WorldWideScience

Sample records for gray cut surface

  1. Remote Laser Cutting of CFRP: Improvements in the Cut Surface

    Science.gov (United States)

    Stock, Johannes; Zaeh, Michael F.; Conrad, Markus

    In the automotive industry carbon fibre reinforced plastics (CFRP) are considered as a future key material to reduce the weight of the vehicle. Therefore, capable production techniques are required to process this material in mass industry. E.g., state of the art methods for cutting are limited by the high tool wear or the feasible feed rate. Laser cutting processes are still under investigation. This paper presents detailed new studies on remote laser cutting of CFRP focusing on the influence of the material properties and the quality of the cut surface. By adding light absorbing soot particles to the resin of the matrix, the cutting process is improved and fewer defects emerge.

  2. Rooting of jade vine (Strongylodon macrobotrys A. Gray cuttings treated with indolbutiric acid

    Directory of Open Access Journals (Sweden)

    Fabiana Rezende Muniz

    2015-12-01

    Full Text Available The jade vine (Strongylodon macrobotrys A. Gray, is native plant from Philippines. It has long blue-green pseudoracemes inflorescence, which makes it unique and incomparable. It is considered one of the most admired and sought vines, although rare in gardens. This study evaluated the effect of indolbutiric acid (IBA on the stalks rooting of this ornamental specie. Stem cuttings without leaves and with a couple of leaves cut in half, were collected from branches of a well developed jade vine plant and were immerged into dipping solutions with a concentration range of IBA (0, 500, 1.000, 2.000 and 4.000 mg L-1 for 15 seconds. Subsequently, the bases of the cuttings was planted in polystyrene trays containing vermiculite (one cutting per cell and maintained in an intermittent water mist chamber for a 80 days period. Then the percentage of stem rooting was assessed as well as the number of roots and the length of the main root. Jade vine plants can be produced byr stem cutting treated in a dipping solution containing an IBA concentration of 2.000 mg L-1.

  3. Craterlike structures on the laser cut surface

    Science.gov (United States)

    Shulyatyev, V. B.; Orishich, A. M.

    2017-10-01

    Analysis of the laser cut surface morphology remain topical. It is related with the fact that the surface roughness is the main index of the cut quality. The present paper deals with the experimental study of the relatively unstudied type of defects on the laser cut surface, dimples, or craters. According to the measurement results, amount of craters per unit of the laser cut surface area rises as the sheet thickness rises. The crater diameter rises together with the sheet thickness and distance from the upper sheet edge. The obtained data permit concluding that the defects like craters are observed predominantly in the case of thick sheets. The results agree with the hypothesis of crater formation as impact structures resulting from the melt drops getting on the cut channel walls upon separation from the cut front by the gas flow.

  4. Surface Detection using Round Cut

    DEFF Research Database (Denmark)

    Dahl, Vedrana Andersen; Dahl, Anders Bjorholm; Larsen, Rasmus

    2014-01-01

    similar adaptations for triangle meshes, our method is capable of capturing complex geometries by iteratively refining the surface, where we obtain a high level of robustness by applying explicit mesh processing to intermediate results. Our method uses on-surface data support, but it also exploits data...

  5. Laser welding, cutting and surface treatment

    International Nuclear Information System (INIS)

    Crafer, R.C.

    1984-01-01

    Fourteen articles cover a wide range of laser applications in welding, cutting and surface treatment. Future trends are covered as well as specific applications in shipbuilding, the manufacture of heart pacemakers, in the electronics industry, in automobile production and in the aeroengine industry. Safety with industrial lasers and the measurement of laser beam parameters are also included. One article on 'Lasers in the Nuclear Industry' is indexed separately. (U.K.)

  6. [Surface electromyography signal classification using gray system theory].

    Science.gov (United States)

    Xie, Hongbo; Ma, Congbin; Wang, Zhizhong; Huang, Hai

    2004-12-01

    A new method based on gray correlation was introduced to improve the identification rate in artificial limb. The electromyography (EMG) signal was first transformed into time-frequency domain by wavelet transform. Singular value decomposition (SVD) was then used to extract feature vector from the wavelet coefficient for pattern recognition. The decision was made according to the maximum gray correlation coefficient. Compared with neural network recognition, this robust method has an almost equivalent recognition rate but much lower computation costs and less training samples.

  7. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  8. Generation Mechanism of Work Hardened Surface Layer in Metal Cutting

    Science.gov (United States)

    Hikiji, Rikio; Kondo, Eiji; Kawagoishi, Norio; Arai, Minoru

    Finish machining used to be carried out in grinding, but it is being replaced by cutting with very small undeformed chip thickness. In ultra precision process, the effects of the cutting conditions and the complicated factors on the machined surface integrity are the serious problems. In this research, work hardened surface layer was dealt with as an evaluation of the machined surface integrity and the effect of the mechanical factors on work hardening was investigated experimentally in orthogonal cutting. As a result, it was found that work hardened surface layer was affected not only by the shear angle varied under the cutting conditions and the thrust force of cutting resistance, but also by the thrust force acting point, the coefficient of the thrust force and the compressive stress equivalent to the bulk hardness. Furthermore, these mechanical factors acting on the depth of the work hardened surface layer were investigated with the calculation model.

  9. Trim cut machining and surface integrity analysis of Nimonic 80A alloy using wire cut EDM

    Directory of Open Access Journals (Sweden)

    Amitesh Goswami

    2017-02-01

    Full Text Available This present work deals with the features of trim cut wire EDM machining of Nimonic 80A in terms of machining parameters, to predict material removal rate (MRR, surface roughness (Ra, wire wear ratio (WWR and microstructure analysis. Trim cut is performed after rough cut to remove the rough layer deposited after machining due to melting and re-solidification of the eroded metal from workpiece as well as from wire electrode. Taguchi’s design of experiments methodology has been used for planning and designing the experiments. The relative significance of various factors has also been evaluated and analyzed using ANOVA. The results clearly indicate trim cut potential for high surface finish compared to rough cut machining.

  10. Surface dimpling on rotating work piece using rotation cutting tool

    Science.gov (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  11. Sodium-cutting: a new top-down approach to cut open nanostructures on nonplanar surfaces on a large scale.

    Science.gov (United States)

    Chen, Wei; Deng, Da

    2014-11-11

    We report a new, low-cost and simple top-down approach, "sodium-cutting", to cut and open nanostructures deposited on a nonplanar surface on a large scale. The feasibility of sodium-cutting was demonstrated with the successfully cutting open of ∼100% carbon nanospheres into nanobowls on a large scale from Sn@C nanospheres for the first time.

  12. Side Flow Effect on Surface Generation in Nano Cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} , {110} , and {110}  are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  13. SurfCut: Free-Boundary Surface Extraction

    KAUST Repository

    Algarni, Marei Saeed Mohammed; Sundaramoorthi, Ganesh

    2016-01-01

    We present SurfCut, an algorithm for extracting a smooth simple surface with unknown boundary from a noisy 3D image and a seed point. In contrast to existing approaches that extract smooth simple surfaces with boundary, our method requires less user

  14. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2018-03-05

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  15. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2017-04-30

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy 3D image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  16. SurfCut: Free-Boundary Surface Extraction

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2016-09-15

    We present SurfCut, an algorithm for extracting a smooth simple surface with unknown boundary from a noisy 3D image and a seed point. In contrast to existing approaches that extract smooth simple surfaces with boundary, our method requires less user input, i.e., a seed point, rather than a 3D boundary curve. Our method is built on the novel observation that certain ridge curves of a front propagated using the Fast Marching algorithm are likely to lie on the surface. Using the framework of cubical complexes, we design a novel algorithm to robustly extract such ridge curves and form the surface of interest. Our algorithm automatically cuts these ridge curves to form the surface boundary, and then extracts the surface. Experiments show the robustness of our method to errors in the data, and that we achieve higher accuracy with lower computational cost than comparable methods. © Springer International Publishing AG 2016.

  17. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed; Sundaramoorthi, Ganesh

    2018-01-01

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  18. Effect of laser cutting parameters on surface roughness of stainless steel 307

    Directory of Open Access Journals (Sweden)

    Amal NASSAR

    2016-12-01

    Full Text Available Optimal parameters of laser cutting are an important step to improve surface quality of cutting edge in the laser cutting of stainless steel 307. This paper presents a new approach for optimizing the cutting parameters on stainless steel. Based on 33 full factorial experimental design, cutting experiments were conducted for stainless steel 307 plates using a laser machine (AMADA FONT 3015. The cutting parameters such as, cutting speed, cutting power and gas pressure are optimized for maximizing surface quality. The results indicated that cutting power and cutting speed play an important role in surface quality.

  19. Cutting

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Cutting KidsHealth / For Teens / Cutting What's in this article? ... Getting Help Print en español Cortarse What Is Cutting? Emma's mom first noticed the cuts when Emma ...

  20. The Effect of Muscle Fiber Direction on the Cut Surface Angle of Frozen Fish Muscular Tissue Cut by Bending Force

    OpenAIRE

    岡本, 清; 羽倉, 義雄; 鈴木, 寛一; 久保田, 清

    1996-01-01

    We have proposed a new cutting method named "Cryo-cutting" for frozen foodstuffs by applying a bending force instead of conventional cutting methods with band saw. This paper investigated the effect of muscle fiber angle (θf) to cut surface angle (θs) of frozen tuna muscular tissue at -70, -100 and -130°C for the purpose of evaluating the applicability of the cryo-cutting method to frozen fishes. The results were as follows : (1) There were two typical cutting patterns ("across the muscle fib...

  1. Surface effect theory in binary alloys: surfaces with cut-off

    International Nuclear Information System (INIS)

    Kumar, V.; Silva, C.E.T.G. da; Moran-Lopez, J.L.

    1981-01-01

    A surface effect theory in binary alloys which ore ordered with surfaces with cut-off is presented. This theory is based in a model of pair interaction between first neighbours and includes long and short range effects. The (120) surface with sup(-) (110) monoatomic cut-off and terrace in the (110) planes of an alloy with body centered cubic structure is presented as example. Results for the concentrations in all the different surface sites are given. (L.C.) [pt

  2. Surface-based reconstruction and diffusion MRI in the assessment of gray and white matter damage in multiple sclerosis

    Science.gov (United States)

    Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe

    2014-03-01

    Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.

  3. Forces, surface finish and friction characteristics in surface engineered single- and multiple-point cutting edges

    International Nuclear Information System (INIS)

    Sarwar, M.; Gillibrand, D.; Bradbury, S.R.

    1991-01-01

    Advanced surface engineering technologies (physical and chemical vapour deposition) have been successfully applied to high speed steel and carbide cutting tools, and the potential benefits in terms of both performance and longer tool life, are now well established. Although major achievements have been reported by many manufacturers and users, there are a number of applications where surface engineering has been unsuccessful. Considerable attention has been given to the film characteristics and the variables associated with its properties; however, very little attention has been directed towards the benefits to the tool user. In order to apply surface engineering technology effectively to cutting tools, the coater needs to have accurate information relating to cutting conditions, i.e. cutting forces, stress and temperature etc. The present paper describes results obtained with single- and multiple-point cutting tools with examples of failures, which should help the surface coater to appreciate the significance of the cutting conditions, and in particular the magnitude of the forces and stresses present during cutting processes. These results will assist the development of a systems approach to cutting tool technology and surface engineering with a view to developing an improved product. (orig.)

  4. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    Science.gov (United States)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new

  5. Anatomical abnormalities in gray and white matter of the cortical surface in persons with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tiziano Colibazzi

    Full Text Available Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM and white matter (WM disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.

  6. Application of response surface methodology for determining cutting ...

    Indian Academy of Sciences (India)

    The results indicate that the depth of cut is the dominant factor affecting cutting ... between forces and cutting regime could be represented by power function type ..... CNEPRU Research Project, CODE : 0301520090008 (University of Guelma).

  7. Effect of cutting fluids and cutting conditions on surface integrity and tool wear in turning of Inconel 713C

    Science.gov (United States)

    Hikiji, R.

    2018-01-01

    The trend toward downsizing of engines helps to increase the number of turbochargers around Europe. As for the turbocharger, the temperature of the exhaust gas is so high that the parts made of nickel base super alloy Inconel 713C are used as high temperature strength metals. External turning of Inconel 713C which is used as the actual automotive parts was carried out. The effect of the cutting fluids and cutting conditions on the surface integrity and tool wear was investigated, considering global environment and cost performance. As a result, in the range of the cutting conditions used this time, when the depth of cut was small, the good surface integrity and tool life were obtained. However, in the case of the large corner radius, it was found that the more the cutting length increased, the more the tool wear increased. When the cutting length is so large, the surface integrity and tool life got worse. As for the cutting fluids, it was found that the synthetic type showed better performance in the surface integrity and tool life than the conventional emulsion. However, it was clear that the large corner radius made the surface roughness and tool life good, but it affected the size error etc. in machining the workpiece held in a cantilever style.

  8. Multi-Criteria Analysis of Laser Cut Surface Characteristics in CO2 Laser Cutting of Stainless Steel

    Directory of Open Access Journals (Sweden)

    M. Radovanović

    2015-06-01

    Full Text Available In this paper an approach for multi-criteria analysis of laser cut surface characteristics using multi-criteria decision making (MCDM approach was presented. Laser cutting experiment was conducted based on Taguchi’s L27 experimental design by varying laser power, cutting speed, assist gas pressure and focus position at three levels. Multi-criteria analysis was performed by using the weighted aggregated sum product assessment (WASPAS method while considering burr height, drag line separation, depth of separation line, surface roughness and perpendicularity of the cut as assessment criteria. Based on conducted experimental investigation the MCDM model with 27 alternatives (laser cuts and five criteria was developed. The relative importance of criteria was determined by using pair-wise comparison matrix and geometric mean method of the analytic hierarchy process (AHP method.

  9. Light Gray Surface-Gleyed Loamy Sandy Soils of the Northern Part of Tambov Plain: Agroecology, Properties, and Diagnostics

    Science.gov (United States)

    Zaidel'man, F. R.; Stepantsova, L. V.; Nikiforova, A. S.; Krasin, V. N.; Dautokov, I. M.; Krasina, T. V.

    2018-04-01

    Light gray soils of Tambov oblast mainly develop from sandy and loamy sandy parent materials; these are the least studied soils in this region. Despite their coarse texture, these soils are subjected to surface waterlogging. They are stronger affected by the agrogenic degradation in comparison with chernozems and dark gray soils. Morphology, major elements of water regime, physical properties, and productivity of loamy sandy light gray soils with different degrees of gleyzation have been studied in the northern part of Tambov Plain in order to substantiate the appropriate methods of their management. The texture of these soils changes at the depth of 70-100 cm. The upper part is enriched in silt particles (16-30%); in the lower part, the sand content reaches 80-85%. In the nongleyed variants, middle-profile horizons contain thin iron-cemented lamellae (pseudofibers); in surface-gleyed variants, iron nodules are present in the humus horizon. The removal of clay from the humus horizon and its accumulation at the lithological contact and in pseudofibers promote surface subsidence and formation of microlows in the years with moderate and intense winter precipitation. The low range of active moisture favors desiccation of the upper horizons to the wilting point in dry years. The yield of cereal crops reaches 3.5-4.5 t/ha in the years with high and moderate summer precipitation on nongleyed and slightly gleyed light gray soils and decreases by 20-50% on strongly gleyed light gray soils. On light gray soils without irrigation, crop yields are unstable, and productivity of pastures is low. High yields of cereals and vegetables can be obtained on irrigated soils. In this case, local drainage measures should be applied to microlows; liming can be recommended to improve soil productivity.

  10. Relation between Cutting Surface Quality and Alloying Element Contents when Using a CO2 Laser

    Directory of Open Access Journals (Sweden)

    J. Litecká

    2011-01-01

    Full Text Available This paper deals with the influence of material content on changes in the quality parameters of the cutting surface when cutting with a laser. The study focuses on experiments to find the effect of material structure and cutting parameters on surface roughness, Vickers microhardness and precision of laser cutting. The experimental results are shown in graphs which illustrate the suitability of materials for achieving required cutting surface quality parameters. These results can be used for optimizing production in practical applications using a laser cutting machine.

  11. Cross-cutting Relationships of Surface Features on Europa

    Science.gov (United States)

    1997-01-01

    This image of Jupiter's moon Europa shows a very complex terrain of ridges and fractures. The absence of large craters and the low number of small craters indicates that this surface is geologically young. The relative ages of the ridges can be determined by using the principle of cross-cutting relationships; i.e. older features are cross-cut by younger features. Using this principle, planetary geologists are able to unravel the sequence of events in this seemingly chaotic terrain to unfold Europa's unique geologic history.The spacecraft Galileo obtained this image on February 20, 1997. The area covered in this image is approximately 11 miles (18 kilometers) by 8.5 miles (14 kilometers) across, near 15 North, 273 West. North is toward the top of the image, with the sun illuminating from the right.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  12. Surface roughness and cutting force estimation in the CNC turning using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2015-04-01

    Full Text Available Surface roughness and cutting forces are considered as important factors to determine machinability rate and the quality of product. A number of factors like cutting speed, feed rate, depth of cutting and tool noise radius influence the surface roughness and cutting forces in turning process. In this paper, an Artificial Neural Network (ANN model was used to forecast surface roughness and cutting forces with related inputs, including cutting speed, feed rate, depth of cut and tool noise radius. The machined surface roughness and cutting force parameters related to input parameters are the outputs of the ANN model. In this work, 24 samples of experimental data were used to train the network. Moreover, eight other experimental tests were implemented to test the network. The study concludes that ANN was a reliable and accurate method for predicting machining parameters in CNC turning operation.

  13. Influence of the surface layer characteristics on the regularities of the cutting process

    Directory of Open Access Journals (Sweden)

    Krainev Dmitriy V.

    2017-01-01

    Full Text Available The article considers the influence of the surface layer characteristics on the regularities of the cutting process and the formation of the quality of the surface machined. This effect has been confirmed by the study results of the combined cutting method with advanced plastic deformation (APD. The work estimates the impact of the change in the surface layer properties on the forces and temperature of cutting, stability of the chip formation and quality parameters of the surface machined.

  14. Comparison of Dorris-Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography.

    Science.gov (United States)

    Shi, Baoli; Wang, Yue; Jia, Lina

    2011-02-11

    Inverse gas chromatography (IGC) is an important technique for the characterization of surface properties of solid materials. A standard method of surface characterization is that the surface dispersive free energy of the solid stationary phase is firstly determined by using a series of linear alkane liquids as molecular probes, and then the acid-base parameters are calculated from the dispersive parameters. However, for the calculation of surface dispersive free energy, generally, two different methods are used, which are Dorris-Gray method and Schultz method. In this paper, the results calculated from Dorris-Gray method and Schultz method are compared through calculating their ratio with their basic equations and parameters. It can be concluded that the dispersive parameters calculated with Dorris-Gray method will always be larger than the data calculated with Schultz method. When the measuring temperature increases, the ratio increases large. Compared with the parameters in solvents handbook, it seems that the traditional surface free energy parameters of n-alkanes listed in the papers using Schultz method are not enough accurate, which can be proved with a published IGC experimental result. © 2010 Elsevier B.V. All rights reserved.

  15. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    Science.gov (United States)

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.

  16. Surface texture generation during cylindrical milling in the aspect of cutting force variations

    International Nuclear Information System (INIS)

    Wojciechowski, S; Twardowski, P; Pelic, M

    2014-01-01

    The work presented here concentrates on surface texture analysis, after cylindrical milling of hardened steel. Cutting force variations occurring in the machining process have direct influence on the cutter displacements and thus on the generated surface texture. Therefore, in these experiments, the influence of active number of teeth (z c ) on the cutting force variations was investigated. Cutting forces and cutter displacements were measured during machining process (online) using, namely piezoelectric force dynamometer and 3D laser vibrometer. Surface roughness parameters were measured using stylus surface profiler. The surface roughness model including cutting parameters (f z , D) and cutting force variations was also developed. The research revealed that in cylindrical milling process, cutting force variations have immediate influence on surface texture generation

  17. SURFACE ROUGHNESS AND CUTTING FORCES IN CRYOGENIC TURNING OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    T. C. YAP

    2015-07-01

    Full Text Available The effect of cryogenic liquid nitrogen on surface roughness, cutting forces, and friction coefficient of the machined surface when machining of carbon steel S45C in wet, dry and cryogenic condition was studied through experiments. The experimental results show that machining with liquid nitrogen increases the cutting forces, reduces the friction coefficient, and improves the chips produced. Beside this, conventional machining with cutting fluid is still the most suitable method to produce good surface in high speed machining of carbon steel S45C whereas dry machining produced best surface roughness in low speed machining. Cryogenic machining is not able to replace conventional cutting fluid in turning carbon steel.

  18. AN ARTIFICIAL INTELLIGENCE APPROACH FOR THE PREDICTION OF SURFACE ROUGHNESS IN CO2 LASER CUTTING

    Directory of Open Access Journals (Sweden)

    MILOŠ MADIĆ

    2012-12-01

    Full Text Available In laser cutting, the cut quality is of great importance. Multiple non-linear effects of process parameters and their interactions make very difficult to predict cut quality. In this paper, artificial intelligence (AI approach was applied to predict the surface roughness in CO2 laser cutting. To this aim, artificial neural network (ANN model of surface roughness was developed in terms of cutting speed, laser power and assist gas pressure. The experimental results obtained from Taguchi’s L25 orthogonal array were used to develop ANN model. The ANN mathematical model of surface roughness was expressed as explicit nonlinear function of the selected input parameters. Statistical results indicate that the ANN model can predict the surface roughness with good accuracy. It was showed that ANNs may be used as a good alternative in analyzing the effects of cutting parameters on the surface roughness.

  19. Optimization of CO2 Laser Cutting Process using Taguchi and Dual Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Madić

    2014-09-01

    Full Text Available Selection of optimal cutting parameter settings for obtaining high cut quality in CO2 laser cutting process is of great importance. Among various analytical and experimental optimization methods, the application of Taguchi and response surface methodology is one of most commonly used for laser cutting process optimization. Although the concept of dual response surface methodology for process optimization has been used with success, till date, no experimental study has been reported in the field of laser cutting. In this paper an approach for optimization of CO2 laser cutting process using Taguchi and dual response surface methodology is presented. The goal was to determine the near optimal laser cutting parameter values in order to ensure robust condition for minimization of average surface roughness. To obtain experimental database for development of response surface models, Taguchi’s L25 orthogonal array was implemented for experimental plan. Three cutting parameters, the cutting speed (3, 4, 5, 6, 7 m/min, the laser power (0.7, 0.9, 1.1, 1.3, 1.5 kW, and the assist gas pressure (3, 4, 5, 6, 7 bar, were used in the experiment. To obtain near optimal cutting parameters settings, multi-stage Monte Carlo simulation procedure was performed on the developed response surface models.

  20. Influence of Cooling Lubricants on the Surface Roughness and Energy Efficiency of the Cutting Machine Tools

    Directory of Open Access Journals (Sweden)

    Jersák J.

    2017-08-01

    Full Text Available The Technical University of Liberec and Brandenburg University of Technology Cottbus-Senftenberg investigated the influence of cooling lubricants on the surface roughness and energy efficiency of cutting machine tools. After summarizing the achieved experimental results, the authors conclude that cooling lubricants extensively influence the cutting temperature, cutting forces and energy consumption. Also, it is recognizable that cooling lubricants affect the cutting tools lifetime and the workpiece surface quality as well. Furthermore, costs of these cooling lubricants and the related environmental burden need to be considered. A current trend is to reduce the amount of lubricants that are used, e.g., when the Minimum Quantity Lubrication (MQL technique is applied. The lubricant or process liquid is thereby transported by the compressed air in the form of an aerosol to the contact area between the tool and workpiece. The cutting process was monitored during testing by the three following techniques: lubricant-free cutting, cutting with the use of a lubricant with the MQL technique, and only utilizing finish-turning and finish-face milling. The research allowed the authors to monitor the cutting power and mark the achieved surface quality in relation to the electrical power consumption of the cutting machine. In conclusions, the coherence between energy efficiency of the cutting machine and the workpiece surface quality regarding the used cooling lubricant is described.

  1. Statistical analysis of surface roughness in turning based on cutting parameters and tool vibrations with response surface methodology (RSM)

    Science.gov (United States)

    Touati, Soufiane; Mekhilef, Slimane

    2018-03-01

    In this paper, we present an experimental study to determine the effect of the cutting conditions and tool vibration on the surface roughness in finish turning of 32CrMoV12-28 steel, using carbide cutting tool YT15. For these purposes, a linear quadratic model in interaction of connecting surface roughness (Ra, Rz) with different combinations of cutting parameters such as cutting speed, feed rate, depth of cut and tool vibration, in radial and in tangential cutting force directions (Vy) and (Vz) is elaborated. In order to express the degree of interaction of cutting parameters and tool vibration, a multiple linear regression and response surface methodology are adopted. The application of this statistical technique for predicting the surface roughness shows that the feed rate is the most dominant factor followed by the cutting speed. However, the depth of the cut and tool vibrations have secondary effect. The presented models have some interest since they are used in the cutting process optimization.

  2. Correlation between Surface Roughness Characteristics in CO2 Laser Cutting of Mild Steel

    Directory of Open Access Journals (Sweden)

    M. Radovanović

    2012-12-01

    Full Text Available CO2 laser oxygen cutting of mild steel is widely used industrial application. Cut surface quality is a very important characteristic of laser cutting that ensures an advantage over other contour cutting processes. In this paper mathematical models for estimating characteristics of surface quality such as average surface roughness and ten-point mean roughness in CO2 laser cutting of mild steel based on laser cutting parameters were developed. Empirical models were developed using artificial neural networks and experimental data collected. Taguchi’s orthogonal array was implemented for experimental plan. From the analysis of the developed mathematical models it was observed that functional dependence between laser cutting parameters, their interactions and surface roughness characteristics is complex and non-linear. It was also observed that there exist region of minimal average surface roughness to ten-point mean roughness ratio. The relationship between average surface roughness and ten-point mean roughness was found to be nonlinear and can be expressed with a second degree polynomial.

  3. Surface quality finish in laser cutting using Taguchi design

    Czech Academy of Sciences Publication Activity Database

    Sharma, V.; Chattopadhyaya, S.; Hloch, Sergej

    2017-01-01

    Roč. 24, č. 1 (2017), s. 15-19 ISSN 1330-3651 Institutional support: RVO:68145535 Keywords : cutting speed * factorial design * laser pulse width * orthogonal array * pulse repetition rate (PRR) or pulse frequency Subject RIV: JQ - Machines ; Tools OBOR OECD: Mechanical engineering Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=257818

  4. EFFECT OF PLASMA CUTTING PARAMETERS UPON SHAPES OF BEARING CURVE OF C45 STEEL SURFACE

    Directory of Open Access Journals (Sweden)

    Agnieszka Skoczylas

    2015-08-01

    Full Text Available The article presents the results of studies on the effect of plasma cutting technological parameters upon the shape of bearing curves and the parameters of the curve. The topography of surface formed by plasma cutting were analyzed. For measuring surface roughness and determining the bearing curve the appliance T8000 RC120 – 400 by Hommel-Etamic was used together with software.

  5. Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong

    2017-12-01

    The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}, {110}, and {111}, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.

  6. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    International Nuclear Information System (INIS)

    Fu, C.H.; Liu, J.F.; Guo, Andrew

    2015-01-01

    Graphical abstract: - Highlights: • Precision kerf with tight tolerance of Nitinol stents can be cut by fiber laser. • No HAZ in the subsurface was detected due to large grain size. • Recast layer has lower hardness than the bulk. • Laser cutting speed has a higher influence on surface integrity than laser power. - Abstract: Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  7. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    Energy Technology Data Exchange (ETDEWEB)

    Fu, C.H., E-mail: cfu5@crimson.ua.edu [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Liu, J.F. [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Guo, Andrew [Dept of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); College of Arts and Science, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-10-30

    Graphical abstract: - Highlights: • Precision kerf with tight tolerance of Nitinol stents can be cut by fiber laser. • No HAZ in the subsurface was detected due to large grain size. • Recast layer has lower hardness than the bulk. • Laser cutting speed has a higher influence on surface integrity than laser power. - Abstract: Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  8. On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert

    Directory of Open Access Journals (Sweden)

    Hessainia Zahia

    2015-04-01

    Full Text Available This paper focuses on the exploitation of the response surface methodology (RSM to determine optimum cutting conditions leading to minimum surface roughness and cutting force components. The technique of RSM helps to create an efficient statistical model for studying the evolution of surface roughness and cutting forces according to cutting parameters: cutting speed, feed rate and depth of cut. For this purpose, turning tests of hardened steel alloy (AISI 4140 (56 HRC were carried out using PVD – coated ceramic insert under different cutting conditions. The equations of surface roughness and cutting forces were achieved by using the experimental data and the technique of the analysis of variance (ANOVA. The obtained results are presented in terms of mean values and confidence levels. It is shown that feed rate and depth of cut are the most influential factors on surface roughness and cutting forces, respectively. In addition, it is underlined that the surface roughness is mainly related to the cutting speed, whereas depth of cut has the greatest effect on the evolution of cutting forces. The optimal machining parameters obtained in this study represent reductions about 6.88%, 3.65%, 19.05% in cutting force components (Fa, Fr, Ft, respectively. The latters are compared with the results of initial cutting parameters for machining AISI 4140 steel in the hard turning process.

  9. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  10. Bone cutting capacity and osseointegration of surface-treated orthodontic mini-implants.

    Science.gov (United States)

    Kim, Ho-Young; Kim, Sang-Cheol

    2016-11-01

    The objective of the study was to evaluate the practicality and the validity of different surface treatments of self-drilling orthodontic mini-implants (OMIs) by comparing bone cutting capacity and osseointegration. Self-drilling OMIs were surface-treated in three ways: Acid etched (Etched), resorbable blasting media (RBM), partially resorbabla balsting media (Hybrid). We compared the bone cutting capacity by measuring insertion depths into artificial bone (polyurethane foam). To compare osseointegration, OMIs were placed in the tibia of 25 rabbits and the removal torque value was measured at 1, 2, 4, and 8 weeks after placement. The specimens were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The bone cutting capacity of the etched and hybrid group was lower than the machined (control) group, and was most inhibited in the RBM group ( p drilling OMIs, without a corresponding reduction in bone cutting capacity.

  11. Influence of cutting data on surface quality when machining 17-4 PH stainless steel

    Science.gov (United States)

    Popovici, T. D.; Dijmărescu, M. R.

    2017-08-01

    The aim of the research presented in this paper is to analyse the cutting data influence upon surface quality for 17-4 PH stainless steel milling machining. The cutting regime parameters considered for the experiments were established using cutting regimes from experimental researches or from industrial conditions as basis, within the recommended ranges. The experimental program structure was determined by taking into account compatibility and orthogonality conditions, minimal use of material and labour. The machined surface roughness was determined by measuring the Ra roughness parameter, followed by surface profile registration in the form of graphics which were saved on a computer with MarSurf PS1Explorer software. Based on Ra roughness parameter, maximum values were extracted from these graphics and the influence charts of the cutting regime parameters upon surface roughness were traced using Microsoft Excel software. After a thorough analysis of the resulting data, relevant conclusions were drawn, presenting the interdependence between the surface roughness of the machined 17-4 PH samples and the cutting data variation.

  12. Cutting a drop of water pinned by wire loops using a superhydrophobic surface and knife.

    Directory of Open Access Journals (Sweden)

    Ryan Yanashima

    Full Text Available A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.

  13. Performance improvement studies for cutting tools with perforated surface in turning of titanium alloy

    Directory of Open Access Journals (Sweden)

    Charitha Rao

    2018-01-01

    Full Text Available In turning process, the cutting tool is essential for shaping materials. The cutting tools with various perforated surfaces help to increase the cutting tool life. Also, advances in CNC machining technologies have enhanced the productivity of machining process. One of the best or futuristic approaches in modern manufacturing engineering is the use of FEM Simulation for the metal cutting process. FEM simulation helps in understanding the metal deformation process and also helps in the reduction of experiments. The simulation helps the researchers to predict the major influencing cutting variable values without carrying out any experiment which is time-consuming and expensive. This research presents the simulation study of the performance of micro-hole patterned Polycrystalline Diamond cutting insert in machining Titanium alloy (Ti-6Al-4V. Micro-holes are drilled using Electrical Discharge Wire Drilling machine on the rake face of Polycrystalline Diamond (PCD cutting inserts. FEM analysis is carried out to evaluate the effect of perforations on the mechanical integrity of insert. The micro-hole patterned insert is modeled in PRO-E modeler and simulated using DEFORM-3D software. The effective stress, strain, and temperature distribution are analyzed and the results are compared with the normal insert.

  14. Mathematical Modelling and Optimization of Cutting Force, Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S

    Directory of Open Access Journals (Sweden)

    Erol Kilickap

    2017-10-01

    Full Text Available In this paper, an experimental study was conducted to determine the effect of different cutting parameters such as cutting speed, feed rate, and depth of cut on cutting force, surface roughness, and tool wear in the milling of Ti-6242S alloy using the cemented carbide (WC end mills with a 10 mm diameter. Data obtained from experiments were defined both Artificial Neural Network (ANN and Response Surface Methodology (RSM. ANN trained network using Levenberg-Marquardt (LM and weights were trained. On the other hand, the mathematical models in RSM were created applying Box Behnken design. Values obtained from the ANN and the RSM was found to be very close to the data obtained from experimental studies. The lowest cutting force and surface roughness were obtained at high cutting speeds and low feed rate and depth of cut. The minimum tool wear was obtained at low cutting speed, feed rate, and depth of cut.

  15. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    Science.gov (United States)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  16. A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser.

    Science.gov (United States)

    Baek, Kyung-Won; Deibel, Waldemar; Marinov, Dilyan; Griessen, Mathias; Dard, Michel; Bruno, Alfredo; Zeilhofer, Hans-Florian; Cattin, Philippe; Juergens, Philipp

    2015-07-01

    Despite of the long history of medical application, laser ablation of bone tissue became successful only recently. Laser bone cutting is proven to have higher accuracy and to increase bone healing compared to conventional mechanical bone cutting. But the reason of subsequent better healing is not biologically explained yet. In this study we present our experience with an integrated miniaturized laser system mounted on a surgical lightweight robotic arm. An Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser and a piezoelectric (PZE) osteotome were used for comparison. In six grown up female Göttingen minipigs, comparative surgical interventions were done on the edentulous mandibular ridge. Our laser system was used to create different shapes of bone defects on the left side of the mandible. On the contralateral side, similar bone defects were created by PZE osteotome. Small bone samples were harvested to compare the immediate post-operative cut surface. The analysis of the cut surface of the laser osteotomy and conventional mechanical osteotomy revealed an essential difference. The scanning electron microscopy (SEM) analysis showed biologically open cut surfaces from the laser osteotomy. The samples from PZE osteotomy showed a flattened tissue structure over the cut surface, resembling the "smear layer" from tooth preparation. We concluded that our new finding with the mechanical osteotomy suggests a biological explanation to the expected difference in subsequent bone healing. Our hypothesis is that the difference of surface characteristic yields to different bleeding pattern and subsequently results in different bone healing. The analyses of bone healing will support our hypothesis. © 2015 Wiley Periodicals, Inc.

  17. Study of cutting speed on surface roughness and chip formation when machining nickel-based alloy

    International Nuclear Information System (INIS)

    Khidhir, Basim A.; Mohamed, Bashir

    2010-01-01

    Nickel- based alloy is difficult-to-machine because of its low thermal diffusive property and high strength at higher temperature. The machinability of nickel- based Hastelloy C-276 in turning operations has been carried out using different types of inserts under dry conditions on a computer numerical control (CNC) turning machine at different stages of cutting speed. The effects of cutting speed on surface roughness have been investigated. This study explores the types of wear caused by the effect of cutting speed on coated and uncoated carbide inserts. In addition, the effect of burr formation is investigated. The chip burr is found to have different shapes at lower speeds. Triangles and squares have been noticed for both coated and uncoated tips as well. The conclusion from this study is that the transition from thick continuous chip to wider discontinuous chip is caused by different types of inserts. The chip burr has a significant effect on tool damage starting in the line of depth-of-cut. For the coated insert tips, the burr disappears when the speed increases to above 150 m/min with the improvement of surface roughness; increasing the speed above the same limit for uncoated insert tips increases the chip burr size. The results of this study showed that the surface finish of nickel-based alloy is highly affected by the insert type with respect to cutting speed changes and its effect on chip burr formation and tool failure

  18. Experimental investigation of Surface Roughness and Cutting force in CNC Turning - A Review

    Directory of Open Access Journals (Sweden)

    Dhiraj Patel

    2014-08-01

    Full Text Available The main purpose of this review paper is to check whether quality lies within desired tolerance level which can be accepted by the customers. So, experimental investigation surface roughness and cutting force using various CNC machining parameters including spindle speed (N, feed rate (f, and depth of cut (d,flow rate (Q and insert nose radius (r. As such, a solemn attempt is made in this paper to investigate the response parameters, viz., Cutting force and Surface Roughness (Ra a by experimentation on EN 19 turning process. The Design of experiments is carried-out considering Taguchi Technique with four input parameters, namely, spindle speed, feed rate, and depth of cut, flow rate and insert nose radius .The experiments are conducted considering the above materials for L16 and then the impact of each parameter is estimated by ANOAVA. Then the regression analysis is carried-out to find the trend of the response of each material. This experimental study aims at taguchi method has been applied for finding the effect on surface roughness and cutting force by various process parameters. And after that we can easily find out that which parameter will be more affect.

  19. Analysis of surface roughness and cutting force during turning of Ti6Al4V ELI in dry environment

    Directory of Open Access Journals (Sweden)

    V. G. Sargade

    2016-04-01

    Full Text Available This paper investigates the effect of cutting parameters on the surface roughness and cutting force of titanium alloy Ti-6Al-4V ELI when turning using PVD TiAlN coated tool in dry environment. Taguchi L9 orthogonal array design of experiment was used for the turning experiment 2 factors and 3 levels. Turning parameters studied were cutting speed (50, 65, 80 m/min, feed rate (0.08, 0.15, 0.2 mm/rev and depth of cut 0.5 mm constant. Linear and second order model of the surface roughness and cutting force has been developed in terms of cutting speed and feed. The results show that the feed rate was the most impact factor controlling the cutting force and surface roughness produced. MINITAB 17software was used to develop a linear and second order model of surface roughness and cutting force. Optimum condition was at 66.97 m/min of cutting speed, 0.08 mm/rev of feed rate. Surface roughness 0.57μm and cutting force 54.02 N were obtained at the optimum condition. A good agreement between the experimental and predicted surface roughness and cutting force were observed.

  20. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    Science.gov (United States)

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  1. Effect of the cut off frequency on rough point and flat surface contacts

    International Nuclear Information System (INIS)

    Meng, Fan Ming

    2012-01-01

    In the past years, contact between two bodies has been studied from various ways that do not consider the cut off frequency effect on the contact mechanism. This paper reports the correlation between rough point contact and flat surface contact at different cut off frequencies of filter. The similarity and difference between the two types of contact mechanisms are presented for materials with linear or elastic perfectly plastic deformation. The conjugate gradient method (CGM) is used for analysing the rough point contact, while the rough flat surface contact is studied with an improved CGM in which the influence coefficient for the elastic deformation of the rough flat surface is obtained with finite element method. Numerical results show that for the above two types of contacts, their von Mises stress and maximum shear stress are greatly affected by the cut-off frequency of a high pass filter. Moreover, a decrease in the cut-off frequency leads to an increase in the contact area and a decrease in the approach for the rough flat surface contact, while the opposite variations is for the point contact between rough bodies with the small radii

  2. Modeling and optimization of kerf taper and surface roughness in laser cutting of titanium alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Arun Kumar; Dubey, Avanish Kumar [Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh (India)

    2013-07-15

    Laser cutting of titanium and its alloys is difficult due to it's poor thermal conductivity and chemical reactivity at elevated temperatures. But demand of these materials in different advanced industries such as aircraft, automobile and space research, require accurate geometry with high surface quality. The present research investigates the laser cutting process behavior of titanium alloy sheet (Ti-6Al-4V) with the aim to improve geometrical accuracy and surface quality by minimizing the kerf taper and surface roughness. The data obtained from L{sub 27} orthogonal array experiments have been used for developing neural network (NN) based models of kerf taper and surface roughness. A hybrid approach of neural network and genetic algorithm has been proposed and applied for the optimization of different quality characteristics. The optimization results show considerable improvements in both the quality characteristics. The results predicted by NN models are well in agreement with the experimental data.

  3. Influence of Cutting Fluid Flow Rate and Cutting Parameters on the Surface Roughness and Flank Wear of TiAlN Coated Tool In Turning AISI 1015 Steel Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Moganapriya C.

    2017-09-01

    Full Text Available This paper presents the influence of cutting parameters (Depth of cut, feed rate, spindle speed and cutting fluid flow rate on the surface roughness and flank wear of physical vapor deposition (PVD Cathodic arc evaporation coated TiAlN tungsten carbide cutting tool insert during CNC turning of AISI 1015 mild steel. Analysis of Variance has been applied to determine the critical influence of cutting parameters. Taguchi orthogonal test design has been employed to optimize the process parameters affecting surface roughness and tool wear. Depth of cut was found to be the most dominant factor contributing to high surface roughness (67.5% of the inserts. However, cutting speed, feed rate and flow rate of cutting fluid showed minimal contribution to surface roughness. On the other hand, cutting speed (45.6% and flow rate of cutting fluid (23% were the dominant factors influencing tool wear. The optimum cutting conditions for desired surface roughness constitutes the following parameters such as medium cutting speed, low feed rate, low depth of cut and high cutting fluid flow rate. Minimal tool wear was achieved for the following process parameters such as low cutting speed, low feed rate, medium depth of cut and high cutting fluid flow rate.

  4. Controlled enzymatic cutting of DNA molecules adsorbed on surfaces using soft lithography

    Science.gov (United States)

    Auerbach, Alyssa; Budassi, Julia; Shea, Emily; Zhu, Ke; Sokolov, Jonathan

    2013-03-01

    The enzyme DNase I was applied to adsorbed and aligned DNA molecules (Lamda, 48.5 kilobase pairs (kbp), and T4, 165.6 kbp), stretched linearly on a surface, by stamping with a polydimethylsiloxane (PDMS) grating. The DNAs were cut by the enzyme into separated, micron-sized segments along the length of the molecules at positions determined by the grating dimensions (3-20 microns). Ozone-treated PDMS stamps were coated with DNase I solutions and placed in contact with surface-adsorbed DNA molecules deposited on a 750 polymethylmethacrylate (PMMA) film spun-cast onto a silicon substrate. The stamps were applied under pressure for times up to 15 minutes at 37 C. The cutting was observed by fluorescence microscopy imaging of DNA labeled with YOYO dye. Cutting was found to be efficient despite the steric hindrance due to surface attachment of the molecules. Methods for detaching and separating the cut segments for sequencing applications will be discussed. Supported by NSF-DMR program.

  5. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    Science.gov (United States)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  6. Experimental Research and Mathematical Modeling of Parameters Effecting on Cutting Force and SurfaceRoughness in CNC Turning Process

    Science.gov (United States)

    Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.

    2018-01-01

    In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.

  7. Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting

    Science.gov (United States)

    Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan

    2017-03-01

    Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.

  8. Modeling and Simulated Annealing Optimization of Surface Roughness in CO2 Laser Nitrogen Cutting of Stainless Steel

    OpenAIRE

    M. Madić; M. Radovanović; B. Nedić

    2013-01-01

    This paper presents a systematic methodology for empirical modeling and optimization of surface roughness in nitrogen, CO2 laser cutting of stainless steel . The surface roughness prediction model was developed in terms of laser power , cutting speed , assist gas pressure and focus position by using The artificial neural network ( ANN ) . To cover a wider range of laser cutting parameters and obtain an experimental database for the ANN model development, Taguchi 's L27 orthogonal array was im...

  9. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  10. Study on Surface Integrity of AISI 1045 Carbon Steel when machined by Carbide Cutting Tool under wet conditions

    Directory of Open Access Journals (Sweden)

    Tamin N. Fauzi

    2017-01-01

    Full Text Available This paper presents the evaluation of surface roughness and roughness profiles when machining carbon steel under wet conditions with low and high cutting speeds. The workpiece materials and cutting tools selected in this research were AISI 1045 carbon steel and canela carbide inserts graded PM25, respectively. The cutting tools undergo machining tests by CNC turning operations and their performances were evaluated by their surface roughness value and observation of the surface roughness profile. The machining tests were held at varied cutting speeds of 35 to 53 m/min, feed rate of 0.15 to 0.50 mm/rev and a constant depth of cut of 1 mm. From the analysis, it was found that surface roughness increased as the feed rate increased. Varian of surface roughness was suspected due to interaction between cutting speeds and feed rates as well as nose radius conditions; whether from tool wear or the formation of a built-up edge. This study helps us understand the effect of cutting speed and feed rate on surface integrity, when machining AISI 1045 carbon steel using carbide cutting tools, under wet cutting conditions.

  11. Analysis of surface roughness and surface heat affected zone of steel S355J0 after plasma arc cutting

    International Nuclear Information System (INIS)

    Hatala, Michal; Chep, Robert; Pandilov, Zoran

    2010-01-01

    This paper deals with thermal cutting technology of materials with plasma arc. In the first part of this paper the theoretical knowledge of the principles of plasma arc cutting and current use of this technology in industry are presented. The cut of products with this technology is perpendicular and accurate, but the use of this technology affects micro-structural changes and depth of the heat affected zone (HAZ). This article deals with the experimental evaluation of plasma arc cutting technological process. The influence of technological factors on the roughness parameter Ra of the steel surface EN S355J0 has been evaluated by using planned experiments. By using the factor experiment, the significance of the four process factors such as plasma burner feed speed, plasma gas pressure, nozzle diameter, distance between nozzle mouth and material has been analyzed. Regression models obtained by multiple linear regression indicate the quality level of observed factors function. The heat from plasma arc cutting affects the micro-structural changes of the material, too.

  12. Simulation of surface profile formation in oxygen laser cutting of mild steel due to combustion cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, G V; Kovalev, O B [Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of Russian Academy of Sciences, Institutskaya Str 4/1, Novosibirsk, 630090 (Russian Federation)

    2009-09-21

    A physicomathematical model of cyclic iron combustion in an oxygen flow during oxygen laser cutting of metal sheets is developed. The combustion front is set into motion by focused laser radiation and a heterogeneous oxidation reaction in oxygen. The burning rate is limited by oxygen supply from the gas phase towards the metal surface, and the interface motion depends on the local temperature. A 3D numerical simulation predicts wavy structures on the metal surface; their linear sizes depend on the scanning speed of the laser beam, the thickness of the produced liquid oxide film and the parameters of the oxygen jet flow. Simulation results help in understanding the mechanism of striation formation during oxygen gas-laser cutting of mild steel and are in qualitative agreement with experimental findings.

  13. Effect of Different Cutting Techniques on the Surface Morphology and Composition of Niobium

    International Nuclear Information System (INIS)

    Cooper, C.A.; Wu, A.; Bauer, P.; Antoine, C.

    2009-01-01

    The surface morphology and chemical purity of superconducting radio frequency (SRF) niobium cavities are very important for proper accelerator operation. Typically on the order of 120 micrometers of niobium (Nb) is removed from cavities to remove damage done during the forming of Nb sheets and cavities. A study was done to find the effect of cutting or finishing Nb with a band saw, diamond saw, electrical discharge machining (EDM) wire, garnet water jet, sheer, and mill. Surface contamination of the samples was measured before and after buffered chemical polish (BCP) by secondary ion mass spectroscopy (SIMS), energy dispersive spectroscopy (EDS), and by measuring relative resistivity ratios (RRRs). Surface morphology was examined with a digital microscope, a surface profilometer and scanning electron microscope (SEM). It was found that all techniques altered the top 3-5 micrometers of the Nb. It was also found by SIMS that the water jet technique introduced the most hydrogen and oxygen to the Nb in the first 2.5 micrometers of the sample. The EDM wire cutting technique introduced the least amount of hydrogen to the Nb. After 5 micrometers were etched away by BCP on the various samples, no contaminants were found except on the water jet cut samples. Even after 20 micrometers of Nb removal silica could be seen on the surface with EDS. The water jet produced the roughest surface with 50-100 micrometer deep pits made from embedded garnet particles. It was found that the garnet water jet damages the surface to the point where even the typical 120 micrometers of BCP etching may not remove all the defects created

  14. The research into the quality of rock surfaces obtained by abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Młynarczuk, M.; Skiba, M.; Sitek, Libor; Hlaváček, Petr; Kožušníková, Alena

    2014-01-01

    Roč. 59, č. 4 (2014), s. 925-940 ISSN 0860-7001 R&D Projects: GA MŠk ED2.1.00/03.0082; GA ČR GAP104/12/1988 Institutional support: RVO:68145535 Keywords : water jet * rock cutting * surface quality * roughness * variogram Subject RIV: JQ - Machines ; Tools Impact factor: 0.608, year: 2013 http://mining.archives.pl

  15. Standard Specification for Steel Blades Used with the Photovoltaic Module Surface Cut Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification specifies the recommended physical characteristics of the steel blades required for the surface cut test described in ANSI/UL 1703 (Section 24) and IEC 61730-2 (Paragraph 10.3). 1.2 ANSI/UL 1703 and IEC 61730-2 are standards for photovoltaic module safety testing. 1.3 This standard provides additional fabrication details for the surface cut test blades that are not provided in ANSI/UL 1703 or IEC 61730-2. Surface cut test blades that have out-of-tolerance corner radii or burrs are known to cause erroneous test results, either passes or failures. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. DIAGNOSTICS OF WORKPIECE SURFACE CONDITION BASED ON CUTTING TOOL VIBRATIONS DURING MACHINING

    Directory of Open Access Journals (Sweden)

    Jerzy Józwik

    2015-05-01

    Full Text Available The paper presents functional relationships between surface geometry parameters, feed and vibrations level in the radial direction of the workpiece. Time characteristics of the acceleration of cutting tool vibration registered during C45 steel and stainless steel machining for separate axes (X, Y, Z were presented as a function of feedrate f. During the tests surface geometric accuracy assessment was performed and 3D surface roughness parameters were determined. The Sz parameter was selected for the analysis, which was then collated with RMS vibration acceleration and feedrate f. The Sz parameter indirectly provides information on peak to valley height and is characterised by high generalising potential i.e. it is highly correlated to other surface and volume parameters of surface roughness. Test results presented in this paper may constitute a valuable source of information considering the influence of vibrations on geometric accuracy of elements for engineers designing technological processes.

  17. An analytical method on the surface residual stress for the cutting tool orientation

    Science.gov (United States)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.

  18. [Impact of microwave dealing with the cutting surface on the hepatocellular carcinoma recurrence after hepatectomy].

    Science.gov (United States)

    Wu, Zhengshan; Wang, Xing; Wang, Dong; Fan, Ye; Li, Donghua; Kong, Lianbao; Wang, Xuehao; Wang, Ke

    2015-12-01

    To explore the impact of microwave dealing with cutting surface on perioperative liver function recovery and recurrence and metastasis after hepatectomy for HCC. Clinical data of 133 patients with HCC from March 2009 to November 2010 were retrospectively analyzed. They were divided into the conventional surgery group (66 cases) and microwave treatment group (67 cases). A domestic ECO-100 microwave knife was inserted into the liver cutting surface 0.5 cm from the cutting edge, and repeated multi-point burning with an average time of 25 minutes in the microwave treatment group. Then the perioperative liver function recovery and recurrence and metastasis in the two groups were compared. The operation time of conventional surgery group was (158.0 ± 31.0) minutes, and that of microwave treatment group was significantly longer (181.0 ± 28.0) minutes (P=0.027). There were no significant differences in the liver function recovery between the two groups (P>0.05). There were 6 cases of recurrence and metastasis after 6 months and 9 cases after 12 months in the microwave treatment group, while there were 15 cases of recurrence and metastasis after 6 months and 20 cases after 12 months in the conventional surgery group, showing a significant difference (P=0.034 and 0.022, respectively). Microwave dealing with the cutting surface has no significant effect on perioperative liver function recovery in hepatectomy. However, microwave treatment can reduce the in situ recurrence in HCC patients within the first year after surgery, indicating a good clinical application value.

  19. Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe

    Science.gov (United States)

    Rahim, Robbi; Napid, Suhardi; Hasibuan, Abdurrozzaq; Rahmah Sibuea, Siti; Yusmartato, Y.

    2018-04-01

    The objective of the research is to obtain a cutting condition which has a good chance of realizing dry machining concept on AISI 4337 steel material by studying surface roughness, microstructure and hardness of machining surface. The data generated from the experiment were then processed and analyzed using the standard Taguchi method L9 (34) orthogonal array. Testing of dry and wet machining used surface test and micro hardness test for each of 27 test specimens. The machining results of the experiments showed that average surface roughness (Raavg) was obtained at optimum cutting conditions when VB 0.1 μm, 0.3 μm and 0.6 μm respectively 1.467 μm, 2.133 μm and 2,800 μm fo r dry machining while which was carried out by wet machining the results obtained were 1,833 μm, 2,667 μm and 3,000 μm. It can be concluded that dry machining provides better surface quality of machinery results than wet machining. Therefore, dry machining is a good choice that may be realized in the manufacturing and automotive industries.

  20. Investigation of the effect of cutting speed on the Surface Roughness parameters in CNC End Milling using Artificial Neural Network

    International Nuclear Information System (INIS)

    Al Hazza, Muataz H F; Adesta, Erry Y T

    2013-01-01

    This research presents the effect of high cutting speed on the surface roughness in the end milling process by using the Artificial Neural Network (ANN). An experimental investigation was conducted to measure the surface roughness for end milling. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted. The artificial neural network (ANN) was applied to simulate and study the effect of high cutting speed on the surface roughness

  1. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

    Directory of Open Access Journals (Sweden)

    Azlan Suhaimi Mohd

    2017-01-01

    Full Text Available Compacted Graphite Iron, (CGI is known to have outstanding mechanical strength and weight-to-strength ratio as compared to conventional grey cast iron, (CI. The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL during high-speed milling of CGI (grade 450. Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during high-speed milling of CGI.

  2. A study on surface properties and high temperature oxidation behavior of ion nitrided FC-25 gray cast iron

    International Nuclear Information System (INIS)

    Hur, In Chang; Son, Kun Su; Yoon, Jae Hong; Cho, Tong Yul; Park, Bong Gyu; Kim, Hyun Soo; Kim, In Soo

    2005-01-01

    Surface properties and high temperature oxidation behavior were investigated for FC-25 Gray Cast Iron(GCI) and the ion intrided GCI(N-GCI). The GCI was pre-cleaned to improve hardness to the optimum pre-sputtering parameters with an Ar/H 2 ratio of 1/2, working pressure of 3 torr, working temperature of 550 .deg. C and working time of 1hour. The optimum nitriding conditions for the maximum hardness of 560∼575 Hv were an N 2 /H 2 ratio of 3/1, working pressure of 3 torr, and working temperature of 575 deg. C. The thickness of graphite in the GCI was increased by increasing the working temperature from 525 .deg. C to 595 .deg. C for the nitriding time of 6∼18hrs. XRD patterns showed FeO and Fe 2 O 3 peaks for both the oxidized N-GCI and GCI at temperature of 600 .deg. C and 800 .deg. C under atmospheric environment for both 24 and 60hours. At 800 .deg. C, above the Fe 4 N decomposition temperature of 680 .deg. C, the oxidation rate of N-GCI was greater than that of the GCI. The most abundant nitride, Fe 4 N, was decomposed and the nitrogen gas given off by the decomposition made the protective film porous by degassing through the film. But at 600 .deg. C, below the decomposition temperature, the degree of oxidation of N-GCI was lower than that of the GCI because the nitride film worked as protective barrier for oxidation. Finite element modeling of elastic contact wear problems was performed to demonstrate the feasibility of applying the finite element method to fretting wear problems. The elastic beam problem, with existing solutions, is treated as a numerical example. By introducing a control parameter s, which scaled up the wear constant and scaled down the cycle numbers, the algorithm was shown to greatly reduce the time required for the analysis. The work rate model was adopted in the wear model. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate cross tubes contacting at right angles. The wear constant of

  3. STUDIES ON THE SELECTED PROPERTIES OF C45 STEEL ELEMENTS SURFACE LAYER AFTER LASER CUTTING, FINISHING MILLING AND BURNISHING

    Directory of Open Access Journals (Sweden)

    Agnieszka Skoczylas

    2016-12-01

    microhardness of C45 steel elements after laser cutting, and then finishing milling or burnishing. The aim of milling was to get rid of the characteristic “striae” after laser cutting and to improve geometric accuracy. Burnishing caused hardening of C45 steel elements’ surface layer after laser cutting and improvement in surface roughness. In order to measure surface roughness, the Hommel – Etamic device T8000 RC120 – 400 with software was used. The roughness parameters that were analyzed in the article were: amplitude parameters, height parameters and Abbott - Firestone curve. The microhardness measurements were made with the use of Vicker’s hardness test with a weight of 50 g. As a result of the finishing of the surface after cutting, a decrease in surface roughness and improvements in functional qualities were noticed. In addition, hardening of the edgeside area also occurred, which is an advantageous phenomenon.

  4. Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration

    Science.gov (United States)

    Sahu, Neelesh Kumar; Andhare, Atul B.; Andhale, Sandip; Raju Abraham, Roja

    2018-04-01

    Present work deals with prediction of surface roughness using cutting parameters along with in-process measured cutting force and tool vibration (acceleration) during turning of Ti-6Al-4V with cubic boron nitride (CBN) inserts. Full factorial design is used for design of experiments using cutting speed, feed rate and depth of cut as design variables. Prediction model for surface roughness is developed using response surface methodology with cutting speed, feed rate, depth of cut, resultant cutting force and acceleration as control variables. Analysis of variance (ANOVA) is performed to find out significant terms in the model. Insignificant terms are removed after performing statistical test using backward elimination approach. Effect of each control variables on surface roughness is also studied. Correlation coefficient (R2 pred) of 99.4% shows that model correctly explains the experiment results and it behaves well even when adjustment is made in factors or new factors are added or eliminated. Validation of model is done with five fresh experiments and measured forces and acceleration values. Average absolute error between RSM model and experimental measured surface roughness is found to be 10.2%. Additionally, an artificial neural network model is also developed for prediction of surface roughness. The prediction results of modified regression model are compared with ANN. It is found that RSM model and ANN (average absolute error 7.5%) are predicting roughness with more than 90% accuracy. From the results obtained it is found that including cutting force and vibration for prediction of surface roughness gives better prediction than considering only cutting parameters. Also, ANN gives better prediction over RSM models.

  5. Surface Acoustic WaveAmmonia Sensors Based on ST-cut Quartz under Periodic Al Structure

    Directory of Open Access Journals (Sweden)

    Ming-Yau Su

    2009-02-01

    Full Text Available Surface acoustic wave (SAW devices are key components for sensing applications. SAW propagation under a periodic grating was investigated in this work. The theoretical method used here is the space harmonic method. We also applied the results of SAW propagation studied in this work to design a two-port resonator with an Al grating on ST-cut quartz. The measured frequency responses of the resonator were similar to the simulation ones. Then, the chemical interface of polyaniline/WO3 composites was coated on the SAW sensor for ammonia detection. The SAW sensor responded to ammonia gas and could be regenerated using dry nitrogen.

  6. The effects of hard particles on the surface quality when micro-cutting aluminum 6061 T6

    International Nuclear Information System (INIS)

    Ding, X; Lee, L C; Butler, D L; Cheng, C K

    2009-01-01

    Studies of micro-cutting have so far largely been carried out on single-phase materials. Due to the size effect, the workpiece material microstructure can have a significant influence on the cutting force, chip formation and surface quality. Previous investigations have shown that hard particles in materials such as aluminum alloy can play a significant role in the generation of defects such as cracks and voids on the work surface. This paper will examine the extent of the problem during the micro-cutting of Al6061 T6 and propose how it can be mitigated

  7. Effects of cutting parameters and machining environments on surface roughness in hard turning using design of experiment

    Science.gov (United States)

    Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan

    2016-07-01

    Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.

  8. Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ergün EKİCİ

    2014-12-01

    Full Text Available Hadfield steel (X120Mn12 is widely used in the engineering applications due to its excellent wear resistance. In this study, the effects of the cutting parameters on the surface roughness were investigated in relation to the lathe process carried out on Hadfield steel. The experiments were conducted at a cutting speed of 80, 110, 140 m/min, feed rate of 0.2, 0.3, 0.4 mm/rev and depth of cut 0.2, 0.4, 0.6 mm, using coated carbide tools. Regarding the evaluation of the machinability of Hadfield steel, a model was formed utilizing the response surface method (RSM. For the determination of the effects of the cutting parameters on the surface roughness, the central composite design (CCD and variance analysis (ANOVA were used. By means of the model formed as a result of the experimental study, it was demonstrated that among the cutting parameters, the feed rate is the most effective parameter on the surface roughness, with a contribution ratio of 90.28%. It was determined that the surface roughness increases with increasing feed rate. With respect to the effect on the surface roughness, the feed rate was followed by the cutting speed with a contribution ratio of 3.1% and the cutting depth with a contribution ratio of 1.7%.

  9. Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based hastelloy - 276

    International Nuclear Information System (INIS)

    Khidhir, Basim A; Mohamed, Bashir

    2011-01-01

    Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.

  10. Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718

    Directory of Open Access Journals (Sweden)

    Hamid Tebassi

    2016-01-01

    Full Text Available Nickel based super alloys are excellent for several applications and mainly in structural components submitted to high temperatures owing to their high strength to weight ratio, good corrosion resistance and metallurgical stability such as in cases of jet engine and gas turbine components. The current work presents the experimental investigations of the cutting parameters effects (cutting speed, depth of cut and feed rate on the surface roughness, cutting force components, productivity and power consumption during dry conditions in straight turning using coated carbide tool. The mathematical models for output parameters have been developed using Box-Behnken design with 15 runs and Box-Cox transformation was used for improving normality. The results of the analysis have shown that the surface finish was statistically sensitive to the feed rate and cutting speed with the contribution of 43.58% and 23.85% respectively, while depth of cut had the greatest effect on the evolution of cutting force components with the contribution of 79.87% for feed force, 66.92% for radial force and 66.26% for tangential force. Multi-objective optimization procedure allowed minimizing roughness Ra, cutting forces and power consumption and maximizing material removal rate using desirability approach.

  11. Surface integrity analysis of abrasive water jet-cut surfaces of friction stir welded joints

    Czech Academy of Sciences Publication Activity Database

    Kumar, R.; Chattopadhyaya, S.; Dixit, A. R.; Bora, B.; Zeleňák, Michal; Foldyna, Josef; Hloch, Sergej; Hlaváček, Petr; Ščučka, Jiří; Klich, Jiří; Sitek, Libor; Vilaca, P.

    2017-01-01

    Roč. 88, č. 5 (2017), s. 1687-1701 ISSN 0268-3768 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : friction stir welding (FSW) * abrasive water jet (AWJ) * optical profilometer * topography * surface roughness Subject RIV: JQ - Machines ; Tools OBOR OECD: Mechanical engineering Impact factor: 2.209, year: 2016 http://link.springer.com/article/10.1007/s00170-016-8776-0

  12. The Research into the Quality of Rock Surfaces Obtained by Abrasive Water Jet Cutting

    Science.gov (United States)

    Młynarczuk, Mariusz; Skiba, Marta; Sitek, Libor; Hlaváček, Petr; Kožušníková, Alena

    2014-12-01

    In recent years, water jet cutting technology has been being used more and more often, in various domains of human activity. Its numerous applications include cutting different materials - among them, rock materials. The present paper discusses the results of the research that aimed at determining - in a quantitative manner - the way in which the water jet cutting parameters (such as the traverse speed of the head, and the distance between the high-pressure inlet of the water jet and the cut material) influence the quality of the processed surface. Additionally, the impact of these parameters on the surface of various materials was investigated. The materials used were three granites differing with respect to the size of grains. In the course of the research, the standard parameters defined by the ISO norms were analyzed. It was also proposed that variograms be used to analyze the quality of the cut surface. Technologia cięcia strumieniem wodnym staje się w ostatnich latach coraz intensywniej wykorzystywana w różnych dziedzinach działalności człowieka. Jest ona wykorzystywana do obróbki różnorodnych materiałów, również materiałów skalnych. W ramach badań analizowano trzy granity różniące się m.in. wielkościami ziarn, które były przecinane przy różnych prędkościach przesuwu głowicy z wlotem strumienia wodnego. Analizowano standardowe parametry zdefiniowane w normach ISO jak również zaproponowano wykorzystanie wariogramów do analizy jakości wyciętej powierzchni. W pracy opisano w sposób ilościowy zmiany jakości powierzchni skał ciętych strumieniem wodnym ze ścierniwem w zależności od prędkości przesuwu głowicy, jak również w zależności od odległości przecinanego fragmentu powierzchni od wlotu strumienia wodnego do materiału. Wyniki uzyskane w pomiarach wskazują też na wpływ wielkości uziarnienia skały na jakość otrzymanej powierzchni. Jest to szczególnie widoczne dla najmniej optymalnych parametrów ci

  13. Structure and adhesive properties of solid solution specimen surfaces based on bismuth tellurides after cutting

    International Nuclear Information System (INIS)

    Dik, M.G.; Rybina, L.N.; Dubrovina, A.N.; Abdinov, D.Sh.

    1988-01-01

    Structure and depth of broken layer, occuring at electroerosion cutting along ingot samples axis of Bi 2 Te 3 -Bi 2 Se 3 , Bi 2 Te 3 -Sb 2 Te 3 systems solid solutions (obtained by methods of directed crystallization and extrusion), and equilibrium contact angle θ, adhesion effort A and contact resistance r c of these crystals contacts with eutectic alloy of Bi-Sn system are investigated. Depth and structure of the broken layer were determined by means of stage-by-stage scouring-etching and X-ray investigation of cutting surface. It is shown, that etching during ∼50 c in large-block material eliminates polycrystalline layer, lattice bendings, resulting in Laue spots asterism, but does not remove their fragmentation and wash-out. Slots wash-out reduces, while fragmentation remains even after continuous etching. Etching with duration from ∼50 c up to 30-40 min practically does not change the character of polycrystalline samples diffraction pattern

  14. One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays

    Science.gov (United States)

    Eckert, Sebastian; da Cruz, Vinícius Vaz; Gel'mukhanov, Faris; Ertan, Emelie; Ignatova, Nina; Polyutov, Sergey; Couto, Rafael C.; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Odelius, Michael; Föhlisch, Alexander

    2018-05-01

    The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.

  15. Response surface and neural network based predictive models of cutting temperature in hard turning

    Directory of Open Access Journals (Sweden)

    Mozammel Mia

    2016-11-01

    Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  16. Influence of Chatter of VMC Arising During End Milling Operation and Cutting Conditions on Quality of Machined Surface

    Directory of Open Access Journals (Sweden)

    A.K.M.N. Amin, M.A. Rizal, and M. Razman

    2012-08-01

    Full Text Available Machine tool chatter is a dynamic instability of the cutting process. Chatter results in poor part surface finish, damaged cutting tool, and an irritating and unacceptable noise. Exten¬sive research has been undertaken to study the mechanisms of chatter formation. Efforts have been also made to prevent the occurrence of chatter vibration. Even though some progress have been made, fundamental studies on the mechanics of metal cutting are necessary to achieve chatter free operation of CNC machine tools to maintain their smooth operating cycle. The same is also true for Vertical Machining Centres (VMC, which operate at high cutting speeds and are capable of offering high metal removal rates. The present work deals with the effect of work materials, cutting conditions and diameter of end mill cutters on the frequency-amplitude characteristics of chatter and on machined surface roughness. Vibration data were recorded using an experimental rig consisting of KISTLER 3-component dynamometer model 9257B, amplifier, scope meters and a PC.  Three different types of vibrations were observed. The first type was a low frequency vibration, associated with the interrupted nature of end mill operation. The second type of vibration was associated with the instability of the chip formation process and the third type was due to chatter. The frequency of the last type remained practically unchanged over a wide range of cutting speed.  It was further observed that chip-tool contact processes had considerable effect on the roughness of the machined surface.Key Words: Chatter, Cutting Conditions, Stable Cutting, Surface Roughness.

  17. Modeling and Simulated Annealing Optimization of Surface Roughness in CO2 Laser Nitrogen Cutting of Stainless Steel

    Directory of Open Access Journals (Sweden)

    M. Madić

    2013-09-01

    Full Text Available This paper presents a systematic methodology for empirical modeling and optimization of surface roughness in nitrogen, CO2 laser cutting of stainless steel . The surface roughness prediction model was developed in terms of laser power , cutting speed , assist gas pressure and focus position by using The artificial neural network ( ANN . To cover a wider range of laser cutting parameters and obtain an experimental database for the ANN model development, Taguchi 's L27 orthogonal array was implemented in the experimental plan. The developed ANN model was expressed as an explicit nonlinear function , while the influence of laser cutting parameters and their interactions on surface roughness were analyzed by generating 2D and 3D plots . The final goal of the experimental study Focuses on the determinationof the optimum laser cutting parameters for the minimization of surface roughness . Since the solution space of the developed ANN model is complex, and the possibility of many local solutions is great, simulated annealing (SA was selected as a method for the optimization of surface roughness.

  18. Study of Surface Roughness and Cutting force in machining for 6068 Aluminium alloy

    Science.gov (United States)

    Purushothaman, D.; Kaushik Yanamundra, Krishna; Krishnan, Gokul; Perisamy, C.

    2018-04-01

    Metal matrix composites, in particular, Aluminium Hybrid Composites are gaining increasing attention for applications in air and land because of their superior strength to weight ratio, density and high temperature resistance. Aluminium alloys are being used for a wide range of applications in Aerospace and Automobile industries, to name a few. The Aluminium Alloy 6068 has been used as the specimen. It is mainly composed of Aluminium (93.22 - 97.6 %), Magnesium (0.60 - 1.2 %), Silicon (0.60 - 1.4 %) and Bismuth (0.60 - 1.1 %). Aluminium 6068 is widely used for manufacturing aircraft structures, fuselages and wings. It is also extensively used in fabricating automobile parts such as wheel spacers. In this study, tests for the measurement of surface roughness and cutting force has been carried out on the specimen, the results evaluated and conclusions are drawn. Also the simulation of the same is carried out in a commercial FE software – ABAQUS.

  19. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: bulgakova@fzu.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., Novosibirsk 630090 (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073 Novosibirsk (Russian Federation); Collins, Adam R. [NCLA, NUI Galway, Galway (Ireland); Rostohar, Danijela; Derrien, Thibault J.-Y.; Mocek, Tomáš [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic)

    2015-05-01

    Highlights: • The factors influencing laser micromachining of transparent materials are analyzed. • Important role of ambient gas in laser processing is shown by numerical simulations. • The large potential of bi-wavelength laser processing is demonstrated. - Abstract: The interaction of short and ultrashort pulse laser radiation with glass materials is addressed. Particular attention is paid to regimes which are important in industrial applications such as laser cutting, drilling, functionalization of material surfaces, etc. Different factors influencing the ablation efficiency and quality are summarized and their importance is illustrated experimentally. The effects of ambient gas ionization in front of the irradiated target are also analyzed. A possibility to enhance laser coupling with transparent solids by bi-wavelength irradiation is discussed.

  20. Comparison of optimization techniques for MRR and surface roughness in wire EDM process for gear cutting

    Directory of Open Access Journals (Sweden)

    K.D. Mohapatra

    2016-11-01

    Full Text Available The objective of the present work is to use a suitable method that can optimize the process parameters like pulse on time (TON, pulse off time (TOFF, wire feed rate (WF, wire tension (WT and servo voltage (SV to attain the maximum value of MRR and minimum value of surface roughness during the production of a fine pitch spur gear made of copper. The spur gear has a pressure angle of 20⁰ and pitch circle diameter of 70 mm. The wire has a diameter of 0.25 mm and is made of brass. Experiments were conducted according to Taguchi’s orthogonal array concept with five factors and two levels. Thus, Taguchi quality loss design technique is used to optimize the output responses carried out from the experiments. Another optimization technique i.e. desirability with grey Taguchi technique has been used to optimize the process parameters. Both the optimized results are compared to find out the best combination of MRR and surface roughness. A confirmation test was carried out to identify the significant improvement in the machining performance in case of Taguchi quality loss. Finally, it was concluded that desirability with grey Taguchi technique produced a better result than the Taguchi quality loss technique in case of MRR and Taguchi quality loss gives a better result in case of surface roughness. The quality of the wire after the cutting operation has been presented in the scanning electron microscopy (SEM figure.

  1. Optimizing Cutting Conditions for Minimum Surface Roughness in Face Milling of High Strength Steel Using Carbide Inserts

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2016-01-01

    Full Text Available A full factorial design technique is used to investigate the effect of machining parameters, namely, spindle speed (N, depth of cut (ap, and table feed rate (Vf, on the obtained surface roughness (Ra and Rt during face milling operation of high strength steel. A second-order regression model was built using least squares method depending on the factorial design results to approximate a mathematical relationship between the surface roughness and the studied process parameters. Analysis of variance was conducted to estimate the significance of each factor and interaction with respect to the surface roughness. For Ra, the results show that spindle speed, depth of cut, and table feed rate have a significant effect on the surface roughness in both linear and quadratic terms. There is also an interaction between depth of cut and feed rate. It also appears that feed rate has the greatest effect on the data variation followed by depth of cut. For Rt, the results show that the table feed rate is the most effective factor followed by the depth of cut, while the spindle speed had a significant small effect only in its quadratic term. The conditions of minimum Ra and Rt are identified through least square optimization. Moreover, multiobjective optimization for minimizing Ra and maximizing metal removal rate Q is conducted and the results are presented.

  2. Relative performance of soft contact lenses having lathe-cut posterior surfaces with and without additional polishing.

    Science.gov (United States)

    O'Brien, C; Charman, W N

    2006-05-01

    After a preliminary investigation of the effects of tool feed rate and spindle speed on the surface roughness of unhydrated, lathe-cut polymacon surfaces, a laboratory and clinical comparison was made between lenses with identical parameters except that the lathe-cut posterior surface was left unpolished in the "test" lenses and was polished in the "control" lenses. The lenses had moulded anterior surfaces. Laboratory comparisons included surface roughness, lens power and its uniformity across the surface. Double-blind clinical trials over 4-hour (27 subjects) and 1-month (10 subjects) periods, involved one eye of each subject wearing a "test" lens and the other, a "control" lens. No clinically significant differences were found between the results for the test and control lenses. It is concluded that today's lathing technology makes a final polishing stage unnecessary.

  3. Tool life and surface roughness of ceramic cutting tool when turning AISI D2 tool steel

    International Nuclear Information System (INIS)

    Wan Emri Wan Abdul Rahaman

    2007-01-01

    The tool life of physical vapor deposition (PVD) titanium nitride (TiN) coated ceramic when turning AISI D2 tool steel of hardness 54-55 HRC was investigated. The experiments were conducted at various cutting speed and feed rate combinations with constant depth of cut and under dry cutting condition. The tool life of the cutting tool for all cutting conditions was obtained. The tool failure mode and wear mechanism were also investigated. The wear mechanism that is responsible for the wear form is abrasion and diffusion. Flank wear and crater wear are the main wear form found when turning AISI D2 grade hardened steel with 54-55 HRC using KY 4400 ceramic cutting tool. Additionally catastrophic failure is observed at cutting speed of 183 m/min and feed rate of 0.16 mm/ rev. (author)

  4. Modeling nanostructural surface modifications in metal cutting by an approach of thermodynamic irreversibility: Derivation and experimental validation

    Science.gov (United States)

    Buchkremer, S.; Klocke, F.

    2017-01-01

    Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.

  5. Influence of Cutting Parameters on the Surface Roughness and Hole Diameter of Drilling Making Parts of Alluminium Alloy

    Directory of Open Access Journals (Sweden)

    Andrius Stasiūnas

    2013-02-01

    Full Text Available The article researches the drilling process of an aluminium alloy. The paper is aimed at analyzing the influence of cutting speed, feed and hole depth considering hole diameter and hole surface roughness of aluminum alloy 6082 in the dry drilling process and at making empirical formulas for cutting parameters. The article also describes experimental techniques and equipment, tools and measuring devices. Experimental studies have been carried out using different cutting parameters. The obtained results have been analyzed using computer software. According to the existing techniques for measuring, surface roughness and hole diameters have been measured, empirical models have been created and the results of the conducted experiments have been inspected. The findings and recommendations are presented at the end of the work.Artcile in Lithuanian

  6. The influence of cooling techniques on cutting forces and surface roughness during cryogenic machining of titanium alloys

    Directory of Open Access Journals (Sweden)

    Wstawska Iwona

    2016-12-01

    Full Text Available Titanium alloys are one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance. On the other hand, they also present problems wherein titanium alloys are extremely difficult materials to machine. In addition, the cost associated with titanium machining is also high due to lower cutting velocities and shorter tool life. The main objective of this work is a comparison of different cooling techniques during cryogenic machining of titanium alloys. The analysis revealed that applied cooling technique has a significant influence on cutting force and surface roughness (Ra parameter values. Furthermore, in all cases observed a positive influence of cryogenic machining on selected aspects after turning and milling of titanium alloys. This work can be also the starting point to the further research, related to the analysis of cutting forces and surface roughness during cryogenic machining of titanium alloys.

  7. Surface modification of multi-point cutting tools using ion implantation

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmed, W.; Ahmed, M.

    1995-01-01

    Ion-implantation has been used to treat multi-point cutting tools using a 'systems approach' in order to improve the performance of these tools in dynamic cutting conditions. The effects of energy, species and system pressure on life and performance of circular saws have been investigated. For both nitrogen and argon ion-implantation an improvement in cutting performance has been observed as compared to untreated edges. As the energy of the nitrogen ions is increased there is a gradual improvement in the performance of the cutting edge. Ion-implanted tools were compared to those coated with TiN and these results are also presented. (author) 5 figs

  8. STUDIES ON SELECTED PROPERTIES OF SURFACE LAYER OF C45 STEEL OBJECTS AFTER LASER CUTTING AND MILLING

    Directory of Open Access Journals (Sweden)

    Kazimierz Zaleski

    2014-09-01

    Full Text Available The article presents the results of studying the effects of technological parameters of milling upon surface roughness and microhardness of C45 steel objects after laser cutting. The metallographic structure formed as an effect of cutting by laser was also analyzed. The milling was performed on a FV-580a vertical machining centre. Depth of cut and feed per tooth were changed within the following range: ap = 0.09–0.18 mm and fz = 0.02–0.17 mm/tooth. To measure the surface roughness a Surtronic 3+ profile graphometer was used, whereas microhardness was measured with the use of a Leco LM 700AT microhardness tester. The surface roughness was significantly improved as a result of milling. The laser beam input and output zones were eliminated. Only a part of the layer hardened by laser cutting was removed while milling, in effect of which after milling the hardness of surface layer is much higher than hardness of the core.

  9. Surface integrity and part accuracy in reaming and tapping stainless steel with new vegetable based cutting oils

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    2002-01-01

    This paper presents an investigation on the effect of new formulations of vegetable oils on surface integrity and part accuracy in reaming and tapping operations with AISI 316L stainless steel. Surface integrity was assessed with measurements of roughness, microhardness, and using metallographic...... as part accuracy. Cutting fluids based on vegetable oils showed comparable or better performance than mineral oils. ÆÉ2002 Published by Elsevier Science Ltd....... techniques, while part accuracy was measured on a coordinate measuring machine. A widely diffused commercial mineral oil was used as reference for all measurements. Cutting fluid was found to have a significant effect on surface integrity and thickness of the strain hardened layer in the sub-surface, as well...

  10. Wet cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hole, B. [IMC Technical Services (United Kingdom)

    1999-08-01

    Continuous miners create dust and methane problems in underground coal mining. Control has usually been achieved using ventilation techniques as experiments with water based suppression have led to flooding and electrical problems. Recent experience in the US has led to renewed interest in wet head systems. This paper describes tests of the Hydraphase system by IMC Technologies. Ventilation around the cutting zone, quenching of hot ignition sources, dust suppression, the surface trial gallery tests, the performance of the cutting bed, and flow of air and methane around the cutting head are reviewed. 1 ref., 2 figs., 2 photos.

  11. An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology

    Science.gov (United States)

    Tahir, Abdul Fattah Mohd; Aqida, Syarifah Nur

    2017-07-01

    In hot press forming, changes of mechanical properties in boron steel blanks have been a setback in trimming the final shape components. This paper presents investigation of kerf width and heat affected zone (HAZ) of ultra high strength 22MnB5 steel cutting. Sample cutting was conducted using a 4 kW Carbon Dioxide (CO2) laser machine with 10.6 μm wavelength with the laser spot size of 0.2 mm. A response surface methodology (RSM) using three level Box-Behnken design of experiment was developed with three factors of peak power, cutting speed and duty cycle. The parameters were optimised for minimum kerf width and HAZ formation. Optical evaluation using MITUTOYO TM 505 were conducted to measure the kerf width and HAZ region. From the findings, laser duty cycle was crucial to determine cutting quality of ultra-high strength steel; followed by cutting speed and laser power. Meanwhile, low power intensity with continuous wave contributes the narrowest kerf width formation and least HAZ region.

  12. EXPERIMENTAL INVESTIGATION OF THE EFFECT OF MACHINIG PARAMETERS OVER CUTTING FORCE AND SURFACE ROUGHNESS IN THE MACHINABILITY OF AA5052 ALLOY

    Directory of Open Access Journals (Sweden)

    Hasan GÖKKAYA

    2006-03-01

    Full Text Available In this study, the effects of different cutting and feed rates over average surface roughness and main cutting force during the machinability of AA5052 aluminum alloy with uncoated cemented carbide insert were evaluated. In the experiments, stable depth of cut (1.5 mm, four different cutting speeds (200, 300, 400, 500 m/min and five different feed rates (0.10, 0.15, 0.20, 0.25, 0.30 mm/rev were used. Based on cutting and feed rates, the lowest main cutting force was obtained as 113 in 500 m/min cutting speed and 0.10 mm/rev feed rate and the highest cutting force was obtained as 332 N in 200 m/min cutting speed and 0.30 mm/rev feed rate. The lowest average surface roughness was obtained as 0.95 µm in 200 m/min cutting speed and 0.10 mm/rev feed rate and the highest average surface roughness was obtained as 6.65 µm in 300 m/min cutting speed and 0.30 mm/rev feed rate.

  13. Comparison of surface roughness quality created by abrasive water jet and CO2 laser beam cutting

    Czech Academy of Sciences Publication Activity Database

    Zeleňák, M.; Valíček, Jan; Klich, Jiří; Židková, P.

    2012-01-01

    Roč. 19, č. 3 (2012), s. 481-485 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive waterjet cut ting * CO2 laser beam cut ting * optical profilometry * titanium sample Subject RIV: JQ - Machines ; Tools Impact factor: 0.601, year: 2012 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=129054

  14. Analysis of surface integrity in machining of AISI 304 stainless steel under various cooling and cutting conditions

    Science.gov (United States)

    Klocke, F.; Döbbeler, B.; Lung, S.; Seelbach, T.; Jawahir, I. S.

    2018-05-01

    Recent studies have shown that machining under specific cooling and cutting conditions can be used to induce a nanocrystalline surface layer in the workspiece. This layer has beneficial properties, such as improved fatigue strength, wear resistance and tribological behavior. In machining, a promising approach for achieving grain refinement in the surface layer is the application of cryogenic cooling. The aim is to use the last step of the machining operation to induce the desired surface quality to save time-consuming and expensive post machining surface treatments. The material used in this study was AISI 304 stainless steel. This austenitic steel suffers from low yield strength that limits its technological applications. In this paper, liquid nitrogen (LN2) as cryogenic coolant, as well as minimum quantity lubrication (MQL), was applied and investigated. As a reference, conventional flood cooling was examined. Besides the cooling conditions, the feed rate was varied in four steps. A large rounded cutting edge radius and finishing cutting parameters were chosen to increase the mechanical load on the machined surface. The surface integrity was evaluated at both, the microstructural and the topographical levels. After turning experiments, a detailed analysis of the microstructure was carried out including the imaging of the surface layer and hardness measurements at varying depths within the machined layer. Along with microstructural investigations, different topological aspects, e.g., the surface roughness, were analyzed. It was shown that the resulting microstructure strongly depends on the cooling condition. This study also shows that it was possible to increase the micro hardness in the top surface layer significantly.

  15. Surface temperature measurement using infrared radiometer. 2nd Report. Applicability of pseudo gray body approximation. Sekitaisen eizo sochi wo riyoshita jitsuyoteki ondo keisoku ni kansuru kenkyu. 2. Giji Haiiro kinji no tekiyosei

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, T; Sekiya, M; Ishibashi, H; Okamoto, Y [Ibaraki University, Ibaraki (Japan). Faculty of Engineering; Kurokawa, K [NEC Corp., Tokyo (Japan)

    1994-06-25

    Establishment of a simple and reasonable technique and its application to the metallic surface in addition to the nonmetallic surface in the room-temperature measurement using infrared picture equipment have been studied. It was found, as published in the previous paper, in the investigation of radiation temperature, radiosity coefficient, their wave-length dependence and the dispersiveness of these parameters about the surfaces of various kinds of material that the assumption of gray body approximation does not hold in the surfaces of metal and part of nonmetal. In the present work, applicability of pseudo-gray body approximation to the metal surface in a system surrounded by black body surfaces was studied in consideration of directivity of emissivity and reflectance while, in actual, a measuring angle of 15 degrees giving a small directivity effect was used based on experimental results. As in the previous paper, three kinds of sensors different in the detectable wave-length range were used to evaluate the radiation temperature, emissivity, radiosity coefficient, and their dispersiveness. The experimental results proved the applicability of pseudo-gray body approximation. 3 refs., 18 figs., 2 tabs.

  16. Characterization of glassy phase at the surface of alumina ceramics substrate and its effect on laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Fu Renli [School of Mechanical-Electronic and Materials Engineering, China Univ. of Mining and Technology, Xuzhou, JS (China); Dept. of Ceramics and Glass Engineering, CICECO, Univ. of Aveiro, Aveiro (Portugal); Li Yanbo [School of Mechanical-Electronic and Materials Engineering, China Univ. of Mining and Technology, Xuzhou, JS (China); Xu Xin; Ferreira, J.M.F. [Dept. of Ceramics and Glass Engineering, CICECO, Univ. of Aveiro, Aveiro (Portugal)

    2004-07-01

    Nowadays alumina ceramic substrates are widely used for high precision applications in electronic devices, such as hybrid integrated circuits (HIC). Usually, the alumina ceramic substrates are shaped through tape casting method and sintered in continuous slab kilns. The sintering aids used to enhance densification during sintering give rise to the formation of an alumino-silicate liquid phase, which is of crucial importance in pressureless and low-temperature sintering (<1600 C) of alumina ceramics. The preferential migration of liquid phase to the surface of alumina substrates under the capillary action and its transformation into glassy phase during cooling affects the subsequent processing steps of HIC. A smoothening effect on surface with its enrichment in glassy phase is accompanied by a decrease of the surface toughness. On the other hand, the accumulated glassy phase onto the surface has a great effect on laser cutting. The high temperatures developed during laser cutting turn the superficial glassy phase into liquid again, while rapid solidification will occur after removing laser beam. The fast cooling of the liquid phase causes formation of extensive network of cracks on the surface of alumina substrate. Apparently, the presence of such faults degrades mechanical strength and thermal shock resistance of alumina substrates. Meanwhile, the recast layers and spatter deposits at the periphery of the hole has been observed. (orig.)

  17. A Study of Resin as Master Jewellery Material, Surface Quality and Machining Time Improvement by Implementing Appropriate Cutting Strategy

    Directory of Open Access Journals (Sweden)

    Puspaputra Paryana

    2017-01-01

    Full Text Available This paper deals with a research about art and jewellery product machining that focused in the selection of appropriate material for jewellery master which is machined by CNC. CNC is used for better surface finish for no undercut design and more complex ornament. The need of production speed requires minimum process without reducing the quality of detail ornament significantly. Problems occur when high surface quality is required. In that condition high speed spindle is used with low feeding speed, as a result is high temperature in cutter-material area will melt the resin and build the build-up edge (BUE. Due to the existence of BUE, the cutting tool will no longer cut the resin, as a result the resin will then melt due to friction and the melt resin will then stuck on the relief and surface finish become worst and rework should be done. When required surface is achieved problem also occur in next going process, that is silicon mould making. Due to galvanization process for silicon at about 170°C, resin material may be broken or cracked. Research is then conducted to select appropriate resin type suitable for all production steps.

  18. Henry Gray, plagiarist.

    Science.gov (United States)

    Richardson, Ruth

    2016-03-01

    The first edition of Anatomy Descriptive and Surgical (1858) was greeted with accolades, but also provoked serious controversy concerning Henry Gray's failure to acknowledge the work of earlier anatomists. A review in the Medical Times (1859) accused Gray of intellectual theft. The journal took the unusual step of substantiating its indictment by publishing twenty parallel texts from Gray and from a pre-existing textbook, Quain's Anatomy. At the recent "Vesalius Continuum" conference in Zakynthos, Greece (2014) Professor Brion Benninger disputed the theft by announcing from the floor the results of a computer analysis of both texts, which he reported exonerated Gray by revealing no evidence of plagiarism. The analysis has not been forthcoming, however, despite requests. Here the historian of Gray's Anatomy supplements the argument set out in the Medical Times 150 years ago with data suggesting unwelcome personality traits in Henry Gray, and demonstrating the utility of others' work to his professional advancement. Fair dealing in the world of anatomy and indeed the genuineness of the lustre of medical fame are important matters, but whether quantitative evidence has anything to add to the discussion concerning Gray's probity can be assessed only if Benninger makes public his computer analysis. © 2015 Wiley Periodicals, Inc.

  19. Sub-surface Biogeochemical Characteristics and Its Effect on Arsenic Cycling in the Holocene Gray Sand Aquifers of the Lower Bengal Basin

    Directory of Open Access Journals (Sweden)

    Devanita Ghosh

    2017-12-01

    Full Text Available High arsenic (As content in the fertile delta plains of West Bengal has been widely reported since the 1990s. The shallow gray sand aquifers (GSA deposited during the Holocene, are more commonly used as potable water sources, but they have high As levels. The release of As into groundwater is influenced by indigenous microbial communities metabolizing different organic carbon sources present in the GSA sediments. After pre-screening the groundwater for assessing their microbial phylogenetic diversity, two 50-m deep boreholes were drilled in the GSAs, and 19 sediment samples were recovered from each core. In each of these samples, grain-size distribution, sequential extraction, and quantification of trace metals and total extractable lipids were analyzed. The aquifer sediments consisted of medium to fine micaceous sand with clay lenses in between them; a thick clay layer occurred on top of both boreholes. Arsenic concentration in these sediments varied from 1.80 to 41.0 mg/kg and was mostly associated with the oxide and silicate-rich crystalline minerals. Arsenic showed a significant correlation with Fe in all fractions, suggesting the presence of Fe-(oxy-hydroxides bound As minerals. The diagnostic lipid biomarkers showed presence of compounds derived from higher plants (epicuticular waxes and microbial inputs. The biomarkers were abundant in clay and silt-rich layers. The samples indicated preferential preservation of n-alkanes over other functional compounds (e.g., alcohols and fatty acids, that are more reactive, and hence subject to further degradation. Sediments recovered from the borehole indicated the presence of Eustigmatophytes and vascular plant waxes that are mostly surface-derived. The sedimentary lipids also indicated the presence of complex petroleum-derived hydrocarbons. These compounds provide organic substrates, and support the preferential survival of specific microbial communities in these sediments.

  20. Accuracy Enhancement with Processing Error Prediction and Compensation of a CNC Flame Cutting Machine Used in Spatial Surface Operating Conditions

    Directory of Open Access Journals (Sweden)

    Shenghai Hu

    2017-04-01

    Full Text Available This study deals with the precision performance of the CNC flame-cutting machine used in spatial surface operating conditions and presents an accuracy enhancement method based on processing error modeling prediction and real-time compensation. Machining coordinate systems and transformation matrix models were established for the CNC flame processing system considering both geometric errors and thermal deformation effects. Meanwhile, prediction and compensation models were constructed related to the actual cutting situation. Focusing on the thermal deformation elements, finite element analysis was used to measure the testing data of thermal errors, the grey system theory was applied to optimize the key thermal points, and related thermal dynamics models were carried out to achieve high-precision prediction values. Comparison experiments between the proposed method and the teaching method were conducted on the processing system after performing calibration. The results showed that the proposed method is valid and the cutting quality could be improved by more than 30% relative to the teaching method. Furthermore, the proposed method can be used under any working condition by making a few adjustments to the prediction and compensation models.

  1. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?

    Czech Academy of Sciences Publication Activity Database

    Bulgakova, Nadezhda M.; Zhukov, V.P.; Collins, A.R.; Rostohar, Danijela; Derrien, Thibault; Mocek, Tomáš

    2015-01-01

    Roč. 336, May (2015), s. 364-374 ISSN 0169-4332 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : laser material processing * high power lasers * glass cutting * laser-matter interaction * biwave length irradiation * ambient gas ionization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.150, year: 2015

  2. EVALUATION OF MACHINABILITY OF DUCTILE IRONS ALLOYED WITH Ni AND Cu IN TERMS OF CUTTING FORCES AND SURFACE QUALITY

    Directory of Open Access Journals (Sweden)

    Yücel AŞKUN

    2003-02-01

    Full Text Available Due to the enhanced strength, ductility and thoughness of Ductile Iron (DI when compared to the other types cast iron, its machinability is relatively poor. When a steel part is replaced with ductile iron, however, better machinability is considered to be the most important gain. This study presents the results of machining tests of ductile irons alloyed with Ni and Cu at various contents to determine the effect of their microstructure and mechanical properties on cutting forces and surface roughness. Six different specimen groups of ductile iron alloyed with various amounts of nickel and copper were subjected to machining tests and their machinabilities were investigated based on cutting forces and surface roughness criteria. The results were evaluated according to microstructure and mechanical properties of specimens determined before. In terms of both criterion, the best result obtained was specimen added 0.7 % Ni and 0.7 % Cu. When the specimens were evaluated according to their mechanical properties, the specimens alloyed 1 % Ni and 0.65 % Cu seemed promising.

  3. Modal analysis and cut-off conditions of multichannel surface-acoustic-waveguide structures.

    Science.gov (United States)

    Griffel, G; Golan, G; Ruschin, S; Seidman, A; Croitoru, N

    1988-01-01

    Multichannel guides for surface acoustic waves can improve the efficiency of SAW (surface acoustic-wave) devices significantly. Focusing, steering, and modulating the propagating acoustical modes can be achieved similarly to optical waveguided devices. A general formulation is presented for the analysis of the lateral waveguiding properties of Rayleigh modes in surfaces loaded with deposited strips of different materials. General expressions are obtained for the number of modes and cutoff conditions in these structures. As examples of applications, a simple directional coupler and an electrically controlled coupler are proposed.

  4. Surface and microstructure modifications of Ti-6Al-4V titanium alloy cutting by a water jet/high power laser converging coupling

    Science.gov (United States)

    Weiss, Laurent; Tazibt, Abdel; Aillerie, Michel; Tidu, Albert

    2018-01-01

    The metallurgical evolution of the Ti-6Al-4V samples is analyzed after an appropriate cutting using a converging water jet/high power laser system. New surface microstructures are obtained on the cutting edge as a result of thermo-mechanical effects of such hybrid fluid-jet-laser tool on the targeted material. The laser beam allows to melt and the water-jet to cool down and to evacuate the material upstream according to a controlled cutting process. The experimental results have shown that a rutile layer can be generated on the surface near the cutting zone. The recorded metallurgical effect is attributed to the chemical reaction between water molecules and titanium, where the laser thermal energy brought onto the surface plays the role of reaction activator. The width of the oxidized zone was found proportional to the cutting speed. During the reaction, hydrogen gas H2 is formed and is absorbed by the metal. The hydrogen atoms trapped into the alloy change the metastable phase formation developing pure β circular grains as a skin at the kerf surface. This result is original so it would lead to innovative converging laser water jet process that could be used to increase the material properties especially for surface treatment, a key value of surface engineering and manufacturing chains.

  5. The optimization study on the tool wear of carbide cutting tool during milling Carbon Fibre Reinforced (CFRP) using Response Surface Methodology (RSM)

    Science.gov (United States)

    Nor Khairusshima, M. K.; Hafiz Zakwan, B. Muhammad; Suhaily, M.; Sharifah, I. S. S.; Shaffiar, N. M.; Rashid, M. A. N.

    2018-01-01

    Carbon Fibre Reinforced Plastic (CFRP) composite has become one of famous materials in industry, such as automotive, aeronautics, aerospace and aircraft. CFRP is attractive due to its properties, which promising better strength and high specification of mechanical properties other than its high resistance to corrosion. Other than being abrasive material due to the carbon nature, CFRP is an anisotropic material, which the knowledge of machining metal and steel cannot be applied during machining CFRP. The improper technique and parameters used to machine CFRP may result in high tool wear. This paper is to study the tool wear of 8 mm diameter carbide cutting tool during milling CFRP. To predict the suitable cutting parameters within range of 3500-6220 (rev/min), 200-245 (mm/min), and 0.4-1.8 (mm) for cutting speed, speed, feed rate and depth of cut respectively, which produce optimized result (less tool wear), Response Surface Methodology (RSM) has been used. Based on the developed mathematical model, feed rate was identified as the primary significant item that influenced tool wear. The optimized cutting parameters are cutting speed, feed and depth of cut of 3500 rev/min, 200 mm/min and 0.5 mm, respectively, with tool wear of 0.0267 mm. It is also can be observed that as the cutting speed and feed rate increased the tool wear is increasing.

  6. Response Surface Methodology Approach on Effect of Cutting Parameter on Tool Wear during End Milling of High Thermal Conductivity Steel -150 (HTCS-150)

    International Nuclear Information System (INIS)

    Mohd Hadzley, A B; Wan Mohd Azahar, W M Y; Izamshah, R; Mohd Shahir, K; Mohd Amran, A; Anis Afuza, A

    2016-01-01

    This paper presents a study of development the tool life's mathematical model during the milling process on High Thermal Conductivity Steel 150 (HTCS-150) 56 HRC. Using response surface methodology, the mathematical models for tool life have been developed in terms of cutting speed, feed rate and depth of cut. Box-Behnken techniques is a part of Response Surface Methodology (RSM) has been used to carry out the work plan to predict, the tool wear and generate the numerical equation in relation to independent variable parameters by Design Expert software. Dry milling experiments were conducted by using two levels of cutting speed, feed rate and depth of cut. In this study, the variable for the cutting speed, feed rate and depth of cut were in the range of 484-553 m/min, 0.31-0.36 mm/tooth, and 0.1-0.5 mm, width of cut is constantly 0.01mm per passes. The tool wear was measured using tool maker microscope. The effect of input factors that on the responds were identified by using mean of ANOVA. The responds of tool wear then simultaneously optimized. The validation of the test reveals the model accuracy 5% and low tool wear under same experimental condition. (paper)

  7. Response Surface Methodology Approach on Effect of Cutting Parameter on Tool Wear during End Milling of High Thermal Conductivity Steel -150 (HTCS-150)

    Science.gov (United States)

    Mohd Hadzley, A. B.; Mohd Azahar, W. M. Y. Wan; Izamshah, R.; Mohd Shahir, K.; Mohd Amran, A.; Anis Afuza, A.

    2016-02-01

    This paper presents a study of development the tool life's mathematical model during the milling process on High Thermal Conductivity Steel 150 (HTCS-150) 56 HRC. Using response surface methodology, the mathematical models for tool life have been developed in terms of cutting speed, feed rate and depth of cut. Box-Behnken techniques is a part of Response Surface Methodology (RSM) has been used to carry out the work plan to predict, the tool wear and generate the numerical equation in relation to independent variable parameters by Design Expert software. Dry milling experiments were conducted by using two levels of cutting speed, feed rate and depth of cut. In this study, the variable for the cutting speed, feed rate and depth of cut were in the range of 484-553 m/min, 0.31-0.36 mm/tooth, and 0.1-0.5 mm, width of cut is constantly 0.01mm per passes. The tool wear was measured using tool maker microscope. The effect of input factors that on the responds were identified by using mean of ANOVA. The responds of tool wear then simultaneously optimized. The validation of the test reveals the model accuracy 5% and low tool wear under same experimental condition.

  8. Henry Gray's Anatomy.

    Science.gov (United States)

    Pearce, J M S

    2009-04-01

    Little is generally known of Henry Gray, the author of Gray's Anatomy, and even less of his colleague Henry Vandyke Carter, who played a vital role in the dissections and illustrations leading to the production of the first volume in 1859. This essay attempts to sketch briefly the salient, know aspects of these two men and their divergent careers. It traces succinctly the subsequent fate of the unique anatomy book that has influenced and instructed almost every student of medicine. (c) 2009 Wiley-Liss, Inc.

  9. Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology

    Science.gov (United States)

    Kumar, Amit; Soota, Tarun; Kumar, Jitendra

    2018-03-01

    Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.

  10. Geometric Parameters of Cutting Tools that Can be Used for Forming Sided Surfaces with Variable Profile

    Directory of Open Access Journals (Sweden)

    Razumov M.

    2017-03-01

    Full Text Available This article describes machining technology of polyhedral surfaces with varying profile, which is provided by planetary motion of multiblade block tools. The features of the technology and urgency of the problem is indicated. The purpose of the study is to determine the minimum value of the clearance angle of the tool. Also, the study is carried out about changing the value of the front and rear corners during the formation of polygonal surface using a planetary gear. The scheme of calculating the impact of various factors on the value of the minimum clearance angle of the tool and kinematic front and rear corners of the instrument is provided. The mathematical formula for calculating the minimum clearance angle of the tool is given. Also, given the formula for determining the front and rear corners of the tool during driving. This study can be used in the calculation of the design operations forming multifaceted external surfaces with a variable profile by using the planetary gear.

  11. Investigation of surface roughness and tool wear length with varying combination of depth of cut and feed rate of Aluminium alloy and P20 steel machining

    International Nuclear Information System (INIS)

    Varmma Suparmaniam, Madan; Yusoff, Ahmad Razlan

    2016-01-01

    High-speed milling technique is often used in many industries to boost productivity of the manufacturing of high-technology components. The occurrence of wear highly limits the efficiency and accuracy of high- speed milling operations. In this paper, analysis of high-speed milling process parameters such as material removal rate, cutting speed, feed rate and depth of cut carried out by implemented to conventional milling. This experiment investigate the effects of varying combination of depth of cut and feed rate to tool wear rate length using metallurgical microscope and surface roughness using portable surface roughness tester after end milling of Aluminium and P20 steel. Results showed that feed rate significantly influences the surface roughness value while depth of cut does not as the surface roughness value keep increasing with the increase of feed rate and decreasing depth of cut. Whereas, tool wear rate almost remain unchanged indicates that material removal rate strongly contribute the wear rate. It believe that with no significant tool wear rate the results of this experiment are useful by showing that HSM technique is possible to be applied in conventional machine with extra benefits of high productivity, eliminating semi-finishing operation and reducing tool load for finishing. (paper)

  12. Effect of cutting edge radius on surface roughness in diamond tool turning of transparent MgAl2O4 spinel ceramic

    Science.gov (United States)

    Yue, Xiaobin; Xu, Min; Du, Wenhao; Chu, Chong

    2017-09-01

    Transparent magnesium aluminate spinel (MgAl2O4) ceramic is one of an important optical materials. However, due to its pronounced hardness and brittleness, the optical machining of this material is very difficult. Diamond turning has advantages over the grinding process in flexibility and material removal rate. However, there is a lack of research that could support the use of diamond turning technology in the machining of MgAl2O4 spinel ceramic. Using brittle-ductile transition theory of brittle material machining, this work provides critical information that may help to realize ductile-regime turning of MgAl2O4 spinel ceramic. A characterization method of determination the cutting edge radius is introduced here. Suitable diamond tools were measured for sharpness and then chosen from a large number of candidate tools. The influence of rounded cutting edges on surface roughness of the MgAl2O4 spinel ceramic is also investigated. These results indicate that surface quality of MgAl2O4 spinel is relate to the radius of diamond tool's cutting edge, cutting speed, and feed rate. Sharp diamond tools (small radius of cutting edge) facilitated ductile-regime turning of MgAl2O4 spinel and shows great potential to reduce surface roughness and produce smoother final surface.

  13. Cross-cutting High Surface Area Graphene-based Frameworks with Controlled Pore Structure/Dopants

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    The goal of this project is to enhance the performance of graphene-based materials by manufacturing specific 3D architectures. The materials have global applications regarding fuel cell catalysts, gas adsorbents, supercapacitor/battery electrodes, ion (e.g., actinide) capture, gas separation, oil adsorption, and catalysis. This research focuses on hydrogen storage for hydrogen fuel cell vehicles with a potential transformational impact on hydrogen adsorbents that exhibit high gravimetric and volumetric density, a clean energy application sought by the Department of Energy. The development of an adsorbent material would enable broad commercial opportunities in hydrogen-fueled vehicles, promote new advanced nanomanufacturing scale-up, and open other opportunities at Savannah River National Laboratory to utilize a high surface area material that is robust, chemically stable, and radiation resistant.

  14. Cross-cutting High Surface Area Graphene-based Frameworks with Controlled Pore Structure/Dopants

    International Nuclear Information System (INIS)

    Gaillard, J.

    2017-01-01

    The goal of this project is to enhance the performance of graphene-based materials by manufacturing specific 3D architectures. The materials have global applications regarding fuel cell catalysts, gas adsorbents, supercapacitor/battery electrodes, ion (e.g., actinide) capture, gas separation, oil adsorption, and catalysis. This research focuses on hydrogen storage for hydrogen fuel cell vehicles with a potential transformational impact on hydrogen adsorbents that exhibit high gravimetric and volumetric density, a clean energy application sought by the Department of Energy. The development of an adsorbent material would enable broad commercial opportunities in hydrogen-fueled vehicles, promote new advanced nanomanufacturing scale-up, and open other opportunities at Savannah River National Laboratory to utilize a high surface area material that is robust, chemically stable, and radiation resistant.

  15. Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool

    International Nuclear Information System (INIS)

    Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng

    2016-01-01

    This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method. (paper)

  16. Irregularity of the posterior corneal surface during applanation using a curved femtosecond laser interface and microkeratome cutting head.

    Science.gov (United States)

    Vetter, Jan M; Holtz, Carsten; Vossmerbaeumer, Urs; Pfeiffer, Norbert

    2012-03-01

    To evaluate the irregularity of the posterior corneal surface and intrastromal dissection during the preparation of donor tissue for Descemet stripping automated endothelial keratoplasty (DSAEK) using a curved interface femtosecond laser and microkeratome. Sixteen human donor corneas unsuitable for transplantation were divided into two groups: a femtosecond (FS) laser group (n=7) using the VisuMax femtosecond laser (Carl Zeiss Meditec) and a microkeratome group (n=9) using the Amadeus II microkeratome (Ziemer Ophthalmic Group). The corneas were fixed on artificial anterior chambers. Horizontal cross-sections were obtained using spectral-domain optical coherence tomography prior to applanation, during applanation, as well as during and after intrastromal dissection at 450-μm corneal depth. The posterior surface and the dissection line were evaluated for irregularity by fitting a second-order polynomial curve using regression analysis and obtaining the root-mean-square error (RMSE). Groups were compared using analysis of variance. The RMSE of the posterior surface prior to applanation was 9.7 ± 3.1 μm in the FS laser group and 10.2 ± 2.3 μm in the microkeratome group. The RMSE increased to 50.7 ± 9.4 μm and 20.9 ± 6.1 μm during applanation and decreased again to 10.6 ± 1.4 μm and 8.1 ± 1.8 μm after applanation in the FS laser and microkeratome groups, respectively. The RMSE of the intrastromal cut was 19.5 ± 5.7 μm in the FS laser group and 7.7 ± 3.0 μm in the microkeratome group (P<.001). Our results show significantly greater irregularity with the curved interface femtosecond laser-assisted cleavage compared to microkeratome-assisted corneal dissection, possibly due to applanation-derived deformation of the posterior cornea. Copyright 2012, SLACK Incorporated.

  17. Device for cutting protrusions

    Science.gov (United States)

    Bzorgi, Fariborz M [Knoxville, TN

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  18. Delamination wear mechanism in gray cast irons

    International Nuclear Information System (INIS)

    Salehi, M.

    2000-01-01

    An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a process of plastic deformation at the subsurface, crack nucleation, and crack growth leading to formation of plate like debris and therefore the delamination theory applies. No evidence of adhesion was observed. This could be due to formation of oxides on the wear surface which prevent adhesion. channel type chromium plating ''picked'' up cast iron from the counter-body surfaces by mechanically trapping cast iron debris on and within the cracks. The removal of the plated chromium left a pitted surface on the cast iron

  19. Research on the Influence of Cutting Rates on Macrogeometry Deflections of Surfaces under Processing Complex form Products Made of Aluminium Aloys

    Directory of Open Access Journals (Sweden)

    Ieva Švagždytė

    2015-03-01

    Full Text Available The article reviews the influence of cutting rates on macrogeometry deflection of milling complex form products and turning an outside surface. For that purpose, one of the most popular aluminium alloys 6082 has been chosen. A ball nose mill of 8 mm in diameter has been milled employing CNC vertical centre HAAS MINI MILL and applying CNC lathe HAAS ST 20 for turning. Measurements have been carried out using coordinate measuring machine DEA micro-hite DCC, applying the probe sphere of 3mm in diameter and the probe equipped with a needle. A deviation of the surface profile from tangent to therophore parabola has been investigated. The determinants R2 of the obtained regressive equation have disclosed that the depth of the cut has the biggest influence on macrogeometry deflections, whereas feed rate has a slighter influence and cutting speed has no radical influence. For the turning process, the depth of the cut has the strongest influence on circularity while cilindrisity has been mainly affected by cutting speed.

  20. Theoretical analysis of surface acoustic wave propagating properties of Y-cut nano lithium niobate film on silicon dioxide

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2015-08-01

    Full Text Available The surface acoustic wave (SAW propagating characteristics of Y-cut nano LiNbO3 (LN film on SiO2/LN substrate have been theoretically calculated. The simulated results showed a shear horizontal (SH SAW with enhanced electromechanical coupling factor K2 owing to a dimensional effect of the nanoscale LN film. However, a Rayleigh SAW and two other resonances related to thickness vibrations caused spurious responses for wideband SAW devices. These spurious waves could be fully suppressed by properly controlling structural parameters including the electrode layer height, thickness, and the Euler angle (θ of the LN thin film. Finally, a pure SH SAW was obtained with a wide θ range, from 0° to 5° and 165° to 180°. The largest K2 achieved for the pure SH SAW was about 35.1%. The calculated results demonstrate the promising application of nano LN film to the realization of ultra-wideband SAW devices.

  1. Theoretical analysis of surface acoustic wave propagating properties of Y-cut nano lithium niobate film on silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing, E-mail: jingchen0408@hotmail.com; Zhang, Qiaozhen; Han, Tao; Zhou, Liu; Tang, Gongbin; Liu, Boquan; Ji, Xiaojun [Department of Instrument Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2015-08-15

    The surface acoustic wave (SAW) propagating characteristics of Y-cut nano LiNbO{sub 3} (LN) film on SiO{sub 2}/LN substrate have been theoretically calculated. The simulated results showed a shear horizontal (SH) SAW with enhanced electromechanical coupling factor K{sup 2} owing to a dimensional effect of the nanoscale LN film. However, a Rayleigh SAW and two other resonances related to thickness vibrations caused spurious responses for wideband SAW devices. These spurious waves could be fully suppressed by properly controlling structural parameters including the electrode layer height, thickness, and the Euler angle (θ) of the LN thin film. Finally, a pure SH SAW was obtained with a wide θ range, from 0° to 5° and 165° to 180°. The largest K{sup 2} achieved for the pure SH SAW was about 35.1%. The calculated results demonstrate the promising application of nano LN film to the realization of ultra-wideband SAW devices.

  2. A low-cost, orientation-insensitive microwave water-cut sensor printed on a pipe surface

    KAUST Repository

    Karimi, Muhammad Akram

    2017-10-24

    This paper presents a novel and contactless water fraction (also known as water cut) measurement technique, which is independent of geometric distribution of oil and water inside the pipe. The sensor is based upon a modified dual helical stub resonators implemented directly on the pipe\\'s outer surface and whose resonance frequency decreases by increasing the water content in oil. The E-fields have been made to rotate and distribute well inside the pipe, despite having narrow and curved ground plane. It makes the sensor\\'s reading dependent only on the water fraction and not on the mixture distribution inside the pipe. That is why, the presented design does not require any flow conditioner to homogenize the oil/water mixture unlike many commercial WC sensors. The presented sensor has been realized by using extremely low cost methods of screen-printing and reusable 3D printed mask. Complete characterization of the proposed WC sensor, both in horizontal and vertical orientations, has been carried out in an industrial flow loop. Excellent repeatability of the sensor\\'s response has been observed under different flow conditions. The measured performance results of the sensor show full range accuracy of ±2-3% while tested under random orientations and wide range of flow rates.

  3. Effect of Cutting Parameters on Thrust Force and Surface Roughness in Drilling of Al-2219/B4C/Gr Metal Matrix Composites

    Science.gov (United States)

    Ravindranath, V. M.; Basavarajappa, G. S. Shiva Shankar S.; Suresh, R.

    2016-09-01

    In aluminium matrix composites, reinforcement of hard ceramic particle present inside the matrix which causes tool wear, high cutting forces and poor surface finish during machining. This paper focuses on effect of cutting parameters on thrust force, surface roughness and burr height during drilling of MMCs. In the present work, discuss the influence of spindle speed and feed rate on drilling the pure base alloy (Al-2219), mono composite (Al- 2219+8% B4C) and hybrid composite (Al-2219+8%B4C+3%Gr). The composites were fabricated using liquid metallurgy route. The drilling experiments were conducted by CNC machine with TiN coated HSS tool, M42 (Cobalt grade) and carbide tools at various spindle speeds and feed rates. The thrust force, surface roughness and burr height of the drilled hole were investigated in mono composite and hybrid composite containing graphite particles, the experimental results show that the feed rate has more influence on thrust force and surface roughness. Lesser thrust force and discontinuous chips were produced during machining of hybrid composites when compared with mono and base alloy during drilling process. It is due to solid lubricant property of graphite which reduces the lesser thrust force, burr height and lower surface roughness. When machining with Carbide tool at low feed and high speeds good surface finish was obtained compared to other two types of cutting tool materials.

  4. Application of Finite Element Method to Analyze the Influences of Process Parameters on the Cut Surface in Fine Blanking Processes by Using Clearance-Dependent Critical Fracture Criteria

    Directory of Open Access Journals (Sweden)

    Phyo Wai Myint

    2018-04-01

    Full Text Available The correct choice of process parameters is important in predicting the cut surface and obtaining a fully-fine sheared surface in the fine blanking process. The researchers used the value of the critical fracture criterion obtained by long duration experiments to predict the conditions of cut surfaces in the fine blanking process. In this study, the clearance-dependent critical ductile fracture criteria obtained by the Cockcroft-Latham and Oyane criteria were used to reduce the time and cost of experiments to obtain the value of the critical fracture criterion. The Finite Element Method (FEM was applied to fine blanking processes to study the influences of process parameters such as the initial compression, the punch and die corner radii and the shape and size of the V-ring indenter on the length of the sheared surface. The effects of stress triaxiality and punch diameters on the cut surface produced by the fine blanking process are also discussed. The verified process parameters and tool geometry for obtaining a fully-fine sheared SPCC surface are described. The results showed that the accurate and stable prediction of ductile fracture initiation can be achieved using the Oyane criterion.

  5. AN EXPERIMENTAL STUDY OF CUTTING FLUID EFFECTS IN DRILLING. (R825370C057)

    Science.gov (United States)

    Experiments were designed and conducted on aluminum alloys and gray cast iron to determine the function of cutting fluid in drilling. The variables examined included speed, feed, hole depth, tool and workpiece material, cutting fluid condition, workpiece temperatures and drill...

  6. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    Science.gov (United States)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  7. Critical shear stress on the surface of a cuttings bed; Tensao critica de cisalhamento na superficie de um leito de cascalhos

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Luciana Mancor [Universidade Estadual Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia de Petroleo]. E-mail: luciana@lenep.uenf.br; Campos, Wellington [PETROBRAS, S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: campos@cenpes.petrobras.com.br; Braga, Luiz Carvalho [Centro Federal de Educacao Tecnologica (CEFET), Macae, RJ (Brazil). Unidade de Ensino Descentralizada]. E-mail: luiz@lenep.uenf.br

    2000-07-01

    The cuttings transport during the drilling of highly inclined and horizontal wells is hindered by the creation of a cuttings bed in the annulus. In this work, it is shown that the equilibrium height of this bed can be determined from the shear stress on its surface. This fact enables the formulation of a methodology for evaluating the equilibrium height of the cuttings bed through the introduction of a new concept, that of critical shear stress. This is the shear stress that acts on the bed surface at the imminence of movement of the particles on the bed surface. The use of the methodology requires the determination of the acting shear stress and of the required critical shear stress. The acting shear stress is calculated by means of a computer program that solve the motion differential equations in the annular space; covering the cases of the laminar and turbulent flow regimes. The actuating shear stress is a function of flow rate and of the annular geometry in the presence of a cuttings bed; it is also a function of the physical properties of the fluid. On the other hand, the required critical shear stress is a function of the particles diameters and physical properties of the fluid and particles. A mechanistic model for the critical shear stress is also presented. (author)

  8. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: cuttings, cavings and spallings

    International Nuclear Information System (INIS)

    Berglund, J.W.; Garner, J.W.; Helton, J.C.; Johnson, J.D.; Smith, L.N.

    2000-01-01

    The following topics related to the treatment of cuttings, cavings and spallings releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (i) mathematical description of models; (ii) uncertainty and sensitivity analysis results arising from subjective (i.e. epistemic) uncertainty for individual releases; (iii) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e. aleatory) uncertainty; and (iv) uncertainty and sensitivity analysis results for CCDFs. The presented results indicate that direct releases due to cuttings, cavings and spallings do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for cuttings, cavings and spallings releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194)

  9. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: Cuttings, cavings and spallings

    International Nuclear Information System (INIS)

    Berglund, J.W.; Garner, J.W.; Helton, Jon Craig; Johnson, J.D.; Smith, L.N.; Anderson, R.P.

    2000-01-01

    The following topics related to the treatment of cuttings, cavings and spallings releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (1) mathematical description of models. (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented results indicate that direct releases due to cuttings, cavings and spallings do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for cuttings, cavings and spallings releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194)

  10. The Internet And Gray Marketing

    OpenAIRE

    Soumava Bandyopadhyay

    2010-01-01

    The purpose of this conceptual paper is to investigate the nature, extent, and outcomes of gray marketing on the Internet.  We examined the current state of Internet-based gray marketing in several product categories and found the phenomenon to be on the rise.  Next, we developed a series of propositions to address evolving trends in online gray marketing, regarding actions of intermediaries and manufacturers, response by consumers, and outcomes on marketing strategy.

  11. A new mathematical model of the surface degradation causing wear on the cutting tool`s flank land

    OpenAIRE

    Pаlmai, Z.

    2011-01-01

    Having reviewed the extensive literature on the wear of the cutting tool, we chose the theoretical description of flank wear as the subject matter of this paper. Based on the optical electron-optical and morphological studies of the physical characteristics of wear processes we came to the conclusion that the cutting distance need not only be taken into consideration in abrasive, adhesive processes but also in thermally activated diffusion, oxidation processes. Consequently, we propose the ap...

  12. Effectiveness of sanitizing agents in inactivating Escherichia coli (ATCC 25922 in food cutting board surfaces. Removal E. coli using different sanitizers

    Directory of Open Access Journals (Sweden)

    CEZAR AUGUSTO BELTRAME

    2016-03-01

    Full Text Available The objective of this study was to investigate Escherichia coli adhesion on new and used polyethylene cutting board surface and evaluate it’s removal using different sanitizer (peracetic acid,chlorhexidine, sodium hypochlorite and organic acids. Results indicated that the number of adherent cells increased with time in both surfaces evaluated. Evaluating the sanitizer action, 0.5%peracetic acid was more effective in removal E. coli than chlorhexidine and organic acids at same concentration in both surfaces. Peracetic acid and sodium hypochlorite also showed effectiveness at concentrations of 0.2% and 0.5% on new surfaces, respectively. 0.8% of chlorhexidine and 2.0% of organic acids showed similar effectiveness in the removal E. coli on new and used surfaces, respectively.These results suggest that peracetic acid is considerable promise sanitizer for application in surfaces of the food processing industry.

  13. Grays Harbor Paper

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, B. [Grays Harbor Paper, Hoquiam, WA (United States)

    2009-07-01

    Wood waste biomass boilers are used at Grays Harbor Paper in Hoquiam, Washington. This presentation showed that large volumes of biomass are left after a traditional clearcut. The opportunities and challenges of collecting branches, tops and stumps from this wet coastal climate were outlined. The paper described some of the low-tech methods for picking up branches, stumps and woody debris. It included several photographs of custom logging machines for timber harvest, including a brush grapple slasher, a shearer shovel, chippers, grinders, slicesaws, trucks, trailers and caterpillar log loaders for handling slash. The slash recovery program relies on innovative harvesting machines that convert scattered logging slash into bundles that can be easily collected, transported, and stored for use in existing facilities that utilize wood fiber for fuel. figs.

  14. Why Does Hair Turn Gray?

    Science.gov (United States)

    ... out, but people with naturally lighter hair are just as likely to go gray. From the time a person notices a few gray hairs, it may take more than 10 years for all of that person's hair to turn ... really believe that this happens. Just in case, try not to freak out your ...

  15. Novel Amdovirus in Gray Foxes

    Science.gov (United States)

    Li, Linlin; Pesavento, Patricia A.; Woods, Leslie; Clifford, Deana L.; Luff, Jennifer; Wang, Chunlin

    2011-01-01

    We used viral metagenomics to identify a novel parvovirus in tissues of a gray fox (Urocyon cinereoargenteus). Nearly full genome characterization and phylogenetic analyses showed this parvovirus (provisionally named gray fox amdovirus) to be distantly related to Aleutian mink disease virus, representing the second viral species in the Amdovirus genus. PMID:22000359

  16. Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.

    Science.gov (United States)

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2016-01-01

    Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (Pcutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The role of the implementation angle of cuttings of Phyllanthus sellowianus as a reference for a soil protection measure against surface erosion

    Science.gov (United States)

    Rauch, H. P.; Sutili, F. J.; Aschbacher, M.; Müller, B.

    2009-04-01

    Cutting plantation is a very common method of soil bioengineering techniques. The potential of vegetative reproduction is used to install a vegetation cover on eroded slopes to prevent surface erosion. The development of above and below biomass from parts of the stock plant in a very short time and the fast and easy propagation are one of the most important advantages of this soil bioengineering type. Several handbooks (Schiechtl, 1992; Florineth, 2004 and Zeh, 2007) suggest potential plants for vegetative reproduction and describe the procedure of plantation in detail. It is recommended that the cuttings are not driven vertically into the ground. A flat implementation angle guarantees a more uniform rooting of the cutting part driven into the soil, however there are no systematically investigations of the impact of the implementation angle on the biomass performance and consequently on the performance as a surface erosion protection measure. This paper shows results from field investigations focusing on the problem of the impact of the implementation angle of cuttings. In sum 75 specimens of the species of Phyllanthus sellowianus. The plant species was recommended as a native potential soil bioengineering plant by Sutili (s. Sutili, 2006). The cuttings were planted with an average length of 50 cm and diameter of 2 cm. The implementation angle differences between 90 (vertical) 45 and 10 degree. Two months after plantation all plants were excavated and the relevant plant data sets were collected in order to analyse the biomass performance. The field investigations are part of an integrated research project of the University of Natural Resources and Applied Life Sciences, Vienna and the Federal University of Santa Maria, Rio Grande do Sul - Brazil.

  18. Cutting cleaner

    International Nuclear Information System (INIS)

    Elsen, R.P.H. van; Smits, M.

    1991-01-01

    This paper presents the results of a long term field test of the Cutting Cleaner, which is used for the treatment of wet oil contaminated cuttings (WOCC) produced when drilling with Oil Based Mud (OBM). It was concluded that it is possible to reduce the oil content of cuttings to an average of 1 - 2%. The recovered base oil can be reused to make new oil based mud

  19. Paper Cuts.

    Science.gov (United States)

    Greene, Lisa A.

    1990-01-01

    Describes how to create paper cuts and suggests the most appropriate materials for young children that give good quality results. Describes the methods the author, a professional artist, uses to assemble her own paper cuts and how these can be adopted by older students. (KM)

  20. Comment on "An explanation for the charge on water's surface" by A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994

    Czech Academy of Sciences Publication Activity Database

    Vácha, Robert; Horinek, D.; Buchner, R.; Winter, B.; Jungwirth, Pavel

    2010-01-01

    Roč. 12, č. 42 (2010), s. 14362-14363 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z40550506 Keywords : surface charge * water * dielectric decrement Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  1. The Gray whale: Eschrichtius robustus

    National Research Council Canada - National Science Library

    Jones, Mary Lou; Leatherwood, Stephen; Swartz, Steven L

    1984-01-01

    .... Section II documents historical aspects of gray whale exploitation and the economic importance of these whales to humans, beginning with aboriginal societies in Asia and North America, and leading...

  2. Niobium in gray cast iron

    International Nuclear Information System (INIS)

    Castello Branco, C.H.; Beckert, E.A.

    1984-03-01

    The potential for utilization of niobium in gray cast iron is appraised and reviewed. Experiments described in literature indicate that niobium provides structural refinement of the eutectic cells and also promotes pearlite formation. (Author) [pt

  3. Cutting assembly

    Science.gov (United States)

    Racki, Daniel J.; Swenson, Clark E.; Bencloski, William A.; Wineman, Arthur L.

    1984-01-01

    A cutting apparatus includes a support table mounted for movement toward and away from a workpiece and carrying a mirror which directs a cutting laser beam onto the workpiece. A carrier is rotatably and pivotally mounted on the support table between the mirror and workpiece and supports a conduit discharging gas toward the point of impingement of the laser beam on the workpiece. Means are provided for rotating the carrier relative to the support table to place the gas discharging conduit in the proper positions for cuts made in different directions on the workpiece.

  4. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining...... tests feature repeatability, reproducibility and sensitivity to cutting fluids, and ii) to what extent results of one test ensure relevance to a wider set of machining situations. The present work is aimed at assessing the range of validity of the different testing methods, investigating correlation...... within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity...

  5. Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting

    Science.gov (United States)

    Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.

    2008-10-01

    In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.

  6. Using CAD/CAM-systems for process optimization during laser beam cutting and surface treatment. CAD/CAM-gestuetzte Prozessauslegung beim Laserstrahlschneiden und -oberflaechenveredeln

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, W.; Trasser, F.J.; Wetzels, W. (Fraunhofer-Inst. fuer Produktionstechnologie, IPT, Aachen (Germany))

    1991-02-01

    Using technological modules in modern CAD/CAM-systems provides an efficient use of the available know-how. On the one hand, companies can save their know-how, on the other hand they can improve manufacturing quality as well as increase the productivity. Especially laser beam cutting allows an automatic process control - orientated on geometry aspects. Similar results can be shown for laser surface treatment as well, although up to now reducing of the programming time is the main task of technological modules for this application, including special algorithms for CNC-controlled rotation/swiveling of powder-nozzles and adjustment of the powder flow rate.

  7. Surface decoration of short-cut polyimide fibers with multi-walled carbon nanotubes and their application for reinforcement of lightweight PC/ABS composites

    Science.gov (United States)

    Zhang, Le; Han, Enlin; Wu, Yulun; Wang, Xiaodong; Wu, Dezhen

    2018-06-01

    The surface decoration of short-cut polyimide (PI) fibers with multi-walled carbon nanotubes (MWCNTs) was performed by fabricating a polydopamine (PDA) coating layer on the fiber surface and then immobilizing MWCNTs onto the coating layer via covalent bonding. This successful surface decoration was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared microscopy and static water contact angle. The application of the surface-decorated PI fibers as reinforcing fibers for reinforcement of polycarbonate (PC)/acrylonitrile-butadiene-styrene copolymer (ABS) alloy was investigated, which indicated that the MWCNTs-decorated PI fibers not only could effectively reinforce the PC/ABS alloy but also generated a significant lightweighting effect on the resulting composites. The maximum mechanical properties were achieved for the composites at a fiber content of 20 wt.% and a fiber length of 3 mm. This significant reinforcement effect is attributed to the enhancement of interaction bonding strength between the fibers and matrix as a result of the surface decoration of PI fibers with MWCNTs. The morphological investigation suggested that fiber rupture was the major energy dissipation mechanism in the tensile and impact failures, whereas fiber debonding and pullout were partly involved in the fracture energy dissipation. In addition, the presence of surface-decorated PI fibers slightly enhanced the thermal stability and load bearing capability of composites. This work can provide a type of high-performance lightweight composite material for automobile and aviation industries.

  8. Effect of halide salts on development of surface browning on fresh-cut 'Granny Smith' (Malus × domestica Borkh) apple slices during storage at low temperature.

    Science.gov (United States)

    Li, Yongxin; Wills, Ron B H; Golding, John B; Huque, Roksana

    2015-03-30

    The postharvest life of fresh-cut apple slices is limited by browning on cut surfaces. Dipping in halide salt solutions was examined for their inhibition of surface browning on 'Granny Smith' apple slices and the effects on biochemical factors associated with browning. Delay in browning by salts was greatest with chloride = phosphate > sulfate > nitrate with no difference between sodium, potassium and calcium ions. The effectiveness of sodium halides on browning was fluoride > chloride = bromide > iodide = control. Polyphenol oxidase (PPO) activity of tissue extracted from chloride- and fluoride-treated slices was not different to control but when added into the assay solution, NaF > NaCl both showed lower PPO activity at pH 3-5 compared to control buffer. The level of polyphenols in treated slices was NaF > NaCl > control. Addition of chlorogenic acid to slices enhanced browning but NaCl and NaF counteracted this effect. There was no effect of either halide salt on respiration, ethylene production, ion leakage, and antioxidant activity. Dipping apple slices in NaCl is a low cost treatment with few impediments to commercial use and could be a replacement for other anti-browning additives. The mode of action of NaCl and NaF is through decreasing PPO activity resulting in reduced oxidation of polyphenols. © 2014 Society of Chemical Industry.

  9. Cutting agents for special metals

    International Nuclear Information System (INIS)

    Sugito, Seiji; Sakakibara, Fumi

    1979-01-01

    The quantity of use of special metals has increased year after year in the Plasma Research Institute, Nagoya University, with the development of researches on plasma and nuclear fusion. Most of these special metals are hard to cut, and in order to secure the surface smoothness and dimensional accuracy, considerable efforts are required. The method of experiment is as follows: cutting agents salt water and acetone, rape-seed oil, sulfide and chloride oil and water soluble cutting oil W grade 3; metals to be cut niobium, molybdenum, tantalum, titanium and tungsten; cutting conditions cutting speed 4.7 to 90 m/min, feed 0.07 to 0.2 mm/rev, depth of cut 0.1 to 0.4 mm, tool cemented carbide bit. Chemicals such as tetrachloromethane and trichloroethane give excellent cutting performance, but the toxicity is intense and the stimulative odor exists, accordingly they are hard to use practically. Cutting was easier when the salt water added with acetone was used than the case of rape-seed oil, but salt water is corrosive. Recently, the machining of molybdenum has been often carried out, and the water soluble cutting oil was the best. It is also good for cutting stainless steel, and its lubricating property is improved by adding some additives such as sulfur, chlorine, phosphorus and molybdenum disulfide. However after cutting with it, washing is required. (Kako, I.)

  10. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  11. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  12. Cutting Cosmos

    DEFF Research Database (Denmark)

    Mikkelsen, Henrik Hvenegaard

    For the first time in over 30 years, a new ethnographic study emerges on the Bugkalot tribe, more widely known as the Ilongot of the northern Philippines. Exploring the notion of masculinity among the Bugkalot, Cutting Cosmos is not only an experimental, anthropological study of the paradoxes...... around which Bugkalot society revolves, but also a reflection on anthropological theory and writing. Focusing on the transgressive acts through which masculinity is performed, this book explores the idea of the cosmic cut, the ritual act that enables the Bugkalot man to momentarily hold still the chaotic...

  13. The Cutting Process, Chips and Cutting Forces in Machining CFRP

    DEFF Research Database (Denmark)

    Koplev, A.; Lystrup, Aage; Vorm, T.

    1983-01-01

    The cutting of unidirectional CFRP, perpendicular as well as parallel to the fibre orientation, is examined. Shaping experiments, ‘quick-stop’ experiments, and a new chip preparation technique are used for the investigation. The formation of the chips, and the quality of the machined surface...... is discussed. The cutting forces parallel and perpendicular to the cutting direction are measured for various parameters, and the results correlated to the formation of chips and the wear of the tool....

  14. Flux cutting in superconductors

    International Nuclear Information System (INIS)

    Campbell, A M

    2011-01-01

    This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)

  15. Skin Cut Construction

    DEFF Research Database (Denmark)

    2017-01-01

    of the exhibition is to create a connection between the artistic and technological development through Danish rms and researchers who represent the newest technology in concrete treatment. The rst part exhibition (skin) will focus on the surface treatment of concrete (’graphical concrete’), the second (cut...

  16. The Picture of Dorian Gray

    NARCIS (Netherlands)

    Wilde, Oscar

    2005-01-01

    On its first publication The Picture of Dorian Gray was regarded as dangerously modern in its depiction of fin-de-sicle decadence. In this updated version of the Faust story, the tempter is Lord Henry Wotton, who lives selfishly for amoral pleasure; Dorian's good angel is the portrait painter Basil

  17. Paulette Gray, Ph.D.

    Science.gov (United States)

    Paulette S. Gray, Ph.D. is the Director for the Division of Extramural Activities (DEA). As the director of the division, she is responsible for the overall scientific, fiscal, and administrative management of the division, including broad strategic planning, development, implementation, and evaluation.

  18. Tsenseerimata Dorian Gray? / Udo Uibo

    Index Scriptorium Estoniae

    Uibo, Udo, 1956-

    2011-01-01

    Harvardi ülikooli kirjastus üllitas 2011. a. kevadel Oscar Wilde'i ainsaks jäänud romaani "Dorian Gray portree" esialgse versiooni, mis on varustatud toimetaja Nicholas Frankeli põhjalike kommentaaridega ja kus eessõna manifesteerib jõuliselt autori esteetilisi vaateid

  19. [Comparison of surface light scattering of acrylic intraocular lenses made by lathe-cutting and cast-molding methods--long-term observation and experimental study].

    Science.gov (United States)

    Nishihara, Hitoshi; Ayaki, Masahiko; Watanabe, Tomiko; Ohnishi, Takeo; Kageyama, Toshiyuki; Yaguchi, Shigeo

    2004-03-01

    To compare the long-term clinical and experimental results of soft acrylic intraocular lenses(IOLs) manufactured by the lathe-cut(LC) method and by the cast-molding(CM) method. This was a retrospective study of 20 patients(22 eyes) who were examined in a 5- and 7-year follow-up study. Sixteen eyes were implanted with polyacrylic IOLs manufactured by the LC method and 6 eyes were implanted with polyacrylic IOLs manufactured by the CM method. Postoperative measurements included best corrected visual acuity, contrast sensitivity, biomicroscopic examination, and Scheimpflug slit-lamp images to evaluate surface light scattering. Scanning electron microscopy and three-dimensional surface analysis were conducted. At 7 years, the mean visual acuity was 1.08 +/- 0.24 (mean +/- standard deviation) in the LC group and 1.22 +/- 0.27 in the CM group. Surface light-seatter was 12.0 +/- 4.0 computer compatible tapes(CCT) in the LC group and 37.4 +/- 5.4 CCT in the CM group. Mean surface roughness was 0.70 +/- 0.07 nm in the LC group and 6.16 +/- 0.97 nm in the CM group. Acrylic IOLs manufactured by the LC method are more stable in long-termuse.

  20. Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2015-12-01

    Full Text Available The current work presents a comparative study of wire electrical discharge machining (WEDM of armour materials such as aluminium alloy 7017 and rolled homogeneous armour (RHA steel using buckingham pi theorem to model the input variables and thermo-physical characteristics of WEDM on material removal rate (MRR and surface roughness (Ra of Al 7017 and RHA steel. The parameters of the model such as pulse-on time, flushing pressure, input power, thermal diffusivity and latent heat of vaporization have been determined through design of experiment methodology. Wear rate of brass wire increases with rise in input energy in machining Al 7017. The dependence of thermo-physical properties and machining variables on mechanism of MRR and Ra has been described by performing scanning electron microscope (SEM study. The rise in pulse-on time from 0.85μs to 1.25μs causes improvement in MRR and deterioration of surface finish. The machined surface has revealed that craters are found on the machined surface. The propensity of formation of craters increases during WEDM with a higher current and larger pulse-on time.

  1. Cutting temperature measurement and material machinability

    Directory of Open Access Journals (Sweden)

    Nedić Bogdan P.

    2014-01-01

    Full Text Available Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

  2. Cutting Itch

    OpenAIRE

    Zellweger, Christoph

    2015-01-01

    Cutting Itch” is a curatorial project by artists-duo Baltensperger-Siepert. An exhibition project about the essential need of art to be an active system that reflects, investigates social, cultural and political issues. It is about an existential necessity to shape ones environment, to think about relations, regulating structures and about how we can locate ourselves in a more and more globalised world. (from press material). \\ud \\ud Baltensperger & Siepert identified seven artists from Mexi...

  3. Analysis of Effects of Cutting Parameters of Wire Electrical Discharge Machining on Material Removal Rate and Surface Integrity

    International Nuclear Information System (INIS)

    Tonday, H. R.; Tigga, A. M.

    2016-01-01

    As wire electrical discharge machining is pioneered as a vigorous, efficient and precise and complex nontraditional machining technique, research is needed in this area for efficient machining. In this paper, the influence of various input factors of wire electrical discharge machining (WEDM) on output variable has been analyzed by using Taguchi technique and analysis of variance. The design of experiments has been done and by applying L8 orthogonal arrays method and experiments have been conducted and collected required data. The objectives of the research are to maximize the material removal rate and to minimize the surface roughness value (Ra). Surface morphology of machined workpiece has been obtained and examined by employing scanning electron microscopy (SEM) technique. (paper)

  4. Analysis of Effects of Cutting Parameters of Wire Electrical Discharge Machining on Material Removal Rate and Surface Integrity

    Science.gov (United States)

    Tonday, H. R.; Tigga, A. M.

    2016-02-01

    As wire electrical discharge machining is pioneered as a vigorous, efficient and precise and complex nontraditional machining technique, research is needed in this area for efficient machining. In this paper, the influence of various input factors of wire electrical discharge machining (WEDM) on output variable has been analyzed by using Taguchi technique and analysis of variance. The design of experiments has been done and by applying L8 orthogonal arrays method and experiments have been conducted and collected required data. The objectives of the research are to maximize the material removal rate and to minimize the surface roughness value (Ra). Surface morphology of machined workpiece has been obtained and examined by employing scanning electron microscopy (SEM) technique.

  5. Evaluation of Accelerated Graphitic Corrosion Test of Gray Cast Iron

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Hong, Jong Dae; Chang Heui; Na, Kyung Hwan; Lee, Jae Gon

    2011-01-01

    In operating nuclear power plants, gray cast iron is commonly used as materials for various non-safety system components including pipes in fire water system, valve bodies, bonnets, and pump castings. In such locations, operating condition does not require alloy steels with excellent mechanical properties. But, a few corrosion related degradation, or graphitic corrosion is frequently occurred to gray cast iron during the long-term operation in nuclear power plant. Graphitic corrosion is selective leaching of iron from gray cast iron, where iron gets removed and graphite grains remain intact. In U.S.A., one-time visual inspection and hardness measurement are required from regulatory body to detect the graphitic corrosion for the life extension evaluation of the operating nuclear power plant. In this study, experiments were conducted to make accelerated graphitic corrosion of gray cast iron using electrochemical method, and hardness was measured for the specimens to establish the correlation between degree of graphitic corrosion and surface hardness of gray cast iron

  6. Quality Analysis of Cutting Steel Using Laser

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2013-02-01

    Full Text Available The article explores the quality dependence of the edge surface of steel C45 LST EN 10083-1 obtained cutting the material using laser on different cutting regimes and variations in the thickness of trial steel. The paper presents the influence of the main modes of laser cutting equipment Trulaser 3030, including cutting speed, pressure, angle and the thickness of the surface on the quality characteristics of the sample. The quality of the edge after laser cutting is the most important indicator influencing such technological spread in industry worldwide. Laser cutting is the most popular method of material cutting. Therefore, the article focuses on cutting equipment, cutting defects and methods of analysis. Research on microstructure, roughness and micro-toughness has been performed with reference to edge samples. At the end of the publication, conclusions are drawn.Article in Lithuanian

  7. Quality Analysis of Cutting Steel Using Laser

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2012-12-01

    Full Text Available The article explores the quality dependence of the edge surface of steel C45 LST EN 10083-1 obtained cutting the material using laser on different cutting regimes and variations in the thickness of trial steel. The paper presents the influence of the main modes of laser cutting equipment Trulaser 3030, including cutting speed, pressure, angle and the thickness of the surface on the quality characteristics of the sample. The quality of the edge after laser cutting is the most important indicator influencing such technological spread in industry worldwide. Laser cutting is the most popular method of material cutting. Therefore, the article focuses on cutting equipment, cutting defects and methods of analysis. Research on microstructure, roughness and micro-toughness has been performed with reference to edge samples. At the end of the publication, conclusions are drawn.Article in Lithuanian

  8. Gray Code for Cayley Permutations

    Directory of Open Access Journals (Sweden)

    J.-L. Baril

    2003-10-01

    Full Text Available A length-n Cayley permutation p of a total ordered set S is a length-n sequence of elements from S, subject to the condition that if an element x appears in p then all elements y < x also appear in p . In this paper, we give a Gray code list for the set of length-n Cayley permutations. Two successive permutations in this list differ at most in two positions.

  9. Study of Cutting Edge Temperature and Cutting Force of End Mill Tool in High Speed Machining

    Directory of Open Access Journals (Sweden)

    Kiprawi Mohammad Ashaari

    2017-01-01

    Full Text Available A wear of cutting tools during machining process is unavoidable due to the presence of frictional forces during removing process of unwanted material of workpiece. It is unavoidable but can be controlled at slower rate if the cutting speed is fixed at certain point in order to achieve optimum cutting conditions. The wear of cutting tools is closely related with the thermal deformations that occurred between the frictional contact point of cutting edge of cutting tool and workpiece. This research paper is focused on determinations of relationship among cutting temperature, cutting speed, cutting forces and radial depth of cutting parameters. The cutting temperature is determined by using the Indium Arsenide (InAs and Indium Antimonide (InSb photocells to measure infrared radiation that are emitted from cutting tools and cutting forces is determined by using dynamometer. The high speed machining process is done by end milling the outer surface of carbon steel. The signal from the photocell is digitally visualized in the digital oscilloscope. Based on the results, the cutting temperature increased as the radial depth and cutting speed increased. The cutting forces increased when radial depth increased but decreased when cutting speed is increased. The setup for calibration and discussion of the experiment will be explained in this paper.

  10. Dance and music share gray matter structural correlates.

    Science.gov (United States)

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2017-02-15

    Intensive practise of sensorimotor skills, such as music and dance, is associated with brain structural plasticity. While the neural correlates of music have been well-investigated, less is known about the neural correlates of dance. Additionally, the gray matter structural correlates of dance versus music training have not yet been directly compared. The objectives of the present study were to compare gray matter structure as measured by surface- and voxel-based morphometry between expert dancers, expert musicians and untrained controls, as well as to correlate gray matter structure with performance on dance- and music-related tasks. Dancers and musicians were found to have increased cortical thickness compared to controls in superior temporal regions. Gray matter structure in the superior temporal gyrus was also correlated with performance on dance imitation, rhythm synchronization and melody discrimination tasks. These results suggest that superior temporal regions are important in both dance- and music-related skills and may be affected similarly by both types of long-term intensive training. This work advances knowledge of the neural correlates of dance and music, as well as training-associated brain plasticity in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cutting method and cutting device for spent fuel rod of nuclear reactor

    International Nuclear Information System (INIS)

    Komatsu, Masahiko; Ose, Toshihiko.

    1996-01-01

    A control rod transferred under water in a vertically suspended state is postured horizontally at such a water depth that radiations can be shielded, and then it is cut to a dropping speed limiting portion and a cross-like main body. The separated cross-like main body portion is further cut in the longitudinal direction and separated into a pair of cut pieces each having an L-shaped cross section. A disk like metal saw is used as a cutting tool. Alternatively, a plasma jet cutter or a melting-type water jet cutter is used as a cutting tool. Then, since the spent control rod to be cut is postured horizontally under water, the water depth for the cutting position can be reduced. As a result, the cutting state using the cutting tool can be observed by naked eyes from the position above the water surface thereby enabling to perform the cutting operation reliably. (N.H.)

  12. Selection of Near Optimal Laser Cutting Parameters in CO2 Laser Cutting by the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Miloš MADIĆ

    2013-12-01

    Full Text Available Identification of laser cutting conditions that are insensitive to parameter variations and noise is of great importance. This paper demonstrates the application of Taguchi method for optimization of surface roughness in CO2 laser cutting of stainless steel. The laser cutting experiment was planned and conducted according to the Taguchi’s experimental design using the L27 orthogonal array. Four laser cutting parameters such as laser power, cutting speed, assist gas pressure, and focus position were considered in the experiment. Using the analysis of means and analysis of variance, the significant laser cutting parameters were identified, and subsequently the optimal combination of laser cutting parameter levels was determined. The results showed that the cutting speed is the most significant parameter affecting the surface roughness whereas the influence of the assist gas pressure can be neglected. It was observed, however, that interaction effects have predominant influence over the main effects on the surface roughness.

  13. Laser cutting of concretes with various ballasts

    International Nuclear Information System (INIS)

    Hamasaki, Masanobu; Katsumura, Munehide; Utsumi, Hiroaki

    1985-01-01

    The biological shield concrete and the radiation shield concrete which construct a part of the atomic reactor must be demolished with the decommissioning of the atomic reactor plants. In a case, the demolition using a laser is expected as one of excellent method for the decommissioning of these radioactive concretes. The fundamental cuttings of a mortar, the concretes with andesite, lime stone and gray wacke as ballast and a concrete reinforced with mild steel rods were therefore carried out using a 5 kW output CO 2 laser. As the results of experiment, it was cleared that cutting results varied with ballasts, 100 mm thick reinforced concrete could be cut, safety was high because few dross and few fume were produced. (author)

  14. The Effect of Illumination on Gray Color

    Science.gov (United States)

    Da Pos, Osvaldo; Baratella, Linda; Sperandio, Gabriele

    2010-01-01

    The present study explored the perceptual process of integration of luminance information in the production of the gray color of an object placed in an environment viewed from a window. The mean luminance of the object was varied for each mean luminance of the environment. Participants matched the gray color of the object with that of Munsell…

  15. Method of cutting radioactivated metal structures

    International Nuclear Information System (INIS)

    Takimoto, Yoshinori; Sakota, Kotaro; Hamamoto, Noboru; Harada, Keizo.

    1985-01-01

    Purpose: To improve the cutting performance to a level as comparable with that in air, as well as prevent the scattering of the radioactive materials upon cutting to the level as that in water cutting. Method: After igniting a gas cutting torch automatically, water spray by the local water sprayer is started by the actuation of a submerged pump, while a gas cutting manipulator is operated to cut the nuclear reactor pressure vessel. In this way, cutting exhaust gases resulted from the gas cutting torch are water-washed by the spray from the local water sprayer and falls within the nuclear rector pressure vessel in the form of water streams or droplets along the inner wall surface of the pressure vessel. Further, water is fed again to the local water sprayer by the submerged pump. (Kawakami, Y.)

  16. Plasma arc cutting: speed and cut quality

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Severance, W S

    2009-01-01

    When cutting metal with plasma arc cutting, the walls of the cut are narrower at the bottom than at the top. This lack of squareness increases as the cutting speed increases. A model of this phenomenon, affecting cut quality, is suggested. A thin liquid layer, which separates the plasma from the solid metal to be melted, plays a key role in the suggested model. This layer decreases heat transfer from the plasma to the solid metal; the decrease is more pronounced the higher the speed and the thicker the liquid metal layer. Since the layer is thicker at the bottom of the cut, the heat transfer effectiveness is lower at the bottom. The decrease in heat transfer effectiveness is compensated by the narrowness of the cut. The suggested model allows one to calculate the profile of the cut. The result of the calculations of the cutting speeds for plates of various thicknesses, at which the squareness of the cut is acceptable, agrees well with the speeds recommended by manufacturers. The second effect considered in the paper is the deflection of the plasma jet from the vertical at a high cutting speed. A qualitative explanation of this phenomenon is given. We believe the considerations of this paper are pertinent to other types of cutting with moving heat sources.

  17. Vortex cutting in superconductors

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  18. Materials selection for cutting tools

    International Nuclear Information System (INIS)

    Burkhis, Adel M.

    2008-01-01

    The selection of proper tool steel for a given application is a difficult task. So; the most important selection factors in choosing cutting tool materials are based on their tool material requirements, cutting tool design and service conditions which is mainly considered as functional requirements. The processability requirements concerns in heat treat ability of the material tool. The classification of these tool materials were discussed with their properties requirement and percent of alloying element which is added to give best properties with a little increase in cost that highly appear in comparison of the selection. The cutting tool materials were evaluated based on two cases; The first was in case of rough surface; the high speed steels is the best material and the other was the ceramic material is the highest performance in cutting of soft or high rate of metal removal. (author)

  19. Tetrahedral gray code for visualization of genome information.

    Directory of Open Access Journals (Sweden)

    Natsuhiro Ichinose

    Full Text Available We propose a tetrahedral Gray code that facilitates visualization of genome information on the surfaces of a tetrahedron, where the relative abundance of each [Formula: see text]-mer in the genomic sequence is represented by a color of the corresponding cell of a triangular lattice. For biological significance, the code is designed such that the [Formula: see text]-mers corresponding to any adjacent pair of cells differ from each other by only one nucleotide. We present a simple procedure to draw such a pattern on the development surfaces of a tetrahedron. The thus constructed tetrahedral Gray code can demonstrate evolutionary conservation and variation of the genome information of many organisms at a glance. We also apply the tetrahedral Gray code to the honey bee (Apis mellifera genome to analyze its methylation structure. The results indicate that the honey bee genome exhibits CpG overrepresentation in spite of its methylation ability and that two conserved motifs, CTCGAG and CGCGCG, in the unmethylated regions are responsible for the overrepresentation of CpG.

  20. Eileen Gray: a child of Japonism?

    OpenAIRE

    Starr, Ruth

    2008-01-01

    Exhibited at the Glucksman Memorial Symposium on June 12th 2008 My interest is in Gray's lacquer work and the influences on that work in the context of nineteenth-century fashion of Japonisme. Gray (1878-1976) had an appreciation of the Japanese characteristics of lacquer - perhaps absorbed from private and public Irish collections of Japanese art. Gray also had a twenty-year working collaboration with Seizo Sugawara (1884-1937) from Jahoji, Japan - a town famous for its lacquer work. Suga...

  1. MR imaging of heterotopic gray matter

    International Nuclear Information System (INIS)

    Kryst-Widzgowska, T.; Kozlowski, P.; Poniatowska, R.

    1994-01-01

    Six patients with heterotopic gray matter were evaluated with MR. 5 patients had history of seizures. 4 cases were suspected of the cerebral tumor. In the MR examination areas of heterotopic gray matter were found along the posterior horn of the lateral ventricle on the one side in 4 cases and bilateraly in 2 cases. In 3 cases another brain abnormalities were also detected including: hypoplasia of corpus callosum, hypoplasia of brain hemisphere, cavum septi pellucidi. MR is a modality of choice in the assessment of abnormal gray matter migration. (author)

  2. Cutting Craters

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 12 November 2003The rims of two old and degraded impact craters are intersected by a graben in this THEMIS image taken near Mangala Fossa. Yardangs and low-albedo wind streaks are observed at the top of the image as well as interesting small grooves on the crater floor. The origin of these enigmatic grooves may be the result of mud or lava and volatile interactions. Variable surface textures observed in the bottom crater floor are the result of different aged lava flows.Image information: VIS instrument. Latitude -15.2, Longitude 219.2 East (140.8 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Electric arc, water jet cutting of metals

    International Nuclear Information System (INIS)

    Bruening, D.

    1991-01-01

    For thermal dismantling and cutting of metallic components, as electric arc, water jet cutting method was developed that can be used for underwater cutting work up to a depth of 20 m. Short-circuiting of a continuously fed electrode wire in contact with the metal generates an electric arc which induces partial melting of the metal, and the water jet surrounding the wire rinses away the molten material, thus making a continuous kerf in the material. The method was also tested and modified to allow larger area, surface cutting and removal of metallic surface coatings. This is achieved by melting parts of the surface with the electric arc and subsequent rinsing by the water jet. The cutting and melting depth for surface removal can be accurately controlled by the operating parameters chosen. (orig./DG) [de

  4. Multibeam Fibre Laser Cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre......-laser cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single...

  5. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  6. The effect of illumination on gray color

    Directory of Open Access Journals (Sweden)

    Gabriele Sperandio

    2010-01-01

    Full Text Available The present study explored the perceptual process of integration of luminance information in the production of the gray color of an object placed in an environment viewed from a window. The mean luminance of the object was varied for each mean luminance of the environment. Participants matched the gray color of the object with that of Munsell chips in a viewing box. The results show that the Munsell values so obtained are linear measures of gray color. The results support the possibility that the gray color of the object derives from an additive integration of the information about mean luminance of the object and about mean luminance of the environment, with the weights of this information varying with the mean luminances.

  7. Electrochemical conversion of micropollutants in gray water

    NARCIS (Netherlands)

    Butkovskyi, A.; Jeremiasse, A.W.; Hernandez Leal, L.; Zande, van der T.; Rijnaarts, H.; Zeeman, G.

    2014-01-01

    Electrochemical conversion of micropollutants in real gray water effluent was studied for the first time. Six compounds that are frequently found in personal care and household products, namely methylparaben, propylparaben, bisphenol A, triclosan, galaxolide, and 4- methylbenzilidene camphor

  8. Laboratory Characterization of Gray Masonry Concrete

    National Research Council Canada - National Science Library

    Williams, Erin M; Akers, Stephen A; Reed, Paul A

    2007-01-01

    Personnel of the Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, conducted a laboratory investigation to characterize the strength and constitutive property behavior of a gray masonry concrete...

  9. MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle)

    Science.gov (United States)

    2015-12-01

    Range Finder /Laser Designator, Synthetic Aperture Radar/Ground Moving Target Indicator, communications relay, and Hellfire Missiles. Ground equipment...equipment strength . Each Gray Eagle company will consist of 125 soldiers within the Divisional CAB and the NTC. Each unit will have three identical...will bring these companies to full Gray Eagle System equipment strength . Each Gray Eagle company will consist of 125 soldiers within the divisional

  10. Gray matter alterations and correlation of nutritional intake with the gray matter volume in prediabetes

    OpenAIRE

    Hou, Yi-Cheng; Lai, Chien-Han; Wu, Yu-Te; Yang, Shwu-Huey

    2016-01-01

    Abstract The neurophysiology of prediabetes plays an important role in preventive medicine. The dysregulation of glucose metabolism is likely linked to changes in neuron-related gray matter. Therefore, we designed this study to investigate gray matter alterations in medication-naive prediabetic patients. We expected to find alterations in the gray matter of prediabetic patients. A total of 64 prediabetic patients and 54 controls were enrolled. All subjects received T1 scans using a 3-T magnet...

  11. Louis Harold Gray (1905-1965)

    International Nuclear Information System (INIS)

    Tomljenovic, I.

    2003-01-01

    15th CGPM (Conference General de Poids et Mesures) conference of 1975 accepted gray (Gy) as the unit of absorbed dose in honour of British physicist and radiation biologist Louis Harold Gray. This unit is a part of the SI system for units and measures. The idea of the article is to give a closer look into the life and work of this great scientist. (author)

  12. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-07-31

    We have tested the loop elevation system. We raised the mast to approximately 25 to 30 degrees from horizontal. All went well. However, while lowering the mast, it moved laterally a couple of degrees. Upon visual inspection, severe spalling of the concrete on the face of the support pillar, and deformation of the steel support structure was observed. At this time, the facility is ready for testing in the horizontal position. A new air compressor has been received and set in place for the ACTS test loop. A new laboratory has been built near the ACTS test loop Roughened cups and rotors for the viscometer (RS300) were obtained. Rheologies of aqueous foams were measured using three different cup-rotor assemblies that have different surface roughness. The relationship between surface roughness and foam rheology was investigated. Re-calibration of nuclear densitometers has been finished. The re-calibration was also performed with 1% surfactant foam. A new cuttings injection system was installed at the bottom of the injection tower. It replaced the previous injection auger. A mechanistic model for cuttings transport with aerated mud has been developed. Cuttings transport mechanisms with aerated water at various conditions were experimentally investigated. A total of 39 tests were performed. Comparisons between the model predictions and experimental measurements show a satisfactory agreement. Results from the ultrasonic monitoring system indicated that we could distinguish between different sand levels. We also have devised ways to achieve consistency of performance by securing the sensors in the caps in exactly the same manner as long as the sensors are not removed from the caps. A preliminary test was conducted on the main flow loop at 100 gpm flow rate and 20 lb/min cuttings injection rate. The measured bed thickness using the ultrasonic method showed a satisfactory agreement with nuclear densitometer readings. Thirty different data points were collected after the test

  13. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses.

    Science.gov (United States)

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-03-27

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.

  14. Cutting state identification

    International Nuclear Information System (INIS)

    Berger, B.S.; Minis, I.; Rokni, M.

    1997-01-01

    Cutting states associated with the orthogonal cutting of stiff cylinders are identified through an analysis of the singular values of a Toeplitz matrix of third order cumulants of acceleration measurements. The ratio of the two pairs of largest singular values is shown to differentiate between light cutting, medium cutting, pre-chatter and chatter states. Sequences of cutting experiments were performed in which either depth of cut or turning frequency was varied. Two sequences of experiments with variable turning frequency and five with variable depth of cut, 42 cutting experiments in all, provided a database for the calculation of third order cumulants. Ratios of singular values of cumulant matrices find application in the analysis of control of orthogonal cutting

  15. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  16. Cutting method for structural component into block like shape, and device used for cutting

    International Nuclear Information System (INIS)

    Nakazawa, Koichi; Ito, Akira; Tateiwa, Masaaki.

    1995-01-01

    Two grooves each of a predetermined depth are formed along a surface of a structural component, and a portion between the two grooves is cut in the direction of the depth from the surface of the structural component by using a cutting wire of a wire saw device. Then, the cutting wire is moved in the extending direction of the grooves while optionally changing the position in the direction of the depth to conduct cutting for the back face. Further, the cutting wire is moved in the direction of the depth of the groove toward the surface, to cut a portion between the two grooves. The wire saw device comprises a wire saw main body movable along the surface of the structural component, a pair of wire guide portions extending in the direction of the depth, guide pooleys capable of guiding the cutting wire guides revolvably and rotatably disposed at the top end, and an endless annular cutting wire extending between the wire guide portions. Thus, it is possible to continuously cut out blocks set to optional size and thickness. In addition, remote cutting is possible with no requirement for an operator to access to the vicinity of radioactivated portions. (N.H.)

  17. Effect of type and percentage of reinforcement for optimization of the cutting force in turning of Aluminium matrix nanocomposites using response surface methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Priyadarshi, Devinder [DAV Institute of Engineering and Technology, Jalandhar (India); Sharma, Rajesh Kumar [Institute of Technology, Hamirpur (India)

    2016-03-15

    Aluminium matrix composites (AMCs) now hold a significant share of raw materials in many applications. It is of prime importance to study the machinability of such composites so as to enhance their applicability. Sufficient work has been done for studying the machining of AMCs with particle reinforcements of micron range. This paper presents the study of AMCs with particle reinforcement of under micron range i.e. nanoparticles. This paper brings out the results of an experimental investigation of type and weight percent of nanoparticles on the tangential cutting force during turning operation. SiC, Gr and SiC-Gr (in equal proportions) were used with Al-6061 alloy as the matrix phase. The results indicate that composites with SiC require greater cutting force followed by hybrid and then Gr. Increase in the weight percent also significantly affected the magnitude of cutting force. RSM was used first to design and analyze the experiments and then to optimize the turning process and obtain optimal conditions of weight and type of reinforcements for turning operation.

  18. Gluebond strength of laser cut wood

    Science.gov (United States)

    Charles W. McMillin; Henry A. Huber

    1985-01-01

    The degree of strength loss when gluing laser cut wood as compared to conventionally sawn wood and the amount of additional surface treatment needed to improve bond quality were assessed under normal furniture plant operating conditions. The strength of laser cut oak glued with polyvinyl acetate adhesive was reduced to 75 percent of sawn joints and gum was reduced 43...

  19. Development of micro pattern cutting simulation software

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Seok Gyun; Choi, Jeong Ju; Novandy, Bondhan; Kim, Su Jin; Lee, Dong Yoon; Nam, Sung Ho; Je, Tae Jin

    2008-01-01

    The micro pattern machining on the surface of wide mold is not easy to be simulated by conventional software. In this paper, a software is developed for micro pattern cutting simulation. The 3d geometry of v-groove, rectangular groove, pyramid and pillar patterns are visualized by c++ and OpenGL library. The micro cutting force is also simulated for each pattern

  20. Cost Comparison of Conventional Gray Combined Sewer Overflow Control Infrastructure versus a Green/Gray Combination

    Science.gov (United States)

    This paper outlines a life-cycle cost analysis comparing a green (rain gardens) and gray (tunnels) infrastructure combination to a gray-only option to control combined sewer overflow in the Turkey Creek Combined Sewer Overflow Basin, in Kansas City, MO. The plan area of this Bas...

  1. Striation-free fibre laser cutting of mild steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sobih, M.; Crouse, P.L.; Li, L. [University of Manchester, Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, Sackville Street Building, P.O. Box 88, Manchester (United Kingdom)

    2008-01-15

    High-power laser cutting is extensively used in many industrial applications. An important weakness of this process is the formation of striations, i.e. regular lines on the cut surface, which lowers the quality of the surfaces produced. The elimination of striation formation is thus of considerable importance, since it could open a variety of novel high-precision applications. This study presents the initial results of a laser cutting study using a 1 kW single-mode fibre laser, a relative newcomer in the field of laser metal cutting. Striation-free laser cuts are demonstrated when cutting 1 mm thick mild steel sheets. (orig.)

  2. Gray matter heterotopias: MR and clinical features

    International Nuclear Information System (INIS)

    Moon, Tae Myung; Yoon, Jeong Hee; Chung, Chun Phil

    1995-01-01

    To evaluate types of gray matter heterotopias, associated brain anomalies, and its correlation with the patterns of seizure. We evaluated retrospectively 19 patients (male:female=10:9, mean age 21 years) with gray matter heterotopias on brain MRI. Using 1.0T superconducting MR unit, spin echo T1-, proton -density and T2-weighted images in axial, coronal and sagittal planes were obtained. Types of gray matter heterotopias were single subependymal in four patients, multiple subependymal in one, focal subcortical in eight, diffuse subcortical in two, mixed multiple subependymal and focal subcortical in four. Associated anomalies were seen in 11 patients: other neuronal migration anomalies in eight patients, corpus callosum agenesis in two, and combined holoprosencephaly and Dandy-Walker malformation in one. Fifteen patients had seizure. The patterns of seizure were not correlated with the types of heterotopias. In addition to subependymal, focal subcortical, and diffuse subcortical types, gray matter heterotopias included mixed variant of multiple subependymal and subcortical type. Schizencephaly was the most common form of accompanying anomalies, and patterns of seizure were not correlated with types of gray matter heterotopias, even though main clinical manifestation was seizure

  3. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  4. New Modelling Strategies For Metal Cutting

    International Nuclear Information System (INIS)

    Rosa, Pedro A. R.; Martins, Paulo A. F.; Atkins, Anthony G.

    2007-01-01

    This paper draws from the 'plasticity and friction only' view of metal cutting to the presentation of new modelling strategies based on the interaction between finite elements and modern ductile fracture mechanics. The overall presentation is supported by specially designed orthogonal metal cutting experiments that were performed on Lead test specimens under laboratory-controlled conditions. Comparisons between theoretical predictions and experimental results comprise a wide range of topics such as material flow, cutting forces and specific cutting pressure. The paper demonstrates that while material flow and chip formation can be successfully modelled by traditional 'plasticity and friction only' analyses, the contribution of the fracture work involved in the formation of new surfaces is essential for obtaining good estimates of cutting forces and of the specific cutting pressure

  5. Laser cutting of sheets for Tailored Blanks

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1999-01-01

    sound welds. Laser cutting the sheets may therefore be an alternative to shear cutting, if the cut kerf squareness can be kept below 0.05 mm.In a number of systematic laboratory experiments the effects of the major process parameters in laser cutting have been investigated. Each cut was quantified...... by the squareness, the surface roughness and the burr height. Mild steel as well as high strength steel with and with out galvanisation with thickness' of 0.7(5) and 1.25 were used.In the tests the difference in cut quality between a 5" and a 7.5" focusing lens were tested and the effect of using pulsed mode laser...

  6. Development of liner cutting method for stainless steel liner

    International Nuclear Information System (INIS)

    Takahata, Masato; Wignarajah, Sivakmaran; Kamata, Hirofumi

    2005-01-01

    The present work is an attempt to develop a laser cutting method for cutting and removing stainless steel liners from concrete walls and floors in cells and fuel storage pools of nuclear facilities. The effects of basic laser cutting parameters such as cutting speed, assist gas flow etc. were first studied applying a 1 kW Nd:YAG laser to mock up concrete specimens lined with 3 mm thick stainless steel sheets. These initial studies were followed by studies on the effect of unevenness of the liner surface and on methods of confining contamination during the cutting process. The results showed that laser cutting is superior to other conventional cutting methods from the point of view of safety from radioactivity and work efficiency when cutting contaminated stainless steel liners. In addition to the above results, this paper describes the design outline of a laser cutting system for cutting stainless liners at site and evaluates its merit and cost performance. (author)

  7. Development of laser cutting method for stainless steel liner

    International Nuclear Information System (INIS)

    Ishihara, Satoshi; Takahata, Masato; Wignarajah, Sivakumaran; Kamata, Hirofumi

    2007-01-01

    The present work is an attempt to develop a laser cutting method for cutting and removing stainless steel liners from concrete walls and floors in nuclear facilities. The effect of basic laser cutting parameters such as energy, cutting speed, assist gas flow etc. were first studied through cutting experiments on mock-up concrete specimens lined with 3mm thick stainless steel sheets using a 1kW Nd:YAG laser. These initial studies were followed by further studies on the effect of unevenness of the liner surface and on a new method of confining contamination during the cutting process using a sliding evacuation hood attached to the laser cutting head. The results showed that laser cutting is superior to other conventional cutting methods from the point of view of safety from radioactivity and work efficiency when cutting contaminated stainless steel liners. (author)

  8. Monitoring of the stress-strain state of the surface layer of a part in the cutting process using vibroacoustic diagnostics

    Directory of Open Access Journals (Sweden)

    Allenov Dmitry

    2017-01-01

    Full Text Available The state of the surface layer after mechanical process influences on the performance characteristics of the parts: corrosion and fatigue resistance, dimensional stability during the operating time. The wear of tools can have a decisive influence on the surface deformation. The present paper is devoted to monitoring the influence of wear on the surface layer using the analysis of vibration signals.

  9. Thermophysical problems of laser cutting of metals

    Directory of Open Access Journals (Sweden)

    Orishich Anatoliy

    2017-01-01

    Full Text Available Variety and complex interaction of physical processes during laser cutting is a critical characteristic of the laser cutting of metals. Small spatial and temporal scales complicate significantly the experimental investigations of the multi-phase fluid flow in the conditions of laser cutting of metals. In these conditions, the surface formed during the cutting is an indicator determining the melt flow character. The quantitative parameter reflecting the peculiarities of the multi-phase fluid flow, is normally the roughness of the forming surface, and the minimal roughness is the criterion of the qualitative flow [1 – 2]. The purpose of this work is to perform the experimental comparative investigation of the thermophysical pattern of the multi-phase melt flow in the conditions of the laser cutting of metals with the laser wavelength of 10.6 μm and 1.07 μm.

  10. Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method

    Science.gov (United States)

    Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak

    2018-03-01

    The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.

  11. A comment on "pH and the surface tension of water" (J. K. Beattie, A. M. Djerdjev, A. Gray-Weale, N. Kallay, J. Lutzenkirchen, T. Preocanin, A. Selmani, J. Colloid Interface Sci. 422 (2014) 54.)

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel; Tobias, D. J.

    2015-01-01

    Roč. 448, Jun 15 (2015), s. 593 ISSN 0021-9797 Institutional support: RVO:61388963 Keywords : surface tension * Gibbs adsorption equation * hydroxide * water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.782, year: 2015

  12. Response to Biber, Gray, and Poonpon (2011)

    Science.gov (United States)

    Yang, WeiWei

    2013-01-01

    The recent "TESOL Quarterly" article by Biber, Gray, and Poonpon (2011) raises important considerations with respect to the use of syntactic complexity (SC) measures in second language (L2) studies. The article draws the field's attention to one particular measure--complexity of noun phrases (NP) (i.e., noun phrases with modifiers, such as…

  13. The Return to Gray Flannel Thinking.

    Science.gov (United States)

    Shields, James J., Jr.

    1979-01-01

    The liberal mood of the 1960s has given way to a conservatism reminiscent of the gray flannel thinking of the 1950s. Today's young people are cautious, cynical, and dead serious about personal survival. Innovation and liberalism in education are being replaced by fiscal conservatism and emphasis on standards. (Author/SJL)

  14. Chapter 17. Information needs: Great gray owls

    Science.gov (United States)

    Gregory D. Hayward

    1994-01-01

    Current understanding of great gray owl biology and ecology is based on studies of less than five populations. In an ideal world, a strong conservation strategy would require significant new information. However, current knowledge suggests that conservation of this forest owl should involve fewer conflicts than either the boreal or flammulated owl. The mix of forest...

  15. Rain-shadow: An area harboring "Gray Ocean" clouds

    Science.gov (United States)

    Padmakumari, B.; Maheskumar, R. S.; Harikishan, G.; Morwal, S. B.; Kulkarni, J. R.

    2018-06-01

    The characteristics of monsoon convective clouds over the rain-shadow region of north peninsular India have been investigated using in situ aircraft cloud microphysical observations collected during Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). The parameters considered for characterization are: liquid water content (LWC), cloud vertical motion (updraft, downdraft: w), cloud droplet number concentration (CDNC) and effective radius (Re). The results are based on 15 research flights which were conducted from the base station Hyderabad during summer monsoon season. The clouds studied were developing congestus. The clouds have low CDNC and low updraft values resembling the oceanic convective clouds. The super-saturation in clouds is found to be low (≤0.2%) due to low updrafts. The land surface behaves like ocean surface during monsoon as deduced from Bowen ratio. Microphysically the clouds showed oceanic characteristics. However, these clouds yield low rainfall due to their low efficiency (mean 14%). The cloud parameters showed a large variability; hence their characteristic values are reported in terms of median values. These values will serve the numerical models for rainfall simulations over the region and also will be useful as a scientific basis for cloud seeding operations to increase the rainfall efficiency. The study revealed that monsoon convective clouds over the rain-shadow region are of oceanic type over the gray land, and therefore we christen them as "Gray Ocean" clouds.

  16. Cutting tool for removing materials from well bore

    International Nuclear Information System (INIS)

    Lynde, G.D.; Harvey, H.H. Jr.

    1991-01-01

    This patent describes a cutting tool adapted to be positioned downhole in a well bore for removing a metal member from the well bore; a tool body adapted to be received within said well bore and to be supported at its upper end for rotation about a longitudinal axis; blades at spaced intervals on the body and extending outwardly therefrom, each of the blades having a base with a leading surface relative to the direction of rotation; closely spaced cutting elements of hard cutting material secured to said leading surface of the base in a plurality of transversely extending rows, each cutting element being of a predetermined size and shape and arranged in a predetermined generally symmetrical pattern on the base relative to the other elements, each of said cutting elements having an exposed from cutting face forming a cutting surface, a rear face secured to the leading surface of said base, a peripheral surface extending between said faces, and a relatively sharp edge formed at the juncture of the front face and peripheral surface; the front cutting face of each cutting element being arranged and constructed for directing an extending end portion of a turning cut form said member to effect a breaking of said turning from the member being cut in a predetermined manner to minimize interesting of the turning

  17. Extension without Cut

    OpenAIRE

    Straßburger , Lutz

    2012-01-01

    International audience; In proof theory one distinguishes sequent proofs with cut and cut-free sequent proofs, while for proof complexity one distinguishes Frege-systems and extended Frege-systems. In this paper we show how deep inference can provide a uniform treatment for both classifications, such that we can define cut-free systems with extension, which is neither possible with Frege-systems, nor with the sequent calculus. We show that the propositional pigeon-hole principle admits polyno...

  18. Gray matter alterations and correlation of nutritional intake with the gray matter volume in prediabetes

    Science.gov (United States)

    Hou, Yi-Cheng; Lai, Chien-Han; Wu, Yu-Te; Yang, Shwu-Huey

    2016-01-01

    Abstract The neurophysiology of prediabetes plays an important role in preventive medicine. The dysregulation of glucose metabolism is likely linked to changes in neuron-related gray matter. Therefore, we designed this study to investigate gray matter alterations in medication-naive prediabetic patients. We expected to find alterations in the gray matter of prediabetic patients. A total of 64 prediabetic patients and 54 controls were enrolled. All subjects received T1 scans using a 3-T magnetic resonance imaging machine. Subjects also completed nutritional intake records at the 24-hour and 3-day time points to determine their carbohydrate, protein, fat, and total calorie intake. We utilized optimized voxel-based morphometry to estimate the gray matter differences between the patients and controls. In addition, the preprandial serum glucose level and the carbohydrate, protein, fat, and total calorie intake levels were tested to determine whether these parameters were correlated with the gray matter volume. Prediabetic patients had lower gray matter volumes than controls in the right anterior cingulate gyrus, right posterior cingulate gyrus, left insula, left super temporal gyrus, and left middle temporal gyrus (corrected P prediabetic patients. PMID:27336893

  19. Underwater cutting techniques developments

    International Nuclear Information System (INIS)

    Bach, F.-W.

    1990-01-01

    The primary circuit structures of different nuclear powerplants are constructed out of stainless steels, ferritic steels, plated ferritic steels and alloys of aluminium. According to the level of the specific radiation of these structures, it is necessary for dismantling to work with remote controlled cutting techniques. The most successful way to protect the working crew against exposure of radiation is to operate underwater in different depths. The following thermal cutting processes are more or less developed to work under water: For ferritic steels only - flame cutting; For ferritic steels, stainless steels, cladded steels and aluminium alloys - oxy-arc-cutting, arc-waterjet-cutting with a consumable electrode, arc-saw-cutting, plasma-arc-cutting and plasma-arc-saw. The flame cutting is a burning process, all the other processes are melt-cutting processes. This paper explains the different techniques, giving a short introduction of the theory, a discussion of the possibilities with the advantages and disadvantages of these processes giving a view into the further research work in this interesting field. (author)

  20. Premature graying of hair: An independent risk marker for coronary ...

    African Journals Online (AJOL)

    The presence of premature graying of hair was associated with 3.24 times the risk of CAD on multiple logistic regression analysis. CONCLUSION: The presence of premature graying of hair was associated with an increased risk of CAD in young smokers. Premature graying of hair can be used as preliminary evidence by ...

  1. An allometric scaling law between gray matter and white matter of cerebral cortex

    International Nuclear Information System (INIS)

    He Jihuan

    2006-01-01

    An allometric scaling relationship between cortical white and gray volumes is derived from a general model that describes brain's remarkable efficiency and prodigious communications between brain areas. The model assumes that (1) a cell's metabolic rate depends upon cell's surface; (2) the overall basal metabolic rates of brain areas depend upon their fractal structures; (3) differential brain areas have same basal metabolic rate at slow wave sleep. The obtained allometric exponent scaling white matter to gray matter is 1.2, which is very much close to Zhang and Sejnowski's observation data

  2. Variable angle asymmetric cut monochromator

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  3. The influence of cutting speed and feed rate in surface integrity of aisi 1045//Influencia de la velocidad de corte y la velocidad de avance en la integridad superficial del acero aisi 1045

    Directory of Open Access Journals (Sweden)

    Mario Jacas-Cabrera

    2015-09-01

    Full Text Available El objetivo de esta investigación es el estudio de la influencia de la velocidad de corte y la velocidad de avance en la integridad superficial del acero AISI-1045, sometido a un proceso de torneado. Las probetas se sometieron a un tratamiento térmico de recocidos (81 HRB. En el trabajo se empleó un diseño experimental 32, con dos variables a tres niveles experimentales, para un total de nueve experimentos, los que fueron replicados. La integridad superficial fue evaluada con la medición de la rugosidad superficial, las tensiones residuales superficiales, la medición de dureza por nano–indentación y por el análisis de la de formación terciaria. Los resultados determinaron la gran influencia de la velocidad de avance en la rugosidad superficial. La medición de las tensiones residuales mostró la influencia de las variables de corte. Del análisis microestructural se observó la existencia de dos zonas de deformación determinándose que el espesor de la zona endurecida llegó a 50 µm. Palabras claves: integridad superficial, rugosidad superficial, nano-indentación; superficie deformada____________________________________________________________________________AbstractThe aim of this research is to study the influence of cutting speed and feed rate on surface integrity of AISI-1045 subjected to a turning process. The specimens were in annealed condition (81 HRB. A 32 factorial experiment design was employed using low, medium and high levels of the two variables in study, performing 9 experiments with a replica. The surfaces were evaluated through the measurements of surface roughness, surface residual stresses, nano-indentation hardness and analyzing the deformed layer. Results corroborated the great influence of feed rate on surface roughness. The results of the residual stresses have shown the influence of cutting speed as well as feed rate in the behavior of circumferential and axial stress respectively. From the analysis of the

  4. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    OpenAIRE

    Pasquale Russo Spena

    2017-01-01

    This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests wer...

  5. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    International Nuclear Information System (INIS)

    Akdemir, Ahmet; Kus, Recai; Simsir, Mehmet

    2011-01-01

    Research highlights: → Metal matrix composite (MMC) is an important structural material. → Gray cast irons as a matrix material in MMC have more advantages than other cast irons. → Interface greatly determines the mechanical properties of MMC. → Interface formed by diffusion of carbon atoms. → While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  6. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    Energy Technology Data Exchange (ETDEWEB)

    Akdemir, Ahmet [Department of Mechanical Engineering, Selcuk University, Konya (Turkey); Kus, Recai [Department of Mechanical Education, Selcuk University, Konya (Turkey); Simsir, Mehmet, E-mail: msimsir@cumhuriyet.edu.tr [Department of Metallurgical and Materials Engineering, Cumhuriyet University, Kayseri Yolu 7. Km, 58140 Sivas (Turkey)

    2011-04-25

    Research highlights: {yields} Metal matrix composite (MMC) is an important structural material. {yields} Gray cast irons as a matrix material in MMC have more advantages than other cast irons. {yields} Interface greatly determines the mechanical properties of MMC. {yields} Interface formed by diffusion of carbon atoms. {yields} While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  7. Tensile strained gray tin: Dirac semimetal for observing negative magnetoresistance with Shubnikov-de Haas oscillations

    Science.gov (United States)

    Huang, Huaqing; Liu, Feng

    2017-05-01

    The extremely stringent requirement on material quality has hindered the investigation and potential applications of exotic chiral magnetic effect in Dirac semimetals. Here, we propose that gray tin is a perfect candidate for observing the chiral anomaly effect and Shubnikov-de-Haas (SdH) oscillation at relatively low magnetic field. Based on effective k .p analysis and first-principles calculations, we discover that gray tin becomes a Dirac semimetal under tensile uniaxial strain, in contrast to a topological insulator under compressive uniaxial strain as known before. In this newly found Dirac semimetal state, two Dirac points which are tunable by tensile [001] strains lie in the kz axis and Fermi arcs appear in the (010) surface. Due to the low carrier concentration and high mobility of gray tin, a large chiral anomaly induced negative magnetoresistance and a strong SdH oscillation are anticipated in this half of the strain spectrum. Comparing to other Dirac semimetals, the proposed Dirac semimetal state in the nontoxic elemental gray tin can be more easily manipulated and accurately controlled. We envision that gray tin provides a perfect platform for strain engineering of chiral magnetic effects by sweeping through the strain spectrum from positive to negative and vice versa.

  8. Cutting Class Harms Grades

    Science.gov (United States)

    Taylor, Lewis A., III

    2012-01-01

    An accessible business school population of undergraduate students was investigated in three independent, but related studies to determine effects on grades due to cutting class and failing to take advantage of optional reviews and study quizzes. It was hypothesized that cutting classes harms exam scores, attending preexam reviews helps exam…

  9. Gray divorce: Explaining midlife marital splits.

    Science.gov (United States)

    Crowley, Jocelyn Elise

    2017-12-06

    Recent research suggests that one out of every four divorces in the United States is now "gray," meaning that at least one half of the couple has reached the age of 50 when the marriage breaks down. To understand why this age group-the Baby Boomer generation-is splitting up, this study conducted 40 in-depth, semistructured interviews with men and 40 with women who have experienced a gray divorce in their lifetimes. Respondents' beliefs in an expressive individualistic model of marriage, where partnerships are only valuable if they help individuals achieve personal growth, were compared against their potential adherence to what I call a commitment-based model of marriage, where binding, romantic love holds couples together unless there is severe relationship strain. The results demonstrated that the commitment-based model most strongly governs marriage and the decision to divorce among Baby Boomers for both sexes, although some specific reasons for divorce differ for men and women.

  10. Fundamentals of cutting.

    Science.gov (United States)

    Williams, J G; Patel, Y

    2016-06-06

    The process of cutting is analysed in fracture mechanics terms with a view to quantifying the various parameters involved. The model used is that of orthogonal cutting with a wedge removing a layer of material or chip. The behaviour of the chip is governed by its thickness and for large radii of curvature the chip is elastic and smooth cutting occurs. For smaller thicknesses, there is a transition, first to plastic bending and then to plastic shear for small thicknesses and smooth chips are formed. The governing parameters are tool geometry, which is principally the wedge angle, and the material properties of elastic modulus, yield stress and fracture toughness. Friction can also be important. It is demonstrated that the cutting process may be quantified via these parameters, which could be useful in the study of cutting in biology.

  11. Investigating Micro-Tensile Bond Strength of Silorane Based Composite in Enamel Surfaces Prepared by Er:YAG Laser vs. Bur-Cut

    Directory of Open Access Journals (Sweden)

    AR Daneshkazemi

    2014-10-01

    Full Text Available Introduction: Recently, Er:YAG laser has been used for tooth preparations and silorane-based composites have been introduced to dentistry, though investigating this type of composites has received scant attention. Therefore, the aim of this study was to compare microtensile bond strength (MTBS of silorane- based composite (Filtek P90 3M/USA to enamel sufaces, prepared by Er:YAG laser irradiation versus bur cut. Methods:Same sized cavities were prepared by ER:YAG laser and bur on the enamel of 20 extracted teeth which were randomly divided into 4 groups:E1 laser + acid etching, E2: laser, E3: bur + acid etching, E4: bur. Then primer, adhesive and P60 resin composite were utilized according to the manufacturer instructions. After thermocycling, 20 samples were created in the form of an hour glass model with 1 mm2 slices in each group, and were tested by SD Mechatronic MTD 500 (Germany machine with cross head speed of 1mm/min to create the fracture. The failure mode was assessed under stereomicroscope (ZTX-3E, Zhejiang/China, and the study data were analysed by ANOVA test. Results: The study results revealed that highest and lowest microtensile bond strength belonged to E3 and E2 group respectively. No significant differences were observed between the tested groups(p= 0.213. Highest and lowest modes of failure were adhesive and cohesive respectively. ANOVA results did not demonstrate any significant differences between groups(p=0.845. Conclusion: Laser-prepared or bur-prepared cavities with or without etching and silorane based composite could not significantly affect MTBS in order to enamel.

  12. Magnetofluidic testing of rock cutting knives

    International Nuclear Information System (INIS)

    Buioca, C.D.; Iusan, Vasile; Pirlea, Remus

    2002-01-01

    The nondestructive testing of cutting knives consists in the determination of nonuniformity of a magnetic fluid layer applied on the horizontally placed surface of the magnetized cutting plate of the knife. A low constant magnetic field was applied perpendicular to the knife surface and a uniform magnetic fluid layer was applied. The defects as nonuniform brass layer, fissures or small cavities between the cutting plate and knife core determine the apparition of magnetic field gradients and therefore magnetic forces acting on the magnetic fluid which migrates to the zones with higher magnetic field intensity. After several minutes, a nonuniform layer of magnetic fluid was directly observed. Quantitative results, concerning the position and dimensions of the defect, were obtained by computer aided processing of the magnetic fluid layer image. Experimental data for several cutting knives are presented in the paper

  13. Generative complexity of Gray-Scott model

    Science.gov (United States)

    Adamatzky, Andrew

    2018-03-01

    In the Gray-Scott reaction-diffusion system one reactant is constantly fed in the system, another reactant is reproduced by consuming the supplied reactant and also converted to an inert product. The rate of feeding one reactant in the system and the rate of removing another reactant from the system determine configurations of concentration profiles: stripes, spots, waves. We calculate the generative complexity-a morphological complexity of concentration profiles grown from a point-wise perturbation of the medium-of the Gray-Scott system for a range of the feeding and removal rates. The morphological complexity is evaluated using Shannon entropy, Simpson diversity, approximation of Lempel-Ziv complexity, and expressivity (Shannon entropy divided by space-filling). We analyse behaviour of the systems with highest values of the generative morphological complexity and show that the Gray-Scott systems expressing highest levels of the complexity are composed of the wave-fragments (similar to wave-fragments in sub-excitable media) and travelling localisations (similar to quasi-dissipative solitons and gliders in Conway's Game of Life).

  14. Regional gray matter correlates of vocational interests.

    Science.gov (United States)

    Schroeder, David H; Haier, Richard J; Tang, Cheuk Ying

    2012-05-16

    Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations. First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic ("blue-collar") interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability. Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations.

  15. Gray rod for a nuclear reactor

    International Nuclear Information System (INIS)

    Francis, T.A.; Cerni, Samuel.

    1986-01-01

    The invention relates to an improved gray rod for insertion in a nuclear fuel assembly having an array of fuel rods. The gray rod includes a thin-walled cladding tube a first longitudinal section of which is positioned within, and a second longitudinal section of which is positioned essentially without, the array of fuel rods when the gray rod is inserted in the fuel assembly. The first longitudinal section defines a pellet-receiving space having detained therein a stack of annular pellets with an outer diameter sufficient to lend radial support to the wall of the first longitudinal tube section. The second longitudinal section defines a hollow space devoid of pellets and having means to resist radial collapse under external pressure. This means may be a partially compressed spiral spring which serves the dual purpose of retaining the stack of pellets in the pellet-receiving space and of lending radial support to the wall of the second longitudinal tube section or it may be holes through the wall to allow pressure equalisation. The cladding tube is composed of stainless-steel material having a low neutron-capture cross-section, and the annular pellets preferably being composed of Zircaloy or Zirconia material. (author)

  16. Designing for hot-blade cutting

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Clausen, Kenn

    2016-01-01

    In this paper we present a novel method for the generation of doubly-curved, architectural design surfaces using swept Euler elastica and cubic splines. The method enables a direct design to production workflow with robotic hot-blade cutting, a novel robotic fabrication method under development......-trivial constraints of blade-cutting in a bottom-up fashion, enabling an exploration of the unique architectural potential of this fabrication approach. The method is implemented as prototype design tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting of expanded polystyrene foam design...

  17. Making the cut for the contour method

    OpenAIRE

    Bouchard, P. John; Ledgard, Peter; Hiller, Stan; Hosseinzadh Torknezhad, Foroogh

    2012-01-01

    The contour method is becoming an increasingly popular measurement technique for mapping residual stress in engineering components. The accuracy of the technique is critically dependent on the quality of the cut performed. This paper presents results from blind cutting trials on austenitic stainless steel using electro-discharge machines made by three manufacturers. The suitability of the machines is assessed based on the surface finish achieved, risk of wire breakages and the nature of cutti...

  18. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton

    2016-01-01

    . The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...

  19. Advanced cutting techniques: laser and fissuration cutting

    International Nuclear Information System (INIS)

    Migliorati, B.; Gay, P.

    1984-01-01

    Experimental tests have been performed using CO 2 laser with output power 1 to 15 kW to evaluate the effect of varying the following parameters: material (carbon steel Fe 42 C, stainless steel AISI 304, concrete), laser power, beam characteristics, work piece velocity, gas type and distribution on the laser interaction zone. In the case of concrete, drilling depths of 80 mm were obtained in a few seconds using a 10 kW laser beam. Moreover pieces of 160 mm were cut at 0.01 meters per minute. Results with carbon steel indicated maximum thicknesses of 110 mm, cut at 0.01 meters per minute with 10 kW, depths about 20% lower were obtained with the AISI 304 stainless steel. A parallel investigation was aimed at characterizing particulate emission during the laser cutting process. At the end of the research it was possible to elaborate a preliminary proposal concerning a laser based dismantling system for the application to a typical Nuclear Power Station. (author)

  20. Laser Cutting, Development Trends

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    1999-01-01

    In this paper a short review of the development trends in laser cutting will be given.The technology, which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal, as it will expand in heavy industry and in cutting...... of 3-dimensional shapes.The CO2-laser will also in the near future be the dominating laser source in the market, although the new developments in ND-YAG-lasers opens for new possibilities for this laser type....

  1. Experimental testing of exchangeable cutting inserts cutting ability

    OpenAIRE

    Čep, Robert; Janásek, Adam; Čepová, Lenka; Petrů, Jana; Hlavatý, Ivo; Car, Zlatan; Hatala, Michal

    2013-01-01

    The article deals with experimental testing of the cutting ability of exchangeable cutting inserts. Eleven types of exchangeable cutting inserts from five different manufacturers were tested. The tested cutting inserts were of the same shape and were different especially in material and coating types. The main aim was both to select a suitable test for determination of the cutting ability of exchangeable cutting inserts and to design such testing procedure that could make it possible...

  2. Investigation of cutting-induced damage in CMC bend bars

    Directory of Open Access Journals (Sweden)

    Neubrand A.

    2015-01-01

    Full Text Available Ceramic matrix composites (“CMC” with a strong fibre-matrix interface can be made damage-tolerant by introducing a highly porous matrix. Such composites typically have only a low interlaminar shear strength, which can potentially promote damage when preparing specimens or components by cutting. In order to investigate the damage induced by different cutting methods, waterjet cutting with and without abrasives, laser-cutting, wire eroding and cutoff grinding were used to cut plates of two different CMCs with a matrix porosity up to 35 vol.-%. For each combination of cutting method and composite, the flexural and interlaminar shear strength of the resulting specimens was determined. Additionally, the integrity of the regions near the cut surfaces was investigated by high-resolution x-ray computer tomography. It could be shown that the geometrical quality of the cut is strongly affected by the cutting method employed. Laser cut and waterjet cut specimens showed damage and delaminations near the cut surface leading to a reduced interlaminar shear strength of short bend bars in extreme cases.

  3. A review on ductile mode cutting of brittle materials

    Science.gov (United States)

    Antwi, Elijah Kwabena; Liu, Kui; Wang, Hao

    2018-06-01

    Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.

  4. Cut without Killing.

    Science.gov (United States)

    Black, Susan

    1991-01-01

    The zero-based curriculum model can help school boards and administrators make decisions about what to keep and what to cut. All instructional programs are ranked and judged in categories ranging from required to optional. (MLF)

  5. Short-cut math

    CERN Document Server

    Kelly, Gerard W

    1984-01-01

    Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.

  6. Shroud cutting techniques and collection systems for secondary radioactivity release

    International Nuclear Information System (INIS)

    Yokoi, H.; Watanabe, A.; Uetake, N.; Shimura, T.; Omote, T.; Adachi, H.; Murakami, S.; Kobayashi, H.; Gotoh, M.

    2001-01-01

    Replacement of in-core shroud has been conducted as part of the preventive maintenance program in Tsuruga-1. The EDM (electric discharged machining) and plasma cutting methods were applied to in-core shroud cutting and secondary cutting in the DSP (dryer/separator pool), respectively. The cutting systems were improved in order to decrease radioactive secondary products. 1) Fundamental EDM cutting tests: fundamental EDM cutting tests were carried out in order to study secondary products. It could be presumed that volatile Co-carbonyl compound was generated by using a carbon electrode. The Ag/W electrode was effective as EDM electrode for in-core shroud cutting to prevent generation of Co-carbonyl compound and to decrease the total amount of secondary products. 2) In-core shroud cutting in RPV (reactor pressure vessel): EDM cutting system with the Ag/W electrode and collection system could keep a good environment during in-core shroud cutting in Tsuruga-1. Activity concentration was lower value than limitation of mask charge level, 4E-6 Bq/cm 3 , even near the water surface. 3) Secondary plasma cutting in DSP: the secondary cutting work was successful in the point of reduction of working period and radiation exposure. The amount of radiation exposure was reduced to 60% of the planned value, because of adequate decontamination of the working environment and reduction of number of torch maintenance tasks by improvements of the underwater cutting device

  7. Laser cutting system

    Science.gov (United States)

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  8. How Can I Stop Cutting?

    Science.gov (United States)

    ... Educators Search English Español How Can I Stop Cutting? KidsHealth / For Teens / How Can I Stop Cutting? ... in a soft, cozy blanket Substitutes for the Cutting Sensation You'll notice that all the tips ...

  9. Cutting and Self-Harm

    Science.gov (United States)

    ... Your feelings Feeling sad Cutting and self-harm Cutting and self-harm Self-harm, sometimes called self- ... There are many types of self-injury, and cutting is one type that you may have heard ...

  10. MECHANISMS OF CUTTING BLADE WEAR AND THEIR INFLUENCE ON CUTTING ABILITY OF THE TOOL DURING MACHINING OF SPECIAL ALLOYS

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2016-09-01

    Full Text Available With increased requirements for quality and shelf life of machined parts there is also a higher share of the use of material with specific properties that are identified by the term “superalloys”. These materials differ from common steels by mechanical and physical properties that cause their worse machinability. During machining of “superalloys” worse machinability has negative influence primarily on the amount of cutting edge wear, which shortens durability of the cutting tool. The goal of experimental activity shown in this contribution is to determine individual mechanisms of the cutting edge wear and their effects on the cutting ability during high speed machining of nickel superalloy. A specific exchangeable cutting insert made from cubic boric nitride was used for machining of the 625 material according to ASM 5666F. The criteria to evaluate cutting ability and durability of the cutting tool became selected parameters of surface integrity and quality of the machined surface.

  11. On Permuting Cut with Contraction

    OpenAIRE

    Borisavljevic, Mirjana; Dosen, Kosta; Petric, Zoran

    1999-01-01

    The paper presents a cut-elimination procedure for intuitionistic propositional logic in which cut is eliminated directly, without introducing the multiple-cut rule mix, and in which pushing cut above contraction is one of the reduction steps. The presentation of this procedure is preceded by an analysis of Gentzen's mix-elimination procedure, made in the perspective of permuting cut with contraction. It is also shown that in the absence of implication, pushing cut above contraction doesn't p...

  12. Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM.

    Science.gov (United States)

    Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan

    2018-06-14

    Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.

  13. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete.

    Science.gov (United States)

    Sánchez Egea, A J; Martynenko, V; Martínez Krahmer, D; López de Lacalle, L N; Benítez, A; Genovese, G

    2018-02-09

    The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade's matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria.

  14. Information fusion for the Gray Zone

    Science.gov (United States)

    Fenstermacher, Laurie

    2016-05-01

    United States Special Operations Command (SOCOM) recently published a white paper describing the "Gray Zone", security challenges characterized by "ambiguity about the nature of the conflict, opacity of the parties involved…competitive interactions among and within state and non-state actors that fall between the traditional war and peace duality."1 Ambiguity and related uncertainty about actors, situations, relationships, and intent require new approaches to information collection, processing and fusion. General Votel, the current SOCOM commander, during a recent speech on "Operating in the Gray Zone" emphasized that it would be important to get left of the next crises and stated emphatically, "to do that we must understand the Human Domain."2 This understanding of the human domain must come from making meaning based on different perspectives, including the "emic" or first person/participant and "etic" or third person/observer perspectives. Much of the information currently collected and processed is etic. Incorporation and fusion with the emic perspective enables forecasting of behaviors/events and provides context for etic information (e.g., video).3 Gray zone challenges are perspective-dependent; for example, the conflict in Ukraine is interpreted quite differently by Russia, the US and Ukraine. Russia views it as war, necessitating aggressive action, the US views it as a security issue best dealt with by economic sanctions and diplomacy and the Ukraine views it as a threat to its sovereignty.4 General Otto in the Air Force ISR 2023 vision document stated that Air Force ISR is needed to anticipate strategic surprise.5 Anticipatory analysis enabling getting left of a crisis inherently requires a greater focus on information sources that elucidate the human environment as well as new methods that elucidate not only the "who's" and "what's", but the "how's and "why's," extracting features and/or patterns and subtle cues useful for forecasting behaviors and

  15. Abrasive slurry jet cutting model based on fuzzy relations

    Science.gov (United States)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  16. Female genital cutting.

    Science.gov (United States)

    Perron, Liette; Senikas, Vyta; Burnett, Margaret; Davis, Victoria

    2013-11-01

    To strengthen the national framework for care of adolescents and women affected by female genital cutting (FGC) in Canada by providing health care professionals with: (1) information intended to strengthen their knowledge and understanding of the practice; (2) directions with regard to the legal issues related to the practice; (3) clinical guidelines for the management of obstetric and gynaecological care, including FGC related complications; and (4) guidance on the provision of culturally competent care to adolescents and women with FGC. Published literature was retrieved through searches of PubMed, CINAHL, and The Cochrane Library in September 2010 using appropriate controlled vocabulary (e.g., Circumcision, Female) and keywords (e.g., female genital mutilation, clitoridectomy, infibulation). We also searched Social Science Abstracts, Sociological Abstracts, Gender Studies Database, and ProQuest Dissertations and Theses in 2010 and 2011. There were no date or language restrictions. Searches were updated on a regular basis and incorporated in the guideline to December 2011. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). Summary Statements 1. Female genital cutting is internationally recognized as a harmful practice and a violation of girls' and women's rights to life, physical integrity, and health. (II-3) 2. The immediate and long-term health risks and complications of female genital cutting can be serious and life threatening. (II-3) 3. Female genital cutting continues to be practised in many countries, particularly in sub-Saharan Africa, Egypt, and Sudan. (II-3) 4. Global migration

  17. Transfer of Escherichia coli O157:H7 from equipment surfaces to fresh-cut leafy greens during processing in a model pilot-plant production line with sanitizer-free water.

    Science.gov (United States)

    Buchholz, Annemarie L; Davidson, Gordon R; Marks, Bradley P; Todd, Ewen C D; Ryser, Elliot T

    2012-11-01

    Escherichia coli O157:H7 contamination of fresh-cut leafy greens has become a public health concern as a result of several large outbreaks. The goal of this study was to generate baseline data for E. coli O157:H7 transfer from product-inoculated equipment surfaces to uninoculated lettuce during pilot-scale processing without a sanitizer. Uninoculated cored heads of iceberg and romaine lettuce (22.7 kg) were processed using a commercial shredder, step conveyor, 3.3-m flume tank with sanitizer-free tap water, shaker table, and centrifugal dryer, followed by 22.7 kg of product that had been dip inoculated to contain ∼10(6), 10(4), or 10(2) CFU/g of a four-strain avirulent, green fluorescent protein-labeled, ampicillin-resistant E. coli O157:H7 cocktail. After draining the flume tank and refilling the holding tank with tap water, 90.8 kg of uninoculated product was similarly processed and collected in ∼5-kg aliquots. After processing, 42 equipment surface samples and 46 iceberg or 36 romaine lettuce samples (25 g each) from the collection baskets were quantitatively examined for E. coli O157:H7 by direct plating or membrane filtration using tryptic soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Initially, the greatest E. coli O157:H7 transfer was seen from inoculated lettuce to the shredder and conveyor belt, with all equipment surface populations decreasing 90 to 99% after processing 90.8 kg of uncontaminated product. After processing lettuce containing 10(6) or 10(4) E. coli O157:H7 CFU/g followed by uninoculated lettuce, E. coli O157:H7 was quantifiable throughout the entire 90.8 kg of product. At an inoculation level of 10(2) CFU/g, E. coli O157:H7 was consistently detected in the first 21.2 kg of previously uninoculated lettuce at 2 to 3 log CFU/100 g and transferred to 78 kg of product. These baseline E. coli O157:H7 transfer results will help determine the degree of sanitizer efficacy required to better ensure the safety of fresh-cut leafy

  18. Artificial Intelligence Monitoring of Hardening Methods and Cutting Conditions and Their Effects on Surface Roughness, Performance, and Finish Turning Costs of Solid-State Recycled Aluminum Alloy 6061 Сhips

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2018-05-01

    Full Text Available Aluminum Alloy 6061 components are frequently manufactured for various industries—aeronautics, yachting, and optical instruments—due to their excellent physical and mechanical properties, including corrosion resistance. There is little research on the mechanical tooling of AA6061 and none on its structure and properties and their effects on surface roughness after finish turning. The objective of this comprehensive study is, therefore, to ascertain the effects of both the modern method of hardening AA6061 shafts and the finish turning conditions on surface roughness, Ra, and the minimum machining time for unit-volume removal, Tm, while also establishing the cost price of processing one part, C. The hardening methods improved both the physical and the mechanical material properties processed with 2, 4, and 6 passes of equal channel angular pressing (ECAP at room temperature, using an ECAP-matrix with a channel angle of 90°. The reference workpiece sample was a hot extruded chip under an extrusion ratio (ER of 5.2 at an extrusion temperature of 500 °С (ET = 500 °C. The following results were obtained: grain size in ECAP-6 decreased from 15.9 to 2.46 μm, increasing both microhardness from 41 Vickers hardness value (HV to 110 HV and ultimate tensile strength from 132.4 to 403 MPa. The largest decrease in surface roughness, Ra—70%, was obtained turning a workpiece treated with ECAP-6. The multicriteria optimization was computed in a multilayer perceptron-based artificial neural network that yielded the following optimum values: the minimal length of the three-dimensional estimates vector with the coordinates Ra = 0.800 μm, Tm = 0.341 min/cm3, and С = 6.955 $ corresponded to the optimal finish turning conditions: cutting speed vc = 200 m/min, depth of cut ap = 0.2 mm, and feed per revolution fr = 0.103 mm/rev (ET-500 extrusion without hardening.

  19. Gray Zone Legislation and Activities: Evaluating the Orchestration of Convergence Within the Gray Zone

    Science.gov (United States)

    2017-06-01

    The Agency and the Hill (Government Printing Office, 2008), 8. 16 Lowenthal, Intelligence . 17 Marshall Erwin, Covert Action: Legislative Background...military and intelligence activities within the Gray Zone and what directs their convergence. More specifically, the author analyzes the...determining convergence or divergence. In the end, classical military theory directs the convergence and divergence of military and intelligence activities

  20. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  1. PET MRI Coregistration in Intractable Epilepsy and Gray Matter Heterotopia.

    Science.gov (United States)

    Seniaray, Nikhil; Jain, Anuj

    2017-03-01

    A 25-year-old woman with intractable seizures underwent FDG PET/MRI for seizure focus localization. MRI demonstrated bilateral carpetlike nodular subependymal gray matter and asymmetrical focal dilatation in the right temporal horn. PET/MRI showed increased FDG within subependymal gray matter with significant hypometabolism in right anterior temporal lobe. EEG and ictal semiology confirmed the right temporal seizure origin. This case highlights the importance of identification of gray matter heterotopia on FDG PET/MRI.

  2. Dichromatic Gray Pixel for Camera-agnostic Color Constancy

    OpenAIRE

    Qian, Yanlin; Chen, Ke; Nikkanen, Jarno; Kämäräinen, Joni-Kristian; Matas, Jiri

    2018-01-01

    We propose a novel statistical color constancy method, especially suitable for the Camera-agnostic Color Constancy, i.e. the scenario where nothing is known a priori about the capturing devices. The method, called Dichromatic Gray Pixel, or DGP, relies on a novel gray pixel detection algorithm derived using the Dichromatic Reflection Model. DGP is suitable for camera-agnostic color constancy since varying devices are set to make achromatic pixels look gray under standard neutral illumination....

  3. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  4. 29 CFR 1926.354 - Welding, cutting, and heating in way of preservative coatings.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Welding, cutting, and heating in way of preservative... Welding and Cutting § 1926.354 Welding, cutting, and heating in way of preservative coatings. (a) Before welding, cutting, or heating is commenced on any surface covered by a preservative coating whose...

  5. Determination of cut front position in laser cutting

    International Nuclear Information System (INIS)

    Pereira, M; Thombansen, U

    2016-01-01

    Laser cutting has a huge importance to manufacturing industry. Laser cutting machines operate with fixed technological parameters and this does not guarantee the best productivity. The adjustment of the cutting parameters during operation can improve the machine performance. Based on a coaxial measuring device it is possible to identify the cut front position during the cutting process. This paper describes the data analysis approach used to determine the cut front position for different feed rates. The cut front position was determined with good resolution, but improvements are needed to make the whole process more stable. (paper)

  6. Determination of cut front position in laser cutting

    Science.gov (United States)

    Pereira, M.; Thombansen, U.

    2016-07-01

    Laser cutting has a huge importance to manufacturing industry. Laser cutting machines operate with fixed technological parameters and this does not guarantee the best productivity. The adjustment of the cutting parameters during operation can improve the machine performance. Based on a coaxial measuring device it is possible to identify the cut front position during the cutting process. This paper describes the data analysis approach used to determine the cut front position for different feed rates. The cut front position was determined with good resolution, but improvements are needed to make the whole process more stable.

  7. The greenhouse effect in a gray planetary atmosphere.

    Science.gov (United States)

    Wildt, R.

    1966-01-01

    Hopf analytical solution for values of ratio of gray absorption coefficients for insolating and escaping radiation /greenhouse parameter/ assumed constant at all depths, presenting temperature distribution graphs

  8. Underwater transporting method and device for incore structure cutting piece

    International Nuclear Information System (INIS)

    Kurosawa, Koichi; Chiba, Noboru; Chiba, Isao; Takada, Hiroshi; Furukawa, Hideyasu; Chiba, Noboru.

    1996-01-01

    Cutting pieces are handled by using a pick-up device connected with a wire ropes, a take-up drum, chains and a winch as cutting piece handling means, and moved freely on the water surface by a propulsion machine of a transporting means of the device to transfer them under water to a predetermined position. The pick-up device is lifted by taking-up the rope by the rotation of the take-up drum using chain-driving by way of the winch and the chains. The cut pieces are stored in a cask by lowering them in the cask and releasing the handling. In addition, if the weight of the cut pieces is recognized before cutting, and the load of the weight of the cut pieces is applied to the device previously, the balance of the device and the cut pieces can be kept, and cut pieces can be transported under water always stably. Further, if the cut pieces are supported upon cutting operation, the cut pieces are made stable, and cutting operation with good efficiency can be attained. (N.H.)

  9. Underwater plasma arc cutting

    International Nuclear Information System (INIS)

    Leautier, R.; Pilot, G.

    1991-01-01

    This report describes the work done to develop underwater plasma arc cutting techniques, to characterise aerosols from cutting operations on radioactive and non-radioactive work-pieces, and to develop suitable ventilation and filtration techniques. The work has been carried out in the framework of a contract between CEA-CEN Cadarache and the Commission of European Communities. Furthermore, this work has been carried out in close cooperation with CEA-CEN Saclay mainly for secondary emissions and radioactive analysis. The contract started in May 1986 and was completed in December 1988 by a supplementary agreement. This report has been compiled from several progress reports submitted during the work period, contains the main findings of the work and encloses the results of comparative tests on plasma arc cutting

  10. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

    2000-01-30

    This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

  11. Theoretical Models for Orthogonal Cutting

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”......This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”...

  12. A model-based approach to preplanting risk assessment for gray leaf spot of maize.

    Science.gov (United States)

    Paul, P A; Munkvold, G P

    2004-12-01

    ABSTRACT Risk assessment models for gray leaf spot of maize, caused by Cercospora zeae-maydis, were developed using preplanting site and maize genotype data as predictors. Disease severity at the dough/dent plant growth stage was categorized into classes and used as the response variable. Logistic regression and classification and regression tree (CART) modeling approaches were used to predict severity classes as a function of planting date (PD), amount of maize soil surface residue (SR), cropping sequence, genotype maturity and gray leaf spot resistance (GLSR) ratings, and longitude (LON). Models were development using 332 cases collected between 1998 and 2001. Thirty cases collected in 2002 were used to validate the models. Preplanting data showed a strong relationship with late-season gray leaf spot severity classes. The most important predictors were SR, PD, GLSR, and LON. Logistic regression models correctly classified 60 to 70% of the validation cases, whereas the CART models correctly classified 57 to 77% of these cases. Cases misclassified by the CART models were mostly due to overestimation, whereas the logistic regression models tended to misclassify cases by underestimation. Both the CART and logistic regression models have potential as management decision-making tools. Early quantitative assessment of gray leaf spot risk would allow for more sound management decisions being made when warranted.

  13. Evaluation of Lettuce Germplasm Resistance to Gray Mold Disease for Organic Cultivations

    Directory of Open Access Journals (Sweden)

    Chang Ki Shim

    2014-03-01

    Full Text Available This study was conducted to evaluate the resistance of 212 accessions of lettuce germplasm to gray mold disease caused by Botrytis cinerea. The lettuce germplasm were composed of five species: Lactuca sativa (193 accessions, L. sativa var. longifolia (2 accessions, L. sativa var. crispa (2 accessions, L. saligna (2 accessions, and L. serriola (1 accession; majority of these originated from Korea, Netherlands, USA, Russia, and Bulgaria. After 35 days of spray inoculation with conidial suspension (3×10⁷ conidia/ml of B. cinerea on the surface of lettuce leaves, tested lettuce germplasm showed severe symptoms of gray mold disease. There were 208 susceptible accessions to B. cinerea counted with 100% of disease incidence and four resistant accessions, IT908801, K000598, K000599, and K021055. Two moderately resistant accessions of L. sativa, K021055 and IT908801, showed 20% of disease incidence of gray mold disease at 45 days after inoculation; and two accessions of L. saligna, K000598 and K000599, which are wild relatives of lettuce germplasm with loose-leaf type, showed complete resistance to B. cinerea. These four accessions are candidates for breeding lettuce cultivars resistant to gray mold disease.

  14. Aspects of plasma arc cutting process in the AISI 321 type stainless steel

    International Nuclear Information System (INIS)

    Souza Barros, I. de.

    1985-01-01

    Some aspects of plasma arc cutting process in the AISI321 stainless steel, used in nuclear industry, are analysed. The maximum values of the velocity of cutting and, the minimum quantity of energy per unit of length necesary for the plasma were determined. The localization of irregularities in the cut surface in function of the velocity of cutting was investigated. The cut surfaces were evaluated by surface roughness, using as measurement parameter, the distance between the sharpest salience and the deepest reentrance of the sample profile. The width of layer from thermal action of the plasma was influenced by the velocity of cutting. (Author) [pt

  15. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  16. Elimination of striation in laser cutting of mild steel

    International Nuclear Information System (INIS)

    Sobih, M; Crouse, P L; Li, L

    2007-01-01

    High-power laser cutting is extensively used in many industrial applications. An important weakness of this process is the formation of striations (regular lines down the cut surface), which affect the quality of the surfaces produced. The elimination of striation formation is of considerable importance, since it could open up a variety of novel high-precision applications. This study presents the results of oxygen-assisted laser cutting of EN43 mild steel sheets, using a high-power fibre laser. Striation-free laser cuts are demonstrated for cutting 1 and 2 mm thick mild steel sheets. The optimal operating windows are presented and a mathematical method is proposed to estimate the critical speed at which striation-free cut can be obtained

  17. Elimination of striation in laser cutting of mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Sobih, M; Crouse, P L; Li, L [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street Building, PO Box 88, Manchester M60 1QD (United Kingdom)

    2007-11-21

    High-power laser cutting is extensively used in many industrial applications. An important weakness of this process is the formation of striations (regular lines down the cut surface), which affect the quality of the surfaces produced. The elimination of striation formation is of considerable importance, since it could open up a variety of novel high-precision applications. This study presents the results of oxygen-assisted laser cutting of EN43 mild steel sheets, using a high-power fibre laser. Striation-free laser cuts are demonstrated for cutting 1 and 2 mm thick mild steel sheets. The optimal operating windows are presented and a mathematical method is proposed to estimate the critical speed at which striation-free cut can be obtaine000.

  18. Aberrant paralimbic gray matter in criminal psychopathy.

    Science.gov (United States)

    Ermer, Elsa; Cope, Lora M; Nyalakanti, Prashanth K; Calhoun, Vince D; Kiehl, Kent A

    2012-08-01

    Psychopaths impose large costs on society, as they are frequently habitual, violent criminals. The pervasive nature of emotional and behavioral symptoms in psychopathy suggests that several associated brain regions may contribute to the disorder. Studies employing a variety of methods have converged on a set of brain regions in paralimbic cortex and limbic areas that appear to be dysfunctional in psychopathy. The present study further tests this hypothesis by investigating structural abnormalities using voxel-based morphometry in a sample of incarcerated men (N=296). Psychopathy was associated with decreased regional gray matter in several paralimbic and limbic areas, including bilateral parahippocampal, amygdala, and hippocampal regions, bilateral temporal pole, posterior cingulate cortex, and orbitofrontal cortex. The consistent identification of paralimbic cortex and limbic structures in psychopathy across diverse methodologies strengthens the interpretation that these regions are crucial for understanding neural dysfunction in psychopathy. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  19. Cutting Cakes Carefully

    Science.gov (United States)

    Hill, Theodore P.; Morrison, Kent E.

    2010-01-01

    This paper surveys the fascinating mathematics of fair division, and provides a suite of examples using basic ideas from algebra, calculus, and probability which can be used to examine and test new and sometimes complex mathematical theories and claims involving fair division. Conversely, the classical cut-and-choose and moving-knife algorithms…

  20. Classroom Cut Ups

    Science.gov (United States)

    Lord, Stacy

    2011-01-01

    Discovering identity can be a lifelong challenge for some people, while others seem to figure it out right away. During the middle school years, finding one's identity can be a daunting task. Most students will spend a considerable amount of time during these middle years looking for it. This lesson on cut-paper self-portraits lets students delve…

  1. Abrasive water jet cutting

    International Nuclear Information System (INIS)

    Leist, K.J.; Funnell, G.J.

    1988-01-01

    In the process of selecting a failed equipment cut-up tool for the process facility modifications (PFM) project, a system using an abrasive water jet (AWJ) was developed and tested for remote disassembly of failed equipment. It is presented in this paper

  2. After the Ribbon Cutting

    DEFF Research Database (Denmark)

    Hodge, Graeme A.; Boulot, Emille; Duffield, Colin

    2017-01-01

    Much attention has gone towards ‘up-front’ processes when delivering infrastructure public–private partnerships (PPPs), but less on how to best govern after the ribbon is cut and the infrastructure built. This paper identifies the primary contractual and institutional governance challenges arising...

  3. Simultaneous Cake Cutting

    DEFF Research Database (Denmark)

    Balkanski, Eric; Branzei, Simina; Kurokawa, David

    2014-01-01

    We introduce the simultaneous model for cake cutting (the fair allocation of a divisible good), in which agents simultaneously send messages containing a sketch of their preferences over the cake. We show that this model enables the computation of divisions that satisfy proportionality — a popular...

  4. Experimental investigation of cutting parameters influence on ...

    Indian Academy of Sciences (India)

    429–445. c Indian Academy of Sciences ... This is employed for the manufacture of helicopter rotor blades and forging dies. ..... bij Xi X j +. ∑k i=1 bii X2 i ,. (2) where b0 is the free term of the regression equation, the .... Figure 1. Effect of cutting speed on surface roughness at various feed rates. ..... Experimental run order.

  5. The cutting of metals via plastic buckling

    Science.gov (United States)

    Udupa, Anirudh; Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan

    2017-06-01

    The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.

  6. Underwater Image Enhancement by Adaptive Gray World and Differential Gray-Levels Histogram Equalization

    Directory of Open Access Journals (Sweden)

    WONG, S.-L.

    2018-05-01

    Full Text Available Most underwater images tend to be dominated by a single color cast. This paper presents a solution to remove the color cast and improve the contrast in underwater images. However, after the removal of the color cast using Gray World (GW method, the resultant image is not visually pleasing. Hence, we propose an integrated approach using Adaptive GW (AGW and Differential Gray-Levels Histogram Equalization (DHE that operate in parallel. The AGW is applied to remove the color cast while DHE is used to improve the contrast of the underwater image. The outputs of both chromaticity components of AGW and intensity components of DHE are combined to form the enhanced image. The results of the proposed method are compared with three existing methods using qualitative and quantitative measures. The proposed method increased the visibility of underwater images and in most cases produces better quantitative scores when compared to the three existing methods.

  7. Numerical simulation and experiments of precision bar cutting based on high speed and restrained state

    International Nuclear Information System (INIS)

    Song, J.L.; Li, Y.T.; Liu, Z.Q.; Fu, J.H.; Ting, K.L.

    2009-01-01

    According to the disadvantages of conventional bar cutting technology such as low-cutting speed, inferior section quality, high-processing cost and so on, a kind of novel precision bar cutting technology has been proposed. The cutting mechanism has also been analyzed. Finite element numerical simulation of the bar cutting process under different working conditions has been carried out with DEFORM. The stress and strain fields at different cutting speed and the variation curves of the cutting force and appropriate cutting parameters have been obtained. Scanning electron microscopy analysis of the cutting surface showed that the finite-element simulation result is correct and better cutting quality can be obtained with the developed bar cutting technology and equipment based on high speed and restrained state

  8. Development of plasma cutting process at observation of environmental requirements

    International Nuclear Information System (INIS)

    Czech, J.; Matusiak, J.; Pasek-Siurek, H.

    1997-01-01

    Plasma cutting is one of the basic methods for thermal cutting of metals. It is characterized by high productivity and quality of the cut surface. However, the plasma cutting process is one of the most harmful processes for environment and human health. It results from many agents being a potential environmental risk The large amount of dust and gases emitted during the process as well as an intensive radiation of electric arc and excessive noise are considered as the most harmful hazards. The existing ventilation and filtration systems are not able to solve all problems resulting from the process. Plasma cutting under water is worthy of notice, especially during an advancement of plasma cutting process, because of human safety and environment protection. Such a solution allows to reduce considerably the emission of dust and gases, as well as to decrease the noise level and ultraviolet radiation. An additional advantage of underwater plasma cutting is a reduction in the width of material heating zone and a decrease in strains of elements being cut. However, the productivity of this process is a little lower what results in an increase in cutting cost. In the paper, it has been presented the results of the investigations made at the Institute of Welding in Gliwice on the area of plasma cutting equipment with energy-saving inverter power supplies used in automated processes of underwater plasma cutting as well as the results of testing of welding environment contamination and safety hazards. (author)

  9. Linking white matter and deep gray matter alterations in premanifest Huntington disease

    Directory of Open Access Journals (Sweden)

    Andreia V. Faria

    2016-01-01

    Full Text Available Huntington disease (HD is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i regions of interest surrounding these structures, using (ii tractography-based analysis, and using (iii whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores, and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be

  10. Core Cutting Test with Vertical Rock Cutting Rig (VRCR)

    Science.gov (United States)

    Yasar, Serdar; Osman Yilmaz, Ali

    2017-12-01

    Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.

  11. Radiocesium movement in a gray rabbit brush community

    International Nuclear Information System (INIS)

    Klepper, B.; Rogers, L.E.; Hedlund, J.D.; Schreckhise, R.G.; Price, K.R.

    1978-01-01

    Gray rabbit brush, Chrysothamnus nauseosus (Compositae), is the dominant shrub on disturbed land surfaces on much of the Energy Research and Development Administration's Hanford Reservation in south-central Washington State. A stand of rabbit brush growing on an inactive liquid-waste-disposal crib was studied. Thirty percent of the shrubs showed low but detectable radiation levels in a field survey. The primary radionuclide was 137 Cs. The source of 137 Cs in shrubs was the gravel drain field in the crib, at least 2.4 m below the surface, which was the approximate maximum depth of penetration of rabbit brush taproots. Cesium-137 was observed in roots of certain rabbit brush plants, in the upper 1 cm of soil, and in litter beneath contaminated plants but was not detectable in soil samples taken at depths of 15, 50, 100, and 150 cm. Invertebrates associated with a contaminated shrub showed higher concentrations of 137 Cs than did wider-ranging species. Two of seven pocket mice trapped on the crib contaminated detectable amounts of 137 Cs

  12. Gray literature: An important resource in systematic reviews.

    Science.gov (United States)

    Paez, Arsenio

    2017-08-01

    Systematic reviews aide the analysis and dissemination of evidence, using rigorous and transparent methods to generate empirically attained answers to focused research questions. Identifying all evidence relevant to the research questions is an essential component, and challenge, of systematic reviews. Gray literature, or evidence not published in commercial publications, can make important contributions to a systematic review. Gray literature can include academic papers, including theses and dissertations, research and committee reports, government reports, conference papers, and ongoing research, among others. It may provide data not found within commercially published literature, providing an important forum for disseminating studies with null or negative results that might not otherwise be disseminated. Gray literature may thusly reduce publication bias, increase reviews' comprehensiveness and timeliness, and foster a balanced picture of available evidence. Gray literature's diverse formats and audiences can present a significant challenge in a systematic search for evidence. However, the benefits of including gray literature may far outweigh the cost in time and resource needed to search for it, and it is important for it to be included in a systematic review or review of evidence. A carefully thought out gray literature search strategy may be an invaluable component of a systematic review. This narrative review provides guidance about the benefits of including gray literature in a systematic review, and sources for searching through gray literature. An illustrative example of a search for evidence within gray literature sources is presented to highlight the potential contributions of such a search to a systematic review. Benefits and challenges of gray literature search methods are discussed, and recommendations made. © 2017 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  13. Some possibilities for determining cutting data when using laser cutting:

    OpenAIRE

    Radovanović, Miroslav

    2006-01-01

    The technological problems faced in the field of the application of laser-cutting machines lie in insufficient knowledge of the laser technique and the absence of both sufficiently reliable practical data and knowledge about the parameters affecting the work process itself. A significant parameter that is necessary to determine and to enter in an NC-program is the cutting speed. Various authors analyze the laser-cutting process and give mathematical models where laser cutting is modeled by us...

  14. Gear cutting tools fundamentals of design and computation

    CERN Document Server

    Radzevich, Stephen P

    2010-01-01

    Presents the DG/K-based method of surface generation, a novel and practical mathematical method for designing gear cutting tools with optimal parameters. This book proposes a scientific classification for the various kinds of the gear machining meshes, discussing optimal designs of gear cutting tools.

  15. Investigation and validation of optimal cutting parameters for least ...

    African Journals Online (AJOL)

    The cutting parameters were analyzed and optimized using Box Behnken procedure in the DESIGN EXPERT environment. The effect of process parameters with the output variable were predicted which indicates that the highest cutting speed has significant role in producing least surface roughness followed by feed and ...

  16. Cutting to the chase

    International Nuclear Information System (INIS)

    Snieckus, D.

    2001-01-01

    This article reports on the development of the cost effective abrasive cutting Sabre system which came as a result of UWG's work on the decommissioning of the Phillips' Maureen wells and adds to UWG's 'total severance solution' tools. The advantages of the system are highlighted and include the ability to operate from a platform or diving support vessel, to cut internal cases, and to eliminate the use of environmentally damaging explosives and the need to operate from a rig. The new Mark II version of the Sabre designed to work at greater depths of water, the range of the severance tools, UWG's well abandonment hole assembly system, and its aim to enter the Gulf of Mexico market are discussed. Details are given of the decommissioning of the Schwedeneck-See platforms in Kiel Bay off Germany and the Phillips' UK decommissioning plans for the Maureen platform

  17. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

    2000-07-30

    ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

  18. Making the cut

    Energy Technology Data Exchange (ETDEWEB)

    Mcshannon, G. [Hydra Mining Tools International Ltd. (United Kingdom)

    2006-04-15

    The paper explains how coal mines around the world can benefit from the use of cowless, radial shearer drums. Hydra Mining has designed and manufactured a range of shearer drums to combat problems ranging from dust, frictional ignitions, geological problems or low production rates. This allows the mine operator to maximise production efficiency. The company tailor-makes shearer drums for each longwall face to optimise the cutting performance of every installation. 8 figs.

  19. Cutting Out Continuations

    DEFF Research Database (Denmark)

    Bahr, Patrick; Hutton, Graham

    2016-01-01

    In the field of program transformation, one often transforms programs into continuation-passing style to make their flow of control explicit, and then immediately removes the resulting continuations using defunctionalisation to make the programs first-order. In this article, we show how these two...... transformations can be fused together into a single transformation step that cuts out the need to first introduce and then eliminate continuations. Our approach is calculational, uses standard equational reasoning techniques, and is widely applicable....

  20. Cutting forces during turning with variable depth of cut

    Directory of Open Access Journals (Sweden)

    M. Sadílek

    2016-03-01

    The proposed research for the paper is an experimental work – measuring cutting forces and monitoring of the tool wear on the cutting edge. It compares the turning where standard roughing cycle is used and the turning where the proposed roughing cycle with variable depth of cut is applied.

  1. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

    1999-10-15

    This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

  2. Antecedents of Gray Divorce: A Life Course Perspective.

    Science.gov (United States)

    Lin, I-Fen; Brown, Susan L; Wright, Matthew R; Hammersmith, Anna M

    2016-12-16

    Increasingly, older adults are experiencing divorce, yet little is known about the risk factors associated with divorce after age 50 (termed "gray divorce"). Guided by a life course perspective, our study examined whether key later life turning points are related to gray divorce. We used data from the 1998-2012 Health and Retirement Study to conduct a prospective, couple-level discrete-time event history analysis of the antecedents of gray divorce. Our models incorporated key turning points (empty nest, retirement, and poor health) as well as demographic characteristics and economic resources. Contrary to our expectations, the onset of an empty nest, the wife's or husband's retirement, and the wife's or husband's chronic conditions were unrelated to the likelihood of gray divorce. Rather, factors traditionally associated with divorce among younger adults were also salient for older adults. Marital duration, marital quality, home ownership, and wealth were negatively related to the risk of gray divorce. Gray divorce is especially likely to occur among couples who are socially and economically disadvantaged, raising new questions about the consequences of gray divorce for individual health and well-being. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Determination of combined sibship indices "gray zone" using 15 STR loci for central Bosnian human population.

    Science.gov (United States)

    Musanovic, Jasmin; Filipovska-Musanovic, Marijana; Kovacevic, Lejla; Buljugic, Dzenisa; Dzehverovic, Mirela; Avdic, Jasna; Marjanovic, Damir

    2012-05-01

    In our previous population studies of Bosnia and Herzegovina human population, we have used autosomal STR, Y-STR, and X-STR loci, as well as Y-chromosome NRY biallelic markers. All obtained results were included in Bosnian referent database. In order of future development of applied population molecular genetics researches of Bosnia and Herzegovina human population, we have examined the effectiveness of 15 STR loci system in determination of sibship by using 15 STR loci and calculating different cut-off points of combined sibship indices (CSI) and distribution of sharing alleles. From the perspective of its application, it is very difficult and complicated to establish strict CSI cut-off values for determination of the doubtless sibship. High statistically significant difference between the means of CSI values and in distribution of alleles sharing in siblings and non-siblings was noticed (P < 0.0001). After constructing the "gray zone", only one false positive result was found in three CSI cut-off levels with the highest percent of determined sibship/non-sibship at the CSI = 0.067, confirming its practical benefit. Concerning the distribution of sharing alleles, it is recommended as an informative estimator for its usage within Bosnia and Herzegovina human population.

  4. Orthogonal cutting of laser beam melted parts

    Science.gov (United States)

    Götze, Elisa; Zanger, Frederik; Schulze, Volker

    2018-05-01

    The finishing process of parts manufactured by laser beam melting is of high concern due to the lack of surface accuracy. Therefore, the focus of this work lies on the influence of the build-up direction of the parts and their effect on the finishing process. The orthogonal cutting reveals findings in the fields of chip formation, involved forces and temperatures appearing during machining. In the investigations, the cutting depth was varied between 0.05 and 0.15 mm representing a finishing process and the cutting velocity ranges from 30 to 200 m/min depending on the material. The experiments contain the materials stainless steel (AISI 316L), titanium (Ti6Al4V) and nickel-base alloy (IN718). The two materials named latter are of high interest in the aerospace sector and at the same time titanium is used in the medical field due to its biocompatibility. For the materials IN718 and Ti6Al4V a negative rake angle of -7.5° and for stainless steel a rake angle of 12.5° are chosen for the cutting experiments. The results provide the base for processing strategies. Therefore, the specimens were solely laser beam melted without post-processing like heat treatment. The evaluation of the experiments shows that an increase in cutting speed has different effects depending on the material. For stainless steel the measured forces regarding the machining direction to the layers approach the same values. In contrast, the influence of the layers regarding the forces appearing during orthogonal cutting of the materials IN718 and Ti6Al4V differ for lower cutting speeds.

  5. CALCULATION OF LASER CUTTING COSTS

    OpenAIRE

    Bogdan Nedic; Milan Eric; Marijana Aleksijevic

    2016-01-01

    The paper presents description methods of metal cutting and calculation of treatment costs based on model that is developed on Faculty of mechanical engineering in Kragujevac. Based on systematization and analysis of large number of calculation models of cutting with unconventional methods, mathematical model is derived, which is used for creating a software for calculation costs of metal cutting. Software solution enables resolving the problem of calculating the cost of laser cutting, compar...

  6. A study of estimating cutting depth for multi-pass nanoscale cutting by using atomic force microscopy

    International Nuclear Information System (INIS)

    Lin, Zone-Ching; Hsu, Ying-Chih

    2012-01-01

    This paper studies two models for estimating cutting depth of multi-pass nanoscale cutting by using an atomic force microscopy (AFM) probe. One estimates cutting depth for multi-pass nanoscale cutting by using regression equations of nanoscale contact pressure factor (NCP factor) while the other uses equation of specific down force energy (SDFE). This paper proposes taking a diamond-coated probe of AFM as the cutting tool to carry out multi-pass nanoscale cutting experiments on the surface of sapphire substrate. In the process of experimentation, different down forces are set, and the probe shape of AFM is known, then using each down force to multi-pass cutting the sapphire substrate. From the measured experimental data of a central cutting depth of the machining groove by AFM, this paper calculates the specific down force energy of each down force. The experiment results reveal that the specific down force energy of each case of multi-pass nanoscale cutting for different down forces under a probe of AFM is close to a constant value. This paper also compares the nanoscale cutting results from estimating cutting depths for each pass of multi-pass among the experimental results and the calculating results obtained by the two theories models. It is found that the model of specific down force energy can calculate cutting depths for each nanoscale cutting pass by one equation. It is easier to use than the multi-regression equations of the nanoscale contact pressure factor. Besides, the estimations of cutting depth results obtained by the model of specific down force energy are closer to that of the experiment results. It shows that the proposed specific down force energy model in this paper is an acceptable model.

  7. Potential ungulate prey for Gray Wolves

    Science.gov (United States)

    Singer, Francis J.; Mack, John A.

    1993-01-01

    Data were gathered for six ungulate species that reside in or near Yellowstone National Park. If gray wolves (Canis lupus) are reintroduced into the Yellowstone area, their avoidance of human activities or their management by human may determine their range. Therefore, the area of wolf occupation cannot be predicted now. We restricted our analysis to Yellowstone National Park and to the adjacent national forest wilderness areas. We included mostly ungulate herds that summer inside or adjacent to the park and that would probably be affected by wolves. Our wolf study area includes Yellowstone National Park and adjacent wilderness areas most likely to be occupied by wolves. We reviewed publications, park records, survey reports, and state fish and game surveys and reports for statistics on ungulate populations. These data [provide an overview of ungulate populations and harvests. Each ungulate herd is described in detail. We restricted our analysis to 1980-89, because population surveys were more complete during that period and because population estimates of most ungulate populations had increased by the 1980's. We feel the higher estimates of the 1980's reflect more up-to-date techniques and are most representative of the situation into which the wolves would be reintroduced.

  8. Black and gray Helmholtz-Kerr soliton refraction

    International Nuclear Information System (INIS)

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    2011-01-01

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.

  9. A Study on Ultrasonic Elliptical Vibration Cutting of Inconel 718

    Directory of Open Access Journals (Sweden)

    Zhao Haidong

    2016-01-01

    Full Text Available Inconel 718 is a kind of nickel-based alloys that are widely used in the aerospace and nuclear industry owing to their high temperature mechanical properties. Cutting of Inconel 718 in conventional cutting (CC is a big challenge in modern industry. Few researches have been studied on cutting of Inconel 718 using single point diamond tool applying the UEVC method. This paper shows an experimental study on UEVC of Inconel 718 by using polycrystalline diamond (PCD coated tools. Firstly, cutting tests have been carried out to study the effect of machining parameters in the UEVC in terms of surface finish and flank wear during machining of Inconel 718. The tests have clearly shown that the PCD coated tools in cutting of Inconel 718 by the UEVC have better performance at 0.1 mm depth of cut as compared to the lower 0.05 mm depth of cut and the higher 0.12 or 0.15 mm depth of cut. Secondly, like CC method, the cutting performance in UEVC increases with the decrease of the feed rate and cutting speed. The CC tests have also been carried out to compare performance of CC with UEVC method.

  10. Failure mechanisms of superhard materials when cutting superalloys

    International Nuclear Information System (INIS)

    Focke, A.E.; Westermann, F.E.; Ermi, A.; Yavelak, J.; Hoch, M.

    1975-01-01

    The present research studies the reasons for the failure of tungsten carbide tools while cutting superalloys. There is a continuous layer of the superalloy in the bottom of the crater which from time to time is torn away locally, taking tungsten carbide crystal with it. Under recommended cutting conditions a plateau (unworn cutting surface) separates the crater from the cutting edge of the tool when cutting AISI 4340. This plateau is totally absent in all cutting of Inconel 718, even in short, two-minute tests. The crater intersects the cutting edge--only a thin wedge of carbide is left which either breaks off or deforms and wears very rapidly. Temperature measurements carried out by use of an infrared detector aimed on the corner of the tungsten carbide indicate at recommended speeds a sharp rise of the temperature at the beginning of the cutting operation, then a steady-state very slow increase as the cutting continues, and finally just before tool failure a very rapid increase in the temperature again. Scanning and replica electron microscopy through the crater and flank face shows that both under the crater and in the back of the cutting edge a fairly deep layer of ''disturbed metal'' exists in which the tungsten carbide grains are much smaller and have much more rounded edges than in the original material. 10 figures, 4 tables

  11. Material Behavior At The Extreme Cutting Edge In Bandsawing

    International Nuclear Information System (INIS)

    Sarwar, Mohammed; Haider, Julfikar; Persson, Martin; Hellbergh, Haakan

    2011-01-01

    In recent years, bandsawing has been widely accepted as a favourite option for metal cutting off operations where the accuracy of cut, good surface finish, low kerf loss, long tool life and high material removal rate are required. Material removal by multipoint cutting tools such as bandsaw is a complex mechanism owing to the geometry of the bandsaw tooth (e.g., limited gullet size, tooth setting etc.) and the layer of material removed or undeformed chip thickness or depth of cut (5 μm-50 μm) being smaller than or equal to the cutting edge radius (5 μm-15 μm). This situation can lead to inefficient material removal in bandsawing. Most of the research work are concentrated on the mechanics of material removal by single point cutting tool such as lathe tool. However, such efforts are very limited in multipoint cutting tools such as in bandsaw. This paper presents the fundamental understanding of the material behaviour at the extreme cutting edge of bandsaw tooth, which would help in designing and manufacturing of blades with higher cutting performance and life. ''High Speed Photography'' has been carried out to analyse the material removal process at the extreme cutting edge of bandsaw tooth. Geometric model of chip formation mechanisms based on the evidences found during ''High Speed Photography'' and ''Quick Stop'' process is presented. Wear modes and mechanism in bimetal and carbide tipped bandsaw teeth are also presented.

  12. Experimental study of the process of cutting of sugarcane bagasse

    International Nuclear Information System (INIS)

    Arzolaa, Nelson; Garcia, Joyner

    2015-01-01

    Biomass densification has encouraged significant interest around the world as a technique for utilization of agro and forest residues as an energy source, and pellets/briquettes production has grown rapidly in last few years. The cutting process is one of the most important steps for biomass preparation prior densification. This stage helps to homogenize the raw material and therefore facilitate handling, feeding and filling in the briquetting equipment. The aim of this work was to study the behavior of sugarcane bagasse submitted to cutting, as a function of its moisture content, angle of the blade edge and cutting speed. The specific cutting energy and peak cutting force were measure using an experimental facility developed for this series of experiments. An analysis of the results of the full factorial experimental design using a statistical analysis of variance (ANOVA) was performed. The response surfaces and empirical models for the specific cutting energy and peak cutting force were obtained using statistical analysis system software. Low angle of the blade edge and low moisture content are, in this order, the most important experimental factors in determining a low specific cutting energy and a low peak cutting force respectively. The best cutting conditions are achieved for an angle of blade edge of 20.8° and a moisture content of 10% w. b. The results of this work could contribute to the optimal design of sugarcane bagasse pre-treatment systems. (full text)

  13. Differences in quantitative assessment of myocardial scar and gray zone by LGE-CMR imaging using established gray zone protocols.

    Science.gov (United States)

    Mesubi, Olurotimi; Ego-Osuala, Kelechi; Jeudy, Jean; Purtilo, James; Synowski, Stephen; Abutaleb, Ameer; Niekoop, Michelle; Abdulghani, Mohammed; Asoglu, Ramazan; See, Vincent; Saliaris, Anastasios; Shorofsky, Stephen; Dickfeld, Timm

    2015-02-01

    Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging is the gold standard for myocardial scar evaluation. Heterogeneous areas of scar ('gray zone'), may serve as arrhythmogenic substrate. Various gray zone protocols have been correlated to clinical outcomes and ventricular tachycardia channels. This study assessed the quantitative differences in gray zone and scar core sizes as defined by previously validated signal intensity (SI) threshold algorithms. High quality LGE-CMR images performed in 41 cardiomyopathy patients [ischemic (33) or non-ischemic (8)] were analyzed using previously validated SI threshold methods [Full Width at Half Maximum (FWHM), n-standard deviation (NSD) and modified-FWHM]. Myocardial scar was defined as scar core and gray zone using SI thresholds based on these methods. Scar core, gray zone and total scar sizes were then computed and compared among these models. The median gray zone mass was 2-3 times larger with FWHM (15 g, IQR: 8-26 g) compared to NSD or modified-FWHM (5 g, IQR: 3-9 g; and 8 g. IQR: 6-12 g respectively, p zone extent (percentage of total scar that was gray zone) also varied significantly among the three methods, 51 % (IQR: 42-61 %), 17 % (IQR: 11-21 %) versus 38 % (IQR: 33-43 %) for FWHM, NSD and modified-FWHM respectively (p zone and scar core. Infarct core and total myocardial scar mass also differ using these methods. Further evaluation of the most accurate quantification method is needed.

  14. Parametric studies of cutting zircaloy-2 sheets with a laser beam

    International Nuclear Information System (INIS)

    Ghosh, S.; Badgujar, B.P.; Goswami, G.L.

    1996-01-01

    The highly reactive and pyrophoric nature of zirconium alloys limits the use of conventional thermal sources (e.g., plasma arc cutting, oxygen flame cutting, etc.) for the cutting and drilling of these alloys. In this context, a highly coherent laser beam provides a good alternative for the cutting and drilling. In the present paper, laser beam cutting of zircaloy-2 sheets of 1.1 mm and 0.74 mm thickness is performed using a 300 W average power pulsed Nd:YAG laser. Pulse energy, pulse repetition rate, nozzle gap, gas pressure and cutting speed were varied to give different laser cutting conditions. Metallographic study of the cut surfaces showed the presence of transformed beta phase in the heat affected zone (HAZ) near the cut surface. The microhardness value across the cut surface was also measured. It showed a gradual increase in microhardness from the base metal (160 VHN) towards the HAZ having a maximum value of 365 VHN. The results of parametric studies of the cutting indicated that, with proper selection of process parameters, very narrow cuts can be easily made in zircaloy-2 using a pulsed Nd:YAG laser with a saving in material and at a much faster rate than alternative processes such as plasma arc cutting and oxygen flame cutting

  15. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  16. Gray/White Matter Contrast in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Carme Uribe

    2018-03-01

    Full Text Available Gray/white matter contrast (GWC decreases with aging and has been found to be a useful MRI biomarker in Alzheimer’s disease (AD, but its utility in Parkinson’s disease (PD patients has not been investigated. The aims of the study were to test whether GWC is sensitive to aging changes in PD patients, if PD patients differ from healthy controls (HCs in GWC, and whether the use of GWC data would improve the sensitivity of cortical thickness analyses to differentiate PD patients from controls. Using T1-weighted structural images, we obtained individual cortical thickness and GWC values from a sample of 90 PD patients and 27 controls. Images were processed with the automated FreeSurfer stream. GWC was computed by dividing the white matter (WM by the gray matter (GM values and projecting the ratios onto a common surface. The sample characteristics were: 52 patients and 14 controls were males; mean age of 64.4 ± 10.6 years in PD and 64.7 ± 8.6 years in controls; 8.0 ± 5.6 years of disease evolution; 15.6 ± 9.8 UPDRS; and a range of 1.5–3 in Hoehn and Yahr (H&Y stage. In both PD and controls we observed significant correlations between GWC and age involving almost the entire cortex. When applying a stringent cluster-forming threshold of p < 0.0001, the correlation between GWC and age also involved the entire cortex in the PD group; in the control group, the correlation was found in the parahippocampal gyrus and widespread frontal and parietal areas. The GWC of PD patients did not differ from controls’, whereas cortical thickness analyses showed thinning in temporal and parietal cortices in the PD group. Cortical thinning remained unchanged after adjusting for GWC. GWC is a very sensitive measure for detecting aging effects, but did not provide additional information over other parameters of atrophy in PD.

  17. Can You Cut It?

    DEFF Research Database (Denmark)

    Kjær, Tina; Lillelund, Christoffer Bredo; Moth-Poulsen, Mie

    2017-01-01

    The advent of affordable virtual reality (VR) displays and 360◦ video cameras has sparked an interest in bringing cinematic experiences from the screen and into VR. However, it remains uncertain whether traditional approaches to filmmaking can be directly applied to cinematic VR. Historically......’ sense of disorientation and their ability to follow the story, during exposure to fictional 360◦ films experienced using a head-mounted display. The results revealed no effects of increased cut frequency which leads us to conclude that editing need not pose a problem in relation to cinematic VR, as long...

  18. Cutting the Cord-2

    Science.gov (United States)

    2004-01-01

    This animation shows the view from the rear hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting from the front lander petal. Before this crucial turn took place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  19. Cutting the Cord

    Science.gov (United States)

    2004-01-01

    This animation shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting off the front lander petal. Before this crucial turn could take place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  20. Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Hyeon; Han, Seung-Wook; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2017-08-15

    High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

  1. Gray Matter Is Targeted in First-Attack Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Schutzer, Steven E.; Angel, Thomas E.; Liu, Tao; Schepmoes, Athena A.; Xie, Fang; Bergquist, Jonas P.; Vecsei, Lazlo' ; Zadori, Denes; Camp, David G.; Holland, Bart K.; Smith, Richard D.; Coyle, Patricia K.

    2013-09-10

    The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We found that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation.

  2. Comparison of Cox and Gray's survival models in severe sepsis

    DEFF Research Database (Denmark)

    Kasal, Jan; Andersen, Zorana Jovanovic; Clermont, Gilles

    2004-01-01

    Although survival is traditionally modeled using Cox proportional hazards modeling, this approach may be inappropriate in sepsis, in which the proportional hazards assumption does not hold. Newer, more flexible models, such as Gray's model, may be more appropriate....

  3. Severe maxillary osteomyelitis in a Gray Wolf (Canis lupus)

    Science.gov (United States)

    Barber-Meyer, Shannon

    2012-01-01

    Dental injuries to or abnormalities in functionally important teeth and associated bones in predators may significantly reduce the ability to kill and consume prey (Lazar et al. 2009). This impairment is likely exacerbated in coursing predators, such as Gray Wolves, that bite and hold onto fleeing and kicking prey with their teeth. Damage to carnassials (upper fourth premolar, P4, and lower first molar, M1) and associated bones in Gray Wolves may especially inhibit the consumption of prey because these teeth slice meat and crush bone. Here I report maxillary osteomyelitis involving the carnassials in a wild Gray Wolf from northeastern Minnesota of such severity that I hypothesize it ultimately caused the Gray Wolf to starve to death.

  4. Sinuous Flow in Cutting of Metals

    Science.gov (United States)

    Yeung, Ho; Viswanathan, Koushik; Udupa, Anirudh; Mahato, Anirban; Chandrasekar, Srinivasan

    2017-11-01

    Using in situ high-speed imaging, we unveil details of a highly unsteady plastic flow mode in the cutting of annealed and highly strain-hardening metals. This mesoscopic flow mode, termed sinuous flow, is characterized by repeated material folding, large rotation, and energy dissipation. Sinuous flow effects a very large shape transformation, with local strains of ten or more, and results in a characteristic mushroomlike surface morphology that is quite distinct from the well-known morphologies of metal-cutting chips. Importantly, the attributes of this unsteady flow are also fundamentally different from other well-established unsteady plastic flows in large-strain deformation, like adiabatic shear bands. The nucleation and development of sinuous flow, its dependence on material properties, and its manifestation across material systems are demonstrated. Plastic buckling and grain-scale heterogeneity are found to play key roles in triggering this flow at surfaces. Implications for modeling and understanding flow stability in large-strain plastic deformation, surface quality, and preparation of near-strain-free surfaces by cutting are discussed. The results point to the inadequacy of the widely used shear-zone models, even for ductile metals.

  5. Leptogenesis: The other cuts

    International Nuclear Information System (INIS)

    Garbrecht, Bjoern

    2011-01-01

    For standard leptogenesis from the decay of singlet right-handed neutrinos, we derive source terms for the lepton asymmetry that are present in a finite density background but absent in the vacuum. These arise from cuts through the vertex correction to the decay asymmetry, where in the loop either the Higgs boson and the right-handed neutrino or the left-handed lepton and the right-handed neutrino are simultaneously on-shell. We evaluate the source terms numerically and use them to calculate the lepton asymmetry for illustrative points in parameter space, where we consider only two right-handed neutrinos for simplicity. Compared to calculations where only the standard cut through the propagators of left-handed lepton and Higgs boson is included, sizable corrections arise when the masses of the right-handed neutrinos are of the same order, but the new sources are found to be most relevant when the decaying right-handed neutrino is heavier than the one in the loop. In that situation, they can yield the dominant contribution to the lepton asymmetry.

  6. CO2 laser cutting

    CERN Document Server

    Powell, John

    1998-01-01

    The laser has given manufacturing industry a new tool. When the laser beam is focused it can generate one of the world's most intense energy sources, more intense than flames and arcs, though similar to an electron beam. In fact the intensity is such that it can vaporise most known materials. The laser material processing industry has been growing swiftly as the quality, speed and new manufacturing possibilities become better understood. In the fore of these new technologies is the process of laser cutting. Laser cutting leads because it is a direct process substitu­ tion and the laser can usually do the job with greater flexibility, speed and quality than its competitors. However, to achieve these high speeds with high quality con­ siderable know how and experience is required. This information is usually carefully guarded by the businesses concerned and has to be gained by hard experience and technical understanding. Yet in this book John Powell explains in lucid and almost non­ technical language many o...

  7. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Eun Yeon; Tae, Woo Suk; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  8. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    International Nuclear Information System (INIS)

    Joo, Eun Yeon; Tae, Woo Suk; Kim, Sung Tae; Hong, Seung Bong

    2009-01-01

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  9. Cognitive Implications of Deep Gray Matter Iron in Multiple Sclerosis.

    Science.gov (United States)

    Fujiwara, E; Kmech, J A; Cobzas, D; Sun, H; Seres, P; Blevins, G; Wilman, A H

    2017-05-01

    Deep gray matter iron accumulation is increasingly recognized in association with multiple sclerosis and can be measured in vivo with MR imaging. The cognitive implications of this pathology are not well-understood, especially vis-à-vis deep gray matter atrophy. Our aim was to investigate the relationships between cognition and deep gray matter iron in MS by using 2 MR imaging-based iron-susceptibility measures. Forty patients with multiple sclerosis (relapsing-remitting, n = 16; progressive, n = 24) and 27 healthy controls were imaged at 4.7T by using the transverse relaxation rate and quantitative susceptibility mapping. The transverse relaxation rate and quantitative susceptibility mapping values and volumes (atrophy) of the caudate, putamen, globus pallidus, and thalamus were determined by multiatlas segmentation. Cognition was assessed with the Brief Repeatable Battery of Neuropsychological Tests. Relationships between cognition and deep gray matter iron were examined by hierarchic regressions. Compared with controls, patients showed reduced memory ( P processing speed ( P = .02) and smaller putamen ( P deep gray matter iron accumulation in the current multiple sclerosis cohort. Atrophy and iron accumulation in deep gray matter both have negative but separable relationships to cognition in multiple sclerosis. © 2017 by American Journal of Neuroradiology.

  10. Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Paquin, M-Ê; El Mendili, M M; Gros, C; Dupont, S M; Cohen-Adad, J; Pradat, P-F

    2018-01-01

    There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls ( P = .004) compared with spinal cord atrophy ( P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline ( R = 0.56 for gray matter and R = 0.55 for spinal cord; P amyotrophic lateral sclerosis. © 2018 by American Journal of Neuroradiology.

  11. The water-filled versus air-filled status of vessels cut open in air: the 'Scholander assumption' revisited

    Science.gov (United States)

    M.T. Tyree; H. Cochard; P. Cruziat

    2003-01-01

    When petioles of transpiring leaves are cut in the air, according to the 'Scholander assumption', the vessels cut open should fill with air as the water is drained away by continued transpiration, The distribution of air-filled vessels versus distance from the cut surface should match the distribution of lengths of 'open vessels', i.e. vessels cut...

  12. An Integrated Environmental Assessment of Green and Gray Infrastructure Strategies for Robust Decision Making.

    Science.gov (United States)

    Casal-Campos, Arturo; Fu, Guangtao; Butler, David; Moore, Andrew

    2015-07-21

    The robustness of a range of watershed-scale "green" and "gray" drainage strategies in the future is explored through comprehensive modeling of a fully integrated urban wastewater system case. Four socio-economic future scenarios, defined by parameters affecting the environmental performance of the system, are proposed to account for the uncertain variability of conditions in the year 2050. A regret-based approach is applied to assess the relative performance of strategies in multiple impact categories (environmental, economic, and social) as well as to evaluate their robustness across future scenarios. The concept of regret proves useful in identifying performance trade-offs and recognizing states of the world most critical to decisions. The study highlights the robustness of green strategies (particularly rain gardens, resulting in half the regret of most options) over end-of-pipe gray alternatives (surface water separation or sewer and storage rehabilitation), which may be costly (on average, 25% of the total regret of these options) and tend to focus on sewer flooding and CSO alleviation while compromising on downstream system performance (this accounts for around 50% of their total regret). Trade-offs and scenario regrets observed in the analysis suggest that the combination of green and gray strategies may still offer further potential for robustness.

  13. Gray and white matter correlates of the Big Five personality traits.

    Science.gov (United States)

    Privado, Jesús; Román, Francisco J; Saénz-Urturi, Carlota; Burgaleta, Miguel; Colom, Roberto

    2017-05-04

    Personality neuroscience defines the scientific study of the neurobiological basis of personality. This field assumes that individual differences in personality traits are related with structural and functional variations of the human brain. Gray and white matters are structural properties considered separately in previous research. Available findings in this regard are largely disparate. Here we analyze the relationships between gray matter (cortical thickness (CT), cortical surface area (CSA), and cortical volume) and integrity scores obtained after several white matter tracts connecting different brain regions, with individual differences in the personality traits comprised by the Five-Factor Model (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience). These psychological and biological data were obtained from young healthy women. The main findings showed statistically significant associations between occipital CSA variations and extraversion, as well as between parietal CT variations and neuroticism. Regarding white matter integrity, openness showed positive correlations with tracts connecting posterior and anterior brain regions. Therefore, variations in discrete gray matter clusters were associated with temperamental traits (extraversion and neuroticism), whereas long-distance structural connections were related with the dimension of personality that has been associated with high-level cognitive processes (openness). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Aerodynamic Interactions During Laser Cutting

    Science.gov (United States)

    Fieret, J.; Terry, M. J.; Ward, B. A.

    1986-11-01

    Most laser cutting systems utilise a gas jet to remove molten or vaporised material from the kerf. The speed, economy and quality of the cut can be strongly dependent on the aerodynamic conditions created by the nozzle, workpiece proximity and kerf shape. Adverse conditions can be established that may lead to an unwelcome lack of reproducibility of cut quality. Relatively low gas nozzle pressures can result in supersonic flow in the jet with its associated shock fronts. When the nozzle is placed at conventional distances (1-2mm) above the workpiece, the force exerted by the gas on the workpiece and the cut products (the cutting pressure) can be significantly less than the nozzle pressure. Higher cutting pressures can be achieved by increasing the height of the nozzle above the workpiece, to a more damage resistant zone, provided that the shock structure of the jet is taken into account. Conventional conical nozzles with circular exits can be operated with conditions that will result in cutting pressures up to 3 Bar (g) in the more distant zone. At higher pressures in circular tipped nozzles the cutting pressure in this zone decays to inadequate levels. Investigations of a large number of non-circular nozzle tip shapes have resulted in the selection of a few specific shapes that can provide cutting pressures in excess of 6 Bar(g) at distances of 4 to 7mm from the nozzle tip. Since there is a strong correlation between cutting pressure and the speed and quality of laser cutting, the paper describes the aerodynamic requirements for achieving the above effects and reports the cutting results arising from the different nozzle designs and conditions. The results of the work of other investigators, who report anomalous laser cutting results, will be examined and reviewed in the light of the above work.

  15. A scalable platform for biomechanical studies of tissue cutting forces

    International Nuclear Information System (INIS)

    Valdastri, P; Tognarelli, S; Menciassi, A; Dario, P

    2009-01-01

    This paper presents a novel and scalable experimental platform for biomechanical analysis of tissue cutting that exploits a triaxial force-sensitive scalpel and a high resolution vision system. Real-time measurements of cutting forces can be used simultaneously with accurate visual information in order to extract important biomechanical clues in real time that would aid the surgeon during minimally invasive intervention in preserving healthy tissues. Furthermore, the in vivo data gathered can be used for modeling the viscoelastic behavior of soft tissues, which is an important issue in surgical simulator development. Thanks to a modular approach, this platform can be scaled down, thus enabling in vivo real-time robotic applications. Several cutting experiments were conducted with soft porcine tissues (lung, liver and kidney) chosen as ideal candidates for biopsy procedures. The cutting force curves show repeated self-similar units of localized loading followed by unloading. With regards to tissue properties, the depth of cut plays a significant role in the magnitude of the cutting force acting on the blade. Image processing techniques and dedicated algorithms were used to outline the surface of the tissues and estimate the time variation of the depth of cut. The depth of cut was finally used to obtain the normalized cutting force, thus allowing comparative biomechanical analysis

  16. Melt Flow and Energy Limitation of Laser Cutting

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2016-01-01

    Full Text Available Laser technology is a convertible technology for plenty of parts in most materials. Laser material processing for industrial manufacturing applications is today a widespread procedure for welding, cutting, marking and micro machining of metal and plastic parts and components. Involvement and support this huge mass-production industry of laser cutting, new technology and dry-process using lasers were and are being actively developed. Fundamentally, industrial laser cutting or other applications on industry should satisfy the four key practical application issues including “Quality or Performance”, “Throughput or Speed”, “Cost or Total Ownership Cost”, and “Reliability”. Laser requires for examples several complicated physical factors to be resolved including die strength to be enable good wire-bonding and survival of severe cycling test, clean cutting wall surface, good cutting of direct attach film, and proper speed of cutting for achieving economy of throughput. Some example of maximum cutting rate, wherewith is normally limited laser energy, cutting speed is depend on type laser, different of cutting with one laser beam and beam pattern and applied laser power/material thickness will be introduced in this paper.

  17. Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder.

    Science.gov (United States)

    Ecker, Christine; Ronan, Lisa; Feng, Yue; Daly, Eileen; Murphy, Clodagh; Ginestet, Cedric E; Brammer, Michael; Fletcher, Paul C; Bullmore, Edward T; Suckling, John; Baron-Cohen, Simon; Williams, Steve; Loth, Eva; Murphy, Declan G M

    2013-08-06

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter. Such intrinsic gray-matter connections are inherently more difficult to describe in vivo but may be inferred from a variety of surface-based geometric features that can be measured using magnetic resonance imaging. Here, we present a neuroimaging study that examines the intrinsic cortico-cortical connectivity of the brain in ASD using measures of "cortical separation distances" to assess the global and local intrinsic "wiring costs" of the cortex (i.e., estimated length of horizontal connections required to wire the cortex within the cortical sheet). In a sample of 68 adults with ASD and matched controls, we observed significantly reduced intrinsic wiring costs of cortex in ASD, both globally and locally. Differences in global and local wiring cost were predominantly observed in fronto-temporal regions and also significantly predicted the severity of social and repetitive symptoms (respectively). Our study confirms that atypical cortico-cortical "connectivity" in ASD is not restricted to the development of white-matter connections but may also affect the intrinsic gray-matter architecture (and connectivity) within the cortical sheet. Thus, the atypical connectivity of the brain in ASD is complex, affecting both gray and white matter, and forms part of the core neural substrates underlying autistic symptoms.

  18. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-01-31

    Final design of the mast was completed (Task 5). The mast is consisting of two welded plate girders, set next to each other, and spaced 14-inches apart. Fabrication of the boom will be completed in two parts solely for ease of transportation. The end pivot connection will be made through a single 2-inch diameter x 4 feet-8 inch long 316 SS bar. During installation, hard piping make-ups using Chiksan joints will connect the annular section and 4-inch return line to allow full movement of the mast from horizontal to vertical. Additionally, flexible hoses and piping will be installed to isolate both towers from piping loads and allow recycling operations respectively. Calibration of the prototype Foam Generator Cell has been completed and experiments are now being conducted. We were able to generate up to 95% quality foam. Work is currently underway to attach the Thermo-Haake RS300 viscometer and install a view port with a microscope to measure foam bubble size and bubble size distribution. Foam rheology tests (Task 13) were carried out to evaluate the rheological properties of the proposed foam formulation. After successful completion of the first foam test, two sets of rheological tests were conducted at different foam flow rates while keeping other parameters constant (100 psig, 70F, 80% quality). The results from these tests are generally in agreement with the previous foam tests done previously during Task 9. However, an unanticipated observation during these tests was that in both cases, the frictional pressure drop in 2 inch pipe was lower than that in the 3 inch and 4 inch pipes. We also conducted the first foam cuttings transport test during this quarter. Experiments on aerated fluids without cuttings have been completed in ACTF (Task 10). Gas and liquid were injected at different flow rates. Two different sets of experiments were carried out, where the only difference was the temperature. Another set of tests was performed, which covered a wide range of

  19. Skin Cut Construction

    DEFF Research Database (Denmark)

    2017-01-01

    projects - among others - from ARC are included: Soft Structures builds upon of a series of experimental use of EPS hot wire cutting, where the EPS eventually act as formwork for concrete casting. The processing of the EPS is distinct and delimited by the behaviour and form of both the robot and tool...... of steel and concrete makes it a reliable approach to many challenges in the realisation of buildings. Rebar Inside Out attempts to rethink the possibilities of the reinforced concrete composite starting from its inside. This means starting with the reinforcing steel, the production and shaping of this......, and then through that process build a workflow for the production of the concrete composite. It also means letting the steel out of the concrete, thereby positioning the two materials in a transnational relationship between steel construction and concrete composite....

  20. Uniformity and Deviation of Intra-axonal Cross-sectional Area Coverage of the Gray-to-White Matter Interface

    Directory of Open Access Journals (Sweden)

    Stefan Sommer

    2017-12-01

    Full Text Available Diffusion magnetic resonance imaging (dMRI is a compelling tool for investigating the structure and geometry of brain tissue based on indirect measurement of the diffusion anisotropy of water. Recent developments in global top-down tractogram optimizations enable the estimation of streamline weights, which characterize the connection between gray matter areas. In this work, the intra-axonal cross-sectional area coverage of the gray-to-white matter interface was examined by intersecting tractography streamlines with cortical regions of interest. The area coverage is the ratio of streamline weights divided by the surface area at the gray-to-white matter interface and assesses the estimated percentage which is covered by intra-axonal space. A high correlation (r = 0.935 between streamline weights and the cortical surface area was found across all regions of interest in all subjects. The variance across different cortical regions exhibits similarities to myelin maps. Additionally, we examined the effect of different diffusion gradient subsets at a lower, clinically feasible spatial resolution. Subsampling of the initial high-resolution diffusion dataset did not alter the tendency of the area coverage at the gray-to-white matter interface across cortical areas and subjects. However, single-shell acquisition schemes with lower b-values lead to a steady increase in area coverage in comparison to the full acquisition scheme at high resolution.

  1. MULTI-OBJECTIVE OPTIMISATION OF LASER CUTTING USING CUCKOO SEARCH ALGORITHM

    Directory of Open Access Journals (Sweden)

    M. MADIĆ

    2015-03-01

    Full Text Available Determining of optimal laser cutting conditions for improving cut quality characteristics is of great importance in process planning. This paper presents multi-objective optimisation of the CO2 laser cutting process considering three cut quality characteristics such as surface roughness, heat affected zone (HAZ and kerf width. It combines an experimental design by using Taguchi’s method, modelling the relationships between the laser cutting factors (laser power, cutting speed, assist gas pressure and focus position and cut quality characteristics by artificial neural networks (ANNs, formulation of the multiobjective optimisation problem using weighting sum method, and solving it by the novel meta-heuristic cuckoo search algorithm (CSA. The objective is to obtain optimal cutting conditions dependent on the importance order of the cut quality characteristics for each of four different case studies presented in this paper. The case studies considered in this study are: minimisation of cut quality characteristics with equal priority, minimisation of cut quality characteristics with priority given to surface roughness, minimisation of cut quality characteristics with priority given to HAZ, and minimisation of cut quality characteristics with priority given to kerf width. The results indicate that the applied CSA for solving the multi-objective optimisation problem is effective, and that the proposed approach can be used for selecting the optimal laser cutting factors for specific production requirements.

  2. Analyzing the effect of tool edge radius on cutting temperature in micro-milling process

    Science.gov (United States)

    Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.

    2010-10-01

    Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.

  3. Modeling and optimization of laser cutting operations

    Directory of Open Access Journals (Sweden)

    Gadallah Mohamed Hassan

    2015-01-01

    Full Text Available Laser beam cutting is one important nontraditional machining process. This paper optimizes the parameters of laser beam cutting parameters of stainless steel (316L considering the effect of input parameters such as power, oxygen pressure, frequency and cutting speed. Statistical design of experiments is carried in three different levels and process responses such as average kerf taper (Ta, surface roughness (Ra and heat affected zones are measured accordingly. A response surface model is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27OA are employed to search for an optimal combination to achieve desired process yield. Response Surface Models (RSMs are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective optimization problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA and optimized using Matlab developed environment. Optimum solutions are compared with Taguchi Methodology results. As such, practicing engineers have means to model, analyze and optimize nontraditional machining processes. Validation experiments are carried to verify the developed models with success.

  4. Structural defect generation in indium antimonide single crystals during electro-erosion cutting

    International Nuclear Information System (INIS)

    Kravetskij, M.Yu.; Matsas, E.P.; Skorokhod, M.Ya.; Fomin, A.V.; Khromyak, K.Ya.

    1990-01-01

    Using X-ray topography structural defects generating during electro-erosion cutting of InSb single crystals are studied. It is shown that dislocations, are introduced into so cut dislocation-free ingot plates, nucleation centers being located on their surfaces. It is detected that foreign phase inclusions in InSb are efficient sources of dislocations during cutting

  5. Effect of Cut Quality on Hybrid Laser Arc Welding of Thick Section Steels

    Science.gov (United States)

    Farrokhi, F.; Nielsen, S. E.; Schmidt, R. H.; Pedersen, S. S.; Kristiansen, M.

    From an industrial point of view, in a laser cutting-welding production chain, it is of great importance to know the influence of the attainable laser cut quality on the subsequent hybrid laser arc welding process. Many studies have been carried out in the literature to obtain lower surface roughness values on the laser cut edge. However, in practice, the cost and reliability of the cutting process is crucial and it does not always comply with obtaining the highest surface quality. In this study, a number of experiments on 25 mm steel plates were carried out to evaluate the influence of cut surface quality on the final quality of the subsequent hybrid laser welded joints. The different cut surfaces were obtained by different industrial cutting methods including laser cutting, abrasive water cutting, plasma cutting, and milling. It was found that the mentioned cutting methods could be used as preparation processes for the subsequent hybrid laser arc welding. However, cut quality could determine the choice of process parameters of the following hybrid laser arc welding.

  6. Effects of Notch Introduction on 3-Point Bending Cutting Characteristics of Frozen Fish

    OpenAIRE

    Hagura, Yoshio; Suzuki, Kanichi

    2002-01-01

    We have proposed a freeze cutting method in which a three point bending load is applied on a frozen fish body to cut in round slices. Lowering the three-point bending load can facilitate the freeze cutting processing. Based on the idea that a notch in the fish body may lower the cutting load, the effect of introducing a notch was examined with respect to cutting stress and smoothness of cut surface in model fish meat and in saury. It was found that the introduced notch effectively lowered the...

  7. Semantic Versus Syntactic Cutting Planes

    OpenAIRE

    Filmus, Yuval; Hrubeš, Pavel; Lauria, Massimo

    2016-01-01

    In this paper, we compare the strength of the semantic and syntactic version of the cutting planes proof system. First, we show that the lower bound technique of Pudlák applies also to semantic cutting planes: the proof system has feasible interpolation via monotone real circuits, which gives an exponential lower bound on lengths of semantic cutting planes refutations. Second, we show that semantic refutations are stronger than syntactic ones. In particular, we give a formula for whic...

  8. Laser Cutting of Different Materials

    Directory of Open Access Journals (Sweden)

    Kadir ÇAVDAR

    2013-08-01

    Full Text Available In this paper; in general potential developments and trends of a particular machining field by extensively evaluating present studies of laser beam machining have been discussed. As it is indicated below, technical literatures have been subsumed under five major headlines: Experimental studies, reviews, optimization researches of the cutting parameters, theoretical modelling studies of laser beam cutting and academic studies relating to laser cutting

  9. Medial frontal white and gray matter contributions to general intelligence.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Ohtani

    Full Text Available The medial orbitofrontal cortex (mOFC and rostral anterior cingulate cortex (rACC are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA, which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%-34% of the variance in IQ, in comparison to 11%-16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence.

  10. Metal Cutting for Large Component Removal

    International Nuclear Information System (INIS)

    Hulick, Robert M.

    2008-01-01

    Decommissioning of commercial nuclear power plants presents technological challenges. One major challenge is the removal of large components mainly consisting of the reactor vessel, steam generators and pressurizer. In order to remove and package these large components nozzles must be cut from the reactor vessel to precise tolerances. In some cases steam generators must be segmented for size and weight reduction. One innovative technology that has been used successfully at several commercial nuclear plant decommissioning is diamond wire sawing. Diamond wire sawing is performed by rotating a cable with diamond segments attached using a flywheel approximately 24 inches in diameter driven remotely by a hydraulic pump. Tension is provided using a gear rack drive which also takes up the slack in the wire. The wire is guided through the use of pulleys keeps the wire in a precise location. The diamond wire consists of 1/4 inch aircraft cable with diamond beads strung over the cable separated by springs and brass crimps. Standard wire contains 40 diamond beads per meter and can be made to any length. Cooling the wire and controlling the spread of contamination presents significant challenges. Under normal circumstances the wire is cooled and the cutting kerf cleaned by using water. In some cases of reactor nozzle cuts the use of water is prohibited because it cannot be controlled. This challenge was solved by using liquid Carbon Dioxide as the cooling agent. The liquid CO 2 is passed through a special nozzle which atomizes the liquid into snowflakes which is introduced under pressure to the wire. The snowflakes attach to the wire keeping it cool and to the metal shavings. As the CO 2 and metal shavings are released from the wire due to its fast rotation, the snowflakes evaporate leaving only the fine metal shavings as waste. Secondary waste produced is simply the small volume of fine metal shavings removed from the cut surface. Diamond wire sawing using CO 2 cooling has

  11. Latest development of laser cutting

    OpenAIRE

    Wetzig, Andreas; Herwig, Patrick; Hauptmann, Jan; Goppold, Cindy; Baumann, Robert; Fürst, Andreas; Rose, Michael; Pinder, Thomas; Mahrle, Achim; Beyer, Eckhard

    2016-01-01

    Laser cutting was one of the first applications of laser material processing. Today, laser cutting is the most widespread application among laser material processing besides laser marking. Meanwhile, nearly each material can be cut by means of a laser, in particular since ultra short pulse lasers are available in the power range of up to 100 W. The to be cut material can come with thicknesses from a few microns till tens of millimeters as flat stock or as free form shapes. The paper will conc...

  12. CALCULATION OF LASER CUTTING COSTS

    Directory of Open Access Journals (Sweden)

    Bogdan Nedic

    2016-09-01

    Full Text Available The paper presents description methods of metal cutting and calculation of treatment costs based on model that is developed on Faculty of mechanical engineering in Kragujevac. Based on systematization and analysis of large number of calculation models of cutting with unconventional methods, mathematical model is derived, which is used for creating a software for calculation costs of metal cutting. Software solution enables resolving the problem of calculating the cost of laser cutting, comparison' of costs made by other unconventional methods and provides documentation that consists of reports on estimated costs.

  13. On the closed form mechanistic modeling of milling: Specific cutting energy, torque, and power

    Science.gov (United States)

    Bayoumi, A. E.; Yücesan, G.; Hutton, D. V.

    1994-02-01

    Specific energy in metal cutting, defined as the energy expended in removing a unit volume of workpiece material, is formulated and determined using a previously developed closed form mechanistic force model for milling operations. Cutting power is computed from the cutting torque, cutting force, kinematics of the cutter, and the volumetric material removal rate. Closed form expressions for specific cutting energy were formulated and found to be functions of the process parameters: pressure and friction for both rake and flank surfaces and chip flow angle at the rake face of the tool. Friction is found to play a very important role in cutting torque and power. Experiments were carried out to determine the effects of feedrate, cutting speed, workpiece material, and flank wear land width on specific cutting energy. It was found that the specific cutting energy increases with a decrease in the chip thickness and with an increase in flank wear land.

  14. Longitudinal Study of Gray Matter Changes in Parkinson Disease.

    Science.gov (United States)

    Jia, X; Liang, P; Li, Y; Shi, L; Wang, D; Li, K

    2015-12-01

    The pathology of Parkinson disease leads to morphological brain volume changes. So far, the progressive gray matter volume change across time specific to patients with Parkinson disease compared controls remains unclear. Our aim was to investigate the pattern of gray matter changes in patients with Parkinson disease and to explore the progressive gray matter volume change specific to patients with Parkinson disease with disease progression by using voxel-based morphometry analysis. Longitudinal cognitive assessment and structural MR imaging of 89 patients with Parkinson disease (62 men) and 55 healthy controls (33 men) were from the Parkinson's Progression Markers Initiative data base, including the initial baseline and 12-month follow-up data. Two-way analysis of covariance was performed with covariates of age, sex, years of education, imaging data from multiple centers, and total intracranial volume by using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra tool from SPM8 software. Gray matter volume changes for patients with Parkinson disease were detected with decreased gray matter volume in the frontotemporoparietal areas and the bilateral caudate, with increased gray matter volume in the bilateral limbic/paralimbic areas, medial globus pallidus/putamen, and the right occipital cortex compared with healthy controls. Progressive gray matter volume decrease in the bilateral caudate was found for both patients with Parkinson disease and healthy controls, and this caudate volume was positively associated with cognitive ability for both groups. The progressive gray matter volume increase specific to the patients with Parkinson disease was identified close to the left ventral lateral nucleus of thalamus, and a positive relationship was found between the thalamic volume and the tremor scores in a subgroup with tremor-dominant patients with Parkinson disease. The observed progressive changes in gray matter volume in Parkinson disease may provide

  15. Numerical modelling of tool wear in turning with cemented carbide cutting tools

    Science.gov (United States)

    Franco, P.; Estrems, M.; Faura, F.

    2007-04-01

    A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools.

  16. Numerical modelling of tool wear in turning with cemented carbide cutting tools

    International Nuclear Information System (INIS)

    Franco, P.; Estrems, M.; Faura, F.

    2007-01-01

    A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools

  17. QCA Gray Code Converter Circuits Using LTEx Methodology

    Science.gov (United States)

    Mukherjee, Chiradeep; Panda, Saradindu; Mukhopadhyay, Asish Kumar; Maji, Bansibadan

    2018-04-01

    The Quantum-dot Cellular Automata (QCA) is the prominent paradigm of nanotechnology considered to continue the computation at deep sub-micron regime. The QCA realizations of several multilevel circuit of arithmetic logic unit have been introduced in the recent years. However, as high fan-in Binary to Gray (B2G) and Gray to Binary (G2B) Converters exist in the processor based architecture, no attention has been paid towards the QCA instantiation of the Gray Code Converters which are anticipated to be used in 8-bit, 16-bit, 32-bit or even more bit addressable machines of Gray Code Addressing schemes. In this work the two-input Layered T module is presented to exploit the operation of an Exclusive-OR Gate (namely LTEx module) as an elemental block. The "defect-tolerant analysis" of the two-input LTEx module has been analyzed to establish the scalability and reproducibility of the LTEx module in the complex circuits. The novel formulations exploiting the operability of the LTEx module have been proposed to instantiate area-delay efficient B2G and G2B Converters which can be exclusively used in Gray Code Addressing schemes. Moreover this work formulates the QCA design metrics such as O-Cost, Effective area, Delay and Cost α for the n-bit converter layouts.

  18. Parameters Influence of CO2 Laser on Cutting Quality of Polymer Materials

    OpenAIRE

    Robert Cep; Sarka Malotova; Marek Pagac; Marek Sadilek; Jiri Lichovnik

    2016-01-01

    The article deals with evaluating of the resulting surface state of the three plastic materials and identification of suitable conditions for laser cutting with CO2 tube. As representative were chosen polypropylene, polymethylmethacrylate and polyamide. When cutting these types of materials it could melt eventually their re-sintering. A suitable combination of parameters is possible to achieve of sufficient quality of the cut. The samples were cut at different feed speed and laser power. Then...

  19. Development of contaminated concrete removing system 'Clean cut method'

    International Nuclear Information System (INIS)

    Kinoshita, Takehiko; Tanaka, Tsutomu; Funakawa, Naoyoshi; Idemura, Hajime; Sakashita, Fumio; Tajitsu, Yoshiteru

    1989-01-01

    In the case of decommissioning nuclear facilities such as nuclear power stations, nuclear fuel facilities and RI handling facilities and carrying out reconstruction works, if there is radioactive contamination on the surfaces of concrete structures such as the floors and walls of the buildings for nuclear facilities, it must be removed. Since concrete is porous, contamination infiltrates into the inside of concrete, and the wiping of surfaces only or chemical decontamination cannot remove it, therefore in most cases, contaminated concrete must be removed. The removal of concrete surfaces has been carried out with chipping hammers, grinders and so on, but many problems arise due to it. In order to solve these problems, the mechanical cutting method was newly devised, and clean cut method (CCRS) was completed. The depth of cutting from concrete surface is set beforehand, and the part to be removed is accurately cut, at the same time, the concrete powder generated is collected nearly perfectly, and recovered into a drum. The outline of the method and the constitution of the system, the features of the clean cut method, the development of the technology for cutting concrete and the technology for recovering concrete powder, and the test of verifying decontamination are reported. (K.I.)

  20. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Guihu Zhao

    Full Text Available A failure of adaptive inference-misinterpreting available sensory information for appropriate perception and action-is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci in subcortical gray matter (GM in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD, a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales of subcortical GM in this disorder. Probabilistic (entropy-based information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR images in chronic patients with schizophrenia (n = 19 and age-matched healthy controls (n = 19 (age ranges: patients, 22.7-54.3 and healthy controls, 24.9-51.6 years old. We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07-2.18 vs. median: 2.1730, range: 2.15-2.23, p<0.001; Cohen's effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0, the right hippocampus (median: 2.1430, range: 2.05-2.19 vs. median: 2.1760, range: 2.12-2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1, as well as left thalamus (median: 2.4230, range: 2.40-2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473 in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in

  1. A cutting fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kajdas, C.; Dominiak, M.; Kozinski, R.; Misterkiewicz, B.; Polowniak, J.; Szczepaniak, S.

    1982-06-30

    The cutting fluid (SOZh) contains 0.5 to 10 percent vegetable or animal fats, selectively sulfurized in the presence of a catalyst (Kt): 0.1 to 10 percent chlorinated C2O to C3O paraffins, which contain 10 to 50 percent Chlorine in a molecule, and 0.001 to 0.5 percent dialkyldithiocarbamic or alkylen-bis-(dithiocarbamic) acids or their salts or derivatives of the form (R(R')NC(S)SRn'', (CH2)n(NHC(S)S)2R'' or R(R')NC(S)SnC(S)(R)R', where R and R' are alkyl or cycloalkyl of the C1 to C6 fractions, R'' is Hydrogen, a metal, or aliphatic or heterocyclic amine, n = 2 to 6 and 0.001 to 0.3 percent of heterocyclic mercaptanes or disulfides of the cited formula, where A is Nitrogen or Sulfur, and up to 100 percent petroleum oil with a kinematic viscosity of 5 to 50 square millimeters per second at 323K.

  2. The Gesso Cut for Printmaking

    Science.gov (United States)

    Kelly, Perry; Sarvis, Alva

    1969-01-01

    Directions are given for the preparation, cutting, and printing of a gesso board. A gesso cut is defined as a board coated with gesso into which a design has been impressed. The process is similar to the woodcut, but offers greater textural possibilities. (BF)

  3. Shearer drums - the cutting edge

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, M.; Wright, C.

    2004-09-15

    The paper discusses continuous miner and shearer cutters. It claims cutting drum require the same level of engineering know-how and technical expertise as do the machines driving them, and that the cutting drum, whether on a longwall shearer or continuous miner, comprises, the steel, pedestals, bit holders and the bits.

  4. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  5. Prefrontal gray matter volume mediates genetic risks for obesity.

    Science.gov (United States)

    Opel, N; Redlich, R; Kaehler, C; Grotegerd, D; Dohm, K; Heindel, W; Kugel, H; Thalamuthu, A; Koutsouleris, N; Arolt, V; Teuber, A; Wersching, H; Baune, B T; Berger, K; Dannlowski, U

    2017-05-01

    Genetic and neuroimaging research has identified neurobiological correlates of obesity. However, evidence for an integrated model of genetic risk and brain structural alterations in the pathophysiology of obesity is still absent. Here we investigated the relationship between polygenic risk for obesity, gray matter structure and body mass index (BMI) by the use of univariate and multivariate analyses in two large, independent cohorts (n=330 and n=347). Higher BMI and higher polygenic risk for obesity were significantly associated with medial prefrontal gray matter decrease, and prefrontal gray matter was further shown to significantly mediate the effect of polygenic risk for obesity on BMI in both samples. Building on this, the successful individualized prediction of BMI by means of multivariate pattern classification algorithms trained on whole-brain imaging data and external validations in the second cohort points to potential clinical applications of this imaging trait marker.

  6. THE CORROSION BEHAVIOR AND WEAR RESISTANCE OF GRAY CAST IRON

    Directory of Open Access Journals (Sweden)

    Lina F. Kadhim

    2018-01-01

    Full Text Available Gray cast iron has many applications as pipes , pumps and valve bodies where it has influenced by heat and contact with other solutions . This research has studied the corrosion behavior and Vickers hardness of gray cast iron by immersion in four strong alkaline solutions (NaOH, KOH, Ca(OH2, LiOHwith three concentrations (1%,2%,3% of each solution. Dry sliding wear has carried out before and after the heat treatments (stress relief ,normalizing, hardening and tempering. In this work ,maximum wear strength has obtained at tempered gray cast iron and minimum corrosion rate has obtained in LiOH solution by forming protective white visible oxide layer.

  7. Tubing and cable cutting tool

    Science.gov (United States)

    Mcsmith, D. D.; Richardson, J. I. (Inventor)

    1984-01-01

    A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.

  8. Cutting method and device underwater

    International Nuclear Information System (INIS)

    Takano, Genta; Kamei, Hiromasa; Beppu, Seiji

    1998-01-01

    A place of material to be cut is surrounded by an openable/closable box. The material to be cut is cut underwater, and materials generated in this case are removed from the cut portion by a pressurized water jet. The removed materials are sucked and recovered together with water in the box. Among the materials caused by the cutting underwater, solid materials not floating on water are caused to stay in the midway of a sucking and recovering channel. A large sucking force might be required for the entire region of the sucking and recovering channel when sucking and recovering large sized solid materials not floating on water, but even large sized materials can be recovered easily according to the present invention since they are recovered after being sucked and stayed in the midway of the sucking and recovering channel. (N.H.)

  9. Cutting concrete with abrasion jet

    International Nuclear Information System (INIS)

    Yie, G.G.

    1982-01-01

    Fluidyne Corporation has developed a unique process and apparatus that allow selected abrasives to be introduced into high-speed waterjet to produce abrasive-entrained waterjet that has high material-cutting capabilities, which is termed by Fluidyne as the Abrasion Jet. Such Abrasion Jet has demonstrated capability in cutting hard rock and concrete at a modest pressure of less than 1360 bars (20,000 psi) and a power input of less than 45 kW (60 horsepower). Abrasion Jet cutting of concrete is characterized by its high rate of cutting, flexible operation, good cut quality, and relatively low costs. This paper presents a general description of this technology together with discussions of recent test results and how it could be applied to nuclear decontamination and decommissioning work. 8 references

  10. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-10-01

    Full Text Available This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests were based on a L9(34 orthogonal array design, with the effects of the process parameters on the quality responses being determined by means of a statistical analysis of variance (ANOVA. Quadratic mathematical models were developed to determine the relationships between the cutting parameters and the quality responses. Finally, a routine based on an optimization criterion was employed to predict the optimal setting of cutting factors and its effect on the quality responses. A confirmation experiment was conducted to verify the appropriateness of the optimization routine. The results show that all of the examined process parameters have a key role in determining the cut quality of hot stamping boron steel sheets, with cutting speed and their interactions having the most influencing effects. Particularly, interactions can have an opposite behavior for different levels of the process parameters.

  11. Nanometric mechanical cutting of metallic glass investigated using atomistic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Da, E-mail: nanowu@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li District, Taoyuan City 32023, Taiwan (China); Fang, Te-Hua, E-mail: fang.tehua@msa.hinet.net [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Su, Jih-Kai, E-mail: yummy_2468@yahoo.com.tw [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China)

    2017-02-28

    Highlights: • A nanoscale chip with a shear plane of 135° is extruded by the tool. • Tangential force and normal force increase with increasing tool nose radius. • Resistance factor increases with increasing cutting depth and temperature. - Abstract: The effects of cutting depth, tool nose radius, and temperature on the cutting mechanism and mechanics of amorphous NiAl workpieces are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories and flow field, shear strain, cutting force, resistance factor, cutting ratio, and pile-up characteristics. The simulation results show that a nanoscale chip with a shear plane of 135° is extruded by the tool from a workpiece surface during the cutting process. The workpiece atoms underneath the tool flow upward due to the adhesion force and elastic recovery. The required tangential force and normal force increase with increasing cutting depth and tool nose radius; both forces also increase with decreasing temperature. The resistance factor increases with increasing cutting depth and temperature, and decreases with increasing tool nose radius.

  12. Strain engineering of topological phase transition in elemental gray tin: Dirac semimetal phase in the missing half of strain spectrum

    Science.gov (United States)

    Huang, Huaqing; Liu, Feng

    Gray tin was previously found to be a strong topological insulator under compressive uniaxial strain. Here, based on effective k . p analysis and first-principles calculations, we discover that gray tin becomes a Dirac semimetal in the other missing half of strain spectrum, under tensile uniaxial strain. In this newly found Dirac semimetal state, two Dirac points which are tunable by tensile [001] strains, lie in the kz axis and Fermi arcs appear in the (100) surface. A large negative magnetoresistance is anticipated in this half of strain spectrum, which shows as a strong signature of the chiral anomaly effect. Comparing to other Dirac semimetal materials, the proposed Dirac semimetal state in the nontoxic elemental gray tin can be more easily manipulated and accurately controlled. We envision that gray tin provides a perfect platform for strain engineering of topological phase transitions by sweeping through the strain spectrum from positive to negative and vice versa. This work was support by DOE-BES (Grant No. DE-FG02-04ER46148).

  13. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool

    Directory of Open Access Journals (Sweden)

    Kaining Shi

    2016-01-01

    Full Text Available Magnesium alloy has attracted more attentions due to its excellent mechanical properties. However, in process of dry cutting operation, many problems restrict its further development. In this article, the effect of cutting parameters on machinabilities of magnesium alloy is explored under dry milling condition. This research is an attempt to investigate the impact of cutting speed at multiple feed rates on cutting force and surface roughness, while a statistical analysis is adopted to determine the influential intensities accurately. The results showed that cutting force is affected by the positively constant intensity from feed rate and the increasingly negative intensity from cutting speed. In contrast, surface roughness is determined by the gradually increasing negative tendency from feed rate and the positive effect with constant intensity from cutting speed. Within the range of the experiments, feed rate is the leading contribution for cutting force while the cutting speed is the dominant factor for surface roughness according to the absolute intensity values. Meanwhile, the trends of influencing intensities between cutting force and surface roughness are opposite. Besides, it is also found that in milling magnesium alloy, chip morphology is highly sensitive to cutting speed while the chip quality mainly depends on feed rate.

  14. High-Power Laser Cutting of Steel Plates: Heat Affected Zone Analysis

    Directory of Open Access Journals (Sweden)

    Imed Miraoui

    2016-01-01

    Full Text Available The thermal effect of CO2 high-power laser cutting on cut surface of steel plates is investigated. The effect of the input laser cutting parameters on the melted zone depth (MZ, the heat affected zone depth (HAZ, and the microhardness beneath the cut surface is analyzed. A mathematical model is developed to relate the output process parameters to the input laser cutting parameters. Three input process parameters such as laser beam diameter, cutting speed, and laser power are investigated. Mathematical models for the melted zone and the heat affected zone depth are developed by using design of experiment approach (DOE. The results indicate that the input laser cutting parameters have major effect on melted zone, heat affected zone, and microhardness beneath cut surface. The MZ depth, the HAZ depth, and the microhardness beneath cut surface increase as laser power increases, but they decrease with increasing cutting speed. Laser beam diameter has a negligible effect on HAZ depth but it has a remarkable effect on MZ depth and HAZ microhardness. The melted zone depth and the heat affected zone depth can be reduced by increasing laser cutting speed and decreasing laser power and laser beam diameter.

  15. Assessment of abrasiveness for research of rock cutting

    Directory of Open Access Journals (Sweden)

    Milan Labaš

    2012-12-01

    Full Text Available Rock abrasiveness is ability of rock to wear down the working tool during the mutual interaction between the working indentorand the rock in the mechanical rock cutting process. The cutting indentor is worn down during the interaction, which changes itsgeometric dimensions causing the enlargement of a contact area between the tool and the rock surface. The changes in these dimensionsconsequently alter the rate of advance of the drilling machine and the specific cutting energy. We have determined the abrasivenessaccording to the norm ON 44 1121 (1982 on the testing device constructed at the Institute of Geotechnics SAS.

  16. The ``gray cortex``: an early sign of stress fracture

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, M.E. [Dept. of Radiology, Univ. of Maryland Medical Center, Baltimore, MD (United States)

    1995-04-01

    The purpose of this report is to describe an early radiographic sign of stress fracture, the ``gray cortex.`` The imaging findings in three patients with tibial stress fractures were reviewed. The ``gray cortex`` sign was evident on the initial conventional radiographs in all three cases. It was prospectively reported as a sign of stress fracture in two patients and was evident on the initial radiographs (taken elsewhere) of the third patient, who was referred for additional workup of a possible neoplasm. Special imaging studies (technetium-99m bone scan, computed tomography, and magnetic resonance imaging) confirmed the diagnosis in all three cases. (orig.)

  17. The ''gray cortex'': an early sign of stress fracture

    International Nuclear Information System (INIS)

    Mulligan, M.E.

    1995-01-01

    The purpose of this report is to describe an early radiographic sign of stress fracture, the ''gray cortex.'' The imaging findings in three patients with tibial stress fractures were reviewed. The ''gray cortex'' sign was evident on the initial conventional radiographs in all three cases. It was prospectively reported as a sign of stress fracture in two patients and was evident on the initial radiographs (taken elsewhere) of the third patient, who was referred for additional workup of a possible neoplasm. Special imaging studies (technetium-99m bone scan, computed tomography, and magnetic resonance imaging) confirmed the diagnosis in all three cases. (orig.)

  18. Wave-splitting in the bistable Gray-Scott model

    DEFF Research Database (Denmark)

    Rasmussen, K.E.; Mazin, W.; Mosekilde, Erik

    1996-01-01

    The Gray-Scott model describes a chemical reaction in which an activator species grows autocatalytically on a continuously fed substrate. For certain feed rates and activator life times the model shows the coexistence of two homogeneous steady states. The blue state, where the activator concentra......The Gray-Scott model describes a chemical reaction in which an activator species grows autocatalytically on a continuously fed substrate. For certain feed rates and activator life times the model shows the coexistence of two homogeneous steady states. The blue state, where the activator...

  19. Using internally cooled cutting tools in the machining of difficult-to-cut materials based on Waspaloy

    Directory of Open Access Journals (Sweden)

    Yahya Isik

    2016-05-01

    Full Text Available Nickel-based superalloys such as Waspaloy are used for engine components and in the nuclear industry, where considerable strength and corrosion resistance at high operating temperatures are called for. These characteristics of such alloys cause increases in cutting temperature and resultant tool damage, even at low cutting speeds and low feed rates. Thus, they are classified as difficult-to-cut materials. This article presents a cooling method to be used in metal cutting based on a tool holder with a closed internal cooling system with cooling fluid circulating inside. Hence, a green cooling method that does not harm the environment and is efficient in removing heat from the cutting zone was developed. A series of cutting experiments were conducted to investigate the practicality and effectiveness of the internally cooled tool model. The developed system achieved up to 13% better surface quality than with dry machining, and tool life was extended by 12%. The results clearly showed that with the reduced cutting temperature of the internal cooling, it was possible to control the temperature and thus prevent reaching the critical cutting temperature during the turning process, which is vitally important in extending tool life during the processing of Waspaloy.

  20. Comparative study for different statistical models to optimize cutting parameters of CNC end milling machines

    International Nuclear Information System (INIS)

    El-Berry, A.; El-Berry, A.; Al-Bossly, A.

    2010-01-01

    In machining operation, the quality of surface finish is an important requirement for many work pieces. Thus, that is very important to optimize cutting parameters for controlling the required manufacturing quality. Surface roughness parameter (Ra) in mechanical parts depends on turning parameters during the turning process. In the development of predictive models, cutting parameters of feed, cutting speed, depth of cut, are considered as model variables. For this purpose, this study focuses on comparing various machining experiments which using CNC vertical machining center, work pieces was aluminum 6061. Multiple regression models are used to predict the surface roughness at different experiments.

  1. Regge cuts in inclusive reactions

    International Nuclear Information System (INIS)

    Paige, F.E.; Trueman, T.L.

    1975-01-01

    The contribution of Regge cuts to single-particle inclusive processes is analyzed using the techniques of Gribov. The dependence of these contributions on the polarization state of the target is emphasized. A general formula is obtained and certain contributions to it are calculated. It is not possible, however, to reduce this to a simple, powerful formula expressing the total cut contribution in terms of other measurable quantities, as can be done for the cut contribution to the total cross section. The reasons for this are discussed in detail. The single-particle intermediate states, analogous to the absorption model for elastic scattering, are explicitly calculated as an illustration

  2. Laser cutting of Kevlar laminates

    Energy Technology Data Exchange (ETDEWEB)

    VanCleave, R.A.

    1977-09-01

    An investigation has been conducted of the use of laser energy for cutting contours, diameters, and holes in flat and shaped Kevlar 49 fiber-reinforced epoxy laminates as an alternate to conventional machining. The investigation has shown that flat laminates 6.35 mm thick may be cut without backup by using a high-powered (1000-watt) continuous wave CO/sub 2/ laser at high feedrates (33.87 mm per second). The cut produced was free of the burrs and delaminations resulting from conventional machining methods without intimate contact backup. In addition, the process cycle time was greatly reduced.

  3. Preferences of cut flowers consumers

    Directory of Open Access Journals (Sweden)

    Sylwia Kierczyńska

    2010-01-01

    Full Text Available The results of interviews suggest that majority of the cut flowers’ consumers has favourite kind of flower, among which most frequently pointed one was the rose. More than half of the interviewed favour the uniform colour of cut flowers and red colour was the most favourite one. The subtle smell of flowers was the most preferable one but the intensive fragrance was favoured for more consumers than odourless flowers. The data from selected florists’ confirm the information from interviews – in spite of the occasion, roses were the most demanded cut flowers.

  4. Improving tribological performance of gray cast iron by laser peening in dynamic strain aging temperature regime

    Science.gov (United States)

    Feng, Xu; Zhou, Jianzhong; Mei, Yufen; Huang, Shu; Sheng, Jie; Zhu, Weili

    2015-09-01

    A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in material composition and shape design optimization. In the dynamic strain aging(DSA) temperature regime of gray cast iron, micro-dimples with different dimple depth over diameter and surface area density are fabricated on the material surface by laser peening(LP) which is an LST method. Friction behavior and wear mechanism are investigated to evaluate the effects of surface texturing on the tribological performance of specimens under dry conditions. Through LP impacts assisted by DSA, the friction coefficients of the LPed specimens increase noticeably both at room temperature and elevated temperature in comparison to untreated specimens. Moreover, the coefficient of specimen with dimple depth over diameter of 0.03 and surface area density of 30% is up to 0.351 at room temperature, which dramatically rises up to 1.33 times that of untextured specimen and the value is still up to 0.3305 at 400°C with an increasing ratio of 35% compared to that of untreated specimen. The surface of textured specimen shows better wear resistance compared to untreated specimen. Wear mechanism includes adhesive wear, abrasive wear and oxidation wear. It is demonstrated that LP assisted by DSA can substantially improve wear resistance, raise the friction coefficient as well as its stability of gray cast iron under elevated temperatures. Heat fade and premature wear can be effectively relieved by this surface modification method.

  5. Material Abrasive Water Jet Cutting Investigation by Means Accompanying Physical Phenomena

    OpenAIRE

    Kinik, D.; Gánovská, B.; Hloch, S. (Sergej); Cárach, J.; Lehocká, D.

    2013-01-01

    The paper deals with the indirect ways of on-line monitoring of technological processes of cutting. The objective of the study is a design of on-line monitoring system for the cutting technology through an abrasive water jet. In cutting by the abrasive water jet two parallel phenomena are formed. The phenomena are represented by generated surface and vibrations. For the purpose of proving of the hypothetical assumptions on dependence of generated surface quality on vibrations the ex...

  6. Optimization of Process Parameters of Pulsed Electro Deposition Technique for Nanocrystalline Nickel Coating Using Gray Relational Analysis (GRA)

    Science.gov (United States)

    Venkatesh, C.; Sundara Moorthy, N.; Venkatesan, R.; Aswinprasad, V.

    The moving parts of any mechanism and machine parts are always subjected to a significant wear due to the development of friction. It is an utmost important aspect to address the wear problems in present environment. But the complexity goes on increasing to replace the worn out parts if they are very precise. Technology advancement in surface engineering ensures the minimum surface wear with the introduction of polycrystalline nano nickel coating. The enhanced tribological property of the nano nickel coating was achieved by the development of grain size and hardness of the surface. In this study, it has been decided to focus on the optimized parameters of the pulsed electro deposition to develop such a coating. Taguchi’s method coupled gray relational analysis was employed by considering the pulse frequency, average current density and duty cycle as the chief process parameters. The grain size and hardness were considered as responses. Totally, nine experiments were conducted as per L9 design of experiment. Additionally, response graph method has been applied to determine the most significant parameter to influence both the responses. In order to improve the degree of validation, confirmation test and predicted gray grade were carried out with the optimized parameters. It has been observed that there was significant improvement in gray grade for the optimal parameters.

  7. Chapter 13. Current management situation: Great gray owls

    Science.gov (United States)

    Jon Verner

    1994-01-01

    The breeding range of great gray owls (Strix nebulosa) in the United States includes portions of Alaska, mountains in the western United States including portions of the Cascades and Sierra Nevada ranges and the northern Rockies, and portions of Minnesota, Michigan, Wisconsin, and New York (see Chapter 14 and Map 3). The species is sometimes observed...

  8. Mastering the Gray Zone: Understanding a Changing Era of Conflict

    Science.gov (United States)

    2015-12-01

    sequentially or in parallel, to a range of other tactics largely built around psychological opera- tions and information warfare. The goal is to...choice is the prisoner’s dilemma: The assumed players can see the lineup of rewards. Gray zone strategies complicate this process and raise ambiguities

  9. Anophthalmia in a Wild Eastern Gray Squirrel (Sciurus carolinensis).

    Science.gov (United States)

    Rothenburger, Jamie L; Hartnett, Elizabeth A; James, Fiona M K; Grahn, Bruce H

    2017-10-01

    We describe bilateral true anophthalmia in a juvenile female eastern gray squirrel (Sciurus carolinensis) with histologic confirmation that orbital contents lacked ocular tissues. Additionally, the optic chiasm of the brain was absent and axon density in the optic tract adjacent to the lateral geniculate nucleus was reduced.

  10. The occurrence of hepatozoon in the gray squirrel (Sciurus carolinensis)

    Science.gov (United States)

    Herman, C.M.; Price, D.L.

    1955-01-01

    Hepatozoon sciuri (Coles, 1914) is reported from gray squirrels (Sciurus carolinensis) in Washington, D.C. and Maryland. Blood smears stained with Giemsa's stain revealed a parasitemia in 16 to 71% of the squirrels examined. A technique for laking the red cells and concentrating the white cells in blood samples demonstrated this protozoon to be present in every squirrel so tested.

  11. Outplayed: Regaining Strategic Initiative in the Gray Zone

    Science.gov (United States)

    2016-06-01

    and the Great Depression . The period between 1917 and 1945 included two world wars and the Great Depres- sion. There was not a great deal of gray...2015, Center for Strategic and International Studies YouTube Channel video file, avail- able from https://www.youtube.com/watch?v=8WA1rP5WGfY

  12. Lateral cervical nucleus projections to periaqueductal gray matter in cat

    NARCIS (Netherlands)

    Mouton, LJ; Klop, EM; Broman, J; Zhang, ML; Holstege, G; Zhang, Mengliang

    2004-01-01

    The midbrain periaqueductal gray matter (PAG) integrates the basic responses necessary for survival of individuals and species. Examples are defense behaviors such as fight, flight, and freezing, but also sexual behavior, vocalization, and micturition. To control these behaviors the PAG depends on

  13. Nucleus retroambiguus projections to the periaqueductal gray in the cat

    NARCIS (Netherlands)

    Klop, EM; Mouton, LJ; Holstege, G

    2002-01-01

    The nucleus retroambiguus (NRA) of the caudal medulla is a relay nucleus by which neurons of the mesencephalic periaqueductal gray (PAG) reach motoneurons of pharynx, larynx, soft palate, intercostal and abdominal muscles, and several muscles of the hindlimbs. These PAG-NRA-motoneuronal projections

  14. Mentoring Graduate Students: The Good, Bad, and Gray

    Science.gov (United States)

    Ballantine, Jeanne H.; Jolly-Ballantine, John-Andrew

    2015-01-01

    Good mentoring of graduate students influences their perseverance and success to completion, whereas bad mentoring can result in negative outcomes, including delayed degree completion or non-completion. What the authors refer to as the gray zone is that which falls between good and bad mentoring. Examples are partial mentoring or changes in…

  15. Jim Gray on eScience: A Transformed Scientific Method

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 8. Jim Gray on eScience: A Transformed Scientific Method. Classics Volume 21 Issue 8 August 2016 pp 749-763. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/021/08/0749-0763. Abstract ...

  16. Regge cuts: A general approach

    International Nuclear Information System (INIS)

    Weis, J.H.

    1976-01-01

    We discuss an approach to the calculation of Regge-cut contributions to scattering amplitudes which relies only on the general structure of the physical Reggeon couplings. It thus allows a unified treatment of disparate models [such as the Feynman (Mandelstam) graph model and the dual model] and a general derivation of the Abramovskii--Gribov--Kancheli (AGK) rules. The structure of the Reggeon couplings is expressed through integrals over complex helicity. The Regge-cut amplitude can then be obtained, and its s-channel discontinuity, taken; there results a direct derivation of a set of ''cutting rules'' which express the total discontinuity as a sum of terms involving various discontinuities of the Reggeon couplings. The equality of these discontinuities follows directly if the singularities in complex helicity are the usual ones. Thus the AGK rules are seen to be quite model independent. Here we study in detail the simplest example: the Reggeon-particle cut in the four-particle amplitude

  17. Early Childhood Depression and Alterations in the Trajectory of Gray Matter Maturation in Middle Childhood and Early Adolescence.

    Science.gov (United States)

    Luby, Joan L; Belden, Andy C; Jackson, Joshua J; Lessov-Schlaggar, Christina N; Harms, Michael P; Tillman, Rebecca; Botteron, Kelly; Whalen, Diana; Barch, Deanna M

    2016-01-01

    The trajectory of cortical gray matter development in childhood has been characterized by early neurogenesis and volume increase, peaking at puberty followed by selective elimination and myelination, resulting in volume loss and thinning. This inverted U-shaped trajectory, as well as cortical thickness, has been associated with cognitive and emotional function. Synaptic pruning-based volume decline has been related to experience-dependent plasticity in animals. To date, there have been no data to inform whether and how childhood depression might be associated with this trajectory. To examine the effects of early childhood depression, from the preschool age to the school age period, on cortical gray matter development measured across 3 waves of neuroimaging from late school age to early adolescence. Data were collected in an academic research setting from September 22, 2003, to December 13, 2014, on 193 children aged 3 to 6 years from the St Louis, Missouri, metropolitan area who were observed for up to 11 years in a longitudinal behavioral and neuroimaging study of childhood depression. Multilevel modeling was applied to explore the association between the number of childhood depression symptoms and prior diagnosis of major depressive disorder and the trajectory of gray matter change across 3 scan waves. Data analysis was conducted from October 29, 2014, to September 28, 2015. Volume, thickness, and surface area of cortical gray matter measured using structural magnetic resonance imaging at 3 scan waves. Of the 193 children, 90 had a diagnosis of major depressive disorder; 116 children had 3 full waves of neuroimaging scans. Findings demonstrated marked alterations in cortical gray matter volume loss (slope estimate, -0.93 cm³; 95% CI, -1.75 to -0.10 cm³ per scan wave) and thinning (slope estimate, -0.0044 mm; 95% CI, -0.0077 to -0.0012 mm per scan wave) associated with experiencing an episode of major depressive disorder before the first magnetic resonance

  18. Laser cutting of high manganese cast steel; Komangan chuko no laser setsudan

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Y.; Tokunaga, T. [University of Industrial Technology, Kanagawa (Japan); Miyazaki, T. [Chiba Institute of Technology, Chiba (Japan)

    1994-08-25

    This paper discusses applicability of CO2 laser to cut high manganese cast steel, and investigates the cutting conditions and characteristics. The tested material is made of steel scrap, ferro Mn and ferro Cr of 50 kg in total, which was deoxidized by using pure aluminum and injected into CO2 die by means of the ordinary casting method to make a circular rod with a diameter of 28 mm. The rod was given a heating and water toughening treatment in a muffle furnace maintaining N2 atmosphere. The base structure is an austenite system of Mn 12.4% by mass with hardness of MHV 220 to 230. The paper describes discussions on test pieces (with a thickness of 2 mm) fabricated under a laser beam frequency of 150 Hz, power outputs of 250, 350 and 500 W, and cutting speeds of 100, 300 and 500 mm/min. The cutting width increases as the laser power is increased, but is not governed by the cutting speed. Increased cutting speed roughens the surface of a cut face. The laser cutting has caused no change in hardness of the base material, and no processing deterioration has been recognized. As described, the laser cutting can be applied to finish-cutting if the cutting condition is selected properly. Simplification of the cutting process and improvement of working environment can be expected from the laser cutting. 14 refs., 12 figs., 2 tabs.

  19. Laser Cutting Tool Path Optimization

    OpenAIRE

    Dewil, Reginald; Cattrysse, Dirk; Vansteenwegen, Pieter

    2011-01-01

    Given a set of irregular parts nested on a metal sheet, minimize the total non- cutting time for the cutter head, cutting all the required elements and returning to the starting location. The problem is modeled as a generalized traveling sales- person problem with special precedence constraints. An initial feasible solution is generated and improved by local moves embedded in a tabu search framework. The proposed algorithm shows promising results in comparison with a commercial...

  20. Economic technology of laser cutting

    Science.gov (United States)

    Fedin, Alexander V.; Shilov, Igor V.; Vassiliev, Vladimir V.; Malov, Dmitri V.; Peskov, Vladimir N.

    2000-02-01

    The laser cutting of color metals and alloys by a thickness more than 2 mm has significant difficulties due to high reflective ability and large thermal conduction. We made it possible to raise energy efficiency and quality of laser cutting by using a laser processing system (LPS) consisting both of the YAG:Nd laser with passive Q-switching on base of LiF:F2- crystals and the CO2 laser. A distinctive feature of the LPS is that the radiation of different lasers incorporated in a coaxial beam has simultaneously high level of peak power (more than 400 kW in a TEM00 mode) and significant level of average power (up to 800 W in a TEM01 mode of the CO2 laser). The application of combined radiation for cutting of an aluminum alloy of D16 type made it possible to decrease the cutting energy threshold in 1.7 times, to increase depth of treatment from 2 up to 4 mm, and velocity from 0.015 up to 0.7 m/min, and also to eliminate application of absorptive coatings. At cutting of steels the velocity of treatment was doubled, and also an oxygen flow was eliminated from the technological process and replaced by the air. The obtained raise of energy efficiency and quality of cutting is explained by an essential size reducing of a formed penetration channel and by the shifting of a thermal cutting mode from melting to evaporation. The evaluation of interaction efficiency of a combined radiation was produced on the basis of non-stationary thermal-hydrodynamic model of a heating source moving as in the cutting direction, and also into the depth of material.

  1. Gray fox (Urocyon cinereoargenteus parasite diversity in central Mexico

    Directory of Open Access Journals (Sweden)

    Norma Hernández-Camacho

    2016-08-01

    Full Text Available Mexico has a long history of parasitological studies in communities of vertebrates. However, the mega diversity of the country makes fauna inventories an ongoing priority. Presently, there is little published on the parasite fauna of gray foxes (Urocyon cinereoargenteus Schereber, 1775 and this study provides new records of parasites for gray foxes in central Mexico. It is a continuation of a series of previous parasitological studies conducted with this carnivore in Mexico from 2003 to the present. A total of 24 foxes in the Parque Nacional El Cimatario (PANEC were trapped, anaesthetized, and parasites recovered. The species found were Dirofilaria immitis, Ctenocephalides canis, C. felis, Euhoplopsillus glacialis affinis (first report for gray foxes in Mexico Pulex simulants, and Ixodes sp. Three additional gray fox carcasses were necropsied and the parasites collected were adult nematodes Physaloptera praeputialis and Toxocara canis. The intensive study of the gray fox population selected for the 2013–2015 recent period allowed for a two-fold increase in the number of parasite species recorded for this carnivore since 2003 (nine to 18 parasite species, mainly recording parasitic arthropods, Dirofilaria immitis filariae and adult nematodes. The parasite species recorded are generalists that can survive in anthropic environments; which is characteristic of the present ecological scenario in central Mexico. The close proximity of the PANEC to the city of Santiago de Queretaro suggests possible parasite transmission between the foxes and domestic and feral dogs. Furthermore, packs of feral dogs in the PANEC might have altered habitat use by foxes, with possible impacts on transmission.

  2. "Mr. Database" : Jim Gray and the History of Database Technologies.

    Science.gov (United States)

    Hanwahr, Nils C

    2017-12-01

    Although the widespread use of the term "Big Data" is comparatively recent, it invokes a phenomenon in the developments of database technology with distinct historical contexts. The database engineer Jim Gray, known as "Mr. Database" in Silicon Valley before his disappearance at sea in 2007, was involved in many of the crucial developments since the 1970s that constitute the foundation of exceedingly large and distributed databases. Jim Gray was involved in the development of relational database systems based on the concepts of Edgar F. Codd at IBM in the 1970s before he went on to develop principles of Transaction Processing that enable the parallel and highly distributed performance of databases today. He was also involved in creating forums for discourse between academia and industry, which influenced industry performance standards as well as database research agendas. As a co-founder of the San Francisco branch of Microsoft Research, Gray increasingly turned toward scientific applications of database technologies, e. g. leading the TerraServer project, an online database of satellite images. Inspired by Vannevar Bush's idea of the memex, Gray laid out his vision of a Personal Memex as well as a World Memex, eventually postulating a new era of data-based scientific discovery termed "Fourth Paradigm Science". This article gives an overview of Gray's contributions to the development of database technology as well as his research agendas and shows that central notions of Big Data have been occupying database engineers for much longer than the actual term has been in use.

  3. 76 FR 12070 - Availability of Seats for the Gray's Reef National Marine Sanctuary Advisory Council

    Science.gov (United States)

    2011-03-04

    ... the Gray's Reef National Marine Sanctuary Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA... applications for the following vacant seat on the Gray's Reef National Marine Sanctuary Advisory Council...

  4. 76 FR 68428 - Availability of Seats for the Gray's Reef National Marine Sanctuary Advisory Council

    Science.gov (United States)

    2011-11-04

    ... the Gray's Reef National Marine Sanctuary Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA... applications for the following vacant seats on the Gray's Reef National Marine Sanctuary Advisory Council...

  5. 77 FR 27719 - Availability of Seats for the Gray's Reef National Marine Sanctuary Advisory Council

    Science.gov (United States)

    2012-05-11

    ... the Gray's Reef National Marine Sanctuary Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA... applications for the following vacant seats on the Gray's Reef National Marine Sanctuary Advisory Council...

  6. 75 FR 17899 - Availability of Seats for the Gray's Reef National Marine Sanctuary Advisory Council

    Science.gov (United States)

    2010-04-08

    ... the Gray's Reef National Marine Sanctuary Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA... applications for the following vacant seats on the Gray's Reef National Marine Sanctuary Advisory Council...

  7. 76 FR 27307 - Availability of Seats for the Gray's Reef National Marine Sanctuary Advisory Council

    Science.gov (United States)

    2011-05-11

    ... the Gray's Reef National Marine Sanctuary Advisory Council AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA... applications for the following vacant seat on the Gray's Reef National Marine Sanctuary Advisory Council...

  8. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  9. Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure

    Science.gov (United States)

    Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.

    2016-12-01

    Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.

  10. Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia.

    Science.gov (United States)

    Kikinis, Z; Fallon, J H; Niznikiewicz, M; Nestor, P; Davidson, C; Bobrow, L; Pelavin, P E; Fischl, B; Yendiki, A; McCarley, R W; Kikinis, R; Kubicki, M; Shenton, M E

    2010-11-01

    The dorsolateral prefrontal cortex (DLPFC) is a brain region that has figured prominently in studies of schizophrenia and working memory, yet the exact neuroanatomical localization of this brain region remains to be defined. DLPFC primarily involves the superior frontal gyrus and middle frontal gyrus (MFG). The latter, however is not a single neuroanatomical entity but instead is comprised of rostral (anterior, middle, and posterior) and caudal regions. In this study we used structural MRI to develop a method for parcellating MFG into its component parts. We focused on this region of DLPFC because it includes BA46, a region involved in working memory. We evaluated volume differences in MFG in 20 patients with chronic schizophrenia and 20 healthy controls. Mid-rostral MFG (MR-MFG) was delineated within the rostral MFG using anterior and posterior neuroanatomical landmarks derived from cytoarchitectonic definitions of BA46. Gray matter volumes of MR-MFG were then compared between groups, and a significant reduction in gray matter volume was observed (p<0.008), but not in other areas of MFG (i.e., anterior or posterior rostral MFG, or caudal regions of MFG). Our results demonstrate that volumetric alterations in MFG gray matter are localized exclusively to MR-MFG. 3D reconstructions of the cortical surface made it possible to follow MFG into its anterior part, where other approaches have failed. This method of parcellation offers a more precise way of measuring MR-MFG that will likely be important in further documentation of DLPFC anomalies in schizophrenia. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Effect of lapping slurry on critical cutting depth of spinel

    International Nuclear Information System (INIS)

    Wang, Zhan-kui; Wang, Zhuan-kui; Zhu, Yong-wei; Su, Jian-xiu

    2015-01-01

    Highlights: • Measured spinel wafers’ hardness and crack length in different slurries. • Evaluated the softened layer thickness in different slurries. • Discussed the effect of slurries on critical cutting depth of spinel. - Abstract: The critical cutting depth for lapping process is very important because it influences the mode of material removal. In this paper, a serial of microscopic indentation experiments were carried out for measuring spinel wafers’ hardness and crack length in different lapping slurries. Their critical cutting depth and fracture toughness were calculated. X-ray photoelectron spectroscopy (XPS) was also employed to study the surface chemical composition and softened layer thickness of wafers in different slurries. Experimental results indicate that the softened layers of spinel wafers are formed due to the corrosion of lapping slurries, which leads to a lower hardness and a larger fracture toughness of samples, and increases the critical cutting depth. Among them, the critical cutting depth in ethylene glycol solution is the largest and up to 21.8 nm. The increase of critical cutting depth is helpful to modify the surface quality of the work-piece being lapped via ductile removal mode instead of brittle fracture mode

  12. Plasma hot machining for difficult-to-cut materials, 1

    International Nuclear Information System (INIS)

    Kitagawa, Takeaki; Maekawa, Katsuhiro; Kubo, Akihiko

    1987-01-01

    Machinability of difficult-to-cut materials has been a great concern to manufacturing engineers since demands for new materials in the aerospace and nuclear industries are more and more increasing. The purpose of this study is to develop a hot machining to improve machinability of high hardness materials. A plasma arc is used for heating materials cut. The surface just after being heated is removed as a chip by tungsten carbide tools. The turning experiments of high hardness steels with aid of plasma arc heating show not only the decrease in cutting forces but also the following effectiveness: (1) The application of the plasma hot machining to the condition, under which a built-up edge (BUE) appears in turning 0.46%C steel, makes the BUE disappeared, bringing less flank wear. (2) In the case of 18%Mn steel cutting, deep groove wear on the end-cutting edge diminishes, and roughness of the machined surface is improved by the prevention from chatter. (3) Although the chilled cast iron has high hardness of above HB = 350, the plasma hot machining makes it possible to cut it with tungsten carbide tools having less chipping and flank wear. (author)

  13. Biology and preliminary host range of Hydrotimetes natans Kolbe (Coleoptera:Curculionidae)a natural enemy candidate for biological control of Cabomba caroliniana Gray (Cabombaceae) in Australia

    Science.gov (United States)

    Cabomba caroliniana Gray (Cabombaceae), otherwise known as cabomba or water fanwort, is a submerged, rooted macrophyte with heavily dissected leaves that produces flowers that extend above the water’s surface. It has been disseminated around the world through the aquarium trade and has become a nox...

  14. Analyses of Effects of Cutting Parameters on Cutting Edge Temperature Using Inverse Heat Conduction Technique

    Directory of Open Access Journals (Sweden)

    Marcelo Ribeiro dos Santos

    2014-01-01

    Full Text Available During machining energy is transformed into heat due to plastic deformation of the workpiece surface and friction between tool and workpiece. High temperatures are generated in the region of the cutting edge, which have a very important influence on wear rate of the cutting tool and on tool life. This work proposes the estimation of heat flux at the chip-tool interface using inverse techniques. Factors which influence the temperature distribution at the AISI M32C high speed steel tool rake face during machining of a ABNT 12L14 steel workpiece were also investigated. The temperature distribution was predicted using finite volume elements. A transient 3D numerical code using irregular and nonstaggered mesh was developed to solve the nonlinear heat diffusion equation. To validate the software, experimental tests were made. The inverse problem was solved using the function specification method. Heat fluxes at the tool-workpiece interface were estimated using inverse problems techniques and experimental temperatures. Tests were performed to study the effect of cutting parameters on cutting edge temperature. The results were compared with those of the tool-work thermocouple technique and a fair agreement was obtained.

  15. Experimental Research Using of MQL in Metal Cutting

    Directory of Open Access Journals (Sweden)

    G. Globočki Lakić

    2013-12-01

    Full Text Available In this paper an effect of using of minimal quantity lubrication (MQL technique in turning operations is presented. Experimental research was performed on carbon steel C45E. Technological parameters: depth of cut, feed rate and cutting speed were adjusted to semi-machining and roughing. Higher values ​​of feed and cutting speed were used, than recommended from literature and different types of cooling and lubrication in turning conditions were applied. As a conventional procedure and technology, lubrication with flooding was applied. As special lubrication the MQL technique was used. During research, monitoring of the cutting force, chip shape, tool wear and surface roughness was performed. Relations between parameters, material machinability and economy of process were analyzed.

  16. Chapter 16. Conservation status of great gray owls in the United States

    Science.gov (United States)

    Gregory D. Hayward

    1994-01-01

    Previous chapters outlined the biology and ecology of great gray owls as well as the ecology of this species in the western United States. That technical review provides the basis to assess the current conservation status of great gray owls in the United States. Are populations of great gray owls in the United States currently threatened? Are current land management...

  17. 76 FR 78240 - Gray Portland Cement and Clinker From Japan: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2011-12-16

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-815] Gray Portland Cement and... Department) initiated the third sunset review of the antidumping duty order on gray portland cement and... of the antidumping duty order on gray portland cement and clinker from Japan would likely lead to...

  18. Atrophy of gray and white matters in the brain during aging

    International Nuclear Information System (INIS)

    Takeda, Shumpei; Matsuzawa, Taiju; Ito, Hisao.

    1984-01-01

    We studied atrophy of gray and white matter during aging in 57 males and 44 females with no neurological disturbances using x-ray computed tomography. The ages ranged from 12 to 80 years. Brain atrophy was expressed as brain volume index: 100% x [(brain volume/cranial cavity volume) in individual subjects]/[(brain volume/cranial cavity volume) in normal subjects of 20-39 years]. Atrophy of gray and white matter volume was expressed as gray and white matter volume indices: 100% x (apparent gray or white matter volume index in individual subjects)/(apparent gray or white matter volume index in normal subjects whose brain volume index was greater than 98%), where apparent gray and white matter volume indices were expressed as 100% x [(gray or white matter volume/cranial cavity volume) in individual subjects]/[(gray or white matter volume/cranial cavity volume) in normal subjects of 20-39 years]. Both the gray and white matter volume indices changed proportionally to the brain volume index (p<0.001). As the brain atrophy advanced, the gray matter volume index decreased more than the white matter volume index (P<0.001). Decrease in the gray and white matter volume indices was statistically significant only in seventies (P<0.002 for gray matter, P<0.05 for white matter). (author)

  19. 75 FR 68756 - Eastern North Pacific Gray Whale; Notice of Petition Availability

    Science.gov (United States)

    2010-11-09

    ... North Pacific Gray Whale; Notice of Petition Availability AGENCY: National Marine Fisheries Service... petition to designate the Eastern North Pacific population of gray whales (Eschrichtius robustus) as a... Eastern North Pacific gray whales is available on the Internet at the following address: http://www.nmfs...

  20. Laser cut hole matrices in novel armour plate steel for appliqué battlefield vehicle protection

    Directory of Open Access Journals (Sweden)

    Daniel J. Thomas

    2016-10-01

    Full Text Available During this research, experimental rolled homogeneous armour steel was cast, annealed and laser cut to form an appliqué plate. This Martensitic–Bainitic microstructure steel grade was used to test a novel means of engineering lightweight armour. It was determined that a laser cutting speed of 1200 mm/min produced optimum hole formations with limited distortion. The array of holes acts as a double-edged solution, in that they provide weight saving of 45%, providing a protective advantage and increasing the surface area. Data collected were used to generate laser cut-edge hole projections in order to identify the optimum cutting speed, edge condition, cost and deformation performance. These parameters resulted in the generation of a surface, with less stress raising features. This can result in a distribution of stress across the wider surface. Provided that appropriate process parameters are used to generate laser cut edges, then the hardness properties of the surface can be controlled. This is due to compressive residual stresses produced in the near edge region as a result of metallurgical transformations. This way the traverse cutting speed parameter can be adjusted to alter critical surface characteristics and microstructural properties in close proximity to the cut-edge. A relationship was identified between the width of the laser HAZ and the hardness of the cut edge. It is the thickness of the HAZ that is affected by the laser process parameters which can be manipulated with adjusting the traverse cutting speed.

  1. Modeling and analysis for surface roughness and material removal ...

    African Journals Online (AJOL)

    The cutting parameters considered were tool nose radius, tool rake angle, feed rate, cutting speed, depth of cut and cutting environment (dry, wet and cooled) on the surface roughness and material removal ... A second order mathematical model in terms of cutting parameters is also developed using regression modeling.

  2. Radiative heat exchange between surfaces

    International Nuclear Information System (INIS)

    Yener, Y.; Yuncu, H.

    1987-01-01

    The geometrical features of radiative heat exchange between surfaces are discussed first by developing various radiation shape factor relations. The governing equations for enclosures with diffusely emitting and diffusely reflecting surfaces, as well as the equations for enclosures with gray surfaces having specular component of reflectivity are introduced next. Finally, a simplified model for enclosures with isothermal surfaces under the assumption of uniform radiosity over the surfaces is discussed, and various working relations for different conditions are presented

  3. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  4. Characterization and hardenability evaluation of gray cast iron used in the manufacture of diesel engine cylinder liners

    Directory of Open Access Journals (Sweden)

    Edgar L. Castellanos-Leal

    2017-09-01

    Full Text Available The increment of the mechanical properties (surface hardness of engine cylinder is one of the principal goals for foundry company, to increase the competitiveness of their products in the local and foreign market. This study focused on the characterization of the gray cast iron used in the production of engine cylinder liners and metallurgical parameters determination in the design of conventional quenching heat treatment. The characterization was performed by material hardenability evaluation using Grossmann method, and Jominy test; the austenitizing temperature and the severity of cooling medium to a proper hardening of material were selected. Results revealed that the excellent hardness value obtained is attributed to the suitable hardenability of the gray cast iron and adequate severity selection for hardening treatment.

  5. Demonstration of Laser Cutting System for Tube Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. G.; Kim, G. S.; Heo, G. S.; Baik, S. J.; Kim, H. M.; Ahn, S. B. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The oxide layer removal system was also developed because the oxide layer on the surface of the irradiated fuel cladding and components interrupted the applying the electric current during the processing. However, it was found that the mechanical testing data of the irradiated specimens with removal of oxide layer was less reliable than the specimens with oxide layer . The laser cutting system using Nd:YAG with fiber optic beam delivery has great potential in material processing applications of the irradiated fuel cladding and components due to non-contact process. Thus, the oxide layer doesn't interrupt the fabrication process during the laser cutting system. In the present study, the laser cutting system was designed to fabricate the mechanical testing specimens from the unirradiated fuel cladding with and without oxide. The feasibility of the laser cutting system was demonstrated for the fabrication of various types of unirradiated specimens. The effect of surface oxide layer was also investigated for machining process of the zirlo fuel cladding and it was found that laser beam machining could be a useful tool to fabricate the specimens with surface oxide layer. Based on the feasibility studies and demonstration, the design of the laser cutting machine for fully or partially automatic and remotely operable system will be proposed and made.

  6. Slicing Cuts on Food Materials Using Robotic-Controlled Razor Blade

    Directory of Open Access Journals (Sweden)

    Debao Zhou

    2011-01-01

    Full Text Available Cutting operations using blades can arise in a number of industries, for example, food processing industry, in which cheese, fruit and vegetable, even meat, are involved. Certain questions will rise during these works, such as “why pressing-and-slicing cuts use less force than pressing-only cuts” and “how is the influence of the blade cutting-edge on force”. To answer these questions, this research developed a mathematical expression of the cutting stress tensor. Based on the analysis of the stress tensor on the contact surface, the influence of the blade edge-shape and slicing angle on the resultant cutting force were formulated and discussed. These formulations were further verified using experimental results by robotic cutting of potatoes. Through studying the change of the cutting force, the optimal slicing angle can be obtained in terms of maximum feeding distance and minimum cutting force. Based on the blade sharpness properties and the specific materials, the required cutting force can be predicted. These formulation and experimental results explained the basic theory of blade cutting fracture and further provided the support to optimize the cutting mechanism design and to develop the force control algorithms for the automation of blade cutting operations.

  7. Precision Machining When Cutting with Leading Plastic Deformation

    Directory of Open Access Journals (Sweden)

    N. A. Yaroslavtseva

    2017-01-01

    Full Text Available Keeping up the product competitiveness continually requires solving the problems of reducing time for product creation and material costs for its production and ensuring the maximum conformity of the product quality with the individual requirements of a particular consumer. It is especially difficult to implement these tasks in product manufacturing from the hard-to-machine steels and alloys with extremely low production rate in machining (often 10-20 times lower than when cutting the ordinary structural steels.Currently, one of the promising ways to improve the cutting process of hard-to-machine materials and quality of parts made from these materials is development and application of combined processing methods, which use additional energy sources to act on the machined material in the cutting zone. A BMSTU-developed cutting method with leading plastic deformation (LPD, which acts to raise the production rate, gain the cutting tool-life, reduce the surface roughness, improve the accuracy of processing and the performance characteristics of products, ensure the reliable flow chip control, and improve the labor conditions, belongs to such sort of methods.One of the most important indicators of processing quality that has a great impact on the operation and cost characteristics of the product and on the machining rate as well is the accuracy of processing. In cutting, the processing errors largely arise from the elastic deformations of a technological system when the cutting force, and, in particular, the radial component of the cutting force, acts on it.The deforming devices, used in cutting with LPD, being located as a rule, on the diametrically opposite side with respect to the cutting zone, act on the technological system as vibration dampers. In addition, as studies have shown, the choice of a rational direction for applying LPD load helps to compensate partially or completely the cutting force radial component effect on the technological

  8. 3D Measurement Technology by Structured Light Using Stripe-Edge-Based Gray Code

    International Nuclear Information System (INIS)

    Wu, H B; Chen, Y; Wu, M Y; Guan, C R; Yu, X Y

    2006-01-01

    The key problem of 3D vision measurement using triangle method based on structured light is to acquiring projecting angle of projecting light accurately. In order to acquire projecting angle thereby determine the corresponding relationship between sampling point and image point, method for encoding and decoding structured light based on stripe edge of Gray code is presented. The method encoded with Gray code stripe and decoded with stripe edge acquired by sub-pixel technology instead of pixel centre, so latter one-bit decoding error was removed. Accuracy of image sampling point location and correspondence between image sampling point and object sampling point achieved sub-pixel degree. In addition, measurement error caused by dividing projecting angle irregularly by even-width encoding stripe was analysed and corrected. Encoding and decoding principle and decoding equations were described. Finally, 3dsmax and Matlab software were used to simulate measurement system and reconstruct measured surface. Indicated by experimental results, measurement error is about 0.05%

  9. Food Irradiation Is Done in Grays, not Rads

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2002-01-01

    One federal agency has chosen to use exclusively modern SI units of radiation dose in its regulations: the FDA. While not exactly hot news, this bold move by a U.S. government agency on November 26, 1997, should be noted by those who wish to encourage the switch from curies, working level months, rads, rems, and roentgens to becquerels, joule hours per cubic meter, grays, sieverts, and coulombs per kilogram. The regulation is 21 CFR 179, Irradiation in the Production, Processing, and Handling of Food. Specifically, 21 CFR 179.26 (b) 8. permits meat irradiation up to 4.5 kGy for refrigerated meat and 7.0 kGy for frozen meat. Prior to the 1997 addition, radiation doses had been quoted in grays (kGy) with rad (Mrad) values in parentheses. In the 1997 addition, the Mrads disappeared

  10. MASTICATORY MUSCLE MYOSITIS IN A GRAY WOLF (CANIS LUPUS).

    Science.gov (United States)

    Kent, Marc; Glass, Eric N; Castro, Fernando A; Miller, Andrew D; de Lahunta, Alexander

    2017-03-01

    A 10-yr-old male, neutered gray wolf ( Canis lupus ) was presented for atrophy of the temporalis and masseter muscles. Clinical signs and magnetic resonance imaging were consistent with a myopathy. Positive serology for antibody titers directed against Type 2M myofibers, and the observation of a mixed mononuclear inflammatory cell infiltrate along with eosinophils and neutrophils within the temporalis muscle, were diagnostic for masticatory muscle myositis. Importantly, protozoal myositis was excluded based on other clinicopathologic data. The case highlights the potential for immune-mediated polymyositis in canids other than the domesticated dog ( Canis lupus familaris). Additionally, awareness of a diet in which raw meat is used should prompt a thorough investigation for an underlying infectious myositis in the gray wolf.

  11. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS

    International Nuclear Information System (INIS)

    Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.

    2011-01-01

    We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunov scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.

  12. Equilibrium Analysis in Cake Cutting

    DEFF Research Database (Denmark)

    Branzei, Simina; Miltersen, Peter Bro

    2013-01-01

    Cake cutting is a fundamental model in fair division; it represents the problem of fairly allocating a heterogeneous divisible good among agents with different preferences. The central criteria of fairness are proportionality and envy-freeness, and many of the existing protocols are designed...... to guarantee proportional or envy-free allocations, when the participating agents follow the protocol. However, typically, all agents following the protocol is not guaranteed to result in a Nash equilibrium. In this paper, we initiate the study of equilibria of classical cake cutting protocols. We consider one...... of the simplest and most elegant continuous algorithms -- the Dubins-Spanier procedure, which guarantees a proportional allocation of the cake -- and study its equilibria when the agents use simple threshold strategies. We show that given a cake cutting instance with strictly positive value density functions...

  13. Gray Wolves as Climate Change Buffers in Yellowstone

    OpenAIRE

    Wilmers Christopher C; Getz Wayne M; Getz Wayne M

    2005-01-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefo...

  14. Gray wolves as climate change buffers in Yellowstone.

    OpenAIRE

    Christopher C Wilmers; Wayne M Getz

    2005-01-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefo...

  15. Production of hybrids between western gray wolves and western coyotes.

    Directory of Open Access Journals (Sweden)

    L David Mech

    Full Text Available Using artificial insemination we attempted to produce hybrids between captive, male, western, gray wolves (Canis lupus and female, western coyotes (Canis latrans to determine whether their gametes would be compatible and the coyotes could produce and nurture offspring. The results contribute new information to an ongoing controversy over whether the eastern wolf (Canis lycaon is a valid unique species that could be subject to the U. S. Endangered Species Act. Attempts with transcervically deposited wolf semen into nine coyotes over two breeding seasons yielded three coyote pregnancies. One coyote ate her pups, another produced a resorbed fetus and a dead fetus by C-section, and the third produced seven hybrids, six of which survived. These results show that, although it might be unlikely for male western wolves to successfully produce offspring with female western coyotes under natural conditions, western-gray-wolf sperm are compatible with western-coyote ova and that at least one coyote could produce and nurture hybrid offspring. This finding in turn demonstrates that gamete incompatibility would not have prevented western, gray wolves from inseminating western coyotes and thus producing hybrids with coyote mtDNA, a claim that counters the view that the eastern wolf is a separate species. However, some of the difficulties experienced by the other inseminated coyotes tend to temper that finding and suggest that more experimentation is needed, including determining the behavioral and physical compatibility of western gray wolves copulating with western coyotes. Thus although our study adds new information to the controversy, it does not settle it. Further study is needed to determine whether the putative Canis lycaon is indeed a unique species.

  16. Evaluation of Subependymal Gray Matter Heterotopias on Fetal MRI.

    Science.gov (United States)

    Nagaraj, U D; Peiro, J L; Bierbrauer, K S; Kline-Fath, B M

    2016-04-01

    Subependymal grey matter heterotopias are seen in a high proportion of children with Chiari II malformation and are potentially clinically relevant. However, despite its growing use, there is little in the literature describing its detection on fetal MRI. Our aim was to evaluate the accuracy in diagnosing subependymal gray matter heterotopias in fetuses with spinal dysraphism on fetal MR imaging. This study is a retrospective analysis of 203 fetal MRIs performed at a single institution for spinal dysraphism during a 10-year period. Corresponding obstetric sonography, postnatal imaging, and clinical/operative reports were reviewed. Of the fetal MRIs reviewed, 95 fetuses were included in our analysis; 23.2% (22/95) were suspected of having subependymal gray matter heterotopias on fetal MR imaging prospectively. However, only 50% (11/22) of these cases were confirmed on postnatal brain MR imaging. On postnatal brain MR imaging, 28.4% (27/95) demonstrated imaging findings consistent with subependymal gray matter heterotopia. Only 40.7% (11/27) of these cases were prospectively diagnosed on fetal MR imaging. Fetal MR imaging is limited in its ability to identify subependymal gray matter heterotopias in fetuses with spinal dysraphism. It is believed that this limitation relates to a combination of factors, including artifacts from fetal motion, the very small size of fetal neuroanatomy, differences in imaging techniques, and, possibly, irregularity related to denudation of the ependyma/subependyma in the presence of spinal dysraphism and/or stretching of the germinal matrix in ventriculomegaly. © 2016 by American Journal of Neuroradiology.

  17. Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis

    OpenAIRE

    Devine, Matthew S.; Pannek, Kerstin; Coulthard, Alan; McCombe, Pamela A.; Rose, Stephen E.; Henderson, Robert D.

    2015-01-01

    Limb weakness in amyotrophic lateral sclerosis (ALS) is typically asymmetric. Previous studies have identified an effect of limb dominance on onset and spread of weakness, however relative atrophy of dominant and non-dominant brain regions has not been investigated. Our objective was to use voxel-based morphometry (VBM) to explore gray matter (GM) asymmetry in ALS, in the context of limb dominance. 30 ALS subjects were matched with 17 healthy controls. All subjects were right-handed. Each und...

  18. Complete permutation Gray code implemented by finite state machine

    Directory of Open Access Journals (Sweden)

    Li Peng

    2014-09-01

    Full Text Available An enumerating method of complete permutation array is proposed. The list of n! permutations based on Gray code defined over finite symbol set Z(n = {1, 2, …, n} is implemented by finite state machine, named as n-RPGCF. An RPGCF can be used to search permutation code and provide improved lower bounds on the maximum cardinality of a permutation code in some cases.

  19. Restricted evaluation of Trichodectes canis (Phthiraptera: Trichodectidae detection methods in Alaska gray wolves

    Directory of Open Access Journals (Sweden)

    Theresa M. Woldstad

    2014-12-01

    Full Text Available Trichodectes canis (Phthiraptera: Trichodectidae was first documented on Alaska (USA gray wolves (Canis lupus on the Kenai Peninsula in 1981. In subsequent years, numerous wolves exhibited visually apparent, moderate to severe infestations. Currently, the Alaska Department of Fish and Game utilizes visual inspection, histopathology, and potassium hydroxide (KOH hide digestion for T. canis detection. Our objective was to determine optimal sampling locations for T. canis detection. Wolf hides were subjected to lice enumeration using KOH hide digestion. Thirty nine of the 120 wolves examined had lice. Of these 39, total louse burdens ranged from 14 to an extrapolated 80,000. The hides of 12 infested animals were divided into 10 cm by 10 cm subsections and the lice enumerated on a subsection from each of four regions: neck; shoulder; groin; and rump. Combining the data from these 12 wolves, the highest mean proportions of the total louse burdens on individual wolves were found on the rump and differed significantly from the lowest mean proportion on the neck. However, examination of the four subsections failed to detect all infested wolves. Hides from 16 of the 39 infested animals were cut into left and right sides, and each side then cut into four, approximately equal sections: neck and shoulder; chest; abdomen; and rump. Half hides were totally digested from 11 wolves, and whole hides from 5. For these 21 half hides, the highest mean proportions of total louse burdens were found on the rump, and this section had the highest sensitivity for louse detection, regardless of burden. However, removal of this large section from a hide would likely be opposed by hunters and trappers.

  20. Gray matter and white matter abnormalities in online game addiction

    International Nuclear Information System (INIS)

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-01-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA

  1. Gray matter and white matter abnormalities in online game addiction

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Chuan-Bo, E-mail: send007@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); School of Neurosurgery, Anhui Medical University, 81 Meishang Road, Hefei, Anhui Province 230032 (China); Qian, Ruo-Bing, E-mail: rehomail@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Fu, Xian-Ming, E-mail: 506537677@qq.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Lin, Bin, E-mail: 274722758@qq.com [School of Neurosurgery, Anhui Medical University, 81 Meishang Road, Hefei, Anhui Province 230032 (China); Han, Xiao-Peng, E-mail: hanxiaopeng@163.com [Department of Psychology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Niu, Chao-Shi, E-mail: niuchaoshi@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Wang, Ye-Han, E-mail: wangyehan@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China)

    2013-08-15

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA.

  2. Regional gray matter variation in male-to-female transsexualism

    Science.gov (United States)

    Luders, Eileen; Sánchez, Francisco J.; Gaser, Christian; Toga, Arthur W.; Narr, Katherine L.; Hamilton, Liberty S.; Vilain, Eric

    2009-01-01

    Gender identity—one's sense of being a man or a woman—is a fundamental perception experienced by all individuals that extends beyond biological sex. Yet, what contributes to our sense of gender remains uncertain. Since individuals who identify as transsexual report strong feelings of being the opposite sex and a belief that their sexual characteristics do not reflect their true gender, they constitute an invaluable model to understand the biological underpinnings of gender identity. We analyzed MRI data of 24 male-to-female (MTF) transsexuals not yet treated with cross-sex hormones in order to determine whether gray matter volumes in MTF transsexuals more closely resemble people who share their biological sex (30 control men), or people who share their gender identity (30 control women). Results revealed that regional gray matter variation in MTF transsexuals is more similar to the pattern found in men than in women. However, MTF transsexuals show a significantly larger volume of regional gray matter in the right putamen compared to men. These findings provide new evidence that transsexualism is associated with distinct cerebral pattern, which supports the assumption that brain anatomy plays a role in gender identity. PMID:19341803

  3. POD Model Reconstruction for Gray-Box Fault Detection

    Science.gov (United States)

    Park, Han; Zak, Michail

    2007-01-01

    Proper orthogonal decomposition (POD) is the mathematical basis of a method of constructing low-order mathematical models for the "gray-box" fault-detection algorithm that is a component of a diagnostic system known as beacon-based exception analysis for multi-missions (BEAM). POD has been successfully applied in reducing computational complexity by generating simple models that can be used for control and simulation for complex systems such as fluid flows. In the present application to BEAM, POD brings the same benefits to automated diagnosis. BEAM is a method of real-time or offline, automated diagnosis of a complex dynamic system.The gray-box approach makes it possible to utilize incomplete or approximate knowledge of the dynamics of the system that one seeks to diagnose. In the gray-box approach, a deterministic model of the system is used to filter a time series of system sensor data to remove the deterministic components of the time series from further examination. What is left after the filtering operation is a time series of residual quantities that represent the unknown (or at least unmodeled) aspects of the behavior of the system. Stochastic modeling techniques are then applied to the residual time series. The procedure for detecting abnormal behavior of the system then becomes one of looking for statistical differences between the residual time series and the predictions of the stochastic model.

  4. Gray matter and white matter abnormalities in online game addiction.

    Science.gov (United States)

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-08-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Brain gray matter structural network in myotonic dystrophy type 1.

    Directory of Open Access Journals (Sweden)

    Atsuhiko Sugiyama

    Full Text Available This study aimed to investigate abnormalities in structural covariance network constructed from gray matter volume in myotonic dystrophy type 1 (DM1 patients by using graph theoretical analysis for further clarification of the underlying mechanisms of central nervous system involvement. Twenty-eight DM1 patients (4 childhood onset, 10 juvenile onset, 14 adult onset, excluding three cases from 31 consecutive patients who underwent magnetic resonance imaging in a certain period, and 28 age- and sex- matched healthy control subjects were included in this study. The normalized gray matter images of both groups were subjected to voxel based morphometry (VBM and Graph Analysis Toolbox for graph theoretical analysis. VBM revealed extensive gray matter atrophy in DM1 patients, including cortical and subcortical structures. On graph theoretical analysis, there were no significant differences between DM1 and control groups in terms of the global measures of connectivity. Betweenness centrality was increased in several regions including the left fusiform gyrus, whereas it was decreased in the right striatum. The absence of significant differences between the groups in global network measurements on graph theoretical analysis is consistent with the fact that the general cognitive function is preserved in DM1 patients. In DM1 patients, increased connectivity in the left fusiform gyrus and decreased connectivity in the right striatum might be associated with impairment in face perception and theory of mind, and schizotypal-paranoid personality traits, respectively.

  6. Document segmentation via oblique cuts

    Science.gov (United States)

    Svendsen, Jeremy; Branzan-Albu, Alexandra

    2013-01-01

    This paper presents a novel solution for the layout segmentation of graphical elements in Business Intelligence documents. We propose a generalization of the recursive X-Y cut algorithm, which allows for cutting along arbitrary oblique directions. An intermediate processing step consisting of line and solid region removal is also necessary due to presence of decorative elements. The output of the proposed segmentation is a hierarchical structure which allows for the identification of primitives in pie and bar charts. The algorithm was tested on a database composed of charts from business documents. Results are very promising.

  7. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  8. Correlation methods in cutting arcs

    International Nuclear Information System (INIS)

    Prevosto, L; Kelly, H

    2011-01-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  9. Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718

    Science.gov (United States)

    Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol

    2017-12-01

    Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.

  10. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO2 lasers

    International Nuclear Information System (INIS)

    Golyshev, A A; Malikov, A G; Orishich, A M; Shulyat'ev, V B

    2014-01-01

    Processes of cutting stainless steel by ytterbium fibre and CO 2 lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO 2 laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO 2 laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)

  11. Stresses in ultrasonically assisted bone cutting

    International Nuclear Information System (INIS)

    Alam, K; Mitrofanov, A V; Silberschmidt, V V; Baeker, M

    2009-01-01

    Bone cutting is a frequently used procedure in the orthopaedic surgery. Modern cutting techniques, such as ultrasonic assisted drilling, enable surgeons to perform precision operations in facial and spinal surgeries. Advanced understanding of the mechanics of bone cutting assisted by ultrasonic vibration is required to minimise bone fractures and to optimise the technique performance. The paper presents results of finite element simulations on ultrasonic and conventional bone cutting analysing the effects of ultrasonic vibration on cutting forces and stress distribution. The developed model is used to study the effects of cutting and vibration parameters (e.g. amplitude and frequency) on the stress distributions in the cutting region.

  12. Stagnant zone formation on diamond cutting tools during machining

    International Nuclear Information System (INIS)

    Izman, S.; Tamin, M.N.; Mon, T.T.; Venkatesh, V.C.; Shaharoun, A.M.

    2007-01-01

    Formation of an intact region on the rake face of cutting tool during machining is quite common phenomenon but its significance in maintaining tool edge sharpness has not been recognized by many researchers. This region is sometimes called stagnant zone. It is believed that when an intact zone present on the rake face, it delays the crater wear progress and hence maintaining the tool edge sharpness longer. This paper investigates the effect of edge radius, surface roughness of the rake face and cutting parameters on the formation of stagnant zone on two different type of diamond tools i.e. polycrystalline diamond PCD-KD100 and diamond-coated inserts when machining titanium alloy. The used inserta and post-processed chips were examined under FESEM and optical microscope after cutting at three different conditions. Experimental results show that the speed and feel, the tool edge radius, and the tool rake surface roughness significantly affect the stagnant zone formation. (author)

  13. Fractal characteristic in the wearing of cutting tool

    Science.gov (United States)

    Mei, Anhua; Wang, Jinghui

    1995-11-01

    This paper studies the cutting tool wear with fractal geometry. The wearing image of the flank has been collected by machine vision which consists of CCD camera and personal computer. After being processed by means of preserving smoothing, binary making and edge extracting, the clear boundary enclosing the worn area has been obtained. The fractal dimension of the worn surface is calculated by the methods called `Slit Island' and `Profile'. The experiments and calciating give the conclusion that the worn surface is enclosed by a irregular boundary curve with some fractal dimension and characteristics of self-similarity. Furthermore, the relation between the cutting velocity and the fractal dimension of the worn region has been submitted. This paper presents a series of methods for processing and analyzing the fractal information in the blank wear, which can be applied to research the projective relation between the fractal structure and the wear state, and establish the fractal model of the cutting tool wear.

  14. Prediction of Cutting Force in Turning Process-an Experimental Approach

    Science.gov (United States)

    Thangarasu, S. K.; Shankar, S.; Thomas, A. Tony; Sridhar, G.

    2018-02-01

    This Paper deals with a prediction of Cutting forces in a turning process. The turning process with advanced cutting tool has a several advantages over grinding such as short cycle time, process flexibility, compatible surface roughness, high material removal rate and less environment problems without the use of cutting fluid. In this a full bridge dynamometer has been used to measure the cutting forces over mild steel work piece and cemented carbide insert tool for different combination of cutting speed, feed rate and depth of cut. The experiments are planned based on taguchi design and measured cutting forces were compared with the predicted forces in order to validate the feasibility of the proposed design. The percentage contribution of each process parameter had been analyzed using Analysis of Variance (ANOVA). Both the experimental results taken from the lathe tool dynamometer and the designed full bridge dynamometer were analyzed using Taguchi design of experiment and Analysis of Variance.

  15. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.

    Science.gov (United States)

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-11

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0 o -45 o ). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  16. Cutting system for burnable poison rod

    International Nuclear Information System (INIS)

    Shiina, Atsushi; Toyama, Norihide; Koshino, Yasuo; Fujii, Toshio

    1989-01-01

    Burnable poison rods attached to spent fuels are contained in a containing box and transported to a receiving pool. The burnable poison rod-containing box is provisionally situated by the operation to a handling device to a provisional setting rack in a cutting pool and attached to a cutting guide of a cutting device upon cutting. The burnable poison rod is cut only in a cutting pool water and tritium generated upon cutting is dissolved into the cutting pool water. Diffusion of tritium is thus restricted. Further, the cutting pool is isolated by a partition device from the receiving pool during cutting of the burnable poison rod. Accordingly, water in which tritium is dissolved is inhibited from moving to the receiving pool and prevail of tritium contamination can be avoided. (T.M.)

  17. Effect of Forefoot Strike on Lower Extremity Muscle Activity and Knee Joint Angle During Cutting in Female Team Handball Players.

    Science.gov (United States)

    Yoshida, Naruto; Kunugi, Shun; Mashimo, Sonoko; Okuma, Yoshihiro; Masunari, Akihiko; Miyazaki, Shogo; Hisajima, Tatsuya; Miyakawa, Shumpei

    2015-06-01

    The purpose of this study is to examine the effects of different strike forms, during cutting, on knee joint angle and lower limb muscle activity. Surface electromyography was used to measure muscle activity in individuals performing cutting manoeuvres involving either rearfoot strikes (RFS) or forefoot strikes (FFS). Three-dimensional motion analysis was used to calculate changes in knee angles, during cutting, and to determine the relationship between muscle activity and knee joint angle. Force plates were synchronized with electromyography measurements to compare muscle activity immediately before and after foot strike. The valgus angle tends to be smaller during FFS cutting than during RFS cutting. Just prior to ground contact, biceps femoris, semitendinosus, and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was greater during RFS cutting. Immediately after ground contact, biceps femoris and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was significantly lower during FFS cutting. The results of the present study suggest that the hamstrings demonstrate greater activity, immediately after foot strike, during FFS cutting than during RFS cutting. Thus, FFS cutting may involve a lower risk of anterior cruciate ligament injury than does RFS cutting.

  18. Bladder segmentation in MR images with watershed segmentation and graph cut algorithm

    Science.gov (United States)

    Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael

    2014-03-01

    Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.

  19. Histogram and gray level co-occurrence matrix on gray-scale ultrasound images for diagnosing lymphocytic thyroiditis.

    Science.gov (United States)

    Shin, Young Gyung; Yoo, Jaeheung; Kwon, Hyeong Ju; Hong, Jung Hwa; Lee, Hye Sun; Yoon, Jung Hyun; Kim, Eun-Kyung; Moon, Hee Jung; Han, Kyunghwa; Kwak, Jin Young

    2016-08-01

    The objective of the study was to evaluate whether texture analysis using histogram and gray level co-occurrence matrix (GLCM) parameters can help clinicians diagnose lymphocytic thyroiditis (LT) and differentiate LT according to pathologic grade. The background thyroid pathology of 441 patients was classified into no evidence of LT, chronic LT (CLT), and Hashimoto's thyroiditis (HT). Histogram and GLCM parameters were extracted from the regions of interest on ultrasound. The diagnostic performances of the parameters for diagnosing and differentiating LT were calculated. Of the histogram and GLCM parameters, the mean on histogram had the highest Az (0.63) and VUS (0.303). As the degrees of LT increased, the mean decreased and the standard deviation and entropy increased. The mean on histogram from gray-scale ultrasound showed the best diagnostic performance as a single parameter in differentiating LT according to pathologic grade as well as in diagnosing LT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A three-dimensional stereotaxic atlas of the gray short-tailed opossum (Monodelphis domestica) brain.

    Science.gov (United States)

    Majka, Piotr; Chlodzinska, Natalia; Turlejski, Krzysztof; Banasik, Tomasz; Djavadian, Ruzanna L; Węglarz, Władysław P; Wójcik, Daniel K

    2018-05-01

    The gray short-tailed opossum (Monodelphis domestica) is a small marsupial gaining recognition as a laboratory animal in biomedical research. Despite numerous studies on opossum neuroanatomy, a consistent and comprehensive neuroanatomical reference for this species is still missing. Here we present the first three-dimensional, multimodal atlas of the Monodelphis opossum brain. It is based on four complementary imaging modalities: high resolution ex vivo magnetic resonance images, micro-computed tomography scans of the cranium, images of the face of the cutting block, and series of sections stained with the Nissl method and for myelinated fibers. Individual imaging modalities were reconstructed into a three-dimensional form and then registered to the MR image by means of affine and deformable registration routines. Based on a superimposition of the 3D images, 113 anatomical structures were demarcated and the volumes of individual regions were measured. The stereotaxic coordinate system was defined using a set of cranial landmarks: interaural line, bregma, and lambda, which allows for easy expression of any location within the brain with respect to the skull. The atlas is released under the Creative Commons license and available through various digital atlasing web services.

  1. Grays Harbor and Chehalis River Improvements to Navigation Environmental Studies. Wildlife Studies at Proposed Disposal Sites in Grays Harbor, Washington,

    Science.gov (United States)

    1982-01-01

    sltand. T 𔃼~P i’ W 210 three times VtwCerI November IOC’C -nd ~co l.Etls ~ ec!,!zervc-o betxwe H -gF 12 Th -ind hl rway u- 7Plie Sicuobh. E. Cumin -s 1... stress imposed by dredge dsosal ;ictivities on these species. It is difficult to rredict the effects of establishing a salt marsh in Grays Harbor on

  2. Chip & Cut Tests an Elastomeren

    OpenAIRE

    Euchler, Eric; Heinrich, Gert; Michael, Hannes; Gehde, Michael; Stocek, Radek; Kratina, Ondrej; Kipscholl, Reinhold

    2016-01-01

    Dieser Vortrag stellt einen neuartigen Prüfstand vor, mit welchem das Chip & Cut Verhalten von Elastomeren charakterisiert werden kann. Sowohl theoretischer Hintergrund als auch praktische Erkenntnisse werden diskutiert. Die Vorstellung der Praxisrelevanz dieser Untersuchungen steht im Fokus des Vortrags.

  3. The Cutting-Edge Challenge

    Science.gov (United States)

    Share, Joani

    2005-01-01

    In a time of educational budget cuts, the arts seem to take the major brunt of the financial ax. Fine arts programs are often pitted against one another for survival. The music industry and supporting corporations, such as American Express, campaign to have instruments donated or purchased to keep educational programs alive. The visual arts do not…

  4. Why I like power cuts...

    CERN Multimedia

    Computer Security Team

    2012-01-01

    Accidental power cuts - a permanent nuisance when running accelerators or computing services, since it takes a lot of time to recover from them. While I feel very sorry for those who are under pressure to get their service running again and deeply regret the loss of down-time and availability, I must admit that I like power cuts: power cuts make computers reboot! And rebooting computers at CERN means all the pending software patches are automatically applied.   But don’t think I am egotistic enough to endorse power cuts. Not necessarily! I am already happy if you regularly patch your computer(s) yourself, where regularly means at least once a month: · If you run a centrally or locally managed Windows computer, give that small orange blinking “CMF” icon in the taskbar a chance in the evening to apply all the pending patches. Also, let it initiate a reboot at the end! · If you have a personal computer with your own Windows operating system, ...

  5. Analysis of changes in paper cutting forces during the cutting cycle in single-knife guillotine

    OpenAIRE

    Rusin, Agnieszka; Petriaszwili, Georgij

    2013-01-01

    Paper presents the results of changes in the three components of cutting forces of paper stacks cutting during the cutting cycle in single-knife guillotine. The changes of the three components of cutting force at different stages of cutting cycle were analyzed.

  6. Investigation and validation of optimal cutting parameters for least ...

    African Journals Online (AJOL)

    user

    Turning is carried on lathe that provides the power to turn the work piece at a given rotational speed and ... The cutting parameters influencing the surface finish in EN24 is to be studied ...... Design from Anna University, Chennai, India in 2004.

  7. Feasibility Study of Laser Cutting for Fabrication of Tensile Specimen

    International Nuclear Information System (INIS)

    Jin, Y. G.; Baik, S. J.; Kim, G. S.; Heo, G. S.; Yoo, B. O.; Ahn, S. B.; Chun, Y. B.

    2015-01-01

    The specimen fabrication technique was established to machine the specimen from the irradiated materials. The wire cut EDM(electric discharge machine) was modified to fabricate the mechanical testing specimens from irradiated components and fuel claddings. The oxide layer removal system was also developed because the oxide layer on the surface of the irradiated components and claddings interrupted the applying the electric current during the processing. However, zirconium oxide is protective against further corrosion as well as beneficial to mechanical strength for the tensile deformation of the cladding. Thus, it is important to fabricate the irradiated specimens without removal of oxide layer on the surface of the irradiated structural components and claddings. In the present study, laser cutting system was introduced to fabricate the various mechanical testing specimens from the unirradiated fuel cladding and the feasibility of the laser cutting system was studied for the fabrication of various types of irradiated specimens in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. Laser beam machining system was introduced to fabricate the various mechanical testing specimens from the unirradiated fuel cladding and the dimensions were compared for the feasibility of the laser cutting system. The effect of surface oxide layer was also investigated for machining process of the zircaloy-4 fuel cladding and it was found that laser beam machining could be a useful tool to fabricate the specimens with surface oxide layer

  8. Feasibility Study of Laser Cutting for Fabrication of Tensile Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. G.; Baik, S. J.; Kim, G. S.; Heo, G. S.; Yoo, B. O.; Ahn, S. B.; Chun, Y. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The specimen fabrication technique was established to machine the specimen from the irradiated materials. The wire cut EDM(electric discharge machine) was modified to fabricate the mechanical testing specimens from irradiated components and fuel claddings. The oxide layer removal system was also developed because the oxide layer on the surface of the irradiated components and claddings interrupted the applying the electric current during the processing. However, zirconium oxide is protective against further corrosion as well as beneficial to mechanical strength for the tensile deformation of the cladding. Thus, it is important to fabricate the irradiated specimens without removal of oxide layer on the surface of the irradiated structural components and claddings. In the present study, laser cutting system was introduced to fabricate the various mechanical testing specimens from the unirradiated fuel cladding and the feasibility of the laser cutting system was studied for the fabrication of various types of irradiated specimens in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. Laser beam machining system was introduced to fabricate the various mechanical testing specimens from the unirradiated fuel cladding and the dimensions were compared for the feasibility of the laser cutting system. The effect of surface oxide layer was also investigated for machining process of the zircaloy-4 fuel cladding and it was found that laser beam machining could be a useful tool to fabricate the specimens with surface oxide layer.

  9. High-precision cutting of polyimide film using femtosecond laser for the application in flexible electronics

    Science.gov (United States)

    Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.; Vartapetov, S. K.

    2018-01-01

    The experimental results of cutting a polyimide film on the optical glass substrate by means of femtosecond lasers are given. Two modes of laser cutting of this film without damages to a glass base are determined. The first is the photo graphitization using a high repetition rate femtosecond laser. The second is ablative, under the effect of femtosecond laser pulses with high energy and low repetition rate. Cutting of semiconductor chips formed on the polyimide film surface is successfully demonstrated.

  10. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  11. Prediction of dynamic cutting force and regenerative chatter stability in inserted cutters milling

    Science.gov (United States)

    Li, Zhongqun; Liu, Qiang; Yuan, Songmei; Huang, Kaisheng

    2013-05-01

    Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications.

  12. Study on the separation effect of high-speed ultrasonic vibration cutting.

    Science.gov (United States)

    Zhang, Xiangyu; Sui, He; Zhang, Deyuan; Jiang, Xinggang

    2018-07-01

    High-speed ultrasonic vibration cutting (HUVC) has been proven to be significantly effective when turning Ti-6Al-4V alloy in recent researches. Despite of breaking through the cutting speed restriction of the ultrasonic vibration cutting (UVC) method, HUVC can also achieve the reduction of cutting force and the improvements in surface quality and cutting efficiency in the high-speed machining field. These benefits all result from the separation effect that occurs during the HUVC process. Despite the fact that the influences of vibration and cutting parameters have been discussed in previous researches, the separation analysis of HUVC should be conducted in detail in real cutting situations, and the tool geometry parameters should also be considered. In this paper, three situations are investigated in details: (1) cutting without negative transient clearance angle and without tool wear, (2) cutting with negative transient clearance angle and without tool wear, and (3) cutting with tool wear. And then, complete separation state, partial separation state and continuous cutting state are deduced according to real cutting processes. All the analysis about the above situations demonstrate that the tool-workpiece separation will take place only if appropriate cutting parameters, vibration parameters, and tool geometry parameters are set up. The best separation effect was obtained with a low feedrate and a phase shift approaching 180 degrees. Moreover, flank face interference resulted from the negative transient clearance angle and tool wear contributes to an improved separation effect that makes the workpiece and tool separate even at zero phase shift. Finally, axial and radial transient cutting force are firstly obtained to verify the separation effect of HUVC, and the cutting chips are collected to weigh the influence of flank face interference. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Experimental investigation of transient temperature characteristic in high power fiber laser cutting of a thick steel plate

    Science.gov (United States)

    Phi Long, Nguyen; Matsunaga, Yukihiro; Hanari, Toshihide; Yamada, Tomonori; Muramatsu, Toshiharu

    2016-10-01

    Experiment of temperature measurement was performed to investigate the transient temperature characteristics of molten metal during laser cutting. The aim of this study was to establish a method for measuring the surface temperature variation near the molten pool correlated with changes in cutting parameters. The relationship between temperature inside the kerf cut and characteristic of the cut surface was investigated by using thermography and thermocouples. Results show strong correlations between the transient temperatures and the thermal image for different cutting conditions. In addition, two-color thermometer has been used to obtain radiation intensity emitted from the irradiating zone as a function of operating conditions. Experiments have shown that one can detect the cutting quality by characterization of the surface temperature during laser cutting process.

  14. Countering Gray-Zone Hybrid Threats: An Analysis of Russias New Generation Warfare and Implications for the US Army

    Science.gov (United States)

    2016-10-18

    Threats 21 Laws and Cultural Norms as a Weapons System : When operating in the gray zone, aggressors try to use... Operational Phases 26 Countering Gray-Zone Hybrid Threats 4 Abstract The gray zone is an operating environment in...Countering Gray-Zone Hybrid Threats 6 Criminal Organizations and Networks,

  15. Model for Reggeon-Pomeranchukon cuts

    International Nuclear Information System (INIS)

    Chia, S.

    1977-01-01

    A model is presented for calculating Reggeon-Pomeranchukon cuts, making use explicitly of the Mandelstam diagram. External spins are treated in a natural way. Calculation for the general case is outlined and it is shown that in practical application the cut can be calculated in a standard way. Cuts associated with the exchanges of π, rho, B, and A 2 are considered, and characteristics of the RP cuts, as well as the structure functions, are extracted and discussed. It is found that the model differs considerably from the absorption model. Two suppression schemes are operative which control the magnitudes of cut contributions to amplitudes with ''naturality'' opposite to the Reggeon. The πP cut is found to be a unique case because of the smallness of the pion mass. In general, the RP cuts are self-conspiratorial. At very high energies, all cuts, except πP cut, exhibit quasifactorization

  16. Development of underwater laser cutting technology

    International Nuclear Information System (INIS)

    Sato, Seiichi; Inaba, Takanori; Inose, Koutarou; Matsumoto, Naoyuki; Sakakibara, Yuji

    2015-01-01

    In is desirable to use remote underwater device for the decommissioning work of highly radioactive components such as the nuclear internals from a view point of reducing the ranitidine exposure to the worker. Underwater laser cutting technology has advantages. First advantage in underwater laser cutting technology is that low reaction force during cutting, namely, remote operability is superior. Second point is that underwater laser cutting generates a little amount of secondary waste, because cutting kerf size is very small. Third point is that underwater laser cutting has low risk of the process delay, because device trouble is hard to happen. While underwater laser cutting has many advantages, the careful consideration in the safe treatment of the offgas which underwater laser cutting generates is necessary. This paper describes outline of underwater laser cutting technology developed by IHI Corporation (IHI) and that this technology is effective in various dismantling works in water. (author)

  17. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  18. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  19. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    Science.gov (United States)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  20. Synergizing green and gray infrastructures to increase water supply resilience in the Brazos River basin in Texas

    Science.gov (United States)

    Gao, H.; Yamazaki, D.; Finley, T.; Bohn, T. J.; Low, G.; Sabo, J. L.

    2017-12-01

    Water infrastructure lies at the heart of the challenges and opportunities of Integrated Water Resource Management (IWRM). Green infrastructure (e.g., wetlands restoration) presents an alternative to its hard-path counterpart - gray infrastructure, which often has external, economic and unmeasured ecological costs. But the science framework to prioritize green infrastructure buildout is nascent. In this study, we addressed this gap in Brazos River basin in Texas, in the context of corporate decisions to secure water supplies for various water stewardship objectives. We developed a physically-based tool to quantify the potential for wetland restoration to restore desired flows (hydrology), and a financial framework for comparing its cost-benefit with heightening an existing dam (conservation finance). Our framework has three components. First, we harnessed a topographic index (HAND) to identify the potential wetlands sites. Second, we coupled a land surface model (VIC) with a hydrodynamic model (CaMa-Flood) to investigate the effects of wetland size, location, and vegetation on hydrology. Finally, we estimated the net present value, indirect rate of return and payback period for green (wetlands) vs. gray (reservoir expansion) infrastructure. We found wetlands have more substantial impact on peak flow than baseflow. Interestingly, wetlands can improve baseflow reliability but not directly except with the largest (>400 km2) projects. Peak flow reduction volumes of wetlands if used as credits towards reservoir flood-control storage provide adequate conservation storage to deliver guaranteed reliability of baseflow. Hence, the synergy of existing dams with newly created wetlands offers a promising natural solution to increase water supply resilience, while green projects also generate revenue compared to their gray counterparts. This study demonstrates the possibility of using innovative engineering design to synergize green and gray infrastructures to convert water