WorldWideScience

Sample records for gravity wave energy

  1. Gravity wave vertical energy flux at 95 km

    Science.gov (United States)

    Jacob, P. G.; Jacka, F.

    1985-01-01

    A three-field photometer (3FP) located at Mt. Torrens near Adelaide, is capable of monitoring different airglow emissions from three spaced fields in the sky. A wheel containing up to six different narrow bandpass interference filters can be rotated, allowing each of the filters to be sequentially placed into each of the three fields. The airglow emission of interest is the 557.7 nm line which has an intensity maximum at 95 km. Each circular field of view is located at the apexes of an equilateral triangle centered on zenith with diameters of 5 km and field separations of 13 km when projected to the 95-km level. The sampling period was 30 seconds and typical data lengths were between 7 and 8 hours. The analysis and results from the interaction of gravity waves on the 557.7 nm emission layer are derived using an atmospheric model similar to that proposed by Hines (1960) where the atmosphere is assumed isothermal and perturbations caused by gravity waves are small and adiabatic, therefore, resulting in linearized equations of motion. In the absence of waves, the atmosphere is also considered stationary. Thirteen nights of quality data from January 1983 to October 1984, covering all seasons, are used in this analysis.

  2. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  3. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2014-01-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  4. Scattering of internal gravity waves

    OpenAIRE

    Leaman Nye, Abigail

    2011-01-01

    Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...

  5. The gravitational wave stress–energy (pseudo)-tensor in modified gravity

    Science.gov (United States)

    Saffer, Alexander; Yunes, Nicolás; Yagi, Kent

    2018-03-01

    The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.

  6. Spectral energy transfer of atmospheric gravity waves through sum and difference nonlinear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.M. [Wuhan Univ. (China). School of Electronic Information; Chinese Academey of Sciences, Hefei (China). Key Lab. of Geospace Environment; Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Liu, A.Z.; Li, Z. [Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Zhang, S.D.; Yi, F. [Wuhan Univ. (China). School of Electronic Information; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China)

    2012-07-01

    Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value. (orig.)

  7. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  8. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  9. Surfing surface gravity waves

    Science.gov (United States)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  10. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    Science.gov (United States)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  11. Effective gravitational wave stress-energy tensor in alternative theories of gravity

    International Nuclear Information System (INIS)

    Stein, Leo C.; Yunes, Nicolas

    2011-01-01

    The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.

  12. Seasonal and nightly variations of gravity-wave energy density in the middle atmosphere measured by the Purple Crow Lidar

    Directory of Open Access Journals (Sweden)

    R. J. Sica

    2007-11-01

    Full Text Available The Purple Crow Lidar (PCL is a large power-aperture product monostatic Rayleigh-Raman-Sodium-resonance-fluorescence lidar, which has been in operation at the Delaware Observatory (42.9° N, 81.4° W, 237 m elevation near the campus of The University of Western Ontario since 1992. Kinetic-energy density has been calculated from the Rayleigh-scatter system measurements of density fluctuations at temporal-spatial scales relevant for gravity waves, e.g. soundings at 288 m height resolution and 9 min temporal resolution in the upper stratosphere and mesosphere. The seasonal averages from 10 years of measurements show in all seasons some loss of gravity-wave energy in the upper stratosphere. During the equinox periods and summer the measurements are consistent with gravity waves growing in height with little saturation, in agreement with the classic picture of the variations in the height at which gravity waves break given by Lindzen (1981. The mean values compare favourably to previous measurements when computed as nightly averages, but the high temporal-spatial resolution measurements show considerable day-to-day variability. The variability over a night is often extremely large, with typical RMS fluctuations of 50 to 100% at all heights and seasons common. These measurements imply that using a daily or nightly-averaged gravity-wave energy density in numerical models may be highly unrealistic.

  13. Latitudinal and seasonal variations of lower atmospheric inertial gravity wave energy revealed by US radiosonde data

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.D.; Yi, F. [Wuhan Univ., Hubei (China). School of Electronic Information; Ministry of Education, Wuhan, Hubei (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Huang, C.M. [Wuhan Univ., Hubei (China). School of Electronic Information; Ministry of Education, Wuhan, Hubei (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Miami Univ., Oxford, OH (United States). Electrical and Computer Engineering Dept.; Zhou, Q. [Miami Univ., Oxford, OH (United States). Electrical and Computer Engineering Dept.

    2010-07-01

    The latitudinal and seasonal variations of gravity wave (GW) potential energy density (E{sub P}), kinetic energy density (E{sub K}), and total energy density (E{sub T}), i.e, the sum of potential and kinetic energy densities in the tropospheric (typically 2-10 km) and lower stratospheric (typically 18- 25 km) segments have been derived from 10 years (1998- 2007) of radiosonde observations over 92 United States stations in the Northern Hemisphere. The latitudinal variation of E{sub P} in the lower stratosphere is in good agreement with satellite observations. However, E{sub K} and E{sub T} in the lower stratosphere are different from satellite observations and the difference is believed to be linked with the latitudinal dependence of GW sources. Our analysis reveals that GW energy properties exhibit distinctive latitudinal and seasonal variations. The upward-propagating GW energy in the troposphere is larger than that in the lower stratosphere at low latitudes but the opposite holds true at high latitudes. The transition latitude, where the upward- propagating energies in the two altitude regions are the same, occurs at 35 N throughout the year. So striking differences between GW activity in the troposphere and lower stratosphere are not likely explained only by the background wind Doppler shifting due to strong tropospheric jets. Our analysis indicates that the region around tropopause, roughly from 10 km to 18 km, is an important source region, especially at latitudes below 35 N. Our studies strongly suggest that in order to fully understand the global GW activity in the lower atmosphere, the GW kinetic energy and its geographical and seasonal variations should be included, and more attention should be given to GWs in the troposphere and GW sources within the intermediate region, especially the upper troposphere. (orig.)

  14. Latitudinal and seasonal variations of lower atmospheric inertial gravity wave energy revealed by US radiosonde data

    Directory of Open Access Journals (Sweden)

    S. D. Zhang

    2010-05-01

    Full Text Available The latitudinal and seasonal variations of gravity wave (GW potential energy density (EP, kinetic energy density (EK, and total energy density (ET, i.e, the sum of potential and kinetic energy densities in the tropospheric (typically 2–10 km and lower stratospheric (typically 18–25 km segments have been derived from 10 years (1998–2007 of radiosonde observations over 92 United States stations in the Northern Hemisphere. The latitudinal variation of EP in the lower stratosphere is in good agreement with satellite observations. However, EK and ET in the lower stratosphere are different from satellite observations and the difference is believed to be linked with the latitudinal dependence of GW sources. Our analysis reveals that GW energy properties exhibit distinctive latitudinal and seasonal variations. The upward-propagating GW energy in the troposphere is larger than that in the lower stratosphere at low latitudes but the opposite holds true at high latitudes. The transition latitude, where the upward- propagating energies in the two altitude regions are the same, occurs at 35° N throughout the year. So striking differences between GW activity in the troposphere and lower stratosphere are not likely explained only by the background wind Doppler shifting due to strong tropospheric jets. Our analysis indicates that the region around tropopause, roughly from 10 km to 18 km, is an important source region, especially at latitudes below 35° N. Our studies strongly suggest that in order to fully understand the global GW activity in the lower atmosphere, the GW kinetic energy and its geographical and seasonal variations should be included, and more attention should be given to GWs in the troposphere and GW sources within the intermediate region, especially the upper troposphere.

  15. An introduction to atmospheric gravity waves

    CERN Document Server

    Nappo, Carmen J

    2012-01-01

    Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation.An accompanying website contains real data, computer codes for data analysis, and linear gravity wave models to further enhance the reader's understanding of the book's material. Companion web site features animations and streaming video Foreword by George Chimonas, a renowned expert on the interac...

  16. A statistical study of variations of internal gravity wave energy characteristics in meteor zone

    Science.gov (United States)

    Gavrilov, N. M.; Kalov, E. D.

    1987-01-01

    Internal gravity wave (IGW) parameters obtained by the radiometer method have been considered by many other researchers. The results of the processing of regular radiometeor measurements taken during 1979 to 1980 in Obninsk (55.1 deg N, 36.6 deg E) are presented.

  17. A case study of the energy dissipation of the gravity wave field based on satellite altimeter measurements

    Science.gov (United States)

    Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.

    1983-01-01

    Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.

  18. Upper atmospheric planetary-wave and gravity-wave observations

    Science.gov (United States)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  19. Relic gravity waves from braneworld inflation

    International Nuclear Information System (INIS)

    Sahni, Varun; Sami, M.; Souradeep, Tarun

    2002-01-01

    We discuss a scenario in which extra dimensional effects allow a scalar field with a steep potential to play the dual role of the inflaton as well as dark energy (quintessence). The post-inflationary evolution of the universe in this scenario is generically characterized by a 'kinetic regime' during which the kinetic energy of the scalar field greatly exceeds its potential energy resulting in a 'stiff' equation of state for scalar field matter P φ ≅ρ φ . The kinetic regime precedes the radiation dominated epoch and introduces an important new feature into the spectrum of relic gravity waves created quantum mechanically during inflation. The amplitude of the gravity wave spectrum increases with the wave number for wavelengths shorter than the comoving horizon scale at the commencement of the radiative regime. This 'blue tilt' is a generic feature of models with steep potentials and imposes strong constraints on a class of inflationary braneworld models. Prospects for detection of the gravity wave background by terrestrial and space-borne gravity wave observatories such as LIGO II and LISA are discussed

  20. The wave of the future - Searching for gravity waves

    International Nuclear Information System (INIS)

    Goldsmith, D.

    1991-01-01

    Research on gravity waves conducted by such scientists as Gamov, Wheeler, Weber and Zel'dovich is discussed. Particular attention is given to current trends in the theoretical analysis of gravity waves carried out by theorists Kip Thorne and Leonid Grishchuk. The problems discussed include the search for gravity waves; calculation of the types of gravity waves; the possibility of detecting gravity waves from localized sources, e.g., from the collision of two black holes in a distant galaxy or the collapse of a star, through the Laser Interferometer Gravitational Wave Observatory; and detection primordial gravity waves from the big bang

  1. Dynamical influence of gravity waves generated by the Vestfjella Mountains in Antarctica: radar observations, fine-scale modelling and kinetic energy budget analysis

    Directory of Open Access Journals (Sweden)

    Joel Arnault

    2012-02-01

    Full Text Available Gravity waves generated by the Vestfjella Mountains (in western Droning Maud Land, Antarctica, southwest of the Finnish/Swedish Aboa/Wasa station have been observed with the Moveable atmospheric radar for Antarctica (MARA during the SWEDish Antarctic Research Programme (SWEDARP in December 2007/January 2008. These radar observations are compared with a 2-month Weather Research Forecast (WRF model experiment operated at 2 km horizontal resolution. A control simulation without orography is also operated in order to separate unambiguously the contribution of the mountain waves on the simulated atmospheric flow. This contribution is then quantified with a kinetic energy budget analysis computed in the two simulations. The results of this study confirm that mountain waves reaching lower-stratospheric heights break through convective overturning and generate inertia gravity waves with a smaller vertical wavelength, in association with a brief depletion of kinetic energy through frictional dissipation and negative vertical advection. The kinetic energy budget also shows that gravity waves have a strong influence on the other terms of the budget, i.e. horizontal advection and horizontal work of pressure forces, so evaluating the influence of gravity waves on the mean-flow with the vertical advection term alone is not sufficient, at least in this case. We finally obtain that gravity waves generated by the Vestfjella Mountains reaching lower stratospheric heights generally deplete (create kinetic energy in the lower troposphere (upper troposphere–lower stratosphere, in contradiction with the usual decelerating effect attributed to gravity waves on the zonal circulation in the upper troposphere–lower stratosphere.

  2. How to turn gravity waves into Alfven waves and other such tricks

    International Nuclear Information System (INIS)

    Newington, Marie E; Cally, Paul S

    2011-01-01

    Recent observations of travelling gravity waves at the base of the chromosphere suggest an interplay between gravity wave propagation and magnetic field. Our aims are: to explain the observation that gravity wave flux is suppressed in magnetic regions; to understand why we see travelling waves instead of standing waves; and to see if gravity waves can undergo mode conversion and couple to Alfven waves in regions where the plasma beta is of order unity. We model gravity waves in a VAL C atmosphere, subject to a uniform magnetic field of various orientations, considering both adiabatic and radiatively damped propagation. Results indicate that in the presence of a magnetic field, the gravity wave can propagate as a travelling wave, with the magnetic field orientation playing a crucial role in determining the wave character. For the majority of magnetic field orientations, the gravity wave is reflected at low heights as a slow magneto-acoustic wave, explaining the observation of reduced flux in magnetic regions. In a highly inclined magnetic field, the gravity wave undergoes mode conversion to either field guided acoustic waves or Alfven waves. The primary effect of incorporating radiative damping is a reduction in acoustic and magnetic fluxes measured at the top of the integration region. By demonstrating the mode conversion of gravity waves to Alfven waves, this work identifies a possible pathway for energy transport from the solar surface to the upper atmosphere.

  3. Laser Source for Atomic Gravity Wave Detector

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atom Interferometry (AI) Technology for Gravity Wave Measurements demonstrates new matter wave Interferometric sensor technology for precise detection and...

  4. Gravity's kiss the detection of gravitational waves

    CERN Document Server

    Collins, Harry

    2017-01-01

    Scientists have been trying to confirm the existence of gravitational waves for fifty years. Then, in September 2015, came a "very interesting event" (as the cautious subject line in a physicist's email read) that proved to be the first detection of gravitational waves. In Gravity's Kiss, Harry Collins -- who has been watching the science of gravitational wave detection for forty-three of those fifty years and has written three previous books about it -- offers a final, fascinating account, written in real time, of the unfolding of one of the most remarkable scientific discoveries ever made. Predicted by Einstein in his theory of general relativity, gravitational waves carry energy from the collision or explosion of stars. Dying binary stars, for example, rotate faster and faster around each other until they merge, emitting a burst of gravitational waves. It is only with the development of extraordinarily sensitive, highly sophisticated detectors that physicists can now confirm Einstein's prediction. This is...

  5. Gravity the quest for gravitational wave

    CERN Document Server

    Binétruy, Pierre

    2018-01-01

    What force do the Big Bang, the expansion of the Universe, dark matter and dark energy, black holes, and gravitational waves all have in common? This book uncovers gravity as a key to understanding these fascinating phenomena that have so captivated public interest in recent years. Readers will discover the latest findings on how this familiar force in our everyday lives powers the most colossal changes in the Universe. Written by the widely recognized French public scientist and leading astrophysicist Pierre Binetruy, the book also explains the recent experimental confirmation of the existence of gravitational waves.

  6. Gravity induced wave function collapse

    Science.gov (United States)

    Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.

    2017-11-01

    Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.

  7. Experimental Observation of Negative Effective Gravity in Water Waves

    Science.gov (United States)

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132

  8. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    Science.gov (United States)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  9. Investigating gravity waves evidences in the Venus upper atmosphere

    Science.gov (United States)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  10. The sources of atmospheric gravity waves

    International Nuclear Information System (INIS)

    Nagpal, O.P.

    1979-01-01

    The gravity wave theory has been very successful in the interpretation of various upper atmospheric phenomena. This article offers a review of the present state of knowledge about the various sources of atmospheric gravity waves, particularly those which give rise to different types of travelling ionospheric disturbance. Some specific case studies are discussed. (author)

  11. Stratospheric gravity wave activities inferred through the GPS radio occultation technique

    International Nuclear Information System (INIS)

    Wrasse, Cristiano Max; Takahashi, Hisao; Fechine, Joaquim; Denardini, Clezio Marcos; Wickert, Jens

    2007-01-01

    Stratospheric gravity wave activities were deduced from GPS radio occultation temperature profiles obtained by CHAMP satellite between 2001 and 2005. Potential energy profiles are used to analyze the gravity wave activity over South America. The results showed an inter-annual variation of the potential energy integrated between 24 and 34 km of altitude. The gravity wave activity is more concentrated around the equatorial region. In order to evaluate the seasonal variation of the gravity wave activity, a mean potential energy was determined over (10 deg N-10 deg S) and (100 deg W-20 deg W). The results showed a lower gravity wave activity during winter time, while during spring time the mean potential energy showed an increase in the wave activity. The results of the mean potential energy also showed that the gravity wave activity in the lower stratosphere exhibits a higher wave activity during 2002 and 2004 and a lower wave activity during 2003 and 2005. (author)

  12. An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data

    Science.gov (United States)

    Rapp, Markus; Dörnbrack, Andreas; Kaifler, Bernd

    2018-02-01

    Temperature profiles based on radio occultation (RO) measurements with the operational European METOP satellites are used to derive monthly mean global distributions of stratospheric (20-40 km) gravity wave (GW) potential energy densities (EP) for the period July 2014-December 2016. In order to test whether the sampling and data quality of this data set is sufficient for scientific analysis, we investigate to what degree the METOP observations agree quantitatively with ECMWF operational analysis (IFS data) and reanalysis (ERA-Interim) data. A systematic comparison between corresponding monthly mean temperature fields determined for a latitude-longitude-altitude grid of 5° by 10° by 1 km is carried out. This yields very low systematic differences between RO and model data below 30 km (i.e., median temperature differences is between -0.2 and +0.3 K), which increases with height to yield median differences of +1.0 K at 34 km and +2.2 K at 40 km. Comparing EP values for three selected locations at which also ground-based lidar measurements are available yields excellent agreement between RO and IFS data below 35 km. ERA-Interim underestimates EP under conditions of strong local mountain wave forcing over northern Scandinavia which is apparently not resolved by the model. Above 35 km, RO values are consistently much larger than model values, which is likely caused by the model sponge layer, which damps small-scale fluctuations above ˜ 32 km altitude. Another reason is the well-known significant increase of noise in RO measurements above 35 km. The comparison between RO and lidar data reveals very good qualitative agreement in terms of the seasonal variation of EP, but RO values are consistently smaller than lidar values by about a factor of 2. This discrepancy is likely caused by the very different sampling characteristics of RO and lidar observations. Direct comparison of the global data set of RO and model EP fields shows large correlation coefficients (0

  13. Gravity waves from quantum stress tensor fluctuations in inflation

    International Nuclear Information System (INIS)

    Wu, Chun-Hsien; Hsiang, Jen-Tsung; Ford, L. H.; Ng, Kin-Wang

    2011-01-01

    We consider the effects of the quantum stress tensor fluctuations of a conformal field in generating gravity waves in inflationary models. We find a nonscale invariant, non-Gaussian contribution which depends upon the total expansion factor between an initial time and the end of inflation. This spectrum of gravity wave perturbations is an illustration of a negative power spectrum, which is possible in quantum field theory. We discuss possible choices for the initial conditions. If the initial time is taken to be sufficiently early, the fluctuating gravity waves are potentially observable both in the CMB radiation and in gravity wave detectors, and could offer a probe of trans-Planckian physics. The fact that they have not yet been observed might be used to constrain the duration and energy scale of inflation. However, this conclusion is contingent upon including the contribution of modes which were trans-Planckian at the beginning of inflation.

  14. Gravity waves from quantum stress tensor fluctuations in inflation

    Science.gov (United States)

    Wu, Chun-Hsien; Hsiang, Jen-Tsung; Ford, L. H.; Ng, Kin-Wang

    2011-11-01

    We consider the effects of the quantum stress tensor fluctuations of a conformal field in generating gravity waves in inflationary models. We find a nonscale invariant, non-Gaussian contribution which depends upon the total expansion factor between an initial time and the end of inflation. This spectrum of gravity wave perturbations is an illustration of a negative power spectrum, which is possible in quantum field theory. We discuss possible choices for the initial conditions. If the initial time is taken to be sufficiently early, the fluctuating gravity waves are potentially observable both in the CMB radiation and in gravity wave detectors, and could offer a probe of trans-Planckian physics. The fact that they have not yet been observed might be used to constrain the duration and energy scale of inflation. However, this conclusion is contingent upon including the contribution of modes which were trans-Planckian at the beginning of inflation.

  15. Gravity and Zero Point Energy

    Science.gov (United States)

    Massie, U. W.

    When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.

  16. Tidal and gravity waves study from the airglow measurements at ...

    Indian Academy of Sciences (India)

    The other waves may be the upward propagating gravity waves or waves resulting from the interaction of inter-mode tidal oscillations, interaction of tidal waves with planetary waves and gravity waves. Some times, the second harmonic wave has higher vertical velocity than the corresponding fundamental wave. Application ...

  17. Wave energy

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, T.J.T. (Queen' s Univ., Belfast, Northern Ireland (UK)); White, P.R.S. (Lanchester Polytechnic, Coventry (UK)); Baker, A.C.J. (Binnie and Partners, London (UK))

    1988-10-01

    An informal discussion on various wave energy converters is reported. These included a prototype oscillating water column (OWC) device being built on the Isle of Islay in Scotland; the SEA Clam; a tapering channel device (Tapchan) raising incoming waves into a lagoon on a Norwegian island and an OWC device on the same island. The Norwegian devices are delivering electricity at about 5.5p/KWh and 4p/KWh respectively with possibilities for reduction to 2.5-3p/KWh and 3p/KWh under favourable circumstances. The discussion ranged over comparisons with progress in wind power, engineering aspects, differences between inshore and offshore devices, tidal range and energy storage. (UK).

  18. VHF radar observations of gravity waves at a low latitude

    Directory of Open Access Journals (Sweden)

    G. Dutta

    1999-08-01

    Full Text Available Wind observations made at Gadanki (13.5°N by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2-6 h from the power spectral density (PSD spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides

  19. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  20. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    Miguel A C Teixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  1. Numerical simulations of convectively excited gravity waves

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.

    1983-01-01

    Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region

  2. Gravity wave influence on NLC: experimental results from ALOMAR, 69° N

    Directory of Open Access Journals (Sweden)

    H. Wilms

    2013-12-01

    Full Text Available The influence of gravity waves on noctilucent clouds (NLC at ALOMAR (69° N is analysed by relating gravity wave activity to NLC occurrence from common-volume measurements. Gravity wave kinetic energies are derived from MF-radar wind data and filtered into different period ranges by wavelet transformation. From the dataset covering the years 1999–2011, a direct correlation between gravity wave kinetic energy and NLC occurrence is not found, i.e., NLC appear independently of the simultaneously measured gravity wave kinetic energy. In addition, gravity wave activity is divided into weak and strong activity as compared to a 13 yr mean. The NLC occurrence rates during strong and weak activity are calculated separately for a given wave period and compared to each other. Again, for the full dataset no dependence of NLC occurrence on relative gravity wave activity is found. However, concentrating on 12 h of NLC detections during 2008, we do find an NLC-amplification with strong long-period gravity wave occurrence. Our analysis hence confirms previous findings that in general NLC at ALOMAR are not predominantly driven by gravity waves while exceptions to this rule are at least possible.

  3. Laser Source for Atomic Gravity Wave Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atom Interferometry (AI) Technology for Gravity Wave Measurements demonstrates new matter wave Interferometric sensor technology for precise detection and...

  4. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    Science.gov (United States)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  5. ENERGY CONSERVATION AND GRAVITY WAVES IN SOUND-PROOF TREATMENTS OF STELLAR INTERIORS. II. LAGRANGIAN CONSTRAINED ANALYSIS

    International Nuclear Information System (INIS)

    Vasil, Geoffrey M.; Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Wood, Toby S.

    2013-01-01

    The speed of sound greatly exceeds typical flow velocities in many stellar and planetary interiors. To follow the slow evolution of subsonic motions, various sound-proof models attempt to remove fast acoustic waves while retaining stratified convection and buoyancy dynamics. In astrophysics, anelastic models typically receive the most attention in the class of sound-filtered stratified models. Generally, anelastic models remain valid in nearly adiabatically stratified regions like stellar convection zones, but may break down in strongly sub-adiabatic, stably stratified layers common in stellar radiative zones. However, studying stellar rotation, circulation, and dynamos requires understanding the complex coupling between convection and radiative zones, and this requires robust equations valid in both regimes. Here we extend the analysis of equation sets begun in Brown et al., which studied anelastic models, to two types of pseudo-incompressible models. This class of models has received attention in atmospheric applications, and more recently in studies of white-dwarf supernova progenitors. We demonstrate that one model conserves energy but the other does not. We use Lagrangian variational methods to extend the energy conserving model to a general equation of state, and dub the resulting equation set the generalized pseudo-incompressible (GPI) model. We show that the GPI equations suitably capture low-frequency phenomena in both convection and radiative zones in stars and other stratified systems, and we provide recommendations for converting low-Mach number codes to this equation set

  6. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.

    Science.gov (United States)

    Das, S; Sahoo, T; Meylan, M H

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  7. Seeding and layering of equatorial spread F by gravity waves

    International Nuclear Information System (INIS)

    Hysell, D.L.; Kelley, M.C.; Swartz, W.E.; Woodman, R.F.

    1990-01-01

    Studies dating back more than 15 years have presented evidence that atmospheric gravity waves play a role in initiating nighttime equatorial F region instabilities. This paper analyzes a spectabular spread F event that for the first time demonstrates a layering which, the authors argue, is controlled by a gravity wave effect. The 50-km vertical wavelength of a gravity wave which they have found is related theoretically to a plasma layering irregularity that originated at low altitudes and then was convected, intact, to higher altitudes. Gravity waves also seem to have determined bottomside intermediate scale undulations, although this fact is not as clear in the data. The neutral wind dynamo effect yields wave number conditions on the gravity wave's ability to modulate the Rayleigh-Taylor instaiblity process. Finally, after evaluating the gravity wave dispersion relation and spatial resonance conditions, we estimate the properties of the seeding wave

  8. Pseudotopological quasilocal energy of torsion gravity

    Science.gov (United States)

    Ko, Sheng-Lan; Lin, Feng-Li; Ning, Bo

    2017-08-01

    Torsion gravity is a natural extension to Einstein gravity in the presence of fermion matter sources. In this paper we adopt Wald's covariant method of calculating the Noether charge to construct the quasilocal energy of the Einstein-Cartan-fermion system, and find that its explicit expression is formally independent of the coupling constant between the torsion and axial current. This seemingly topological nature is unexpected and is reminiscent of the quantum Hall effect and topological insulators. However, a coupling dependence does arise when evaluating it on shell, and thus the situation is pseudotopological. Based on the expression for the quasilocal energy, we evaluate it for a particular solution on the entanglement wedge and find agreement with the holographic relative entropy obtained before. This shows the equivalence of these two quantities in the Einstein-Cartan-fermion system. Moreover, the quasilocal energy in this case is not always positive definite, and thus it provides an example of a swampland in torsion gravity. Based on the covariant Noether charge, we also derive the nonzero fermion effect on the Komar angular momentum. The implications of our results for future tests of torsion gravity in gravitational-wave astronomy are also discussed.

  9. Propagation of inertial-gravity waves on an island shelf

    Science.gov (United States)

    Bondur, V. G.; Sabinin, K. D.; Grebenyuk, Yu. V.

    2015-09-01

    The propagation of inertial-gravity waves (IGV) at the boundary of the Pacific shelf near the island of Oahu (Hawaii), whose generation was studied in the first part of this work [1], is analyzed. It is shown that a significant role there is played by the plane oblique waves; whose characteristics were identified by the method of estimating 3D wave parameters for the cases when the measurements are available only for two verticals. It is established that along with the descending propagation of energy that is typical of IGVs, wave packets ascend from the bottom to the upper layers, which is caused by the emission of waves from intense jets of discharged waters flowing out of a diffusor located at the bottom.

  10. On the unstable mode merging of gravity-inertial waves with Rossby waves

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-08-01

    Full Text Available We recapitulate the results of the combined theory of gravity-inertial-Rossby waves in a rotating, stratified atmosphere. The system is shown to exhibit a "local" (JWKB instability whenever the phase speed of the low-frequency-long wavelength westward propagating Rossby wave exceeds the phase speed ("Kelvin" speed of the high frequency-short wavelength gravity-inertial wave. This condition ensures that mode merging, leading to instability, takes place in some intermediate band of frequencies and wave numbers. The contention that such an instability is "spurious" is not convincing. The energy source of the instability resides in the background enthalpy which can be released by the action of the gravitational buoyancy force, through the combined wave modes.

  11. Upper atmospheric gravity wave details revealed in nightglow satellite imagery

    Science.gov (United States)

    Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.

    2015-01-01

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004

  12. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  13. A case study of gravity waves in noctilucent clouds

    Directory of Open Access Journals (Sweden)

    P. Dalin

    2004-06-01

    Full Text Available We present a case study of a noctilucent cloud (NLC display appearing on 10-11 August 2000 over Northern Sweden. Clear wave structures were visible in the clouds and time-lapse photography was used to derive the parameters characterising the gravity waves which could account for the observed NLC modulation. Using two nearby atmospheric radars, the Esrange MST Radar data and Andoya MF radar, we have identified gravity waves propagating upward from the upper stratosphere to NLC altitudes. The wave parameters derived from the radar measurements support the suggestion that gravity waves are responsible for the observed complex wave dynamics in the NLC.

  14. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    Science.gov (United States)

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  15. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Science.gov (United States)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a

  16. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Directory of Open Access Journals (Sweden)

    C. I. Meyer

    2018-01-01

    Full Text Available We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are

  17. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    Directory of Open Access Journals (Sweden)

    M. Ern

    2018-04-01

    Full Text Available Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs and chemistry climate models (CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE. GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER. Typical distributions (zonal averages and global maps of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.

  18. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    Science.gov (United States)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin

    2018-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658" target="_blank">https://doi.org/10.1594/PANGAEA.879658.

  19. New Gravity Wave Treatments for GISS Climate Models

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2011-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.

  20. Stratospheric gravity wave activities inferred through the GPS radio occultation technique; Ondas de gravidade na estratosfera terrestre inferida atraves da tecnica de radio ocultacao de GPS

    Energy Technology Data Exchange (ETDEWEB)

    Wrasse, Cristiano Max [Universidade do Vale do Paraiba (UNIVAP), Instituto de Pesquisa e Desenvolvimento (IPeD), Sao Jose dos Campos, SP (Brazil); Takahashi, Hisao; Fechine, Joaquim; Denardini, Clezio Marcos [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Wickert, Jens, E-mail: cmw@univap.br, E-mail: hisaotak@laser.inpe.br, E-mail: joaquim@laser.inpe.br, E-mail: denardin@dae.inpe.br, E-mail: jens.wickert@gfz-potsdam.de [GeoForschungsZentrum, Potsdam (GFZ), Department of Geodesy and Remote Sensing (Germany)

    2007-07-01

    Stratospheric gravity wave activities were deduced from GPS radio occultation temperature profiles obtained by CHAMP satellite between 2001 and 2005. Potential energy profiles are used to analyze the gravity wave activity over South America. The results showed an inter-annual variation of the potential energy integrated between 24 and 34 km of altitude. The gravity wave activity is more concentrated around the equatorial region. In order to evaluate the seasonal variation of the gravity wave activity, a mean potential energy was determined over (10 deg N-10 deg S) and (100 deg W-20 deg W). The results showed a lower gravity wave activity during winter time, while during spring time the mean potential energy showed an increase in the wave activity. The results of the mean potential energy also showed that the gravity wave activity in the lower stratosphere exhibits a higher wave activity during 2002 and 2004 and a lower wave activity during 2003 and 2005. (author)

  1. Gravity waves from tachyonic preheating after hybrid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Dufaux, Jean-Francois [Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Felder, Gary [Department of Physics, Clark Science Center, Smith College, Northampton, MA 01063 (United States); Kofman, Lev [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Navros, Olga, E-mail: jeff.dufaux@uam.es, E-mail: gfelder@email.smith.edu, E-mail: kofman@cita.utoronto.ca, E-mail: navros@email.unc.edu [Department of Mathematics, University of North Carolina Chapel Hill, CB3250 Philips Hall, Chapel Hill, NC 27599 (United States)

    2009-03-15

    We study the stochastic background of gravitational waves produced from preheating in hybrid inflation models. We investigate different dynamical regimes of preheating in these models and we compute the resulting gravity wave spectra using analytical estimates and numerical simulations. We discuss the dependence of the gravity wave frequencies and amplitudes on the various potential parameters. We find that large regions of the parameter space leads to gravity waves that may be observable in upcoming interferometric experiments, including Advanced LIGO, but this generally requires very small coupling constants.

  2. On The Implications of Atmospheric Gravity Waves on Wind Power

    OpenAIRE

    Norris, Luke

    2011-01-01

    In view of the rapidly rising cost of fossil fuels and concerns over climate change, there can be little doubt that renewable energy is to play a large role in the future of our economic development. The impact of Atmospheric Gravity Waves (AGWs) on wind power is, at best, unclear. In this research, AGWs are successfully modelled both in theoretical and real world environments using the WindSim software package which has revealed a potential 7.4% drop in annual power output as a direct ...

  3. Cosmological acceleration. Dark energy or modified gravity?

    International Nuclear Information System (INIS)

    Bludman, S.

    2006-05-01

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  4. Cosmological acceleration. Dark energy or modified gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Bludman, S

    2006-05-15

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  5. Gravity's shadow the search for gravitational waves

    CERN Document Server

    Collins, Harry

    2004-01-01

    According to the theory of relativity, we are constantly bathed in gravitational radiation. When stars explode or collide, a portion of their mass becomes energy that disturbs the very fabric of the space-time continuum like ripples in a pond. But proving the existence of these waves has been difficult; the cosmic shudders are so weak that only the most sensitive instruments can be expected to observe them directly. Fifteen times during the last thirty years scientists have claimed to have detected gravitational waves, but so far none of those claims have survived the scrutiny of the scie

  6. Intercomparison of stratospheric gravity wave observations with AIRS and IASI

    Directory of Open Access Journals (Sweden)

    L. Hoffmann

    2014-12-01

    Full Text Available Gravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS onboard the National Aeronautics and Space Administration Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 μm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a 5-year period of measurements (2008–2012 showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day- and nighttime data that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological studies of stratospheric

  7. Seasonal variation and sources of atmospheric gravity waves in the Antarctic

    Directory of Open Access Journals (Sweden)

    Kaoru Sato

    2010-12-01

    Full Text Available In the last recent ten years, our knowledge of gravity waves in the Antarctic has been significantly improved through numerous studies using balloon and satellite observations and high-resolution model simulations. In this report, we introduce results from two studies which were performed as a part of the NIPR project "Integrated analysis of the material circulation in the Antarctic atmosphere-cryosphere-ocean" (2004-2009, i.e., Yoshiki et al. (2004 and Sato and Yoshiki (2008. These two studies focused on the seasonal variation and sources of the gravity waves in the Antarctic, because horizontal wavelengths and phase velocities depend largely on the wave sources. The former study used original high-resolution data from operational radiosonde observations at Syowa Station. In the lowermost stratosphere, gravity waves do not exhibit characteristic seasonal variation; instead, the wave energy is intensified when lower latitude air intrudes into the area near Syowa Station in the upper troposphere. This intrusion is associated with blocking events or developed synoptic-scale waves. In the lower and middle stratosphere, the gravity wave energy is maximized in spring and particularly intensified when the axis of the polar night jet approaches Syowa Station. The latter study is based on intensive radiosonde observation campaigns that were performed in 2002 at Syowa Station as an activity of JARE-43. Gravity wave propagation was statistically examined using two dimensional (i.e., vertical wavenumber versus frequency spectra in each season. It was shown that the gravity waves are radiated upward and downward from an unbalanced region of the polar night jet. This feature is consistent with the gravity-wave resolving GCM simulation.

  8. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  9. pp waves of conformal gravity with self-interacting source

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaine, Mokhtar

    2005-01-01

    Recently, Deser, Jackiw and Pi have shown that three-dimensional conformal gravity with a source given by a conformally coupled scalar field admits pp wave solutions. In this paper, we consider this model with a self-interacting potential preserving the conformal structure. A pp wave geometry is also supported by this system and, we show that this model is equivalent to topologically massive gravity with a cosmological constant whose value is given in terms of the potential strength

  10. Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2018-02-01

    We use large-eddy simulations (LES) to investigate the impact of stable stratification on gravity-wave excitation and energy extraction in a large wind farm. To this end, the development of an equilibrium conventionally neutral boundary layer into a stable boundary layer over a period of 8 h is considered, using two different cooling rates. We find that turbulence decay has considerable influence on the energy extraction at the beginning of the boundary-layer transition, but afterwards, energy extraction is dominated by geometrical and jet effects induced by an inertial oscillation. It is further shown that the inertial oscillation enhances gravity-wave excitation. By comparing LES results with a simple one-dimensional model, we show that this is related to an interplay between wind-farm drag, variations in the Froude number and the dispersive effects of vertically-propagating gravity waves. We further find that the pressure gradients induced by gravity waves lead to significant upstream flow deceleration, reducing the average turbine output compared to a turbine in isolated operation. This leads us to the definition of a non-local wind-farm efficiency, next to a more standard wind-farm wake efficiency, and we show that both can be of the same order of magnitude. Finally, an energy flux analysis is performed to further elucidate the effect of gravity waves on the flow in the wind farm.

  11. No further gravitational wave modes in F(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Kazuharu, E-mail: bamba@kmi.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Dipartimento di Fisica, Università di Napoli “Federico II” (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); De Laurentis, Mariafelicia, E-mail: felicia@na.infn.it [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Dipartimento di Fisica, Università di Napoli “Federico II” (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Sáez-Gómez, Diego, E-mail: diego.saezgomez@uct.ac.za [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Astrophysics, Cosmology and Gravity Centre (ACGC) and Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 Posta Kutxatila, 48080 Bilbao (Spain)

    2013-11-25

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar–tensor representation of F(T) gravity.

  12. No further gravitational wave modes in F(T) gravity

    International Nuclear Information System (INIS)

    Bamba, Kazuharu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Nojiri, Shin'ichi; Sáez-Gómez, Diego

    2013-01-01

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar–tensor representation of F(T) gravity

  13. Electromagnetic internal gravity waves in the Earth's ionospheric E-layer

    International Nuclear Information System (INIS)

    Kaladze, T.D.; Tsamalashvili, L.V.; Kaladze, D.T.

    2011-01-01

    In the Earth's ionospheric E-layer existence of the new waves connecting with the electromagnetic nature of internal gravity waves is shown. They represent the mixture of the ordinary internal gravity waves and the new type of dispersive Alfven waves. -- Highlights: ► Existence of electromagnetic internal gravity waves in the ionospheric E-layer is shown. ► Electromagnetic nature of internal gravity waves is described. ► Appearance of the new dispersive Alfven waves is shown.

  14. The Effect of Aerosol on Gravity Wave Characteristics above the Boundary Layer over a Tropical Location

    Science.gov (United States)

    Rakshit, G.; Jana, S.; Maitra, A.

    2017-12-01

    The perturbations of temperature profile over a location give an estimate of the potential energy of gravity waves propagating through the atmosphere. Disturbances in the lower atmosphere due to tropical deep convection, orographic effects and various atmospheric disturbances generates of gravity waves. The present study investigates the gravity wave energy estimated from fluctuations in temperature profiles over the tropical location Kolkata (22°34' N, 88°22' E). Gravity waves are most intense during the pre-monsoon period (March-June) at the present location, the potential energy having high values above the boundary layer (2-4 km) as observed from radiosonde profiles. An increase in temperature perturbation, due to high ambient temperature in the presence of heat absorbing aerosols, causes an enhancement in potential energy. As the present study location is an urban metropolitan city experiencing high level of pollution, pollutant aerosols can go much above the normal boundary layer during daytime due to convection causing an extended boundary layer. The Aerosol Index (AAI) obtained from Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A platform at 340 nm and 380 nm confirms the presence of absorbing aerosol particles over the present location. The Hysplit back trajectory analysis shows that the aerosol particles at those heights are of local origin and are responsible for depleting liquid water content due to cloud burning. The aerosol extinction coefficient obtained from CALIPSO data exhibits an increasing trend during 2006-2016 accompanied by a similar pattern of gravity wave energy. Thus the absorbing aerosols have a significant role in increasing the potential energy of gravity wave at an urban location in the tropical region.

  15. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  16. Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View

    Science.gov (United States)

    Bouchette, F.; Mohammadi, B.

    2016-12-01

    It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given

  17. Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions

    International Nuclear Information System (INIS)

    Ablowitz, M J; Haut, T S

    2010-01-01

    High-order asymptotic series are obtained for gravity-capillary solitary waves, where the first term in the series is the well-known sech 2 solution of the KdV equation. The asymptotic series is used, with nine terms included, to investigate the effects of surface tension on the height and energy of large amplitude waves, and waves close to the solitary version of Stokes' extreme wave. In particular, for surface tension below a critical value, the solitary wave with the maximum energy is obtained. For large surface tension, the series is also used to study the energy related to the solitary waves of depression. Energy considerations suggest that, for large enough surface tension, there are solitary waves that can get close to the fluid bottom. Comparisons are also made with recent experiments.

  18. Cycloidal Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  19. SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter

    2008-01-01

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...

  20. Properties of surface waves in granular media under gravity

    International Nuclear Information System (INIS)

    Zheng He-Peng

    2014-01-01

    Acoustical waves propagating along the free surface of granular media under gravity are investigated in the framework of elasticity theory. The influence of stress on a surface wave is analyzed. The results have shown that two types of surface waves, namely sagittal and transverse modes exist depending on initial stress states, which may have some influence on the dispersion relations of surface waves, but the influence is not great. Considering that the present experimental accuracy is far from distinguishing this detail, the validity of elasticity theory on the surface waves propagating in granular media can still be maintained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  2. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    Science.gov (United States)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion

  3. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  4. Causal properties of nonlinear gravitational waves in modified gravity

    Science.gov (United States)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  5. Experimental study of the propgation and dispersion of internal atmospheric gravity waves

    International Nuclear Information System (INIS)

    Ballard, K.A.

    1981-01-01

    Traveling ionospheric disturbances (TID's) appear as large-scale transverse waves in the F-region (150 to 1000 km altitude), with frequencies on the order of 0.005 to 0.005 cycles per minute, which propagate horizontally over hundreds or even thousands of kilometers. These disturbances have been observed by various radiowave techniques over the past thirty-five years and are now generally accepted as being the manifestation, in the ionized medium, of internal atmospheric gravity waves. A model describing the propagation of gravity waves in an isothermal atmosphere is presented here. The dispersion relation is derived from fundamental principles, and the relation between phase velocity and group velocity is examined. The effects of the Coriolis force and horizontally stratified winds on wave propagation are also analyzed. Conservation of energy in the gravity wave requires increasing amplitude with increasing altitude, inasmuch as the atmospheric density decreases with height. However, this is counteracted by dissipation of wave energy by ion drag, thermal conductivity, and viscous damping. The production of TID's (in the ionized medium) by gravity waves (in the neutral medium) is discussed in quantitative terms, and the vertical predictive function is derived. Dartmouth College has operated a three-station ionosonde network in northern New Hampshire and Vermont on an intermittent basis since 1968. Seven large TID's, found in the 1969 data, are reexamined here in an exhaustive and successful comparison with the gravity wave model. Iso-true-height contours of electron density are used to determine several pertinent TID wave parameters as a function of height

  6. The instability of internal gravity waves to localised disturbances

    Directory of Open Access Journals (Sweden)

    J. Vanneste

    1995-02-01

    Full Text Available The instability of an internal gravity wave due to nonlinear wave-wave interaction is studied theoretically and numerically. Three different aspects of this phenomenon are examined. 1. The influence of dissipation on both the resonant and the nonresonant interactions is analysed using a normal mode expansion of the basic equations. In particular, the modifications induced in the interaction domain are calculated and as a result some modes are shown to be destabilised by dissipation. 2. The evolution of an initial unstable disturbance of finite vertical extent is described as the growth of two secondary wave packets travelling at the same group velocity. A quasi-linear correction to the basic primary wave is calculated, corresponding to a localised amplitude decrease due to the disturbance growth. 3. Numerical experiments are carried out to study the effect of a basic shear on wave instability. It appears that the growing secondary waves can have a frequency larger than that of the primary wave, provided that the shear is sufficient. The instability of waves with large amplitude and long period, such as tides or planetary waves, could therefore be invoked as a possible mechanism for the generation of gravity waves with shorter period in the middle atmosphere.

  7. A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E China

    Directory of Open Access Journals (Sweden)

    S. D. Zhang

    2005-03-01

    Full Text Available Several works concerning the dynamical and thermal structures and inertial gravity wave activities in the troposphere and lower stratosphere (TLS from the radiosonde observation have been reported before, but these works were concentrated on either equatorial or polar regions. In this paper, background atmosphere and gravity wave activities in the TLS over Wuhan (30° N, 114° E (a medium latitudinal region were statistically studied by using the data from radiosonde observations on a twice daily basis at 08:00 and 20:00 LT in the period between 2000 and 2002. The monthly-averaged temperature and horizontal winds exhibit the essential dynamic and thermal structures of the background atmosphere. For avoiding the extreme values of background winds and temperature in the height range of 11-18km, we studied gravity waves, respectively, in two separate height regions, one is from ground surface to 10km (lower part, and the other is within 18-25km (upper part. In total, 791 and 1165 quasi-monochromatic inertial gravity waves were extracted from our data set for the lower and upper parts, respectively. The gravity wave parameters (intrinsic frequencies, amplitudes, wavelengths, intrinsic phase velocities and wave energies are calculated and statistically studied. The statistical results revealed that in the lower part, there were 49.4% of gravity waves propagating upward, and the percentage was 76.4% in the upper part. Moreover, the average wave amplitudes and energies are less than those at the lower latitudinal regions, which indicates that the gravity wave parameters have a latitudinal dependence. The correlated temporal evolution of the monthly-averaged wave energies in the lower and upper parts and a subsequent quantitative analysis strongly suggested that at the observation site, dynamical instability (strong wind shear induced by the tropospheric jet is the main excitation source of inertial gravity waves in the TLS.

  8. Concept Study of Foundation Systems for Wave Energy Converters

    DEFF Research Database (Denmark)

    Molina, Salvador Devant; Vaitkunaite, Evelina; Ibsen, Lars Bo

    Analysis of possible foundation solution for Wave Energy Converters (WEC) is presented by investigating and optimizing novel foundation systems recently developed for offshore wind turbines. Gravity based, pile and bucket foundations are innovative foundation systems that are analyzed. Concept...

  9. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  10. Quintessential inflation on the brane and the relic gravity wave background

    International Nuclear Information System (INIS)

    Sami, M.; Sahni, V.

    2004-01-01

    Quintessential inflation describes a scenario in which both inflation and dark energy (quintessence) are described by the same scalar field. In conventional braneworld models of quintessential inflation gravitational particle-production is used to reheat the universe. This reheating mechanism is very inefficient and results in an excessive production of gravity waves which violate nucleosynthesis constraints and invalidate the model. We describe a new method of realizing quintessential inflation on the brane in which inflation is followed by 'instant preheating' (Felder, Kofman and Linde 1999). The larger reheating temperature in this model results in a smaller amplitude of relic gravity waves which is consistent with nucleosynthesis bounds. The relic gravity wave background has a 'blue' spectrum at high frequencies and is a generic byproduct of successful quintessential inflation on the brane

  11. Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere

    International Nuclear Information System (INIS)

    Li Ziliang

    2008-01-01

    By introducing a new transformation, a new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system, which extends Fan's direct algebraic method to the case when r > 4. The solutions of a first-order nonlinear ordinary differential equation with a higher degree nonlinear term and Fan's direct algebraic method of obtaining exact solutions to nonlinear partial differential equations are applied to the combined KdV-mKdV-GKdV equation, which is derived from a simple incompressible non-hydrostatic Boussinesq equation with the influence of thermal forcing and is applied to investigate internal gravity waves in the atmosphere. As a result, by taking advantage of the new first-order nonlinear ordinary differential equation with a fifth-degree nonlinear term and an eighth-degree nonlinear term, periodic wave solutions associated with the Jacobin elliptic function and the bell and kink profile solitary wave solutions are obtained under the effect of thermal forcing. Most importantly, the mechanism of propagation and generation of the periodic waves and the solitary waves is analysed in detail according to the values of the heating parameter, which show that the effect of heating in atmosphere helps to excite westerly or easterly propagating periodic internal gravity waves and internal solitary waves in atmosphere, which are affected by the local excitation structures in atmosphere. In addition, as an illustrative sample, the properties of the solitary wave solution and Jacobin periodic solution are shown by some figures under the consideration of heating interaction

  12. Generating gravity waves with matter and electromagnetic waves

    International Nuclear Information System (INIS)

    Barrabes, C.; Hogan, P A.

    2008-01-01

    If a homogeneous plane lightlike shell collides head on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision

  13. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  14. An axisymmetric inertia-gravity wave generator

    Science.gov (United States)

    Maurer, P.; Ghaemsaidi, S. J.; Joubaud, S.; Peacock, T.; Odier, P.

    2017-10-01

    There has been a rich interplay between laboratory experimental studies of internal waves and advancing understanding of their role in the ocean and atmosphere. In this study, we present and demonstrate the concept for a new form of laboratory internal wave generator that can excite axisymmetric wave fields of arbitrary radial structure. The construction and operation of the generator are detailed, and its capabilities are demonstrated through a pair of experiments using a Bessel function and a bourrelet (i.e., ring-shaped) configuration. The results of the experiments are compared with the predictions of an accompanying analytical model.

  15. Active Absorption of Irregular Gravity Waves in BEM-Models

    DEFF Research Database (Denmark)

    Brorsen, Michael; Frigaard, Peter

    1992-01-01

    The boundary element method is applied to the computation of irregular gravity waves. The boundary conditions at the open boundaries are obtained by a digital filtering technique, where the surface elevations in front of the open boundary are filtered numerically yielding the velocity to be presc...... to be prescribed at the boundary. By numerical examples it is shown that well designed filters can reduce the wave reflection to a few per cent over a frequency range corresponding to a Jonswap spectrum....

  16. On gravitational energy in conformal teleparallel gravity

    Science.gov (United States)

    da Silva, J. G.; Ulhoa, S. C.

    2017-07-01

    The paper deals with the definition of gravitational energy in conformal teleparallel gravity. The total energy is defined by means of the field equations which allow a local conservation law. Then such an expression is analyzed for a homogeneous and isotropic Universe. This model is implemented by the Friedmann-Robertson-Walker (FRW) line element. The energy of the Universe in the absence of matter is identified with the dark energy, however it can be expanded for curved models defining such an energy as the difference between the total energy and the energy of the perfect fluid which is the matter field in the FRW model.

  17. A Plant's Response to Gravity as a Wave Guide Phenomenon

    Science.gov (United States)

    Wagner, Orvin

    1997-11-01

    Plant experimental data provides a unifying wave theory (W-wave theory) for the growth and development of plants. A plant's response to gravity is an important aspect of this theory. It appears that a plant part is tuned to the angle with which it initially grew with respect to the gravitational field and changes produce correction responses. This is true because the velocity of W-waves (whose standing waves determine plant structure) within plant tissue is found to be different in different directions (angle a) with respect to the gravitational field. I found that there are preferred values of a, namely integral multiples of near 5 degrees for some plants. Conifers apparently are more sensitive to the gravitational field than deciduous trees, in the cases studied, so their structure is determined in more detail by the gravitational field. A plant's response to gravity appears to be a fundamental phenomenon and may provide a new model for gravity that can be experimentally verified in the laboratory. Along these same lines accelerometers placed in plant tissue indicate that plants produce gravity related forces that facilitate sap flow. See the

  18. Field verification of ADCP surface gravity wave elevation spectra

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Peters, H.C.; Schroevers, M.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) can measure orbital velocities induced by surface gravity waves, yet the ADCP estimates of these velocities are subject to a relatively high noise level. The present paper introduces a linear filtration technique to significantly reduce the influence of

  19. Atmospheric gravity waves in the Red Sea: a new hotspot

    KAUST Repository

    Magalhaes, J. M.; Araú jo, I. B.; da Silva, J. C. B.; Grimshaw, R. H. J.; Davis, K.; Pineda, J.

    2011-01-01

    The region of the Middle East around the Red Sea (between 32° E and 44° E longitude and 12° N and 28° N latitude) is a currently undocumented hotspot for atmospheric gravity waves (AGWs). Satellite imagery shows evidence that this region is prone

  20. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE

    NARCIS (Netherlands)

    Garcia, R.F.; Doornbos, E.N.; Bruinsma, S.; Hebert, H.

    2014-01-01

    Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during

  1. The Wave Energy Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    's first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...

  2. Testing strong gravity with gravitational waves and Love numbers

    International Nuclear Information System (INIS)

    Franzin, E; Cardoso, V; Raposo, G; Pani, P

    2017-01-01

    The LIGO observation of GW150914 has inaugurated the gravitational-wave astronomy era and the possibility of testing gravity in extreme regimes. While distorted black holes are the most convincing sources of gravitational waves, similar signals might be produced also by other compact objects. In particular, we discuss what the gravitational-wave ringdown could tell us about the nature of the emitting object, and how measurements of the tidal Love numbers could help us in understanding the internal structure of compact dark objects. (paper)

  3. The Binary Pulsar: Gravity Waves Exist.

    Science.gov (United States)

    Will, Clifford

    1987-01-01

    Reviews the history of pulsars generally and the 1974 discovery of the binary pulsar by Joe Taylor and Russell Hulse specifically. Details the data collection and analysis used by Taylor and Hulse. Uses this discussion as support for Albert Einstein's theory of gravitational waves. (CW)

  4. A perturbative solution for gravitational waves in quadratic gravity

    International Nuclear Information System (INIS)

    Neto, Edgard C de Rey; Aguiar, Odylio D; Araujo, Jose C N de

    2003-01-01

    We find a gravitational wave solution to the linearized version of quadratic gravity by adding successive perturbations to Einstein's linearized field equations. We show that only the Ricci-squared quadratic invariant contributes to give a different solution to those found in Einstein's general relativity. The perturbative solution is written as a power series in the β parameter, the coefficient of the Ricci-squared term in the quadratic gravitational action. We also show that, for monochromatic waves of a given angular frequency ω, the perturbative solution can be summed out to give an exact solution to the linearized version of quadratic gravity, for 0 1/2 . This result may lead to implications for the predictions for gravitational wave backgrounds of cosmological origin

  5. Nonlinear internal gravity waves and their interaction with the mean wind

    International Nuclear Information System (INIS)

    Grimshaw, R.

    1975-01-01

    The interaction of a wave packet of internal gravity waves with the mean wind is investigated, for the case when there is a region of wind shear and hence a critical level. The principal equations are the Doppler-shifted dispersion relation, the equation for conservation of wave action and the mean momentum equation, in which the mean wind is accelerated by a 'radiation stress' tensor, due to the waves. These equations are integrated numerically to study the behaviour of a wave packet approaching a critical level, where the horizontal phase speed matches the mean wind. The results demonstrate the exchange of energy from the waves to the mean wind in the vicinity of the critical level. The interaction between the waves and the mean wind is also studied in the absence of any initial wind shear. (author)

  6. Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves.

    Science.gov (United States)

    Hagala, R; Llinares, C; Mota, D F

    2017-03-10

    Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.

  7. Particle dispersion and mixing induced by breaking internal gravity waves

    Science.gov (United States)

    Bouruet-Aubertot, Pascale; Koudella, C.; Staquet, C.; Winters, K. B.

    2001-01-01

    The purpose of this paper is to analyze diapycnal mixing induced by the breaking of an internal gravity wave — the primary wave — either standing or propagating. To achieve this aim we apply two different methods. The first method consists of a direct estimate of vertical eddy diffusion from particle dispersion while the second method relies upon potential energy budgets [Winters, K.B., Lombard, P.N., Riley, J.J., D'Asaro, E.A., 1995. J. Fluid Mech. 289, 115-128; Winters, K.B., D'Asaro, E.A., 1996. J. Fluid Mech. 317, 179-193]. The primary wave we consider is of small amplitude and is statically stable, a case for which the breaking process involves two-dimensional instabilities. The dynamics of the waves have been previously analyzed by means of two-dimensional direct numerical simulations [Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1995. J. Fluid Mech. 285, 265-301; Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1996. Dyn. Atmos. Oceans 29, 41-63; Koudella, C., Staquet, C., 1998. In: Davis, P. (Ed.), Proceedings of the IMA Conference on Mixing and Dispersion on Stably-stratified Flows, Dundee, September 1996. IMA Publication]. High resolution three-dimensional calculations of the same wave are also reported here [Koudella, C., 1999]. A local estimate of mixing is first inferred from the time evolution of sets of particles released in the flow during the breaking regime. We show that, after an early evolution dominated by shear effects, a diffusion law is reached and the dispersion coefficient is fairly independent of the initial seeding location of the particles in the flow. The eddy diffusion coefficient, K, is then estimated from the diapycnal diffusive flux. A good agreement with the value inferred from particle dispersion is obtained. This finding is of particular interest regarding the interpretation of in situ estimates of K inferred either from tracer dispersion or from microstructure measurements. Computation of the Cox number, equal to the

  8. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    Science.gov (United States)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  9. Interaction between ionization and gravity waves in the upper atmosphere

    International Nuclear Information System (INIS)

    Balcioglu, O.

    1982-10-01

    It is known that travelling ionospheric disturbances are produced by gravity waves. During their movement from the F region downwards to the E region, gravity waves can produce thin layers called transients on ionograms and, if the wave motion persists, 'h-type Esub(S) can be produced. To investigate the problem, the continuity equations for both the E and F regions are solved for a perturbation, the motion of which is taken to be a gravity wave. Hitherto, N'/N 0 , the ratio of the disturbed to the undisturbed electron density, has been calculated by using only the Hall conductivity and ignoring the diffusion term for the F region. In the present calculations we have used Pedersan and Hall conductivities and calculated the N'/N 0 ratio for both the E and F regions. Using CIRA standard atmosphere data we find for the F region that N' can exceed N 0 by up to 4 percent, depending on the horizontal wind velocity. In the E region, N' reaches much higher values than in the F region. Thus at 120 km if we take a typical horizontal wind velocity of 80 m/sec (wavelength 150 km), N' is about twice as large as N 0 . From these results we see that the diffusion term is important for the E region. (author)

  10. Distinguishing modified gravity from dark energy

    International Nuclear Information System (INIS)

    Bertschinger, Edmund; Zukin, Phillip

    2008-01-01

    The acceleration of the Universe can be explained either through dark energy or through the modification of gravity on large scales. In this paper we investigate modified gravity models and compare their observable predictions with dark energy models. Modifications of general relativity are expected to be scale independent on superhorizon scales and scale dependent on subhorizon scales. For scale-independent modifications, utilizing the conservation of the curvature scalar and a parametrized post-Newtonian formulation of cosmological perturbations, we derive results for large-scale structure growth, weak gravitational lensing, and cosmic microwave background anisotropy. For scale-dependent modifications, inspired by recent f(R) theories we introduce a parametrization for the gravitational coupling G and the post-Newtonian parameter γ. These parametrizations provide a convenient formalism for testing general relativity. However, we find that if dark energy is generalized to include both entropy and shear stress perturbations, and the dynamics of dark energy is unknown a priori, then modified gravity cannot in general be distinguished from dark energy using cosmological linear perturbations.

  11. Energy from the waves

    CERN Document Server

    Ross, D

    2012-01-01

    Revised and substantially expanded to include the latest developments in the field, the second edition of this popular book provides a concise, non-technical account of the historical background and current research and development in the field of wave energy and its planned utilisation. It explains in simple terms the technology involved and describes the new inventions, devices and discoveries which led wave energy to be regarded as a significant future source of alternative power. The author recounts the major events leading up to today's development; the roles played by the principal characters involved, inventors, engineers and politicians and the inevitable struggle which all pioneers must face. The book concludes by discussing the environmental implications, the political conflicts and the problems which lie ahead. Also included, is a useful glossary of terms and a selected bibliography of important technical reports and further sources of information.

  12. Acoustic-gravity waves in atmospheric and oceanic waveguides.

    Science.gov (United States)

    Godin, Oleg A

    2012-08-01

    A theory of guided propagation of sound in layered, moving fluids is extended to include acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The orthogonality of AGW normal modes is established in moving and motionless media. A perturbation theory is developed to quantify the relative significance of the gravity and fluid compressibility as well as sensitivity of the normal modes to variations in sound speed, flow velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal modes are found to have certain universal properties which are valid for waveguides with arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can propagate without dispersion in a layered medium.

  13. An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation.

    Science.gov (United States)

    Holt, L A; Alexander, M J; Coy, L; Liu, C; Molod, A; Putman, W; Pawson, S

    2017-07-01

    In this study, gravity waves (GWs) in the high-resolution GEOS-5 Nature Run are first evaluated with respect to satellite and other model results. Southern Hemisphere winter sources of non-orographic GWs in the model are then investigated by linking measures of tropospheric non-orographic gravity wave generation tied to precipitation and frontogenesis with absolute gravity wave momentum flux in the lower stratosphere. Finally, non-orographic GW momentum flux is compared to orographic gravity wave momentum flux and compared to previous estimates. The results show that the global patterns in GW amplitude, horizontal wavelength, and propagation direction are realistic compared to observations. However, as in other global models, the amplitudes are weaker and horizontal wavelengths longer than observed. The global patterns in absolute GW momentum flux also agree well with previous model and observational estimates. The evaluation of model non-orographic GW sources in the Southern Hemisphere winter shows that strong intermittent precipitation (greater than 10 mm h -1 ) is associated with GW momentum flux over the South Pacific, whereas frontogenesis and less intermittent, lower precipitation rates (less than 10 mm h -1 ) are associated with GW momentum flux near 60°S. In the model, orographic GWs contribute almost exclusively to a peak in zonal mean momentum flux between 70 and 75°S, while non-orographic waves dominate at 60°S, and non-orographic GWs contribute a third to a peak in zonal mean momentum flux between 25 and 30°S.

  14. Issues concerning gravity waves from first-order phase transitions

    International Nuclear Information System (INIS)

    Kosowsky, A.

    1993-01-01

    The stochastic background of gravitational radiation is a unique and potentially valuable source of information about the early universe. Photons thermally decoupled when the universe was around 100,000 years old; electromagnetic radiation cannot directly provide information about the epoch earlier than this. In contrast, gravitons presumably decoupled around the Planck time, when the universe was only 10 -44 seconds old. Since gravity wave propagate virtually unimpeded, any energetic event in the evolution of the universe will leave an imprint on the gravity wave background. Turner and Wilczek first suggested that first-order phase transitions, and particularly transitions which occur via the nucleation, expansion, and percolation of vacuum bubbles, will be a particularly efficient source of gravitational radiation. Detailed calculations with scalar-field vacuum bubbles confirm this conjecture and show that strongly first-order phase transitions are probably the strongest stochastic gravity-wave source yet conjectured. In this work the author first reviews the vacuum bubble calculations, stressing their physical assumptions. The author then discusses realistic scenarios for first-order phase transitions and describes how the calculations must be modified and extended to produce reliable results. 11 refs

  15. Parametric pendulum based wave energy converter

    Science.gov (United States)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  16. The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations

    Directory of Open Access Journals (Sweden)

    S.-D. Zhang

    2000-10-01

    Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  17. Novel Probes of Gravity and Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Bhuvnesh; et al.

    2013-09-20

    The discovery of cosmic acceleration has stimulated theorists to consider dark energy or modifications to Einstein's General Relativity as possible explanations. The last decade has seen advances in theories that go beyond smooth dark energy -- modified gravity and interactions of dark energy. While the theoretical terrain is being actively explored, the generic presence of fifth forces and dark sector couplings suggests a set of distinct observational signatures. This report focuses on observations that differ from the conventional probes that map the expansion history or large-scale structure. Examples of such novel probes are: detection of scalar fields via lab experiments, tests of modified gravity using stars and galaxies in the nearby universe, comparison of lensing and dynamical masses of galaxies and clusters, and the measurements of fundamental constants at high redshift. The observational expertise involved is very broad as it spans laboratory experiments, high resolution astronomical imaging and spectroscopy and radio observations. In the coming decade, searches for these effects have the potential for discovering fundamental new physics. We discuss how the searches can be carried out using experiments that are already under way or with modest adaptations of existing telescopes or planned experiments. The accompanying paper on the Growth of Cosmic Structure describes complementary tests of gravity with observations of large-scale structure.

  18. Gravity wave spectra in the lower stratosphere diagnosed from project loon balloon trajectories

    Science.gov (United States)

    Schoeberl, M. R.; Jensen, E.; Podglajen, A.; Coy, L.; Lodha, C.; Candido, S.; Carver, R.

    2017-08-01

    Project Loon has been launching superpressure balloons since January 2013 to provide worldwide Internet coverage. These balloons typically fly between 18 and 21 km and provide measurements of winds and pressure fluctuations in the lower stratosphere. We divide 1560 Loon flights into 3405 two-day segments for gravity wave analysis. We derive the kinetic energy spectrum from the horizontal balloon motion and estimate the temperature perturbation spectrum (proportional to the potential energy spectrum) from the pressure variations. We fit the temperature (and kinetic energy) data to the functional form T'2 = T'o2[ω/ωο)α, where ω is the wave frequency, ωο is daily frequency, T'o is the base temperature amplitude, and α is the spectral slope. Both the kinetic energy and temperature spectra show -1.9 ± 0.2 power-law dependence in the intrinsic frequency window 3-50 cycles/day. The temperature spectrum slope is weakly anticorrelated with the base temperature amplitude. We also find that the wave base temperature distribution is highly skewed. The tropical modal temperature is 0.77 K. The highest amplitude waves occur over the mountainous regions, the tropics, and the high southern latitudes. Temperature amplitudes show little height variation over our 18-21 km domain. Our results are consistent with other limited superpressure balloon analyses. The modal temperature is higher than the temperature currently used in high-frequency gravity wave parameterizations.

  19. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  20. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  1. The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity

    Science.gov (United States)

    Orazzo, Annagrazia; Hoepffner, Jérôme

    2012-11-01

    At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.

  2. Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2008-02-01

    . This gives a clear indication of the direction of flow of the gravity waves, and corroborates that the source is the auroral oval. This is because the energy is dissipated through heating in each cycle of a wave, therefore, over a given distance, short period waves lose more energy than long and dissipate before they reach their target.

  3. Sediment gravity flows triggered by remotely generated earthquake waves

    Science.gov (United States)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  4. On the Chemical Mixing Induced by Internal Gravity Waves

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-10-10

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.

  5. Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.

    Science.gov (United States)

    Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun

    2017-09-01

    Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.

  6. Persistent gravity wave coupling from the stratosphere to the MLT versus secondary wave generation in Antarctica

    Science.gov (United States)

    Zhao, J.; Geraghty, I.; Chu, X.; Vadas, S.; Becker, E.; Harvey, V. L.; Jones, R. M.; Chen, C.; Lu, X.

    2017-12-01

    After Antarctic persistent gravity waves (GWs) in the Mesosphere and Lower Thermosphere (MLT) were discovered from lidar observations [Chen et al., 2013, 2016], secondary wave generation theory was proposed to explain the source. Here we perform a source investigation of such persistent GWs through analyzing both stratospheric and MLT GWs at McMurdo using temperature measurements (30 - 50 km, year 2011 - 2015) obtained by Fe Boltzmann lidar. In the stratosphere, GW vertical wavelengths (λ) and periods exhibit seasonal cycles with winter maxima and summer minima, which linearly correlated with mean zonal wind velocities. GWs dissipate more in winter than in summer due to larger wave amplitudes. The potential energy density (Ep) are anti-correlated with wind rotation angles but positively correlated with surface and stratospheric winds. Critical level filtering, in-situ generation of GWs, and wave saturation changes play roles in Ep seasonal variations (winter maxima and summer minima). The large increase of Ep from summer to winter possibly results from the decrease in critical level filtering. The gradual variations of Ep from Mar to Oct are likely related both to the increased λ towards winter, allowing larger wave amplitudes before saturation, and to in-situ GW generation via geostrophic adjustment, secondary GW generation. Large Ep occur when McMurdo is inside the jet stream core 5-24º poleward from vortex edge. In winter MLT, the persistent GWs cause larger temperature perturbations (± 30 K, compared to ± 10 K in the stratosphere) with longer λ (23.5 km) and larger vertical phase speeds (1.8 m/s). More waves (95.4%) show downward phase progression compared to the stratospheric GWs (70.4%). Since the inferred horizontal wavelength of stratospheric GWs (350 - 450 km) are much shorter than those of the persistent GWs in the MLT (1000 - 2000 km), the dominant stratospheric GWs are not the direct source of the MLT persistent GWs. Secondary wave generation

  7. Atmospheric gravity waves in the Red Sea: a new hotspot

    KAUST Repository

    Magalhaes, J. M.

    2011-02-03

    The region of the Middle East around the Red Sea (between 32° E and 44° E longitude and 12° N and 28° N latitude) is a currently undocumented hotspot for atmospheric gravity waves (AGWs). Satellite imagery shows evidence that this region is prone to relatively high occurrence of AGWs compared to other areas in the world, and reveals the spatial characteristics of these waves. The favorable conditions for wave propagation in this region are illustrated with three typical cases of AGWs propagating in the lower troposphere over the sea. Using weakly nonlinear long wave theory and the observed characteristic wavelengths we obtain phase speeds which are consistent with those observed and typical for AGWs, with the Korteweg-de Vries theory performing slightly better than Benjamin-Davis-Acrivos-Ono theory as far as phase speeds are concerned. ERS-SAR and Envisat-ASAR satellite data analysis between 1993 and 2008 reveals signatures consistent with horizontally propagating large-scale internal waves. These signatures cover the entire Red Sea and are more frequently observed between April and September, although they also occur during the rest of the year. The region\\'s (seasonal) propagation conditions for AGWs, based upon average vertical atmospheric stratification profiles suggest that many of the signatures identified in the satellite images are atmospheric internal waves. © Author(s) 2011.

  8. Gravity Waves in the Martian Atmosphere detected by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Pätzold, M.; Häusler, B.; Tyler, G. L.; Hinson, D. P.

    2013-09-01

    Gravity waves are an ubiquitous feature in all stably stratified planetary atmospheres. They are known to play a significant role in the energy and momentum budget of the Earth, and they are assumed to be of importance for the redistribution of energy and momentum throughout the Martian atmosphere.

  9. Second generation diffusion model of interacting gravity waves on the surface of deep fluid

    Directory of Open Access Journals (Sweden)

    A. Pushkarev

    2004-01-01

    Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.

  10. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...

  11. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  12. Can gravity waves significantly impact PSC occurrence in the Antarctic?

    Directory of Open Access Journals (Sweden)

    R. M. Woollands

    2009-11-01

    Full Text Available A combination of POAM III aerosol extinction and CHAMP RO temperature measurements are used to examine the role of atmospheric gravity waves in the formation of Antarctic Polar Stratospheric Clouds (PSCs. POAM III aerosol extinction observations and quality flag information are used to identify Polar Stratospheric Clouds using an unsupervised clustering algorithm.

    A PSC proxy, derived by thresholding Met Office temperature analyses with the PSC Type Ia formation temperature (TNAT, shows general agreement with the results of the POAM III analysis. However, in June the POAM III observations of PSC are more abundant than expected from temperature threshold crossings in five out of the eight years examined. In addition, September and October PSC identified using temperature thresholding is often significantly higher than that derived from POAM III; this observation probably being due to dehydration and denitrification. Comparison of the Met Office temperature analyses with corresponding CHAMP observations also suggests a small warm bias in the Met Office data in June. However, this bias cannot fully explain the differences observed.

    Analysis of CHAMP data indicates that temperature perturbations associated with gravity waves may partially explain the enhanced PSC incidence observed in June (relative to the Met Office analyses. For this month, approximately 40% of the temperature threshold crossings observed using CHAMP RO data are associated with small-scale perturbations. Examination of the distribution of temperatures relative to TNAT shows a large proportion of June data to be close to this threshold, potentially enhancing the importance of gravity wave induced temperature perturbations. Inspection of the longitudinal structure of PSC occurrence in June 2005 also shows that regions of enhancement are geographically associated with the Antarctic Peninsula; a known mountain wave "hotspot". The

  13. Wave energy: a Pacific perspective.

    Science.gov (United States)

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.

  14. Tsunami mitigation by resonant triad interaction with acoustic-gravity waves.

    Science.gov (United States)

    Kadri, Usama

    2017-01-01

    Tsunamis have been responsible for the loss of almost a half million lives, widespread long lasting destruction, profound environmental effects, and global financial crisis, within the last two decades. The main tsunami properties that determine the size of impact at the shoreline are its wavelength and amplitude in the ocean. Here, we show that it is in principle possible to reduce the amplitude of a tsunami, and redistribute its energy over a larger space, through forcing it to interact with resonating acoustic-gravity waves. In practice, generating the appropriate acoustic-gravity modes introduces serious challenges due to the high energy required for an effective interaction. However, if the findings are extended to realistic tsunami properties and geometries, we might be able to mitigate tsunamis and so save lives and properties. Moreover, such a mitigation technique would allow for the harnessing of the tsunami's energy.

  15. The Atmospheric Waves Experiment (AWE): Quantifying the Impact of Gravity Waves on the Edge of Space

    Science.gov (United States)

    Taylor, M. J.; Forbes, J. M.; Fritts, D. C.; Eckermann, S. D.; Snively, J. B.; Liu, H.; Janches, D.; Syrstad, E. A.; Esplin, R. W.; Pautet, P. D.; Zhao, Y.; Pendleton, W. R.

    2017-12-01

    New theory and modeling now indicate that upward-propagating gravity waves (GWs) originating in the lower atmosphere have profound effects on the variability and mean state of the ionosphere-thermosphere-mesosphere (ITM) system. A major unknown is the spectrum of small-scale ( 30-300 km) GWs entering this system from below. Yet, this part of the spectrum contains most of the waves that will produce the greatest ITM effects. To address this knowledge gap, the Atmospheric Waves Experiment (AWE) plans to deploy a high-resolution imager (based on the successful Utah State University Advanced Mesospheric Temperature Mapper) on the International Space Station (ISS) to gain a transformative set of GW-resolving temperature measurements using the OH nightglow emission (altitude 87 km). The ISS provides the ideal combination of altitude, geographic and local time coverage to accomplish our proposed science objectives, which seeks not only near-global measurements of GW characteristics in the mesopause region, but also quantification of GW momentum and energy fluxes driving the IT from below. Combined with state-of-the-art high-resolution models, the AWE mission will also assess the relative importance of sources versus propagation conditions in explaining the observed spatial and temporal variability of the GWs. The AWE mission was recently selected for a "Phase A" study as part of the NASA 2016 Heliophysics Explorers Mission of Opportunity (MO) Program. In this presentation, we describe the primary goals of this program and introduce our proposed research methods using proven IR instrument technology. AWE's exceptional capabilities are illustrated with recent discoveries in observing GWs from the ground and from aircraft during the NSF DEEPWAVE campaign, promising a major step forward in understanding how troposphere weather translates to space weather.

  16. Einstein's Gravity and Dark Energy/Matter

    CERN Document Server

    Sarfatti, J

    2003-01-01

    Should Einstein's general relativity be quantized in the usual way even though it is not renormalizable the way the spin 1/2 lepto-quark - spin 1 gauge force boson local field theories are? Condensed matter theorists using P.W. Anderson's "More is different" approach, consistent with Andrei Sakharov's idea of "metric elasticity" with gravity emergent out of quantum electrodynamic zero point vacuum fluctuations, is the approach I take in this paper. The QED vacuum in globally-flat Minkowski space-time is unstable due to exchange of virtual photons between virtual electrons and positron "holes" near the -mc2 Fermi surface well inside the 2mc2 energy gap. This results in a non-perturbative emergence of both Einstein's gravity and a unified dark energy/dark matter w = -1 exotic vacuum zero point fluctuation field controlled by the local macro-quantum vacuum coherent field. The latter is a Bose-Einstein condensate of virtual off-mass-shell bound electron-positron pairs. The dark matter exotic vacuum phase with pos...

  17. Atmosphere-ionosphere coupling from convectively generated gravity waves

    Science.gov (United States)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  18. Gravitational wave echoes from macroscopic quantum gravity effects

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [The Cosmology & Gravity Group and the Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Garay, Luis J. [Departamento de Física Teórica II,Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC),Serrano 121, 28006 Madrid (Spain)

    2017-05-10

    New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened repetitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.

  19. The response of superpressure balloons to gravity wave motions

    Directory of Open Access Journals (Sweden)

    R. A. Vincent

    2014-04-01

    Full Text Available Superpressure balloons (SPB, which float on constant density (isopycnic surfaces, provide a unique way of measuring the properties of atmospheric gravity waves (GW as a function of wave intrinsic frequency. Here we devise a quasi-analytic method of investigating the SPB response to GW motions. It is shown that the results agree well with more rigorous numerical simulations of balloon motions and provide a better understanding of the response of SPB to GW, especially at high frequencies. The methodology is applied to ascertain the accuracy of GW studies using 12 m diameter SPB deployed in the 2010 Concordiasi campaign in the Antarctic. In comparison with the situation in earlier campaigns, the vertical displacements of the SPB were measured directly using GPS. It is shown using a large number of Monte Carlo-type simulations with realistic instrumental noise that important wave parameters, such as momentum flux, phase speed and wavelengths, can be retrieved with good accuracy from SPB observations for intrinsic wave periods greater than ca. 10 min. The noise floor for momentum flux is estimated to be ca. 10−4 mPa.

  20. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign. Part I. Observations with collocated radars

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, P.; Serafimovich, A.; Peters, D.; Latteck, R. [Leibniz-Inst. fuer Atmosphaerenphysik, Kuehlungsborn (Germany); Dalin, P. [Swedish Inst. of Space Physics, Kiruna (Sweden); Goldberg, R. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States)

    2006-07-01

    During the MaCWAVE campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andoeya rocket range (ARR) near Andenes and the Swedish rocket range (ESRANGE) near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHP radar in the upper troposphere/ lower stratosphere at Andenes (69.3 N, 16.0 E) and the ESRAD VHP radar near Kiruna (67.9 N, 21.9 E). Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24-26 January 2003 with dominant vertical wavelengths of about 4-5 km as well as with dominant observed periods of about 13-14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of {proportional_to}200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of {proportional_to}5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains. (orig.)

  1. Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity

    CERN Document Server

    Amelino-Camelia, G; Mavromatos, Nikolaos E; Nanopoulos, Dimitri V

    1997-01-01

    Within a Liouville approach to non-critical string theory, we discuss space-time foam effects on the propagation of low-energy particles. We find an induced frequency-dependent dispersion in the propagation of a wave packet, and observe that this would affect the outcome of measurements involving low-energy particles as probes. In particular, the maximum possible order of magnitude of the space-time foam effects would give rise to an error in the measurement of distance comparable to that independently obtained in some recent heuristic quantum-gravity analyses. We also briefly compare these error estimates with the precision of astrophysical measurements.

  2. Characteristics of equatorial gravity waves derived from mesospheric airglow imaging observations

    Directory of Open Access Journals (Sweden)

    S. Suzuki

    2009-04-01

    Full Text Available We present the characteristics of small-scale (<100 km gravity waves in the equatorial mesopause region derived from OH airglow imaging observations at Kototabang (100.3° E, 0.2° S, Indonesia, from 2002 to 2005. We adopted a method that could automatically detect gravity waves in the airglow images using two-dimensional cross power spectra of gravity waves. The propagation directions of the waves were likely controlled by zonal filtering due to stratospheric mean winds that show a quasi-biennial oscillation (QBO and the presence of many wave sources in the troposphere.

  3. Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-06-01

    Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force. It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ0 of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.

  4. On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere

    Directory of Open Access Journals (Sweden)

    I. P. Chunchuzov

    2009-11-01

    Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.

  5. An Estimation of Wave Attenuation Factor in Ultrasonic Assisted Gravity Drainage Process

    Directory of Open Access Journals (Sweden)

    Behnam Keshavarzi

    2014-01-01

    Full Text Available It has been proved that ultrasonic energy can considerably increase the amount of oil recovery in an immiscible displacement process. Although many studies have been performed on investigating the roles of ultrasonic waves, based on the best of our knowledge, little attention has been paid to evaluate wave attenuation parameter, which is an important parameter in the determination of the energy delivered to the porous medium. In this study, free fall gravity drainage process is investigated in a glass bead porous medium. Kerosene and Dorud crude oil are used as the wetting phases and air is used as the non-wetting phase. A piston-like displacement model with considering constant capillary pressure and applying Corey type approximation for relative permeabilities of both wetting and nonwetting phases is applied. A pressure term is considered to describe the presence of ultrasonic waves and the attenuation factor of ultrasonic waves is calculated by evaluating the value of external pressure applied to enhance the flow using the history matching of the data in the presence and absence of ultrasonic waves. The results introduce the attenuation factor as an important parameter in the process of ultrasonic assisted gravity drainage. The results show that only a low percentage of the ultrasonic energy (5.8% for Dorud crude oil and 3.3% for kerosene is delivered to the flow of the fluid; however, a high increase in oil recovery enhancement (15% for Dorud crude oil and 12% for Kerosene is observed in the experiments. This proves that the ultrasonic waves, even when the contribution is not substantial, can be a significantly efficient method for flow enhancement.

  6. (abstract) Tropospheric Calibration for the Mars Observer Gravity Wave Experiment

    Science.gov (United States)

    Walter, Steven J.; Armstrong, John

    1994-01-01

    In spring 1993, microwave radiometer-based tropospheric calibration was provided for the Mars Observer gravitational wave search. The Doppler shifted X-band radio signals propagating between Earth and the Mars Observer satellite were precisely measured to determine path length variations that might signal passage of gravitational waves. Experimental sensitivity was restricted by competing sources of variability in signal transit time. Principally, fluctuations in the solar wind and ionospheric plasma density combined with fluctions in tropospheric refractivity determined the detection limit. Troposphere-induced path delay fluctions are dominated by refractive changes caused by water vapor inhomogeneities blowing through the signal path. Since passive microwave remote sensing techniques are able to determine atmospheric propagation delays, radiometer-based tropospheric calibration was provided at the Deep Space Network Uranus tracking site (DSS-15). Two microwave water vapor radiometers (WVRs), a microwave temperature profiler (MTP), and a ground based meterological station were deployed to determine line-of-sight vapor content and vertical temperature profile concurrently with Mars Observer tracking measurements. This calibration system provided the capability to correct Mars Observer Doppler data for troposphere-induced path variations. We present preliminary analysis of the Doppler and WVR data sets illustrating the utility of WVRs to calibrate Doppler data. This takes an important step toward realizing the ambitious system required to support future Ka-band Cassini satellite gravity wave tropospheric calibration system.

  7. Large-scale dynamical influence of a gravity wave generated over the Antarctic Peninsula – regional modelling and budget analysis

    Directory of Open Access Journals (Sweden)

    JOEL Arnault

    2013-03-01

    Full Text Available The case study of a mountain wave triggered by the Antarctic Peninsula on 6 October 2005, which has already been documented in the literature, is chosen here to quantify the associated gravity wave forcing on the large-scale flow, with a budget analysis of the horizontal wind components and horizontal kinetic energy. In particular, a numerical simulation using the Weather Research and Forecasting (WRF model is compared to a control simulation with flat orography to separate the contribution of the mountain wave from that of other synoptic processes of non-orographic origin. The so-called differential budgets of horizontal wind components and horizontal kinetic energy (after subtracting the results from the simulation without orography are then averaged horizontally and vertically in the inner domain of the simulation to quantify the mountain wave dynamical influence at this scale. This allows for a quantitative analysis of the simulated mountain wave's dynamical influence, including the orographically induced pressure drag, the counterbalancing wave-induced vertical transport of momentum from the flow aloft, the momentum and energy exchanges with the outer flow at the lateral and upper boundaries, the effect of turbulent mixing, the dynamics associated with geostrophic re-adjustment of the inner flow, the deceleration of the inner flow, the secondary generation of an inertia–gravity wave and the so-called baroclinic conversion of energy between potential energy and kinetic energy.

  8. The measurement of the total electron content applied to the observation of medium scale gravity wave

    International Nuclear Information System (INIS)

    Bertel, L.; Bertin, F.; Testud, J.

    1976-01-01

    The interpretation of the measurements of the integrated electron content in terms of gravity wave requires (1) a gravity wave model at thermospheric altitudes; (2) a gravity wave-ionization interaction model in the F-region of the ionosphere; and (3) a computing program for the resulting perturbation on the integrated electron content between the satellite and the earth station used. The gravity wave model considered in this paper takes into account the dissipative effects (viscosity, thermal conduction) which become very importanr above 250 km altitude and the effect of the base wind which is capable of affecting deeply the propagation of the waves of medium scale. Starting with this model, the domains of frequencies and the wavelength of atmospheric waves which may exist in the upper atmosphere are considered. The interaction of such waves and the ionization is examined. The theoretical results give information particularly on the selectivity of the ionospheric response to the wave passage. The deduced selectivity of the models appears to be smaller than that given by other authors who used simplified gravity wave models. The method for computing the perturbation of the of the integrated electron content introduced by the wave passage is given for a geostationary satellite. Computational results are presented for application to the case of medium scale gravity waves. (author)

  9. Propagation of internal gravity waves in the inhomogeneous atmosphere

    International Nuclear Information System (INIS)

    Deminov, M.G.; Ponomareva, L.I.

    1988-01-01

    Equations for disturbances of the density, temperature and speed of large-scale horizontally propagating internal gravity wave (IGM) wind are presented with regard to non-linearity, dispersion, molecular viscosity, thermal conductivity and background horizontal density and wind speed gradients. It is shown that values of wind speed and background atmosphere density decrease, typical of night conditions, provide for IGV amplitude increase near 250 km above the equator about 1.5 times, which with regard to the both hemispheres, fully compensates the effect of viscosity and thermal conductivity under increased solar activity. Speed and density decrease along IGW propagation can be provided both by background distribution of thermosphere parameters and by the front of a large-scale IGW on the background of which isolated IGW amplitude can grow

  10. Holographic p-wave superfluid in Gauss–Bonnet gravity

    International Nuclear Information System (INIS)

    Liu, Shancheng; Pan, Qiyuan; Jing, Jiliang

    2017-01-01

    We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.

  11. Holographic p-wave superfluid in Gauss–Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shancheng [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Pan, Qiyuan, E-mail: panqiyuan@126.com [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Jing, Jiliang, E-mail: jljing@hunnu.edu.cn [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-02-10

    We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.

  12. How to distinguish dark energy and modified gravity?

    International Nuclear Information System (INIS)

    Wei Hao; Zhang Shuangnan

    2008-01-01

    The current accelerated expansion of our universe could be due to an unknown energy component (dark energy) or a modification of general relativity (modified gravity). In the literature it has been proposed that combining the probes of the cosmic expansion history and growth history can distinguish between dark energy and modified gravity. In this work, without invoking nontrivial dark energy clustering, we show that the possible interaction between dark energy and dark matter could make the interacting dark model and the modified gravity model indistinguishable. An explicit example is also given. Therefore, it is required to seek some complementary probes beyond the ones of cosmic expansion history and growth history.

  13. An Asymptotic and Stochastic Theory for the Effects of Surface Gravity Waves on Currents and Infragravity Waves

    Science.gov (United States)

    McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.

    2004-12-01

    Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some

  14. Testing effective quantum gravity with gravitational waves from extreme mass ratio inspirals

    International Nuclear Information System (INIS)

    Yunes, N; Sopuerta, C F

    2010-01-01

    Testing deviation of GR is one of the main goals of the proposed Laser Interferometer Space Antenna. For the first time, we consistently compute the generation of gravitational waves from extreme-mass ratio inspirals (stellar compact objects into supermassive black holes) in a well-motivated alternative theory of gravity, that to date remains weakly constrained by double binary pulsar observations. The theory we concentrate on is Chern-Simons (CS) modified gravity, a 4-D, effective theory that is motivated both from string theory and loop-quantum gravity, and which enhances the Einstein-Hilbert action through the addition of a dynamical scalar field and the parity-violating Pontryagin density. We show that although point particles continue to follow geodesics in the modified theory, the background about which they inspiral is a modification to the Kerr metric, which imprints a CS correction on the gravitational waves emitted. CS modified gravitational waves are sufficiently different from the General Relativistic expectation that they lead to significant dephasing after 3 weeks of evolution, but such dephasing will probably not prevent detection of these signals, but instead lead to a systematic error in the determination of parameters. We end with a study of radiation-reaction in the modified theory and show that, to leading-order, energy-momentum emission is not CS modified, except possibly for the subdominant effect of scalar-field emission. The inclusion of radiation-reaction will allow for tests of CS modified gravity with space-borne detectors that might be two orders of magnitude larger than current binary pulsar bounds.

  15. Wave energy absorption by ducks

    OpenAIRE

    Kurniawan, Adi

    2017-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle.

  16. Wave energy absorption by ducks

    DEFF Research Database (Denmark)

    Kurniawan, Adi

    2018-01-01

    We study the absorption of wave energy by a single and multiple cam-shaped bodies referred to as ducks. Numerical models are developed under the assumptions of linear theory. We consider wave absorption by a single duck as well as by two lines of ducks meeting at an angle....

  17. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  18. A case study of typhoon-induced gravity waves and the orographic impacts related to Typhoon Mindulle (2004) over Taiwan

    OpenAIRE

    Wu, J. F.; Xue, X. H.; Hoffmann, L.; Dou, X. K.; Li, H. M.; Chen, T. D.

    2015-01-01

    Atmospheric gravity waves (GWs) significantly influence global circulation. Deep convection, particularly that associated with typhoons, is believed to be an important source of gravity waves. Stratospheric gravity waves induced by Typhoon Mindulle (2004) were detected by the Atmospheric Infrared Sounder (AIRS). Semicircular GWs with horizontal wavelengths of 100–400 km were found over Taiwan through an inspection of AIRS radiances at 4.3 μm. Characteristics of the stratospheric gravity waves...

  19. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas, E-mail: llo@roe.ac.uk; Lima, Nelson A.

    2017-02-10

    With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.

  20. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Science.gov (United States)

    Lombriser, Lucas; Lima, Nelson A.

    2017-02-01

    With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar-tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar-tensor modification of gravity.

  1. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Directory of Open Access Journals (Sweden)

    Lucas Lombriser

    2017-02-01

    Full Text Available With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.

  2. Tunnel effect wave energy detection

    Science.gov (United States)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  3. Waves energy comes to surface

    International Nuclear Information System (INIS)

    Guezel, J.Ch.

    2006-01-01

    The wave- or thalasso-energy, potentially as promising as wind energy, have started to develop in Europe. Great Britain has already a good experience in this domain but France shows also ambitions in this beginning industry with several projects in progress. This article makes an overview of the existing tide-, current- and wave-powered generators: tide mills, underwater hydro-turbines, immersed linear generators, air-compression systems, buoy systems, etc. (J.S.)

  4. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  5. A Note on Standing Internal Inertial Gravity Waves of Finite Amplitude

    Science.gov (United States)

    Thorpe, S. A.

    2003-01-01

    The effects of finite amplitude are examined in two-dimensional, standing, internal gravity waves in a rectangular container which rotates about a vertical axis at frequency f/2. Expressions are given for the velocity components, density fluctuations and isopycnal displacements to second order in the wave steepness in fluids with buoyancy frequency, N, of general form, and the effect of finite amplitude on wave frequency is given in an expansion to third order. The first order solutions, and the solutions to second order in the absence of rotation, are shown to conserve energy during a wave cycle. Analytical solutions are found to second order for the first two modes in a deep fluid with N proportional to sech(az), where z is the upward vertical coordinate and a is scaling factor. In the absence of rotation, results for the first mode in the latter stratification are found to be consistent with those for interfacial waves. An analytical solution to fourth order in a fluid with constant N is given and used to examine the effects of rotation on the development of static instability or of conditions in which shear instability may occur. As in progressive internal waves, an effect of rotation is to enhance the possibility of shear instability for waves with frequencies close to f. The analysis points to a significant difference between the dynamics of standing waves in containers of limited size and progressive internal waves in an unlimited fluid; the effect of boundaries on standing waves may inhibit the onset of instability. A possible application of the analysis is to transverse oscillations in long, narrow, steep-sided lakes such as Loch Ness, Scotland.

  6. Long-term MST radar observations of vertical wave number spectra of gravity waves in the tropical troposphere over Gadanki (13.5° N, 79.2° E: comparison with model spectra

    Directory of Open Access Journals (Sweden)

    S. Vijaya Bhaskara Rao

    2008-06-01

    Full Text Available The potential utility of Mesosphere-Stratosphere-Troposphere (MST radar measurements of zonal, meridional and vertical winds for divulging the gravity wave vertical wave number spectra is discussed. The data collected during the years 1995–2004 are used to obtain the mean vertical wave number spectra of gravity wave kinetic energy in the tropical troposphere over Gadanki (13.5° N, 79.2° E. First, the climatology of 3-dimensional wind components is developed using ten years of radar observations, for the first time, over this latitude. This climatology brought out the salient features of background tropospheric winds over Gadanki. Further, using the second order polynomial fit as background, the day-to-day wind anomalies are estimated. These wind anomalies in the 4–14 km height regions are used to estimate the profiles of zonal, meridional and vertical kinetic energy per unit mass, which are then used to estimate the height profile of total kinetic energy. Finally, the height profiles of total kinetic energy are subjected to Fourier analysis to obtain the monthly mean vertical wave number spectra of gravity wave kinetic energy. The monthly mean vertical wave number spectra are then compared with a saturation spectrum predicted by gravity wave saturation theory. A slope of 5/3 is used for the model gravity wave spectrum estimation. In general, the agreement is good during all the months. However, it is noticed that the model spectrum overestimates the PSD at lower vertical wave numbers and underestimates it at higher vertical wave numbers, which is consistently observed during all the months. The observed discrepancies are attributed to the differences in the slopes of theoretical and observed gravity wave spectra. The slopes of the observed vertical wave number spectra are estimated and compared with the model spectrum slope, which are in good agreement. The estimated slopes of the observed monthly vertical wave number spectra are in the

  7. High energy scattering in gravity and supergravity

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Schmidt-Sommerfeld, Maximilian; Andersen, Jeppe Rosenkrantz

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena...... and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra...... a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime....

  8. Comparison of Global Distributions of Zonal-Mean Gravity Wave Variance Inferred from Different Satellite Instruments

    Science.gov (United States)

    Preusse, Peter; Eckermann, Stephen D.; Offermann, Dirk; Jackman, Charles H. (Technical Monitor)

    2000-01-01

    Gravity wave temperature fluctuations acquired by the CRISTA instrument are compared to previous estimates of zonal-mean gravity wave temperature variance inferred from the LIMS, MLS and GPS/MET satellite instruments during northern winter. Careful attention is paid to the range of vertical wavelengths resolved by each instrument. Good agreement between CRISTA data and previously published results from LIMS, MLS and GPS/MET are found. Key latitudinal features in these variances are consistent with previous findings from ground-based measurements and some simple models. We conclude that all four satellite instruments provide reliable global data on zonal-mean gravity wave temperature fluctuations throughout the middle atmosphere.

  9. Gravity waves as a probe of the Hubble expansion rate during an electroweak scale phase transition

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Zhou Peng

    2010-01-01

    Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the Universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the Universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to Laser Interferometer Space Antenna and Big Bang Observer projected sensitivities.

  10. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    Energy Technology Data Exchange (ETDEWEB)

    Vigeesh, G.; Steiner, O. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany); Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de [New Mexico State University, Department of Astronomy, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States)

    2017-02-01

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.

  11. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    Science.gov (United States)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  12. Proposed electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  13. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  14. Gravity waves, Tides and Planetary wave characteristics revealed by network of MLT radars over Indian region

    Science.gov (United States)

    Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Sunkara, Eswaraiah; Vijaya Bhaskara Rao, S.; Subrahmanyam, K. V.; Ramanjaneyulu, L.

    2016-07-01

    Mesosphere and Lower Thermosphere (MLT) mean winds, gravity waves, tidal and planetary wave characteristics are investigated using two years (2013-2015) of advanced meteor radar installed at Tirupathi (13.63oN, 79.4oE), India. The observations reveal the presence of high frequency gravity waves (30-120 minutes), atmospheric tides (diurnal, semi-diurnal and terr-diurnal) along with long period oscillations in both zonal and meridional winds. Background mean zonal winds show clear semi-annual oscillation in the mesosphere, whereas meridional winds are characterized by annual oscillation as expected. Diurnal tide amplitudes are significantly larger (60-80 m/s) than semi-diurnal (10-20 m/s) and terr-diurnal (5-8 m/s) tides and larger in meridional than zonal winds. The measured meridional components are in good agreement with Global Scale Wave Model (GSWM-09) predictions than zonal up to ~90 km in all the seasons, except fall equinox. Diurnal tidal phase matches well than the amplitudes between observations and model predictions. However, no similarity is being found in the semi-diurnal tides between observations and model. The measurements are further compared with nearby Thumba meteor radar (8.5oN, 77oE) observations. Some differences do exist between the measurements from Tirupati and Thumba meteor radar and model outputs at greater heights and the possible reasons are discussed. SVU meteor radar observations clearly showed the dominance of well-known ultra-fast kelvin waves (3.5 days), 5-8 day, 16 day, 27 day, and 30-40 day oscillations. Due to higher meteor count extending up to 110 km, we could investigate the variability of these PWs and oscillations covering wider range (70-110 km) for the first time. Significant change above 100 km is noticed in all the above mentioned PW activity and oscillations. We also used ERA-Interim reanalysis data sets available at 0.125x0.125 degree grids for investigating the characteristics of these PW right from surface to 1 h

  15. Gravity Waves in the Atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.

    2016-12-01

    Gravity waves are atmospheric waves whose restoring force is the buoyancy. They are known to play an essential role in the redistribution of energy, momentum and atmospheric constituents in all stably stratified planetary atmospheres. Possible excitation mechanisms comprise convection in an adjacent atmospheric layer, other atmospheric instabilities like wind shear instabilities, or air flow over orographic obstacles especially in combination with the strong winter jets on Mars. Gravity waves on Mars were observed in the lower atmosphere [1,2] but are also expected to play a major role in the cooling of the thermosphere [3] and the polar warming [4]. A fundamental understanding of the possible source mechanisms is required to reveal the influence of small scale gravity waves on the global atmospheric circulation. Radio occultation profiles from the MaRS experiment on Mars Express [5] with their exceptionally high vertical resolution can be used to study small-scale vertical gravity waves and their global distribution in the lower atmosphere from the planetary boundary layer up to 40 km altitude. Atmospheric instabilities, which are clearly identified in the data, are used to gain further insight into possible atmospheric processes contributing to the excitation of gravity waves. [1] Creasey, J. E., et al.,(2006), Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037. [2]Tellmann, S., et al.(2013), J. Geophys. Res. Planets, 118, 306-320, doi:10.1002/jgre.20058. [3]Medvedev, A. S., et al.(2015), J. Geophys. Res. Planets, 120, 913-927. doi:10.1002/2015JE004802.[4] Barnes, J. R. (1990), J. Geophys. Res., 95, B2, 1401-1421. [5] Pätzold, M., et al. (2016), Planet. Space Sci., 127, 44 - 90.

  16. Vector theory of gravity: Universe without black holes and solution of dark energy problem

    Science.gov (United States)

    Svidzinsky, Anatoly A.

    2017-12-01

    We propose an alternative theory of gravity which assumes that background geometry of the Universe is fixed four dimensional Euclidean space and gravity is a vector field A k in this space which breaks the Euclidean symmetry. Direction of A k gives the time coordinate, while perpendicular directions are spatial coordinates. Vector gravitational field is coupled to matter universally and minimally through the equivalent metric f ik which is a functional of A k . We show that such assumptions yield a unique theory of gravity, it is free of black holes and, to the best of our knowledge, passes all available tests. For cosmology our theory predicts the same evolution of the Universe as general relativity with cosmological constant and zero spatial curvature. However, the present theory provides explanation of the dark energy as energy of longitudinal gravitational field induced by the Universe expansion and yields, with no free parameters, the value of {{{Ω }}}{{Λ }}=2/3≈ 0.67 which is consistent with the recent Planck result {{{Ω }}}{{Λ }}=0.686+/- 0.02. Such close agreement with cosmological data indicates that gravity has a vector, rather than tensor, origin. We demonstrate that gravitational wave signals measured by LIGO are compatible with vector gravity. They are produced by orbital inspiral of massive neutron stars which can exist in the present theory. We also quantize gravitational field and show that quantum vector gravity is equivalent to QED. Vector gravity can be tested by making more accurate measurement of the time delay of radar signal traveling near the Sun; by improving accuracy of the light deflection experiments; or by measuring propagation direction of gravitational waves relative to laser interferometer arms. Resolving the supermassive object at the center of our Galaxy with VLBA could provide another test of gravity and also shed light on the nature of dark matter.

  17. Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Directory of Open Access Journals (Sweden)

    A. J. Spargo

    2017-06-01

    Full Text Available Mesospheric gravity wave (GW momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E experiments (conducted from July 1997 to June 1998 are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions. The received beams were analysed with hybrid Doppler interferometry (HDI (Holdsworth and Reid, 1998, principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997, later re-introduced by Hocking (2005 and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010 of the accuracy of the meteor radar technique.

  18. Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Science.gov (United States)

    Spargo, Andrew J.; Reid, Iain M.; MacKinnon, Andrew D.; Holdsworth, David A.

    2017-06-01

    Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.

  19. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  20. Simulation of non-hydrostatic gravity wave propagation in the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Y. Deng

    2014-04-01

    Full Text Available The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM, which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.

  1. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    Science.gov (United States)

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  2. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    Science.gov (United States)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  3. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  4. Handbook of ocean wave energy

    CERN Document Server

    Kofoed, Jens

    2017-01-01

    This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

  5. Thermal effect on gravity waves in a compressible liquid layer over a ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. This paper deals with the effect of temperature on gravity waves in a compressible liquid layer over a solid half-space. It has been assumed that the liquid layer is under the action of gravity, while the solid half-space is under the influence of initial compressive hydrostatic stress. When the temperature of the.

  6. Thermal effect on gravity waves in a compressible liquid layer over a ...

    Indian Academy of Sciences (India)

    This paper deals with the effect of temperature on gravity waves in a compressible liquid layer over a solid half-space. It has been assumed that the liquid layer is under the action of gravity, while the solid half-space is under the influence of initial compressive hydrostatic stress. When the temperature of the half-space is ...

  7. Numerical Simulation of a Breaking Gravity Wave Event Over Greenland Observed During Fastex

    National Research Council Canada - National Science Library

    Doyle, James

    1997-01-01

    Measurements from the NOAA G4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of a large-amplitude gravity wave event over Greenland that took...

  8. Ultra-Low Noise Quad Photoreceiver for Space Based Laser Interferometric Gravity Wave Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravity wave detection using space-based long-baseline laser interferometric sensors imposes stringent noise requirements on the system components, including the...

  9. High energy scattering in gravity and supergravity

    CERN Document Server

    Giddings, Steven B; Andersen, Jeppe R

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra light states of supergravity, and this serves as an important check on long-range dynamics in a context where perturbative amplitudes are finite. We also argue that these considerations have other important implications: they obstruct probing the conjectured phenomenon of asymptotic safety through a physical scattering process, and gravity appears not to reggeize. These arguments sharpen the need to find a nonpert...

  10. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    Science.gov (United States)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  11. F region manifestation of atmospheric gravity waves at a high magnetic dip station

    International Nuclear Information System (INIS)

    Yeh, K.C.; Dubroff, R.E.; Nagpal, O.P.

    1976-01-01

    An average power spectrum of the observed fluctuations in electron content at Urbana has been computed. Several features of the experimental results can be explained in terms of theoretical models of the ionospheric response to internal gravity waves. An extension of an earlier theory to include the effect of dissipation provides additional justification for the relation between the observed electron content fluctuations and internal gravity waves

  12. Imaging the Chicxulub central crater zone from large scale seismic acoustic wave propagation and gravity modeling

    Science.gov (United States)

    Fucugauchi, J. U.; Ortiz-Aleman, C.; Martin, R.

    2017-12-01

    Large complex craters are characterized by central uplifts that represent large-scale differential movement of deep basement from the transient cavity. Here we investigate the central sector of the large multiring Chicxulub crater, which has been surveyed by an array of marine, aerial and land-borne geophysical methods. Despite high contrasts in physical properties,contrasting results for the central uplift have been obtained, with seismic reflection surveys showing lack of resolution in the central zone. We develop an integrated seismic and gravity model for the main structural elements, imaging the central basement uplift and melt and breccia units. The 3-D velocity model built from interpolation of seismic data is validated using perfectly matched layer seismic acoustic wave propagation modeling, optimized at grazing incidence using shift in the frequency domain. Modeling shows significant lack of illumination in the central sector, masking presence of the central uplift. Seismic energy remains trapped in an upper low velocity zone corresponding to the sedimentary infill, melt/breccias and surrounding faulted blocks. After conversion of seismic velocities into a volume of density values, we use massive parallel forward gravity modeling to constrain the size and shape of the central uplift that lies at 4.5 km depth, providing a high-resolution image of crater structure.The Bouguer anomaly and gravity response of modeled units show asymmetries, corresponding to the crater structure and distribution of post-impact carbonates, breccias, melt and target sediments

  13. Gravitational Wave Polarizations in f (R Gravity and Scalar-Tensor Theory

    Directory of Open Access Journals (Sweden)

    Gong Yungui

    2018-01-01

    Full Text Available The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in f (R gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar + and × polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.

  14. Gravity wave life cycle (GW-LCYCLE): Initial results from a coordinated field program to trace gravity waves from the troposphere to the MLT-region

    Science.gov (United States)

    Rapp, Markus

    Gravity waves (GW) play an important role in the coupling between the troposphere and the middle atmosphere (˜10 - 120 km). GWs couple different atmospheric regions both in the vertical as well as in the horizontal directions by means of momentum and energy transport. Notably, this coupling is effective both from the troposphere upwards, and also in the opposite direction by indirect effects on circulation patterns. While the importance of GW for understanding atmospheric structure, dynamics and climate is now widely recognized, surprisingly little is still known about the details of the GW life cycle, i.e., the processes of GW excitation, propagation and dissipation. To address this issue a coordinated field program - named GW-LCYCLE - has been established in which ground based observations with radars, lidars and airglow imagers are combined with airborne observations, balloon soundings, and modelling to trace GWs from their source in the troposphere to their area of dissipation in the middle atmosphere. Within GW-LCYCLE an initial field campaign was conducted in December 2013 in Northern Scandinavia. The research aircraft DLR-FALCON was deployed to Kiruna, Sweden, from where several flights (with a total of 25 flight hours) were conducted to study mountain wave generation by flow over the Scandinavian mountain ridge. The FALCON was equipped with a downward looking wind lidar operating at a wavelength of 2 mum as well as with an in-flight system to measure winds, temperatures and pressures and with several in-situ instruments to detect wave signatures in trace gases like H _{2}O, CO _{2}, CO, CH _{4}, N _{2}O, HNO _{3} and SO _{2}. Ground based observations of winds and temperatures from the troposphere to the mesosphere/lower thermosphere (MLT-) region were conducted from Kiruna as well as from Andenes, Norway. These measurements were augmented by balloon soundings from the same places as well as from Sodankylä in Finland. Coordinated observations were

  15. Measurements of Wave Power in Wave Energy Converter Effectiveness Evaluation

    Directory of Open Access Journals (Sweden)

    Berins J.

    2017-08-01

    Full Text Available The article is devoted to the technical solution of alternative budget measuring equipment of the water surface gravity wave oscillation and the theoretical justification of the calculated oscillation power. This solution combines technologies such as lasers, WEB-camera image digital processing, interpolation of defined function at irregular intervals, volatility of discrete Fourier transformation for calculating the spectrum.

  16. Measurements of Wave Power in Wave Energy Converter Effectiveness Evaluation

    Science.gov (United States)

    Berins, J.; Berins, J.; Kalnacs, A.

    2017-08-01

    The article is devoted to the technical solution of alternative budget measuring equipment of the water surface gravity wave oscillation and the theoretical justification of the calculated oscillation power. This solution combines technologies such as lasers, WEB-camera image digital processing, interpolation of defined function at irregular intervals, volatility of discrete Fourier transformation for calculating the spectrum.

  17. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    Rahm, Magnus

    2010-01-01

    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  18. Gravity waves from the non-renormalizable electroweak vacua phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Eric [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Vaudrevange, Pascal M. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    It is currently believed that the Standard Model is an effective low energy theory which in principle may contain higher dimensional non-renormalizable operators. These operators may modify the standard model Higgs potential in many ways, one of which being the appearance of a second vacuum. For a wide range of parameters, this new vacuum becomes the true vacuum. It is then assumed that our universe is currently sitting in the false vacuum. Thus the usual second-order electroweak phase transition at early times will be followed by a second, first-order phase transition. In cosmology, a first-order phase transition is associated with the production of gravity waves. In this paper we present an analysis of the production of gravitational waves during such a second electroweak phase transition. We find that, for one certain range of parameters, the stochastic background of gravitational waves generated by bubble nucleation and collision have an amplitude which is estimated to be of order {omega}{sub GW}h{sup 2}{proportional_to}10{sup -11} at f=3 x 10{sup -4} Hz, which is within reach of the planned sensitivity of LISA. For another range of parameters, we find that the amplitude is estimated to be of order {omega}{sub GW}h{sup 2}{proportional_to} 0{sup -25} around f=10{sup 3} Hz, which is within reach of LIGO. Hence, it is possible to detect gravity waves from such a phase transition at two different detectors, with completely different amplitude and frequency ranges. (orig.)

  19. Stochastic Background of Relic Scalar Gravitational Waves tuned by Extended Gravity

    International Nuclear Information System (INIS)

    De Laurentis, Mariafelicia; Capozziello, Salvatore

    2009-01-01

    A stochastic background of relic gravitational waves is achieved by the so called adiabatically-amplified zero-point fluctuations process derived from early inflation. It provides a distinctive spectrum of relic gravitational waves. In the framework of scalar-tensor gravity, we discuss the scalar modes of gravitational waves and the primordial production of this scalar component which is generated beside tensorial one. Then analyze seven different viable f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. It is demonstrated that seven viable f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.

  20. Small vacuum energy from small equivalence violation in scalar gravity

    International Nuclear Information System (INIS)

    Agrawal, Prateek; Sundrum, Raman

    2017-01-01

    The theory of scalar gravity proposed by Nordström, and refined by Einstein and Fokker, provides a striking analogy to general relativity. In its modern form, scalar gravity appears as the low-energy effective field theory of the spontaneous breaking of conformal symmetry within a CFT, and is AdS/CFT dual to the original Randall-Sundrum I model, but without a UV brane. Scalar gravity faithfully exhibits several qualitative features of the cosmological constant problem of standard gravity coupled to quantum matter, and the Weinberg no-go theorem can be extended to this case as well. Remarkably, a solution to the scalar gravity cosmological constant problem has been proposed, where the key is a very small violation of the scalar equivalence principle, which can be elegantly formulated as a particular type of deformation of the CFT. In the dual AdS picture this involves implementing Goldberger-Wise radion stabilization where the Goldberger-Wise field is a pseudo-Nambu Goldstone boson. In quantum gravity however, global symmetries protecting pNGBs are not expected to be fundamental. We provide a natural six-dimensional gauge theory origin for this global symmetry and show that the violation of the equivalence principle and the size of the vacuum energy seen by scalar gravity can naturally be exponentially small. Our solution may be of interest for study of non-supersymmetric CFTs in the spontaneously broken phase.

  1. Small vacuum energy from small equivalence violation in scalar gravity

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Sundrum, Raman [Department of Physics, University of Maryland,College Park, MD 20742 (United States)

    2017-05-29

    The theory of scalar gravity proposed by Nordström, and refined by Einstein and Fokker, provides a striking analogy to general relativity. In its modern form, scalar gravity appears as the low-energy effective field theory of the spontaneous breaking of conformal symmetry within a CFT, and is AdS/CFT dual to the original Randall-Sundrum I model, but without a UV brane. Scalar gravity faithfully exhibits several qualitative features of the cosmological constant problem of standard gravity coupled to quantum matter, and the Weinberg no-go theorem can be extended to this case as well. Remarkably, a solution to the scalar gravity cosmological constant problem has been proposed, where the key is a very small violation of the scalar equivalence principle, which can be elegantly formulated as a particular type of deformation of the CFT. In the dual AdS picture this involves implementing Goldberger-Wise radion stabilization where the Goldberger-Wise field is a pseudo-Nambu Goldstone boson. In quantum gravity however, global symmetries protecting pNGBs are not expected to be fundamental. We provide a natural six-dimensional gauge theory origin for this global symmetry and show that the violation of the equivalence principle and the size of the vacuum energy seen by scalar gravity can naturally be exponentially small. Our solution may be of interest for study of non-supersymmetric CFTs in the spontaneously broken phase.

  2. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lamb, Bradford [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Prudell, Joseph [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Hammagren, Erik [Columbia Power Technologies, Inc., Charlottesville, VA (United States); Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc., Charlottesville, VA (United States)

    2016-08-22

    This Project aims to satisfy objectives of the DOE’s Water Power Program by completing a system detailed design (SDD) and other important activities in the first phase of a utility-scale grid-connected ocean wave energy demonstration. In early 2012, Columbia Power (CPwr) had determined that further cost and performance optimization was necessary in order to commercialize its StingRAY wave energy converter (WEC). CPwr’s progress toward commercialization, and the requisite technology development path, were focused on transitioning toward a commercial-scale demonstration. This path required significant investment to be successful, and the justification for this investment required improved annual energy production (AEP) and lower capital costs. Engineering solutions were developed to address these technical and cost challenges, incorporated into a proposal to the US Department of Energy (DOE), and then adapted to form the technical content and statement of project objectives of the resulting Project (DE-EE0005930). Through Project cost-sharing and technical collaboration between DOE and CPwr, and technical collaboration with Oregon State University (OSU), National Renewable Energy Lab (NREL) and other Project partners, we have demonstrated experimentally that these conceptual improvements have merit and made significant progress towards a certified WEC system design at a selected and contracted deployment site at the Wave Energy Test Site (WETS) at the Marine Corps Base in Oahu, HI (MCBH).

  3. Atmospheric gravity waves observed by an international network of micro-barographs

    International Nuclear Information System (INIS)

    Marty, Julien

    2010-01-01

    The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) manages an international network of forty-two operational infra-sound stations recording the pressure fluctuations produced at the ground surface by infrasonic waves. This thesis demonstrates that most of these stations also accurately detect the pressure fluctuations in the entire gravity wave band. This work includes carrying out and analyzing several metrological laboratory experiments and a field campaign (M2008) in Mongolia in 2008. The layout of the experiments as well as the interpretation of their results gave rise to the development of a new linear spectral numerical model able to simulate the generation and propagation of gravity waves. This model was used to quantify the gravity waves produced by the atmospheric cooling that occurs during solar eclipses. The pressure fluctuations expected at ground level were estimated and compared to the data recorded during the 1 August 2008 solar eclipse by the CTBTO and M2008 stations. A detailed data analysis reveals two waves with similar time-frequency characteristics to those simulated for a stratospheric and tropospheric cooling. This constitutes, to our knowledge, a unique result. The validation of worldwide and pluri-annual pressure measurements in the entire gravity wave band allowed the statistical study of gravity wave spectra and atmospheric tides. The work presented throughout this thesis has led to the publication of two articles. A third one is in the drafting process. (author)

  4. On weakly singular and fully nonlinear travelling shallow capillary–gravity waves in the critical regime

    Energy Technology Data Exchange (ETDEWEB)

    Mitsotakis, Dimitrios, E-mail: dmitsot@gmail.com [Victoria University of Wellington, School of Mathematics, Statistics and Operations Research, PO Box 600, Wellington 6140 (New Zealand); Dutykh, Denys, E-mail: Denys.Dutykh@univ-savoie.fr [LAMA, UMR 5127 CNRS, Université Savoie Mont Blanc, Campus Scientifique, F-73376 Le Bourget-du-Lac Cedex (France); Assylbekuly, Aydar, E-mail: asylbekuly@mail.ru [Khoja Akhmet Yassawi International Kazakh–Turkish University, Faculty of Natural Science, Department of Mathematics, 161200 Turkestan (Kazakhstan); Zhakebayev, Dauren, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics, Department of Mathematical and Computer Modelling, 050000 Almaty (Kazakhstan)

    2017-05-25

    In this Letter we consider long capillary–gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott–Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well. - Highlights: • A model for long capillary–gravity weakly dispersive and fully nonlinear water waves is derived. • Shallow capillary–gravity waves are classified using phase plane analysis. • Peaked travelling waves are found in the critical regime. • The dynamics of peakons in Serre–Green–Naghdi equations is studied numerically.

  5. Spontaneous generation and reversals of mean flows in a convectively-generated internal gravity wave field

    Science.gov (United States)

    Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael

    2017-11-01

    We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.

  6. Key features of wave energy.

    Science.gov (United States)

    Rainey, R C T

    2012-01-28

    For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.

  7. Assessing wave energy effects on biodiversity: the wave hub experience.

    Science.gov (United States)

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  8. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  9. Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images

    Science.gov (United States)

    Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.

    2018-01-01

    We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.

  10. Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2009-11-01

    Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θc versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θc~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.

  11. Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2009-11-01

    Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θc versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θc~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.

  12. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of the incident waves upon a wave device allows the possibility of accurately tuning the power-take off mechanism (the hydro-turbines for the Wave Dragon) to capture more energy. A digital filter method for performing this prediction in real-time with minimal computational effort is presented. Construction...... of digital filters is well known within signal processing, but their use for this application in Wave Energy is new. The filter must be designed carefully as the frequency components of waves travel at different speeds. Research presented in this thesis has advanced the development of the Wave Dragon device...

  13. Energy, momentum and angular momentum conservations in de Sitter gravity

    International Nuclear Information System (INIS)

    Lu, Jia-An

    2016-01-01

    In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity. (paper)

  14. Dark energy from modified gravity with Lagrange multipliers

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; Matsumoto, Jiro; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2010-01-01

    We study scalar-tensor theory, k-essence and modified gravity with Lagrange multiplier constraint which role is to reduce the number of degrees of freedom. Dark Energy cosmology of different types (ΛCDM, unified inflation with DE, smooth non-phantom/phantom transition epoch) is reconstructed in such models. It is demonstrated that presence of Lagrange multiplier simplifies the reconstruction scenario. It is shown that mathematical equivalence between scalar theory and F(R) gravity is broken due to presence of constraint. The cosmological evolution is defined by the second F 2 (R) function dictated by the constraint. The convenient F(R) gravity sector is relevant for local tests. This opens the possibility to make originally non-realistic theory to be viable by adding the corresponding constraint. A general discussion on the role of Lagrange multipliers to make higher-derivative gravity canonical is developed.

  15. Holographic dark energy and f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, A [Faculty of Science, Islamic Azad University of Sanandaj, Sanandaj (Iran, Islamic Republic of); Saaidi, Kh, E-mail: ksaaidi@uok.ac.ir, E-mail: agha35484@yahoo.com [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-02-15

    We investigate the corresponding relation between f(R) gravity and holographic dark energy. We introduce a type of energy density from f(R) that has the same role as holographic dark energy. We obtain the differential equation that specifies the evolution of the introduced energy density parameter based on a varying gravitational constant. We discover the relation for the equation of state parameter for low redshifts that contains varying G correction.

  16. Observation of gravity waves during the extreme tornado outbreak of 3 April 1974

    Science.gov (United States)

    Hung, R. J.; Phan, T.; Smith, R. E.

    1978-01-01

    A continuous wave-spectrum high-frequency radiowave Doppler sounder array was used to observe upper-atmospheric disturbances during an extreme tornado outbreak. The observations indicated that gravity waves with two harmonic wave periods were detected at the F-region ionospheric height. Using a group ray path computational technique, the observed gravity waves were traced in order to locate potential sources. The signals were apparently excited 1-3 hours before tornado touchdown. Reverse ray tracing indicated that the wave source was located at the aurora zone with a Kp index of 6 at the time of wave excitation. The summation of the 24-hour Kp index for the day was 36. The results agree with existing theories (Testud, 1970; Titheridge, 1971; Kato, 1976) for the excitation of large-scale traveling ionospheric disturbances associated with geomagnetic activity in the aurora zone.

  17. Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements

    Science.gov (United States)

    Vals, M.

    2017-09-01

    We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.

  18. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  19. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  20. Key Aspects of Wave Energy

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Nørgaard, Jørgen Harck

    2012-01-01

    Diversification of renewable energy sources is fundamental to ensure sustainability. In this contest, wave energy can provide a substantial contribution as soon as the sector breaks into the market. In order to accelerate shift from a technology to a market focus and reduce technical and non...... versatility into account can improve their overall performance and the value of investments. The way installation of devices can be perceived also by local communities can also benefit from this prospective thus providing and additional tool to overcome the sector´s setbacks....

  1. Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes

    Directory of Open Access Journals (Sweden)

    V. F. Andrioli

    2013-05-01

    Full Text Available The advantages of using a composite day analysis for all-sky interferometric meteor radars when measuring mean winds and tides are widely known. On the other hand, problems arise if this technique is applied to Hocking's (2005 gravity wave analysis for all-sky meteor radars. In this paper we describe how a simple change in the procedure makes it possible to use a composite day in Hocking's analysis. Also, we explain how a modified composite day can be constructed to test its ability to measure gravity wave momentum fluxes. Test results for specified mean, tidal, and gravity wave fields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the modified composite day allows characterization of monthly mean profiles of the gravity wave momentum fluxes, with good accuracy at least at the altitudes where the meteor counts are large (from 89 to 92.5 km. In the present work we also show that the variances measured with Hocking's method are often contaminated by the tidal fields and suggest a method of empirical correction derived from a simple simulation model. The results presented here greatly increase our confidence because they show that our technique is able to remove the tide-induced false variances from Hocking's analysis.

  2. Development of the Wave Energy Converter -Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    2Over the years wave energy has gradually been brought into focus, as it has become clear that the fossil energy resources are limited, and cause large environmental problems, e.g. CO2 pollution. On this background a number of different wave energy converters have been proposed. In Denmark the go...

  3. Propagation of 3D internal gravity wave beams in a slowly varying stratification

    Science.gov (United States)

    Fan, Boyu; Akylas, T. R.

    2017-11-01

    The time-mean flows induced by internal gravity wave beams (IGWB) with 3D variations have been shown to have dramatic implications for long-term IGWB dynamics. While uniform stratifications are convenient both theoretically and in the laboratory, stratifications in the ocean can vary by more than an order of magnitude over the ocean depth. Here, in view of this fact, we study the propagation of a 3D IGWB in a slowly varying stratification. We assume that the stratification varies slowly relative to the local variations in the wave profile. In the 2D case, the IGWB bends in response to the changing stratification, but nonlinear effects are minor even in the finite amplitude regime. For a 3D IGWB, in addition to bending, we find that nonlinearity results in the transfer of energy from waves to a large-scale time-mean flow associated with the mean potential vorticity, similar to IGWB behavior in a uniform stratification. In a weakly nonlinear setting, we derive coupled evolution equations that govern this process. We also use these equations to determine the stability properties of 2D IGWB to 3D perturbations. These findings indicate that 3D effects may be relevant and possibly fundamental to IGWB dynamics in nature. Supported by NSF Grant DMS-1512925.

  4. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay

    Science.gov (United States)

    Hanes, D.M.; Erikson, L.H.

    2013-01-01

    Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.

  5. The MaCWAVE program to study gravity wave influences on the polar mesosphere

    Directory of Open Access Journals (Sweden)

    R. A. Goldberg

    2006-07-01

    Full Text Available MaCWAVE (Mountain and Convective Waves Ascending VErtically was a highly coordinated rocket, ground-based, and satellite program designed to address gravity wave forcing of the mesosphere and lower thermosphere (MLT. The MaCWAVE program was conducted at the Norwegian Andøya Rocket Range (ARR, 69.3° N in July 2002, and continued at the Swedish Rocket Range (Esrange, 67.9° N during January 2003. Correlative instrumentation included the ALOMAR MF and MST radars and RMR and Na lidars, Esrange MST and meteor radars and RMR lidar, radiosondes, and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite measurements of thermal structures. The data have been used to define both the mean fields and the wave field structures and turbulence generation leading to forcing of the large-scale flow. In summer, launch sequences coupled with ground-based measurements at ARR addressed the forcing of the summer mesopause environment by anticipated convective and shear generated gravity waves. These motions were measured with two 12-h rocket sequences, each involving one Terrier-Orion payload accompanied by a mix of MET rockets, all at ARR in Norway. The MET rockets were used to define the temperature and wind structure of the stratosphere and mesosphere. The Terrier-Orions were designed to measure small-scale plasma fluctuations and turbulence that might be induced by wave breaking in the mesosphere. For the summer series, three European MIDAS (Middle Atmosphere Dynamics and Structure rockets were also launched from ARR in coordination with the MaCWAVE payloads. These were designed to measure plasma and neutral turbulence within the MLT. The summer program exhibited a number of indications of significant departures of the mean wind and temperature structures from ``normal" polar summer conditions, including an unusually warm mesopause and a slowing of the formation of polar mesospheric summer echoes (PMSE and noctilucent clouds (NLC. This

  6. Energy conditions in f(G,T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Ikram, Ayesha [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-11-15

    The aim of this paper is to introduce a new modified gravity theory named f(G,T) gravity (G and T are the Gauss-Bonnet invariant and trace of the energy-momentum tensor, respectively) and investigate energy conditions for two reconstructed models in the context of FRW universe. We formulate general field equations, divergence of energy-momentum tensor, equation of motion for test particles as well as corresponding energy conditions. The massive test particles follow non-geodesic lines of geometry due to the presence of an extra force. We express the energy conditions in terms of cosmological parameters like the deceleration, jerk, and snap parameters. The reconstruction technique is applied to this theory using de Sitter and power-law cosmological solutions. We analyze the energy bounds and obtain feasible constraints on the free parameters. (orig.)

  7. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, Michael J. [Monash University; Lane, Todd P. [University of Melbourne; Hankinson, Mai Chi Nguyen [Monash University

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection

  8. Relic gravitational wave spectrum, the trans-Planckian physics and Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Koh, Seoktae

    2010-01-01

    We calculate the spectrum of the relic gravitational wave due to the trans-Planckian effect in which the standard linear dispersion relations may be modified. Of the modified dispersion relations suggested in the literature which has investigated the trans-Planckian effect, we especially use the Corley-Jacobson dispersion relations. The Corley-Jacobson-type modified dispersion relations can be obtained from Horava-Lifshitz gravity which is non-relativistic and UV complete. Although it is not clear how the transitions from Horava-Lifshitz gravity in the UV regime to Einstein gravity in the IR limit occur, we assume that the Horava-Lifshitz gravity regime is followed by the inflationary phase in Einstein gravity.

  9. Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of gravity

    Directory of Open Access Journals (Sweden)

    S. M. Ahmed

    2005-01-01

    Full Text Available The aim of this paper is to investigate the Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of a gravity field. The frequency equation obtained, in the form of a sixth-order determinantal expression, is in agreement with the corresponding result when both media are elastic. The frequency equation when the gravity field is neglected has been deduced as a particular case.

  10. Dark-energy cosmological models in f(G) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences Lahore Campus, Department of Sciences and Humanities (Pakistan)

    2016-10-15

    We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G{sup 5/6} support expansion of universe while those with f(G) = G{sup 1/2} do not favor the current expansion.

  11. Effects of gravity and planetary waves on the lower ionosphere as obtained from radio wave absorption measurements

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan

    2001-01-01

    Roč. 26, 6, Part C (2001), s. 381-386 ISSN 1464-1917 R&D Projects: GA AV ČR IBS3012007; GA AV ČR IAA3042102; GA MŠk OC 271.10 Institutional research plan: CEZ:AV0Z3042911 Keywords : planetary wave * gravity wave * lower ionosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.399, year: 2001

  12. Wave energy : from demonstration to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Wave Energy Centre is a non-profit organization dedicated to the development and marketing of ocean wave energy devices through technical and strategic support to companies and research and development institutions. WEC provides access to researchers to associated test infrastructures for testing and demonstration of wave energy structures. This presentation described the current status of wave energy. Public policies that support wave energy were also highlighted. Wave energy technology is currently in the demonstration phase, with several pilot plants and prototypes in service around the world. The first 2 offshore shoreline ocean wave current pilot plants were constructed in 2000. This presentation identified the 12 near or offshore pilot plants that were in operation by 2007. The pilot plants represent 5 basic different concepts with many different designs. The world's first commercial park was launched in 2007 in Portugal. The Pelamis wave farm uses three Pelamis P-750 machines with a capacity of 2.25 megawatts. figs.

  13. Distortion of gravitational-wave packets due to their self-gravity

    International Nuclear Information System (INIS)

    Kocsis, Bence; Loeb, Abraham

    2007-01-01

    When a source emits a gravity-wave (GW) pulse over a short period of time, the leading edge of the GW signal is redshifted more than the inner boundary of the pulse. The GW pulse is distorted by the gravitational effect of the self-energy residing in between these shells. We illustrate this distortion for GW pulses from the final plunge of black hole binaries, leading to the evolution of the GW profile as a function of the radial distance from the source. The distortion depends on the total GW energy released ε and the duration of the emission τ, scaled by the total binary mass M. The effect should be relevant in finite box simulations where the waveforms are extracted within a radius of 2 M. For characteristic emission parameters at the final plunge between binary black holes of arbitrary spins, this effect could distort the simulated GW templates for LIGO and LISA by a fraction of 10 -3 . Accounting for the wave distortion would significantly decrease the waveform extraction errors in numerical simulations

  14. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  15. Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

    Science.gov (United States)

    Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.

    2018-01-01

    This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.

  16. Problems of application of wave energy

    International Nuclear Information System (INIS)

    D'yakov, A.F.; Morozkina, M.V.

    1993-01-01

    Technical solutions of using the energy both sea waves and lake ones are analyzed. Mathematical description of wave processes and phenomena as well as techniques of selection and conversion of the wave energy are given. Wave energy electromechanical converters are considered. Great attention is paid to linear generators of electromechanical converters eddy currents in massive sections of these generators and features of their calculation. Techniques for optimization of the linear generator parameters are shown. 60 refs

  17. Gravity waves observed from the Equatorial Wave Studies (EWS campaign during 1999 and 2000 and their role in the generation of stratospheric semiannual oscillations

    Directory of Open Access Journals (Sweden)

    V. Deepa

    2006-10-01

    Full Text Available The altitude profiles of temperature fluctuations in the stratosphere and mesosphere observed with the Rayleigh Lidar at Gadanki (13.5° N, 79.2° E on 30 nights during January to March 1999 and 21 nights during February to April 2000 were analysed to bring out the temporal and vertical propagation characteristics of gravity wave perturbations. The gravity wave perturbations showed periodicities in the 0.5–3-h range and attained large amplitudes (4–5 K in the mesosphere. The phase propagation characteristics of gravity waves with different periods showed upward wave propagation with a vertical wavelength of 5–7 km. The mean flow acceleration computed from the divergence of momentum flux of gravity waves is compared with that calculated from monthly values of zonal wind obtained from RH-200 rockets flights. Thus, the contribution of gravity waves towards the generation of Stratospheric Semi Annual Oscillation (SSAO is estimated.

  18. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign – Part I: Observations with collocated radars

    Directory of Open Access Journals (Sweden)

    P. Hoffmann

    2006-11-01

    Full Text Available During the {MaCWAVE} campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andøya Rocket Range (ARR near Andenes and the Swedish Rocket Range (ESRANGE near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHF radar in the upper troposphere/ lower stratosphere at Andenes (69.3° N, 16.0° E and the ESRAD VHF radar near Kiruna (67.9° N, 21.9° E. Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24–26 January 2003 with dominant vertical wavelengths of about 4–5 km as well as with dominant observed periods of about 13–14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of ~200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of ~5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains.

  19. Inertia-gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region

    Directory of Open Access Journals (Sweden)

    L. Thomas

    Full Text Available Radar measurements at Aberystwyth (52.4° N, 4.1° W of winds at tropospheric and lower stratospheric heights are shown for 12-13 March 1994 in a region of highly curved flow, downstream of the jet maximum. The perturbations of horizontal velocity have comparable amplitudes in the troposphere and lower stratosphere with downward and upward phase propagation, respectively, in these two height regions. The sense of rotation with increasing height in hodographs of horizontal perturbation velocity derived for hourly intervals show downwards propagation of energy in the troposphere and upward propagation in the lower stratosphere with vertical wavelengths of 1.7 to 2.3 km. The results indicate inertia-gravity waves propagating in a direction similar to that of the jet stream but at smaller velocities. Some of the features observed contrast with those of previous observations of inertia-gravity waves propagating transverse to the jet stream. The interpretation of the hodographs to derive wave parameters has taken account of the vertical shear of the background wind transverse to the direction of wave propagation.

    Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; middle atmosphere dynamics; waves and tides

  20. Atmospheric gravity wave detection following the 2011 Tohoku earthquakes combining COSMIC occultation and GPS observations

    Science.gov (United States)

    Yan, X.; Tao, Y.; Xia, C.; Qi, Y.; Zuo, X.

    2017-12-01

    Several studies have reported the earthquake-induced atmospheric gravity waves detected by some new technologies such as airglow (Makela et al., 2011), GOCE (Garcia et al., 2013), GRACE (Yang et al., 2014), F3/C radio occultation sounding (Coïsson et al., 2015). In this work, we collected all occultation events on 11 March, and selected four events to analyze at last. The original and filtered podTEC is represented as function of the altitude of the impact parameter and UT of the four events. Then, the travel time diagrams of filtered podTEC derived from the events were analyzed. The occultation signal from one event (marked as No.73) is consistent with the previous results reported by Coïsson. 2015, which is corresponds to the ionospheric signal induced from tsunami gravity wave. What is noticeable, in this work, is that three occultation events of No.403, 77 and 118 revealed a disturbance of atmospheric gravity wave with velocity 300m/s, preceding the tsunami. It would probably be correspond to the gravity waves caused by seismic rupture but not tsunami. In addition, it can be seen that the perturbation height of occultation observation TEC is concentrated at 200-400km, corresponding ionosphere F region. The signals detected above are compared with GPS measurements of TEC from GEONET and IGS. From GPS data, traveling ionospheric disturbances were observed spreading out from the epicenter as a quasi-circular propagation pattern with the time. Exactly, we observed an acoustic wave coupled with Rayleigh wave starting from the epicenter with a speed of 3.0km/s and a superimposed acoustic-gravity wave moving with a speed of 800m/s. The acoustic-gravity wave generated at the epicenter and gradually attenuated 800km away, then it is replaced by a gravity wave coupled with the tsunami that moves with a speed of between 100 and 300m/s. It is necessary to confirm the propagation process of the waves if we attempt to evaluate the use of ionospheric seismology as a

  1. A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model

    Science.gov (United States)

    Wu, Dong L.; Zhang, Fuqing

    2004-01-01

    Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.

  2. Wave Induced Loads on the LEANCON Wave Energy Converter

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Beserra, Eliab Ricarte

    This report is a product of the co-operation agreement between Aalborg University and LEANCON (by Kurt Due Rasmussen) on the evaluation and development of the LEANCON wave energy converter (WEC). The work reported here has focused on evaluation of the wave induced loads on the device, based...... in the laboratory, all under the supervision of the personnel of the Wave Energy Research Group at Department of Civil Engineering, Aalborg University....

  3. On the Origin of Gravity, Dark Energy and Matter.

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Insights from black hole physics and developments in string theory strongly indicate that the gravity is derived from an underlying microscopic description in which it has no a priori meaning. Starting from first principles we argue that inertia and gravity are caused by the fact that phase space volume (or entropy) associated with the underlying microscopic system is influenced by the positions of material objects. Application of these ideas to cosmology leads to surprising new insights into the nature of dark energy and dark matter.

  4. Tidal and gravity waves study from the airglow measurements at ...

    Indian Academy of Sciences (India)

    E) during the period 2004–2007 are analyzed to study the dominant waves present in the 80–100 km altitude region of the atmosphere. The nocturnal intensity variations of different airglow emissions are observed using scanning temperature controlled filter photometers. Waves having period lying between 2 and 12 hours ...

  5. Geometric controls of the flexural gravity waves on the Ross Ice Shelf

    Science.gov (United States)

    Sergienko, O. V.

    2017-12-01

    Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.

  6. Emergent gravity from vanishing energy-momentum tensor

    Energy Technology Data Exchange (ETDEWEB)

    Carone, Christopher D.; Erlich, Joshua [High Energy Theory Group, Department of Physics, College of William and Mary,Williamsburg, VA 23187-8795 (United States); Vaman, Diana [Department of Physics, University of Virginia,Box 400714, Charlottesville, VA 22904 (United States)

    2017-03-27

    A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. We comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.

  7. Emergent gravity from vanishing energy-momentum tensor

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Vaman, Diana

    2017-01-01

    A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. We comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.

  8. Experiments on the WavePiston, Wave Energy Converter

    DEFF Research Database (Denmark)

    Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter

    2011-01-01

    This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... in the wave basin at Aalborg University allowed to investigate power production in the North Sea typical wave climate, with varying design parameters such as plate dimensions and their mutual distance. The power produced per meter by each collector is about the 5% of the available wave power. Experimental...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...

  9. Energy conditions in modified Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Garcia, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, Jose P.

    2011-01-01

    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.

  10. Can dark energy be a bonus in Horava gravity?

    International Nuclear Information System (INIS)

    Park, Mu-In

    2010-01-01

    Recently, Horava proposed a renormalizable gravity theory with higher spatial derivatives in four dimensions which reduces to Einstein gravity with a non-vanishing cosmological constant in IR but with improved UV behaviors. Here, I consider a non-trivial test of the new gravity theory in a Friedmann-Robertson-Walker (FRW) universe by considering an IR modification which breaks 'softly' the detailed balance condition in the original Horava model. I separate the dark energy parts from the usual Einstein gravity parts in the Friedman equations and obtain the formula of the equations of the state parameters. The IR-modified Horava gravity seems to be consistent with the current observational data, but we need some more refined data sets to see whether the theory is really consistent with our universe. From the consistency of our theory, I obtain some constraints on the allowed values of w 0 and w a in Chevallier, Polarski, and Linder's parametrization, and this may be tested in the near future, by sharpening the data sets.

  11. On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current

    Directory of Open Access Journals (Sweden)

    Dali Guo

    2014-01-01

    Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.

  12. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...

  13. Dissipation of Wave Energy by Cohesive Sediments

    National Research Council Canada - National Science Library

    Kaihatu, James M; Sheremet, Alexandru

    2004-01-01

    Wave energy dissipation by bottom muds is studied. A dissipation mechanism which contains explicit expressions of wavenumber modification due to a viscous bottom fluid is incorporated into a nonlinear wave shoaling model...

  14. Effect of Gravity Waves from Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation

    Science.gov (United States)

    Garfinkel, C. I.; Oman, L. D.

    2018-01-01

    The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.

  15. Sensitivity of wave energy to climate change

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Wave energy will have a key role in meeting renewable energy targets en route to a low carbon economy. However, in common with other renewables, it may be sensitive to changes in climate resulting from rising carbon emissions. Changes in wind patterns are widely anticipated and this will ultimately alter wave regimes. Indeed, evidence indicates that wave heights have been changing over the last 40 years, although there is no proven link to global warming. Changes in the wave climate will impa...

  16. Capillary-gravity waves and the Navier-Stokes equation

    International Nuclear Information System (INIS)

    Behroozi, F.; Podolefsky, N.

    2001-01-01

    Water waves are a source of great fascination for undergraduates and thus provide an excellent context for introducing some important topics in fluid dynamics. In this paper we introduce the potential theory for incompressible and inviscid flow and derive the differential equation that governs the behaviour of the velocity potential. Next we obtain the harmonic solutions of the velocity potential by a very general argument. These solutions in turn yield the equations for the velocity and displacement of a water element under the action of a harmonic wave. Finally we obtain the dispersion relation for surface waves by requiring that the harmonic solutions satisfy the Navier-Stokes equation. (author)

  17. Analytical and numerical investigation of nonlinear internal gravity waves

    Directory of Open Access Journals (Sweden)

    S. P. Kshevetskii

    2001-01-01

    Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory

  18. Locating the Tohoku-Oki 2011 tsunami source using acoustic-gravity waves

    OpenAIRE

    Andriamiranto Raveloson; Rainer Kind; Xiaohui Yuan; L. Cerana

    2012-01-01

    The giant Tohoku-Oki earthquake of 11 March 2011 in offshore Japan did not only generate tsunami waves in the ocean but also infrasound (or acoustic-gravity) waves in the atmosphere. We indentified ultra-long-period signals (>500s) in the recordings of infrasound stations in northeast Asia, the northwest Pacific, and Alaska. Their source was fond close to the earthquake epicenter. Therefore, we conclude that in general, infrasound observations after a large offshore earthquake are evidence th...

  19. Horizontal velocities and propagation directions of gravity waves in the ionosphere over the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Chum, Jaroslav; Šindelářová, Tereza; Laštovička, Jan; Hruška, František; Burešová, Dalia; Baše, Jiří

    2010-01-01

    Roč. 115, - (2010), A11322/1-A11322/13 ISSN 0148-0227 R&D Projects: GA ČR GA205/07/1367; GA ČR GA205/09/1253 Grant - others:AV ČR(CZ) M100420901 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * gravity waves * wave propagation * remote sensing Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.303, year: 2010

  20. Acoustic–gravity waves during solar eclipses: Detection and characterization using wavelet transforms

    Czech Academy of Sciences Publication Activity Database

    Šauli, Petra; Roux, S. G.; Abry, P.; Boška, Josef

    2007-01-01

    Roč. 69, 17-18 (2007), s. 2465-2484 ISSN 1364-6826 R&D Projects: GA ČR GA205/06/1619; GA AV ČR IAA300420504 Grant - others:CNRS(FR) 18098 Institutional research plan: CEZ:AV0Z30420517 Keywords : Acoustic–gravity wave * Vertical ionospheric sounding * F-layer * Wavelet transform * Wave-packet characterization Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.566, year: 2007

  1. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  2. The influence of waves on the tidal kinetic energy resource at a tidal stream energy site

    International Nuclear Information System (INIS)

    Guillou, Nicolas; Chapalain, Georges; Neill, Simon P.

    2016-01-01

    Highlights: • We model the influence of waves on tidal kinetic energy in the Fromveur Strait. • Numerical results are compared with field data of waves and currents. • The introduction of waves improve predictions of tidal stream power during storm. • Mean spring tidal stream potential is reduced by 12% during extreme wave conditions. • Potential is reduced by 7.8% with waves forces and 5.3% with enhanced friction. - Abstract: Successful deployment of tidal energy converters relies on access to accurate and high resolution numerical assessments of available tidal stream power. However, since suitable tidal stream sites are located in relatively shallow waters of the continental shelf where tidal currents are enhanced, tidal energy converters may experience effects of wind-generated surface-gravity waves. Waves may thus influence tidal currents, and associated kinetic energy, through two non-linear processes: the interaction of wave and current bottom boundary layers, and the generation of wave-induced currents. Here, we develop a three-dimensional tidal circulation model coupled with a phase-averaged wave model to quantify the impact of the waves on the tidal kinetic energy resource of the Fromveur Strait (western Brittany) - a region that has been identified with strong potential for tidal array development. Numerical results are compared with in situ observations of wave parameters (significant wave height, peak period and mean wave direction) and current amplitude and direction 10 m above the seabed (the assumed technology hub height for this region). The introduction of waves is found to improve predictions of tidal stream power at 10 m above the seabed at the measurement site in the Strait, reducing kinetic energy by up to 9% during storm conditions. Synoptic effects of wave radiation stresses and enhanced bottom friction are more specifically identified at the scale of the Strait. Waves contribute to a slight increase in the spatial gradient of

  3. Wave Energy Potential in the Latvian EEZ

    Science.gov (United States)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  4. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....

  5. Imperfect dark energy from kinetic gravity braiding

    Energy Technology Data Exchange (ETDEWEB)

    Deffayet, Cédric [AstroParticule and Cosmologie, UMR7164-CNRS, Université Denis Diderot-Paris 7, CEA, Observatoire de Paris, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Pujolàs, Oriol [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Sawicki, Ignacy; Vikman, Alexander, E-mail: deffayet@iap.fr, E-mail: oriol.pujolas@cern.ch, E-mail: ignacy.sawicki@nyu.edu, E-mail: alexander.vikman@nyu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2010-10-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.

  6. Imperfect dark energy from kinetic gravity braiding

    International Nuclear Information System (INIS)

    Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime

  7. Quantum spreading of a self-gravitating wave-packet in singularity free gravity

    Energy Technology Data Exchange (ETDEWEB)

    Buoninfante, Luca [Universita di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Fisciano (Italy); INFN-Sezione di Napoli, Gruppo Collegato di Salerno, Fisciano (Italy); University of Groningen, Van Swinderen Institute, Groningen (Netherlands); Lambiase, Gaetano [Universita di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Fisciano (Italy); INFN-Sezione di Napoli, Gruppo Collegato di Salerno, Fisciano (Italy); Mazumdar, Anupam [University of Groningen, Van Swinderen Institute, Groningen (Netherlands); University of Groningen, Kapteyn Astronomical Institute, Groningen (Netherlands)

    2018-01-15

    In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1/r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future. (orig.)

  8. Quantum spreading of a self-gravitating wave-packet in singularity free gravity

    Science.gov (United States)

    Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam

    2018-01-01

    In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future.

  9. Computation of 3D steady Navier-Stokes flow with free-surface gravity waves

    NARCIS (Netherlands)

    Lewis, M.R.; Koren, B.; Raven, H.C.; Armfield, S.; Morgan, P.; Srinivas, K,

    2003-01-01

    In this paper an iterative method for the computation of stationary gravity-wave solutions is investigated, using a novel formulation of the free-surface (FS) boundary-value problem. This method requires the solution of a sequence of stationary Reynolds-Averaged Navier-Stokes subproblems employing

  10. Computation of 3D steady Navier-Stokes flow with free-surface gravity waves

    NARCIS (Netherlands)

    M.R. Lewis; B. Koren (Barry); H.C. Raven

    2003-01-01

    textabstractIn this paper an iterative method for the computation of stationary gravity-wave solutions is investigated, using a novel formulation of the free-surface (FS) boundary-value problem. This method requires the solution of a sequence of stationary Reynolds-Averaged Navier-Stokes subproblems

  11. Investigation of Gravity Waves VIA the Rotational Temperature of Hydroxyl Nightglow

    National Research Council Canada - National Science Library

    Willingham, Erin

    2001-01-01

    ... monochrometer optimized for the visible and near infrared. Quantifying gravity wave activity was the ultimate objective of this experiment. No spectrum of OH nightglow was recorded. The instrumentation was not sensitive enough to pick up the weak signal. This thesis is primarily a characterization of the equipment, its capabilities, and its limitations.

  12. Quantum spreading of a self-gravitating wave-packet in singularity free gravity

    NARCIS (Netherlands)

    Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam

    In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein’s general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential – such

  13. Application of dopplionograms and gonionograms to atmospheric gravity wave disturbances in the ionosphere

    International Nuclear Information System (INIS)

    Wright, J.W.; Pitteway, M.L.V.

    1982-01-01

    A sequence of digital ionograms is processed by dopplionogram and gonionogram methods. Together, these disclose a disturbance in the F region which descends in altitude with time. Two wavelike periods of the disturbance are evident. The Doppler and angle-of-arrival behavior are consistent with a semiquantitative model of the plasma perturbations caused by an internal atmospheric gravity wave

  14. Introducing wave energy into the renewable energy marketplace

    International Nuclear Information System (INIS)

    Petroncini, S.; Yemm, R.W.

    2001-01-01

    The energy sector in Europe is going through a dynamic evolution that sees the introduction and development of renewable energy and the re-emergence of a wave energy industry. Although wave energy is currently not economically competitive with mature technologies such as wind energy, the wave energy world-wide resource of 2 TW has a potential contribution in the electricity market of 2000TWh/year. Denmark, Ireland, Portugal, Norway and the UK have been analysed in terms of wave energy resources, renewable energy market structure and political and economic support for the introduction of wave energy into the marketplace. The results have been used together with Ocean Power Delivery Ltd to develop an initial market survey for the wave energy converter Pelamis. (au)

  15. Controller for a wave energy converter

    Science.gov (United States)

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  16. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  17. Rotating gravity currents. Part 1. Energy loss theory

    Science.gov (United States)

    Martin, J. R.; Lane-Serff, G. F.

    2005-01-01

    A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.

  18. Wave energy input into the Ekman layer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant vertical diffusivity, the analytical form of wave energy input into the Ekman layer is derived. Analysis of the energy balance shows that the energy input to the Ekman layer through the wind stress and the interaction of the Stokes-drift with planetary vorticity can be divided into two kinds. One is the wind energy input, and the other is the wave energy input which is dependent on wind speed, wave characteristics and the wind direction relative to the wave direction. Estimates of wave energy input show that wave energy input can be up to 10% in high-latitude and high-wind speed areas and higher than 20% in the Antarctic Circumpolar Current, compared with the wind energy input into the classical Ekman layer. Results of this paper are of significance to the study of wave-induced large scale effects.

  19. Gravity wave generation from jets and fronts: idealized and real-case simulations

    Science.gov (United States)

    Plougonven, Riwal; Arsac, Antonin; Hertzog, Albert; Guez, Lionel; Vial, François

    2010-05-01

    The generation of gravity waves from jets and fronts remains an outstanding issue in the dynamics of the atmosphere. It is important to explain and quantify this emission because of the several impacts of these waves, in particular the induced momentum fluxes towards the middle atmosphere, and their contribution to turbulence and mixing, e.g. in the region of the tropopause. Yet, the mechanisms at the origin of these waves have been difficult to identify, the fundamental reason for this being the separation between the time scales of balanced motions and gravity waves. Recent simulations of idealized baroclinic life cycles and of dipoles have provided insights into the mechanisms determining the characteristics and the amplitude of gravity waves emitted by jets. It has been shown in particular that the environmental strain and shear play a crucial role in determining the characteristics and location of the emitted waves, emphasizing jet exit regions for the appearance of coherent low-frequency waves. It has also been shown how advection of relatively small-scales allow to overcome the separation of time scales alluded to above. Recent results, remaining open questions and ongoing work on these idealized simulations will be briefly summarized. Nevertheless, unavoidable shortcomings of such idealized simulations include the sensitivity of the emitted waves to model setup (resolution, diffusion, parameterizations) and uncertainty regarding the realism of this aspect of the simulations. Hence, it is necessary to compare simulations with observations in order to assess their relevance. Such comparison has been undertaken using the dataset from the Vorcore campaign (Sept. 2005 - Feb. 2006, Hertzog, J. Atmos. Ocean. Techno. 2007) during which 27 superpressure balloons drifted as quasi-Lagrangian tracers in the lower stratosphere above Antarctica and the Southern Ocean. High-resolution simulations (dx = 20 km) have been carried out using the Weather Research and Forecast

  20. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    Science.gov (United States)

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.).

  1. A solution of nonlinear equation for the gravity wave spectra from Adomian decomposition method: a first approach

    Directory of Open Access Journals (Sweden)

    Antonio Gledson Goulart

    2013-12-01

    Full Text Available In this paper, the equation for the gravity wave spectra in mean atmosphere is analytically solved without linearization by the Adomian decomposition method. As a consequence, the nonlinear nature of problem is preserved and the errors found in the results are only due to the parameterization. The results, with the parameterization applied in the simulations, indicate that the linear solution of the equation is a good approximation only for heights shorter than ten kilometers, because the linearization the equation leads to a solution that does not correctly describe the kinetic energy spectra.

  2. Imperfect Dark Energy from Kinetic Gravity Braiding

    CERN Document Server

    Deffayet, Cedric; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energ...

  3. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    1998-10-01

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  4. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.

    Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  5. Gravity induced corrections to quantum mechanical wave functions

    International Nuclear Information System (INIS)

    Singh, T.P.

    1990-03-01

    We perform a semiclassical expansion in the Wheeler-DeWitt equation, in powers of the gravitational constant. We then show that quantum gravitational fluctuations can provide a correction to the wave-functions which are solutions of the Schroedinger equation for matter. This also implies a correction to the expectation values of quantum mechanical observables. (author). 6 refs

  6. Thermal infrared sounding observations of lower atmospheric variances at Mars and their implications for gravity wave activity: a preliminary examination

    Science.gov (United States)

    Heavens, N. G.

    2017-12-01

    It has been recognized for over two decades that the mesoscale statistical variance observed by Earth-observing satellites at temperature-sensitive frequencies above the instrumental noise floor is a measure of gravity wave activity. These types of observation have been made by a variety of satellite instruments have been an important validation tool for gravity wave parameterizations in global and mesoscale models. At Mars, the importance of topographic and non-topographic sources of gravity waves for the general circulation is now widely recognized and the target of recent modeling efforts. However, despite several ingenious studies, gravity wave activity near hypothetical lower atmospheric sources has been poorly and unsystematically characterized, partly because of the difficulty of separating the gravity wave activity from baroclinic wave activity and the thermal tides. Here will be presented a preliminary analysis of calibrated radiance variance at 15.4 microns (635-665 cm-1) from nadir, off-nadir, and limb observations by the Mars Climate Sounder on board Mars Reconnaissance Orbiter. The overarching methodology follows Wu and Waters (1996, 1997). Nadir, off-nadir, and lowest detector limb observations should sample variability with vertical weighting functions centered high in the lower atmosphere (20-30 km altitude) and full width half maximum (FWHM) 20 km but be sensitive to gravity waves with different horizontal wavelengths and slightly different vertical wavelengths. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G). References Wu, D.L. and J.W. Waters, 1996, Satellite observations of atmospheric variances: A possible indication of gravity waves, GRL, 23, 3631-3634. Wu D.L. and J.W. Waters, 1997, Observations of Gravity Waves with the UARS Microwave Limb Sounder. In: Hamilton K. (eds) Gravity Wave Processes. NATO ASI Series (Series I: Environmental Change), vol 50. Springer, Berlin, Heidelberg.

  7. Energy in a String Wave

    Science.gov (United States)

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…

  8. Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012

    Science.gov (United States)

    Chen, Gang; Wu, Chen; Huang, Xueqin; Zhao, Zhengyu; Zhong, Dingkun; Qi, Hao; Huang, Liang; Qiao, Lei; Wang, Jin

    2015-04-01

    The solar eclipse effects on the ionosphere are very complex. Except for the ionization decay due to the decrease of the photochemical process, the couplings of matter and energy between the ionosphere and the regions above and below will introduce much more disturbances. Five ionosondes in the Northeast Asia were used to record the midlatitude ionospheric responses to the solar eclipse of 20 May 2012. The latitude dependence of the eclipse lag was studied first. The foF2 response to the eclipse became slower with increased latitude. The response of the ionosphere at the different latitudes with the same eclipse obscuration differed from each other greatly. The plasma flux from the protonsphere was possibly produced by the rapid temperature drop in the lunar shadow to make up the ionization loss. The greater downward plasma flux was generated at higher latitude with larger dip angle and delayed the ionospheric response later. The waves in the foEs and the plasma frequency at the fixed height in the F layer are studied by the time period analytic method. The gravity waves of 43-51 min center period during and after the solar eclipse were found over Jeju and I-Cheon. The northward group velocity component of the gravity waves was estimated as ~108.7 m/s. The vertical group velocities between 100 and 150 km height over the two stations were calculated as ~5 and ~4.3 m/s upward respectively, indicating that the eclipse-induced gravity waves propagated from below the ionosphere.

  9. Ricci dark energy in Chern-Simons modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.G.; Santos, A.F. [Universidade Federal de Mato Grosso (UFMT), Campo Grande, MT (Brazil)

    2013-07-01

    Full text: Currently the accelerated expansion of the universe has been strongly confirmed by some independent experiments such as the Cosmic Microwave Background Radiation (CMBR) and Sloan Digital Sky Survey (SDSS). In an attempt to explain this phenomenon there are two possible paths; first option - propose corrections to general relativity, second option - assuming that there is a dominant component of the universe, a kind of antigravity called dark energy. Any way that we intend to follow, there are numerous models that attempt to explain this effect. One of the models of modified gravity that has stood out in recent years is the Chern-Simons modified gravity. This modification consists in the addition of the Pontryagin density, which displays violation of parity symmetry in Einstein-Hilbert action. From among the various models proposed for dark energy there are some that are based on the holographic principle, known as holographic dark energy. Such models are based on the idea that the energy density of a given system is proportional to the inverse square of some characteristic length of the system. From these studies, here we consider the model proposed by Gao et. al., a model of dark energy where the characteristic length is given by the average radius of the Ricci scalar. Thus, the dark energy density is proportional to the Ricci scalar, i.e., ρ{sub x} ∝ R. It is a phenomenologically viable model and displays results similar to that presented by the cosmological model ACDM. In this work, we have considered the Ricci dark energy model in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas. (author)

  10. Ricci dark energy in Chern-Simons modified gravity

    International Nuclear Information System (INIS)

    Silva, J.G.; Santos, A.F.

    2013-01-01

    Full text: Currently the accelerated expansion of the universe has been strongly confirmed by some independent experiments such as the Cosmic Microwave Background Radiation (CMBR) and Sloan Digital Sky Survey (SDSS). In an attempt to explain this phenomenon there are two possible paths; first option - propose corrections to general relativity, second option - assuming that there is a dominant component of the universe, a kind of antigravity called dark energy. Any way that we intend to follow, there are numerous models that attempt to explain this effect. One of the models of modified gravity that has stood out in recent years is the Chern-Simons modified gravity. This modification consists in the addition of the Pontryagin density, which displays violation of parity symmetry in Einstein-Hilbert action. From among the various models proposed for dark energy there are some that are based on the holographic principle, known as holographic dark energy. Such models are based on the idea that the energy density of a given system is proportional to the inverse square of some characteristic length of the system. From these studies, here we consider the model proposed by Gao et. al., a model of dark energy where the characteristic length is given by the average radius of the Ricci scalar. Thus, the dark energy density is proportional to the Ricci scalar, i.e., ρ x ∝ R. It is a phenomenologically viable model and displays results similar to that presented by the cosmological model ACDM. In this work, we have considered the Ricci dark energy model in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas. (author)

  11. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  12. Statistical comparisons of gravity wave features derived from OH airglow and SABER data

    Science.gov (United States)

    Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.

    2017-12-01

    The Aerospace Corporation's near-IR camera (ANI), deployed at Andes Lidar Observatory (ALO), Cerro Pachon Chile (30S,70W) since 2010, images the bright OH Meinel (4,2) airglow band. The imager provides detailed observations of gravity waves and instability dynamics, as described by Hecht et al. (2014). The camera employs a wide-angle lens that views a 73 by 73 degree region of the sky, approximately 120 km x 120 km at 85 km altitude. Image cadence of 30s allows for detailed spectral analysis of the horizontal components of wave features, including the evolution and decay of instability features. The SABER instrument on NASA's TIMED spacecraft provides remote soundings of kinetic temperature profiles from the lower stratosphere to the lower thermosphere. Horizontal and vertical filtering techniques allow SABER temperatures to be analyzed for gravity wave variances [Walterscheid and Christensen, 2016]. Here we compare the statistical characteristics of horizontal wave spectra, derived from airglow imagery, with vertical wave variances derived from SABER temperature profiles. The analysis is performed for a period of strong mountain wave activity over the Andes spanning the period between June and September 2012. Hecht, J. H., et al. (2014), The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on March 24, 2012, J. Geophys. Res. Atmos., 119, 8872-8898, doi:10.1002/2014JD021726. Walterscheid, R. L., and A. B. Christensen (2016), Low-latitude gravity wave variances in the mesosphere and lower thermosphere derived from SABER temperature observation and compared with model simulation of waves generated by deep tropical convection, J. Geophys. Res. Atmos., 121, 11,900-11,912, doi:10.1002/2016JD024843.

  13. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    Science.gov (United States)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  14. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    Science.gov (United States)

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  15. Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation

    Science.gov (United States)

    2008-12-01

    slight longitudinal variations, with secondary high- latitude peaks occurring over Greenland and Europe . As the QBO changes to the westerly phase, the...equatorial GW temperature variances from suborbital data (e.g., Eck- ermann et al. 1995). The extratropical wave variances are generally larger in the...emanating from tropopause altitudes, presumably radiated from tropospheric jet stream in- stabilities associated with baroclinic storm systems that

  16. Role of Wind Filtering and Unbalanced Flow Generation in Middle Atmosphere Gravity Wave Activity at Chatanika Alaska

    Directory of Open Access Journals (Sweden)

    Colin C. Triplett

    2017-01-01

    Full Text Available The meteorological control of gravity wave activity through filtering by winds and generation by spontaneous adjustment of unbalanced flows is investigated. This investigation is based on a new analysis of Rayleigh LiDAR measurements of gravity wave activity in the upper stratosphere-lower mesosphere (USLM,40–50kmon 152 nights at Poker Flat Research Range (PFRR, Chatanika, Alaska (65◦ N, 147◦ W, over 13 years between 1998 and 2014. The LiDAR measurements resolve inertia-gravity waves with observed periods between 1 h and 4 h and vertical wavelengths between 2 km and 10 km. The meteorological conditions are defined by reanalysis data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA. The gravity wave activity shows large night-to-night variability, but a clear annual cycle with a maximum in winter,and systematic interannual variability associated with stratospheric sudden warming events. The USLM gravity wave activity is correlated with the MERRA winds and is controlled by the winds in the lower stratosphere through filtering by critical layer filtering. The USLM gravity wave activity is also correlated with MERRA unbalanced flow as characterized by the residual of the nonlinear balance equation. This correlation with unbalanced flow only appears when the wind conditions are taken into account, indicating that wind filtering is the primary control of the gravity wave activity.

  17. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    Science.gov (United States)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  18. Predictability of Wave Energy and Electricity Markets

    DEFF Research Database (Denmark)

    Chozas, Julia Fernandez

    2012-01-01

    The articlw addresses an important challenge ahead the integration of the electricity generated by wave energy conversion technologies into the electric grid. Particularly, it looks into the role of wave energy within the day-ahead electricity market. For that the predictability of the theoretical...... power outputs of three wave energy technologies in the Danish North Sea are examined. The simultaneous and co-located forecast and buoy-measured wave parameters at Hanstholm, Denmark, during a non-consecutive autumn and winter 3-month period form the basis of the investigation. The objective...

  19. The Indian wave energy programme- an overview

    International Nuclear Information System (INIS)

    Ravindran, M.; Jayashankar, V.; Jalihal, P.; Pathak, A.G.

    1997-01-01

    The Indian wave energy plant at Vizhinjam, Kerala has demonstrated that energy from a random source such as waves can be harnessed as electrical energy and exported via the local grid. This plant is based on the oscillating water column (OWC) principle. The research on wave energy in India has achieved a commendable status within a decade. A caisson was constructed in December 1990 at Vizhinjam and two generations of power modules have been tested as of today. The physical processes in the energy conversion are understood to a much greater extent, leading to a threefold increase in absolute power from the plant. Efforts are on to make the technology cost-effective

  20. Transmission of wave energy in curved ducts

    Science.gov (United States)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  1. Energy in one-dimensional linear waves

    International Nuclear Information System (INIS)

    Repetto, C E; Roatta, A; Welti, R J

    2011-01-01

    This work is based on propagation phenomena that conform to the classical wave equation. General expressions of power, the energy conservation equation in continuous media and densities of the kinetic and potential energies are presented. As an example, we study the waves in a string and focused attention on the case of standing waves. The treatment is applicable to introductory science textbooks. (letters and comment)

  2. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    Science.gov (United States)

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  3. Effect of small floating disks on the propagation of gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Santi, F De; Olla, P, E-mail: olla@dsf.unica.it [ISAC-CNR, Sez. Cagliari, I-09042 Monserrato (Italy)

    2017-04-15

    A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided. (paper)

  4. Observation of mesospheric gravity waves at Comandante Ferraz Antarctica Station (62° S

    Directory of Open Access Journals (Sweden)

    P. B. Souza

    2009-06-01

    Full Text Available An airglow all-sky imager was operated at Comandante Ferraz Antarctica Station (62.1° S, 58.4° W, between April and October of 2007. Mesospheric gravity waves were observed using the OH airglow layer during 43 nights with good weather conditions. The waves presented horizontal wavelengths between 10 and 60 km and observed periods mainly distributed between 5 and 20 min. The observed phase speeds range between 5 m/s and 115 m/s; the majority of the wave velocities were between 10 and 60 m/s. The waves showed a preferential propagation direction towards the southwest in winter (May to July, while during spring (August to October there was an anisotropy with a preferential propagation direction towards the northwest. Unusual mesospheric fronts were also observed. The most probable wave source could be associated to orographic forcing, cold fronts or strong cyclonic activity in the Antarctica Peninsula.

  5. Low energy description of quantum gravity and complementarity

    International Nuclear Information System (INIS)

    Nomura, Yasunori; Varela, Jaime; Weinberg, Sean J.

    2014-01-01

    We consider a framework in which low energy dynamics of quantum gravity is described preserving locality, and yet taking into account the effects that are not captured by the naive global spacetime picture, e.g. those associated with black hole complementarity. Our framework employs a “special relativistic” description of gravity; specifically, gravity is treated as a force measured by the observer tied to the coordinate system associated with a freely falling local Lorentz frame. We identify, in simple cases, regions of spacetime in which low energy local descriptions are applicable as viewed from the freely falling frame; in particular, we identify a surface called the gravitational observer horizon on which the local proper acceleration measured in the observer's coordinates becomes the cutoff (string) scale. This allows for separating between the “low-energy” local physics and “trans-Planckian” intrinsically quantum gravitational (stringy) physics, and allows for developing physical pictures of the origins of various effects. We explore the structure of the Hilbert space in which the proposed scheme is realized in a simple manner, and classify its elements according to certain horizons they possess. We also discuss implications of our framework on the firewall problem. We conjecture that the complementarity picture may persist due to properties of trans-Planckian physics.

  6. GPS-TEC Observation of Gravity Waves Generated in the Ionosphere During 21 August 2017 Total Solar Eclipse

    Science.gov (United States)

    Nayak, Chinmaya; Yiǧit, Erdal

    2018-01-01

    The present work investigates ionospheric effects of the 21 August 2017 total solar eclipse, particularly targeting eclipse-generated gravity waves in the ionosphere. Ionospheric total electron content (TEC) derived from Global Positioning System (GPS) data obtained from a number of stations located both along and across the path of eclipse totality has been utilized for this purpose. Distinct gravity wave-like signatures with wave periods around 20-90 min (with dominant peak at 25-30 min wave period) have been observed at all locations both in the path of totality and away from it. The observed gravity waves are more intense at locations closer to the path of totality, and the wave amplitudes decrease gradually with increasing distance from the path of totality. Our result highlights the manifestation of eclipse-generated waves in the variability of the terrestrial ionosphere.

  7. Cosmological models in energy-momentum-squared gravity

    Science.gov (United States)

    Board, Charles V. R.; Barrow, John D.

    2017-12-01

    We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting cosmological theories give rise to field equations of similar form to several particular theories with different fundamental bases, including bulk viscous cosmology, loop quantum gravity, k -essence, and brane-world cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.

  8. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    Science.gov (United States)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  9. Temporal variability of gravity wave drag - vertical coupling and possible climate links

    Science.gov (United States)

    Miksovsky, Jiri; Sacha, Petr; Kuchar, Ales; Pisoft, Petr

    2017-04-01

    In the atmosphere, the internal gravity waves (IGW) are one of the fastest ways of natural information transfer in the vertical direction. Tropospheric changes that result in modification of sourcing, propagation or breaking conditions for IGWs almost immediately influence the distribution of gravity wave drag in the stratosphere. So far most of the related studies deal with IGW impacts higher in the upper stratospheric/mesospheric region and with the modulation of IGWs by planetary waves. This is most likely due to the fact that IGWs induce highest accelerations in the mesosphere and lower thermosphere region. However, the imposed drag force is much bigger in the stratosphere. In the presented analysis, we have assessed the relationship between the gravity wave activity in the stratosphere and other climatic phenomena through statistical techniques. Multivariable regression has been applied to investigate the IGW-related eastward and northward wind tendencies in the CMAM30-SD data, subject to the explanatory variables involving local circulation characteristics (derived from regional configuration of the thermobaric field) as well as the phases of the large-scale internal climate variability modes (ENSO, NAO, QBO). Our tests have highlighted several geographical areas with statistically significant responses of the orographic gravity waves effect to each of the variability modes under investigation; additional experiments have also indicated distinct signs of nonlinearity in some of the links uncovered. Furthermore, we have also applied composite analysis of displaced and split stratospheric polar vortex events (SPV) from CMAM30-SD to focus on how the strength and occurrence of the IGW hotspots can play a role in SPV occurrence and frequency.

  10. Chameleon fields, wave function collapse and quantum gravity

    International Nuclear Information System (INIS)

    Zanzi, A

    2015-01-01

    Chameleon fields are quantum (usually scalar) fields, with a density-dependent mass. In a high-density environment, the mass of the chameleon is large. On the contrary, in a small-density environment (e.g. on cosmological distances), the chameleon is very light. A model where the collapse of the wave function is induced by chameleon fields is presented. During this analysis, a Chameleonic Equivalence Principle (CEP) will be formulated: in this model, quantum gravitation is equivalent to a conformal anomaly. Further research efforts are necessary to verify whether this proposal is compatible with phenomeno logical constraints. (paper)

  11. Gravity dual of spin and charge density waves

    Science.gov (United States)

    Jokela, Niko; Järvinen, Matti; Lippert, Matthew

    2014-12-01

    At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.

  12. Constraint on reconstructed f(R) gravity models from gravitational waves

    Science.gov (United States)

    Lee, Seokcheon

    2018-06-01

    The gravitational wave (GW) detection of a binary neutron star inspiral made by the Advanced LIGO and Advanced Virgo paves the unprecedented way for multi-messenger observations. The propagation speed of this GW can be scrutinized by comparing the arrival times between GW and neutrinos or photons. It provides the constraint on the mass of the graviton. f(R) gravity theories have the habitual non-zero mass gravitons in addition to usual massless ones. Previously, we show that the model independent f(R) gravity theories can be constructed from the both background evolution and the matter growth with one undetermined parameter. We show that this parameter can be constrained from the graviton mass bound obtained from GW detection. Thus, the GW detection provides the invaluable constraint on the validity of f(R) gravity theories.

  13. Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity

    Science.gov (United States)

    Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam

    2018-06-01

    In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.

  14. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  15. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)

    2001-07-01

    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  16. Studies of midlatitude mesospheric temperature variability and its relationship to gravity waves, tides, and planetary waves

    Science.gov (United States)

    Beissner, Kenneth C.

    1997-10-01

    Temperature observations of the middle atmosphere have been carried out from September 1993 through July 1995 using a Rayleigh backscatter lidar located at Utah State University (42oN, 111oW). Data have been analyzed to obtain absolute temperature profiles from 40 to 90 km. Various sources of error were reviewed in order to ensure the quality of the measurements. This included conducting a detailed examination of the data reduction procedure, integration methods, and averaging techniques, eliminating errors of 1-3%. The temperature structure climatology has been compared with several other mid-latitude data sets, including those from the French lidars, the SME spacecraft, the sodium lidars at Ft. Collins and Urbana, the MSISe90 model, and a high- latitude composite set from Andenes, Norway. In general, good agreement occurs at mid-latitudes, but areas of disagreement do exist. Among these, the Utah temperatures are significantly warmer than the MSISe90 temperatures above approximately 80 km, they are lower below 80 km than any of the others in summer, they show major year- to-year variability in the winter profiles, and they differ from the sodium lidar data at the altitudes where the temperature profiles should overlap. Also, comparisons between observations and a physics based global circulation model, the TIME-GCM, were conducted for a mid-latitude site. A photo-chemical model was developed to predict airglow intensity of OH based on output from the TIME-GCM. Many discrepancies between the model and observations were found, including a modeled summer mesopause too high, a stronger summer inversion not normally observed by lidar, a fall-spring asymmetry in the OH winds and lidar temperatures but not reproduced in the TIME-GCM equinoctial periods, larger winter seasonal wind tide than observed by the FPI, and a failure of the model to reverse the summertime mesospheric jet. It is our conclusion these discrepancies are due to a gravity wave parameterization in the

  17. Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    J. Y. Jia

    2014-11-01

    Full Text Available Absolute values of gravity wave momentum flux (GWMF deduced from satellite measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument and the High Resolution Dynamics Limb Sounder (HIRDLS are correlated with sea surface temperature (SST with the aim of identifying those oceanic regions for which convection is a major source of gravity waves (GWs. Our study identifies those latitude bands where high correlation coefficients indicate convective excitation with confidence. This is based on a global ray-tracing simulation, which is used to delineate the source and wind-filtering effects. Convective GWs are identified at the eastern coasts of the continents and over the warm water regions formed by the warm ocean currents, in particular the Gulf Stream and the Kuroshio. Potential contributions of tropical cyclones to the excitation of the GWs are discussed. Convective excitation can be identified well into the mid-mesosphere. In propagating upward, the centers of GWMF formed by convection shift poleward. Some indications of the main forcing regions are even shown for the upper mesosphere/lower thermosphere (MLT.

  18. Short-period atmospheric gravity waves - A study of their statistical properties and source mechanisms

    Science.gov (United States)

    Gedzelman, S. D.

    1983-01-01

    Gravity waves for the one year period beginning 19 October 1976 around Palisades, New York, are investigated to determine their statistical properties and sources. The waves have typical periods of 10 min, pressure amplitudes of 3 Pa and velocities of 30 m/s. In general, the largest, amplitude waves occur during late fall and early winter when the upper tropospheric winds directly overhead are fastest and the static stability of the lower troposphere is greatest. Mean wave amplitudes correlate highly with the product of the mean maximum wind speed and the mean low level stratification directly aloft. A distinct diurnal variation of wave amplitudes with the largest waves occurring in the pre-dawn hours is also observed as a result of the increased static stability then. The majority of waves are generated by shear instability; however, a number of waves are generated by distant sources such as nuclear detonations or large thunderstorms. The waves with distant sources can be distinguished on the basis of their generally much higher coherency across the grid and velocities that depart markedly from the wind velocity at any point in the sounding.

  19. Hydraulic Response of the Wave Energy Converter Wave Dragon in Nissum Bredning

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype.......This report deals with the hydraulic performance of the wave energy converter Wave Dragon, Nissum Bredning prototype....

  20. Near-Shore Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Ruol, Piero; Zanuttigh, Barbara; Martinelli, Luca

    2011-01-01

    and transmission characteristics are approximated to functions of wave height, period and obliquity. Their order of magnitude are 20% and 80%, respectively. It is imagined that an array of DEXA is deployed in front of Marina di Ravenna beach (IT), a highly touristic site of the Adriatic Coast. Based on the CERC......Aim of this note is to analyse the possible application of a Wave Energy Converter (WEC) as a combined tool to protect the coast and harvest energy. Physical model tests are used to evaluate wave transmission past a near-shore floating WEC of the wave activated body type, named DEXA. Efficiency...

  1. Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation

    Science.gov (United States)

    Hinson, D. P.; Tyler, G. L.

    1983-01-01

    The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.

  2. Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region

    Science.gov (United States)

    Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre

    2016-07-01

    This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.

  3. Resonant Wave Energy Converters: Concept development

    International Nuclear Information System (INIS)

    Arena, Felice; Barbaro, Giuseppe; Fiamma, Vincenzo; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati, Federica Mara

    2015-01-01

    The Resonant Wave Energy Converter (REWEC) is a device for converting sea wave energy to electrical energy. It belongs to the family of Oscillating Water Columns and is composed by an absorbing chamber connected to the open sea via a vertical duct. The paper gives a holistic view on the concept development of the device, starting from its implementation in the context of submerged breakwaters to the recently developed vertical breakwaters. [it

  4. Wave energy potential in Galicia (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Lopez, M.; Carballo, R.; Castro, A. [University of Santiago de Compostela, Hydraulic Engineering, E.P.S., Campus Universitario s/n, 27002 Lugo (Spain); Fraguela, J.A. [University of A Coruna, E.P.S., Campus de Esteiro s/n, Ferrol (Spain); Frigaard, P. [University of Aalborg, Sohngaardsholmsvej 57, DK 9000 (Denmark)

    2009-11-15

    Wave power presents significant advantages with regard to other CO{sub 2}-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996-2005. Taking into account the results of this assessment along with other relevant considerations such as the location of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two zones emerge as those with the highest potential for wave energy exploitation. The large modifications in the available wave power resulting from relatively small changes of position are made apparent in the process. (author)

  5. Destruction of coherence in nondemolition monitoring: quantum 'watchdog effect' in gravity wave detectors

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1984-01-01

    The author shows that nondemolition monitoring of a Weber bar may prevent changes of the number of phonons, and thus influence the sensitivity of quantum-counting gravity wave detectors. This effect is similar to the Watchdog Effect which is predicted to delay decays of the monitored, unstable quantum system. Relations between watchdog effect and Environment-Induced Superselection Rules as well as its connections to the fundamental questions of the quantum theory of measurement are briefly considered. (Auth.)

  6. Spontaneous development of rotating inertial gravity wave inside the cylindrical tank with combined in- and outflow

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Stachiv, Ivo; Trávníček, Zdeněk

    2013-01-01

    Roč. 20, č. 2 (2013), s. 133-138 ISSN 0869-8643 R&D Projects: GA ČR GAP107/10/0824; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : inertial gravity wave * free surface * rotating flow Subject RIV: BK - Fluid Dynamics Impact factor: 0.295, year: 2013 http://link.springer.com/article/10.1134/S0869864313020017

  7. Gravitational waves from quasicircular black-hole binaries in dynamical Chern-Simons gravity.

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolás; Tanaka, Takahiro

    2012-12-21

    Dynamical Chern-Simons gravity cannot be strongly constrained with current experiments because it reduces to general relativity in the weak-field limit. This theory, however, introduces modifications in the nonlinear, dynamical regime, and thus it could be greatly constrained with gravitational waves from the late inspiral of black-hole binaries. We complete the first self-consistent calculation of such gravitational waves in this theory. For favorable spin orientations, advanced ground-based detectors may improve existing solar system constraints by 6 orders of magnitude.

  8. QBO Modulation of the Mesopause Gravity Wave Momentum Flux over Tierra del Fuego

    Science.gov (United States)

    De Wit, R. J.; Janches, D.; Fritts, D. C.; Hibbins, R. E.

    2016-01-01

    The interannual variability of the mesosphere and lower thermosphere (MLT) gravity wave momentum flux over southern mid latitudes (53.7degS) has been studied using more than 7 years of meteor radar observations at Ro Grande, Argentina. A modulation, with periods similar to that of the equatorial stratospheric quasi-biennial oscillation (QBO), is observed in the vertical flux of zonal as well as meridional momentum. The QBO signal is largest in the zonal component during summer and is in phase with the stratospheric QBO at 50 hPa (approx. 21 km). The relation between the stratospheric QBO and the QBO modulation in the MLT gravity wave forcing (derived from the divergence of the momentum flux) was found to be consistent with that expected from the Holton-Tan effect coupled to the interhemispheric coupling mechanism. These results provide the first observational support for the existence of the midlatitude gravity wave forcing anomalies as hypothesized in the interhemispheric coupling mechanism.

  9. Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.

    Science.gov (United States)

    Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E

    2016-11-10

    Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.

  10. Topology and dark energy: testing gravity in voids.

    Science.gov (United States)

    Spolyar, Douglas; Sahlén, Martin; Silk, Joe

    2013-12-13

    Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.

  11. Determination of gravity wave parameters in the airglow combining photometer and imager data

    Science.gov (United States)

    Nyassor, Prosper K.; Arlen Buriti, Ricardo; Paulino, Igo; Medeiros, Amauri F.; Takahashi, Hisao; Wrasse, Cristiano M.; Gobbi, Delano

    2018-05-01

    Mesospheric airglow measurements of two or three layers were used to characterize both vertical and horizontal parameters of gravity waves. The data set was acquired coincidentally from a multi-channel filter (Multi-3) photometer and an all-sky imager located at São João do Cariri (7.4° S, 36.5° W) in the equatorial region from 2001 to 2007. Using a least-square fitting and wavelet analysis technique, the phase and amplitude of each observed wave were determined, as well as the amplitude growth. Using the dispersion relation of gravity waves, the vertical and horizontal wavelengths were estimated and compared to the horizontal wavelength obtained from the keogram analysis of the images observed by an all-sky imager. The results show that both horizontal and vertical wavelengths, obtained from the dispersion relation and keogram analysis, agree very well for the waves observed on the nights of 14 October and 18 December 2006. The determined parameters showed that the observed wave on the night of 18 December 2006 had a period of ˜ 43.8 ± 2.19 min, with the horizontal wavelength of 235.66 ± 11.78 km having a downward phase propagation, whereas that of 14 October 2006 propagated with a period of ˜ 36.00 ± 1.80 min with a horizontal wavelength of ˜ 195 ± 9.80 km, and with an upward phase propagation. The observation of a wave taken by a photometer and an all-sky imager allowed us to conclude that the same wave could be observed by both instruments, permitting the investigation of the two-dimensional wave parameter.

  12. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    Ocean waves provide a sustainable, power-dense, predictable and widely available source of energy that could provide about 10 % of worlds energy needs. While research into waveenergy has been undertaken for decades, a significant increase in related activities has been seen in the recent years......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes....... Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. Thisimplicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development...

  13. Probabilistic Design of Wave Energy Devices

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kofoed, Jens Peter; Ferreira, C.B.

    2011-01-01

    Wave energy has a large potential for contributing significantly to production of renewable energy. However, the wave energy sector is still not able to deliver cost competitive and reliable solutions. But the sector has already demonstrated several proofs of concepts. The design of wave energy...... devices is a new and expanding technical area where there is no tradition for probabilistic design—in fact very little full scale devices has been build to date, so it can be said that no design tradition really exists in this area. For this reason it is considered to be of great importance to develop...... and advocate for a probabilistic design approach, as it is assumed (in other areas this has been demonstrated) that this leads to more economical designs compared to designs based on deterministic methods. In the present paper a general framework for probabilistic design and reliability analysis of wave energy...

  14. Performance Evaluation of Wave Energy Converters

    DEFF Research Database (Denmark)

    Pecher, Arthur

    . Guidelines for the development of wave energy converters recommend the use of different prototypes, having different sizes, which have to perform tank tests or sea trials. This implicates the need of different testing environment, which shifts from being controllable to uncontrollable with the development......, with more than 150 concepts currently being developed worldwide. Wave energy conversion concepts can be of many kinds, as the energy in the waves can be absorbed in many different ways. However, each concept is expected to require a thorough development process, involving different phases and prototypes...

  15. gravity

    Indian Academy of Sciences (India)

    We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...

  16. Energy Capture Optimization for an Adaptive Wave Energy Converter

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Meijer, Harmen; van Rooij, Marijn; Clemente Pinol, Silvia; Galvan Garcia, Bruno; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu

    2016-01-01

    Wave energy has great potential as a renewable energy source, and can therefore contribute significantly to the proportion of renewable energy in the global energy mix. This is especially important since energy mixes with high renewable penetration have become a worldwide priority. One solution to

  17. Mesospheric Temperature Measurements over Scandinavia During the Gravity Wave Life Cycle Campaign (GW-LCYCLE)

    Science.gov (United States)

    Pautet, P. D.; Taylor, M.; Kaifler, B.

    2016-12-01

    The Gravity Wave Life Cycle (GW-LCYCLE) project took place in Northern Scandinavia during the winter 2015-16. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves, especially the orographic waves generated over the Scandinavian mountain range. A series of instruments was operated at several ground-based locations and on-board the DLR HALO Gulfstream V and Falcon aircrafts. As part of this project, Utah State University (USU) deployed 3 Advanced Mesospheric Temperature Mappers (AMTM) at the ALOMAR facility, Norway (operational since December 2010), at the IRF institute in Kiruna, Sweden, and at the FMI institute in Sodankylä, Finland. Each of these instruments measures the OH (3,1) rotational temperature over a large region (200x160km) at 87km altitude. During the campaign, their total coverage extended across the Scandinavian Mountain Range, from the wind side in the west to 500 km to the east in the lee of the mountains, allowing the investigation of the occurrence and evolution of gravity waves (GWs) over this part of Scandinavia. Furthermore, the AMTM in Sodankylä operated in the container housing a DLR Rayleigh lidar. Both instruments ran simultaneously and autonomously from November 2015 to April 2016, providing an unprecedented complementary high-quality data set. This presentation will introduce preliminary results obtained during this campaign, in particular the evolution of the mesospheric temperature through the winter, the analysis of mountain waves occurrence and dynamics at mesospheric altitude, as well as the investigation of interesting individual GW cases.

  18. Development of the Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    The development of the wave energy converter Wave Dragon (WD) is presented. The WD is based on the overtopping principle. Initially a description of the WD is given. Then the development over time in terms of the various research and development projects working with the concept is described. Thi...

  19. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  20. Image processing to optimize wave energy converters

    Science.gov (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  1. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  2. State estimation for wave energy converters

    Energy Technology Data Exchange (ETDEWEB)

    Bacelli, Giorgio; Coe, Ryan Geoffrey

    2017-04-01

    This report gives a brief discussion and examples on the topic of state estimation for wave energy converters (WECs). These methods are intended for use to enable real-time closed loop control of WECs.

  3. Towards New Constraints in Extended Theories of Gravity: Cosmography and Gravitational-Wave Signals from Neutron Stars

    Directory of Open Access Journals (Sweden)

    Álvaro de la Cruz Dombriz

    2018-02-01

    Full Text Available Combined cosmological, astrophysical and numerical tests may shed some light on the viability of theories of gravity beyond Einsteinian relativity. In this letter, we present two different techniques providing complementary ways of testing new physics beyond the Λ CDM cosmological paradigm. First, we shall present some of the latest progress and shortcomings in the cosmographic model-independent approach for several modified gravity theories using supernovae catalogues, baryonic acoustic oscillation data and H ( z differential age compilations. Second, we shall show how once the Einsteinian paradigm is abandoned, the phenomenology of neutron stars changes dramatically since neutron-star masses can be much larger than their General Relativity counterparts. Consequently, the total energy available for radiating gravitational waves could be of the order of several solar masses, and thus a merger of these stars constitutes a privileged wave source. Unfortunately at the present time our persisting lack of understanding in the strong interaction sector does not allow to distinguish the alternative theories from the usual General Relativity predictions.

  4. Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Claudio Cremaschini

    2017-07-01

    Full Text Available Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015–2017 are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG wave equation, which advances the quantum state ψ associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton–Jacobi quantization of the classical variational tensor field g ≡ g μ ν and its conjugate momentum, referred to as (canonical g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for ψ , which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state ψ is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g ≡ g μ ν and its quantum conjugate momentum operator.

  5. A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves

    Science.gov (United States)

    Sassi, Fabrizio; Garcia, Rolando R.

    1994-01-01

    A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.

  6. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...

  7. Lidar observations of middle atmospheric gravity wave activity over a low-latitude site (Gadanki, 13.5° N, 79.2° E

    Directory of Open Access Journals (Sweden)

    V. Sivakumar

    2006-05-01

    Full Text Available The low-latitude middle atmospheric gravity wave characteristics are presented using 310 nights of Rayleigh lidar observations made at Gadanki (13.5° N, 79.2° E over the period from March 1998 to December 2002. The gravity wave characteristics are presented in terms of vertical wave number and frequency spectra, along with the estimated potential energy for the four seasons, namely, spring, summer, autumn and winter. The computed wave number spectra for both the stratosphere and the mesosphere are found to differ significantly from a saturated model predicted spectrum. The spectra were found to be shallower at lower wave numbers and steeper at higher wave numbers with transition at ~8.85×10-4 cy/m. The computed frequency spectra seem to follow the model plot with a power law index of -5/3 above a frequency of ~2×10-4 Hz. The estimated potential energy per unit mass increases gradually up to ~60 km and then rather rapidly above this height to reach values of the order of 200J/kg at ~70 km.

  8. Assessment of wave energy resources in Hawaii

    International Nuclear Information System (INIS)

    Stopa, Justin E.; Cheung, Kwok Fai; Chen, Yi-Leng

    2011-01-01

    Hawaii is subject to direct approach of swells from distant storms as well as seas generated by trade winds passing through the islands. The archipelago creates a localized weather system that modifies the wave energy resources from the far field. We implement a nested computational grid along the major Hawaiian Islands in the global WaveWatch3 (WW3) model and utilize the Weather Research and Forecast (WRF) model to provide high-resolution mesoscale wind forcing over the Hawaii region. Two hindcast case studies representative of the year-round conditions provide a quantitative assessment of the regional wind and wave patterns as well as the wave energy resources along the Hawaiian Island chain. These events of approximately two weeks each have a range of wind speeds, ground swells, and wind waves for validation of the model system with satellite and buoy measurements. The results demonstrate the wave energy potential in Hawaii waters. While the episodic swell events have enormous power reaching 60 kW/m, the wind waves, augmented by the local weather, provide a consistent energy resource of 15-25 kW/m throughout the year. (author)

  9. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    International Nuclear Information System (INIS)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-01-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  10. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    Science.gov (United States)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-10-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  11. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Luz M., E-mail: luzmarinareyes@gmail.com [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Moreno, Claudia, E-mail: claudia.moreno@cucei.udg.mx [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Madriz Aguilar, Jose Edgar, E-mail: edgar.madriz@red.cucei.udg.mx [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) - Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2012-10-22

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  12. Simple analytical methods for computing the gravity-wave contribution to the cosmic background radiation anisotropy

    International Nuclear Information System (INIS)

    Wang, Y.

    1996-01-01

    We present two simple analytical methods for computing the gravity-wave contribution to the cosmic background radiation (CBR) anisotropy in inflationary models; one method uses a time-dependent transfer function, the other methods uses an approximate gravity-mode function which is a simple combination of the lowest order spherical Bessel functions. We compare the CBR anisotropy tensor multipole spectrum computed using our methods with the previous result of the highly accurate numerical method, the open-quote open-quote Boltzmann close-quote close-quote method. Our time-dependent transfer function is more accurate than the time-independent transfer function found by Turner, White, and Lindsey; however, we find that the transfer function method is only good for l approx-lt 120. Using our approximate gravity-wave mode function, we obtain much better accuracy; the tensor multipole spectrum we find differs by less than 2% for l approx-lt 50, less than 10% for l approx-lt 120, and less than 20% for l≤300 from the open-quote open-quote Boltzmann close-quote close-quote result. Our approximate graviton mode function should be quite useful in studying tensor perturbations from inflationary models. copyright 1996 The American Physical Society

  13. Gravity wave-driven fluctuations in OH nightglow from an extended, dissipative emission region

    International Nuclear Information System (INIS)

    Schubert, G.; Walterscheid, R.L.; Hickey, M.P.

    1991-01-01

    The theory of gravity wave-driven fluctuations in the OH nightglow from an extended source region is generalized to account for effects of eddy kinematic viscosity v and eddy thermal diffusivity κ. In the nondiffusive case, the amplitudes and phases of vertically integrated normalized intensity (δI)/(bar I) and temperature (δT 1 )/(bar T 1 ) perturbations and vertically integrated Krassovsky's ratio (η) as functions of period are influenced by the upper limit of vertical integration of the extended source, especially at long periods when vertical wavelengths γ v are small. The effects, which include oscillations in (δT)/(bar I), (δT 1 )/(bar T 1 ), and (η), particularly at long periods, are due to constructive and destructive interference of nightglow signals from vertically separated levels of the OH emitting region that occur when γ v is comparable to or smaller than the thickness of the main emission region. The sensitivity of these ratios to the upper limit of vertical integration occurs because of the relatively small rate of decay of the intensity of OH emission with height above the peak emission level and the exponential growth with altitude of nondissipative gravity waves. Because eddy diffusion increases γ v , especially at long periods, and reduces wave growth with height compared with the case v = κ = 0, inclusion of eddy diffusion removes the sensitivity of (η) and the other ratios ot the maximum height of vertical integration. It is essential to account for both eddy diffusion and emission from the entire vertically extended emission region to correctly predict (η), (δI)/(bar I), and (δT 1 )/(bar T 1 ) at long gravity wave periods

  14. Constraining the interacting dark energy models from weak gravity conjecture and recent observations

    International Nuclear Information System (INIS)

    Chen Ximing; Wang Bin; Pan Nana; Gong Yungui

    2011-01-01

    We examine the effectiveness of the weak gravity conjecture in constraining the dark energy by comparing with observations. For general dark energy models with plausible phenomenological interactions between dark sectors, we find that although the weak gravity conjecture can constrain the dark energy, the constraint is looser than that from the observations.

  15. Clustering of cycloidal wave energy converters

    Science.gov (United States)

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  16. Variations of global gravity waves derived from 14 years of SABER temperature observations

    Science.gov (United States)

    Liu, Xiao; Yue, Jia; Xu, Jiyao; Garcia, Rolando R.; Russell, James M.; Mlynczak, Martin; Wu, Dong L.; Nakamura, Takuji

    2017-06-01

    The global gravity wave (GW) potential energy (PE) per unit mass is derived from SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperature profiles over the past 14 years (2002-2015). Since the SABER data cover longer than one solar cycle, multivariate linear regression is applied to calculate the trend (means linear trend from 2002 to 2015) of global GW PE and the responses of global GW PE to solar activity, to QBO (quasi-biennial oscillation) and to ENSO (El Niño-Southern Oscillation). We find a significant positive trend of GW PE at around 50°N during July from 2002 to 2015, in agreement with ground-based radar observations at a similar latitude but from 1990 to 2010. Both the monthly and the deseasonalized trends of GW PE are significant near 50°S. Specifically, the deseasonalized trend of GW PE has a positive peak of 12-15% per decade at 40°S-50°S and below 60 km, which suggests that eddy diffusion is increasing in some places. A significant positive trend of GW PE near 50°S could be due to the strengthening of the polar stratospheric jets, as documented from Modern Era Retrospective-analysis for Research and Applications wind data. The response of GW PE to solar activity is negative in the lower and middle latitudes. The response of GW PE to QBO (as indicated by 30 hPa zonal winds over the equator) is negative in the tropical upper stratosphere and extends to higher latitudes at higher altitudes. The response of GW PE to ENSO (as indicated by the Multivariate ENSO Index) is positive in the tropical upper stratosphere.

  17. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    Science.gov (United States)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  18. Recent progress in mesospheric gravity wave studies using nightglow imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael J.; Pendleton Junior, William R.; Pautet, Pierre-Dominique; Zhao, Yucheng; Olsen, Chris; Babu, Hema Karnam Surendra [Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah (United States); Medeiros, Amauri F. [Universidade Federal de Campina Grande, Centro de Ciencias e Tecnologia, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Takahashi, Hisao, E-mail: mtaylor@cc.usu.edu, E-mail: wpen@cc.usu.edu, E-mail: dominiquepautet@gmail.com, E-mail: yucheng@cc.usu.edu, E-mail: cmellob@gmail.com, E-mail: hema_sb@rediffmail.com, E-mail: afragoso@df.ufcg.edu.br, E-mail: hisaotak@laser.inpe.br [INPE, Sao Jose dos Campos, SP (Brazil)

    2007-07-01

    A variety of optical remote sensing techniques have now revealed a rich spectrum of wave activity in the upper atmosphere. Many of these perturbations, with periodicities ranging from {approx} 5 min to many hours and horizontal scales of a few tens of km to several thousands km, are due to freely propagating atmospheric gravity waves and forced tidal oscillations. Passive optical observations of the spatial and temporal characteristics of these waves in the mesosphere and lower thermosphere (MLT) region ( {approx} 80-100 km) are facilitated by several naturally occurring, vertically distinct nightglow layers. This paper describes the use of state-of-the-art ground-based CCD imaging techniques to detect these waves in intensity and temperature. All-sky (180 deg ) image measurements are used to illustrate the characteristics of small-scale, short period ( < 1 hour) waves and to investigate their seasonal propagation and momentum impact on the MLT region. These results are then contrasted with measurements of mesospheric temperature made using a new temperature mapping imaging system capable of determining induced temperature amplitudes of a large range of wave motions and investigating night-to-night and seasonal variability in mesospheric temperature. (author)

  19. Vertical Transport of Momentum by the Inertial-Gravity Internal Waves in a Baroclinic Current

    Directory of Open Access Journals (Sweden)

    A. A. Slepyshev

    2017-08-01

    Full Text Available When the internal waves break, they are one of the sources of small-scale turbulence. Small-scale turbulence causes the vertical exchange in the ocean. However, internal waves with regard to the Earth rotation in the presence of vertically inhomogeneous two-dimensional current are able to contribute to the vertical transport. Free inertial-gravity internal waves in a baroclinic current in a boundless basin of a constant depth are considered in the Bussinesq approximation. Boundary value problem of linear approximation for the vertical velocity amplitude of internal waves has complex coefficients when current velocity component, which is transversal to the wave propagation direction, depends on the vertical coordinate (taking into account the rotation of the Earth. Eigenfunction and wave frequency are complex, and it is shown that a weak wave damping takes place. Dispersive relation and wave damping decrement are calculated in the linear approximation. At a fixed wave number damping decrement of the second mode is larger (in the absolute value than the one of the first mode. The equation for vertical velocity amplitude for real profiles of the Brunt – Vaisala frequency and current velocity are numerically solved according to implicit Adams scheme of the third order of accuracy. The dispersive curves of the first two modes do not reach inertial frequency in the low-frequency area due to the effect of critical layers in which wave frequency of the Doppler shift is equal to the inertial one. Termination of the second mode dispersive curves takes place at higher frequency than the one of the first mode. In the second order of the wave amplitude the Stokes drift speed is determined. It is shown that the Stokes drift speed, which is transversal to the wave propagation direction, differs from zero if the transversal component of current velocity depends on the vertical coordinate. In this case, the Stokes drift speed in the second mode is lower than

  20. Optimal control of a wave energy converter

    NARCIS (Netherlands)

    Hendrikx, R.W.M.; Leth, J.; Andersen, P; Heemels, W.P.M.H.

    2017-01-01

    The optimal control strategy for a wave energy converter (WEC) with constraints on the control torque is investigated. The goal is to optimize the total energy delivered to the electricity grid. Using Pontryagin's maximum principle, the solution is found to be singular-bang. Using higher order

  1. Wave propagation of spectral energy content in a granular chain

    NARCIS (Netherlands)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-01-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like

  2. Imaging gravity waves in lower stratospheric AMSU-A radiances, Part 2: Validation case study

    Directory of Open Access Journals (Sweden)

    S. D. Eckermann

    2006-01-01

    , horizontal structure and time evolution that closely match those observed in the AMSU-A data. These comparisons not only verify gravity wave detection and horizontal imaging capabilities for AMSU-A Channel 9, but provide an absolute validation of the anticipated radiance signals for a given three-dimensional gravity wave, based on the modeling of Eckermann and Wu (2006.

  3. Design Specifications for the Hanstholm WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and ......The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack...

  4. Dark matter (energy) may be indistinguishable from modified gravity (MOND)

    Science.gov (United States)

    Sivaram, C.

    For Newtonian dynamics to hold over galactic scales, large amounts of dark matter (DM) are required which would dominate cosmic structures. Accounting for the strong observational evidence that the universe is accelerating requires the presence of an unknown dark energy (DE) component constituting about 70% of the matter. Several ingenious ongoing experiments to detect the DM particles have so far led to negative results. Moreover, the comparable proportions of the DM and DE at the present epoch appear unnatural and not predicted by any theory. For these reasons, alternative ideas like MOND and modification of gravity or general relativity over cosmic scales have been proposed. It is shown in this paper that these alternate ideas may not be easily distinguishable from the usual DM or DE hypotheses. Specific examples are given to illustrate this point that the modified theories are special cases of a generalized DM paradigm.

  5. Planck 2015 results. XIV. Dark energy and modified gravity

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Heavens, A.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Ma, Y.Z.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Martin, P.G.; Martinelli, M.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Salvatelli, V.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B.M.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Viel, M.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-20

    We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG), beyond the cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state, principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories and coupled DE. In addition to the latest Planck data, for our main analyses we use baryonic acoustic oscillations, type-Ia supernovae and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshif...

  6. CMB lensing constraints on dark energy and modified gravity scenarios

    International Nuclear Information System (INIS)

    Calabrese, Erminia; Cooray, Asantha; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Slosar, Anze; Smoot, George F.

    2009-01-01

    Weak gravitational lensing leaves a characteristic imprint on the cosmic microwave background temperature and polarization angular power spectra. Here, we investigate the possible constraints on the integrated lensing potential from future cosmic microwave background angular spectra measurements expected from Planck and EPIC. We find that Planck and EPIC will constrain the amplitude of the integrated projected potential responsible for lensing at 6% and 1% level, respectively, with very little sensitivity to the shape of the lensing potential. We discuss the implications of such a measurement in constraining dark energy and modified gravity scalar-tensor theories. We then discuss the impact of a wrong assumption on the weak lensing potential amplitude on cosmological parameter inference.

  7. Modulation of Precipitation in the Olympic Mountains by Trapped Gravity Waves

    Science.gov (United States)

    Heymsfield, G. M.; Tian, L.; Grecu, M.; McLinden, M.; Li, L.

    2017-12-01

    Precipitation over the Olympic Mountains was studied intensely with multiple aircraft and ground-based measurements during the Olympic Mountains Experiment (OLYMPEX) during the fall-winter season 2015-2016 as part of validation for the Global Precipitation Mission (GPM) (Houze et al. 2017) and the Radar Definition Experiment (RADEX) supported by the Aerosol Chemistry, Ecosystem (ACE) NASA Decadal Mission. This presentation focuses on observations of a broad frontal cloud system with strong flow over the mountains on 5 December 2015. Unique observations of trapped waves were obtained with in the three Goddard Space Flight Center nadir-looking, X- through W-band, Doppler radars on the NASA high-altitude ER-2: the High-altitude Wind and Rain Airborne Profiler (HIWRAP) at Ku and Ka-band, the W-band Cloud Radar System (CRS), and the ER-2 X-band Radar (EXRAD). Analysis of the aircraft measurements showed the presence of deep, trapped gravity waves on a scale ranging from 10-25 km in the nadir-looking Doppler and reflectivity observations. These waves cause localized vertical up/down motions on the order of 1-2 ms-1 and they are superimposed on the widespread south-southwest flow over the Olympic Mountains. While much of this widespread flow over the mountains produces copious amounts of snowfall, the gravity waves play an important role in modulating this precipitation indirectly through microphysical processes in the ice region. We will describe analyses of the interactions between the air motions and precipitation structure for this case and other cases we observed similar waves. We will present preliminary results from precipitation retrievals based on optimal estimation (Grecu et al. 2011).

  8. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  9. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  10. Fundamental formulae for wave-energy conversion.

    Science.gov (United States)

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  11. Analyses of the stratospheric dynamics simulated by a GCM with a stochastic nonorographic gravity wave parameterization

    Science.gov (United States)

    Serva, Federico; Cagnazzo, Chiara; Riccio, Angelo

    2016-04-01

    The effects of the propagation and breaking of atmospheric gravity waves have long been considered crucial for their impact on the circulation, especially in the stratosphere and mesosphere, between heights of 10 and 110 km. These waves, that in the Earth's atmosphere originate from surface orography (OGWs) or from transient (nonorographic) phenomena such as fronts and convective processes (NOGWs), have horizontal wavelengths between 10 and 1000 km, vertical wavelengths of several km, and frequencies spanning from minutes to hours. Orographic and nonorographic GWs must be accounted for in climate models to obtain a realistic simulation of the stratosphere in both hemispheres, since they can have a substantial impact on circulation and temperature, hence an important role in ozone chemistry for chemistry-climate models. Several types of parameterization are currently employed in models, differing in the formulation and for the values assigned to parameters, but the common aim is to quantify the effect of wave breaking on large-scale wind and temperature patterns. In the last decade, both global observations from satellite-borne instruments and the outputs of very high resolution climate models provided insight on the variability and properties of gravity wave field, and these results can be used to constrain some of the empirical parameters present in most parameterization scheme. A feature of the NOGW forcing that clearly emerges is the intermittency, linked with the nature of the sources: this property is absent in the majority of the models, in which NOGW parameterizations are uncoupled with other atmospheric phenomena, leading to results which display lower variability compared to observations. In this work, we analyze the climate simulated in AMIP runs of the MAECHAM5 model, which uses the Hines NOGW parameterization and with a fine vertical resolution suitable to capture the effects of wave-mean flow interaction. We compare the results obtained with two

  12. Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown

    Science.gov (United States)

    Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás

    2018-05-01

    The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.

  13. Planetary-Scale Inertio Gravity Waves in the Numerical Spectral Model

    Science.gov (United States)

    Mayr, H. G.; Mengel, J. R.; Talaat, E. R.; Porter, H. S.

    2004-01-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.

  14. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.

    Science.gov (United States)

    Colagrossi, Andrea; Souto-Iglesias, Antonio; Antuono, Matteo; Marrone, Salvatore

    2013-02-01

    The smoothed-particle-hydrodynamics (SPH) method has been used to study the evolution of free-surface Newtonian viscous flows specifically focusing on dissipation mechanisms in gravity waves. The numerical results have been compared with an analytical solution of the linearized Navier-Stokes equations for Reynolds numbers in the range 50-5000. We found that a correct choice of the number of neighboring particles is of fundamental importance in order to obtain convergence towards the analytical solution. This number has to increase with higher Reynolds numbers in order to prevent the onset of spurious vorticity inside the bulk of the fluid, leading to an unphysical overdamping of the wave amplitude. This generation of spurious vorticity strongly depends on the specific kernel function used in the SPH model.

  15. Studies of Gravity Waves Using Michelson Interferometer Measurements of OH (3-1) Bands

    Science.gov (United States)

    Won, Young-In; Cho, Young-Min; Lee, Bang Yong; Kim, J.

    2001-06-01

    As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH (3-1) bands were derived from spectrometric observations of airglow emissions over King Sejong station (62.22o S, 301.25o E). These measurements were made with a Michelson interferometer to cover wavelength regions between 1000 nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1) airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky's parameter and compared with published values.

  16. Studies of Gravity Waves Using Michelson Interferometer Measurements of OH (3-1 Bands

    Directory of Open Access Journals (Sweden)

    Young-In Won

    2001-06-01

    Full Text Available As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH (3-1 bands were derived from spectrometric observations of airglow emissions over King Sejong station (62.22o S, 301.25o E. These measurements were made with a Michelson interferometer to cover wavelength regions between 1000 nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1 airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky's parameter and compared with published values.

  17. Secondary gravity waves from momentum deposition in the stratosphere, mesosphere, thermosphere and ionosphere

    Science.gov (United States)

    Vadas, S.

    2017-12-01

    In this paper, we investigate the generation, propagation and effectsof secondary gravity waves (GWs) from momentum deposition in the stratosphere, mesosphere, thermosphere and ionosphere in high-resolution GW-resolving models and in TEC/lidar/redline data. We show that secondary GWs generated from the dissipation of orographic GWs at McMurdo Station in Antarctica play a dominant role in the wave activity over McMurdo in the wintertime mesosphere. These secondary GWs are created in the stratosphere, and have been identified in models and data via their telltale "fishbone" appearance in z-t plots. We also show that secondary GWs from the dissipation of GWs excited by deep convectiongenerate concentric rings in the F-region ionosphere. These model results and data point to the importance of secondary GWs from momentumdeposition in the Earth's atmosphere and ionosphere.

  18. Spectral Characterization of the Wave Energy Resource for Puerto Rico (PR) and the United States Virgin Islands (USVI)

    Science.gov (United States)

    Garcia, C. G.; Canals, M.; Irizarry, A. A.

    2016-02-01

    Nowadays a significant amount of wave energy assessments have taken place due to the development of the ocean energy markets worldwide. Energy contained in surface gravity waves is scattered along frequency components that can be described using wave spectra. Correspondingly, characterization and quantification of harvestable wave energy is inherently dictated by the nature of the two-dimensional wave spectrum. The present study uses spectral wave data from the operational SWAN-based CariCOOS Nearshore Wave Model to evaluate the capture efficiency of multiple wave energy converters (WEC). This study revolves around accurately estimating available wave energy as a function of varying spectral distributions, effectively providing a detailed insight concerning local wave conditions for PR and USVI and the resulting available-energy to generated-power ratio. Results in particular, provide a comprehensive characterization of three years' worth of SWAN-based datasets by outlining where higher concentrations of wave energy are localized in the spectrum. Subsequently, the aforementioned datasets were processed to quantify the amount of energy incident on two proposed sites located in PR and USVI. Results were largely influenced by local trade wind activity, which drive predominant sea states, and the amount of North-Atlantic swells that propagate towards the region. Each wave event was numerically analyzed in the frequency domain to evaluate the capacity of a WEC to perform under different spectral distribution scenarios, allowing for a correlation between electrical power output and spectral energy distribution to be established.

  19. Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model

    Science.gov (United States)

    Sutyrin Georgi, G.

    2004-07-01

    A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.

  20. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    Science.gov (United States)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  1. Probabilistic Forecasting of the Wave Energy Flux

    DEFF Research Database (Denmark)

    Pinson, Pierre; Reikard, G.; Bidlot, J.-R.

    2012-01-01

    Wave energy will certainly have a significant role to play in the deployment of renewable energy generation capacities. As with wind and solar, probabilistic forecasts of wave power over horizons of a few hours to a few days are required for power system operation as well as trading in electricit......% and 70% in terms of Continuous Rank Probability Score (CRPS), depending upon the test case and the lead time. It is finally shown that the log-Normal assumption can be seen as acceptable, even though it may be refined in the future....

  2. Analysis of the Effect of Electron Density Perturbations Generated by Gravity Waves on HF Communication Links

    Science.gov (United States)

    Fagre, M.; Elias, A. G.; Chum, J.; Cabrera, M. A.

    2017-12-01

    In the present work, ray tracing of high frequency (HF) signals in ionospheric disturbed conditions is analyzed, particularly in the presence of electron density perturbations generated by gravity waves (GWs). The three-dimensional numerical ray tracing code by Jones and Stephenson, based on Hamilton's equations, which is commonly used to study radio propagation through the ionosphere, is used. An electron density perturbation model is implemented to this code based upon the consideration of atmospheric GWs generated at a height of 150 km in the thermosphere and propagating up into the ionosphere. The motion of the neutral gas at these altitudes induces disturbances in the background plasma which affects HF signals propagation. To obtain a realistic model of GWs in order to analyze the propagation and dispersion characteristics, a GW ray tracing method with kinematic viscosity and thermal diffusivity was applied. The IRI-2012, HWM14 and NRLMSISE-00 models were incorporated to assess electron density, wind velocities, neutral temperature and total mass density needed for the ray tracing codes. Preliminary results of gravity wave effects on ground range and reflection height are presented for low-mid latitude ionosphere.

  3. Influences of Gravity Waves on Convectively Induced Turbulence (CIT): A Review

    Science.gov (United States)

    Sharman, Robert D.; Trier, S. B.

    2018-03-01

    Thunderstorms are known to produce turbulence. Such turbulence is commonly referred to as convectively induced turbulence or CIT, and can be hazardous to aviation. Although this turbulence can occur both within and outside the convection, out-of-cloud CIT is particularly hazardous, since it occurs in clear air and cannot be seen by eye or onboard radar. Furthermore, due to its small scale and its ties to the underlying convection, it is very difficult to forecast. Guidelines for out-of-cloud CIT avoidance are available, but they are oversimplified and can be misleading. In the search for more appropriate and physically based avoidance guidelines, considerable research has been conducted in recent years on the nature of the phenomenon, and in particular, its connection to gravity waves generated by the convection. This paper reviews the advances in our understanding of out-of-cloud CIT and its relation to convective gravity waves, and provides several detailed examples of observed cases to elucidate some of the underlying dynamics.

  4. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    Science.gov (United States)

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  5. Three-Dimensional Coupled NLS Equations for Envelope Gravity Solitary Waves in Baroclinic Atmosphere and Modulational Instability

    Directory of Open Access Journals (Sweden)

    Baojun Zhao

    2018-01-01

    Full Text Available Envelope gravity solitary waves are an important research hot spot in the field of solitary wave. And the weakly nonlinear model equations system is a part of the research of envelope gravity solitary waves. Because of the lack of technology and theory, previous studies tried hard to reduce the variable numbers and constructed the two-dimensional model in barotropic atmosphere and could only describe the propagation feature in a direction. But for the propagation of envelope gravity solitary waves in real ocean ridges and atmospheric mountains, the three-dimensional model is more appropriate. Meanwhile, the baroclinic problem of atmosphere is also an inevitable topic. In the paper, the three-dimensional coupled nonlinear Schrödinger (CNLS equations are presented to describe the evolution of envelope gravity solitary waves in baroclinic atmosphere, which are derived from the basic dynamic equations by employing perturbation and multiscale methods. The model overcomes two disadvantages: (1 baroclinic problem and (2 propagation path problem. Then, based on trial function method, we deduce the solution of the CNLS equations. Finally, modulational instability of wave trains is also discussed.

  6. Long-term Global Morphology of Gravity Wave Activity Using UARS Data

    Science.gov (United States)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    This quarter was largely devoted to a detailed study of temperature data acquired by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS. Our analysis used the same sequence of methods that have been developed, tested and refined on a more limited subset of temperature data acquired by the CRISTA instrument. We focused on a limited subset of our reasoning that geographical and vertical trends in the small-scale temperature variability could be compared with similar trends observed in November 1994 by the CRISTA-SPAS satellite. Results, backed up with hindcasts from the Mountain Wave Forecast Model (MWFM), reveal strong evidence of mountain waves, most persuasively in the Himalayas on 16-17 November, 1992. These CLAES results are coherent over the 30-50 km range and compare well with MWFM hindcasts for the same period. This constitutes, we believe, the first clear evidence that CLAES explicitly resolved long wavelength gravity waves in its CO2 temperature channel. A series of other tasks, related to mesoscale modeling of mountain waves in CRISTA data and fitting of ground-based and HRDI data on global scales, were seen through to publication stage in peer-reviewed journals.

  7. Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity

    Science.gov (United States)

    Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.

    2017-03-01

    The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.

  8. Constraints on Born-Infeld gravity from the speed of gravitational waves after GW170817 and GRB 170817A

    Science.gov (United States)

    Jana, Soumya; Chakravarty, Girish Kumar; Mohanty, Subhendra

    2018-04-01

    The observations of gravitational waves from the binary neutron star merger event GW170817 and the subsequent observation of its electromagnetic counterparts from the gamma-ray burst GRB 170817A provide us a significant opportunity to study theories of gravity beyond general relativity. An important outcome of these observations is that they constrain the difference between the speed of gravity and the speed of light to less than 10-15c . Also, the time delay between the arrivals of gravitational waves at different detectors constrains the speed of gravity at the Earth to be in the range 0.55 c gravity: Eddington-inspired Born-Infeld (EiBI) gravity. We show that, in EiBI theory, the speed of gravitational waves in matter deviates from c . From the time delay in the arrival of gravitational wave signals at Earth-based detectors, we obtain the bound on the theory parameter κ as |κ |≲1021 m2 . Similarly, from the time delay between the signals of GW170817 and GRB 170817A, in a background Friedmann-Robertson-Walker universe, we obtain |κ |≲1037 m2 . Although the bounds on κ are weak compared to other earlier bounds from the study of neutron stars, stellar evolution, primordial nucleosynthesis, etc., our bounds are from direct observations and thus worth noting.

  9. Systems and methods for wave energy conversion

    Science.gov (United States)

    MacDonald, Daniel G.; Cantara, Justin; Nathan, Craig; Lopes, Amy M.; Green, Brandon E.

    2017-02-28

    Systems for wave energy conversion that have components that can survive the harsh marine environment and that can be attached to fixed structures, such as a pier, and having the ability to naturally adjust for tidal height and methods for their use are presented.

  10. Underwater noise from a wave energy converter

    DEFF Research Database (Denmark)

    Tougaard, Jakob

    A recent addition to the anthropogenic sources of underwater noise is offshore wave energy converters. Underwater noise was recorded from the Wavestar wave energy converter located at Hastholm, Denmark (57°7.73´N, 8°37.23´E). The Wavestar is a full-scale test and demonstration converter...... in full operation and start and stop of the converter. Median broad band (10 Hz – 20 kHz) sound pressure level (Leq) was 123 dB re. 1 Pa, irrespective of status of the wave energy converter (stopped, running or starting/stopping). The most pronounced peak in the third-octave spectrum was in the 160 Hz...... significant noise above ambient could be detected above the 250 Hz band. The absolute increase in noise above ambient was very small. L50 third-octave levels in the four bands with the converter running were thus only 1-2 dB above ambient L50 levels. The noise recorded 25 m from the wave energy converter...

  11. Innovative Breakwaters Design for Wave Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Stagonas, D.; Müller, G.

    2012-01-01

    the rubble mound breakwaters and seawalls related activity and the energy demand of small human communities. Wave loadings and overtopping on a seawall and rubble mound breakwater with front reservoir are discussed on the basis of physical 2-D model tests carried out at University of Southampton (UK...

  12. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    OpenAIRE

    O'Boyle, Louise; Elsäßer, Björn; Whittaker, Trevor

    2017-01-01

    Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An ...

  13. Properties of internal planetary-scale inertio gravity waves in the mesosphere

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2004-11-01

    Full Text Available At high latitudes in the upper mesosphere, horizontal wind oscillations have been observed with periods around 10h. Waves with such a period are generated in our Numerical Spectral Model (NSM, and they are identified as planetary-scale inertio gravity waves (IGW. These IGWs have periods between 9 and 11h and appear above 60km in the zonal mean (m=0, as well as in m=1 to 4, propagating eastward and westward. Under the influence of the Coriolis force, the amplitudes of the waves propagating westward are larger at high latitudes than those propagating eastward. The waves grow in magnitude at least up to about 100km and have vertical wavelengths around 25km. Applying a running window of 15 days for spectral analysis, the amplitudes in the wind field are typically between 10 and 20m/s and can reach 30m/s in the westward propagating component for m=1 at the poles. In the temperature perturbations, the wave amplitudes above 100km are typically 5K and as large as 10K for m=0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. Numerical experiments show that such waves are also generated without excitation of the migrating tides. The amplitudes and periods then are similar, indicating that the tides are not essential to generate the waves. However, the seasonal variations without tides are significantly different, which leads to the conclusion that non linear interactions between the semidiurnal tide and planetary waves must contribute to the excitation of the IGWs. Directly or indirectly through the planetary waves, the IGWs are apparently excited by the instabilities that arise in the zonal mean circulation. When the solar heating is turned off for m=0, both the PWs and IGWs essentially disappear. That the IGWs and PWs have common roots in their excitation mechanism is also indicated by the striking similarity of their seasonal variations in the

  14. Dark Energy and Inflation from Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Leonid Marochnik

    2017-10-01

    Full Text Available In this seven-part paper, we show that gravitational waves (classical and quantum produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.

  15. Benefits of up-wave measurements in linear short-term wave forecasting for wave energy applications

    OpenAIRE

    Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, Miguel; Conley, Daniel; Ringwood, John

    2014-01-01

    The real-time control of wave energy converters requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation upwave of the wave energy converter. As an application example, the paper focuses on the prediction of the wave eleva...

  16. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    Science.gov (United States)

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  17. The effect of breaking gravity waves on the dynamics and chemistry of the mesosphere and lower thermosphere (invited review)

    Science.gov (United States)

    Garcia, R. R.

    1986-01-01

    The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.

  18. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos

    Science.gov (United States)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-04-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  19. Crustal and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data

    Science.gov (United States)

    2012-09-01

    We use both free-air and Bouguer gravity anomalies derived from the global gravity model of the GRACE satellite mission. The gravity data provide...relocation analysis. We use both free-air and Bouguer gravity anomalies derived from the global gravity model of the GRACE satellite mission. The gravity...topographic relief this effect needs to be removed; thus, we converted free-air anomalies into Bouguer anomalies assuming a standard density for crustal rocks

  20. Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries

    Science.gov (United States)

    Titarchuk, Lev

    2002-01-01

    Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the

  1. Reliability-Based Structural Optimization of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Simon Ambühl

    2014-12-01

    Full Text Available More and more wave energy converter (WEC concepts are reaching prototypelevel. Once the prototype level is reached, the next step in order to further decrease thelevelized cost of energy (LCOE is optimizing the overall system with a focus on structuraland maintenance (inspection costs, as well as on the harvested power from the waves.The target of a fully-developed WEC technology is not maximizing its power output,but minimizing the resulting LCOE. This paper presents a methodology to optimize thestructural design of WECs based on a reliability-based optimization problem and the intentto maximize the investor’s benefits by maximizing the difference between income (e.g., fromselling electricity and the expected expenses (e.g., structural building costs or failure costs.Furthermore, different development levels, like prototype or commercial devices, may havedifferent main objectives and will be located at different locations, as well as receive varioussubsidies. These points should be accounted for when performing structural optimizationsof WECs. An illustrative example on the gravity-based foundation of the Wavestar deviceis performed showing how structural design can be optimized taking target reliability levelsand different structural failure modes due to extreme loads into account.

  2. Numerical simulation of convective generated gravity waves in the stratosphere and MLT regions.

    Science.gov (United States)

    Heale, C. J.; Snively, J. B.

    2017-12-01

    Convection is an important source of gravity wave generation, especially in the summer tropics and midlatitudes, and coherent wave fields above convection are now routinely measured in the stratosphere and mesosphere [e.g. Hoffmann et al., JGR, 118, 2013; Gong et al., JGR, 120, 2015; Perwitasari et al., GRL, 42, 22, 2016]. Numerical studies have been performed to investigate the generation mechanisms, source spectra, and their effects on the middle and upper atmosphere [e.g. Fovell et al., AMS, 49,16, 1992; Alexander and Holton, Atmos. Chem. Phys., 4 2004; Vincent et al., JGR, 1118, 2013], however there is still considerable work needed to fully describe these parameters. GCMs currently lack the resolution to explicitly simulate convection generation and rely on simplified parameterizations while full cloud resolving models are computationally expensive and often only extend into the stratosphere. More recent studies have improved the realism of these simulations by using radar derived precipitation rates to drive latent heating in models that simulate convection [Grimsdell et al., AMS, 67, 2010; Stephan and Alexander., J. Adv. Model. Earth. Syst, 7, 2015], however they too only consider wave propagation in the troposphere and stratosphere. We use a 2D nonlinear, fully compressible model [Snively and Pasko., JGR, 113, 2008] to excite convectively generated waves, based on NEXRAD radar data, using the Stephan and Alexander [2015] algorithms. We study the propagation, and spectral evolution of the generated waves up into the MLT region. Ambient atmosphere parameters are derived from observations and MERRA-2 reanalysis data, and stratospheric (AIRS) and mesospheric (Lidar, OH airglow) observations enable comparisons with simulation results.

  3. Wave energy and its possibilities in the Danish power supplies

    International Nuclear Information System (INIS)

    Traeholt Madsen, N.; Lorenzen, S.; Haunstrup Christensen, T.

    1997-06-01

    Mathematical theory of wave forces (wave height, spectrua, energy distribution and effect) is summarized. An attempt to estimate the Danish wave power potential on the basis of previous investigations og wave effect in various regions is presented. A brief review of wave energy applications and research constitutes basis for two scenarios of wave power adjustment into the 'Green society'. Power quality, environment, economics and supply reliability are estimated. (EG) 42 refs

  4. Gravity wave and neutrino bursts from stellar collapse: A sensitive test of neutrino masses

    International Nuclear Information System (INIS)

    Arnaud, N.; Barsuglia, M.; Bizouard, M.A.; Cavalier, F.; Davier, M.; Hello, P.; Pradier, T.

    2002-01-01

    New methods are proposed with the goal to determine absolute neutrino masses from the simultaneous observation of the bursts of neutrinos and gravitational waves emitted during a stellar collapse. It is shown that the neutronization electron neutrino flash and the maximum amplitude of the gravitational wave signal are tightly synchronized with the bounce occurring at the end of the core collapse on a time scale better than 1 ms. The existing underground neutrino detectors (SuperKamiokande, SNO,...) and the gravity wave antennas soon to operate (LIGO, VIRGO,...) are well matched in their performance for detecting galactic supernovae and for making use of the proposed approach. Several methods are described, which apply to the different scenarios depending on neutrino mixing. Given the present knowledge on neutrino oscillations, the methods proposed are sensitive to a mass range where neutrinos would essentially be mass degenerate. The 95% C.L. upper limit which can be achieved varies from 0.75 eV/c 2 for large ν e survival probabilities to 1.1 eV/c 2 when in practice all ν e 's convert into ν μ 's or ν τ 's. The sensitivity is nearly independent of the supernova distance

  5. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  6. Satellite traces, range spread-F occurrence, and gravity wave propagation at the southern anomaly crest

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, M.A. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Pezzopane, M.; Zuccheretti, E. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Ezquer, R.G. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)

    2010-07-01

    Range spread-F (RSF) and occurrence of ''satellite'' traces prior to RSF onset were studied at the southern peak of the ionospheric equatorial anomaly (EA). Ionograms recorded in September 2007 at the new ionospheric station of Tucuman, Argentina (26.9 S, 294.6 E, dip latitude 15.5 S), by the Advanced Ionospheric Sounder (AIS) developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were considered. Satellite traces (STs) are confirmed to be a necessary precursor to the appearance of an RSF trace on the ionograms. Moreover, an analysis of isoheight contours of electron density seems to suggest a relationship between RSF occurrence and gravity wave (GW) propagation. (orig.)

  7. Gauge/gravity duality for interactions of spherical membranes in 11-dimensional pp-wave

    International Nuclear Information System (INIS)

    Lee, Hok Kong; McLoughlin, Tristan; Wu Xinkai

    2005-01-01

    We investigate the gauge/gravity duality in the interaction between two spherical membranes in the 11-dimensional pp-wave background. On the supergravity side, we find the solution to the field equations at locations close to a spherical source membrane, and use it to obtain the light-cone Lagrangian of a spherical probe membrane very close to the source, i.e., with their separation much smaller than their radii. On the gauge theory side, using the BMN matrix model, we compute the one-loop effective potential between two membrane fuzzy spheres. Perfect agreement is found between the two sides. Moreover, the one-loop effective potential we obtain on the gauge theory side is valid beyond the small-separation approximation, giving the full interpolation between interactions of membrane-like objects and that of graviton-like objects

  8. Intermittency of gravity wave momentum flux in the mesopause region observed with an all-sky airglow imager

    Science.gov (United States)

    Cao, Bing; Liu, Alan Z.

    2016-01-01

    The intermittency of gravity wave momentum flux (MF) near the OH airglow layer (˜87 km) in the mesopause region is investigated for the first time using observation of all-sky airglow imager over Maui, Hawaii (20.7°N, 156.3°W), and Cerro Pachón, Chile (30.3°S, 70.7°W). At both sites, the probability density function (pdf) of gravity wave MF shows two distinct distributions depending on the magnitude of the MF. For MF smaller (larger) than ˜16 m2 s-2 (0.091 mPa), the pdf follows a lognormal (power law) distribution. The intermittency represented by the Bernoulli proxy and the percentile ratio shows that gravity waves have higher intermittency at Maui than at Cerro Pachón, suggesting more intermittent background variation above Maui. It is found that most of the MF is contributed by waves that occur very infrequently. But waves that individually contribute little MF are also important because of their higher occurrence frequencies. The peak contribution is from waves with MF around ˜2.2 m2 s-2 at Cerro Pachón and ˜5.5 m2 s-2 at Maui. Seasonal variations of the pdf and intermittency imply that the background atmosphere has larger influence on the observed intermittency in the mesopause region.

  9. Some Expressions for Gravity without the Big G and their Possible Wave-Theoretical-Explanation

    Directory of Open Access Journals (Sweden)

    Tank H. K.

    2013-01-01

    Full Text Available This letter presents some new expressions for gravity without the big G and proposes their possible wave-theoretical-explanation. This attempt leads to some insight that: (i We need the proportionality-constant G because we measure masses and distances in our arbitrarily-chosen units of kg and meters; but if we measure “mass” as a fraction of “total-mass of the universe” M 0 and measure distances as a fraction of “radius-of-the- universe” R 0 then there is no need for the proportionality-constant G . However, large uncertainties in the M 0 and R 0 limit the general application of this relation presently. (ii The strength of gravity would be different if the total-mass of the universe were different. Then this possibility is supported with the help of wave-theory. (iii This understanding of G leads to an insight that Plancks-length, Planck-mass and Planck’s unit of time are geometric-mean-values of astrophysical quantities like: total-mass of the universe and the smallest-possible-mass hH 0 = c 2 . (iv There appears a law followed by various systems-of-matter, like: the electron, the proton, the nucleus-of-atom, the globular-clusters, the spiral-galaxies, the galactic-clusters and the whole universe; that their ratio Mass / Radius 2 remains constant. This law seems to be more fundamental than the fundamental-forces because it is obeyed irrespective of the case, whether the system is bound by strong-force, electric-force, or gravitational-force.

  10. Internal wave energy flux from density perturbations in nonlinear stratifications

    Science.gov (United States)

    Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.

    2017-11-01

    Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.

  11. Wave energy transmission apparatus for high-temperature environments

    Science.gov (United States)

    Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)

    2010-01-01

    A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.

  12. Influence of vertically and obliquely propagating gravity waves on the polar summer mesosphere

    Science.gov (United States)

    Thurairajah, B.; Siskind, D. E.; Bailey, S. M.

    2017-12-01

    Polar Mesospheric Clouds (PMCs) are sensitive to changes in temperature of the cold polar summer mesosphere, which in turn are modulated by gravity waves (GWs). In this study we investigate the link between PMCs and GWs that propagate both vertically (i.e. wave propagation is directly above the source region) and obliquely (lateral or non-vertical propagation upward but away from the source region). Several observational studies have analyzed the link between PMCs and vertically propagating GWs and have reported both positive and negative correlations. Moreover, while modelling studies have noted the possibility of oblique propagation of GWs from the low-latitude stratosphere to the high-latitude mesosphere, observational studies of the influence of these waves on the polar summer mesosphere are sparse. We present a comprehensive analysis of the influence of vertically and obliquely propagating GWs on the northern hemisphere (NH) polar summer mesosphere using data from 8 PMC seasons. Temperature data from the SOFIE experiment on the AIM satellite and SABER instrument on the TIMED satellite are used to derive GW parameters. SOFIE PMC data in terms of Ice Water Content (IWC) are used to quantify the changes in the polar summer mesosphere. At high latitudes, preliminary analysis of vertically propagating waves indicate a weak but positive correlation between GWs at 50 km and GWs at the PMC altitude of 84 km. Overall there is a negative correlation between GWs at 50 km and IWC and a positive correlation between GWs at 84 km and IWC. These results and the presence of a slanted structure (slanted from the low-latitude stratosphere to the high-latitude mesosphere) in GW momentum flux suggest the possibility of a significant influence of obliquely propagating GWs on the polar summer mesosphere

  13. Integrating Unified Gravity Wave Physics into the NOAA Next Generation Global Prediction System

    Science.gov (United States)

    Alpert, J. C.; Yudin, V.; Fuller-Rowell, T. J.; Akmaev, R. A.

    2017-12-01

    The Unified Gravity Wave Physics (UGWP) project for the Next Generation Global Prediction System (NGGPS) is a NOAA collaborative effort between the National Centers for Environmental Prediction (NCEP), Environemntal Modeling Center (EMC) and the University of Colorado, Cooperative Institute for Research in Environmental Sciences (CU-CIRES) to support upgrades and improvements of GW dynamics (resolved scales) and physics (sub-grid scales) in the NOAA Environmental Modeling System (NEMS)†. As envisioned the global climate, weather and space weather models of NEMS will substantially improve their predictions and forecasts with the resolution-sensitive (scale-aware) formulations planned under the UGWP framework for both orographic and non-stationary waves. In particular, the planned improvements for the Global Forecast System (GFS) model of NEMS are: calibration of model physics for higher vertical and horizontal resolution and an extended vertical range of simulations, upgrades to GW schemes, including the turbulent heating and eddy mixing due to wave dissipation and breaking, and representation of the internally-generated QBO. The main priority of the UGWP project is unified parameterization of orographic and non-orographic GW effects including momentum deposition in the middle atmosphere and turbulent heating and eddies due to wave dissipation and breaking. The latter effects are not currently represented in NOAA atmosphere models. The team has tested and evaluated four candidate GW solvers integrating the selected GW schemes into the NGGPS model. Our current work and planned activity is to implement the UGWP schemes in the first available GFS/FV3 (open FV3) configuration including adapted GFDL modification for sub-grid orography in GFS. Initial global model results will be shown for the operational and research GFS configuration for spectral and FV3 dynamical cores. †http://www.emc.ncep.noaa.gov/index.php?branch=NEMS

  14. Worlds Largest Wave Energy Project 2007 in Wales

    DEFF Research Database (Denmark)

    Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter

    2006-01-01

    This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....... a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave...

  15. Electrical Systems for Wave Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Cecilia

    2011-07-01

    Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system

  16. In-situ electron and ion measurements and observed gravity wave effects in the polar mesosphere during the MaCWAVE program

    Directory of Open Access Journals (Sweden)

    C. L. Croskey

    2006-07-01

    Full Text Available Langmuir probe electron and ion measurements from four instrumented rockets flown during the MaCWAVE (Mountain and Convective Waves Ascending VErtically program are reported. Two of the rockets were launched from Andøya Rocket Range, Norway, in the summer of 2002. Electron scavenging by ice particulates produced reductions of the electron density in both sharp narrow (≈1–2 km layers and as a broad (≈13 km depletion. Small-scale irregularities were observed in the altitude regions of both types of electron depletion. The scale of the irregularities extended to wavelengths comparable to those used by ground-based radars in observing PMSE. In regions where ice particles were not present, analysis of the spectral signatures provided reasonable estimates of the energy deposition from breaking gravity waves. Two more instrumented rockets were flown from Esrange, Sweden, in January 2003. Little turbulence or energy deposition was observed during one flight, but relatively large values were observed during the other flight. The altitude distribution of the observed turbulence was consistent with observations of a semidiurnal tide and gravity wave instability effects as determined by ground-based lidar and radar measurements and by falling sphere measurements of the winds and temperatures (Goldberg et al., 2006; Williams et al., 2006.

  17. Effects of Rotation and Gravity Field on Surface Waves in Fibre-Reinforced Thermoelastic Media under Four Theories

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2013-01-01

    Full Text Available Estimation is done to investigate the gravitational and rotational parameters effects on surface waves in fibre-reinforced thermoelastic media. The theory of generalized surface waves has been firstly developed and then it has been employed to investigate particular cases of waves, namely, Stoneley waves, Rayleigh waves, and Love waves. The analytical expressions for surface waves velocity and attenuation coefficient are obtained in the physical domain by using the harmonic vibrations and four thermoelastic theories. The wave velocity equations have been obtained in different cases. The numerical results are given for equation of coupled thermoelastic theory (C-T, Lord-Shulman theory (L-S, Green-Lindsay theory (G-L, and the linearized (G-N theory of type II. Comparison was made with the results obtained in the presence and absence of gravity, rotation, and parameters for fibre-reinforced of the material media. The results obtained are displayed by graphs to clear the phenomena physical meaning. The results indicate that the effect of gravity, rotation, relaxation times, and parameters of fibre-reinforced of the material medium is very pronounced.

  18. The state of development of wave energy

    International Nuclear Information System (INIS)

    Duckers, L.J.

    1991-01-01

    Wave energy converters are being developed and tested in as many as ten countries. The author believes that the shore mounted converters will be economically attractive in many locations around the world. These devices are simple and easily maintained. In order to harvest the greater offshore resource floating devices such as the Clam, Duck and Whale will be needed. Urgent research and development is needed to bring these to the prototype stage. Future deployment of large arrays of these floating systems could be quickly and easily achieved in many parts of the world and they would provide considerable quantities of environmentally benign, reasonably cheap energy. (author) 6 figs., 5 refs

  19. Aquabuoy Wave Energy Converter

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Margheritini, Lucia; Frigaard, Peter

    The work reported here is part of the contract agreement between the Finavera Renewables Ocean Energy Ltd. and the Department of Civil Engineering Hydraulics and Coastal Engineering Laboratory to instrument a model in scale 1:10 to prototype of the AquaBuOY (AB) wave energy converter and to analyse...... its performances in real sea testing in Nissum Bredning, Denmark. This report is part of Fineveras contribution to ForskEl project no 6435 “AquaBuOY skala 1:10 forsøg I Nissum Bredning”....

  20. Holographic dark energy from fluid/gravity duality constraint by cosmological observations

    Science.gov (United States)

    Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.

    2018-06-01

    In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.

  1. The holographic principle, the equipartition of energy and Newton’s gravity

    Science.gov (United States)

    Sadiq, M.

    2017-12-01

    Assuming the equipartition of energy to hold on a holographic sphere, Erik Verlinde demonstrated that Newton’s gravity follows as an entropic force. Some comments are in place about Verlinde’s assumptions in his derivation. It is pointed out that the holographic principle allows for freedom up to a free scale factor in the choice of Planck scale area while leading to classical gravity. Similarity of this free parameter with the Immirzi parameter of loop quantum gravity is discussed. We point out that the equipartition of energy is inbuilt into the holographic principle and, therefore, need not be assumed from the outset.

  2. Seasonal and height variation of gravity wave activities observed by a meteor radar at King Sejong Station (62°S, 57°W), Antarctica

    Science.gov (United States)

    Kim, Y.; Lee, C.; Kim, J.; Choi, J.; Jee, G.

    2010-12-01

    We have analyzed wind data from individual meteor echoes detected by a meteor radar at King Sejong Station, Antarctica to measure gravity wave activity in the mesopause region. Wind data in the meteor altitudes has been obtained routinely by the meteor radar since its installation in March 2007. The mean variances in the wind data that were filtered for large scale motions (mean winds and tides) can be regarded as the gravity wave activity. Monthly mean gravity wave activities show strong seasonal and height dependences in the altitude range of 80 to 100 km. The gravity wave activities except summer monotonically increase with altitude, which is expected since decreasing atmospheric densities cause wave amplitudes to increase. During summer (Dec. - Feb.) the height profiles of gravity wave activities show a minimum near 90 - 95 km, which may be due to different zonal wind and strong wind shear near 80 - 95 km. Our gravity wave activities are generally stronger than those of the Rothera station, implying sensitive dependency on location. The difference may be related to gravity wave sources in the lower atmosphere near Antarctic vortex.

  3. Experimental study on the effects of surface gravity waves of different wavelengths on the phase averaged performance characteristics of marine current turbine

    Science.gov (United States)

    Luznik, L.; Lust, E.; Flack, K. A.

    2014-12-01

    There are few studies describing the interaction between marine current turbines and an overlying surface gravity wave field. In this work we present an experimental study on the effects of surface gravity waves of different wavelengths on the wave phase averaged performance characteristics of a marine current turbine model. Measurements are performed with a 1/25 scale (diameter D=0.8m) two bladed horizontal axis turbine towed in the large (116m long) towing tank at the U.S. Naval Academy equipped with a dual-flap, servo-controlled wave maker. Three regular waves with wavelengths of 15.8, 8.8 and 3.9m with wave heights adjusted such that all waveforms have the same energy input per unit width are produced by the wave maker and model turbine is towed into the waves at constant carriage speed of 1.68 m/s. This representing the case of waves travelling in the same direction as the mean current. Thrust and torque developed by the model turbine are measured using a dynamometer mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using in in-house designed shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Free surface elevation and wave parameters are measured with two optical wave height sensors, one located in the turbine rotor plane and other one diameter upstream of the rotor. All instruments are synchronized in time and data is sampled at a rate of 700 Hz. All measured quantities are conditionally sampled as a function of the measured surface elevation and transformed to wave phase space using the Hilbert Transform. Phenomena observed in earlier experiments with the same turbine such as phase lag in the torque signal and an increase in thrust due to Stokes drift are examined and presented with the present data as well as spectral analysis of the torque and thrust data.

  4. Practical performances of MPC for wave energy converters

    DEFF Research Database (Denmark)

    Ferri, Francesco; Tetu, Amelie; Hals, J.

    2016-01-01

    Maximising the efficiency of Wave Energy Converter (WEC) is one of the important tasks toward the exploitation of the wave energy resource. Along with a proper design of the device, an important way to achieve better energy performances is to improve the wave-body interaction by applying an appro...

  5. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Kim, Chang-Bae; Horton, W.

    1990-05-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. 16 refs., 1 tab

  6. Fluctuation and thermal energy balance for drift-wave turbulence

    International Nuclear Information System (INIS)

    Changbae Kim; Horton, W.

    1991-01-01

    Energy conservation for the drift-wave system is shown to be separated into the wave-energy power balance equation and an ambient thermal-energy transport equation containing the anomalous transport fluxes produced by the fluctuations. The wave energy equation relates the wave energy density and wave energy flux to the anomalous transport flux and the dissipation of the fluctuations. The thermal balance equation determines the evolution of the temperature profiles from the divergence of the anomalous heat flux, the collisional heating and cooling mechanisms and the toroidal pumping effect. (author)

  7. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  8. EB Frond wave energy converter - phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The EB Frond project is a wave energy programme developed by The Engineering Business (EB) from an original idea at Lancaster University. The EB Frond is a wave generator with a collector vane on top of an arm that pivots near the seabed. Phase 1 of the project demonstrated the technical feasibility of the project and provided proof of concept. Phase 2 involved further assesment of the technical and commercial viability of the concept through the development of mathematical and physical modelling methods. The work involved small-scale (1/25th) testing in wave tanks at Newcastle and Lancaster Universities and the development, verification and validation of a time domain mathematical model. The decision by EB to put on hold its renewable generation programme meant that plans to test at an intermediate scale (1/16th), assess different survival strategies in extreme wave conditions, carry out site characterisation for full-scale systems and to produce a robust economic model were not fulfilled. However, the mathematical and physical modelling work was used to develop an economic model for the Frond system. This produced a predicted unit cost of electricity by a pre-commercial 5 MW demonstration farm of about 17 pence/kWh. The report discusses the small-scale testing, test results, mathematical modelling, analysis and interpretation, survivability, the economic model and the development route to full-scale production.

  9. Satellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves

    Directory of Open Access Journals (Sweden)

    Q. T. Trinh

    2018-03-01

    Full Text Available Atmospheric gravity waves (GWs are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30–90 km and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE and CHAllenging Minisatellite Payload (CHAMP satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above. Two coupling mechanisms are likely responsible for these positive correlations: (1 fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2 primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude–longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also

  10. Satellite observations of middle atmosphere-thermosphere vertical coupling by gravity waves

    Science.gov (United States)

    Trinh, Quang Thai; Ern, Manfred; Doornbos, Eelco; Preusse, Peter; Riese, Martin

    2018-03-01

    Atmospheric gravity waves (GWs) are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I) system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30-90 km) and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km) and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above). Two coupling mechanisms are likely responsible for these positive correlations: (1) fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2) primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude-longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also propagate up to the T

  11. Short-Term Wave Forecasting for Real-Time Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Real-time control of wave energy converters requires knowledge of future incident wave elevation in order to approach optimal efficiency of wave energy extraction. We present an approach where the wave elevation is treated as a time series and it is predicted only from its past history. A comparison of a range of forecasting methodologies on real wave observations from two different locations shows how the relatively simple linear autoregressive model, which implicitly models the cyclical beh...

  12. Note on the directional properties of meter-scale gravity waves

    Science.gov (United States)

    Peureux, Charles; Benetazzo, Alvise; Ardhuin, Fabrice

    2018-01-01

    The directional distribution of the energy of young waves is bimodal for frequencies above twice the peak frequency; i.e., their directional distribution exhibits two peaks in different directions and a minimum between. Here we analyze in detail a typical case measured with a peak frequency fp = 0.18 Hz and a wind speed of 10.7 m s-1 using a stereo-video system. This technique allows for the separation of free waves from the spectrum of the sea-surface elevation. The latter indeed tend to reduce the contrast between the two peaks and the background. The directional distribution for a given wavenumber is nearly symmetric, with the angle distance between the two peaks growing with frequency, reaching 150° at 35 times the peak wavenumber kp and increasing up to 45 kp. When considering only free waves, the lobe ratio, the ratio of oblique peak energy density over energy in the wind direction, increases linearly with the non-dimensional wavenumber k/kp, up to a value of 6 at k/kp ≃ 22, and possibly more for shorter components. These observations extend to shorter components' previous measurements, and have important consequences for wave properties sensitive to the directional distribution, such as surface slopes, Stokes drift or microseism sources.

  13. Note on the directional properties of meter-scale gravity waves

    Directory of Open Access Journals (Sweden)

    C. Peureux

    2018-01-01

    Full Text Available The directional distribution of the energy of young waves is bimodal for frequencies above twice the peak frequency; i.e., their directional distribution exhibits two peaks in different directions and a minimum between. Here we analyze in detail a typical case measured with a peak frequency fp = 0.18 Hz and a wind speed of 10.7 m s−1 using a stereo-video system. This technique allows for the separation of free waves from the spectrum of the sea-surface elevation. The latter indeed tend to reduce the contrast between the two peaks and the background. The directional distribution for a given wavenumber is nearly symmetric, with the angle distance between the two peaks growing with frequency, reaching 150° at 35 times the peak wavenumber kp and increasing up to 45 kp. When considering only free waves, the lobe ratio, the ratio of oblique peak energy density over energy in the wind direction, increases linearly with the non-dimensional wavenumber k∕kp, up to a value of 6 at k∕kp ≃ 22, and possibly more for shorter components. These observations extend to shorter components' previous measurements, and have important consequences for wave properties sensitive to the directional distribution, such as surface slopes, Stokes drift or microseism sources.

  14. First 3D measurements of temperature fluctuations induced by gravity wave with the infrared limb imager GLORIA

    Science.gov (United States)

    Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Friedl-Vallon, Felix; Riese, Martin

    2017-04-01

    Gravity waves (GWs) are one of the most important coupling mechanisms in the atmosphere. They couple different compartments of the atmosphere. The GW-LCYCLE (Gravity Wave Life Cycle) project aims on studying the excitation, propagation, and dissipation of gravity waves. An aircraft campaign has been performed in winter 2015/2016, during which the first 3D tomographic measurements of GWs were performed with the infrared limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere). GLORIA combines a classical Fourier Transform Spectrometer with a 2D detector array. The capability to image the atmosphere and thereby take several thousand spectra simultaneously improves the spatial sampling compared to conventional limb sounders by an order of magnitude. Furthermore GLORIA is able to pan the horizontal viewing direction and therefore measure the same volume of air under different angles. Due to these properties tomographic methods can be used to derive 3D temperature and tracer fields with spatial resolutions of better than 30km x 30km x 250m from measurements taken during circular flight patterns. Temperature distributions measured during a strong GW event on the 25.01.2016 during the GW-LCycle campaign over Iceland will be presented and analyzed for gravity waves. The three dimensional nature of the GLORIA measurements allows for the determination of the gravity wave momentum flux, including its horizontal direction. The calculated momentum fluxes rank this event under one of the strongest 1% observed in that latitude range in January 2016. The three dimensional wave vectors determined from the GLORIA measurements can be used for a ray tracing study with the Gravity wave Regional Or Global RAy Tracer (GROGRAT). Here 1D ray tracing, meaning solely vertical column propagation, as used by standard parameterizations in numerical weather prediction and climate models is compared to 4D ray tracing (spatially three dimensional with time varying

  15. Atmospheric-like rotating annulus experiment: gravity wave emission from baroclinic jets

    Science.gov (United States)

    Rodda, Costanza; Borcia, Ion; Harlander, Uwe

    2017-04-01

    Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating- annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modelling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Joint laboratory experiment and numerical simulation have been conducted. The comparison between the data obtained from the experiment and the numerical simulations shows a very good

  16. Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Henan Normal Univ., Xinxiang (China). College of Mathematics and Information Science; Xu, J. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Yue, J. [National Center for Atmospheric Research, Boulder, CO (United States). High Altitude Observatory; Hampton Univ., VA (United States). Atmospheric and Planetary Sciences; Vadas, S.L. [North West Research Associates, Inc., Boulder, CO (United States)

    2013-03-01

    We study the momentum deposition in the thermosphere from the dissipation of small amplitude gravity waves (GWs) within a wave packet using a fully nonlinear two-dimensional compressible numerical model. The model solves the nonlinear propagation and dissipation of a GW packet from the stratosphere into the thermosphere with realistic molecular viscosity and thermal diffusivity for various Prandtl numbers. The numerical simulations are performed for GW packets with initial vertical wavelengths ({lambda}{sub z}) ranging from 5 to 50 km. We show that {lambda}{sub z} decreases in time as a GW packet dissipates in the thermosphere, in agreement with the ray trace results of Vadas and Fritts (2005) (VF05). We also find good agreement for the peak height of the momentum flux (z{sub diss}) between our simulations and VF05 for GWs with initial {lambda}{sub z} {<=} 2{pi}H in an isothermal, windless background, where H is the density scale height.We also confirm that z{sub diss} increases with increasing Prandtl number. We include eddy diffusion in the model, and find that the momentum deposition occurs at lower altitudes and has two separate peaks for GW packets with small initial {lambda}{sub z}. We also simulate GW packets in a non-isothermal atmosphere. The net {lambda}{sub z} profile is a competition between its decrease from viscosity and its increase from the increasing background temperature. We find that the wave packet disperses more in the non-isothermal atmosphere, and causes changes to the momentum flux and {lambda}{sub z} spectra at both early and late times for GW packets with initial {lambda}{sub z} {>=} 10 km. These effects are caused by the increase in T in the thermosphere, and the decrease in T near the mesopause. (orig.)

  17. Internal energy relaxation in shock wave structure

    International Nuclear Information System (INIS)

    Josyula, Eswar; Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-01-01

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream

  18. Quantum Gravity Experiments

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2015-10-01

    Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.

  19. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  20. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    KAUST Repository

    Ahmed, Abdelsalam

    2017-04-11

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester\\'s overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  1. Design guidelines of triboelectric nanogenerator for water wave energy harvesters

    KAUST Repository

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin

    2017-01-01

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  2. Design guidelines of triboelectric nanogenerator for water wave energy harvesters.

    Science.gov (United States)

    Ahmed, Abdelsalam; Hassan, Islam; Jiang, Tao; Youssef, Khalid; Liu, Lian; Hedaya, Mohammad; Yazid, Taher Abu; Zu, Jean; Wang, Zhong Lin

    2017-05-05

    Ocean waves are one of the cleanest and most abundant energy sources on earth, and wave energy has the potential for future power generation. Triboelectric nanogenerator (TENG) technology has recently been proposed as a promising technology to harvest wave energy. In this paper, a theoretical study is performed on a duck-shaped TENG wave harvester recently introduced in our work. To enhance the design of the duck-shaped TENG wave harvester, the mechanical and electrical characteristics of the harvester's overall structure, as well as its inner configuration, are analyzed, respectively, under different wave conditions, to optimize parameters such as duck radius and mass. Furthermore, a comprehensive hybrid 3D model is introduced to quantify the performance of the TENG wave harvester. Finally, the influence of different TENG parameters is validated by comparing the performance of several existing TENG wave harvesters. This study can be applied as a guideline for enhancing the performance of TENG wave energy harvesters.

  3. Ultrasound acoustic wave energy transfer and harvesting

    Science.gov (United States)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  4. Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

    Science.gov (United States)

    Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III

    2018-05-01

    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.

  5. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....

  6. Sea wave energy based in nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Carlos

    2010-09-15

    Application on which it turns east document is the recovery of the energy of the sea waves turning it into electricity by means of the combination of nano-piezoelectric and condensing, the system would be seen like a compound floating fabric of million piezoelectric crystals that turn the oscillating movement of the sea into micro-electrical signals that they are added and they left by means cables to the surface where electronics devices classified to the load of condensers, from the electricity is confined and later is invested and synchronize itself with the great national mains.

  7. Layout Optimisation of Wave Energy Converter Arrays

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé; Nava, Vincenzo; Topper, Mathew B. R.

    2017-01-01

    This paper proposes an optimisation strategy for the layout design of wave energy converter (WEC) arrays. Optimal layouts are sought so as to maximise the absorbed power given a minimum q-factor, the minimum distance between WECs, and an area of deployment. To guarantee an efficient optimisation......, a four-parameter layout description is proposed. Three different optimisation algorithms are further compared in terms of performance and computational cost. These are the covariance matrix adaptation evolution strategy (CMA), a genetic algorithm (GA) and the glowworm swarm optimisation (GSO) algorithm...

  8. Gravity wave control on ESF day-to-day variability: An empirical approach

    Science.gov (United States)

    Aswathy, R. P.; Manju, G.

    2017-06-01

    The gravity wave control on the daily variation in nighttime ionization irregularity occurrence is studied using ionosonde data for the period 2002-2007 at magnetic equatorial location Trivandrum. Recent studies during low solar activity period have revealed that the seed perturbations should have the threshold amplitude required to trigger equatorial spread F (ESF), at a particular altitude and that this threshold amplitude undergoes seasonal and solar cycle changes. In the present study, the altitude variation of the threshold seed perturbations is examined for autumnal equinox of different years. Thereafter, a unique empirical model, incorporating the electrodynamical effects and the gravity wave modulation, is developed. Using the model the threshold curve for autumnal equinox season of any year may be delineated if the solar flux index (F10.7) is known. The empirical model is validated using the data for high, moderate, and low solar epochs in 2001, 2004, and 1995, respectively. This model has the potential to be developed further, to forecast ESF incidence, if the base height of ionosphere is in the altitude region where electrodynamics controls the occurrence of ESF. ESF irregularities are harmful for communication and navigation systems, and therefore, research is ongoing globally to predict them. In this context, this study is crucial for evolving a methodology to predict communication as well as navigation outages.Plain Language SummaryThe manifestation of nocturnal ionospheric irregularities at magnetic equatorial regions poses a major hazard for communication and navigation systems. It is therefore essential to arrive at prediction methodologies for these irregularities. The present study puts forth a novel empirical model which, using only solar flux index, successfully differentiates between days with and without nocturnal ionization irregularity occurrence. The model-derived curve is obtained such that the days with and without occurrence of

  9. Energy conditions of non-singular black hole spacetimes in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Toshmatov, Bobir [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); Ahmedov, Bobomurat [Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Abdujabbarov, Ahmadjon [Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Tashkent University of Information Technologies, Tashkent (Uzbekistan); Stuchlik, Zdenek [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic)

    2017-08-15

    Conformal gravity can elegantly solve the problem of spacetime singularities present in Einstein's gravity. For every physical spacetime, there is an infinite family of conformally equivalent singularity-free metrics. In the unbroken phase, every non-singular metric is equivalent and can be used to infer the physical properties of the spacetime. In the broken phase, a Higgs-like mechanism should select a certain vacuum, which thus becomes the physical one. However, in the absence of the complete theoretical framework we do not know how to select the right vacuum. In this paper, we study the energy conditions of non-singular black hole spacetimes obtained in conformal gravity assuming they are solutions of Einstein's gravity with an effective energy-momentum tensor. We check whether such conditions can be helpful to select the vacuum of the broken phase. (orig.)

  10. Energy conditions of non-singular black hole spacetimes in conformal gravity

    International Nuclear Information System (INIS)

    Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Stuchlik, Zdenek

    2017-01-01

    Conformal gravity can elegantly solve the problem of spacetime singularities present in Einstein's gravity. For every physical spacetime, there is an infinite family of conformally equivalent singularity-free metrics. In the unbroken phase, every non-singular metric is equivalent and can be used to infer the physical properties of the spacetime. In the broken phase, a Higgs-like mechanism should select a certain vacuum, which thus becomes the physical one. However, in the absence of the complete theoretical framework we do not know how to select the right vacuum. In this paper, we study the energy conditions of non-singular black hole spacetimes obtained in conformal gravity assuming they are solutions of Einstein's gravity with an effective energy-momentum tensor. We check whether such conditions can be helpful to select the vacuum of the broken phase. (orig.)

  11. High energy QCD scattering, the shape of gravity on an IR brane, and the Froissart bound

    International Nuclear Information System (INIS)

    Giddings, Steven B.

    2003-01-01

    High-energy scattering in nonconformal gauge theories is investigated using the AdS/conformal field theory (CFT) dual string-gravity theory. It is argued that strong-gravity processes, such as black hole formation, play an important role in the dual dynamics. Further information about this dynamics is found by performing a linearized analysis of gravity for a mass near an infrared brane; this gives the far field approximation to black hole or other strong-gravity effects, and in particular allows us to estimate their shape. From this shape, one can infer a total scattering cross section that grows with center of mass energy as ln 2 E, saturating the Froissart bound

  12. Communicating Wave Energy: An Active Learning Experience for Students

    Science.gov (United States)

    Huynh, Trongnghia; Hou, Gene; Wang, Jin

    2016-01-01

    We have conducted an education project to communicate the wave energy concept to high school students. A virtual reality system that combines both hardware and software is developed in this project to simulate the buoy-wave interaction. This first-of-its-kind wave energy unit is portable and physics-based, allowing students to conduct a number of…

  13. The energy density of a Landau damped plasma wave

    NARCIS (Netherlands)

    Best, R. W. B.

    1999-01-01

    In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite

  14. Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars

    International Nuclear Information System (INIS)

    Wen Dehua; Li Baoan; Chen Liewen

    2009-01-01

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  15. Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...

  16. The Draukie's Tale: Origin Myth for Wave Energy

    DEFF Research Database (Denmark)

    Watts, Laura

    2017-01-01

    Poem based on ethnographic research with people and places around the European Marine Energy Centre, the world's longest running test site for wave and tide energy, Orkney islands, Scotland.......Poem based on ethnographic research with people and places around the European Marine Energy Centre, the world's longest running test site for wave and tide energy, Orkney islands, Scotland....

  17. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  18. In-situ electron and ion measurements and observed gravity wave effects in the polar mesosphere during the MaCWAVE program

    Directory of Open Access Journals (Sweden)

    C. L. Croskey

    2006-07-01

    Full Text Available Langmuir probe electron and ion measurements from four instrumented rockets flown during the MaCWAVE (Mountain and Convective Waves Ascending VErtically program are reported. Two of the rockets were launched from Andøya Rocket Range, Norway, in the summer of 2002. Electron scavenging by ice particulates produced reductions of the electron density in both sharp narrow (≈1–2 km layers and as a broad (≈13 km depletion. Small-scale irregularities were observed in the altitude regions of both types of electron depletion. The scale of the irregularities extended to wavelengths comparable to those used by ground-based radars in observing PMSE. In regions where ice particles were not present, analysis of the spectral signatures provided reasonable estimates of the energy deposition from breaking gravity waves.

    Two more instrumented rockets were flown from Esrange, Sweden, in January 2003. Little turbulence or energy deposition was observed during one flight, but relatively large values were observed during the other flight. The altitude distribution of the observed turbulence was consistent with observations of a semidiurnal tide and gravity wave instability effects as determined by ground-based lidar and radar measurements and by falling sphere measurements of the winds and temperatures (Goldberg et al., 2006; Williams et al., 2006.

  19. Investigation of Wave Height Reduction behind the Wave Dragon Wave Energy Converters and Application in Santander, Spain

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke

    This paper deals with a case study on the wave height reduction behind floating Wave Dragon wave energy converters in Santander Bay, Spain. The study is performed using the MIKE21 Boussinesq model from DHI. The Wave Dragon transmission characteristics in the numerical wave propagation model...... are based on previously performed physical model tests in scale 1:51. Typical winter storm conditions are considered in the case study together with different stiffness in the mooring system of the floating device. From the study it is found that if multiple Wave Dragons are positioned in a farm the wave...

  20. Axisymmetric capillary-gravity waves at the interface of two viscous, immiscible fluids - Initial value problem

    Science.gov (United States)

    Farsoiya, Palas Kumar; Dasgupta, Ratul

    2017-11-01

    When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.

  1. Evidence for Gravity Wave Seeding of Convective Ionosphere Storms Initiated by Deep Troposphere Convection

    Science.gov (United States)

    Kelley, M. C.; Pfaff, R. F., Jr.; Dao, E. V.; Holzworth, R. H., II

    2014-12-01

    With the increase in solar activity, the Communications/Outage Forecast System satellite (C/NOFS) now goes below the F peak. As such, we now can study the development of Convective Ionospheric Storms (CIS) and, most importantly, large-scale seeding of the low growth-rate Rayleigh-Taylor (R-T) instability. Two mechanisms have been suggested for such seeding: the Collisional Kelvin-Helmholtz Instability (CKHI) and internal atmospheric gravity waves. A number of observations have shown that the spectrum of fully developed topside structures peaks at 600 km and extends to over 1000 km. These structures are exceedingly difficult to explain by CKHI. Here we show that sinusoidal plasma oscillations on the bottomside during daytime develop classical R-T structures on the nightside with the background 600 km structure still apparent. In two case studies, thunderstorm activity was observed east of the sinusoidal features in the two hours preceding the C/NOFS passes. Thus, we argue that convective tropospheric storms are a likely source of these sinusoidal features.

  2. Frequency variations of gravity waves interacting with a time-varying tide

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.M.; Zhang, S.D.; Yi, F.; Huang, K.M.; Gan, Q.; Gong, Y. [Wuhan Univ., Hubei (China). School of Electronic Information; Ministry of Education, Wuhan, Hubei (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan, Hubei (China); Zhang, Y.H. [Nanjing Univ. of Information Science and Technology (China). College of Hydrometeorolgy

    2013-11-01

    Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when aGW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal-GW interactions are more complicated than usually taken into account by GW parameterizations in global models.

  3. Inertia–gravity wave radiation from the elliptical vortex in the f -plane shallow water system

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Research and Education Center for Natural Sciences, Department of Physics, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)

    2017-04-15

    Inertia–gravity wave (IGW) radiation from the elliptical vortex is investigated in the f -plane shallow water system. The far field of IGW is analytically derived for the case of an almost circular Kirchhoff vortex with a small aspect ratio. Cyclone–anticyclone asymmetry appears at finite values of the Rossby number (Ro) caused by the source originating in the Coriolis acceleration. While the intensity of IGWs from the cyclone monotonically decreases as f increases, that from the anticyclone increases as f increases for relatively smaller f and has a local maximum at intermediate f . A numerical experiment is conducted on a model using a spectral method in an unbounded domain. The numerical results agree quite well with the analytical ones for elliptical vortices with small aspect ratios, implying that the derived analytical forms are useful for the verification of the numerical model. For elliptical vortices with larger aspect ratios, however, significant deviation from the analytical estimates appears. The intensity of IGWs radiated in the numerical simulation is larger than that estimated analytically. The reason is that the source of IGWs is amplified during the time evolution because the shape of the vortex changes from ideal ellipse to elongated with filaments. Nevertheless, cyclone–anticyclone asymmetry similar to the analytical estimate appears in all the range of aspect ratios, suggesting that this asymmetry is a robust feature. (paper)

  4. Some characteristics of atmospheric gravity waves observed by radio-interferometry

    Directory of Open Access Journals (Sweden)

    Claude Mercier

    Full Text Available Observations of atmospheric acoustic-gravity waves (AGWs are considered through their effect on the horizontal gradient G of the slant total electron content (slant TEC, which can be directly obtained from two-dimensional radio-interferometric observations of cosmic radio-sources with the Nançay radioheligraph (2.2°E, 47.3°N. Azimuths of propagation can be deduced (modulo 180°. The total database amounts to about 800 h of observations at various elevations, local time and seasons. The main results are:

    a AGWs are partially directive, confirming our previous results.

    b The propagation azimuths considered globally are widely scattered with a preference towards the south.

    c They show a bimodal time distribution with preferential directions towards the SE during daytime and towards the SW during night-time (rather than a clockwise rotation as reported by previous authors.

    d The periods are scattered but are larger during night-time than during daytime by about 60%.

    e The effects observed with the solar radio-sources are significantly stronger than with other radio-sources (particularly at higher elevations, showing the role of the geometry in line of sight-integrated observations.

  5. Precise response function for the magnetic component of gravitational waves in scalar-tensor gravity

    International Nuclear Information System (INIS)

    Corda, Christian

    2011-01-01

    The important issue of the magnetic component of gravitational waves (GWs) has been considered in various papers in the literature. From such analyses, it has been found that such a magnetic component becomes particularly important in the high-frequency portion of the frequency range of ground based interferometers for GWs which arises from standard general theory of relativity (GTR). Recently, such a magnetic component has been extended to GWs arising from scalar-tensor gravity (STG) too. After a review of some important issues on GWs in STG, in this paper we reanalyze the magnetic component in the framework of STG from a different point of view, by correcting an error in a previous paper and by releasing a more precise response function. In this way, we also show that if one neglects the magnetic contribution considering only the low-frequency approximation of the electric contribution, an important part of the signal could be, in principle, lost. The determination of a more precise response function for the magnetic contribution is important also in the framework of the possibility of distinguishing other gravitational theories from GTR. At the conclusion of this paper, an expansion of the main results is also shown in order to recall the presence of the magnetic component in GTR too.

  6. Electronics for the IBM gravity wave detector. Concept, implementation, and experience

    International Nuclear Information System (INIS)

    Levine, J.L.; Garwin, R.L.

    1975-01-01

    The apparatus - antenna, transducer, signal processor, and calibrator - was designed to settle the question of the existence of gravity waves at 1.7kHz of the numbers and intensities claimed at the time (end-1971). The design criteria were: modest sensitivity, sensitivity independent of signal arrival time and state of excitation of the antenna, absolute calibration with pulsed mechanical excitation of the antenna, full simulation of the apparatus, hands-off computer analysis with every point published. It was recognized that a single bar would ultimately be limited by some Boltzmann distribution of noise at sub-thermal temperature, and that such an ideal antenna would be equivalent to an ideal coincidence pair of antennas, each of half the mass. Transducer, amplifier, signal processor, and programming were all done by the experimenters in order to reduce the cycle time for introducing improvements. Before the antenna and amplifier were ready, the processing algorithms were developed and tested with digitally-simulated antenna output, and many problems avoided. Any excess local noise proved to be sufficiently infrequent so that the single antenna could negate claims by Weber of the detection of gravitational radiation. The computer processing obviated the need for temperature control of the antenna or for tracking of the bar resonant frequency with the reference oscillator

  7. Gravity Wave Dynamics in a Mesospheric Inversion Layer: 1. Reflection, Trapping, and Instability Dynamics

    Science.gov (United States)

    Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.

    2018-01-01

    Abstract An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large‐amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller‐amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying. PMID:29576994

  8. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign. Part II. Radar investigations and modelling studies

    Energy Technology Data Exchange (ETDEWEB)

    Serafimovich, A.; Zuelicke, C.; Hoffmann, P.; Peters, D.; Singer, W. [Leibniz-Inst. fuer Atmosphaerenphysik, Kuehlungsborn (Germany); Dalin, P. [Swedish Inst. of Space Physics, Kiruna (Sweden)

    2006-07-01

    We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHP radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya rocket range (ARR) near Andenes (69.3 N, 16 E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR fifth-generation mesoscale model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of {proportional_to}4.5-5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity. (orig.)

  9. Annual increments, specific gravity and energy of Eucalyptus grandis by gamma-ray attenuation technique

    International Nuclear Information System (INIS)

    Rezende, M.A.; Guerrini, I.A.; Ferraz, E.S.B.

    1990-01-01

    Specific gravity annual increments in volume, mass and energy of Eucalyptus grandis at thirteen years of age were made taking into account measurements of the calorific value for wood. It was observed that the calorific value for wood decrease slightly, while the specific gravity increase significantly with age. The so-called culmination age for the Annual Volume Increment was determined to be around fourth year of growth while for the Annual Mass and Energy Increment was around the eighty year. These results show that a tree in a particular age may not have a significant growth in volume, yet one is mass and energy. (author)

  10. Dominant wave frequency and amplitude estimation for adaptive control of wave energy converters

    OpenAIRE

    Nguyen , Hoai-Nam; Tona , Paolino; Sabiron , Guillaume

    2017-01-01

    International audience; Adaptive control is of great interest for wave energy converters (WEC) due to the inherent time-varying nature of sea conditions. Robust and accurate estimation algorithms are required to improve the knowledge of the current sea state on a wave-to-wave basis in order to ensure power harvesting as close as possible to optimal behavior. In this paper, we present a simple but innovative approach for estimating the wave force dominant frequency and wave force dominant ampl...

  11. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010.......This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010....

  12. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT) region

    OpenAIRE

    X. Liu; X. Liu; J. Xu; H.-L. Liu; J. Yue; W. Yuan

    2014-01-01

    Using a fully nonlinear two-dimensional (2-D) numerical model, we simulated gravity waves (GWs) breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT). An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's app...

  13. Experimental Study of the Weptos Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    This paper presents the power performance results of the experimental study of the WEPTOS wave energy converter (WEC). This novel device combines an established and efficient wave energy absorbing mechanism with an adjustable structure that can regulate the amount of incoming wave energy and reduce...... loads in extreme wave conditions. This A-shaped floating structure absorbs the energy in the waves through a multitude of rotors, the shape of which is based on the renowned Salter’s Duck. These rotors pivot around a common axle, one for each leg of the structure, to which the rotors transfer...... the absorbed wave energy and which is connected to a common power take off system (one for each leg). The study investigates the performance of the device in a large range of wave states and estimates the performance in terms of mechanical power available to the power take off system of the WEPTOS WEC for two...

  14. Planetary and gravity wave signatures in the F region ionosphere with impact on radio propagation predictions and variability

    Czech Academy of Sciences Publication Activity Database

    Altadill, D.; Apostolov, E. M.; Boška, Josef; Laštovička, Jan; Šauli, Petra

    2004-01-01

    Roč. 47, 2/3 (2004), s. 1109-1119 ISSN 1593-5213. [Final Meeting COST271 Action. Effects of the upper atmosphere on terrestrial and Earth-space communications (EACOS). Abingdon, 26.08.2004-27.08.2004] R&D Projects: GA MŠk OC 271.10; GA ČR GA205/01/1071; GA ČR GP205/02/P077 Institutional research plan: CEZ:AV0Z3042911 Keywords : ionosphere * planetary waves * gravity waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.413, year: 2004

  15. Wavelet characterisation of ionospheric acoustic and gravity waves occuring during the solar eclipse of August 11, 1999

    Czech Academy of Sciences Publication Activity Database

    Šauli, Petra; Abry, P.; Boška, Josef; Duchayne, L.

    2006-01-01

    Roč. 68, 3-5 (2006), s. 586-598 ISSN 1364-6826 R&D Projects: GA ČR GP205/02/P077; GA ČR(CZ) GA205/01/1071; GA AV ČR(CZ) IAA3042102 Grant - others:CNRS(FR) 18098 Institutional research plan: CEZ:AV0Z30420517 Keywords : Solar eclipse * Acoustic-gravity waves * Vertical ionospheric sounding * Wavelet decomposition * Wave packet characterisation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.448, year: 2006

  16. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  17. Study of the potential of wave energy in Malaysia

    Science.gov (United States)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  18. A fast wind-farm boundary-layer model to investigate gravity wave effects and upstream flow deceleration

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2017-11-01

    Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  19. Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect

    OpenAIRE

    Sharay Astariz; Gregorio Iglesias

    2015-01-01

    Wave energy is one of the most promising alternatives to fossil fuels due to the enormous available resource; however, its development may be slowed as it is often regarded as uneconomical. The largest cost reductions are expected to be obtained through economies of scale and technological progress. In this sense, the incorporation of wave energy systems into offshore wind energy farms is an opportunity to foster the development of wave energy. The synergies between both renewables can be rea...

  20. Wave energy for the 21st century: status and prospects

    International Nuclear Information System (INIS)

    Thorpe, Tom

    2000-01-01

    This article reviews the current technical and commercial status of wave energy, and discusses the design of near shore devices such as the 2MW OSPREY, and offshore devices including the McCabe wave pump, the Ocean Power Technology Wave Energy Converter, the Archimedes Wave Swing, the Pelamis, and wave energy schemes under development by other commercial firms. The predicted generating costs, the potential market, environmental impacts, and institution factors such as planning and consent, grid connection,and safety in design and operation are considered. The operating principles of an oscillating water column, and some promising offshore devices are illustrated

  1. Energy of linear quasineutral electrostatic drift waves

    International Nuclear Information System (INIS)

    Pfirsch, D.; Correa-Restrepo, D.

    1993-01-01

    Certain kinds of nonlinear instabilities are related to the existence of negative-energy perturbations. In this paper, an exact energy expression for linear quasineutral electrostatic perturbations is derived within the framework of dissipationless multifluid theory that is valid for any geometry. Taking the mass formally as a tensor with, in general, different masses parallel and perpendicular to an ambient magnetic field allows one to treat in a convenient way different approximations such as the full dynamics and restriction to parallel dynamics or the completely adiabatic case. Application to slab configurations yields the result that the adiabatic approximation does not allow negative energy for perturbations which are perfectly localized at a mode resonant surface, whereas inclusion of the parallel dynamics does. This is in agreement with a recent numerical study of drift-wave turbulence within the framework of collisional two-fluid theory by B. Scott [Phys. Rev. Lett. 65, 3289 (1990); Phys. Fluids B 4, 2468 (1992)]. A dissipationless theory can be formulated in terms of a Lagrangian, from which the energy is immediately obtained. We start with the nonlinear theory. The theory is formulated via a Lagrangian which is written in terms of displacement vectors ξ ν (x,t) such that all constraints are taken into account. The nonlinear energy is obtained from the Lagrangian by standard methods. The procedure used is the same as that developed in a forthcoming paper by Pfirsch and Sudan [Phys. Fluids B (to be published)] for ideal nonlinear magnetohydrodynamics theory. From the exact Lagrangian one obtains the Lagrangian of the linearized theory by simple expansion to second order in ξ ν . This Lagrangian then yields the energy of the linearized theory

  2. Statistical investigation of expected wave energy and its reliability

    International Nuclear Information System (INIS)

    Ozger, M.; Altunkaynak, A.; Sen, Z.

    2004-01-01

    The statistical behavior of wave energy at a single site is derived by considering simultaneous variations in the period and wave height. In this paper, the general wave power formulation is derived by using the theory of perturbation. This method leads to a general formulation of the wave power expectation and other statistical parameter expressions, such as standard deviation and coefficient of variation. The statistical parameters, namely the mean value and variance of wave energy, are found in terms of the simple statistical parameters of period, significant wave height and zero up-crossing period. The elegance of these parameters is that they are distribution free. These parameters provide a means for defining the wave energy distribution function by employing the Chebyschev's inequality. Subsequently, an approximate probability distribution function of the wave energy is also derived for assessment of risk and reliability associated with wave energy. Necessary simple charts are given for risk and reliability assessments. Two procedures are presented for such assessments in wave energy calculations and the applications of these procedures are provided for wave energy potential assessment in the regions of the Pacific Ocean off the west coast of U.S. (author)

  3. Statistical investigation of expected wave energy and its reliability

    International Nuclear Information System (INIS)

    Oezger, Mehmet; Altunkaynak, Abduesselam; Sen, Zekai

    2004-01-01

    The statistical behavior of wave energy at a single site is derived by considering simultaneous variations in the period and wave height. In this paper, the general wave power formulation is derived by using the theory of perturbation. This method leads to a general formulation of the wave power expectation and other statistical parameter expressions, such as standard deviation and coefficient of variation. The statistical parameters, namely the mean value and variance of wave energy, are found in terms of the simple statistical parameters of period, significant wave height and zero up-crossing period. The elegance of these parameters is that they are distribution free. These parameters provide a means for defining the wave energy distribution function by employing the Chebyschev's inequality. Subsequently, an approximate probability distribution function of the wave energy is also derived for assessment of risk and reliability associated with wave energy. Necessary simple charts are given for risk and reliability assessments. Two procedures are presented for such assessments in wave energy calculations and the applications of these procedures are provided for wave energy potential assessment in the regions of the Pacific Ocean off the west coast of U.S

  4. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    Science.gov (United States)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  5. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.

    This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....

  6. Prospects and applicability of wave energy for South Africa

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan

    2018-03-01

    Renewable energy offers significant opportunities for electricity diversification. South Africa belongs to the group of developing nations and encompasses a lot of potential for renewable energy developments. Currently, the majority of its electricity production originates from fossil fuels; however, incorporation of clean coal technologies will aid in reaching the assigned targets. This study offers a long-term wave power quantification analysis with a numerical wave model. The investigation includes long-term resource assessment in the region, variability, seasonal and monthly wave energy content. Locations with high-energy content but low variability pose an opportunity that can contribute in the alleviation of energy poverty. Application of wave converters depends on the combination of complex terms. The study presents resource levels and the joint distributions, which indicate suitability for converter selection. Depending on the region of interest, these characteristics change. Thus, this resource assessment adds knowledge on wave power and optimal consideration for wave energy applicability.

  7. Survivability Mode and Extreme Loads on the Mooring Lines of the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment of the surviva......This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment...... of the department of Civil Engineering at Aalborg University. The outcome of the research will be used as input for future research work aimed at the design of the mooring system and the certification of the structural design for the full scale Wave Dragon demonstrator....

  8. Wave energy extraction by coupled resonant absorbers.

    Science.gov (United States)

    Evans, D V; Porter, R

    2012-01-28

    In this article, a range of problems and theories will be introduced that will build towards a new wave energy converter (WEC) concept, with the acronym 'ROTA' standing for resonant over-topping absorber. First, classical results for wave power absorption for WECs constrained to operate in a single degree of freedom will be reviewed and the role of resonance in their operation highlighted. Emphasis will then be placed on how the introduction of further resonances can improve power take-off characteristics by extending the range of frequencies over which the efficiency is close to a theoretical maximum. Methods for doing this in different types of WECs will be demonstrated. Coupled resonant absorbers achieve this by connecting a WEC device equipped with its own resonance (determined from a hydrodynamic analysis) to a new system having separate mass/spring/damper characteristics. It is shown that a coupled resonant effect can be realized by inserting a water tank into a WEC, and this idea forms the basis of the ROTA device. In essence, the idea is to exploit the coupling between the natural sloshing frequencies of the water in the internal tank and the natural resonance of a submerged buoyant circular cylinder device that is tethered to the sea floor, allowing a rotary motion about its axis of attachment.

  9. Wave energy devices with compressible volumes.

    Science.gov (United States)

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-12-08

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.

  10. Diffuse Waves and Energy Densities Near Boundaries

    Science.gov (United States)

    Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.

    2007-12-01

    Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of

  11. Layout Optimisation of Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Pau Mercadé Ruiz

    2017-08-01

    Full Text Available This paper proposes an optimisation strategy for the layout design of wave energy converter (WEC arrays. Optimal layouts are sought so as to maximise the absorbed power given a minimum q-factor, the minimum distance between WECs, and an area of deployment. To guarantee an efficient optimisation, a four-parameter layout description is proposed. Three different optimisation algorithms are further compared in terms of performance and computational cost. These are the covariance matrix adaptation evolution strategy (CMA, a genetic algorithm (GA and the glowworm swarm optimisation (GSO algorithm. The results show slightly higher performances for the latter two algorithms; however, the first turns out to be significantly less computationally demanding.

  12. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    International Nuclear Information System (INIS)

    Sugimoto, Norihiko

    2015-01-01

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves

  13. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Department of Physics, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)

    2015-12-15

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.

  14. Enhanced gravity-wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002

    Directory of Open Access Journals (Sweden)

    E. Becker

    2006-07-01

    Full Text Available We present new sensitivity experiments that link observed anomalies of the mesosphere and lower thermosphere at high latitudes during the MaCWAVE/MIDAS summer program 2002 to enhanced planetary Rossby-wave activity in the austral winter troposphere.

    We employ the same general concept of a GCM having simplified representations of radiative and latent heating as in a previous study by Becker et al. (2004. In the present version, however, the model includes no gravity wave (GW parameterization. Instead we employ a high vertical and a moderate horizontal resolution in order to describe GW effects explicitly. This is supported by advanced, nonlinear momentum diffusion schemes that allow for a self-consistent generation of inertia and mid-frequency GWs in the lower atmosphere, their vertical propagation into the mesosphere and lower thermosphere, and their subsequent dissipation which is induced by prescribed horizontal and vertical mixing lengths as functions of height.

    The main anomalies in northern summer 2002 consist of higher temperatures than usual above 82 km, an anomalous eastward mean zonal wind between 70 and 90 km, an altered meridional flow, enhanced turbulent dissipation below 80 km, and enhanced temperature variations associated with GWs. These signals are all reasonably described by differences between two long-integration perpetual model runs, one with normal July conditions, and another run with modified latent heating in the tropics and Southern Hemisphere to mimic conditions that correspond to the unusual austral winter 2002. The model response to the enhanced winter hemisphere Rossby-wave activity has resulted in both an interhemispheric coupling through a downward shift of the GW-driven branch of the residual circulation and an increased GW activity at high summer latitudes. Thus a quantitative explanation of the dynamical state of the northern mesosphere and lower

  15. Wave Dissipation on Low- to Super-Energy Coral Reefs

    Science.gov (United States)

    Harris, D. L.

    2016-02-01

    Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.

  16. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  17. Stakeholder requirements for commercially successful wave energy converter farms

    Energy Technology Data Exchange (ETDEWEB)

    Babarit, Aurélien; Bull, Diana; Dykes, Katherine; Malins, Robert; Nielsen, Kim; Costello, Ronan; Roberts, Jesse; Bittencourt Ferreira, Claudio; Kennedy, Ben; Weber, Jochem

    2017-12-01

    In this study, systems engineering techniques are applied to wave energy to identify and specify stakeholders' requirements for a commercially successful wave energy farm. The focus is on the continental scale utility market. Lifecycle stages and stakeholders are identified. Stakeholders' needs across the whole lifecycle of the wave energy farm are analyzed. A list of 33 stakeholder requirements are identified and specified. This list of requirements should serve as components of a technology performance level metric that could be used by investors and funding agencies to make informed decisions when allocating resources. It is hoped that the technology performance level metric will accelerate wave energy conversion technology convergence.

  18. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  19. Dynamics of Mixed Dark Energy Domination in Teleparallel Gravity and Phase-Space Analysis

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2015-01-01

    Full Text Available We consider a novel dark energy model to investigate whether it will provide an expanding universe phase. Here we propose a mixed dark energy domination which is constituted by tachyon, quintessence, and phantom scalar fields nonminimally coupled to gravity, in the absence of background dark matter and baryonic matter, in the framework of teleparallel gravity. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions implying the acceleration phase of universe.

  20. Induced gravity and the attractor dynamics of dark energy/dark matter

    International Nuclear Information System (INIS)

    Cervantes-Cota, Jorge L.; Putter, Roland de; Linder, Eric V.

    2010-01-01

    Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity