utilizadas foram: Concept (Vigodent, Herculite (Sybron/Kerr, IntenS (Ivoclar Vivadent e Z 100 (3MESPE, na cor A2. Foram confeccionadas 3 placas de acrílico para cada espessura 2, 3 e 4 mm que possuíam dimensões de um filme periapical. Em todas as placas foram feitos quatro orifícios eqüidistantes com 4 mm de diâmetro onde as resinas compostas foram inseridas, esses orifícios apresentavam 4mm de diâmetro. As amostras foram radiografadas a 30 cm de distância foco-filme do sistema Sens-a-Ray por 0,8 segundo com aparelho de Raios-X (Dabi Atlante de 70 kV e 10 mA. A quantidade dos níveis de cinza, das resinas, foi aferida em pixels pelo sistema Sens-a-Ray. Foram obtidas as seguintes médias: Concept – 2 mm com 79,6; 3 mm com 85,4 e 4 mm com 96,7; Herculite – 2 mm com 65,1; 3 mm com 72,5 e 4 mm com 85,4; IntenS – 2 mm com 138,5; 3 mm com 147,3 e 4 mm com 153,7; Z 100 – 2 mm com 133,5; 3 mm com 143,8 e 4 mm com 150,6. Após os resultados foram submetidos ao teste estatístico ANOVA-Tukey com um nível de significância (p 0,05. A colorimetria foi utilizada para ilustrar a densidade óptica dos compósitos, com cores vermelho, verde e azul, representando, respectivamente do mais radiopaco para o menos radiopaco. Podemos concluir que na medida em que aumentou a espessura das placas os níveis de cinza também aumentaram. A resina Herculite apresentou os menores níveis de cinza, diferindo estatisticamente das demais. As resinas IntenS e Z 100 apresentaram maiores níveis de cinza que as demais. The aim of this study was analysed the different gray scale levels for 4 micro-hybrids composite resins, throught the direct digital radiography device, Sens-a-Ray. The composites used in this study were: Concept (Vigodent, Herculite (Sybron/Kerr, IntenS (Ivoclar

  17. Substance use and regional gray matter volume in individuals at high risk of psychosis.

    Science.gov (United States)

    Stone, James M; Bhattacharyya, Sagnik; Barker, Gareth J; McGuire, Philip K

    2012-02-01

    Individuals with an at risk mental state (ARMS) are at greatly increased risk of developing a psychotic illness. Risk of transition to psychosis is associated with regionally reduced cortical gray matter volume. There has been considerable interest in the interaction between psychosis risk and substance use. In this study we investigate the relationship between alcohol, cannabis and nicotine use with gray matter volume in ARMS subjects and healthy volunteers. Twenty seven ARMS subjects and 27 healthy volunteers took part in the study. All subjects underwent volumetric MRI imaging. The relationship between regional gray matter volume and cannabis use, smoking, and alcohol use in controls and ARMS subjects was analysed using voxel-based morphometry. In any region where a significant relationship with drug was present, data were analysed to determine if there was any group difference in this relationship. Alcohol intake was inversely correlated with gray matter volume in cerebellum, cannabis intake was use was inversely correlated with gray matter volume in prefrontal cortex and tobacco intake was inversely correlated with gray matter volume in left temporal cortex. There were no significant interactions by group in any region. There is no evidence to support the hypothesis of increased susceptibility to harmful effects of drugs and alcohol on regional gray matter in ARMS subjects. However, alcohol, tobacco and cannabis at low to moderate intake may be associated with lower gray matter in both ARMS subjects and healthy volunteers-possibly representing low-level cortical damage or change in neural plasticity. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers.

    Science.gov (United States)

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F

    2012-04-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Cost Comparison of Conventional Gray Combined Sewer Overflow Control Infrastructure versus a Green/Gray Combination

    Science.gov (United States)

    This paper outlines a life-cycle cost analysis comparing a green (rain gardens) and gray (tunnels) infrastructure combination to a gray-only option to control combined sewer overflow in the Turkey Creek Combined Sewer Overflow Basin, in Kansas City, MO. The plan area of this Bas...

  20. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  1. Gray whale distribution relative to benthic invertebrate biomass and abundance: Northeastern Chukchi Sea 2009-2012

    Science.gov (United States)

    Brower, Amelia A.; Ferguson, Megan C.; Schonberg, Susan V.; Jewett, Stephen C.; Clarke, Janet T.

    2017-10-01

    The shallow continental shelf waters of the Bering and Chukchi seas are the northernmost foraging grounds of North Pacific gray whales (Eschrichtius robustus). Benthic amphipods are considered the primary prey of gray whales in these waters, although no comprehensive quantitative analysis has been performed to support this assumption. Gray whale relative abundance, distribution, and behavior in the northeastern Chukchi Sea (69°-72°N, 155-169°W) were documented during aerial surveys in June-October 2009-2012. Concurrently, vessel-based benthic infaunal sampling was conducted in the area in July-August 2009-10, September 2011, and August 2012. Gray whales were seen in the study area each month that surveys were conducted, with the majority of whales feeding. Statistical analyses confirm that the highest densities of feeding gray whales were associated with high benthic amphipod abundance, primarily within 70 km of shore from Point Barrow to Icy Cape, in water whales were not seen in 40-km×40-km cells containing benthic sampling stations with 85 m-2 or fewer amphipods. Continuing broad-scale aerial surveys in the Chukchi Sea and prey sampling near feeding gray whales will be an important means to monitor and document ongoing and predicted ecosystem changes.

  2. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    Science.gov (United States)

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  3. Improvement and Extension of Shape Evaluation Criteria in Multi-Scale Image Segmentation

    Science.gov (United States)

    Sakamoto, M.; Honda, Y.; Kondo, A.

    2016-06-01

    From the last decade, the multi-scale image segmentation is getting a particular interest and practically being used for object-based image analysis. In this study, we have addressed the issues on multi-scale image segmentation, especially, in improving the performances for validity of merging and variety of derived region's shape. Firstly, we have introduced constraints on the application of spectral criterion which could suppress excessive merging between dissimilar regions. Secondly, we have extended the evaluation for smoothness criterion by modifying the definition on the extent of the object, which was brought for controlling the shape's diversity. Thirdly, we have developed new shape criterion called aspect ratio. This criterion helps to improve the reproducibility on the shape of object to be matched to the actual objectives of interest. This criterion provides constraint on the aspect ratio in the bounding box of object by keeping properties controlled with conventional shape criteria. These improvements and extensions lead to more accurate, flexible, and diverse segmentation results according to the shape characteristics of the target of interest. Furthermore, we also investigated a technique for quantitative and automatic parameterization in multi-scale image segmentation. This approach is achieved by comparing segmentation result with training area specified in advance by considering the maximization of the average area in derived objects or satisfying the evaluation index called F-measure. Thus, it has been possible to automate the parameterization that suited the objectives especially in the view point of shape's reproducibility.

  4. Multi-Scale Residual Convolutional Neural Network for Haze Removal of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang

    2018-06-01

    Full Text Available Haze removal is a pre-processing step that operates on at-sensor radiance data prior to the physically based image correction step to enhance hazy imagery visually. Most current haze removal methods focus on point-to-point operations and utilize information in the spectral domain, without taking consideration of the multi-scale spatial information of haze. In this paper, we propose a multi-scale residual convolutional neural network (MRCNN for haze removal of remote sensing images. MRCNN utilizes 3D convolutional kernels to extract spatial–spectral correlation information and abstract features from surrounding neighborhoods for haze transmission estimation. It takes advantage of dilated convolution to aggregate multi-scale contextual information for the purpose of improving its prediction accuracy. Meanwhile, residual learning is utilized to avoid the loss of weak information while deepening the network. Our experiments indicate that MRCNN performs accurately, achieving an extremely low validation error and testing error. The haze removal results of several scenes of Landsat 8 Operational Land Imager (OLI data show that the visibility of the dehazed images is significantly improved, and the color of recovered surface is consistent with the actual scene. Quantitative analysis proves that the dehazed results of MRCNN are superior to the traditional methods and other networks. Additionally, a comparison to haze-free data illustrates the spectral consistency after haze removal and reveals the changes in the vegetation index.

  5. Multimodal MEMPRAGE, FLAIR, and R2* Segmentation to Resolve Dura and Vessels from Cortical Gray Matter

    Directory of Open Access Journals (Sweden)

    Roberto Viviani

    2017-05-01

    Full Text Available While widely in use in automated segmentation approaches for the detection of group differences or of changes associated with continuous predictors in gray matter volume, T1-weighted images are known to represent dura and cortical vessels with signal intensities similar to those of gray matter. By considering multiple signal sources at once, multimodal segmentation approaches may be able to resolve these different tissue classes and address this potential confound. We explored here the simultaneous use of FLAIR and apparent transverse relaxation rates (a signal related to T2* relaxation maps and having similar contrast with T1-weighted images. Relative to T1-weighted images alone, multimodal segmentation had marked positive effects on 1. the separation of gray matter from dura, 2. the exclusion of vessels from the gray matter compartment, and 3. the contrast with extracerebral connective tissue. While obtainable together with the T1-weighted images without increasing scanning times, apparent transverse relaxation rates were less effective than added FLAIR images in providing the above mentioned advantages. FLAIR images also improved the detection of cortical matter in areas prone to susceptibility artifacts in standard MPRAGE T1-weighted images, while the addition of transverse relaxation maps exacerbated the effect of these artifacts on segmentation. Our results confirm that standard MPRAGE segmentation may overestimate gray matter volume by wrongly assigning vessels and dura to this compartment and show that multimodal approaches may greatly improve the specificity of cortical segmentation. Since multimodal segmentation is easily implemented, these benefits are immediately available to studies focusing on translational applications of structural imaging.

  6. [Validity and Reliability of Two Silhouette Scales to Asses the Body Image in Adolescent Students].

    Science.gov (United States)

    Rueda-Jaimes, Germán Eduardo; López, Paul Anthony Camacho; Flórez, Silvia Milena; Martínez-Villalba, Andrés Mauricio Rangel

    2012-03-01

    To determine the validity and reliability of the 13-figure images scale (13-CS) and Standard Figural Stimuli (SFS) for the evaluation of body images in adolescent students from Bucaramanga. A probabilistic sample with 189 students was evaluated with the two scales. Two weeks later, the valuation together with the size, weight, percentage of body fat, SCOFF questionnaire and Rosenberg self-esteem valuation was repeated. The average age was 14.1 years; 62.7% were women. The correlation of the 13-CS and SFS with body fat index, weight and body fat percentage was 0.61, 0.74, 0.40 and 0.72, 0.55, 0.45 respectively. The correlation of dissatisfaction with body image according to the SCOFF and the Rosenberg scales was 0.43 and 0.26 with the 13-CS; 0.50 and -0.23 with the SFS. The reproducibility shows that perceived and ideal figure was 0.93 and 0.90 with the 13-CS; and 0.85 and 0.78 with the SFS. the concurrent validity of both scales was good. The reproducibility of the 13-CS was excellent while the SFS was good. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  7. Neutron imaging development for megajoule scale inertial confinement fusion experiments{sup 1}

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G P; Bradley, P A; Day, R D; Clark, D D; Fatherley, V E; Finch, J P; Garcia, F P; Jaramillo, S A; Montoya, A J; Morgan, G L; Oertel, J A; Ortiz, T A; Payton, J R; Pazuchanics, P; Schmidt, D W; Valdez, A C; Wilde, C H; Wilke, M D; Wilson, D C [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)], E-mail: gpgrim@lanl.gov

    2008-05-15

    Neutron imaging of Inertial Confinement Fusion (ICF) targets is useful for understanding the implosion conditions of deuterium and tritium filled targets at Mega-Joule/Tera-Watt scale laser facilities. The primary task for imaging ICF targets at the National Ignition Facility, Lawrence Livermore National Laboratory, Livermore CA, is to determine the asymmetry of the imploded target. The image data, along with other nuclear information, are to be used to provide insight into target drive conditions. The diagnostic goal at the National Ignition Facility is to provide neutron images with 10 {mu}m resolution and peak signal-to-background values greater than 20 for neutron yields of {approx} 10{sup 15}. To achieve this requires signal multiplexing apertures with good resolution. In this paper we present results from imaging system development efforts aimed at achieving these requirements using neutron pinholes. The data were collected using directly driven ICF targets at the Omega Laser, University of Rochester, Rochester, NY., and include images collected from a 3 x 3 array of 15.5 {mu}m pinholes. Combined images have peak signal-to-background values greater than 30 at neutron yields of {approx} 10{sup 13}.

  8. Critical object recognition in millimeter-wave images with robustness to rotation and scale.

    Science.gov (United States)

    Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi

    2017-06-01

    Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.

  9. Tile-Based Semisupervised Classification of Large-Scale VHR Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Haikel Alhichri

    2018-01-01

    Full Text Available This paper deals with the problem of the classification of large-scale very high-resolution (VHR remote sensing (RS images in a semisupervised scenario, where we have a limited training set (less than ten training samples per class. Typical pixel-based classification methods are unfeasible for large-scale VHR images. Thus, as a practical and efficient solution, we propose to subdivide the large image into a grid of tiles and then classify the tiles instead of classifying pixels. Our proposed method uses the power of a pretrained convolutional neural network (CNN to first extract descriptive features from each tile. Next, a neural network classifier (composed of 2 fully connected layers is trained in a semisupervised fashion and used to classify all remaining tiles in the image. This basically presents a coarse classification of the image, which is sufficient for many RS application. The second contribution deals with the employment of the semisupervised learning to improve the classification accuracy. We present a novel semisupervised approach which exploits both the spectral and spatial relationships embedded in the remaining unlabelled tiles. In particular, we embed a spectral graph Laplacian in the hidden layer of the neural network. In addition, we apply regularization of the output labels using a spatial graph Laplacian and the random Walker algorithm. Experimental results obtained by testing the method on two large-scale images acquired by the IKONOS2 sensor reveal promising capabilities of this method in terms of classification accuracy even with less than ten training samples per class.

  10. Cross-Cultural Adaptation of the Male Genital Self-Image Scale in Iranian Men.

    Science.gov (United States)

    Saffari, Mohsen; Pakpour, Amir H; Burri, Andrea

    2016-03-01

    Certain sexual health problems in men can be attributed to genital self-image. Therefore, a culturally adapted version of a Male Genital Self-Image Scale (MGSIS) could help health professionals understand this concept and its associated correlates. To translate the original English version of the MGSIS into Persian and to assess the psychometric properties of this culturally adapted version (MGSIS-I) for use in Iranian men. In total, 1,784 men were recruited for this cross-sectional study. Backward and forward translations of the MGSIS were used to produce the culturally adapted version. Reliability of the MGSIS-I was assessed using Cronbach α and intra-class correlation coefficients. Divergent and convergent validities were examined using Pearson correlation and known-group validity was assessed in subgroups of participants with different sociodemographic statuses. Factor validity of the scale was investigated using exploratory and confirmatory factor analyses. Demographic information, the International Index of Erectile Function, the Body Appreciation Scale, the Rosenberg Self-Esteem Scale, and the MGSIS. Mean age of participants was 38.13 years (SD = 11.45) and all men were married. Cronbach α of the MGSIS-I was 0.89 and interclass correlation coefficients ranged from 0.70 to 0.94. Significant correlations were found between the MGSIS-I and the International Index of Erectile Function (P scale with non-similar scales was lower than with similar scale (confirming convergent and divergent validity). The scale could differentiate between subgroups in age, smoking status, and income (known-group validity). A single-factor solution that explained 70% variance of the scale was explored using exploratory factor analysis (confirming uni-dimensionality); confirmatory factor analysis indicated better fitness for the five-item version than the seven-item version of the MGSIS-I (root mean square error of approximation = 0.05, comparative fit index > 1.00 vs root mean

  11. A combination chaotic system and application in color image encryption

    Science.gov (United States)

    Parvaz, R.; Zarebnia, M.

    2018-05-01

    In this paper, by using Logistic, Sine and Tent systems we define a combination chaotic system. Some properties of the chaotic system are studied by using figures and numerical results. A color image encryption algorithm is introduced based on new chaotic system. Also this encryption algorithm can be used for gray scale or binary images. The experimental results of the encryption algorithm show that the encryption algorithm is secure and practical.

  12. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    Directory of Open Access Journals (Sweden)

    Jose Emilio Vargas-Soto

    2013-10-01

    Full Text Available The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.

  13. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    Science.gov (United States)

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  14. Multi-scale fluorescence imaging of bacterial infections in animal models

    Science.gov (United States)

    Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2013-03-01

    Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), currently affects roughly one-third of the world's population. Drug resistant strains of Mtb decrease the effectiveness of current therapeutics and demand the development of new antimicrobial therapies. In addition, the current vaccine, Bacille Calmette Guérin (BCG), has variable efficacy for disease prevention in different populations. Animal studies are often limited by the need to sacrifice at discrete time points for pathology and tissue homogenization, which greatly reduces spatial and temporal resolution. Optical imaging offers the potential for a minimally-invasive solution to imaging on a macroscopic and microscopic scale, allowing for high resolution study of infection. We have integrated a fluorescence microendoscope into a whole-animal optical imaging system, allowing for simultaneous microscopic and macroscopic imaging of tdTomato expressing BCG in vivo. A 535 nm LED was collimated and launched into a 10,000 element fiber bundle with an outer diameter of 0.66 mm. The fiber bundle can be inserted through an intra-tracheal catheter into the lung of a mouse. Fluorescence emission can either be (1) collected by the bundle and imaged onto the surface of a CCD camera for localized detection or (2) the fluorescence can be imaged by the whole animal imaging system providing macroscopic information. Results from internal localized excitation and external whole body detection indicate the potential for imaging bacterial infections down to 100 colony forming units. This novel imaging technique has the potential to allow for functional studies, enhancing the ability to assess new therapeutic agents.

  15. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  16. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  17. PathlinesExplorer — Image-based exploration of large-scale pathline fields

    KAUST Repository

    Nagoor, Omniah H.

    2015-10-25

    PathlinesExplorer is a novel image-based tool, which has been designed to visualize large scale pathline fields on a single computer [7]. PathlinesExplorer integrates explorable images (EI) technique [4] with order-independent transparency (OIT) method [2]. What makes this method different is that it allows users to handle large data on a single workstation. Although it is a view-dependent method, PathlinesExplorer combines both exploration and modification of visual aspects without re-accessing the original huge data. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathline segments. With this view-dependent method, it is possible to filter, color-code, and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  18. Surface-based reconstruction and diffusion MRI in the assessment of gray and white matter damage in multiple sclerosis

    Science.gov (United States)

    Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe

    2014-03-01

    Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.

  19. Biochemical Stability Analysis of Nano Scaled Contrast Agents Used in Biomolecular Imaging Detection of Tumor Cells

    Science.gov (United States)

    Kim, Jennifer; Kyung, Richard

    Imaging contrast agents are materials used to improve the visibility of internal body structures in the imaging process. Many agents that are used for contrast enhancement are now studied empirically and computationally by researchers. Among various imaging techniques, magnetic resonance imaging (MRI) has become a major diagnostic tool in many clinical specialties due to its non-invasive characteristic and its safeness in regards to ionizing radiation exposure. Recently, researchers have prepared aqueous fullerene nanoparticles using electrochemical methods. In this paper, computational simulations of thermodynamic stabilities of nano scaled contrast agents that can be used in biomolecular imaging detection of tumor cells are presented using nanomaterials such as fluorescent functionalized fullerenes. In addition, the stability and safety of different types of contrast agents composed of metal oxide a, b, and c are tested in the imaging process. Through analysis of the computational simulations, the stabilities of the contrast agents, determined by optimized energies of the conformations, are presented. The resulting numerical data are compared. In addition, Density Functional Theory (DFT) is used in order to model the electron properties of the compound.

  20. Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging

    International Nuclear Information System (INIS)

    Crum, W R; Tanner, C; Hawkes, D J

    2005-01-01

    Registration using models of compressible viscous fluids has not found the general application of some other techniques (e.g., free-form-deformation (FFD)) despite its ability to model large diffeomorphic deformations. We report on a multi-resolution fluid registration algorithm which improves on previous work by (a) directly solving the Navier-Stokes equation at the resolution of the images (b) accommodating image sampling anisotropy using semi-coarsening and implicit smoothing in a full multi-grid (FMG) solver and (c) exploiting the inherent multi-resolution nature of FMG to implement a multi-scale approach. Evaluation is on five magnetic resonance (MR) breast images subject to six biomechanical deformation fields over 11 multi-resolution schemes. Quantitative assessment is by tissue overlaps and target registration errors and by registering using the known correspondences rather than image features to validate the fluid model. Context is given by comparison with a validated FFD algorithm and by application to images of volunteers subjected to large applied deformation. The results show that fluid registration of 3D breast MR images to sub-voxel accuracy is possible in minutes on a 1.6 GHz Linux-based Athlon processor with coarse solutions obtainable in a few tens of seconds. Accuracy and computation time are comparable to FFD techniques validated for this application

  1. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    Science.gov (United States)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  2. Efficient and robust model-to-image alignment using 3D scale-invariant features.

    Science.gov (United States)

    Toews, Matthew; Wells, William M

    2013-04-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Ship detection using STFT sea background statistical modeling for large-scale oceansat remote sensing image

    Science.gov (United States)

    Wang, Lixia; Pei, Jihong; Xie, Weixin; Liu, Jinyuan

    2018-03-01

    Large-scale oceansat remote sensing images cover a big area sea surface, which fluctuation can be considered as a non-stationary process. Short-Time Fourier Transform (STFT) is a suitable analysis tool for the time varying nonstationary signal. In this paper, a novel ship detection method using 2-D STFT sea background statistical modeling for large-scale oceansat remote sensing images is proposed. First, the paper divides the large-scale oceansat remote sensing image into small sub-blocks, and 2-D STFT is applied to each sub-block individually. Second, the 2-D STFT spectrum of sub-blocks is studied and the obvious different characteristic between sea background and non-sea background is found. Finally, the statistical model for all valid frequency points in the STFT spectrum of sea background is given, and the ship detection method based on the 2-D STFT spectrum modeling is proposed. The experimental result shows that the proposed algorithm can detect ship targets with high recall rate and low missing rate.

  4. Development of a new body image assessment scale in urban Cameroon: an anthropological approach.

    Science.gov (United States)

    Cohen, Emmanuel; Pasquet, Patrick

    2011-01-01

    Develop and validate body image scales (BIS) presenting real human bodies adapted to the macroscopic phenotype of urban Cameroonian populations. Quantitative and qualitative analysis. Yaoundé, capital city of Cameroon. Four samples with balanced sex-ratio: the first (n=16) aged 18 to 65 years (qualitative study), the second (n=30) aged 25 to 40 years (photo database), the third (n=47) and fourth (n=181), > or =18 years (validation study). Construct validity, test retest reliability, concurrent and convergent validity of BIS. Body image scales present six Cameroonians of each sex arranged according to main body mass index (BMI) categories: underweight ( or =40 kg/m2). Test-retest reliability correlations for current body size (CBS), desired body size and current desirable discrepancy (body self-satisfaction index) on BIS were never below .90. Plus, for the concurrent validity, we observed a significant correlation (r=0.67, Pbody size perceptions, is acceptable. Body image scales are adapted to the phenotypic characteristics of urban Cameroonian populations. They are reliable and valid to assess body size perceptions and culturally adapted to the Cameroonian context.

  5. CLOSE RANGE HYPERSPECTRAL IMAGING INTEGRATED WITH TERRESTRIAL LIDAR SCANNING APPLIED TO ROCK CHARACTERISATION AT CENTIMETRE SCALE

    Directory of Open Access Journals (Sweden)

    T. H. Kurz

    2012-07-01

    Full Text Available Compact and lightweight hyperspectral imagers allow the application of close range hyperspectral imaging with a ground based scanning setup for geological fieldwork. Using such a scanning setup, steep cliff sections and quarry walls can be scanned with a more appropriate viewing direction and a higher image resolution than from airborne and spaceborne platforms. Integration of the hyperspectral imagery with terrestrial lidar scanning provides the hyperspectral information in a georeferenced framework and enables measurement at centimetre scale. In this paper, three geological case studies are used to demonstrate the potential of this method for rock characterisation. Two case studies are applied to carbonate quarries where mapping of different limestone and dolomite types was required, as well as measurements of faults and layer thicknesses from inaccessible parts of the quarries. The third case study demonstrates the method using artificial lighting, applied in a subsurface scanning scenario where solar radiation cannot be utilised.

  6. Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.

    Science.gov (United States)

    Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita

    2014-04-01

    Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.

  7. MREG V1.1 : a multi-scale image registration algorithm for SAR applications.

    Energy Technology Data Exchange (ETDEWEB)

    Eichel, Paul H.

    2013-08-01

    MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962 leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.

  8. Characteristics of gray matter morphological change in Parkinson's disease patients with semantic abstract reasoning deficits.

    Science.gov (United States)

    Wang, Li; Nie, Kun; Zhao, Xin; Feng, Shujun; Xie, Sifen; He, Xuetao; Ma, Guixian; Wang, Limin; Huang, Zhiheng; Huang, Biao; Zhang, Yuhu; Wang, Lijuan

    2018-04-23

    Semantic abstract reasoning(SAR) is an important executive domain that is involved in semantic information processing and enables one to make sense of the attributes of objects, facts and concepts in the world. We sought to investigate whether Parkinson's disease subjects(PDs) have difficulty in SAR and to examine the associated pattern of gray matter morphological changes. Eighty-six PDs and 30 healthy controls were enrolled. PDs were grouped into PD subjects with Similarities preservation(PDSP, n = 62) and PD subjects with Similarities impairment(PDSI, n = 24)according to their performance on the Similarities subtest of the Wechsler Adult Intelligence Scale. Brain structural images were captured with a 3T MRI scanner. Surface-based investigation of cortical thickness and automated segmentation of deep gray matter were conducted using FreeSurfer software. PDs performed notably worse on the Similarities test than controls(F = 13.56, P < 0.001).In the PDSI group, cortical thinning associated with Similarities scores was found in the left superior frontal, left superior parietal and left rostral middle frontal regions. Notable atrophy of the bilateral hippocampi was observed, but only the right hippocampus volume was positively correlated with the Similarities scores of the PDSI group. PDs have difficulty in SAR, and this limitation may be associated with impaired conceptual abstraction and generalization along with semantic memory deficits. Cortical thinning in the left frontal and parietal regions and atrophy in the right hippocampus may explain these impairments among Chinese PDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Advanced astigmatism-corrected tandem Wadsworth mounting for small-scale spectral broadband imaging spectrometer.

    Science.gov (United States)

    Lei, Yu; Lin, Guan-yu

    2013-01-01

    Tandem gratings of double-dispersion mount make it possible to design an imaging spectrometer for the weak light observation with high spatial resolution, high spectral resolution, and high optical transmission efficiency. The traditional tandem Wadsworth mounting is originally designed to match the coaxial telescope and large-scale imaging spectrometer. When it is used to connect the off-axis telescope such as off-axis parabolic mirror, it presents lower imaging quality than to connect the coaxial telescope. It may also introduce interference among the detector and the optical elements as it is applied to the short focal length and small-scale spectrometer in a close volume by satellite. An advanced tandem Wadsworth mounting has been investigated to deal with the situation. The Wadsworth astigmatism-corrected mounting condition for which is expressed as the distance between the second concave grating and the imaging plane is calculated. Then the optimum arrangement for the first plane grating and the second concave grating, which make the anterior Wadsworth condition fulfilling each wavelength, is analyzed by the geometric and first order differential calculation. These two arrangements comprise the advanced Wadsworth mounting condition. The spectral resolution has also been calculated by these conditions. An example designed by the optimum theory proves that the advanced tandem Wadsworth mounting performs excellently in spectral broadband.

  10. Multi-scale Gaussian representation and outline-learning based cell image segmentation

    Science.gov (United States)

    2013-01-01

    Background High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. Methods We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. Results and conclusions We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks. PMID:24267488

  11. Spatial dependence of predictions from image segmentation: a methods to determine appropriate scales for producing land-management information

    Science.gov (United States)

    A challenge in ecological studies is defining scales of observation that correspond to relevant ecological scales for organisms or processes. Image segmentation has been proposed as an alternative to pixel-based methods for scaling remotely-sensed data into ecologically-meaningful units. However, to...

  12. Deep gray matter demyelination detected by magnetization transfer ratio in the cuprizone model.

    Directory of Open Access Journals (Sweden)

    Sveinung Fjær

    Full Text Available In multiple sclerosis (MS, the correlation between lesion load on conventional magnetic resonance imaging (MRI and clinical disability is weak. This clinico-radiological paradox might partly be due to the low sensitivity of conventional MRI to detect gray matter demyelination. Magnetization transfer ratio (MTR has previously been shown to detect white matter demyelination in mice. In this study, we investigated whether MTR can detect gray matter demyelination in cuprizone exposed mice. A total of 54 female C57BL/6 mice were split into one control group ( and eight cuprizone exposed groups ([Formula: see text]. The mice were exposed to [Formula: see text] (w/w cuprizone for up to six weeks. MTR images were obtained at a 7 Tesla Bruker MR-scanner before cuprizone exposure, weekly for six weeks during cuprizone exposure, and once two weeks after termination of cuprizone exposure. Immunohistochemistry staining for myelin (anti-Proteolopid Protein and oligodendrocytes (anti-Neurite Outgrowth Inhibitor Protein A was obtained after each weekly scanning. Rates of MTR change and correlations between MTR values and histological findings were calculated in five brain regions. In the corpus callosum and the deep gray matter a significant rate of MTR value decrease was found, [Formula: see text] per week ([Formula: see text] and [Formula: see text] per week ([Formula: see text] respectively. The MTR values correlated to myelin loss as evaluated by immunohistochemistry (Corpus callosum: [Formula: see text]. Deep gray matter: [Formula: see text], but did not correlate to oligodendrocyte density. Significant results were not found in the cerebellum, the olfactory bulb or the cerebral cortex. This study shows that MTR can be used to detect demyelination in the deep gray matter, which is of particular interest for imaging of patients with MS, as deep gray matter demyelination is common in MS, and is not easily detected on conventional clinical MRI.

  13. Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium

    Directory of Open Access Journals (Sweden)

    Konsti Juho

    2012-03-01

    Full Text Available Abstract Background Digital whole-slide scanning of tissue specimens produces large images demanding increasing storing capacity. To reduce the need of extensive data storage systems image files can be compressed and scaled down. The aim of this article is to study the effect of different levels of image compression and scaling on automated image analysis of immunohistochemical (IHC stainings and automated tumor segmentation. Methods Two tissue microarray (TMA slides containing 800 samples of breast cancer tissue immunostained against Ki-67 protein and two TMA slides containing 144 samples of colorectal cancer immunostained against EGFR were digitized with a whole-slide scanner. The TMA images were JPEG2000 wavelet compressed with four compression ratios: lossless, and 1:12, 1:25 and 1:50 lossy compression. Each of the compressed breast cancer images was furthermore scaled down either to 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 or 1:128. Breast cancer images were analyzed using an algorithm that quantitates the extent of staining in Ki-67 immunostained images, and EGFR immunostained colorectal cancer images were analyzed with an automated tumor segmentation algorithm. The automated tools were validated by comparing the results from losslessly compressed and non-scaled images with results from conventional visual assessments. Percentage agreement and kappa statistics were calculated between results from compressed and scaled images and results from lossless and non-scaled images. Results Both of the studied image analysis methods showed good agreement between visual and automated results. In the automated IHC quantification, an agreement of over 98% and a kappa value of over 0.96 was observed between losslessly compressed and non-scaled images and combined compression ratios up to 1:50 and scaling down to 1:8. In automated tumor segmentation, an agreement of over 97% and a kappa value of over 0.93 was observed between losslessly compressed images and

  14. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    International Nuclear Information System (INIS)

    Esposito, M; Evans, P M; Wells, K; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Allinson, N M

    2014-01-01

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  15. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.

    Science.gov (United States)

    Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K

    2014-07-07

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  16. Response to Biber, Gray, and Poonpon (2011)

    Science.gov (United States)

    Yang, WeiWei

    2013-01-01

    The recent "TESOL Quarterly" article by Biber, Gray, and Poonpon (2011) raises important considerations with respect to the use of syntactic complexity (SC) measures in second language (L2) studies. The article draws the field's attention to one particular measure--complexity of noun phrases (NP) (i.e., noun phrases with modifiers, such as…

  17. The Return to Gray Flannel Thinking.

    Science.gov (United States)

    Shields, James J., Jr.

    1979-01-01

    The liberal mood of the 1960s has given way to a conservatism reminiscent of the gray flannel thinking of the 1950s. Today's young people are cautious, cynical, and dead serious about personal survival. Innovation and liberalism in education are being replaced by fiscal conservatism and emphasis on standards. (Author/SJL)

  18. Chapter 17. Information needs: Great gray owls

    Science.gov (United States)

    Gregory D. Hayward

    1994-01-01

    Current understanding of great gray owl biology and ecology is based on studies of less than five populations. In an ideal world, a strong conservation strategy would require significant new information. However, current knowledge suggests that conservation of this forest owl should involve fewer conflicts than either the boreal or flammulated owl. The mix of forest...

  19. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Guihu Zhao

    Full Text Available A failure of adaptive inference-misinterpreting available sensory information for appropriate perception and action-is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci in subcortical gray matter (GM in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD, a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales of subcortical GM in this disorder. Probabilistic (entropy-based information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR images in chronic patients with schizophrenia (n = 19 and age-matched healthy controls (n = 19 (age ranges: patients, 22.7-54.3 and healthy controls, 24.9-51.6 years old. We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07-2.18 vs. median: 2.1730, range: 2.15-2.23, p<0.001; Cohen's effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0, the right hippocampus (median: 2.1430, range: 2.05-2.19 vs. median: 2.1760, range: 2.12-2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1, as well as left thalamus (median: 2.4230, range: 2.40-2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473 in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in

  20. Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR Scans

    Science.gov (United States)

    Boussaha, M.; Vallet, B.; Rives, P.

    2018-05-01

    The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  1. LARGE SCALE TEXTURED MESH RECONSTRUCTION FROM MOBILE MAPPING IMAGES AND LIDAR SCANS

    Directory of Open Access Journals (Sweden)

    M. Boussaha

    2018-05-01

    Full Text Available The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS. First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points and photometry (images. Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014 is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  2. Female adolescents with severe substance and conduct problems have substantially less brain gray matter volume.

    Directory of Open Access Journals (Sweden)

    Manish S Dalwani

    Full Text Available Structural neuroimaging studies have demonstrated lower regional gray matter volume in adolescents with severe substance and conduct problems. These research studies, including ours, have generally focused on male-only or mixed-sex samples of adolescents with conduct and/or substance problems. Here we compare gray matter volume between female adolescents with severe substance and conduct problems and female healthy controls of similar ages.Female adolescents with severe substance and conduct problems will show significantly less gray matter volume in frontal regions critical to inhibition (i.e. dorsolateral prefrontal cortex and ventrolateral prefrontal cortex, conflict processing (i.e., anterior cingulate, valuation of expected outcomes (i.e., medial orbitofrontal cortex and the dopamine reward system (i.e. striatum.We conducted whole-brain voxel-based morphometric comparison of structural MR images of 22 patients (14-18 years with severe substance and conduct problems and 21 controls of similar age using statistical parametric mapping (SPM and voxel-based morphometric (VBM8 toolbox. We tested group differences in regional gray matter volume with analyses of covariance, adjusting for age and IQ at p<0.05, corrected for multiple comparisons at whole-brain cluster-level threshold.Female adolescents with severe substance and conduct problems compared to controls showed significantly less gray matter volume in right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, medial orbitofrontal cortex, anterior cingulate, bilateral somatosensory cortex, left supramarginal gyrus, and bilateral angular gyrus. Considering the entire brain, patients had 9.5% less overall gray matter volume compared to controls.Female adolescents with severe substance and conduct problems in comparison to similarly aged female healthy controls showed substantially lower gray matter volume in brain regions involved in inhibition, conflict processing, valuation

  3. IMPROVEMENT AND EXTENSION OF SHAPE EVALUATION CRITERIA IN MULTI-SCALE IMAGE SEGMENTATION

    Directory of Open Access Journals (Sweden)

    M. Sakamoto

    2016-06-01

    Full Text Available From the last decade, the multi-scale image segmentation is getting a particular interest and practically being used for object-based image analysis. In this study, we have addressed the issues on multi-scale image segmentation, especially, in improving the performances for validity of merging and variety of derived region’s shape. Firstly, we have introduced constraints on the application of spectral criterion which could suppress excessive merging between dissimilar regions. Secondly, we have extended the evaluation for smoothness criterion by modifying the definition on the extent of the object, which was brought for controlling the shape’s diversity. Thirdly, we have developed new shape criterion called aspect ratio. This criterion helps to improve the reproducibility on the shape of object to be matched to the actual objectives of interest. This criterion provides constraint on the aspect ratio in the bounding box of object by keeping properties controlled with conventional shape criteria. These improvements and extensions lead to more accurate, flexible, and diverse segmentation results according to the shape characteristics of the target of interest. Furthermore, we also investigated a technique for quantitative and automatic parameterization in multi-scale image segmentation. This approach is achieved by comparing segmentation result with training area specified in advance by considering the maximization of the average area in derived objects or satisfying the evaluation index called F-measure. Thus, it has been possible to automate the parameterization that suited the objectives especially in the view point of shape’s reproducibility.

  4. Multi-scale simulations of field ion microscopy images—Image compression with and without the tip shank

    International Nuclear Information System (INIS)

    NiewieczerzaŁ, Daniel; Oleksy, CzesŁaw; Szczepkowicz, Andrzej

    2012-01-01

    Multi-scale simulations of field ion microscopy images of faceted and hemispherical samples are performed using a 3D model. It is shown that faceted crystals have compressed images even in cases with no shank. The presence of the shank increases the compression of images of faceted crystals quantitatively in the same way as for hemispherical samples. It is hereby proven that the shank does not influence significantly the local, relative variations of the magnification caused by the atomic-scale structure of the sample. -- Highlights: ► Multi-scale simulations of field ion microscopy images. ► Faceted and hemispherical samples with and without shank. ► Shank causes overall compression, but does not influence local magnification effects. ► Image compression linearly increases with the shank angle. ► Shank changes compression of image of faceted tip in the same way as for smooth sample.

  5. The correlation between emotional intelligence and gray matter volume in university students.

    Science.gov (United States)

    Tan, Yafei; Zhang, Qinglin; Li, Wenfu; Wei, Dongtao; Qiao, Lei; Qiu, Jiang; Hitchman, Glenn; Liu, Yijun

    2014-11-01

    A number of recent studies have investigated the neurological substrates of emotional intelligence (EI), but none of them have considered the neural correlates of EI that are measured using the Schutte Self-Report Emotional Intelligence Scale (SSREIS). This scale was developed based on the EI model of Salovey and Mayer (1990). In the present study, SSREIS was adopted to estimate EI. Meanwhile, magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) were used to evaluate the gray matter volume (GMV) of 328 university students. Results found positive correlations between Monitor of Emotions and VBM measurements in the insula and orbitofrontal cortex. In addition, Utilization of Emotions was positively correlated with the GMV in the parahippocampal gyrus, but was negatively correlated with the VBM measurements in the fusiform gyrus and middle temporal gyrus. Furthermore, Social Ability had volume correlates in the vermis. These findings indicate that the neural correlates of the EI model, which primarily focuses on the abilities of individuals to appraise and express emotions, can also regulate and utilize emotions to solve problems. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    Science.gov (United States)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  7. Gray matter morphological anomalies in the cerebellar vermis in first-episode schizophrenia patients with cognitive deficits.

    Science.gov (United States)

    Wang, Jingjuan; Zhou, Li; Cui, Chunlei; Liu, Zhening; Lu, Jie

    2017-11-22

    Cognitive deficits are a core feature of early schizophrenia. However, the pathological foundations underlying cognitive deficits are still unknown. The present study examined the association between gray matter density and cognitive deficits in first-episode schizophrenia. Structural magnetic resonance imaging of the brain was performed in 34 first-episode schizophrenia patients and 21 healthy controls. Patients were divided into two subgroups according to working memory task performance. The three groups were well matched for age, gender, and education, and the two patient groups were also further matched for diagnosis, duration of illness, and antipsychotic treatment. Voxel-based morphometric analysis was performed to estimate changes in gray matter density in first-episode schizophrenia patients with cognitive deficits. The relationships between gray matter density and clinical outcomes were explored. Patients with cognitive deficits were found to have reduced gray matter density in the vermis and tonsil of cerebellum compared with patients without cognitive deficits and healthy controls, decreased gray matter density in left supplementary motor area, bilateral precentral gyrus compared with patients without cognitive deficits. Classifier results showed GMD in cerebellar vermis tonsil cluster could differentiate SZ-CD from controls, left supplementary motor area cluster could differentiate SZ-CD from SZ-NCD. Gray matter density values of the cerebellar vermis cluster in patients groups were positively correlated with cognitive severity. Decreased gray matter density in the vermis and tonsil of cerebellum may underlie early psychosis and serve as a candidate biomarker for schizophrenia with cognitive deficits.

  8. In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.

    Science.gov (United States)

    Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine

    2017-02-01

    Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.

  9. Psychometric properties of the Image of God Scale in breast cancer survivors.

    Science.gov (United States)

    Schreiber, Judy A

    2012-07-01

    To examine the psychometric properties of the Image of God Scale (IGS) in a clinical population. Descriptive, cross-sectional. University and community oncology practices in the southeastern United States. 123 breast cancer survivors no more than two years from completion of treatment. Scale reliability was determined with the coefficient alpha. Instrument dimensionality was examined using principal component analysis. Construct validity was evaluated by examining correlations with other instruments used in the study. An individual's image of God. Internal consistency was strong (anger subscale = 0.8; engagement subscale = 0.89). The principle component analysis resulted in a two-factor solution with items loading uniquely on Factor 1-Engagement (8) and Factor 2-Anger (6). Significant correlations between the IGS and religious coping support convergence on a God concept. Correlations with psychological well-being, psychological distress, and concern about recurrence were nonsignificant (engagement) or inverse (anger), supporting discrimination between concepts of God and psychological adjustment. The IGS is a unique measure of how God is viewed by the depth and character of His involvement with the individual and the world. The IGS may be a measure that can transcend sects, denominations, and religions by identifying the image of God that underlies and defines an individuals' worldview, which influences their attitudes and behaviors.

  10. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  11. Behavioral correlates of changes in hippocampal gray matter structure during acquisition of foreign vocabulary.

    Science.gov (United States)

    Bellander, Martin; Berggren, Rasmus; Mårtensson, Johan; Brehmer, Yvonne; Wenger, Elisabeth; Li, Tie-Qiang; Bodammer, Nils C; Shing, Yee-Lee; Werkle-Bergner, Markus; Lövdén, Martin

    2016-05-01

    Experience can affect human gray matter volume. The behavioral correlates of individual differences in such brain changes are not well understood. In a group of Swedish individuals studying Italian as a foreign language, we investigated associations among time spent studying, acquired vocabulary, baseline performance on memory tasks, and gray matter changes. As a way of studying episodic memory training, the language learning focused on acquiring foreign vocabulary and lasted for 10weeks. T1-weighted structural magnetic resonance imaging and cognitive testing were performed before and after the studies. Learning behavior was monitored via participants' use of a smartphone application dedicated to the study of vocabulary. A whole-brain analysis showed larger changes in gray matter structure of the right hippocampus in the experimental group (N=33) compared to an active control group (N=23). A first path analyses revealed that time spent studying rather than acquired knowledge significantly predicted change in gray matter structure. However, this association was not significant when adding performance on baseline memory measures into the model, instead only the participants' performance on a short-term memory task with highly similar distractors predicted the change. This measure may tap similar individual difference factors as those involved in gray matter plasticity of the hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.

    Science.gov (United States)

    Gilmore, John H; Lin, Weili; Prastawa, Marcel W; Looney, Christopher B; Vetsa, Y Sampath K; Knickmeyer, Rebecca C; Evans, Dianne D; Smith, J Keith; Hamer, Robert M; Lieberman, Jeffrey A; Gerig, Guido

    2007-02-07

    Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.

  13. Attention and Regional Gray Matter Development in Very Preterm Children at Age 12 Years.

    Science.gov (United States)

    Lean, Rachel E; Melzer, Tracy R; Bora, Samudragupta; Watts, Richard; Woodward, Lianne J

    2017-08-01

    This study examines the selective, sustained, and executive attention abilities of very preterm (VPT) born children in relation to concurrent structural magnetic resonance imaging (MRI) measures of regional gray matter development at age 12 years. A regional cohort of 110 VPT (≤32 weeks gestation) and 113 full term (FT) born children were assessed at corrected age 12 years on the Test of Everyday Attention-Children. They also had a structural MRI scan that was subsequently analyzed using voxel-based morphometry to quantify regional between-group differences in cerebral gray matter development, which were then related to attention measures using multivariate methods. VPT children obtained similar selective (p=.85), but poorer sustained (p=.02) and executive attention (p=.01) scores than FT children. VPT children were also characterized by reduced gray matter in the bilateral parietal, temporal, prefrontal and posterior cingulate cortices, bilateral thalami, and left hippocampus; and increased gray matter in the occipital and anterior cingulate cortices (family-wise error-corrected pregional gray matter development appear to contribute, at least in part, to the poorer attentional performance of VPT children at school age. (JINS, 2017, 23, 539-550).

  14. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry

    Science.gov (United States)

    Guo, XiaoJuan; Yao, Li; Jin, Zhen; Chen, Kewei

    2006-03-01

    This study examined regional gray matter abnormalities across the whole brain in 19 patients with schizophrenia (12 males and 7 females), comparing with 11 normal volunteers (7 males and 4 females). The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of magnetic resonance imaging (MRI) data was conducted using optimized voxel-based morphometry (VBM). The statistical voxel based analysis was implemented in terms of two-sample t-test model. Compared with normal controls, regional gray matter concentration in patients with schizophrenia was significantly reduced in the bilateral superior temporal gyrus, bilateral middle frontal and inferior frontal gyrus, right insula, precentral and parahippocampal areas, left thalamus and hypothalamus as well as, however, significant increases in gray matter concentration were not observed across the whole brain in the patients. This study confirms and extends some earlier findings on gray matter abnormalities in schizophrenic patients. Previous behavior and fMRI researches on schizophrenia have suggested that cognitive capacity decreased and self-conscious weakened in schizophrenic patients. These regional gray matter abnormalities determined through structural MRI with optimized VBM may be potential anatomic underpinnings of schizophrenia.

  15. Gray matter network disruptions and amyloid beta in cognitively normal adults.

    Science.gov (United States)

    Tijms, Betty M; Kate, Mara Ten; Wink, Alle Meije; Visser, Pieter Jelle; Ecay, Mirian; Clerigue, Montserrat; Estanga, Ainara; Garcia Sebastian, Maite; Izagirre, Andrea; Villanua, Jorge; Martinez Lage, Pablo; van der Flier, Wiesje M; Scheltens, Philip; Sanz Arigita, Ernesto; Barkhof, Frederik

    2016-01-01

    Gray matter networks are disrupted in Alzheimer's disease (AD). It is unclear when these disruptions start during the development of AD. Amyloid beta 1-42 (Aβ42) is among the earliest changes in AD. We studied, in cognitively healthy adults, the relationship between Aβ42 levels in cerebrospinal fluid (CSF) and single-subject cortical gray matter network measures. Single-subject gray matter networks were extracted from structural magnetic resonance imaging scans in a sample of cognitively healthy adults (N = 185; age range 39-79, mini-mental state examination >25, N = 12 showed abnormal Aβ42 level and for 90 anatomical areas. Associations between continuous Aβ42 CSF levels and single-subject cortical gray matter network measures were tested. Smoothing splines were used to determine whether a linear or nonlinear relationship gave a better fit to the data. Lower Aβ42 CSF levels were linearly associated at whole brain level with lower connectivity density, and nonlinearly with lower clustering values and higher path length values, which is indicative of a less-efficient network organization. These relationships were specific to medial temporal areas, precuneus, and the middle frontal gyrus (all p levels can be related to gray matter networks disruptions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Rotation and scale invariant shape context registration for remote sensing images with background variations

    Science.gov (United States)

    Jiang, Jie; Zhang, Shumei; Cao, Shixiang

    2015-01-01

    Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.

  17. Premature graying of hair: An independent risk marker for coronary ...

    African Journals Online (AJOL)

    The presence of premature graying of hair was associated with 3.24 times the risk of CAD on multiple logistic regression analysis. CONCLUSION: The presence of premature graying of hair was associated with an increased risk of CAD in young smokers. Premature graying of hair can be used as preliminary evidence by ...

  18. Serum vitamin D and hippocampal gray matter volume in schizophrenia.

    Science.gov (United States)

    Shivakumar, Venkataram; Kalmady, Sunil V; Amaresha, Anekal C; Jose, Dania; Narayanaswamy, Janardhanan C; Agarwal, Sri Mahavir; Joseph, Boban; Venkatasubramanian, Ganesan; Ravi, Vasanthapuram; Keshavan, Matcheri S; Gangadhar, Bangalore N

    2015-08-30

    Disparate lines of evidence including epidemiological and case-control studies have increasingly implicated vitamin D in the pathogenesis of schizophrenia. Vitamin D deficiency can lead to dysfunction of the hippocampus--a brain region hypothesized to be critically involved in schizophrenia. In this study, we examined for potential association between serum vitamin D level and hippocampal gray matter volume in antipsychotic-naïve or antipsychotic-free schizophrenia patients (n = 35). Serum vitamin D level was estimated using 25-OH vitamin D immunoassay. Optimized voxel-based morphometry was used to analyze 3-Tesla magnetic resonance imaging (MRI) (1-mm slice thickness). Ninety-seven percent of the schizophrenia patients (n = 34) had sub-optimal levels of serum vitamin D (83%, deficiency; 14%, insufficiency). A significant positive correlation was seen between vitamin D and regional gray matter volume in the right hippocampus after controlling for age, years of education and total intracranial volume (Montreal Neurological Institute (MNI) coordinates: x = 35, y = -18, z = -8; t = 4.34 pFWE(Corrected) = 0.018). These observations support a potential role of vitamin D deficiency in mediating hippocampal volume deficits, possibly through neurotrophic, neuroimmunomodulatory and glutamatergic effects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. A multi-scale convolutional neural network for phenotyping high-content cellular images.

    Science.gov (United States)

    Godinez, William J; Hossain, Imtiaz; Lazic, Stanley E; Davies, John W; Zhang, Xian

    2017-07-01

    Identifying phenotypes based on high-content cellular images is challenging. Conventional image analysis pipelines for phenotype identification comprise multiple independent steps, with each step requiring method customization and adjustment of multiple parameters. Here, we present an approach based on a multi-scale convolutional neural network (M-CNN) that classifies, in a single cohesive step, cellular images into phenotypes by using directly and solely the images' pixel intensity values. The only parameters in the approach are the weights of the neural network, which are automatically optimized based on training images. The approach requires no a priori knowledge or manual customization, and is applicable to single- or multi-channel images displaying single or multiple cells. We evaluated the classification performance of the approach on eight diverse benchmark datasets. The approach yielded overall a higher classification accuracy compared with state-of-the-art results, including those of other deep CNN architectures. In addition to using the network to simply obtain a yes-or-no prediction for a given phenotype, we use the probability outputs calculated by the network to quantitatively describe the phenotypes. This study shows that these probability values correlate with chemical treatment concentrations. This finding validates further our approach and enables chemical treatment potency estimation via CNNs. The network specifications and solver definitions are provided in Supplementary Software 1. william_jose.godinez_navarro@novartis.com or xian-1.zhang@novartis.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. A NEW FRAMEWORK FOR OBJECT-BASED IMAGE ANALYSIS BASED ON SEGMENTATION SCALE SPACE AND RANDOM FOREST CLASSIFIER

    Directory of Open Access Journals (Sweden)

    A. Hadavand

    2015-12-01

    Full Text Available In this paper a new object-based framework is developed for automate scale selection in image segmentation. The quality of image objects have an important impact on further analyses. Due to the strong dependency of segmentation results to the scale parameter, choosing the best value for this parameter, for each class, becomes a main challenge in object-based image analysis. We propose a new framework which employs pixel-based land cover map to estimate the initial scale dedicated to each class. These scales are used to build segmentation scale space (SSS, a hierarchy of image objects. Optimization of SSS, respect to NDVI and DSM values in each super object is used to get the best scale in local regions of image scene. Optimized SSS segmentations are finally classified to produce the final land cover map. Very high resolution aerial image and digital surface model provided by ISPRS 2D semantic labelling dataset is used in our experiments. The result of our proposed method is comparable to those of ESP tool, a well-known method to estimate the scale of segmentation, and marginally improved the overall accuracy of classification from 79% to 80%.

  1. Determining Surface Infiltration Rate of Permeable Pavements with Digital Imaging

    Directory of Open Access Journals (Sweden)

    Caterina Valeo

    2018-01-01

    Full Text Available Cell phone images of pervious pavement surfaces were used to explore relationships between surface infiltration rates (SIR measured using the ASTM C1701 standard test and using a simple falling head test. A fiber-reinforced porous asphalt surface and a highly permeable material comprised of stone, rubber and a polymer binder (Porous Pave were tested. Images taken with a high-resolution cellphone camera were acquired as JPEG files and converted to gray scale images in Matlab® for analysis. The distribution of gray levels was compared to the surface infiltration rates obtained for both pavements with attention given to the mean of the distribution. Investigation into the relationships between mean SIR and parameters determined from the gray level distribution produced in the image analysis revealed that mean SIR measured in both pavements were proportional to the inverse of the mean of the distribution. The relationships produced a coefficient of determination over 85% using both the ASTM and the falling head test in the porous asphalt surface. SIR measurements determined with the ASTM method were highly correlated with the inverse mean of the distribution of gray levels in the Porous Pave material as well, producing coefficients of determination of over 90% and Kendall’s tau-b of roughly 70% for nonparametric data.

  2. Improving scale invariant feature transform with local color contrastive descriptor for image classification

    Science.gov (United States)

    Guo, Sheng; Huang, Weilin; Qiao, Yu

    2017-01-01

    Image representation and classification are two fundamental tasks toward version understanding. Shape and texture provide two key features for visual representation and have been widely exploited in a number of successful local descriptors, e.g., scale invariant feature transform (SIFT), local binary pattern descriptor, and histogram of oriented gradient. Unlike these gradient-based descriptors, this paper presents a simple yet efficient local descriptor, named local color contrastive descriptor (LCCD), which captures the contrastive aspects among local regions or color channels for image representation. LCCD is partly inspired by the neural science facts that color contrast plays important roles in visual perception and there exist strong linkages between color and shape. We leverage f-divergence as a robust measure to estimate the contrastive features between different spatial locations and multiple channels. Our descriptor enriches local image representation with both color and contrast information. Due to that LCCD does not explore any gradient information, individual LCCD does not yield strong performance. But we verified experimentally that LCCD can compensate strongly SIFT. Extensive experimental results on image classification show that our descriptor improves the performance of SIFT substantially by combination on three challenging benchmarks, including MIT Indoor-67 database, SUN397, and PASCAL VOC 2007.

  3. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy

    2012-03-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests for spatially dependent images. The spatial SiZer utilizes a family of kernel estimates of the image and provides not only exploratory data analysis but also statistical inference with spatial correlation taken into account. It is also capable of comparing the observed image with a specific null model being tested by adjusting the statistical inference using an assumed covariance structure. Pixel locations having statistically significant differences between the image and a given null model are highlighted by arrows. The spatial SiZer is compared with the existing independent SiZer via the analysis of simulated data with and without signal on both planar and spherical domains. We apply the spatial SiZer method to the decadal temperature change over some regions of the Earth. © 2011 The Korean Statistical Society.

  4. Papaya Tree Detection with UAV Images Using a GPU-Accelerated Scale-Space Filtering Method

    Directory of Open Access Journals (Sweden)

    Hao Jiang

    2017-07-01

    Full Text Available The use of unmanned aerial vehicles (UAV can allow individual tree detection for forest inventories in a cost-effective way. The scale-space filtering (SSF algorithm is commonly used and has the capability of detecting trees of different crown sizes. In this study, we made two improvements with regard to the existing method and implementations. First, we incorporated SSF with a Lab color transformation to reduce over-detection problems associated with the original luminance image. Second, we ported four of the most time-consuming processes to the graphics processing unit (GPU to improve computational efficiency. The proposed method was implemented using PyCUDA, which enabled access to NVIDIA’s compute unified device architecture (CUDA through high-level scripting of the Python language. Our experiments were conducted using two images captured by the DJI Phantom 3 Professional and a most recent NVIDIA GPU GTX1080. The resulting accuracy was high, with an F-measure larger than 0.94. The speedup achieved by our parallel implementation was 44.77 and 28.54 for the first and second test image, respectively. For each 4000 × 3000 image, the total runtime was less than 1 s, which was sufficient for real-time performance and interactive application.

  5. Deep Hashing Based Fusing Index Method for Large-Scale Image Retrieval

    Directory of Open Access Journals (Sweden)

    Lijuan Duan

    2017-01-01

    Full Text Available Hashing has been widely deployed to perform the Approximate Nearest Neighbor (ANN search for the large-scale image retrieval to solve the problem of storage and retrieval efficiency. Recently, deep hashing methods have been proposed to perform the simultaneous feature learning and the hash code learning with deep neural networks. Even though deep hashing has shown the better performance than traditional hashing methods with handcrafted features, the learned compact hash code from one deep hashing network may not provide the full representation of an image. In this paper, we propose a novel hashing indexing method, called the Deep Hashing based Fusing Index (DHFI, to generate a more compact hash code which has stronger expression ability and distinction capability. In our method, we train two different architecture’s deep hashing subnetworks and fuse the hash codes generated by the two subnetworks together to unify images. Experiments on two real datasets show that our method can outperform state-of-the-art image retrieval applications.

  6. Mean field theory of EM algorithm for Bayesian grey scale image restoration

    International Nuclear Information System (INIS)

    Inoue, Jun-ichi; Tanaka, Kazuyuki

    2003-01-01

    The EM algorithm for the Bayesian grey scale image restoration is investigated in the framework of the mean field theory. Our model system is identical to the infinite range random field Q-Ising model. The maximum marginal likelihood method is applied to the determination of hyper-parameters. We calculate both the data-averaged mean square error between the original image and its maximizer of posterior marginal estimate, and the data-averaged marginal likelihood function exactly. After evaluating the hyper-parameter dependence of the data-averaged marginal likelihood function, we derive the EM algorithm which updates the hyper-parameters to obtain the maximum likelihood estimate analytically. The time evolutions of the hyper-parameters and so-called Q function are obtained. The relation between the speed of convergence of the hyper-parameters and the shape of the Q function is explained from the viewpoint of dynamics

  7. Bayesian Image Restoration Using a Large-Scale Total Patch Variation Prior

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2011-01-01

    Full Text Available Edge-preserving Bayesian restorations using nonquadratic priors are often inefficient in restoring continuous variations and tend to produce block artifacts around edges in ill-posed inverse image restorations. To overcome this, we have proposed a spatial adaptive (SA prior with improved performance. However, this SA prior restoration suffers from high computational cost and the unguaranteed convergence problem. Concerning these issues, this paper proposes a Large-scale Total Patch Variation (LS-TPV Prior model for Bayesian image restoration. In this model, the prior for each pixel is defined as a singleton conditional probability, which is in a mixture prior form of one patch similarity prior and one weight entropy prior. A joint MAP estimation is thus built to ensure the iteration monotonicity. The intensive calculation of patch distances is greatly alleviated by the parallelization of Compute Unified Device Architecture(CUDA. Experiments with both simulated and real data validate the good performance of the proposed restoration.

  8. Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel Problem

    Directory of Open Access Journals (Sweden)

    Hamlyn G. Jones

    2014-07-01

    Full Text Available The consequences of changes in spatial resolution for application of thermal imagery in plant phenotyping in the field are discussed. Where image pixels are significantly smaller than the objects of interest (e.g., leaves, accurate estimates of leaf temperature are possible, but when pixels reach the same scale or larger than the objects of interest, the observed temperatures become significantly biased by the background temperature as a result of the presence of mixed pixels. Approaches to the estimation of the true leaf temperature that apply both at the whole-pixel level and at the sub-pixel level are reviewed and discussed.

  9. Microsecond-scale X-ray imaging with Controlled-Drift Detectors

    International Nuclear Information System (INIS)

    Castoldi, A.; Galimberti, A.; Guazzoni, C.; Rehak, P.; Strueder, L.

    2006-01-01

    The Controlled-Drift Detector is a fully-depleted silicon detector that allows 2-D position sensing and energy spectroscopy of X-rays in the range 0.5-20keV with excellent time resolution (few tens of μs) and limited readout channels. In this paper we review the Controlled-Drift Detector operating principle and we present the X-ray imaging and spectroscopic capabilities of Controlled Drift Detectors in microsecond-scale experiments and the more relevant applications fields

  10. Stereo particle image velocimetry set up for measurements in the wake of scaled wind turbines

    Science.gov (United States)

    Campanardi, Gabriele; Grassi, Donato; Zanotti, Alex; Nanos, Emmanouil M.; Campagnolo, Filippo; Croce, Alessandro; Bottasso, Carlo L.

    2017-08-01

    Stereo particle image velocimetry measurements were carried out in the boundary layer test section of Politecnico di Milano large wind tunnel to survey the wake of a scaled wind turbine model designed and developed by Technische Universität München. The stereo PIV instrumentation was set up to survey the three velocity components on cross-flow planes at different longitudinal locations. The area of investigation covered the entire extent of the wind turbines wake that was scanned by the use of two separate traversing systems for both the laser and the cameras. Such instrumentation set up enabled to gain rapidly high quality results suitable to characterise the behaviour of the flow field in the wake of the scaled wind turbine. This would be very useful for the evaluation of the performance of wind farm control methodologies based on wake redirection and for the validation of CFD tools.

  11. Pedestrian detection in thermal images: An automated scale based region extraction with curvelet space validation

    Science.gov (United States)

    Lakshmi, A.; Faheema, A. G. J.; Deodhare, Dipti

    2016-05-01

    Pedestrian detection is a key problem in night vision processing with a dozen of applications that will positively impact the performance of autonomous systems. Despite significant progress, our study shows that performance of state-of-the-art thermal image pedestrian detectors still has much room for improvement. The purpose of this paper is to overcome the challenge faced by the thermal image pedestrian detectors, which employ intensity based Region Of Interest (ROI) extraction followed by feature based validation. The most striking disadvantage faced by the first module, ROI extraction, is the failed detection of cloth insulted parts. To overcome this setback, this paper employs an algorithm and a principle of region growing pursuit tuned to the scale of the pedestrian. The statistics subtended by the pedestrian drastically vary with the scale and deviation from normality approach facilitates scale detection. Further, the paper offers an adaptive mathematical threshold to resolve the problem of subtracting the background while extracting cloth insulated parts as well. The inherent false positives of the ROI extraction module are limited by the choice of good features in pedestrian validation step. One such feature is curvelet feature, which has found its use extensively in optical images, but has as yet no reported results in thermal images. This has been used to arrive at a pedestrian detector with a reduced false positive rate. This work is the first venture made to scrutinize the utility of curvelet for characterizing pedestrians in thermal images. Attempt has also been made to improve the speed of curvelet transform computation. The classification task is realized through the use of the well known methodology of Support Vector Machines (SVMs). The proposed method is substantiated with qualified evaluation methodologies that permits us to carry out probing and informative comparisons across state-of-the-art features, including deep learning methods, with six

  12. SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation.

    Science.gov (United States)

    Xue, Yuan; Xu, Tao; Zhang, Han; Long, L Rodney; Huang, Xiaolei

    2018-05-03

    Inspired by classic Generative Adversarial Networks (GANs), we propose a novel end-to-end adversarial neural network, called SegAN, for the task of medical image segmentation. Since image segmentation requires dense, pixel-level labeling, the single scalar real/fake output of a classic GAN's discriminator may be ineffective in producing stable and sufficient gradient feedback to the networks. Instead, we use a fully convolutional neural network as the segmentor to generate segmentation label maps, and propose a novel adversarial critic network with a multi-scale L 1 loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. In our SegAN framework, the segmentor and critic networks are trained in an alternating fashion in a min-max game: The critic is trained by maximizing a multi-scale loss function, while the segmentor is trained with only gradients passed along by the critic, with the aim to minimize the multi-scale loss function. We show that such a SegAN framework is more effective and stable for the segmentation task, and it leads to better performance than the state-of-the-art U-net segmentation method. We tested our SegAN method using datasets from the MICCAI BRATS brain tumor segmentation challenge. Extensive experimental results demonstrate the effectiveness of the proposed SegAN with multi-scale loss: on BRATS 2013 SegAN gives performance comparable to the state-of-the-art for whole tumor and tumor core segmentation while achieves better precision and sensitivity for Gd-enhance tumor core segmentation; on BRATS 2015 SegAN achieves better performance than the state-of-the-art in both dice score and precision.

  13. Estimating the “Forgone” ESVs for Small-Scale Gold Mining Using Historical Image Data

    Directory of Open Access Journals (Sweden)

    Ernest Frimpong Asamoah

    2017-10-01

    Full Text Available Ghana’s economic development relies largely on the mining industry, but the ecological cost is very high, particularly for the small-scale sector. To ascertain and give an account of the ecological pressures from the small-scale gold mining sector, we quantified and appraised the ecosystems (land cover types degradation due to mining land use along portions of the renowned Pra River basin of Ghana. The study classified and analysed high-quality Landsat image data (1986–2016 to monitor processes and changes in the river basin and adopted the Ecosystem Service Value (ESV model to quantify the forgone value in monetary term. The results revealed that the initial ESV of 17.69 million US$ in 1986 increased to 18.40 million US$ in 2002 for the study landscape with the small-scale mining sector accounting for 8.4% of the trade-off costs. The expansion of forest areas and its higher value coefficient (VC was, however, prevalent and this resulted in a net positive change during this period. However, in 2016, out of the total ESV of 14.63 million US$ obtained, the small-scale mining activities accounted for 36.8% of the trade-off costs. The substantial increase in trade-off costs with a subsequent decrease in ESV in the study landscape, following the intensification of small-scale gold mining, indicates that their activities have been degrading the watershed ecosystem and are, therefore, unsustainable. The study affirms the need for policymakers/government to review the laws, particularly on post-mining monitoring schemes to deter illegal miners and support the registered small-scale miners who are willing to implement land rehabilitation activities.

  14. The Moral Self-Image Scale: Measuring and Understanding the Malleability of the Moral Self.

    Science.gov (United States)

    Jordan, Jennifer; Leliveld, Marijke C; Tenbrunsel, Ann E

    2015-01-01

    Recent ethical decision-making models suggest that individuals' own view of their morality is malleable rather than static, responding to their (im)moral actions and reflections about the world around them. Yet no construct currently exists to represent the malleable state of a person's moral self-image (MSI). In this investigation, we define this construct, as well as develop a scale to measure it. Across five studies, we show that feedback about the moral self alters an individual's MSI as measured by our scale. We also find that the MSI is related to, but distinct from, related constructs, including moral identity, self-esteem, and moral disengagement. In Study 1, we administered the MSI scale and several other relevant scales to demonstrate convergent and discriminant validity. In Study 2, we examine the relationship between the MSI and one's ought versus ideal self. In Studies 3 and 4, we find that one's MSI is affected in the predicted directions by manipulated feedback about the moral self, including feedback related to social comparisons of moral behavior (Study 3) and feedback relative to one's own moral ideal (Study 4). Lastly, Study 5 provides evidence that the recall of one's moral or immoral behavior alters people's MSI in the predicted directions. Taken together, these studies suggest that the MSI is malleable and responds to individuals' moral and immoral actions in the outside world. As such, the MSI is an important variable to consider in the study of moral and immoral behavior.

  15. Delamination wear mechanism in gray cast irons

    International Nuclear Information System (INIS)

    Salehi, M.

    2000-01-01

    An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a process of plastic deformation at the subsurface, crack nucleation, and crack growth leading to formation of plate like debris and therefore the delamination theory applies. No evidence of adhesion was observed. This could be due to formation of oxides on the wear surface which prevent adhesion. channel type chromium plating ''picked'' up cast iron from the counter-body surfaces by mechanically trapping cast iron debris on and within the cracks. The removal of the plated chromium left a pitted surface on the cast iron

  16. Gray divorce: Explaining midlife marital splits.

    Science.gov (United States)

    Crowley, Jocelyn Elise

    2017-12-06

    Recent research suggests that one out of every four divorces in the United States is now "gray," meaning that at least one half of the couple has reached the age of 50 when the marriage breaks down. To understand why this age group-the Baby Boomer generation-is splitting up, this study conducted 40 in-depth, semistructured interviews with men and 40 with women who have experienced a gray divorce in their lifetimes. Respondents' beliefs in an expressive individualistic model of marriage, where partnerships are only valuable if they help individuals achieve personal growth, were compared against their potential adherence to what I call a commitment-based model of marriage, where binding, romantic love holds couples together unless there is severe relationship strain. The results demonstrated that the commitment-based model most strongly governs marriage and the decision to divorce among Baby Boomers for both sexes, although some specific reasons for divorce differ for men and women.

  17. An innovative experimental setup for Large Scale Particle Image Velocimetry measurements in riverine environments

    Science.gov (United States)

    Tauro, Flavia; Olivieri, Giorgio; Porfiri, Maurizio; Grimaldi, Salvatore

    2014-05-01

    Large Scale Particle Image Velocimetry (LSPIV) is a powerful methodology to nonintrusively monitor surface flows. Its use has been beneficial to the development of rating curves in riverine environments and to map geomorphic features in natural waterways. Typical LSPIV experimental setups rely on the use of mast-mounted cameras for the acquisition of natural stream reaches. Such cameras are installed on stream banks and are angled with respect to the water surface to capture large scale fields of view. Despite its promise and the simplicity of the setup, the practical implementation of LSPIV is affected by several challenges, including the acquisition of ground reference points for image calibration and time-consuming and highly user-assisted procedures to orthorectify images. In this work, we perform LSPIV studies on stream sections in the Aniene and Tiber basins, Italy. To alleviate the limitations of traditional LSPIV implementations, we propose an improved video acquisition setup comprising a telescopic, an inexpensive GoPro Hero 3 video camera, and a system of two lasers. The setup allows for maintaining the camera axis perpendicular to the water surface, thus mitigating uncertainties related to image orthorectification. Further, the mast encases a laser system for remote image calibration, thus allowing for nonintrusively calibrating videos without acquiring ground reference points. We conduct measurements on two different water bodies to outline the performance of the methodology in case of varying flow regimes, illumination conditions, and distribution of surface tracers. Specifically, the Aniene river is characterized by high surface flow velocity, the presence of abundant, homogeneously distributed ripples and water reflections, and a meagre number of buoyant tracers. On the other hand, the Tiber river presents lower surface flows, isolated reflections, and several floating objects. Videos are processed through image-based analyses to correct for lens

  18. Image subsampling and point scoring approaches for large-scale marine benthic monitoring programs

    Science.gov (United States)

    Perkins, Nicholas R.; Foster, Scott D.; Hill, Nicole A.; Barrett, Neville S.

    2016-07-01

    Benthic imagery is an effective tool for quantitative description of ecologically and economically important benthic habitats and biota. The recent development of autonomous underwater vehicles (AUVs) allows surveying of spatial scales that were previously unfeasible. However, an AUV collects a large number of images, the scoring of which is time and labour intensive. There is a need to optimise the way that subsamples of imagery are chosen and scored to gain meaningful inferences for ecological monitoring studies. We examine the trade-off between the number of images selected within transects and the number of random points scored within images on the percent cover of target biota, the typical output of such monitoring programs. We also investigate the efficacy of various image selection approaches, such as systematic or random, on the bias and precision of cover estimates. We use simulated biotas that have varying size, abundance and distributional patterns. We find that a relatively small sampling effort is required to minimise bias. An increased precision for groups that are likely to be the focus of monitoring programs is best gained through increasing the number of images sampled rather than the number of points scored within images. For rare species, sampling using point count approaches is unlikely to provide sufficient precision, and alternative sampling approaches may need to be employed. The approach by which images are selected (simple random sampling, regularly spaced etc.) had no discernible effect on mean and variance estimates, regardless of the distributional pattern of biota. Field validation of our findings is provided through Monte Carlo resampling analysis of a previously scored benthic survey from temperate waters. We show that point count sampling approaches are capable of providing relatively precise cover estimates for candidate groups that are not overly rare. The amount of sampling required, in terms of both the number of images and

  19. Generative complexity of Gray-Scott model

    Science.gov (United States)

    Adamatzky, Andrew

    2018-03-01

    In the Gray-Scott reaction-diffusion system one reactant is constantly fed in the system, another reactant is reproduced by consuming the supplied reactant and also converted to an inert product. The rate of feeding one reactant in the system and the rate of removing another reactant from the system determine configurations of concentration profiles: stripes, spots, waves. We calculate the generative complexity-a morphological complexity of concentration profiles grown from a point-wise perturbation of the medium-of the Gray-Scott system for a range of the feeding and removal rates. The morphological complexity is evaluated using Shannon entropy, Simpson diversity, approximation of Lempel-Ziv complexity, and expressivity (Shannon entropy divided by space-filling). We analyse behaviour of the systems with highest values of the generative morphological complexity and show that the Gray-Scott systems expressing highest levels of the complexity are composed of the wave-fragments (similar to wave-fragments in sub-excitable media) and travelling localisations (similar to quasi-dissipative solitons and gliders in Conway's Game of Life).

  20. Gray rod for a nuclear reactor

    International Nuclear Information System (INIS)

    Francis, T.A.; Cerni, Samuel.

    1986-01-01

    The invention relates to an improved gray rod for insertion in a nuclear fuel assembly having an array of fuel rods. The gray rod includes a thin-walled cladding tube a first longitudinal section of which is positioned within, and a second longitudinal section of which is positioned essentially without, the array of fuel rods when the gray rod is inserted in the fuel assembly. The first longitudinal section defines a pellet-receiving space having detained therein a stack of annular pellets with an outer diameter sufficient to lend radial support to the wall of the first longitudinal tube section. The second longitudinal section defines a hollow space devoid of pellets and having means to resist radial collapse under external pressure. This means may be a partially compressed spiral spring which serves the dual purpose of retaining the stack of pellets in the pellet-receiving space and of lending radial support to the wall of the second longitudinal tube section or it may be holes through the wall to allow pressure equalisation. The cladding tube is composed of stainless-steel material having a low neutron-capture cross-section, and the annular pellets preferably being composed of Zircaloy or Zirconia material. (author)

  1. A study on cognitive impairment and gray matter volume abnormalities in silent cerebral infarction patients

    International Nuclear Information System (INIS)

    Luo, Wei; Wei, Xiaofeng; Li, Mengxiong; Jiang, Xun; Li, Shanshan

    2015-01-01

    The relationship between silent cerebral infarction (SCI) and the integrity of cognitive function is unknown. We intended to investigate whether cognitive impairment is associated with gray matter volume (GMV) in the SCI patients. Sixty-two patients with SCI and 62 age- and gender-matched healthy controls (HC) were evaluated with P300 test, Montreal Cognitive Assessment (MoCA) test, Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HDRS). Whole brain high-resolution T1-weighted images were processed with SPM12b software and analyzed by voxel-based morphometry (VBM). Correlation analysis was performed between the GMV and the scores of MoCA Scale, P300 latency, P300 amplitude, HAMA, HDRS, age, and educational level. The brains of the SCI patients have a significant reduction in GMV in the left superior and inferior frontal gyrus, left superior temporal gyrus, right middle temporal gyrus, and bilateral hippocampus gyrus (p < 0.01, FDR correction). No significant increase of GMV was detected. The GMV of their frontal and temporal lobes is positively correlated with the score of MoCA scale and P300 amplitude (r ≥ 0.62, p < 0.01). The GMV of frontal, temporal, and hippocampus is negatively correlated with P300 latency (r ≤ -0.71, p < 0.05). No significant correlation between the GMV of abnormal brain regions and another two clinical characteristics was found. SCI patients have impaired cognitive function and reduced GMV compared to the HC subjects. The neuropathological basis of such cognitive deficits in SCI patients might be a reduced GMV. (orig.)

  2. A study on cognitive impairment and gray matter volume abnormalities in silent cerebral infarction patients

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Wei, Xiaofeng; Li, Mengxiong [The First Affiliated Hospital of Yangtze University, Biomedical Engineering Laboratory, Jingzhou, Hubei (China); Jiang, Xun [Renmin Hospital of Wuhan University, Biomedical Engineering Laboratory, Wuhan, Hubei (China); Li, Shanshan [JingZhou City Central Blood Bank, Jingzhou, Hubei (China)

    2015-08-15

    The relationship between silent cerebral infarction (SCI) and the integrity of cognitive function is unknown. We intended to investigate whether cognitive impairment is associated with gray matter volume (GMV) in the SCI patients. Sixty-two patients with SCI and 62 age- and gender-matched healthy controls (HC) were evaluated with P300 test, Montreal Cognitive Assessment (MoCA) test, Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HDRS). Whole brain high-resolution T1-weighted images were processed with SPM12b software and analyzed by voxel-based morphometry (VBM). Correlation analysis was performed between the GMV and the scores of MoCA Scale, P300 latency, P300 amplitude, HAMA, HDRS, age, and educational level. The brains of the SCI patients have a significant reduction in GMV in the left superior and inferior frontal gyrus, left superior temporal gyrus, right middle temporal gyrus, and bilateral hippocampus gyrus (p < 0.01, FDR correction). No significant increase of GMV was detected. The GMV of their frontal and temporal lobes is positively correlated with the score of MoCA scale and P300 amplitude (r ≥ 0.62, p < 0.01). The GMV of frontal, temporal, and hippocampus is negatively correlated with P300 latency (r ≤ -0.71, p < 0.05). No significant correlation between the GMV of abnormal brain regions and another two clinical characteristics was found. SCI patients have impaired cognitive function and reduced GMV compared to the HC subjects. The neuropathological basis of such cognitive deficits in SCI patients might be a reduced GMV. (orig.)

  3. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    Science.gov (United States)

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  4. Optimized VBM in patients with Alzheimer's disease: gray matter loss and its correlation with cognitive function

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Hyeong; Moon, Won Jin; Chung, Eun Chul; Lee, Min Hee; Roh, Hong Gee; Park, Kwang Bo; Na, Duck Ryul [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2005-11-15

    To investigate the regional changes in gray matter volume by using optimized voxel based morphometry in the whole brain of patients with Alzheimer's disease (AD) and to determine its correlation with cognitive function. Nineteen patients with AD (mean mini mental state examination (MMSE) score = 20.4) and 19 age-matched control subjects (mean MMSE score 29) participated in this prospective study. T1-weighted 3D-SPGR scans were obtained for each subject. These T1-weighted images were spatially normalized into study-specific T1 template and segmented into gray matter, white matter and CSF. After the images were modulated and smoothed, all of the gray matter images were compared with control images by using voxel-wise statistical parametric test (two-sample-test). In patients with AD, total gray matter volume was significantly smaller than normal control (552 {+-} 39 mL vs. 632 {+-} 51 mL, {rho} 0.001). Significant gray matter loss was seen in both the hippocampus and amygdala complexs, and the parahippocampi and frontoparietal cortices ({rho} < 0.01, family wise error corrected). Left cerebral atrophy was more prominent than the right. Loss of gray matter volume in both the superior frontal gyri and left inferior temporal gyrus had a strong correlation with lower MMSE score. Optimized VBM was able to visualize pathologic changes of AD in vivo. In AD there was widespread gray matter volume loss in the frontoparietal lobes as well as the medial temporal lobes and had a strong correlation between volume loss of specific cortical areas and MMSE score.

  5. Tuple image multi-scale optical flow for detailed cardiac motion extraction: Application to left ventricle rotation analysis

    NARCIS (Netherlands)

    Assen, van H.C.; Florack, L.M.J.; Westenberg, J.J.M.; Haar Romenij, ter B.M.; Hamarneh, G.; Abugharbieh, R.

    2008-01-01

    We present a new method for detailed tracking of cardiac motion based on MR-tagging imaging, multi-scale optical flow, and HARP-like image filtering.In earlier work, we showed that the results obtained with our method correlate very well with Phase Contrast MRI. In this paper we combine the

  6. Talking Back to the Media Ideal: The Development and Validation of the Critical Processing of Beauty Images Scale

    Science.gov (United States)

    Engeln-Maddox, Renee; Miller, Steven A.

    2008-01-01

    This article details the development of the Critical Processing of Beauty Images Scale (CPBI) and studies demonstrating the psychometric soundness of this measure. The CPBI measures women's tendency to engage in critical processing of media images featuring idealized female beauty. Three subscales were identified using exploratory factor analysis…

  7. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133 (Italy); Peroni, Marta [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Paul Scherrer Institut, Zentrum für Protonentherapie, WMSA/C15, CH-5232 Villigen PSI (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, piazza L. Da Vinci 32, Milano 20133, Italy and Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, strada Campeggi 53, Pavia 27100 (Italy)

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  8. Example-Based Image Colorization Using Locality Consistent Sparse Representation.

    Science.gov (United States)

    Bo Li; Fuchen Zhao; Zhuo Su; Xiangguo Liang; Yu-Kun Lai; Rosin, Paul L

    2017-11-01

    Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.

  9. AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN HIGH-RESOLUTION IMAGING DATA

    International Nuclear Information System (INIS)

    Marshall, Philip J.; Bradac, Marusa; Hogg, David W.; Moustakas, Leonidas A.; Fassnacht, Christopher D.; Schrabback, Tim; Blandford, Roger D.

    2009-01-01

    We expect direct lens modeling to be the key to successful and meaningful automated strong galaxy-scale gravitational lens detection. We have implemented a lens-modeling 'robot' that treats every bright red galaxy (BRG) in a large imaging survey as a potential gravitational lens system. Having optimized a simple model for 'typical' galaxy-scale gravitational lenses, we generate four assessments of model quality that are then used in an automated classification. The robot infers from these four data the lens classification parameter H that a human would have assigned; the inference is performed using a probability distribution generated from a human-classified training set of candidates, including realistic simulated lenses and known false positives drawn from the Hubble Space Telescope (HST) Extended Groth Strip (EGS) survey. We compute the expected purity, completeness, and rejection rate, and find that these statistics can be optimized for a particular application by changing the prior probability distribution for H; this is equivalent to defining the robot's 'character'. Adopting a realistic prior based on expectations for the abundance of lenses, we find that a lens sample may be generated that is ∼100% pure, but only ∼20% complete. This shortfall is due primarily to the oversimplicity of the model of both the lens light and mass. With a more optimistic robot, ∼90% completeness can be achieved while rejecting ∼90% of the candidate objects. The remaining candidates must be classified by human inspectors. Displaying the images used and produced by the robot on a custom 'one-click' web interface, we are able to inspect and classify lens candidates at a rate of a few seconds per system, suggesting that a future 1000 deg. 2 imaging survey containing 10 7 BRGs, and some 10 4 lenses, could be successfully, and reproducibly, searched in a modest amount of time. We have verified our projected survey statistics, albeit at low significance, using the HST EGS data

  10. Functionalized Carbon Nano-scale Drug Delivery Systems From Biowaste Sago Bark For Cancer Cell Imaging.

    Science.gov (United States)

    Abdul Manaf, Shoriya Aruni; Hegde, Gurumurthy; Mandal, Uttam Kumar; Wui, Tin Wong; Roy, Partha

    2017-01-01

    Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application. The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications. This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques. The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure. Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity.

    Science.gov (United States)

    Lee, Karen J I; Calder, Grant M; Hindle, Christopher R; Newman, Jacob L; Robinson, Simon N; Avondo, Jerome J H Y; Coen, Enrico S

    2017-01-01

    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?

    Science.gov (United States)

    Tauro, F.; Piscopia, R.; Grimaldi, S.

    2017-12-01

    Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation.

  13. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    Science.gov (United States)

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  14. The fusion of large scale classified side-scan sonar image mosaics.

    Science.gov (United States)

    Reed, Scott; Tena, Ruiz Ioseba; Capus, Chris; Petillot, Yvan

    2006-07-01

    This paper presents a unified framework for the creation of classified maps of the seafloor from sonar imagery. Significant challenges in photometric correction, classification, navigation and registration, and image fusion are addressed. The techniques described are directly applicable to a range of remote sensing problems. Recent advances in side-scan data correction are incorporated to compensate for the sonar beam pattern and motion of the acquisition platform. The corrected images are segmented using pixel-based textural features and standard classifiers. In parallel, the navigation of the sonar device is processed using Kalman filtering techniques. A simultaneous localization and mapping framework is adopted to improve the navigation accuracy and produce georeferenced mosaics of the segmented side-scan data. These are fused within a Markovian framework and two fusion models are presented. The first uses a voting scheme regularized by an isotropic Markov random field and is applicable when the reliability of each information source is unknown. The Markov model is also used to inpaint regions where no final classification decision can be reached using pixel level fusion. The second model formally introduces the reliability of each information source into a probabilistic model. Evaluation of the two models using both synthetic images and real data from a large scale survey shows significant quantitative and qualitative improvement using the fusion approach.

  15. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry.

    Directory of Open Access Journals (Sweden)

    Marjorie Dole

    Full Text Available In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG and the superior temporal Sulcus (STS in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution

  16. Gray Matter Hypertrophy and Thickening with Obstructive Sleep Apnea in Middle-aged and Older Adults.

    Science.gov (United States)

    Baril, Andrée-Ann; Gagnon, Katia; Brayet, Pauline; Montplaisir, Jacques; De Beaumont, Louis; Carrier, Julie; Lafond, Chantal; L'Heureux, Francis; Gagnon, Jean-François; Gosselin, Nadia

    2017-06-01

    Obstructive sleep apnea causes intermittent hypoxemia, hemodynamic fluctuations, and sleep fragmentation, all of which could damage cerebral gray matter that can be indirectly assessed by neuroimaging. To investigate whether markers of obstructive sleep apnea severity are associated with gray matter changes among middle-aged and older individuals. Seventy-one subjects (ages, 55-76 yr; apnea-hypopnea index, 0.2-96.6 events/h) were evaluated by magnetic resonance imaging. Two techniques were used: (1) voxel-based morphometry, which measures gray matter volume and concentration; and (2) FreeSurfer (an open source software suite) automated segmentation, which estimates the volume of predefined cortical/subcortical regions and cortical thickness. Regression analyses were performed between gray matter characteristics and markers of obstructive sleep apnea severity (hypoxemia, respiratory disturbances, and sleep fragmentation). Subjects had few symptoms, that is, sleepiness, depression, anxiety, and cognitive deficits. Although no association was found with voxel-based morphometry, FreeSurfer revealed increased gray matter with obstructive sleep apnea. Higher levels of hypoxemia correlated with increased volume and thickness of the left lateral prefrontal cortex as well as increased thickness of the right frontal pole, the right lateral parietal lobules, and the left posterior cingulate cortex. Respiratory disturbances positively correlated with right amygdala volume, and more severe sleep fragmentation was associated with increased thickness of the right inferior frontal gyrus. Gray matter hypertrophy and thickening were associated with hypoxemia, respiratory disturbances, and sleep fragmentation. These structural changes in a group of middle-aged and older individuals may represent adaptive/reactive brain mechanisms attributed to a presymptomatic stage of obstructive sleep apnea.

  17. Microstructural abnormalities in white and gray matter in obese adolescents with and without type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Arie Nouwen

    Full Text Available Aims/hypotheses: In adults, type 2 diabetes and obesity have been associated with structural brain changes, even in the absence of dementia. Some evidence suggested similar changes in adolescents with type 2 diabetes but comparisons with a non-obese control group have been lacking. The aim of the current study was to examine differences in microstructure of gray and white matter between adolescents with type 2 diabetes, obese adolescents and healthy weight adolescents. Methods: Magnetic resonance imaging data were collected from 15 adolescents with type 2 diabetes, 21 obese adolescents and 22 healthy weight controls. Volumetric differences in the gray matter between the three groups were examined using voxel based morphology, while tract based spatial statistics was used to examine differences in the microstructure of the white matter. Results: Adolescents with type 2 diabetes and obese adolescents had reduced gray matter volume in the right hippocampus, left putamen and caudate, bilateral amygdala and left thalamus compared to healthy weight controls. Type 2 diabetes was also associated with significant regional changes in fractional anisotropy within the corpus callosum, fornix, left inferior fronto-occipital fasciculus, left uncinate, left internal and external capsule. Fractional anisotropy reductions within these tracts were explained by increased radial diffusivity, which may suggest demyelination of white matter tracts. Mean diffusivity and axial diffusivity did not differ between the groups. Conclusion/interpretation: Our data shows that adolescent obesity alone results in reduced gray matter volume and that adolescent type 2 diabetes is associated with both white and gray matter abnormalities. Keywords: Type 2 diabetes, Obesity, White matter, Gray matter, Demyelination

  18. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Taki

    Full Text Available Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  19. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  20. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry.

    Science.gov (United States)

    Dole, Marjorie; Meunier, Fanny; Hoen, Michel

    2013-01-01

    In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG) and the superior temporal Sulcus (STS) in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution anomalies and the

  1. Restriction Spectrum Imaging As a Potential Measure of Cortical Neurite Density in Autism

    OpenAIRE

    Carper, Ruth A.; Treiber, Jeffrey M.; White, Nathan S.; Kohli, Jiwandeep S.; M?ller, Ralph-Axel

    2017-01-01

    Autism postmortem studies have shown various cytoarchitectural anomalies in cortical and limbic areas including increased cell packing density, laminar disorganization, and narrowed minicolumns. However, there is little evidence on dendritic and axonal organization in ASD. Recent imaging techniques have the potential for non-invasive, in vivo studies of small-scale structure in the human brain, including gray matter. Here, Restriction Spectrum Imaging (RSI), a multi-shell diffusion-weighted i...

  2. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    Science.gov (United States)

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  3. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python

    Directory of Open Access Journals (Sweden)

    Nicolas eRey-Villamizar

    2014-04-01

    Full Text Available In this article, we describe use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis task, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral brain tissue images surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels, 6,000$times$10,000$times$500 voxels with 16 bits/voxel, implying image sizes exceeding 250GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analytics for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment consisting. Our Python script enables efficient data storage and movement between compute and storage servers, logging all processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  4. A systematic review of the measurement properties of the Body Image Scale (BIS) in cancer patients.

    Science.gov (United States)

    Melissant, Heleen C; Neijenhuijs, Koen I; Jansen, Femke; Aaronson, Neil K; Groenvold, Mogens; Holzner, Bernhard; Terwee, Caroline B; van Uden-Kraan, Cornelia F; Cuijpers, Pim; Verdonck-de Leeuw, Irma M

    2018-06-01

    Body image is acknowledged as an important aspect of health-related quality of life in cancer patients. The Body Image Scale (BIS) is a patient-reported outcome measure (PROM) to evaluate body image in cancer patients. The aim of this study was to systematically review measurement properties of the BIS among cancer patients. A search in Embase, MEDLINE, PsycINFO, and Web of Science was performed to identify studies that investigated measurement properties of the BIS (Prospero ID 42017057237). Study quality was assessed (excellent, good, fair, poor), and data were extracted and analyzed according to the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) methodology on structural validity, internal consistency, reliability, measurement error, hypothesis testing for construct validity, and responsiveness. Evidence was categorized into sufficient, insufficient, inconsistent, or indeterminate. Nine studies were included. Evidence was sufficient for structural validity (one factor solution), internal consistency (α = 0.86-0.96), and reliability (r > 0.70); indeterminate for measurement error (information on minimal important change lacked) and responsiveness (increasing body image disturbance in only one study); and inconsistent for hypothesis testing (conflicting results). Quality of the evidence was moderate to low. No studies reported on cross-cultural validity. The BIS is a PROM with good structural validity, internal consistency, and test-retest reliability, but good quality studies on the other measurement properties are needed to optimize evidence. It is recommended to include a wider variety of cancer diagnoses and treatment modalities in these future studies.

  5. 3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation

    Science.gov (United States)

    Chen, Z.; Meng, X.; Guo, L.; Liu, G.

    2011-12-01

    In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and

  6. Regional gray matter density is associated with achievement motivation: evidence from voxel-based morphometry.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yokoyama, Ryoichi; Iizuka, Kunio; Hashizume, Hiroshi; Nakagawa, Seishu; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2014-01-01

    Achievement motivation can be defined as a recurrent need to improve one's past performance. Despite previous functional imaging studies on motivation-related functional activation, the relationship between regional gray matter (rGM) morphology and achievement motivation has never been investigated. We used voxel-based morphometry and a questionnaire (achievement motivation scale) to measure individual achievement motivation and investigated the association between rGM density (rGMD) and achievement motivation [self-fulfillment achievement motivation (SFAM) and competitive achievement motivation (CAM) across the brain in healthy young adults (age 21.0 ± 1.8 years, men (n = 94), women (n = 91)]. SFAM and rGMD significantly and negatively correlated in the orbitofrontal cortex (OFC). CAM and rGMD significantly and positively correlated in the right putamen, insula, and precuneus. These results suggest that the brain areas that play central roles in externally modulated motivation (OFC and putamen) also contribute to SFAM and CAM, respectively, but in different ways. Furthermore, the brain areas in which rGMD correlated with CAM are related to cognitive processes associated with distressing emotions and social cognition, and these cognitive processes may characterize CAM.

  7. A Voxel Based Morphometry Study of Brain Gray Matter Volumes in Juvenile Obsessive Compulsive Disorder.

    Science.gov (United States)

    Jayarajan, Rajan Nishanth; Agarwal, Sri Mahavir; Viswanath, Biju; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Srinath, Shoba; Chandrashekar, C R; Janardhan Reddy, Y C

    2015-01-01

    Adult patients with Obsessive Compulsive Disorder (OCD) have been shown to have gray matter (GM) volume differences from healthy controls in multiple regions - the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), medial frontal gyri (MFG), striatum, thalamus, and superior parietal lobule. However, there is paucity of data with regard to juvenile OCD. Hence, we examined GM volume differences between juvenile OCD patients and matched healthy controls using voxel based morphometry (VBM) with the above apriori regions of interest. Fifteen right handed juvenile patients with OCD and age- sex- handedness- matched healthy controls were recruited after administering the Mini International Neuropsychiatric Interview-KID and the Children's Yale-Brown Obsessive Compulsive Scale, and scanned using a 3 Tesla magnetic resonance imaging scanner. VBM methodology was followed. In comparison with healthy controls, patients had significantly smaller GM volumes in left ACC. YBOCS total score (current) showed significant negative correlation with GM volumes in bilateral OFC, and left superior parietal lobule. These findings while reiterating the important role of the orbito-fronto-striatal circuitry, also implicate in the parietal lobe - especially the superior parietal lobule as an important structure involved in the pathogenesis of OCD.

  8. Probabilities for profitable fungicide use against gray leaf spot in hybrid maize.

    Science.gov (United States)

    Munkvold, G P; Martinson, C A; Shriver, J M; Dixon, P M

    2001-05-01

    ABSTRACT Gray leaf spot, caused by the fungus Cercospora zeae-maydis, causes considerable yield losses in hybrid maize grown in the north-central United States and elsewhere. Nonchemical management tactics have not adequately prevented these losses. The probability of profitably using fungicide application as a management tool for gray leaf spot was evaluated in 10 field experiments under conditions of natural inoculum in Iowa. Gray leaf spot severity in untreated control plots ranged from 2.6 to 72.8% for the ear leaf and from 3.0 to 7.7 (1 to 9 scale) for whole-plot ratings. In each experiment, fungicide applications with propiconazole or mancozeb significantly reduced gray leaf spot severity. Fungicide treatment significantly (P gray leaf spot severity and yield. We used a Bayesian inference method to calculate for each experiment the probability of achieving a positive net return with one or two propiconazole applications, based on the mean yields and standard deviations for treated and untreated plots, the price of grain, and the costs of the fungicide applications. For one application, the probability ranged from approximately 0.06 to more than 0.99, and exceeded 0.50 in six of nine scenarios (specific experiment/hybrid). The highest probabilities occurred in the 1995 experiments with the most susceptible hybrid. Probabilities were almost always higher for a single application of propiconazole than for two applications. These results indicate that a single application of propiconazole frequently can be profitable for gray leaf spot management in Iowa, but the probability of a profitable application is strongly influenced by hybrid susceptibility. The calculation of probabilities for positive net returns was more informative than mean separation in terms of assessing the economic success of the fungicide applications.

  9. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-02-07

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

  10. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-01-01

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893

  11. Auto-Scaling of Geo-Based Image Processing in an OpenStack Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Sanggoo Kang

    2016-08-01

    Full Text Available Cloud computing is a base platform for the distribution of large volumes of data and high-performance image processing on the Web. Despite wide applications in Web-based services and their many benefits, geo-spatial applications based on cloud computing technology are still developing. Auto-scaling realizes automatic scalability, i.e., the scale-out and scale-in processing of virtual servers in a cloud computing environment. This study investigates the applicability of auto-scaling to geo-based image processing algorithms by comparing the performance of a single virtual server and multiple auto-scaled virtual servers under identical experimental conditions. In this study, the cloud computing environment is built with OpenStack, and four algorithms from the Orfeo toolbox are used for practical geo-based image processing experiments. The auto-scaling results from all experimental performance tests demonstrate applicable significance with respect to cloud utilization concerning response time. Auto-scaling contributes to the development of web-based satellite image application services using cloud-based technologies.

  12. The Moral Self-Image Scale: Measuring and Understanding the Malleability of the Moral Self

    Directory of Open Access Journals (Sweden)

    Jennifer eJordan

    2015-12-01

    Full Text Available Recent ethical decision-making models suggest that individuals’ own view of their morality is malleable rather than static, responding to their (immoral actions and reflections about the world around them. Yet no construct currently exists to represent the malleable state of a person’s moral self-image (MSI. In this investigation, we define this construct, as well as develop a scale to measure it. Across five studies, we show that feedback about the moral self alters an individual’s MSI as measured by our scale. We also find that MSI is related to, but distinct from, related constructs, including moral identity, self-esteem, and moral disengagement. In Study 1, we administered the MSI scale and several other relevant scales to demonstrate convergent and discriminant validity. In Study 2, we examine the relationship between the MSI and one’s ought versus ideal self. In Studies 3 and 4, we find that one’s MSI is affected in the predicted directions by manipulated feedback about the moral self, including feedback related to social comparisons of moral behavior (Study 3 and feedback relative to one’s own moral ideal (Study 4. Lastly, Study 5 provides evidence that the recall of one’s moral or immoral behavior alters people’s MSI in the predicted directions. Taken together, these studies suggest that the MSI is malleable and responds to individuals’ moral and immoral actions in the outside world. As such, the MSI is an important variable to consider in the study of moral and immoral behavior.

  13. A novel neural network based image reconstruction model with scale and rotation invariance for target identification and classification for Active millimetre wave imaging

    Science.gov (United States)

    Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad

    2014-12-01

    Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.

  14. Representation of Block-Based Image Features in a Multi-Scale Framework for Built-Up Area Detection

    Directory of Open Access Journals (Sweden)

    Zhongwen Hu

    2016-02-01

    Full Text Available The accurate extraction and mapping of built-up areas play an important role in many social, economic, and environmental studies. In this paper, we propose a novel approach for built-up area detection from high spatial resolution remote sensing images, using a block-based multi-scale feature representation framework. First, an image is divided into small blocks, in which the spectral, textural, and structural features are extracted and represented using a multi-scale framework; a set of refined Harris corner points is then used to select blocks as training samples; finally, a built-up index image is obtained by minimizing the normalized spectral, textural, and structural distances to the training samples, and a built-up area map is obtained by thresholding the index image. Experiments confirm that the proposed approach is effective for high-resolution optical and synthetic aperture radar images, with different scenes and different spatial resolutions.

  15. Investigation of the alteration of gray matter volume in children with mental retardation with the optimal voxel-based morphometry

    International Nuclear Information System (INIS)

    Yuan Xinyu; Xie Sheng; Xiao Jiangxi; Zhang Yuanzhe; Jiang Xuexiang; Jin Chunhua; Bai Zhenhua; Yi Xiaoli

    2011-01-01

    Objective: To detect brain structural difference between children with unexplained mental retardation and children with typically normal development. Methods: The high-resolution magnetic MR imaging were obtained from 21 children with unexplained mental retardation and 30 age-matched control children without intellectual disabilities. Voxel-based morphometry analysis with an optimization of spatial segmentation and normalization procedures were applied to compare differences of gray matter volume between the two groups. The total and regional gray matter volume were compared between the two groups with independent t test. Meanwhile, correlation was conducted to analyze the relationship between the total gray matter volume and intelligence quotient (IQ) with partial correlation test. Results: The total gray matter volume was significantly increased in the mental retardation children (1.012±0.079) × 10 6 mm 3 ] in relative to the controls [(0.956±0.059)×10 6 mm 3 , t=-2.80, P 0.05). Conclusions: VBM would detect the gray matter abnormalities that were not founded in routine MR scanning. The increase of gray matter volume in the frontal-thalamus network might indicate the delayed maturation of the brain development. This might be one of the causations of' mental retardation in children. (authors)

  16. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Kevin [4Quant Ltd., Switzerland & Institute for Biomedical Engineering at University and ETH Zurich (Switzerland); Stampanoni, Marco [Institute for Biomedical Engineering at University and ETH Zurich, Switzerland & Swiss Light Source at Paul Scherrer Institut, Villigen (Switzerland)

    2016-01-28

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures.

  17. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    International Nuclear Information System (INIS)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures

  18. Information fusion for the Gray Zone

    Science.gov (United States)

    Fenstermacher, Laurie

    2016-05-01

    United States Special Operations Command (SOCOM) recently published a white paper describing the "Gray Zone", security challenges characterized by "ambiguity about the nature of the conflict, opacity of the parties involved…competitive interactions among and within state and non-state actors that fall between the traditional war and peace duality."1 Ambiguity and related uncertainty about actors, situations, relationships, and intent require new approaches to information collection, processing and fusion. General Votel, the current SOCOM commander, during a recent speech on "Operating in the Gray Zone" emphasized that it would be important to get left of the next crises and stated emphatically, "to do that we must understand the Human Domain."2 This understanding of the human domain must come from making meaning based on different perspectives, including the "emic" or first person/participant and "etic" or third person/observer perspectives. Much of the information currently collected and processed is etic. Incorporation and fusion with the emic perspective enables forecasting of behaviors/events and provides context for etic information (e.g., video).3 Gray zone challenges are perspective-dependent; for example, the conflict in Ukraine is interpreted quite differently by Russia, the US and Ukraine. Russia views it as war, necessitating aggressive action, the US views it as a security issue best dealt with by economic sanctions and diplomacy and the Ukraine views it as a threat to its sovereignty.4 General Otto in the Air Force ISR 2023 vision document stated that Air Force ISR is needed to anticipate strategic surprise.5 Anticipatory analysis enabling getting left of a crisis inherently requires a greater focus on information sources that elucidate the human environment as well as new methods that elucidate not only the "who's" and "what's", but the "how's and "why's," extracting features and/or patterns and subtle cues useful for forecasting behaviors and

  19. Neurilemmoma of the glans penis: ultrasonography and magnetic resonance imaging findings.

    Science.gov (United States)

    Jung, Dae Chul; Hwang, Sung Il; Jung, Sung Il; Kim, Sun Ho; Kim, Seung Hyup

    2006-01-01

    Neurilemmoma of the glans penis is rare, and no imaging findings have been reported. A case of neurilemmoma of the glans penis is presented. Ultrasonography (US) and magnetic resonance imaging revealed a well-defined small mass in the glans penis. The mass appeared hypoechoic on gray-scale US and hypervascular on color Doppler US. Magnetic resonance imaging revealed high signal intensity of the mass on a T2-weighted image and strong enhancement on a contrast-enhanced T1-weighted image.

  20. Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet.

    Science.gov (United States)

    Li, Yingxuan; Bunes, Benjamin R; Zang, Ling; Zhao, Jie; Li, Yan; Zhu, Yunqing; Wang, Chuanyi

    2016-02-23

    Because of the lack of experimental evidence, much confusion still exists on the nucleation and growth dynamics of a nanostructure, particularly of metal. The situation is even worse for nanodroplets because it is more difficult to induce the formation of a nanodroplet while imaging the dynamic process with atomic resolution. Here, taking advantage of an electron beam to induce the growth of Bi nanodroplets on a SrBi2Ta2O9 platelet under a high resolution transmission electron microscope (HRTEM), we directly observed the detailed growth pathways of Bi nanodroplets from the earliest stage of nucleation that were previously inaccessible. Atomic scale imaging reveals that the dynamics of nucleation involves a much more complex trajectory than previously predicted based on classical nucleation theory (CNT). The monatomic Bi layer was first formed in the nucleation process, which induced the formation of the prenucleated clusters. Following that, critical nuclei for the nanodroplets formed both directly from the addition of atoms to the prenucleated clusters by the classical growth process and indirectly through transformation of an intermediate liquid film based on the Stranski-Krastanov growth mode, in which the liquid film was induced by the self-assembly of the prenucleated clusters. Finally, the growth of the Bi nanodroplets advanced through the classical pathway and sudden droplet coalescence. This study allows us to visualize the critical steps in the nucleation process of an interfacial nanodroplet, which suggests a revision of the perspective of CNT.

  1. Imaging the Chicxulub central crater zone from large scale seismic acoustic wave propagation and gravity modeling

    Science.gov (United States)

    Fucugauchi, J. U.; Ortiz-Aleman, C.; Martin, R.

    2017-12-01

    Large complex craters are characterized by central uplifts that represent large-scale differential movement of deep basement from the transient cavity. Here we investigate the central sector of the large multiring Chicxulub crater, which has been surveyed by an array of marine, aerial and land-borne geophysical methods. Despite high contrasts in physical properties,contrasting results for the central uplift have been obtained, with seismic reflection surveys showing lack of resolution in the central zone. We develop an integrated seismic and gravity model for the main structural elements, imaging the central basement uplift and melt and breccia units. The 3-D velocity model built from interpolation of seismic data is validated using perfectly matched layer seismic acoustic wave propagation modeling, optimized at grazing incidence using shift in the frequency domain. Modeling shows significant lack of illumination in the central sector, masking presence of the central uplift. Seismic energy remains trapped in an upper low velocity zone corresponding to the sedimentary infill, melt/breccias and surrounding faulted blocks. After conversion of seismic velocities into a volume of density values, we use massive parallel forward gravity modeling to constrain the size and shape of the central uplift that lies at 4.5 km depth, providing a high-resolution image of crater structure.The Bouguer anomaly and gravity response of modeled units show asymmetries, corresponding to the crater structure and distribution of post-impact carbonates, breccias, melt and target sediments

  2. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging.

    Science.gov (United States)

    Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten

    2007-10-01

    We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.

  3. Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image

    Science.gov (United States)

    Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun

    2018-02-01

    Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.

  4. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.

  5. GRAPHICS-IMAGE MIXED METHOD FOR LARGE-SCALE BUILDINGS RENDERING

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2018-05-01

    Full Text Available Urban 3D model data is huge and unstructured, LOD and Out-of-core algorithm are usually used to reduce the amount of data that drawn in each frame to improve the rendering efficiency. When the scene is large enough, even the complex optimization algorithm is difficult to achieve better results. Based on the traditional study, a novel idea was developed. We propose a graphics and image mixed method for large-scale buildings rendering. Firstly, the view field is divided into several regions, the graphics-image mixed method used to render the scene on both screen and FBO, then blending the FBO with scree. The algorithm is tested on the huge CityGML model data in the urban areas of New York which contained 188195 public building models, and compared with the Cesium platform. The experiment result shows the system was running smoothly. The experimental results confirm that the algorithm can achieve more massive building scene roaming under the same hardware conditions, and can rendering the scene without vision loss.

  6. Direct imaging of atomic-scale ripples in few-layer graphene.

    Science.gov (United States)

    Wang, Wei L; Bhandari, Sagar; Yi, Wei; Bell, David C; Westervelt, Robert; Kaxiras, Efthimios

    2012-05-09

    Graphene has been touted as the prototypical two-dimensional solid of extraordinary stability and strength. However, its very existence relies on out-of-plane ripples as predicted by theory and confirmed by experiments. Evidence of the intrinsic ripples has been reported in the form of broadened diffraction spots in reciprocal space, in which all spatial information is lost. Here we show direct real-space images of the ripples in a few-layer graphene (FLG) membrane resolved at the atomic scale using monochromated aberration-corrected transmission electron microscopy (TEM). The thickness of FLG amplifies the weak local effects of the ripples, resulting in spatially varying TEM contrast that is unique up to inversion symmetry. We compare the characteristic TEM contrast with simulated images based on accurate first-principles calculations of the scattering potential. Our results characterize the ripples in real space and suggest that such features are likely common in ultrathin materials, even in the nanometer-thickness range.

  7. Auto-Scaling of Geo-Based Image Processing in an OpenStack Cloud Computing Environment

    OpenAIRE

    Sanggoo Kang; Kiwon Lee

    2016-01-01

    Cloud computing is a base platform for the distribution of large volumes of data and high-performance image processing on the Web. Despite wide applications in Web-based services and their many benefits, geo-spatial applications based on cloud computing technology are still developing. Auto-scaling realizes automatic scalability, i.e., the scale-out and scale-in processing of virtual servers in a cloud computing environment. This study investigates the applicability of auto-scaling to geo-bas...

  8. Gray Zone Legislation and Activities: Evaluating the Orchestration of Convergence Within the Gray Zone

    Science.gov (United States)

    2017-06-01

    The Agency and the Hill (Government Printing Office, 2008), 8. 16 Lowenthal, Intelligence . 17 Marshall Erwin, Covert Action: Legislative Background...military and intelligence activities within the Gray Zone and what directs their convergence. More specifically, the author analyzes the...determining convergence or divergence. In the end, classical military theory directs the convergence and divergence of military and intelligence activities

  9. The korean version of the body image scale-reliability and validity in a sample of breast cancer patients.

    Science.gov (United States)

    Khang, Dongwoo; Rim, Hyo-Deog; Woo, Jungmin

    2013-03-01

    The Body Image Scale (BIS) developed in collaboration with the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Study Group is a brief questionnaire for measuring body image concerns in patients with cancer. This study sought to assess the reliability and validity of the Korean version of the Body Image Scale (K-BIS). The participants consisted of 155 postoperative breast cancer patients (56 breast conserving surgery, 56 mastectomy, and 43 oncoplastic surgery). Subjects were evaluated using the K-BIS, the Body-Esteem Scale for Adolescents and Adults (BESAA), the Rosenberg Self-Esteem Scale (RSES), the Hospital Anxiety and Depression Scale (HADS), and the World Health Organization Quality of Life Scale Abbreviated Version (WHOQOL-BREF). Test-retest reliability and internal consistency were examined as a measure of reliability and validity was evaluated by convergent validity, discriminant validity and factor analysis. Cronbach's α value was 0.943. The total score of the K-BIS was negatively correlated with the BESAA (r=0.301, p59% variance. The K-BIS showed good reliability and validity for assessment of body image in Korean breast cancer patients.

  10. Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond

    Directory of Open Access Journals (Sweden)

    A. Ajoy

    2015-01-01

    Full Text Available Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  11. Stress distribution retrieval in granular materials: A multi-scale model and digital image correlation measurements

    Science.gov (United States)

    Bruno, Luigi; Decuzzi, Paolo; Gentile, Francesco

    2016-01-01

    The promise of nanotechnology lies in the possibility of engineering matter on the nanoscale and creating technological interfaces that, because of their small scales, may directly interact with biological objects, creating new strategies for the treatment of pathologies that are otherwise beyond the reach of conventional medicine. Nanotechnology is inherently a multiscale, multiphenomena challenge. Fundamental understanding and highly accurate predictive methods are critical to successful manufacturing of nanostructured materials, bio/mechanical devices and systems. In biomedical engineering, and in the mechanical analysis of biological tissues, classical continuum approaches are routinely utilized, even if these disregard the discrete nature of tissues, that are an interpenetrating network of a matrix (the extra cellular matrix, ECM) and a generally large but finite number of cells with a size falling in the micrometer range. Here, we introduce a nano-mechanical theory that accounts for the-non continuum nature of bio systems and other discrete systems. This discrete field theory, doublet mechanics (DM), is a technique to model the mechanical behavior of materials over multiple scales, ranging from some millimeters down to few nanometers. In the paper, we use this theory to predict the response of a granular material to an external applied load. Such a representation is extremely attractive in modeling biological tissues which may be considered as a spatial set of a large number of particulate (cells) dispersed in an extracellular matrix. Possibly more important of this, using digital image correlation (DIC) optical methods, we provide an experimental verification of the model.

  12. Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging.

    Science.gov (United States)

    Hauptmann, Nadine; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2017-09-13

    Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force with or without the flow of current with a new method, which combines scanning tunneling microscopy and noncontact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nanoskyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to noncollinear magnetic structures for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force that we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both nonperturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

  13. PET MRI Coregistration in Intractable Epilepsy and Gray Matter Heterotopia.

    Science.gov (United States)

    Seniaray, Nikhil; Jain, Anuj

    2017-03-01

    A 25-year-old woman with intractable seizures underwent FDG PET/MRI for seizure focus localization. MRI demonstrated bilateral carpetlike nodular subependymal gray matter and asymmetrical focal dilatation in the right temporal horn. PET/MRI showed increased FDG within subependymal gray matter with significant hypometabolism in right anterior temporal lobe. EEG and ictal semiology confirmed the right temporal seizure origin. This case highlights the importance of identification of gray matter heterotopia on FDG PET/MRI.

  14. Dichromatic Gray Pixel for Camera-agnostic Color Constancy

    OpenAIRE

    Qian, Yanlin; Chen, Ke; Nikkanen, Jarno; Kämäräinen, Joni-Kristian; Matas, Jiri

    2018-01-01

    We propose a novel statistical color constancy method, especially suitable for the Camera-agnostic Color Constancy, i.e. the scenario where nothing is known a priori about the capturing devices. The method, called Dichromatic Gray Pixel, or DGP, relies on a novel gray pixel detection algorithm derived using the Dichromatic Reflection Model. DGP is suitable for camera-agnostic color constancy since varying devices are set to make achromatic pixels look gray under standard neutral illumination....

  15. Segmentation of brain parenchymal regions into gray matter and white matter with Alzheimer's disease

    International Nuclear Information System (INIS)

    Tokunaga, Chiaki; Yoshiura, Takashi; Yamashita, Yasuo; Magome, Taiki; Honda, Hiroshi; Arimura, Hidetaka; Toyofuku, Fukai; Ohki, Masafumi

    2010-01-01

    It is very difficult and time consuming for neuroradiologists to estimate the degree of cerebral atrophy based on the volume of cortical regions etc. Our purpose of this study was to develop an automated segmentation of the brain parenchyma into gray and white matter regions with Alzheimer's disease (AD) in three-dimensional (3D) T1-weighted MR images. Our proposed method consisted of extraction of a brain parenchymal region based on a brain model matching and segmentation of the brain parenchyma into gray and white matter regions based on a fuzzy c-means (FCM) algorithm. We applied our proposed method to MR images of the whole brains obtained from 9 cases, including 4 clinically AD cases and 5 control cases. The mean volume percentage of a cortical region (41.7%) to a brain parenchymal region in AD patients was smaller than that (45.2%) in the control subjects (p=0.000462). (author)

  16. GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal [Department of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2013-11-01

    We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.

  17. Image Denoising And Segmentation Approchto Detect Tumor From BRAINMRI Images

    Directory of Open Access Journals (Sweden)

    Shanta Rangaswamy

    2018-04-01

    Full Text Available The detection of the Brain Tumor is a challenging problem, due to the structure of the Tumor cells in the brain. This project presents a systematic method that enhances the detection of brain tumor cells and to analyze functional structures by training and classification of the samples in SVM and tumor cell segmentation of the sample using DWT algorithm. From the input MRI Images collected, first noise is removed from MRI images by applying wiener filtering technique. In image enhancement phase, all the color components of MRI Images will be converted into gray scale image and make the edges clear in the image to get better identification and improvised quality of the image. In the segmentation phase, DWT on MRI Image to segment the grey-scale image is performed. During the post-processing, classification of tumor is performed by using SVM classifier. Wiener Filter, DWT, SVM Segmentation strategies were used to find and group the tumor position in the MRI filtered picture respectively. An essential perception in this work is that multi arrange approach utilizes various leveled classification strategy which supports execution altogether. This technique diminishes the computational complexity quality in time and memory. This classification strategy works accurately on all images and have achieved the accuracy of 93%.

  18. The greenhouse effect in a gray planetary atmosphere.

    Science.gov (United States)

    Wildt, R.

    1966-01-01

    Hopf analytical solution for values of ratio of gray absorption coefficients for insolating and escaping radiation /greenhouse parameter/ assumed constant at all depths, presenting temperature distribution graphs

  19. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    Science.gov (United States)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new

  20. Gray matter anomalies in pedophiles with and without a history of child sexual offending

    OpenAIRE

    Schiffer, B; Amelung, T; Pohl, A; Kaergel, C; Tenbergen, G; Gerwinn, H; Mohnke, S; Massau, C; Matthias, W; Wei?, S; Marr, V; Beier, K M; Walter, M; Ponseti, J; Kr?ger, T H C

    2017-01-01

    Pedophilia is a psychiatric disorder that is inter-related with but distinct from child sexual offending (CSO). Neural alterations reportedly contribute to both pedophilia and CSO, but until now, no study has distinguished the brain structural anomalies associated with pedophilia from those specifically associated with CSO in pedophilic men. Using high-resolution T1-weighted brain images and voxel-based morphometry, we analyzed the gray matter (GM) volume of the following 219 men recruited at...

  1. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence

    OpenAIRE

    Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d?Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional ...

  2. Image matching for digital close-range stereo photogrammetry based on constraints of Delaunay triangulated network and epipolar-line

    Science.gov (United States)

    Zhang, K.; Sheng, Y. H.; Li, Y. Q.; Han, B.; Liang, Ch.; Sha, W.

    2006-10-01

    In the field of digital photogrammetry and computer vision, the determination of conjugate points in a stereo image pair, referred to as "image matching," is the critical step to realize automatic surveying and recognition. Traditional matching methods encounter some problems in the digital close-range stereo photogrammetry, because the change of gray-scale or texture is not obvious in the close-range stereo images. The main shortcoming of traditional matching methods is that geometric information of matching points is not fully used, which will lead to wrong matching results in regions with poor texture. To fully use the geometry and gray-scale information, a new stereo image matching algorithm is proposed in this paper considering the characteristics of digital close-range photogrammetry. Compared with the traditional matching method, the new algorithm has three improvements on image matching. Firstly, shape factor, fuzzy maths and gray-scale projection are introduced into the design of synthetical matching measure. Secondly, the topology connecting relations of matching points in Delaunay triangulated network and epipolar-line are used to decide matching order and narrow the searching scope of conjugate point of the matching point. Lastly, the theory of parameter adjustment with constraint is introduced into least square image matching to carry out subpixel level matching under epipolar-line constraint. The new algorithm is applied to actual stereo images of a building taken by digital close-range photogrammetric system. The experimental result shows that the algorithm has a higher matching speed and matching accuracy than pyramid image matching algorithm based on gray-scale correlation.

  3. Strategy for magnetic resonance imaging of the head: results of a semi-empirical model. Part 1

    International Nuclear Information System (INIS)

    Droege, R.T.; Wiener, S.N.; Rzeszotarski, M.S.

    1984-01-01

    This paper is an introduction to lesion detection problems of MR. A mathematical model previously developed for normal anatomy has been extended to predict the appearance of any hypothetical lesion in magnetic (MR) images of the head. The model is applied to selected clinical images to demonstrate the loss of lesion visibility attributable to ''crossover'' and ''boundary effect.'' The model is also used to explain the origins of these problems, and to demonstrate that appropriate gray-scale manipulations can remedy these problems

  4. An image based system to automatically and objectivelly score the degreeof redness and scaling in psoriasi lesions

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Ersbøll, Bjarne Kjær; Carstensen, Jens Michael

    2004-01-01

    In this work, a combined statistical and image analysis method to automatically evaluate the severity of scaling in psoriasis lesions is proposed. The method separates the different regions of the disease in the image and scores the degree of scaling based on the properties of these areas. The pr...... that the obtained scores are highly correlated with scores made by doctors. This and the fact that the obtained measures are continuous indicate the proposed method is a suitable tool to evaluate the lesion and to track the evolution of dermatological diseases....

  5. A 1,000 Frames/s Programmable Vision Chip with Variable Resolution and Row-Pixel-Mixed Parallel Image Processors

    Directory of Open Access Journals (Sweden)

    Nanjian Wu

    2009-07-01

    Full Text Available A programmable vision chip with variable resolution and row-pixel-mixed parallel image processors is presented. The chip consists of a CMOS sensor array, with row-parallel 6-bit Algorithmic ADCs, row-parallel gray-scale image processors, pixel-parallel SIMD Processing Element (PE array, and instruction controller. The resolution of the image in the chip is variable: high resolution for a focused area and low resolution for general view. It implements gray-scale and binary mathematical morphology algorithms in series to carry out low-level and mid-level image processing and sends out features of the image for various applications. It can perform image processing at over 1,000 frames/s (fps. A prototype chip with 64 × 64 pixels resolution and 6-bit gray-scale image is fabricated in 0.18 mm Standard CMOS process. The area size of chip is 1.5 mm × 3.5 mm. Each pixel size is 9.5 μm × 9.5 μm and each processing element size is 23 μm × 29 μm. The experiment results demonstrate that the chip can perform low-level and mid-level image processing and it can be applied in the real-time vision applications, such as high speed target tracking.

  6. Three-dimensional imaging of sediment cores: a multi-scale approach

    Science.gov (United States)

    Deprez, Maxim; Van Daele, Maarten; Boone, Marijn; Anselmetti, Flavio; Cnudde, Veerle

    2017-04-01

    Downscaling is a method used in building-material research, where several imaging methods are applied to obtain information on the petrological and petrophysical properties of materials from a centimetre to a sub-micrometre scale (De Boever et al., 2015). However, to reach better resolutions, the sample size is necessarily adjusted as well. If, for instance, X-ray micro computed tomography (µCT) is applied on the material, the resolution can increase as the sample size decreases. In sedimentological research, X-ray computed tomography (CT) is a commonly used technique (Cnudde & Boone, 2013). The ability to visualise materials with different X-ray attenuations reveals structures in sediment cores that cannot be seen with the bare eye. This results in discoveries of sedimentary structures that can lead to a reconstruction of parts of the depositional history in a sedimentary basin (Van Daele et al., 2014). Up to now, most of the CT data used for this kind of research are acquired with a medical CT scanner, of which the highest obtainable resolution is about 250 µm (Cnudde et al., 2006). As the size of most sediment grains is smaller than 250 µm, a lot of information, concerning sediment fabric, grain-size and shape, is not obtained when using medical CT. Therefore, downscaling could be a useful method in sedimentological research. After identifying a region of interest within the sediment core with medical CT, a subsample of several millimetres diameter can be taken and imaged with µCT, allowing images with a resolution of a few micrometres. The subsampling process, however, needs to be considered thoroughly. As the goal is to image the structure and fabric of the sediments, deformation of the sediments during subsampling should be avoided as much as possible. After acquiring the CT data, image processing and analysis are performed in order to retrieve shape and orientation parameters of single grains, mud clasts and organic material. This single-grain data can

  7. Changes in gray matter volume after microsurgical lumbar discectomy: A longitudinal analysis

    Directory of Open Access Journals (Sweden)

    Michael eLuchtmann

    2015-02-01

    Full Text Available People around the world suffer chronic lower back pain. Because spine imaging often does not explain the degree of perceived pain reported by patients, the role of the processing of nociceptor signals in the brain as the basis of pain perception is gaining increased attention. Modern neuroimaging techniques (including functional and morphometric methods have produced results that suggest which brain areas may play a crucial role in the perception of acute and chronic pain. In this study, we examined twelve patients with chronic low back pain and sciatica, both resulting from lumbar disc herniation. Structural magnetic resonance imaging (MRI of the brain was performed one day prior to and about four weeks after microsurgical lumbar discectomy. The subsequent MRI revealed an increase in gray matter volume in the basal ganglia but a decrease in volume in the hippocampus, which suggests the complexity of the network that involves movement, pain processing, and aspects of memory. Interestingly, volume changes in the hippocampus were significantly correlated to preoperative pain intensity but not to the duration of chronic pain. Mapping structural changes of the brain that result from lumbar disc herniation has the potential to enhance our understanding of the neuropathology of chronic low back pain and sciatica and therefore may help to optimize the decisions we make about conservative and surgical treatments in the future. The possibility of illuminating more of the details of central pain processing in lumbar disc herniation, as well as the accompanying personal and economic impact of pain relief worldwide, calls for future large-scale clinical studies.

  8. Assessment of in vivo microstructure alterations in gray matter using DKI in Internet gaming addiction.

    Science.gov (United States)

    Sun, Yawen; Sun, Jinhua; Zhou, Yan; Ding, Weina; Chen, Xue; Zhuang, Zhiguo; Xu, Jianrong; Du, Yasong

    2014-10-24

    The aim of the current study was to investigate the utility of diffusional kurtosis imaging (DKI) in the detection of gray matter (GM) alterations in people suffering from Internet Gaming Addiction (IGA). DKI was applied to 18 subjects with IGA and to 21 healthy controls (HC). Whole-brain voxel-based analyses were performed with the following derived parameters: mean kurtosis metrics (MK), radial kurtosis (K⊥), and axial kurtosis (K//). A significance threshold was set at P Addiction Scale (CIAS) and the DKI-derived metrics of regions that differed between groups. Additionally, we used voxel-based morphometry (VBM) to detect GM-volume differences between the two groups. Compared with the HC group, the IGA group demonstrated diffusional kurtosis parameters that were significantly less in GM of the right anterolateral cerebellum, right inferior and superior temporal gyri, right supplementary motor area, middle occipital gyrus, right precuneus, postcentral gyrus, right inferior frontal gyrus, left lateral lingual gyrus, left paracentral lobule, left anterior cingulate cortex, and median cingulate cortex. The bilateral fusiform gyrus, insula, posterior cingulate cortex (PCC), and thalamus also exhibited less diffusional kurtosis in the IGA group. MK in the left PCC and K⊥ in the right PCC were positively correlated with CIAS scores. VBM showed that IGA subjects had higher GM volume in the right inferior and middle temporal gyri, and right parahippocampal gyrus, and lower GM volume in the left precentral gyrus. The lower diffusional kurtosis parameters in IGA suggest multiple differences in brain microstructure, which may contribute to the underlying pathophysiology of IGA. DKI may provide sensitive imaging biomarkers for assessing IGA severity.

  9. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  10. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    International Nuclear Information System (INIS)

    Cha, Bo Kyung; Jeon, Seongchae; Seo, Chang-Woo

    2016-01-01

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 µm 1-poly/4-metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd_2O_2S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  11. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Bo Kyung, E-mail: goldrain99@kaist.ac.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeon, Seongchae [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, Yonsei University, Gangwon-do 220-710 (Korea, Republic of)

    2016-09-21

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 µm 1-poly/4-metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd{sub 2}O{sub 2}S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  12. Altered gray matter volume and white matter integrity in college students with mobile phone dependence

    Directory of Open Access Journals (Sweden)

    Yongming eWang

    2016-05-01

    Full Text Available Mobile phone dependence (MPD is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI. Gray matter volume (GMV and white matter (WM integrity (four indexes: fractional anisotropy, FA; mean diffusivity, MD; axial diffusivity, AD; and radial diffusivity, RD were calculated via voxel-based morphometry (VBM and tract-based spatial statistics (TBSS analysis, respectively. Sixty-eight college students (42 female were enrolled and separated into two groups (MPD group, N=34; control group, N=34 based on Mobile Phone Addiction Index (MPAI scale score. Trait impulsivity was also measured using the Barrett Impulsivity Scale (BIS-11. In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG, right inferior frontal gyrus (iFG, and bilateral thalamus (Thal. In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of white matter integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH. Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with phone-overuse, and may help to better understand the neural mechanisms of MPD in relation with other behavioral and substance addiction disorders.

  13. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence.

    Science.gov (United States)

    Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d'Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders.

  14. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence

    Science.gov (United States)

    Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d’Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders. PMID:27199831

  15. Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    T. Lahousse

    2011-10-01

    Full Text Available We developed a multi-scale OBIA (object-based image analysis landslide detection technique to map shallow landslides in the Baichi watershed, Taiwan, after the 2004 Typhoon Aere event. Our semi-automated detection method selected multiple scales through landslide size statistics analysis for successive classification rounds. The detection performance achieved a modified success rate (MSR of 86.5% with the training dataset and 86% with the validation dataset. This performance level was due to the multi-scale aspect of our methodology, as the MSR for single scale classification was substantially lower, even after spectral difference segmentation, with a maximum of 74%. Our multi-scale technique was capable of detecting landslides of varying sizes, including very small landslides, up to 95 m2. The method presented certain limitations: the thresholds we established for classification were specific to the study area, to the landslide type in the study area, and to the spectral characteristics of the satellite image. Because updating site-specific and image-specific classification thresholds is easy with OBIA software, our multi-scale technique is expected to be useful for mapping shallow landslides at watershed level.

  16. INTEGRATED IMAGING APPROACHES SUPPORTING THE EXCAVATION ACTIVITIES. MULTI-SCALE GEOSPATIAL DOCUMENTATION IN HIERAPOLIS (TK

    Directory of Open Access Journals (Sweden)

    A. Spanò

    2018-05-01

    Full Text Available The paper focuses on the exploration of the suitability and the discretization of applicability issues about advanced surveying integrated techniques, mainly based on image-based approaches compared and integrated to range-based ones that have been developed with the use of the cutting-edge solutions tested on field. The investigated techniques integrate both technological devices for 3D data acquisition and thus editing and management systems to handle metric models and multi-dimensional data in a geospatial perspective, in order to innovate and speed up the extraction of information during the archaeological excavation activities. These factors, have been experienced in the outstanding site of the Hierapolis of Phrygia ancient city (Turkey, downstream the 2017 surveying missions, in order to produce high-scale metric deliverables in terms of high-detailed Digital Surface Models (DSM, 3D continuous surface models and high-resolution orthoimages products. In particular, the potentialities in the use of UAV platforms for low altitude acquisitions in aerial photogrammetric approach, together with terrestrial panoramic acquisitions (Trimble V10 imaging rover, have been investigated with a comparison toward consolidated Terrestrial Laser Scanning (TLS measurements. One of the main purposes of the paper is to evaluate the results offered by the technologies used independently and using integrated approaches. A section of the study in fact, is specifically dedicated to experimenting the union of different sensor dense clouds: both dense clouds derived from UAV have been integrated with terrestrial Lidar clouds, to evaluate their fusion. Different test cases have been considered, representing typical situations that can be encountered in archaeological sites.

  17. Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis

    Science.gov (United States)

    Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.

    2017-12-01

    The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.

  18. Exact spectrum of non-linear chirp scaling and its application in geosynchronous synthetic aperture radar imaging

    Directory of Open Access Journals (Sweden)

    Chen Qi

    2013-07-01

    Full Text Available Non-linear chirp scaling (NLCS is a feasible method to deal with time-variant frequency modulation (FM rate problem in synthetic aperture radar (SAR imaging. However, approximations in derivation of NLCS spectrum lead to performance decline in some cases. Presented is the exact spectrum of the NLCS function. Simulation with a geosynchronous synthetic aperture radar (GEO-SAR configuration is implemented. The results show that using the presented spectrum can significantly improve imaging performance, and the NLCS algorithm is suitable for GEO-SAR imaging after modification.

  19. Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Matthew S. Devine

    2015-01-01

    Full Text Available Limb weakness in amyotrophic lateral sclerosis (ALS is typically asymmetric. Previous studies have identified an effect of limb dominance on onset and spread of weakness, however relative atrophy of dominant and non-dominant brain regions has not been investigated. Our objective was to use voxel-based morphometry (VBM to explore gray matter (GM asymmetry in ALS, in the context of limb dominance. 30 ALS subjects were matched with 17 healthy controls. All subjects were right-handed. Each underwent a structural MRI sequence, from which GM segmentations were generated. Patterns of GM atrophy were assessed in ALS subjects with first weakness in a right-sided limb (n = 15 or left-sided limb (n = 15. Within each group, a voxelwise comparison was also performed between native and mirror GM images, to identify regions of hemispheric GM asymmetry. Subjects with ALS showed disproportionate atrophy of the dominant (left motor cortex hand area, irrespective of the side of first limb weakness (p < 0.01. Asymmetric atrophy of the left somatosensory cortex and temporal gyri was only observed in ALS subjects with right-sided onset of limb weakness. Our VBM protocol, contrasting native and mirror images, was able to more sensitively detect asymmetric GM pathology in a small cohort, compared with standard methods. These findings indicate particular vulnerability of dominant upper limb representation in ALS, supporting previous clinical studies, and with implications for cortical organisation and selective vulnerability.

  20. Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Devine, Matthew S; Pannek, Kerstin; Coulthard, Alan; McCombe, Pamela A; Rose, Stephen E; Henderson, Robert D

    2015-01-01

    Limb weakness in amyotrophic lateral sclerosis (ALS) is typically asymmetric. Previous studies have identified an effect of limb dominance on onset and spread of weakness, however relative atrophy of dominant and non-dominant brain regions has not been investigated. Our objective was to use voxel-based morphometry (VBM) to explore gray matter (GM) asymmetry in ALS, in the context of limb dominance. 30 ALS subjects were matched with 17 healthy controls. All subjects were right-handed. Each underwent a structural MRI sequence, from which GM segmentations were generated. Patterns of GM atrophy were assessed in ALS subjects with first weakness in a right-sided limb (n = 15) or left-sided limb (n = 15). Within each group, a voxelwise comparison was also performed between native and mirror GM images, to identify regions of hemispheric GM asymmetry. Subjects with ALS showed disproportionate atrophy of the dominant (left) motor cortex hand area, irrespective of the side of first limb weakness (p protocol, contrasting native and mirror images, was able to more sensitively detect asymmetric GM pathology in a small cohort, compared with standard methods. These findings indicate particular vulnerability of dominant upper limb representation in ALS, supporting previous clinical studies, and with implications for cortical organisation and selective vulnerability.

  1. A scanning tunneling microscope capable of imaging specified micron-scale small samples.

    Science.gov (United States)

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt∕Ir wire to an isolated individual 32.5 × 32.5 μm(2) graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.

  2. A scanning tunneling microscope capable of imaging specified micron-scale small samples

    Science.gov (United States)

    Tao, Wei; Cao, Yufei; Wang, Huafeng; Wang, Kaiyou; Lu, Qingyou

    2012-12-01

    We present a home-built scanning tunneling microscope (STM) which allows us to precisely position the tip on any specified small sample or sample feature of micron scale. The core structure is a stand-alone soft junction mechanical loop (SJML), in which a small piezoelectric tube scanner is mounted on a sliding piece and a "U"-like soft spring strip has its one end fixed to the sliding piece and its opposite end holding the tip pointing to the sample on the scanner. Here, the tip can be precisely aligned to a specified small sample of micron scale by adjusting the position of the spring-clamped sample on the scanner in the field of view of an optical microscope. The aligned SJML can be transferred to a piezoelectric inertial motor for coarse approach, during which the U-spring is pushed towards the sample, causing the tip to approach the pre-aligned small sample. We have successfully approached a hand cut tip that was made from 0.1 mm thin Pt/Ir wire to an isolated individual 32.5 × 32.5 μm2 graphite flake. Good atomic resolution images and high quality tunneling current spectra for that specified tiny flake are obtained in ambient conditions with high repeatability within one month showing high and long term stability of the new STM structure. In addition, frequency spectra of the tunneling current signals do not show outstanding tip mount related resonant frequency (low frequency), which further confirms the stability of the STM structure.