WorldWideScience

Sample records for gravity survey covered

  1. Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation

    International Nuclear Information System (INIS)

    Barrows, L.J.; Fett, J.D.

    1983-04-01

    A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area

  2. Effect of External Disturbing Gravity Field on Spacecraft Guidance and Surveying Line Layout for Marine Gravity Survey

    Directory of Open Access Journals (Sweden)

    HUANG Motao

    2016-11-01

    Full Text Available Centred on the support requirement of flying track control for a long range spacecraft, a detail research is made on the computation of external disturbing gravity field, the survey accuracy of gravity anomaly on the earth' surface and the program of surveying line layout for marine gravity survey. Firstly, the solution expression of navigation error for a long range spacecraft is analyzed and modified, and the influence of the earth's gravity field on flying track of spacecraft is evaluated. Then with a given limited quota of biased error of spacecraft drop point, the accuracy requirement for calculating the external disturbing gravity field is discussed and researched. Secondly, the data truncation error and the propagated data error are studied and estimated, and the quotas of survey resolution and computation accuracy for gravity anomaly on the earth' surface are determined. Finally, based on the above quotas, a corresponding program of surveying line layout for marine gravity survey is proposed. A numerical test has been made to prove the reasonableness and validity of the suggested program.

  3. The alpine Swiss-French airborne gravity survey

    Science.gov (United States)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  4. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    Science.gov (United States)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  5. Geoid of Nepal from airborne gravity survey

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Einarsson, Indriði

    2011-01-01

    An airborne gravity survey of Nepal was carried out December 2010 in a cooperation between DTU-Space, Nepal Survey Department, and NGA, USA. The entire country was flown with survey lines spaced 6 nm with a King Air aircraft, with a varying flight altitude from 4 to 10 km. The survey operations...... as well as recent GPS-heights of Mt. Everest. The new airborne data also provide an independent validation of GOCE gravity field results at the local ~100 km resolution scale....

  6. Gsolve, a Python computer program with a graphical user interface to transform relative gravity survey measurements to absolute gravity values and gravity anomalies

    Science.gov (United States)

    McCubbine, Jack; Tontini, Fabio Caratori; Stagpoole, Vaughan; Smith, Euan; O'Brien, Grant

    2018-01-01

    A Python program (Gsolve) with a graphical user interface has been developed to assist with routine data processing of relative gravity measurements. Gsolve calculates the gravity at each measurement site of a relative gravity survey, which is referenced to at least one known gravity value. The tidal effects of the sun and moon, gravimeter drift and tares in the data are all accounted for during the processing of the survey measurements. The calculation is based on a least squares formulation where the difference between the absolute gravity at each surveyed location and parameters relating to the dynamics of the gravimeter are minimized with respect to the relative gravity observations, and some supplied gravity reference site values. The program additionally allows the user to compute free air gravity anomalies, with respect to the GRS80 and GRS67 reference ellipsoids, from the determined gravity values and calculate terrain corrections at each of the surveyed sites using a prism formula and a user supplied digital elevation model. This paper reviews the mathematical framework used to reduce relative gravimeter survey observations to gravity values. It then goes on to detail how the processing steps can be implemented using the software.

  7. Integrating stations from the North America Gravity Database into a local GPS-based land gravity survey

    Science.gov (United States)

    Shoberg, Thomas G.; Stoddard, Paul R.

    2013-01-01

    The ability to augment local gravity surveys with additional gravity stations from easily accessible national databases can greatly increase the areal coverage and spatial resolution of a survey. It is, however, necessary to integrate such data seamlessly with the local survey. One challenge to overcome in integrating data from national databases is that these data are typically of unknown quality. This study presents a procedure for the evaluation and seamless integration of gravity data of unknown quality from a national database with data from a local Global Positioning System (GPS)-based survey. The starting components include the latitude, longitude, elevation and observed gravity at each station location. Interpolated surfaces of the complete Bouguer anomaly are used as a means of quality control and comparison. The result is an integrated dataset of varying quality with many stations having GPS accuracy and other reliable stations of unknown origin, yielding a wider coverage and greater spatial resolution than either survey alone.

  8. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  9. Analysis of Alabama Airborne Gravity at Three Altitudes: Expected Accuracy and Spatial Resolution from a Future Tibetan Airborne Gravity Survey

    Directory of Open Access Journals (Sweden)

    Chi-Hsun Huang

    2013-01-01

    Full Text Available In situ airborne gravity data at altitudes of 11, 6.3, and 1.7 km over a smooth area of Alabama are used to assess gravity accuracy and errors in upward and downward continuations. Analysis of the Alabama free-air anomaly gravity data at crossover points at the three altitudes suggests 1 - 2 mgal accuracy for the dataset. Gravity data at each altitude are then expanded into local 3D Fourier series, to prepare for continuation. This Fourier representation results in continuation errors at few-mgal level in Alabama, even in the extreme case of downward continuation from 11 km to sea level. The result in Alabama inspires an airborne gravity survey over the rough, inaccessible terrain of Tibet. Similar investigations as in Alabama are made in Tibet using EGM08-derived airborne gravity data at flight altitudes of 10, 5, and 0 km. Bouguer anomalies at the 10-km altitude preserve the major tectonic features of Tibet. Downward continuation errors increase with terrain roughness, but the survey can enhance local tectonic features. This study highlights the value of a future Tibetan airborne gravity survey and points out the expected gravity accuracy and spatial resolution from this survey.

  10. Results from a U.S. Absolute Gravity Survey,

    Science.gov (United States)

    1982-01-01

    National Bureau of Standards. La . ... ,., 831A08 NOV -2- 1. Introduction We have recently completed an absolute gravity survey at twelve sites in the...Air Force Geophysics Laboratory (AFGL) and the Istituto di Metrologia -7- "G. Colonnetti" (IMGC) [Marson and Alasia, 1978, 19801. All three...for ab- solute measurements of the earth’s gravity, Metrologia , in press, 1982. L 4 !" Table 1. Gravity values transferred to the floor in gal (cm

  11. Moving base Gravity Gradiometer Survey System (GGSS) program

    Science.gov (United States)

    Pfohl, Louis; Rusnak, Walter; Jircitano, Albert; Grierson, Andrew

    1988-04-01

    The GGSS program began in early 1983 with the objective of delivering a landmobile and airborne system capable of fast, accurate, and economical gravity gradient surveys of large areas anywhere in the world. The objective included the development and use of post-mission data reduction software to process the survey data into solutions for the gravity disturbance vector components (north, east and vertical). This document describes the GGSS equipment hardware and software, integration and lab test procedures and results, and airborne and land survey procedures and results. Included are discussions on test strategies, post-mission data reduction algorithms, and the data reduction processing experience. Perspectives and conclusions are drawn from the results.

  12. Globally covering a-priori regional gravity covariance models

    Directory of Open Access Journals (Sweden)

    D. Arabelos

    2003-01-01

    Full Text Available Gravity anomaly data generated using Wenzel’s GPM98A model complete to degree 1800, from which OSU91A has been subtracted, have been used to estimate covariance functions for a set of globally covering equal-area blocks of size 22.5° × 22.5° at Equator, having a 2.5° overlap. For each block an analytic covariance function model was determined. The models are based on 4 parameters: the depth to the Bjerhammar sphere (determines correlation, the free-air gravity anomaly variance, a scale factor of the OSU91A error degree-variances and a maximal summation index, N, of the error degree-variances. The depth of Bjerhammar-sphere varies from -134km to nearly zero, N varies from 360 to 40, the scale factor from 0.03 to 38.0 and the gravity variance from 1081 to 24(10µms-22. The parameters are interpreted in terms of the quality of the data used to construct OSU91A and GPM98A and general conditions such as the occurrence of mountain chains. The variation of the parameters show that it is necessary to use regional covariance models in order to obtain a realistic signal to noise ratio in global applications.Key words. GOCE mission, Covariance function, Spacewise approach`

  13. Miniaturised Gravity Sensors for Remote Gravity Surveys.

    Science.gov (United States)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.

    2016-12-01

    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  14. From Discrete Gravity Survey Data to a High-resolution Gravity Field Representation in the Nordic-Baltic Region

    DEFF Research Database (Denmark)

    Märdla, Silja; Ågren, Jonas; Strykowski, Gabriel

    2017-01-01

    The deduction of a regularly spaced gravity anomaly grid from scattered survey data is studied, addressing mainly two aspects: reduction of gravity to anomalies and subsequent interpolation by various methods. The problem is illustrated in a heterogeneous study area and contrasting test areas inc...

  15. Comparison of survey and photogrammetry methods to position gravity data, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Wu, S.S.C.; Spielman, J.B.

    1985-01-01

    Locations of gravity stations at Yucca Mountain, Nevada, were determined by a survey using an electronic distance-measuring device and by a photogram-metric method. The data from both methods were compared to determine if horizontal and vertical coordinates developed from photogrammetry are sufficently accurate to position gravity data at the site. The results show that elevations from the photogrammetric data have a mean difference of 0.57 +- 0.70 m when compared with those of the surveyed data. Comparison of the horizontal control shows that the two methods agreed to within 0.01 minute. At a latitude of 45 0 , an error of 0.01 minute (18 m) corresponds to a gravity anomaly error of 0.015 mGal. Bouguer gravity anomalies are most sensitive to errors in elevation, thus elevation is the determining factor for use of photogrammetric or survey methods to position gravity data. Because gravity station positions are difficult to locate on aerial photographs, photogrammetric positions are not always exactly at the gravity station; therefore, large disagreements may appear when comparing electronic and photogrammetric measurements. A mean photogrammetric elevation error of 0.57 m corresponds to a gravity anomaly error of 0.11 mGal. Errors of 0.11 mGal are too large for high-precision or detailed gravity measurements but acceptable for regional work. 1 ref. 2 figs., 4 tabs

  16. The thickness of cover sequences in the Western Desert of Iraq from a power spectrum analysis of gravity and magnetic data

    Science.gov (United States)

    Mousa, Ahmed; Mickus, Kevin; Al-Rahim, Ali

    2017-05-01

    The Western Desert of Iraq is part of the stable shelf region on the Arabian Plate where the subsurface structural makeup is relatively unknown due to the lack of cropping out rocks, deep drill holes and deep seismic refraction and reflection profiles. To remedy this situation, magnetic and gravity data were analyzed to determine the thickness of the Phanerozoic cover sequences. The 2-D power spectrum method was used to estimate the depth to density and magnetic susceptibility interfaces by using 0.5° square windows. Additionally, the gravity data were analyzed using isostatic residual and decompensative methods to isolate gravity anomalies due to upper crustal density sources. The decompensative gravity anomaly and the differentially reduced to the pole magnetic map indicate a series of mainly north-south and northwest-southeast trending maxima and minima anomalies related to Proterozoic basement lithologies and the varying thickness of cover sequences. The magnetic and gravity derived thickness of cover sequences maps indicate that these thicknesses range from 4.5 to 11.5 km. Both maps in general are in agreement but more detail in the cover thicknesses was determined by the gravity analysis. The gravity-based cover thickness maps indicates regions with shallower depths than the magnetic-based cover thickness t map which may be due to density differences between limestone and shale units within the Paleozoic sediments. The final thickness maps indicate that the Western Desert is a complicated region of basins and uplifts that are more complex than have been shown on previous structural maps of the Western Desert. These basins and uplifts may be related to Paleozoic compressional tectonic events and possibly to the opening of the Tethys Ocean. In addition, petroleum exploration could be extended to three basins outlined by our analysis within the relatively unexplored western portions of the Western Desert.

  17. Airborne gravity survey of Lincoln Sea and Wandel Sea, north Greenland

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Forsberg, René; Keller, K.

    2000-01-01

    In June 1998 National Survey and Cadastre Denmark (KMS) carried out an airborne gravity survey over the Polar Sea to the north of Greenland. A Twin Otter from Greenlandair, equipped with autopilot and additional fuel tanks, was employed for the survey. A modified marine LaCoste & Romberg gravimet...

  18. Linear and non-linear Modified Gravity forecasts with future surveys

    Science.gov (United States)

    Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria

    2017-12-01

    Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.

  19. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  20. 3. Neural changes in different gravity and ecophysiological environments - A survey

    Science.gov (United States)

    Slenzka, K.

    Neural changes or neuronal plasticity occur after and during different stimulations and inputs in general. Gravity is one major input to the brain transferred from the vestibular system. However, often also direct effects of gravity on the cellular level are discussed. Our group was investigating the influence of different gravity environments on a large variety of neuronal enzymes in the developing fish brain. Long-term space travel or bases on Moon and Mars will have to deal not only with neural changes based on the different gravity environment, but also with potential negative or even toxic changes in the respective life support system. Our goal is now to identify reported enzyme activity changes in the brain based for example on potential toxic drugs or endocrine disruptors in combination with gravity induced changes. In this paper a survey will be undertaken discussing recent results obtained in ecotoxicology, gravitational biology combined with new data from our group regarding potential differences in brain glucose-6-phosphate dehydrogenase of medaka and zebrafish.

  1. Field experiment for investigation of very shallow basement structure by micro-gravity survey; Microgravity tansa no gokusenbu kiban chosa eno tekiyo jikken

    Energy Technology Data Exchange (ETDEWEB)

    Oshita, K; Nozaki, K [OYO Corp., Tokyo (Japan)

    1997-10-22

    This paper illustrates the field experiment results in which micro-gravity survey was applied to investigation of very shallow basement structure between a few m and 10 m. Its applicability was discussed. In principle, the micro-gravity survey was conducted at the measuring points in a grid with 20 m pitch. Measuring points of 174 were used. The gravity system used for the measurements is an automatic gravimeter CG-3M made by the Scintrex. Survey results of P-wave reflection method conducted at the site using a vibrator focus were used as control data of micro-gravity survey. Consequently, change in the thickness of surface layer (earth filling) shallower than the depth of -10 m could be grasped as a plane. It was found that the micro-gravity survey is a useful method for the investigation of very shallow basement structure. Survey results by the reflection method could contribute to the determination of trend face at filtration and construction of density model as well as the geologic interpretation of gravity anomaly. As a result, reliability of micro-gravity survey and reflection method could be enhanced, mutually. 3 refs., 8 figs.

  2. A refined model of sedimentary rock cover in the southeastern part of the Congo basin from GOCE gravity and vertical gravity gradient observations

    Science.gov (United States)

    Martinec, Zdeněk; Fullea, Javier

    2015-03-01

    We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to

  3. Implementing gravity method on geological contacts in Bukit Bunuh, Lenggong, Perak (Malaysia)

    International Nuclear Information System (INIS)

    Hidayah, I N E; Saad, Rosli; Nordiana, M M; Azwin, I N; Bery, Andy Anderson; Saidin, Mokhtar

    2015-01-01

    Using gravity method, a study of responses of different geological settings towards gravity was conducted in Bukit Bunuh, Lenggong, Perak (Malaysia). Gravity method provides different responses towards different rock types depending on the rock density. The survey area cover an area of 12 km 2 , with a total 404 survey stations with stations interval of approximately 50 m and 500 m. The Bouguer anomaly map identifies the shallow granite rock with a value of -6 to -10.5 mGal while shallow limestone is -11 to -15 mGal. The sediment/overburden was identified with value of < -15.5 mGal. Few fractures are also identified and the boundary between limestone and granite rocks identified at the north part of the study area

  4. Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment

    DEFF Research Database (Denmark)

    Hwang, C.W.; Hsiao, Y.S.; Shih, H.C.

    2007-01-01

    [ 1] An airborne gravity survey was conducted over Taiwan using a LaCoste and Romberg (LCR) System II air-sea gravimeter with gravity and global positioning system (GPS) data sampled at 1 Hz. The aircraft trajectories were determined using a GPS network kinematic adjustment relative to eight GPS ...... using airborne and surface gravity data and the other using surface data only, and the former yields a better agreement with the GPS-derived geoidal heights. Bouguer anomalies derived from airborne gravity by a rigorous numerical integration reveal important tectonic features....

  5. BOOK REVIEW: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity

    Science.gov (United States)

    Husain, Viqar

    2012-03-01

    book are also covered in detail, and with more worked examples, in the former book, and the entire focus of the latter is Bianchi models. After a brief introduction outlining the aim of the book, the second chapter provides the canonical theory of homogeneous isotropic cosmology with scalar matter; this covers the basics and linear perturbation theory, and is meant as a first taste of what is to come. The next chapter is a thorough introduction of the canonical formulation of general relativity in both the ADM and Ashtekar-Barbero variables. This chapter contains details useful for graduate students which are either scattered or missing in the literature. Applications of the canonical formalism are in the following chapter. These cover standard material and techniques for obtaining mini(midi)-superspace models, including the Bianchi and Gowdy cosmologies, and spherically symmetric reductions. There is also a brief discussion of the two-dimensional dilaton gravity. The spherically symmetric reduction is presented in detail also in the connection-triad variables. The chapter on global and asymptotic properties gives introductions to geodesic and null congruences, trapped surfaces, a survey of singularity theorems, horizons and asymptotic properties. The chapter ends with a discussion of junction conditions and the Vaidya solution. As already mentioned, this material is covered in detail in Poisson's book. The final chapter on quantization describes and contrasts the Dirac and reduced phase space methods. It also gives an introduction to background independent quantization using the holonomy-flux operators, which forms the basis of the LQG program. The application of this method to cosmology and its affect on the Friedmann equation is covered next, followed by a brief introduction to the effective constraint method, which is another area developed by the author. I think this book is a useful addition to the literature for graduate students, and potentially also for

  6. Central Asian Snow Cover from Hydrometeorological Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Asian Snow Cover from Hydrometeorological Surveys data are based on observations made by personnel for three river basins: Amu Darya, Sir Darya, and...

  7. Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Donnacha [University Coll. London; Lahav, Ofer [University Coll. London; Bridle, Sarah [Manchester U.; Jouvel, Stephanie [Barcelona, IEEC; Abdalla, Filipe B. [University Coll. London; Frieman, Joshua A. [Chicago U., KICP

    2015-08-21

    The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power to measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.

  8. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  9. Underwater Gravity Survey of Northern Monterey Bay.

    Science.gov (United States)

    stations were occupied just above the swash zone. A complete Bouguer anomaly map was drawn and tied in with the previous land surveys and with one...covering the southern half of the bay. The isolines of the complete Bouguer anomaly indicate the relative vertical position of the basement complex Santa

  10. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica.

    Science.gov (United States)

    Scheinert, M; Ferraccioli, F; Schwabe, J; Bell, R; Studinger, M; Damaske, D; Jokat, W; Aleshkova, N; Jordan, T; Leitchenkov, G; Blankenship, D D; Damiani, T M; Young, D; Cochran, J R; Richter, T D

    2016-01-28

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km 2 , which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

  11. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica

    Science.gov (United States)

    Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; Blankenship, D. D.; Damiani, T. M.; Young, D.; Cochran, J. R.; Richter, T. D.

    2018-01-01

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica. PMID:29326484

  12. Airborne Gravity: NGS' Gravity Data for AN08 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  13. Petroleum system of Northwest Java basin based on gravity data analysis

    Science.gov (United States)

    Widianto, E.

    2018-01-01

    Energy management in the upstream oil and gas sector becomes very important for the country’s energy security. The renewal of energy resources and reserves becomes necessary and is a must. In the oil and gas industry, gravity data is usually used only for regional surveys, but with the development of instrumentation technology and gravity software development, this method can be used for assessing oil and gas survey stages from exploration to production. This study was conducted to evaluate aspects of petroleum system and exploration play concept in the part of Northwest Java Basin, covering source rock deposition regions (source kitchen area, migration direction), development of reservoirs, structural and stratigraphic trap, based on gravity data. This study uses data from Bouguer gravity anomaly map by filtering process to produce a residual map depicting sedimentation basin configuration. The mapping generated 20 sedimentary basins in Java Island with the total hydrocarbon resources of 113 BBOE (Billion Barrel of Oil Equivalent). The petroleum system analysis was conducted in the Northwest Basin section. The final map produced illustrates the condition of petroleum system and play concept that can be used as exploration direction, expectedly reducing the risk of drilling failure.

  14. Airborne Gravity: NGS' Gravity Data for AS01 (2008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  15. Airborne Gravity: NGS' Gravity Data for CS04 (2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  16. Airborne Gravity: NGS' Gravity Data for AN05 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  17. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  18. Airborne Gravity: NGS' Gravity Data for AN06 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  19. Airborne Gravity: NGS' Gravity Data for AS02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  20. Airborne Gravity: NGS' Gravity Data for EN01 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  1. Airborne Gravity: NGS' Gravity Data for AN03 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  2. Airborne Gravity: NGS' Gravity Data for AN04 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  3. Airborne Gravity: NGS' Gravity Data for CS05 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  4. Airborne Gravity: NGS' Gravity Data for EN06 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...

  5. Airborne Gravity: NGS' Gravity Data for AN02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  6. Airborne Gravity: NGS' Gravity Data for ES01 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...

  7. Regional gravity and magnetic surveys along southern margin of Indravati basin, Central India - a guide to unconformity related uranium mineralisation

    International Nuclear Information System (INIS)

    Patra, I.; Ramesh Babu, V.; Chaturvedi, A.K.; Sreenivas, R.; Chari, M.N.; Dash, J.K.; Roy, M.K.

    2009-01-01

    Geophysical methods play vital role at various stages in mineral exploration programme particularly in case of buried deposits. The unconformity related uranium deposits owing to their concealed nature are explored by geophysical methods as an indirect tool. Regional ground gravity and magnetic surveys have been conducted to decipher the basin configuration, presence of fault/ fractures and basic activity. These structural features may form favorable criteria for mineralisation. Qualitative and quantitative interpretation of the gravity and magnetic data along the southern margin of Mesoproterozoic Indravati basin has been correlated with ground follow up geological investigation. There exists a good correlation between interpreted faults, fracture zones and mafic activity from the magnetic and gravity surveys with available borehole data in the area. Further, 2D models generated from magnetic data have paved the way for planning boreholes and thereby reorienting the sub-surface exploration programme. Evidence of alteration and fracturing intercepted from the borehole correlates well with the low gravity and magnetic. Hence, gravity and magnetic surveys can be effectively utilized in delineating basement configuration and to estimate sediment thickness besides deciphering post sedimentary fault/fractures which are favorable factors for unconformity related uranium mineralisation. (author)

  8. Airborne Gravity: NGS' Gravity Data for CS08 (2015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for CS08 collected in 2006 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  9. Airborne Gravity: NGS' Gravity Data for ES02 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Gulf of Mexico collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...

  10. The characteristics and interpretation of regional gravity, magnetic and radiometric surveys in the Pine Creek Geosyncline

    International Nuclear Information System (INIS)

    Tucker, D.H.; Stuart, D.C.; Hone, I.G.; Sampath, N.

    1980-01-01

    The Bureau of Mineral Resources, Geology and Geophysics (BMR) has covered the Pine Creek Geosyncline with helicopter gravity stations on an 11,000m grid, and airborne magnetic and gamma spectrometer surveys along east-west lines 150m above ground level and 1500m apart. These data are available as maps at various scales, and most recently at 1:500,000 scale to overlay a geological map of the region at the same scale (BMR 1979a, 1979b, 1979c and 1979d). Inspection of the new regional maps shows that most of the known uranium deposits lie in areas of magnetically disturbed metasediments near residual Bouguer anomaly lows associated with radioactive granites. Some of these regional associations have been reported elsewhere (Stephansson and Johnson, 1976; Horsfall and Wilkes, 1975; Tucker, Hone, Sampath and Ewers, 1979). To better understand the links between the regional geophysics and regional geology, BMR undertook a multidisciplinary investigation of the geophysical characteristics of the Pine Creek Geosyncline during 1977 and 1978. The investigation included detailed ground surveys over anomalies, field and laboratory studies of rock physical properties, mineralogy studies, geological mapping, and computer modelling of anomaly sources

  11. Gravity and strings

    CERN Document Server

    Ortín, Tomás

    2015-01-01

    Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

  12. Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  13. Geoid Model and Altitude at Mount Aconcagua Region (Argentina) from Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Cristina Pacino, M.; Jaeger, Eric; Forsberg, René

    2014-01-01

    Aconcagua is part of the Southern Andes in the Argentine Province of Mendoza and it is the highest mountain in the Americas. The Aconcagua region is mostly inaccessible for land surveys. The existing gravity data are sparsely distributed, and mainly along the route currently used to climb the mou...

  14. Airborne Gravity: NGS' Gravity Data for CS02 (2008-2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Louisana and Mississippi collected in 2008-2009 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American...

  15. Airborne Gravity: NGS' Gravity Data for EN07 (2012-2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine and Canada collected in 2012 and 2013 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American...

  16. Airborne Gravity: NGS' Gravity Data for AS03 (2010-2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  17. Polar gravity fields from GOCE and airborne gravity

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan

    2011-01-01

    Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...

  18. Shallow structure of the Somma Vesuvius volcano from 3D inversion of gravity data

    Science.gov (United States)

    Cella, Federico; Fedi, Maurizio; Florio, Giovanni; Grimaldi, Marino; Rapolla, Antonio

    2007-04-01

    A gravity investigation was carried out in the Somma-Vesuvius complex area (Campania, Italy) based on a dataset recently enlarged with new measurements. These cover the volcanic top and fill some other important spatial gaps in previous surveys. Besides the new gravity map of the Vesuvius, we also present the results of a 3D inverse modelling, carried out by using constraints from deep well exploration and seismic reflection surveys. The resulting density model provides a complete reconstruction of the top of the carbonate basement. This is relevant mostly on the western side of the survey area, where no significant information was previously available. Other new information regards the Somma-Vesuvius structure. It consists of an annular volume of rocks around the volcanic vent and that extends down to the carbonate basement. It results to be denser with respect to the surrounding sedimentary cover of the Campanian Plain and to the material located just along the central axis of the volcanic structure. The coherence between these features and other geophysical evidences from previous studies, will be discussed together with the other results of this research.

  19. Airborne Gravity: NGS' Gravity Data for ES05 (2015-2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Atlantic Ocean collected in two surveys, FL15-1 and FL15-2. This data set is part of the Gravity for the Re-definition of...

  20. Airborne Gravity: NGS' Gravity Data for AS04 (2015-2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2015 and 2016 over 2 surveys, AK15 and AK16. This data set is part of the Gravity for the Re-definition of the American...

  1. Airborne Gravity: NGS' Gravity Data for CS07 (2014 & 2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 & 2016 over 3 surveys,TX14-2, TX16-1 and TX16-2. This data set is part of the Gravity for the Re-definition of...

  2. Airborne Gravity: NGS' Airborne Gravity Data for AN01 (2009-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2009-2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  3. Merging of airborne gravity and gravity derived from satellite altimetry: Test cases along the coast of greenland

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Andersen, Ole Baltazar; Tscherning, C.C.

    2002-01-01

    for the use of gravity data especially, when computing geoid models in coastal regions. The presence of reliable marine gravity data for independent control offers an opportunity to study procedures for the merging of airborne and satellite data around Greenland. Two different merging techniques, both based......The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing...... onshore gravity coverage and fill in new data in the very-near coastal area, where altimetry data may contain gross errors. The airborne surveys extend from the coastline to approximately 100 km offshore, along 6000 km of coastline. An adequate merging of these different data sources is important...

  4. Gravity data from the San Pedro River Basin, Cochise County, Arizona

    Science.gov (United States)

    Kennedy, Jeffrey R.; Winester, Daniel

    2011-01-01

    The U.S. Geological Survey, Arizona Water Science Center in cooperation with the National Oceanic and Atmospheric Administration, National Geodetic Survey has collected relative and absolute gravity data at 321 stations in the San Pedro River Basin of southeastern Arizona since 2000. Data are of three types: observed gravity values and associated free-air, simple Bouguer, and complete Bouguer anomaly values, useful for subsurface-density modeling; high-precision relative-gravity surveys repeated over time, useful for aquifer-storage-change monitoring; and absolute-gravity values, useful as base stations for relative-gravity surveys and for monitoring gravity change over time. The data are compiled, without interpretation, in three spreadsheet files. Gravity values, GPS locations, and driving directions for absolute-gravity base stations are presented as National Geodetic Survey site descriptions.

  5. A time-lapse gravity survey of the Coso geothermal field, China Lake Naval Air Weapons Station, California

    Science.gov (United States)

    Phelps, Geoffrey; Cronkite-Ratcliff, Collin; Blake, Kelly

    2018-04-19

    We have conducted a gravity survey of the Coso geothermal field to continue the time-lapse gravity study of the area initiated in 1991. In this report, we outline a method of processing the gravity data that minimizes the random errors and instrument bias introduced into the data by the Scintrex CG-5 relative gravimeters that were used. After processing, the standard deviation of the data was estimated to be ±13 microGals. These data reveal that the negative gravity anomaly over the Coso geothermal field, centered on gravity station CER1, is continuing to increase in magnitude over time. Preliminary modeling indicates that water-table drawdown at the location of CER1 is between 65 and 326 meters over the last two decades. We note, however, that several assumptions on which the model results depend, such as constant elevation and free-water level over the study period, still require verification.

  6. Airborne Gravity: NGS' Gravity Data for the US and Territories (2008-2022) - National Geospatial Data Asset (NGDA) Airborne Gravity (GRAV-D)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gravity for the Re-definition of the American Vertical Datum (GRAV-D) is a project initiated by NOAA's National Geodetic Survey to collect and monitor gravity data...

  7. Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    International Nuclear Information System (INIS)

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.; Logsdon, Sarah E.; Rice, Emily L.; Kirkpatrick, J. Davy; Burgasser, Adam J.; McGovern, Mark R.; Prato, Lisa

    2017-01-01

    We combine 131 new medium-resolution ( R ∼ 2000) J -band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5–T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all of the M6–L7 objects in our sample by measuring the equivalent widths (EW) of the K i lines at 1.1692, 1.1778, and 1.2529 μ m, and the 1.2 μ m FeH J absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak—at ∼L5 and T5—in K i EW as a function of spectral type. We analyze the K i EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6–L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity-sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current data sets cannot be used to provide a precise age estimate.

  8. Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.; Logsdon, Sarah E. [Department of Physics and Astronomy, University of California Los Angeles, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Rice, Emily L. [Department of Engineering Science and Physics, College of Staten Island, 2800 Victory Boulevard, Staten Island, NY 10301 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); McGovern, Mark R. [Math and Sciences Division, Antelope Valley College, 3041 West Avenue K, Lancaster, CA 93536 (United States); Prato, Lisa, E-mail: emartin@astro.ucla.edu [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2017-03-20

    We combine 131 new medium-resolution ( R ∼ 2000) J -band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5–T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all of the M6–L7 objects in our sample by measuring the equivalent widths (EW) of the K i lines at 1.1692, 1.1778, and 1.2529 μ m, and the 1.2 μ m FeH{sub J} absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak—at ∼L5 and T5—in K i EW as a function of spectral type. We analyze the K i EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6–L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity-sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current data sets cannot be used to provide a precise age estimate.

  9. Active Response Gravity Offload System

    Science.gov (United States)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  10. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  11. Fiscal 1997 report on the verification survey of geothermal exploration technology. 2. Development of the reservoir variation survey method (development of the gravity survey method); 1997 nendo chinetsu tansa gijutsu nado kensho chosa. Choryuso hendo tansaho kaihatsu (juryoku tansaho kaihatsu) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Among technology developments such as the reservoir evaluation at initial developmental stage and stabilization/maintenance of power after the start of operation, the fiscal 1997 result was described of the development of the gravity survey method. The paper conducted the installation of gravity measuring points outside the existing monitoring range, introduction of CG-3M gravimeter/GPS measuring system, drilling of ground water level monitoring well, etc. for the setup of a system for new gravity monitoring. Moreover, regular measurement of gravity was made for the first fiscal year, and at the same time the continued observation of ground water level, precipitation, atmospheric pressure, and temperature was started. It is necessary to study the effects on gravity variation such as gravity gradient and tidal correction. Conducted were collection/arrangement of the existing data and database construction for history matching/variation prediction in the Yanaizu Nishiyama area. The paper made surveys of the trends/literature. In the future, needed are the computation using density models of geothermal reservoirs and test use of EDCON`s downhole gravimeter. 44 refs., 30 figs., 17 tabs.

  12. The Future of Gravity

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.

  13. Program software for the automated processing of gravity and magnetic survey data for the Mir computer

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimov, G.A.

    1980-01-01

    A presentation is made of the content of program software for the automated processing of gravity and magnetic survey data for the small Mir-1 and Mir-2 computers as worked out on the Voronezh geophysical expedition.

  14. Analysis of selected gravity profiles on the Hanford Reservation, Richland, Washington

    International Nuclear Information System (INIS)

    Little, J.T.; Richard, B.H.

    1977-07-01

    Regional gravity surveys have been conducted on the Hanford Reservation in the past. This analysis is an attempt at detailed gravity profiling over selected areas of the reservation. Over 450 gravity readings were taken during the summer of 1976. The Bouguer anomaly values of these stations, along with facies cross sections, were used to construct two-dimensional models. The models depict the buried basalt bedrock surface and the overlying sedimentary cover of the areas selected for profiling. In the eastern section of the reservation, the interpretation of the data suggests that there are three major buried valleys cut into the bedrock. These channels are most likely a combination of structural downwarping and erosion of these downwarps by an ancestral Columbia River. Along the western boundary of the reservation there are two closed depressions which are believed to be the result of the sub-fluvial vortex effect of Kolk erosion. It was found that, although two-dimensional gravity models are useful in determining the buried bedrock surface, they are ineffectual in delineating sedimentary contacts

  15. Sea bottom gravity survey of Osaka bay and its study; Osakawan kaitei juryoku chosa to sono kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Komazawa, M [Geological Survey of Japan, Tsukuba (Japan); Ota, Y; Shibuya, S; Kumai, M; Murakami, M [Japex Geoscience Institute, Inc., Tokyo (Japan)

    1996-05-01

    This paper reports a sea bottom gravity survey conducted with an objective to identify deep underground structure in the vicinity of the epicenter of the Hyogoken-Nanbu Earthquake. The surveyed areas are the whole Osaka Bay area north of the north latitude of 34 degrees and 20 minutes, and the eastern part of the Sea of Harima east of the east longitude of 134 degrees and 40 minutes, excluding the areas difficult of performing measurements. A square lattice with sides each about 2 km was arranged with 408 measurement points. The measurement was carried out by using an observation vessel mounted with a sea bottom gravimeter made by LaCoste and Romberg Corporation, which was lowered down to the sea bottom at the measurement points. Errors in positions and water depths at the gravity measuring points were suppressed to less than 0.002 minutes and 0.1 m, respectively. The measurement data were given necessary corrections by using a unified method applicable also to land areas, and a Bouguer anomaly chart was prepared. Based on the chart, this paper summarizes features in the Bouguer anomaly in the surveyed areas (such as the low-gravity anomaly band extending the central part of the Osaka bay from north-east to south-west, and the gradient structure existing on the Awaji island side). 6 refs., 1 fig.

  16. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    Science.gov (United States)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  17. Testing modified gravity at large distances with the HI Nearby Galaxy Survey's rotation curves

    Science.gov (United States)

    Mastache, Jorge; Cervantes-Cota, Jorge L.; de la Macorra, Axel

    2013-03-01

    Recently a new—quantum motivated—theory of gravity has been proposed that modifies the standard Newtonian potential at large distances when spherical symmetry is considered. Accordingly, Newtonian gravity is altered by adding an extra Rindler acceleration term that has to be phenomenologically determined. Here we consider a standard and a power-law generalization of the Rindler modified Newtonian potential. The new terms in the gravitational potential are hypothesized to play the role of dark matter in galaxies. Our galactic model includes the mass of the integrated gas, and stars for which we consider three stellar mass functions (Kroupa, diet-Salpeter, and free mass model). We test this idea by fitting rotation curves of seventeen low surface brightness galaxies from the HI Nearby Galaxy Survey (THINGS). We find that the Rindler parameters do not perform a suitable fit to the rotation curves in comparison to standard dark matter profiles (Navarro-Frenk-White and Burkert) and, in addition, the computed parameters of the Rindler gravity show a high spread, posing the model as a nonacceptable alternative to dark matter.

  18. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    International Nuclear Information System (INIS)

    Chan, H.A.; Paik, H.J.

    1987-01-01

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges

  19. Seasonal gravity change at Yellowstone caldera

    Science.gov (United States)

    Poland, M. P.; de Zeeuw-van Dalfsen, E.

    2017-12-01

    The driving forces behind Yellowstone's dynamic deformation, vigorous hydrothermal system, and abundant seismicity are usually ascribed to "magmatic fluids," which could refer to magma, water, volatiles, or some combination. Deformation data alone cannot distinguish the relative importance of these fluids. Gravity measurements, however, provide an indication of mass change over time and, when combined with surface displacements, can constrain the density of subsurface fluids. Unfortunately, several decades of gravity surveys at Yellowstone have yielded ambiguous results. We suspect that the difficulty in interpreting Yellowstone gravity data is due to seasonal variations in environmental conditions—especially surface and ground water. Yellowstone gravity surveys are usually carried out at the same time of year (generally late summer) to minimize the impact of seasonality. Nevertheless, surface and subsurface water levels are not likely to be constant from year to year, given annual differences in precipitation. To assess the overall magnitude of seasonal gravity changes, we conducted gravity surveys of benchmarks in and around Yellowstone caldera in May, July, August, and October 2017. Our goal was to characterize seasonal variations due to snow melt/accumulation, changes in river and lake levels, changes in groundwater levels, and changes in hydrothermal activity. We also hope to identify sites that show little variation in gravity over the course of the 2017 surveys, as these locations may be less prone to seasonal changes and more likely to detect small variations due to magmatic processes. Preliminary examination of data collected in May and July 2017 emphasizes the importance of site location relative to sources of water. For example, a site on the banks of the Yellowstone River showed a gravity increase of several hundred microgals associated with a 50 cm increase in the river level. A high-altitude site far from rivers and lakes, in contrast, showed a

  20. Venus gravity anomalies and their correlations with topography

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  1. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    Science.gov (United States)

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  2. Focus on quantum Einstein gravity Focus on quantum Einstein gravity

    Science.gov (United States)

    Ambjorn, Jan; Reuter, Martin; Saueressig, Frank

    2012-09-01

    The gravitational asymptotic safety program summarizes the attempts to construct a consistent and predictive quantum theory of gravity within Wilson's generalized framework of renormalization. Its key ingredient is a non-Gaussian fixed point of the renormalization group flow which controls the behavior of the theory at trans-Planckian energies and renders gravity safe from unphysical divergences. Provided that the fixed point comes with a finite number of ultraviolet-attractive (relevant) directions, this construction gives rise to a consistent quantum field theory which is as predictive as an ordinary, perturbatively renormalizable one. This opens up the exciting possibility of establishing quantum Einstein gravity as a fundamental theory of gravity, without introducing supersymmetry or extra dimensions, and solely based on quantization techniques that are known to work well for the other fundamental forces of nature. While the idea of gravity being asymptotically safe was proposed by Steven Weinberg more than 30 years ago [1], the technical tools for investigating this scenario only emerged during the last decade. Here a key role is played by the exact functional renormalization group equation for gravity, which allows the construction of non-perturbative approximate solutions for the RG-flow of the gravitational couplings. Most remarkably, all solutions constructed to date exhibit a suitable non-Gaussian fixed point, lending strong support to the asymptotic safety conjecture. Moreover, the functional renormalization group also provides indications that the central idea of a non-Gaussian fixed point providing a safe ultraviolet completion also carries over to more realistic scenarios where gravity is coupled to a suitable matter sector like the standard model. These theoretical successes also triggered a wealth of studies focusing on the consequences of asymptotic safety in a wide range of phenomenological applications covering the physics of black holes, early

  3. Airborne Gravity: NGS' Gravity Data for ES03 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...

  4. Idaho Batholith Study Area Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32,152 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  5. Airborne Gravity: NGS' Gravity Data for EN09 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set is...

  6. Maine Offshore Free-air Anomaly Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (5,363 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity parameters...

  7. Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa)

    Science.gov (United States)

    Marcel, Jean; Abate Essi, Jean Marcel; Nouck, Philippe Njandjock; Sanda, Oumarou; Manguelle-Dicoum, Eliézer

    2018-03-01

    Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gradient-upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan-African Belt-Congo craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.

  8. Airborne Gravity: NGS' Gravity Data for EN10 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...

  9. Time-lapse gravity and levelling in the sinkhole-endangered urban area of Bad Frankenhausen, Germany

    Science.gov (United States)

    Kobe, Martin; Gabriel, Gerald; Weise, Adelheid; Krawczyk, Charlotte; Vogel, Detlef

    2017-04-01

    Sinkholes, resulting from subrosion in the subsurface, can reach diameters of several hundred meters and thus pose a severe hazard for infrastructure and inhabitants in urban areas. Subrosion is the leaching of readily-soluble rocks, such as rock salt, gypsum, anhydrite and limestone by ground or meteoric water and leads to mass transport and relocation. Two scenarios of sinkhole evolution are conceivable: First, the surface subsides continuously in order to compensate for the mass loss. Second, the mass relocation leads to development of subsurface cavities. If they reach a critical size and the cover layers are not supported anymore, the surface collapses abruptly. To improve the understanding of subrosion processes and the related surface deformation a case study is conducted in Bad Frankenhausen, Germany, where subrosion leaches the Zechstein evaporates of the Permian. One part of the study is to analyse the spatiotemporal development of sinkholes by applying time-lapse observations. Therefore, we established a monitoring network consisting of 15 gravity and additional levelling points covering the main sinkhole areas in the city centre. In March 2014, the baseline survey was carried out. Since then, quarterly measurement campaigns are performed. In each campaign four different gravity meters are used to collect a statistical significant amount of data and to control the plausibility of our data. The gravity measurements are complemented by levelling surveys. The rectification of the time-lapse gravity data comprises the correction for jumps and systematic errors, as well as for well calculable influences, such as earth tides and air pressure changes. Furthermore, special interest was applied to seasonal changes of hydrological parameters such as soil moisture or groundwater level. We found the hydrological influence to be in the single digit up to the lower two-digit µGal range, depending on the season and the station. The standard deviations of the adjusted

  10. Airborne Gravity: NGS' Gravity Data for MS02 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data over southern Arizona and New Mexico overlapping into Mexico collected in 2016 over 2 surveys, AZ16-1 and AZ16-2. This data set is part of the...

  11. High-resolution gravity model of Venus

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  12. MX Siting Investigation, Gravity Survey - Delamar Valley, Nevada.

    Science.gov (United States)

    1981-07-20

    reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix A1.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, Missouri...DRAWINGS Drawing Number 1 Complete Bouguer Anomaly Contours 2 Depth to Rock -Interpreted from In Pocket at Gravity Data End of Report iv E-TR-33-DM...ErtPX E-TR-3 3-DM 6 2.0 GRAVITY DATA REDUCTION DMAHTC/GSS obtained the basic observations for the new stations and reduced them to Simple Bouguer

  13. Gravity Data For The State of Utah

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (41,960 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  14. Airborne Gravity: NGS' Gravity Data for ES04 (2013-2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for North Carolina, South Carolina, Virginia, and the Atlantic Ocean collected in 2013 and 2014 over two surveys. This data set is part of the...

  15. Airborne Gravity: NGS' Gravity Data for EN02 (2011-2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, Ohio, Michigan, Canada and Lake Erie collected in 2011 and 2012 over 3 surveys. This data set is part of the...

  16. Gravity Data For The State of Ohio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (6,591 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity parameters...

  17. Gravity Data For The Maryland/Virginia Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (5,905 records) were compiled by the U. S. Geological Survey. This data base was received on July 11, 1997. Principal gravity parameters...

  18. Full Tensor Gradient of Simulated Gravity Data for Prospect Scale Delineation

    Directory of Open Access Journals (Sweden)

    Hendra Grandis

    2014-07-01

    Full Text Available Gravity gradiometry measurement allows imaging of anomalous sources in more detail than conventional gravity data. The availability of this new technique is limited to airborne gravity surveys using very specific instrumentation. In principle, the gravity gradients can be calculated from the vertical component of the gravity commonly measured in a ground-based gravity survey. We present a calculation of the full tensor gradient (FTG of the gravity employing the Fourier transformation. The calculation was applied to synthetic data associated with a simple block model and also with a more realistic model. The latter corresponds to a 3D model in which a thin coal layer is embedded in a sedimentary environment. Our results show the utility of the FTG of the gravity for prospect scale delineation.

  19. ANWR and Alaska Peninsula Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1252 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  20. Quantum Gravity Mathematical Models and Experimental Bounds

    CERN Document Server

    Fauser, Bertfried; Zeidler, Eberhard

    2007-01-01

    The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...

  1. Gravity Data for Southwestern Alaska #2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1294 records) were compiled by the Alaska Geological Survey and the U.S. Geological Survey, Menlo Park, California. This data base was...

  2. Detailed magnetic and gravity surveys around the hydrothermal area off Kumejima Island in the Mid-Okinawa Trough, southwestern Japan

    Science.gov (United States)

    Kitada, K.; Kasaya, T.; Iwamoto, H.; Nogi, Y.

    2017-12-01

    The Okinawa Trough is an active back-arc basin formed by the rifting associated with extension of the continental margin behind the Ryukyu trench. New hydrothermal sites were recently discovered off Kumejima Island in the Mid-Okinawa Trough and the hydrothermal mineral deposits were identified by seafloor surveys and rock samplings by ROV (e.g., JOGMEC, 2015). In order to characterize the sub-seafloor structures and the spatial distribution of the magmatic activity around the sites, we conducted the dense magnetic, gravity and bathymetric surveys with a line spacing of 0.5 nmi aboard the R/Vs Yokosuka and Kairei, operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in 2016. The geophysical data collected during the previous cruises in the area by JAMSTEC were additionally used for this study. Magnetic anomaly was calculated by subtracting the IGRF model and the magnetization intensity was estimated by the method of Parker and Huestis (1974). Free-air gravity anomaly was calculated with subtracting the normal gravity field and with corrections of the drift and of the Eötvös effect. Bouguer gravity anomaly was calculated based on the method of Parker (1972). The magnetization intensity and the Bouguer gravity anomaly reveal three characteristics of the hydrothermal area off Kumejima Island: 1) The distribution of magnetization around the hydrothermal sites shows two different types of sub-seafloor magnetic features. One is corresponded to the submarine knolls with a relatively high magnetization of 4 A/M. The other is an ENE-WSW trending magnetization distribution with relatively high and low intensities, which is consistent with the trend of the bathymetric lineament. These features are considered to be formed by magmatism associated with submarine volcanoes and back-arc rifting. 2) The reduced magnetization zone corresponding to the hydrothermal area probably attributes to hydrothermal alteration of the host rock. 3) The hydrothermal

  3. Bringing Artificial Gravity into the Classroom

    Science.gov (United States)

    Thompson, Grant; Aning, Isaac

    2018-01-01

    We recently conducted an experimental test of artificial gravity by placing various species of plants in centrifuges and analyzed the plants’ germination and growth. This research project incorporated several topics covered in undergraduate astronomy, biology, and physics courses. Given the interest of introductory astronomy students in artificial gravity and their pre-existing images of applications such as rotating spacecraft from pop culture, the results of the experiment may provide a gateway to discuss artificial gravity beyond teaching the traditional examples of Newton’s laws. We will discuss the experiment in detail and provide suggestions for how the experiment could be incorporated into your classroom.

  4. Testing gravity with EG: mapping theory onto observations

    Science.gov (United States)

    Leonard, C. Danielle; Ferreira, Pedro G.; Heymans, Catherine

    2015-12-01

    We present a complete derivation of the observationally motivated definition of the modified gravity statistic EG. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of EG. We forecast errors on EG for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of EG under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using EG to test gravity with future surveys.

  5. Michigan Magnetic and Gravity Maps and Data: A Website for the Distribution of Data

    Science.gov (United States)

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.; Snyder, Stephen L.

    2009-01-01

    This web site provides the best available, public-domain, aeromagnetic and gravity data in the State of Michigan and merges these data into composite grids that are available for downloading. The magnetic grid is compiled from 25 separate magnetic surveys that have been knit together to form a single composite digital grid and map. The magnetic survey grids have been continued to 305 meters (1,000 feet) above ground and merged together to form the State compilation. A separate map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. In addition, a complete Bouguer gravity anomaly grid and map were generated from more than 20,000 gravity station measurements from 33 surveys. A table provides the facts about each gravity survey where known.

  6. Model-independent constraints on modified gravity from current data and from the Euclid and SKA future surveys

    Energy Technology Data Exchange (ETDEWEB)

    Taddei, Laura; Martinelli, Matteo; Amendola, Luca, E-mail: taddei@thphys.uni-heidelberg.de, E-mail: martinelli@lorentz.leidenuniv.nl, E-mail: amendola@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-12-01

    The aim of this paper is to constrain modified gravity with redshift space distortion observations and supernovae measurements. Compared with a standard ΛCDM analysis, we include three additional free parameters, namely the initial conditions of the matter perturbations, the overall perturbation normalization, and a scale-dependent modified gravity parameter modifying the Poisson equation, in an attempt to perform a more model-independent analysis. First, we constrain the Poisson parameter Y (also called G {sub eff}) by using currently available f σ{sub 8} data and the recent SN catalog JLA. We find that the inclusion of the additional free parameters makes the constraints significantly weaker than when fixing them to the standard cosmological value. Second, we forecast future constraints on Y by using the predicted growth-rate data for Euclid and SKA missions. Here again we point out the weakening of the constraints when the additional parameters are included. Finally, we adopt as modified gravity Poisson parameter the specific Horndeski form, and use scale-dependent forecasts to build an exclusion plot for the Yukawa potential akin to the ones realized in laboratory experiments, both for the Euclid and the SKA surveys.

  7. Model-independent constraints on modified gravity from current data and from the Euclid and SKA future surveys

    International Nuclear Information System (INIS)

    Taddei, Laura; Martinelli, Matteo; Amendola, Luca

    2016-01-01

    The aim of this paper is to constrain modified gravity with redshift space distortion observations and supernovae measurements. Compared with a standard ΛCDM analysis, we include three additional free parameters, namely the initial conditions of the matter perturbations, the overall perturbation normalization, and a scale-dependent modified gravity parameter modifying the Poisson equation, in an attempt to perform a more model-independent analysis. First, we constrain the Poisson parameter Y (also called G eff ) by using currently available f σ 8 data and the recent SN catalog JLA. We find that the inclusion of the additional free parameters makes the constraints significantly weaker than when fixing them to the standard cosmological value. Second, we forecast future constraints on Y by using the predicted growth-rate data for Euclid and SKA missions. Here again we point out the weakening of the constraints when the additional parameters are included. Finally, we adopt as modified gravity Poisson parameter the specific Horndeski form, and use scale-dependent forecasts to build an exclusion plot for the Yukawa potential akin to the ones realized in laboratory experiments, both for the Euclid and the SKA surveys.

  8. Gravity signatures of terrane accretion

    Science.gov (United States)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  9. Alaska1(ak1_wpn) Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (10,578 records) were compiled by the U.S. Geological Survey and the State of Alaska Division of Geological & Geophysical Surveys. This...

  10. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  11. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: constraining modified gravity

    Science.gov (United States)

    Mueller, Eva-Maria; Percival, Will; Linder, Eric; Alam, Shadab; Zhao, Gong-Bo; Sánchez, Ariel G.; Beutler, Florian; Brinkmann, Jon

    2018-04-01

    We use baryon acoustic oscillation and redshift space distortion from the completed Baryon Oscillation Spectroscopic Survey, corresponding to Data Release 12 of the Sloan Digital Sky Survey, combined sample analysis in combination with cosmic microwave background, supernova, and redshift space distortion measurements from additional spectroscopic surveys to test deviations from general relativity. We present constraints on several phenomenological models of modified gravity: First, we parametrize the growth of structure using the growth index γ, finding γ = 0.566 ± 0.058 (68 per cent C.L.). Secondly, we modify the relation of the two Newtonian potentials by introducing two additional parameters, GM and GL. In this approach, GM refers to modifications of the growth of structure whereas GL to modification of the lensing potential. We consider a power law to model the redshift dependence of GM and GL as well as binning in redshift space, introducing four additional degrees of freedom, GM(z 0.5), GL(z 0.5). At 68 per cent C.L., we measure GM = 0.980 ± 0.096 and GL = 1.082 ± 0.060 for a linear model, GM = 1.01 ± 0.36 and GL = 1.31 ± 0.19 for a cubic model as well as GM(z 0.5) = 0.986 ± 0.022, GL(z 0.5) = 1.037 ± 0.029. Thirdly, we investigate general scalar tensor theories of gravity, finding the model to be mostly unconstrained by current data. Assuming a one-parameter f(R) model, we can constrain B0 < 7.7 × 10-5 (95 per cent C.L). For all models we considered, we find good agreement with general relativity.

  12. Gravity survey of groundwater characterization at Labuan Basin

    Science.gov (United States)

    Handayani, L.; Wardhana, D. D.; Hartanto, P.; Delinom, R.; Sudaryanto; Bakti, H.; Lubis, RF

    2018-02-01

    Labuan groundwater basin currently has an abundance of water. As a deltaic area of Lada Bay, groundwater supply comes from local precipitation and also from recharge region in mountain ranges surrounding. However, Labuan has been experiencing a fast economic development with high population and tourism industry growth. Such progress would lead to the increase of water consumption. A comprehensive groundwater management should be prepared for possible future problems. Therefore, a groundwater investigation is a necessary step towards that purpose. Gravity method was applied to identify the regional condition of the basement. The assessment of deep buried basin and basement relationship using gravity data is a challenge in groundwater investigation, but previous studies had indicated the efficiency of the method to obtain basic information and can be used as a foundation for more advanced studies.

  13. Collection of Observed Gravity Values, Absolute Gravity Measurements, Grids and Other Derived Summary Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Geophysical Data Center (NGDC) of NOAA, in cooperation with the National Geodetic Survey of NOAA, have published a Gravity CD-ROM containing observed...

  14. Estimating Gravity Biases with Wavelets in Support of a 1-cm Accurate Geoid Model

    Science.gov (United States)

    Ahlgren, K.; Li, X.

    2017-12-01

    Systematic errors that reside in surface gravity datasets are one of the major hurdles in constructing a high-accuracy geoid model at high resolutions. The National Oceanic and Atmospheric Administration's (NOAA) National Geodetic Survey (NGS) has an extensive historical surface gravity dataset consisting of approximately 10 million gravity points that are known to have systematic biases at the mGal level (Saleh et al. 2013). As most relevant metadata is absent, estimating and removing these errors to be consistent with a global geopotential model and airborne data in the corresponding wavelength is quite a difficult endeavor. However, this is crucial to support a 1-cm accurate geoid model for the United States. With recently available independent gravity information from GRACE/GOCE and airborne gravity from the NGS Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, several different methods of bias estimation are investigated which utilize radial basis functions and wavelet decomposition. We estimate a surface gravity value by incorporating a satellite gravity model, airborne gravity data, and forward-modeled topography at wavelet levels according to each dataset's spatial wavelength. Considering the estimated gravity values over an entire gravity survey, an estimate of the bias and/or correction for the entire survey can be found and applied. In order to assess the accuracy of each bias estimation method, two techniques are used. First, each bias estimation method is used to predict the bias for two high-quality (unbiased and high accuracy) geoid slope validation surveys (GSVS) (Smith et al. 2013 & Wang et al. 2017). Since these surveys are unbiased, the various bias estimation methods should reflect that and provide an absolute accuracy metric for each of the bias estimation methods. Secondly, the corrected gravity datasets from each of the bias estimation methods are used to build a geoid model. The accuracy of each geoid model

  15. Measuring and Modeling the Earth's Gravity - Introduction to Ground-Based Gravity Surveys and Analysis of Local Gravity Data

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Charlotte Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    We can measure changes in gravity from place to place on the earth. These measurements require careful recording of location, elevation and time for each reading. These readings must be adjusted for known effects (such as elevation, latitude, tides) that can bias our data and mask the signal of interest. After making corrections to our data, we can remove regional trends to obtain local Bouguer anomalies. The Bouguer anomalies arise from variations in the subsurface density structure. We can build models to explain our observations, but these models must be consistent with what is known about the local geology. Combining gravity models with other information – geologic, seismic, electromagnetic, will improve confidence in the results.

  16. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  17. National Land Cover Database (NLCD) Land Cover Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Land Cover Database (NLCD) Land Cover Collection is produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC)...

  18. Implications of Preliminary Gravity and Magnetic Surveys to the Understanding of the Bartlett Springs Fault Zone, Northern California Coast Ranges

    Science.gov (United States)

    Langenheim, V. E.; Jachens, R. C.; Morin, R. L.; McCabe, C. M.; Page, W. D.

    2007-12-01

    We use new gravity and magnetic data in the Lake Pillsbury region to help understand the geometry and character of the Bartlett Springs fault zone, one of the three main strands of the San Andreas system north of the San Francisco Bay area. We collected 153 new gravity stations in the Lake Pillsbury region that complement the sparse regional dataset and are used to estimate the thickness of Quaternary deposits in the inferred Gravelly Valley (Lake Pillsbury) pull-apart basin. We also collected 38 line-km of ground magnetic data on roads and 65 line-km by boat on the lake to supplement regional aeromagnetic surveys and to map concealed fault strands beneath the lake. The new gravity data show a significant northwest-striking gravity gradient at the base of which lies the Bartlett Springs fault zone. Superposed on this major east-facing gravity gradient is a 5 mGal low centered on Lake Pillsbury and Gravelly Valley. Inversion of the gravity field for basin thickness assuming a density contrast of 400 kg/m3 indicates the deepest part of the basin is about 400 m and located in the northern part of the valley, although the inversion lacks gravity stations within the lake. The basin is about 3 km wide and 5 km long and basin edges coincide with strands of the Bartlett Springs fault zone. Our gravity data suggest that Potter Valley, which lies between the Maacama and Bartlett Springs faults, is also as much as 400 m deep in the southern part of the valley, although additional data west of the valley would better isolate the gravity low. Geomorphologic characteristics of the valley suggest that this structure has been quiescent during the late Quaternary. Ground magnetic data are very noisy but the data in conjunction with 9.6 km-spaced NURE aeromagnetic lines suggest that regional analog aeromagnetic data flown in 1962 may suffer from location errors. The regional and NURE data show a northwest-striking magnetic high that extends across Lake Pillsbury. The northeast edge

  19. High-precision gravity measurements using absolute and relative gravimeters at Mount Etna (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available Accurate detection of time gravity changes attributable to the dynamics of volcanoes requires high-precision gravity measurements. With the aim of improving the quality of data from the Mount Etna gravity network, we used both absolute and relative gravimeters in a hybrid method. In this report, some of the techniques for gravity surveys are reviewed, and the results related to each method are compared. We show how the total uncertainty estimated for the gravity measurements performed with this combined use of absolute and relative gravimeters is roughly comparable to that calculated when the measurements are acquired using only relative gravimeters (the traditional method. However, the data highlight how the hybrid approach improves the measurement capabilities for surveying the Mount Etna volcanic area. This approach enhances the accuracy of the data, and then of the four-dimensional surveying, which minimizes ambiguities inherent in the gravity measurements. As a case study, we refer to two gravity datasets acquired in 2005 and 2010 from the western part of the Etna volcano, which included five absolute and 13 relative stations of the Etna gravity network.

  20. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    Science.gov (United States)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  1. Application of Cauchy-type integrals in developing effective methods for depth-to-basement inversion of gravity and gravity gradiometry data

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Zhdanov, Michael

    2015-01-01

    to be discretized for the calculation of gravity field. This was especially significant in the modeling and inversion of gravity data for determining the depth to the basement. Another important result was developing a novel method of inversion of gravity data to recover the depth to basement, based on the 3D...... Cauchy-type integral representation. Our numerical studies determined that the new method is much faster than conventional volume discretization method to compute the gravity response. Our synthetic model studies also showed that the developed inversion algorithm based on Cauchy-type integral is capable......One of the most important applications of gravity surveys in regional geophysical studies is determining the depth to basement. Conventional methods of solving this problem are based on the spectrum and/or Euler deconvolution analysis of the gravity field and on parameterization of the earth...

  2. Disentangling dark energy and cosmic tests of gravity from weak lensing systematics

    Science.gov (United States)

    Laszlo, Istvan; Bean, Rachel; Kirk, Donnacha; Bridle, Sarah

    2012-06-01

    We consider the impact of key astrophysical and measurement systematics on constraints on dark energy and modifications to gravity on cosmic scales. We focus on upcoming photometric ‘stage III’ and ‘stage IV’ large-scale structure surveys such as the Dark Energy Survey (DES), the Subaru Measurement of Images and Redshifts survey, the Euclid survey, the Large Synoptic Survey Telescope (LSST) and Wide Field Infra-Red Space Telescope (WFIRST). We illustrate the different redshift dependencies of gravity modifications compared to intrinsic alignments, the main astrophysical systematic. The way in which systematic uncertainties, such as galaxy bias and intrinsic alignments, are modelled can change dark energy equation-of-state parameter and modified gravity figures of merit by a factor of 4. The inclusion of cross-correlations of cosmic shear and galaxy position measurements helps reduce the loss of constraining power from the lensing shear surveys. When forecasts for Planck cosmic microwave background and stage IV surveys are combined, constraints on the dark energy equation-of-state parameter and modified gravity model are recovered, relative to those from shear data with no systematic uncertainties, provided fewer than 36 free parameters in total are used to describe the galaxy bias and intrinsic alignment models as a function of scale and redshift. While some uncertainty in the intrinsic alignment (IA) model can be tolerated, it is going to be important to be able to parametrize IAs well in order to realize the full potential of upcoming surveys. To facilitate future investigations, we also provide a fitting function for the matter power spectrum arising from the phenomenological modified gravity model we consider.

  3. Gravity Data for Southwestern Alaska (1294 records compiled)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1294 records) were compiled by the Alaska Geological Survey and the U.S. Geological Survey, Menlo Park, California. This data base was...

  4. Canonical quantum gravity and consistent discretizations

    Indian Academy of Sciences (India)

    Abstract. This paper covers some developments in canonical quantum gravity that ... derstanding the real Ashtekar variables four dimensionally [4], or the recent work ... Traditionally, canonical formulations of general relativity considered as canonical variables the metric on a spatial slice qab and a canonically conjugate.

  5. Equations of motion in relativistic gravity

    CERN Document Server

    Lämmerzahl, Claus; Schutz, Bernard

    2015-01-01

     The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations. Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted. This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who ...

  6. Alaska Gravity Data per 2 x 4 min Cell (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' gravity density grid for Alaska displays the distribution of about 1.1 million terrestrial and marine gravity data held in the National Geodetic Survey...

  7. Borehole gravity meter survey in drill hole USW G-4, Yucca Mountain Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Healey, D.L.; Clutsom, F.G.; Glover, D.A.

    1986-01-01

    Drill hole USW G-4 was logged with the US Geological Survey borehole gravity meter (BHGM) BH-6 as part of a detailed study of the lithostratigraphic units penetrated by this hole. Because the BHGM measures a larger volume of rock than the conventional gamma-gamma density tool, it provides an independent and more accurate measurement of the in situ average bulk density of thick lithologic units. USW G-4 is an especially important hole because of its proximity to the proposed exploratory shaft at Yucca Mountain. The BHGM data were reduced to interval densities using a free-air gradient (F) of 0.3083 mGal./m (0.09397 mGal/ft) measured at the drill site. The interval densities were further improved by employing an instrument correction factor of 1.00226. This factor was determined from measurements obtained by taking gravity meter BH-6 over the Charleston Peak calibration loop. The interval density data reported herein, should be helpful for planning the construction of the proposed shaft

  8. Quantum gravity and the renormalisation group

    International Nuclear Information System (INIS)

    Litim, D.

    2011-01-01

    The Standard Model of particle physics is remarkably successful in describing three out of the four known fundamental forces of Nature. But what is up with gravity? Attempts to understand quantum gravity on the same footing as the other forces still face problems. Some time ago, it has been pointed out that gravity may very well exist as a fundamental quantum field theory provided its high-energy behaviour is governed by a fixed point under the renormalisation group. In recent years, this 'asymptotic safety' scenario has found significant support thanks to numerous renormalisation group studies, lattice simulations, and new ideas within perturbation theory. The lectures will give an introduction into the renormalisation group approach for quantum gravity, aimed at those who haven't met the topic before. After an introduction and overview, the key ideas and concepts of asymptotic safety for gravity are fleshed out. Results for gravitational high-energy fixed points and scaling exponents are discussed as well as key features of the gravitational phase diagram. The survey concludes with some phenomenological implications of fixed point gravity including the physics of black holes and particle physics beyond the Standard Model. (author)

  9. Recent advancements in conformal gravity

    International Nuclear Information System (INIS)

    O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian

    2017-01-01

    In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)

  10. Beyond Einstein Gravity A Survey of Gravitational Theories for Cosmology and Astrophysics

    CERN Document Server

    Faraoni, Valerio

    2011-01-01

    Beyond Einstein’s Gravity is a graduate level introduction to extended theories of gravity and cosmology, including variational principles, the weak-field limit, gravitational waves, mathematical tools, exact solutions, as well as cosmological and astrophysical applications. The book provides a critical overview of the research in this area and unifies the existing literature using a consistent notation. Although the results apply in principle to all alternative gravities, a special emphasis is on scalar-tensor and f(R) theories. They were studied by theoretical physicists from early on, and in the 1980s they appeared in attempts to renormalize General Relativity and in models of the early universe. Recently, these theories have seen a new lease of life, in both their metric and metric-affine versions, as models of the present acceleration of the universe without introducing the mysterious and exotic dark energy. The dark matter problem can also be addressed in extended gravity. These applications are contr...

  11. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  12. Assessing stock and change in land cover and biodiversity in GB: an introduction to Countryside Survey 2000

    NARCIS (Netherlands)

    Firbank, L.G.; Barr, C.J.; Bunce, R.G.H.; Furse, M.T.; Haines-Young, R.; Hornung, M.; Howard, D.C.; Sheail, J.; Sier, A.; Smart, S.M.

    2003-01-01

    Countryside Survey 2000 (CS2000) is the latest in a series of surveys designed to measure and evaluate stock and change of land cover, landscape features, freshwaters, habitats and the vegetation of Great Britain. The ideas behind CS2000 developed during the 1960s and 1970s and culminated in the

  13. Adaptive topographic mass correction for satellite gravity and gravity gradient data

    Science.gov (United States)

    Holzrichter, Nils; Szwillus, Wolfgang; Götze, Hans-Jürgen

    2014-05-01

    Subsurface modelling with gravity data includes a reliable topographic mass correction. Since decades, this mandatory step is a standard procedure. However, originally methods were developed for local terrestrial surveys. Therefore, these methods often include defaults like a limited correction area of 167 km around an observation point, resampling topography depending on the distance to the station or disregard the curvature of the earth. New satellite gravity data (e.g. GOCE) can be used for large scale lithospheric modelling with gravity data. The investigation areas can include thousands of kilometres. In addition, measurements are located in the flight height of the satellite (e.g. ~250 km for GOCE). The standard definition of the correction area and the specific grid spacing around an observation point was not developed for stations located in these heights and areas of these dimensions. This asks for a revaluation of the defaults used for topographic correction. We developed an algorithm which resamples the topography based on an adaptive approach. Instead of resampling topography depending on the distance to the station, the grids will be resampled depending on its influence at the station. Therefore, the only value the user has to define is the desired accuracy of the topographic correction. It is not necessary to define the grid spacing and a limited correction area. Furthermore, the algorithm calculates the topographic mass response with a spherical shaped polyhedral body. We show examples for local and global gravity datasets and compare the results of the topographic mass correction to existing approaches. We provide suggestions how satellite gravity and gradient data should be corrected.

  14. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    Science.gov (United States)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  15. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Science.gov (United States)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  16. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Directory of Open Access Journals (Sweden)

    C. I. Meyer

    2018-01-01

    compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  17. The Effect of Pitch, Roll, and Yaw on Airborne Gravity Observations of the NOAA GRAV-D Project

    Science.gov (United States)

    Childers, V. A.; Kanney, J.; Youngman, M.

    2017-12-01

    Aircraft turbulence can wreak havoc on the gravity measurementby beam-style gravimeters. Prior studies have confirmed the correlation of poor quality airborne gravity data collection to amplified aircraft motion. Motion in the aircraft is the combined effect of the airframe design, the autopilot and its performance, and the weather/wind regime. NOAA's National Geodetic Survey has launched the Gravity for the Redefinition of the American Vertical Datum project (GRAV-D) to provide the foundation for a new national vertical datum by 2022. This project requires collecting airborne gravity data covering the entire country and its holdings. The motion of the aircraft employed in this project is of prime importance because we use a beam-style gravimeter mounted on a gyro-stabilized platform to align the sensor to a time-averaged local vertical. Aircraft turbulence will tend to drive the platform off-level, allowing horizontal forces to map into the vertical gravity measurement. Recently, the GRAV-D project has experimented with two new factors in airborne gravity data collection. The first aspect is the use of the Aurora optionally piloted Centaur aircraft. This aircraft can be flown either with or without a pilot, but the autopilot is specifically designed to be very accurate. Incorporated into the much smaller frame of this aircraft is a new gravimeter developed by Micro-g LaCoste, called the Turnkey Airborne Gravimeter System 7 (TAGS7). This smaller, lighter instrument also has a new design whereby the beam is held fixed in an electromagnetic force field. The result of this new configuration is notably improved data quality in wind conditions higher than can be tolerated by our current system. So, which caused the improvement, the aircraft motion or the new meter? This study will start to tease apart these two effects with recently collected survey data. Specifically, we will compare the motion profile of the Centaur aircraft with other aircraft in the GRAV-D portfolio

  18. Gravity Anomalies Over The Gongola Arm, Upper Benue Trough ...

    African Journals Online (AJOL)

    A regional gravity survey of the Gongola Arm of the Benue trough was carried out with the aim of determining structures of interest. The results of the gravity interpretation showed that the area of study is characterized by negative Bouguer anomalies that trend in the NE-SW direction and range in value from -75 to -15 mGal ...

  19. Hiding neutrino mass in modified gravity cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Verde, Licia [ICC, University of Barcelona (UB-IEEC), Marti i Franques 1, 08028, Barcelona (Spain); Pena-Garay, Carlos, E-mail: nicola.bellomo@icc.ub.edu, E-mail: emilio.bellini@physics.ox.ac.uk, E-mail: binhu@icc.ub.edu, E-mail: raul.jimenez@icc.ub.edu, E-mail: penya@ific.uv.es, E-mail: liciaverde@icc.ub.edu [Instituto de Fisica Corpuscular, CSIC-UVEG, P.O. 22085, Valencia, 46071 (Spain)

    2017-02-01

    Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.

  20. COLA with scale-dependent growth: applications to screened modified gravity models

    Energy Technology Data Exchange (ETDEWEB)

    Winther, Hans A.; Koyama, Kazuya; Wright, Bill S. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Manera, Marc [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Zhao, Gong-Bo, E-mail: hans.a.winther@gmail.com, E-mail: kazuya.koyama@port.ac.uk, E-mail: manera.work@gmail.com, E-mail: bill.wright@port.ac.uk, E-mail: gong-bo.Zhao@port.ac.uk [National Astronomy Observatories, Chinese Academy of Science, Beijing, 100012 (China)

    2017-08-01

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f ( R ) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.

  1. A gravity survey of parts of quadrangles 26E, 26F, 27E, and 27F, northeastern Arabian Shield, Kingdom of Saudi Arabia

    Science.gov (United States)

    Miller, C.H.; Showail, A.A.; Kane, M.F.; Khoja, I.A.; Al Ghandi, S. A.

    1989-01-01

    A gravity survey using nearly 800 stations was conducted over an area of about 13,400 km2 located in the northeast part of the Arabian Shield. The stations were set on spot elevations of relative high density and shown on high-quality l:50,000-scale topographic base maps.

  2. Lithologic boundaries from gravity and magnetic anomalies over ...

    Indian Academy of Sciences (India)

    Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringeof the DVs over an ...

  3. Lithosphere mantle density of the North China Craton based on gravity data

    Science.gov (United States)

    Xia, B.; Artemieva, I. M.; Thybo, H.

    2017-12-01

    Based on gravity, seismic and thermal data we constrained the lithospheric mantle density at in-situ and STP condition. The gravity effect of topography, sedimentary cover, Moho and Lithosphere-Asthenosphere Boundary variation were removed from free-air gravity anomaly model. The sedimentary covers with density range from 1.80 g/cm3 with soft sediments to 2.40 g/cm3 with sandstone and limestone sediments. The average crustal density with values of 2.70 - 2.78 g/cm3 which corresponds the thickness and density of the sedimentary cover. Based on the new thermal model, the surface heat flow in original the North China Craton including western block is > 60 mW/m2. Moho temperature ranges from 450 - 600 OC in the eastern block and in the western block is 550 - 650 OC. The thermal lithosphere is 100 -140 km thick where have the surface heat flow of 60 - 70 mW/m2. The gravity effect of surface topography, sedimentary cover, Moho depth are 0 to +150 mGal, - 20 to -120 mGal and +50 to -200 mGal, respectively. By driving the thermal lithosphere, the gravity effect of the lithosphere-asthenosphere boundary ranges from 20 mGal to +200 mGal which shows strong correction with the thickness of the lithosphere. The relationship between the gravity effect of the lithosphere-asthenosphere boundary and the lithosphere thickness also for the seismic lithosphere, and the value of gravity effect is 0 to +220 mGal. The lithospheric mantle residual gravity which caused by lithospheric density variation range from -200 to +50 mGal by using the thermal lithosphere and from -250 to +100 mGal by driving the seismic lithosphere. For thermal lithosphere, the lithospheric mantle density with values of 3.21- 3.26 g/cm3 at in-situ condition and 3.33 - 3.38 g/cm3 at STP condition. Using seismic lithosphere, density of lithosphere ranges from 3.20 - 3.26 g/cm3 at in-situ condition and 3.31 - 3.41 g/cm3 at STP condition. The subcontinental lithosphere of the North China Craton is highly heterogeneous

  4. Land-cover change research at the U.S. Geological Survey-assessing our nation's dynamic land surface

    Science.gov (United States)

    Wilson, Tamara S.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed an unprecedented, 27-year assessment of land-use and land-cover change for the conterminous United States. For the period 1973 to 2000, scientists generated estimates of change in major types of land use and land cover, such as development, mining, agriculture, forest, grasslands, and wetlands. To help provide the insight that our Nation will need to make land-use decisions in coming decades, the historical trends data is now being used by the USGS to help model potential future land use/land cover under different scenarios, including climate, environmental, economic, population, public policy, and technological change.

  5. Weak lensing probes of modified gravity

    International Nuclear Information System (INIS)

    Schmidt, Fabian

    2008-01-01

    We study the effect of modifications to general relativity on large-scale weak lensing observables. In particular, we consider three modified gravity scenarios: f(R) gravity, the Dvali-Gabadadze-Porrati model, and tensor-vector-scalar theory. Weak lensing is sensitive to the growth of structure and the relation between matter and gravitational potentials, both of which will in general be affected by modified gravity. Restricting ourselves to linear scales, we compare the predictions for galaxy-shear and shear-shear correlations of each modified gravity cosmology to those of an effective dark energy cosmology with the same expansion history. In this way, the effects of modified gravity on the growth of perturbations are separated from the expansion history. We also propose a test which isolates the matter-potential relation from the growth factor and matter power spectrum. For all three modified gravity models, the predictions for galaxy and shear correlations will be discernible from those of dark energy with very high significance in future weak lensing surveys. Furthermore, each model predicts a measurably distinct scale dependence and redshift evolution of galaxy and shear correlations, which can be traced back to the physical foundations of each model. We show that the signal-to-noise for detecting signatures of modified gravity is much higher for weak lensing observables as compared to the integrated Sachs-Wolfe effect, measured via the galaxy-cosmic microwave background cross-correlation.

  6. Connected magma plumbing system between Cerro Negro and El Hoyo Complex, Nicaragua revealed by gravity survey

    Science.gov (United States)

    MacQueen, Patricia; Zurek, Jeffrey; Williams-Jones, Glyn

    2016-11-01

    Cerro Negro, near León, Nicaragua is a young, relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan. Multiple explosive eruptions have deposited significant amounts of ash on León and the surrounding rural communities. While a number of studies investigate the geochemistry and stress regime of the volcano, subsurface structures have only been studied by diffuse soil gas surveys. These studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring volcanic features. To address these questions, we collected 119 gravity measurements around Cerro Negro volcano in an attempt to delineate deep structures at the volcano. The resulting complete Bouguer anomaly map revealed local positive gravity anomalies (wavelength 0.5 to 2 km, magnitude +4 mGal) and regional positive (10 km wavelength, magnitudes +10 and +8 mGal) and negative (12 and 6 km wavelength, magnitudes -18 and -13 mGal) Bouguer anomalies. Further analysis of these gravity data through inversion has revealed both local and regional density anomalies that we interpret as intrusive complexes at Cerro Negro and in the Nicaraguan Volcanic Arc. The local density anomalies at Cerro Negro have a density of 2700 kg m-3 (basalt) and are located between -250 and -2000 m above sea level. The distribution of recovered density anomalies suggests that eruptions at Cerro Negro may be tapping an interconnected magma plumbing system beneath El Hoyo, Cerro La Mula, and Cerro Negro, and more than seven other proximal volcanic features, implying that Cerro Negro should be considered the newest cone of a Cerro Negro-El Hoyo volcanic complex.

  7. Accuracy evaluation of pendulum gravity measurements of Robert von Sterneck

    Directory of Open Access Journals (Sweden)

    Alena Pešková

    2015-06-01

    Full Text Available The accuracy of first pendulum gravity measurements in the Czech territory was determined using both original surveying notebooks of Robert Daublebsky von Sterneck and modern technologies. Since more accurate methods are used for gravity measurements nowadays, our work is mostly important from the historical point of view. In previous  works, the accuracy of Sterneck’s gravity measurements was determined using only a small dataset. Here we process all Sterneck’s measurements from the Czech territory (a dataset ten times larger than in the previous works, and we complexly assess the accuracy of these measurements. Locations of the measurements were found with the help of original notebooks. Gravity in the site was interpolated using actual gravity models. Finally, the accuracy of Sterneck’s measurements was evaluated as the difference between the measured and interpolated gravity.

  8. Recent developments in high-resolution global altimetric gravity field modeling

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Berry, P. A .M.

    2010-01-01

    older gravity fields show accuracy improvement of the order of 20-40% due to a combination of retracking, enhanced processing, and the use of the new EGM2008 geoid model. In coastal and polar regions, accuracy improved in many places by 40-50% (or more) compared with older global marine gravity fields.......In recent years, dedicated effort has been made to improve high-resolution global marine gravity fields. One new global field is the Danish National Space Center (DNSC) 1-minute grid called DNSC08GRA, released in 2008. DNSC08GRA was derived from double-retracked satellite altimetry, mainly from...... the ERS-1 geodetic mission data, augmented with new retracked GEOSAT data which have significantly enhanced the range and hence the gravity field accuracy. DNSC08GRA is the first high-resolution global gravity field to cover the entire Arctic Ocean all the way to the North Pole. Comparisons with other...

  9. Cosmological acceleration. Dark energy or modified gravity?

    International Nuclear Information System (INIS)

    Bludman, S.

    2006-05-01

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  10. Cosmological acceleration. Dark energy or modified gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Bludman, S

    2006-05-15

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  11. Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005

    Science.gov (United States)

    Gutman, G.; Byrnes, Raymond A.; Masek, J.; Covington, S.; Justice, C.; Franks, S.; Headley, Rachel

    2008-01-01

    Land cover is a critical component of the Earth system, infl uencing land-atmosphere interactions, greenhouse gas fl uxes, ecosystem health, and availability of food, fi ber, and energy for human populations. The recent Integrated Global Observations of Land (IGOL) report calls for the generation of maps documenting global land cover at resolutions between 10m and 30m at least every fi ve years (Townshend et al., in press). Moreover, despite 35 years of Landsat observations, there has not been a unifi ed global analysis of land-cover trends nor has there been a global assessment of land-cover change at Landsat-like resolution. Since the 1990s, the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) have supported development of data sets based on global Landsat observations (Tucker et al., 2004). These land survey data sets, usually referred to as GeoCover ™, provide global, orthorectifi ed, typically cloud-free Landsat imagery centered on the years 1975, 1990, and 2000, with a preference for leaf-on conditions. Collectively, these data sets provided a consistent set of observations to assess land-cover changes at a decadal scale. These data are freely available via the Internet from the USGS Center for Earth Resources Observation and Science (EROS) (see http://earthexplorer.usgs.gov or http://glovis.usgs.gov). This has resulted in unprecedented downloads of data, which are widely used in scientifi c studies of land-cover change (e.g., Boone et al., 2007; Harris et al., 2005; Hilbert, 2006; Huang et al. 2007; Jantz et al., 2005, Kim et al., 2007; Leimgruber, 2005; Masek et al., 2006). NASA and USGS are continuing to support land-cover change research through the development of GLS2005 - an additional global Landsat assessment circa 20051 . Going beyond the earlier initiatives, this data set will establish a baseline for monitoring changes on a 5-year interval and will pave the way toward continuous global land-cover

  12. Qualitative Interpretation Of Aerogravity And Aeromagnetic Survey Data Over The South Western Part Of The Volta River Basin Of Ghana

    OpenAIRE

    George Hinson; Aboagye Menyeh; David Dotse Wemegah

    2015-01-01

    Abstract The study area South western part of Volta River Basin of Ghana covering an area of 8570 km2 which is one-eleventh the area of the Volta River basin of Ghana has been subjected to numerous academic research works but geophysical survey works because of virtual perceptive reasons. It is now believed to overly mineral-rich geological structures hence the use of magnetic and gravity survey methods to bring out these mineral-rich geological structures.Geographically it study area is loca...

  13. Giersch International Symposion 2016 : Week 1 : Experimental Search for Quantum Gravity

    CERN Document Server

    Experimental Search for Quantum Gravity

    2018-01-01

    This book summarizes recent developments in the research area of quantum gravity phenomenology. A series of short and nontechnical essays lays out the prospects of various experimental possibilities and their current status. Finding observational evidence for the quantization of space-time was long thought impossible. In the last decade however, new experimental design and technological advances have changed the research landscape and opened new perspectives on quantum gravity. Formerly dominated by purely theoretical constructions, quantum gravity now has a lively phenomenology to offer. From high precision measurements using macroscopic quantum oscillators to new analysis methods of the cosmic microwave background, no stone is being left unturned in the experimental search for quantum gravity. This book sheds new light on the connection of astroparticle physics with the quantum gravity problem. Gravitational waves and their detection are covered. It illustrates findings from the interconnection between gene...

  14. Gravity wave influence on NLC: experimental results from ALOMAR, 69° N

    Directory of Open Access Journals (Sweden)

    H. Wilms

    2013-12-01

    Full Text Available The influence of gravity waves on noctilucent clouds (NLC at ALOMAR (69° N is analysed by relating gravity wave activity to NLC occurrence from common-volume measurements. Gravity wave kinetic energies are derived from MF-radar wind data and filtered into different period ranges by wavelet transformation. From the dataset covering the years 1999–2011, a direct correlation between gravity wave kinetic energy and NLC occurrence is not found, i.e., NLC appear independently of the simultaneously measured gravity wave kinetic energy. In addition, gravity wave activity is divided into weak and strong activity as compared to a 13 yr mean. The NLC occurrence rates during strong and weak activity are calculated separately for a given wave period and compared to each other. Again, for the full dataset no dependence of NLC occurrence on relative gravity wave activity is found. However, concentrating on 12 h of NLC detections during 2008, we do find an NLC-amplification with strong long-period gravity wave occurrence. Our analysis hence confirms previous findings that in general NLC at ALOMAR are not predominantly driven by gravity waves while exceptions to this rule are at least possible.

  15. Gravity in minesmdashAn investigation of Newton's law

    International Nuclear Information System (INIS)

    Holding, S.C.; Stacey, F.D.; Tuck, G.J.

    1986-01-01

    The evidence that the value of the Newtonian gravitational constant G inferred from measurements of gravity g in mines and boreholes is of order 1% higher than the laboratory value is hardened with new and improved data from two mines in northwest Queensland. Surface-gravity surveys and more than 14 000 bore-core density values have been used to establish density structures for the mines, permitting full three-dimensional inversion to obtain G. Further constraint is imposed by requiring that the density structure give the same value of G for several vertical profiles of g, separated by hundreds of meters. The only residual doubt arises from the possibility of bias by an anomalous regional gravity gradient. Neither measurements of gravity gradient above ground level (in tall chimneys) nor surface surveys are yet adequate to remove this doubt, but the coincidence of conclusions derived from mine data obtained in different parts of the world makes such an anomaly appear an improbable explanation. If Newton's law is modified by adding a Yukawa term to the gravitational potential of a point mass m at distance r, V = -(G/sub infinity/m/r)(1+αe/sup -r/lambda/), then the mine data provide a mutual constraint on the values of α and lambda, although they cannot be determined independently. Our results give αroughly-equal-0.0075 if lambda or =10 4 m, with intermediate values of α between these ranges, but values greater than α = -0.010, lambda = 800 m appear to be disallowed by a comparison of satellite and land-surface estimates of gravity

  16. Mercury soil surveys: a good reconnaissance tool

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01

    Three examples of mercury soil surveys are discussed, along with the gravity data. An excellent correlation was found in southern Arizona between buried structures revealed by gravity and mercury soil surveys. The advantages of the latter over the former as a reconnaissance tool are listed. (MHR)

  17. Gauge and Gravity Amplitudes from Trees to Loops

    DEFF Research Database (Denmark)

    Huang, Rijun

    This thesis describes two subjects that I mainly work on during my PhD study. They are both about scattering amplitudes, covering gravity and gauge theories, tree and loop level, with or without supersymmetry. The rst subject is Kawai-Lewellen-Tye(KLT) relation in field theory, which mysteriously...

  18. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    Science.gov (United States)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity

  19. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  20. Weakening gravity on redshift-survey scales with kinetic matter mixing

    Energy Technology Data Exchange (ETDEWEB)

    D' Amico, Guido [Theoretical Physics Department, CERN, Geneva (Switzerland); Huang, Zhiqi [School of Physics and Astronomy, Sun Yat-Sen University, 135 Xingang Xi Road, 510275, Guangzhou (China); Mancarella, Michele; Vernizzi, Filippo [CEA, IPhT, CNRS, URA-2306, 91191 Gif-sur-Yvette cédex (France)

    2017-02-01

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field as well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ{sub 8} with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.

  1. Principal facts for about 16,000 gravity stations in the Nevada Test Site and vicinity

    International Nuclear Information System (INIS)

    Harris, R.N.; Ponce, D.A.; Oliver, H.W.; Healey, D.L.

    1989-01-01

    The Nevada Test Site (NTS) and vicinity includes portions of the Goldfield, Caliente, Death Valley, and Las Vegas. This report documents and consolidates previously published and recently compiled gravity data to establish a gravity data base of about 16,000 stations for the NTS and vicinity. While compiling data sets, redundant stations and stations having doubtful locations or gravity values were excluded. Details of compiling the gravity data sets are discussed in later sections. Where feasible, an accuracy code has been assigned to each station so that the accuracy or reliability of each station can be evaluated. This data base was used in preparing complete Bouguer and isostatic gravity maps of the NTS and vicinity. Since publication of the complete Bouguer gravity map, additional data were incorporated into the isostatic gravity map. Gravity data were compiled from five sources: 14,183 stations from the US Geological Survey (USGS), 326 stations from Exploration Data Consultants (EDCON) of Denver, Colorado, 906 stations from the Los Alamos National Laboratory (LANL), 212 stations from the University of Texas at Dallas (UTD), and 48 stations from the Defense Mapping Agency (DMA). This investigation is an effort to study several areas for potential storage of high-level radioactive waste. Gravity stations established under YMP are shown. The objective of this gravity survey was to explore for the presence of plutons. This volume contains only compiled data

  2. Principal facts for about 16,000 gravity stations in the Nevada Test Site and vicinity

    International Nuclear Information System (INIS)

    Harris, R.N.; Ponce, D.A.; Oliver, H.W.; Healey, D.L.

    1989-01-01

    The Nevada Test Site (NTS) and vicinity includes portions of the Goldfield, Caliente, Death Valley, and Las Vegas. This report documents and consolidates previously published and recently compiled gravity data to establish a gravity data base of about 16,000 stations for the NTS and vicinity. While compiling data sets, redundant stations and stations having doubtful locations or gravity values were excluded. Details of compiling the gravity data sets are discussed in later sections. Where feasible, an accuracy code has been assigned to each station so that the accuracy or reliability of each station can be evaluated. This data base was used in preparing complete Bouguer and isostatic gravity maps of the NTS and vicinity. Since publication of the complete Bouguer gravity map, additional data were incorporated into the isostatic gravity map. Gravity data were compiled from five sources: 14,183 stations from the US Geological Survey (USGS), 326 stations from Exploration Data Consultants (EDCON) of Denver, Colorado, 906 stations from the Los Alamos National Laboratory (LANL), 212 stations from the University of Texas at Dallas (UTD), and 48 stations from the Defense Mapping Agency (DMA). This investigation is an effort to study several areas for potential storage of high-level radioactive waste. Gravity stations established under YMP are shown. The objective of this gravity survey was to explore for the presence of plutons. 33 refs., 24 figs., 9 tabs

  3. Gravity measurement, processing and evaluation: Test cases de Peel and South Limburg

    Science.gov (United States)

    Nohlmans, Ron

    1990-05-01

    A general overview of the process of the measurement and the adjustment of a gravity network and the computation of some output parameters of gravimetry, gravity values, gravity anomalies and mean block anomalies, is given. An overview of developments in gravimetry, globally and in the Netherlands, until now is given. The basic theory of relative gravity measurements is studied and a description of the most commonly used instrument, the LaCoste and Romberg gravimeter is given. The surveys done in the scope of this study are descibed. A more detailed impression of the adjustment procedure and the results of the adjustment are given. A closer look is taken at the more geophysical side of gravimetry: gravity reduction, the computation of anomalies and the correlation with elevation. The interpolation of gravity and the covariance of gravity anomalies are addressed.

  4. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  5. A Gravity data along LARSE (Los Angeles Regional Seismic Experiment) Line II, Southern California

    Science.gov (United States)

    Wooley, R.J.; Langenheim, V.E.

    2001-01-01

    The U.S. Geological Survey conducted a detailed gravity study along part of the Los Angeles Regional Seismic Experiment (LARSE) transect across the San Fernando Basin and Transverse Ranges to help characterize the structure underlying this area. 249 gravity measurements were collected along the transect and to augment regional coverage near the profile. An isostatic gravity low of 50-60 mGal reflects the San Fernando-East Ventura basin. Another prominent isostatic gravity with an amplitude of 30 mGal marks the Antelope Valley basin. Gravity highs occur over the Santa Monica Mountains and the Transverse Ranges. The highest isostatic gravity values coincide with outcrops of Pelona schist.

  6. Response of Gravity, Magnetic, and Geoelectrical Resistivity Methods on Ngeni Southern Blitar Mineralization Zone

    Science.gov (United States)

    Sunaryo

    2018-03-01

    The research with entitle response of gravity, magnetic, and geoelectrical resistivity methods on Ngeni Southern Blitar mineralization zone has been done. This study aims to find the response of several geophysical methods of gravity, magnetic, and geoelectrical resistivity in an integrated manner. Gravity data acquisition was acquired 224 data which covers the whole region of Blitar district by using Gravity Meter La Coste & Romberg Model “G”, and magnetic data acquisition were acquired 195 data which covers the southern Blitar district only by using Proton Precession Magnetometer G-856. Meanwhile geoelectrical resistivity data only done in Ngeni village which is the location of phyropilite mining with the composition content of Fe, Si, Ca, S, Cu, and Mn by using ABEM Terrameter SAS 300C. Gravity data processing was performed to obtain the Bouguer anomaly value, which included unit conversion, tidal correction, drift correction, correction of tie point, base station correction, free air correction, and Bouguer correction. Magnetic data processing has been done by some corrections i.e daily, drift, and IGRF(International Geomagnetic Refference Field) to obtain the total magnetic anomaly. From gravity data processing has been obtained the simple Bouguer anomaly value in range from -10mGal until 115mGal. From this data processing has been obtained the total magnetic anomaly value in range from -650nT until 800nT. Meanwhile from geoelectrical resistivity 3.03Ωm until 11249.91 Ωm. There is a correlation between gravity anomaly, magnetic anomaly, and geoelectrical resistivity anomaly that are associated with deep anomaly, middle anomaly, and shallow anomaly.

  7. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  8. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  9. Geological and Structural Inferences from Satellite Images in Parts of Deccan basalt covered regions of Central India

    Science.gov (United States)

    Harinarayana, Tirumalachetty; Borra, Veeraiah; Basava, Sharana; Suryabali, Singh

    In search of new areas for hydrocarbon exploration, integrated ground geophysical studies have been taken up in Central India with seismic, magnetotellurics, deep resistivity and gravity surveys. Since the region is covered with basalt and well known for its intensive tectonic activity, remote sensing method seems to have value addition to the subsurface information derived from geophysical, geological and tectonic studies. The Narmada and Tapti rift zone and Deccan basalt covered regions of Central India, stems from its complexity. A Resourcesat-1 (IRS- P6) LISS-III satellite images covering an area of approximately 250,000 sq. km corresponding to the region in and around Baroda(Vadodara), Indore, Nandurbar, Khandwa, Akot, Nasik, Aurangabad, Pune and Latur in Central India was digitally processed and interpreted to present a schematic map of the geology and elucidate the structural fabric of the region. From our study, the disposition of the intensive dyke system, various faults and other lineaments in the region are delineated. Ground truth studies have shown good correlation with lineaments/dykes indicated in remote sensing studies and have revealed distinct ENE-WSW trending lineaments, dykes which are more prominent near the Narmada and Tapti river course. Evolution of these features with Deccan volcanism is discussed with available geochronological data set. These findings are significant in relation to structural data and form a part of the geo-structural database for ground surveys.

  10. Gravity and isostatic anomaly maps of Greece produced

    Science.gov (United States)

    Lagios, E.; Chailas, S.; Hipkin, R. G.

    A gravity anomaly map of Greece was first compiled in the early 1970s [Makris and Stavrou, 1984] from all available gravity data collected by different Hellenic institutions. However, to compose this map the data had to be smoothed to the point that many of the smaller-wavelength gravity anomalies were lost. New work begun in 1987 has resulted in the publication of an updated map [Lagios et al., 1994] and an isostatic anomaly map derived from it.The gravity data cover the area between east longitudes 19° and 27° and north latitudes 32° and 42°, organized in files of 100-km squares and grouped in 10-km squares using UTM zone 34 coordinates. Most of the data on land come from the gravity observations of Makris and Stavrou [1984] with additional data from the Institute of Geology and Mining Exploration, the Public Oil Corporation of Greece, and Athens University. These data were checked using techniques similar to those used in compiling the gravity anomaly map of the United States, but the horizontal gradient was used as a check rather than the gravity difference. Marine data were digitized from the maps of Morelli et al. [1975a, 1975b]. All gravity anomaly values are referred to the IGSN-71 system, reduced with the standard Bouger density of 2.67 Mg/m3. We estimate the errors of the anomalies in the continental part of Greece to be ±0.9 mGal; this is expected to be smaller over fairly flat regions. For stations whose height has been determined by leveling, the error is only ±0.3 mGal. For the marine areas, the errors are about ±5 mGal [Morelli, 1990].

  11. Integrating Apparent Conductance in Resistivity Sounding to Constrain 2D Gravity Modeling for Subsurface Structure Associated with Uranium Mineralization across South Purulia Shear Zone, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Arkoprovo Biswas

    2014-01-01

    Full Text Available South Purulia Shear Zone (SPSZ is an important area for the prospect of uranium mineralization and no detailed geophysical investigations have been carried out in this region. To delineate the subsurface structure in the present area, vertical electrical soundings using Schlumberger array and gravity survey were carried out along a profile perpendicular to the SPSZ. Apparent conductance in the subsurface revealed a possible connection from SPSZ to Raghunathpur. The gravity model reveals the presence of a northerly dipping low density zone (most likely the shear zone extending up to Raghunathpur under a thin cover of granitic schist of Chotanagpur Granite Gneissic Complex (CGGC. The gravity model also depicts the depth of the zone of density low within this shear zone at ~400 m near Raghunathpur village and this zone truncates with a steep slope. Integration of resistivity and gravity study revealed two possible contact zones within this low density zone in the subsurface at depth of 40 m and 200 m. Our study reveals a good correlation with previous studies in Raghunathpur area characterized by medium to high hydro-uranium anomaly. Thus the conducting zone coinciding with the low gravity anomaly is inferred to be a possible uranium mineralized zone.

  12. Thermal structure of the crust in Inner East Anatolia from aeromagnetic and gravity data

    Science.gov (United States)

    Bektaş, Özcan

    2013-08-01

    Inner East Anatolia has many hot spring outcomes. In this study, the relationship between the thermal structure and hot spring outcomes is investigated. The residual aeromagnetic and gravity anomalies of the Inner East Anatolia, surveyed by the Mineral Research and Exploration (MTA) of Turkey, show complexities. The magnetic data were analyzed to produce Curie point depth estimates. The depth of magnetic dipole was calculated by azimuthally averaged power spectrum method for the whole area. The Curie point depth (CPD) map covering the Inner East Anatolia has been produced. The Curie point depths of the region between Sivas and Malatya vary from 16.5 to 18.7 km. Values of heat flow were calculated according to continental geotherm from the model. The heat flow values vary between 89 and 99 mW m-2. Heat flow values are incorporated with surface heat flow values. Gravity anomalies were modeled by means of a three-dimensional method. The deepest part of the basin (12-14 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Two-dimensional cross sections produced from the basin depths, Curie values and MOHO depths. Based on the analysis of magnetic, gravity anomalies, thermal structures and geology, it seems likely that the hot springs are not related to rising asthenosphere, in the regions of shallow CPDs (∼16.5 km), and mostly hot springs are related to faulting systems in Inner East Anatolia.

  13. MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.

    Science.gov (United States)

    1981-01-24

    Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center...Desert Valley, Utah ......... 2 2 Topographic Setting - Sevier Desert Valley, Utah . 3 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly...gravity stations were distributed throughout the valley at an approxi- mate interval of 1.4 miles (2.3 km). Drawing 1 is a Complete Bouguer Anomaly

  14. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    Science.gov (United States)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  15. Benthic Cover

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic cover (habitat) maps are derived from aerial imagery, underwater photos, acoustic surveys, and data gathered from sediment samples. Shallow to moderate-depth...

  16. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    International Nuclear Information System (INIS)

    Liu, Chao; Wu, Yue; Deng, Li-Cai; Wang, Liang; Wang, Wei; Li, Guang-Wei; Fang, Min; Fu, Jian-Ning; Hou, Yong-Hui; Zhang, Yong

    2015-01-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surface gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data

  17. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Wu, Yue; Deng, Li-Cai; Wang, Liang; Wang, Wei; Li, Guang-Wei [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20 A Datun Road, Beijing 100012 (China); Fang, Min [Departamento de Física Teórica, Facultad de Ciencias, Universidad Autonóma de Madrid, E-28049 Cantoblanco, Madrid (Spain); Fu, Jian-Ning [Department of Astronomy, Beijing Normal University, 19 Avenue Xinjiekouwai, Beijing 100875 (China); Hou, Yong-Hui; Zhang, Yong, E-mail: liuchao@nao.cas.cn [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China)

    2015-07-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surface gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data.

  18. Mass Tracking with a MEMS-based Gravity Sensor

    Science.gov (United States)

    Pike, W. T.; Mukherjee, A.; Warren, T.; Charalambous, C.; Calcutt, S. B.; Standley, I.

    2017-12-01

    We achieve the first demonstration of the dynamic location of a moving mass using a MEMS sensor to detect gravity. The sensor is based on a microseismometer developed for planetary geophysics. In an updated version of the original Cavendish experiment the noise floor of the sensor, at 0.25 µgal/rtHz, allows the determination of the dynamic gravitational field from the motion of the mass of an oscillating pendulum. Using the determined noise floor we show that this performance should be sufficient for practical subsurface gravity surveying, in particular detection of 50-cm diameter pipes up to 10 m below the surface. Beyond this specific application, this sensor with a mass of less than 250 g per axis represents a new technology that opens up the possibility of drone deloyments for gravity mapping.

  19. Using an Optionally Piloted Aircraft for Airborne Gravity Observations with the NOAA GRAV-D Project

    Science.gov (United States)

    Youngman, M.; Johnson, J. A.; van Westrum, D.; Damiani, T.

    2017-12-01

    The U.S. National Geodetic Survey's (NGS) Gravity for the Redefintion of the American Vertical Datum (GRAV-D) project is collecting airborne gravity data to support a 1 cm geoid. Started in 2008, this project will collect airborne gravity data over the entire U.S. and territories by 2022. As of June 30, 2017, the project was almost 62% complete. With recent technological developments, NGS has been exploring using unmanned aircraft for airborne gravity measurements. This presentation will focus on results from two surveys over the U.S. Appalachian and Rocky Mountains using the Aurora Centaur Optionally Piloted Aircraft and the Micro-g Lacoste Turnkey Airborne Gravimeter System 7 (TAGS7). Collecting high quality data as well as dealing with remote locations has been a challenge for the GRAV-D project and the field of airborne gravity in general. Unmanned aircraft could potentially improve data quality, handle hard to reach locations, and reduce pilot fatigue. The optionally piloted Centaur aircraft is an attractive option because it is not restricted in U.S. airspace and delivers high quality gravity data. Specifically, the Centaur meets U.S. Federal Aviation Administration regulations for Unmanned Aircraft Systems (UAS) by using a safety pilot on board to maintain line of sight and the ability to take control in the event of an emergency. Even though this is a sizeable UAS, most traditional gravimeters are too large and heavy for the platform. With a smaller and lighter design, the TAGS7 was used for its ability to conform to the aircraft's size restrictions, with the added benefit of upgraded performance capabilities. Two surveys were performed with this aircraft and gravimeter, one in April and one in August to September of 2017. Initial results indicate that the high-gain, fast response of the Centaur autopilot (optimized for flights without passengers), coupled with the full-force feedback sensor of the TAGS7, provides superior performance in all conditions, and

  20. Bouguer gravity regional and residual separation application to geology and environment

    CERN Document Server

    Mallick, K; Sharma, KK

    2012-01-01

    Resolving regional and residual components arising out of deeper and shallower sources in observed Bouguer gravity anomalies is an old problem. The technique covered here is an attempt to sort out the difficulties that performs better than existing methods.

  1. Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics

    Science.gov (United States)

    Yadav, Pramod Kumar; Adhikari, P. K.; Srivastava, Shalivahan; Maurya, Ved P.; Tripathi, Anurag; Singh, Shailendra; Singh, Roshan K.; Bage, Ashish K.

    2018-03-01

    Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringe of the DVs over an area of ˜ 0.70 km2 along 13 parallel lines at 50 m spacing. The data was acquired at ˜ 25 m spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic intensity show the same trend as that of Bouguer gravity anomaly and total magnetic intensity anomaly map indicating towards shallow sources. The magnetic map in general follows the same pattern as that of gravity anomaly maps. The map shows coincident high gravity and magnetic anomalies. These anomalies together with resistivity signatures confirm that the northern fringe of DVs hosts volcanogenic massive sulphide settings. The Euler depth solution delineated the lateral boundaries and nature of the source. It seems that the source is of spherical nature lying within a depth range of 25-40 m. The obtained lithological (vertical) units from RAPS are between Lower DVs, Upper DVs and Singhbhum Group Metapelites at depths of ˜ 15, ˜ 25 and ˜ 40 m, respectively. The metallogeny is associated with the Upper DVs and the corresponding delineated lithological (vertical) unit is indicative of the top of the ore body. Good agreement is observed with the geological succession from the drilling data and resistivity data. The findings suggest that the northern fringe of DVs could be a preferred target for drilling.

  2. Even-dimensional topological gravity from Chern-Simons gravity

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.

    2009-01-01

    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  3. Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases

    Directory of Open Access Journals (Sweden)

    Jean-Marie Aerts

    2012-11-01

    Full Text Available The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts, and urban areas, thus humans. This study implements the concept behind gravity models in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme borreliosis, based on current knowledge on the transmission mechanism of these diseases. Two sources of information on vegetated systems were tested: the CORINE land cover map and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of occupation-related exposure were found significant predictors of disease risk. Both the land cover map and the space-borne dataset were suited yet not equivalent input sources to locate and measure vegetated areas of importance for disease spread. The overall results point at the compatibility of the gravity model concept and the spatial spread of vector-borne diseases.

  4. Design of Gravity Survey Network using Fractal Theory to Delineate Hydrocarbon bearing Jabera Structure, Vindhyan Basin, Central India

    Science.gov (United States)

    Dimri, V. P.; Srivastava, R. P.; Vedanti, N.

    2006-12-01

    A gravity survey network was designed using fractal dimension analysis to delineate a domal structure (Jabera dome) reported in southeastern part of the Vindhyan basin, Central India. This area is also regarded as a `high risk-high reward' frontier area for hydrocarbon exploration in previous studies, hence our aim was to delineate shape and lateral extent of the reported domal structure. Based on the synthetic grid, designed using the concept of fractal dimension, gravity data is collected in Jabera-Damoh area of Vindhyan basin. The collected data is random, but the data density is significant, hence the data points are sorted in a way so that they are close to the synthetic grid points of given grid interval. After sorting the data, again the fractal dimension analysis using box counting method has been carried out to avoid the aliasing in the data due to interpolation and also to know the optimum number of data points sufficient for desired quality of Bouguer anomaly maps. Optimization of number of stations takes care of time and cost involved in the survey and the detectibility limit ensures that the data collected is good enough to resolve the target body under study. The fractal dimension analysis gives clue to select these parameters. It showed that it is always preferable to have well distributed station locations instead of clustering the observation points at some geologically known feature because clustering of data points below required station spacing is not going to add much information where as equally distributed observation points add the information. The study area lies in a difficult terrain of Vindhayn basin, hence according to the accessibility, fractal dimension analysis of the real data sorted approximately at regular grid intervals on 2,3, and 4 km has been done and using the concept of optimum gridding interval Bouguer anomaly maps of the region are prepared. The preliminary depth values of the major interfaces in the area were obtained

  5. Moho Density Contrast in Central Eurasia from GOCE Gravity Gradients

    Directory of Open Access Journals (Sweden)

    Mehdi Eshagh

    2016-05-01

    Full Text Available Seismic data are primarily used in studies of the Earth’s inner structure. Since large parts of the world are not yet sufficiently covered by seismic surveys, products from the Earth’s satellite observation systems have more often been used for this purpose in recent years. In this study we use the gravity-gradient data derived from the Gravity field and steady-state Ocean Circulation Explorer (GOCE, the elevation data from the Shuttle Radar Topography Mission (SRTM and other global datasets to determine the Moho density contrast at the study area which comprises most of the Eurasian plate (including parts of surrounding continental and oceanic tectonic plates. A regional Moho recovery is realized by solving the Vening Meinesz-Moritz’s (VMM inverse problem of isostasy and a seismic crustal model is applied to constrain the gravimetric solution. Our results reveal that the Moho density contrast reaches minima along the mid-oceanic rift zones and maxima under the continental crust. This spatial pattern closely agrees with that seen in the CRUST1.0 seismic crustal model as well as in the KTH1.0 gravimetric-seismic Moho model. However, these results differ considerably from some previously published gravimetric studies. In particular, we demonstrate that there is no significant spatial correlation between the Moho density contrast and Moho deepening under major orogens of Himalaya and Tibet. In fact, the Moho density contrast under most of the continental crustal structure is typically much more uniform.

  6. Delineating the Rattlesnake Springs, New Mexico Watershed Using Precision Gravity Techniques

    Science.gov (United States)

    Doser, D. I.; Boykov, N. D.; Baker, M. R.; Kaip, G. M.; Langford, R. P.

    2009-12-01

    Rattlesnake Springs serves as the sole domestic water source for Carlsbad Caverns National Park. The recent development of oil and gas leases and agricultural lands surrounding the springs has led to concern about contamination of the fracture controlled aquifer system. We have conducted a series of precision gravity surveys (station spacing 200 to 300 m in a 4 x 4 km area), combined with other geophysical studies and geologic mapping, to delineate possible fracture systems in the gypsum and carbonate bedrock that feed the spring system. Our combined results suggest several pathways for water to enter the springs. A series of WNW-ESE striking features are apparent in our gravity data that appear to align with relict spring valleys we have mapped to the west of the springs. A self potential survey indicates that water is entering the springs at a shallow level from the northwest direction. However, gravity data also indicate a north-south trending fracture system could be providing a pathway for water to enter from the south. This is consistent with drawdown tests conducted in the 1950’s and 1960’s on irrigation wells located to the south of the springs. The north-south fracture system appears related to a basin bounding fault system observed in the regional gravity data.

  7. Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents

    Science.gov (United States)

    Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg

    2015-09-01

    In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.

  8. Lithologic boundaries from gravity and magnetic anomalies over ...

    Indian Academy of Sciences (India)

    67

    The data was acquired at ~25 m spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic. Manuscript. Click here to view linked References.

  9. Determining the 3D Subsurface Density Structure of Taurus Littrow Valley Using Apollo 17 Gravity Data

    Science.gov (United States)

    Urbancic, N.; Ghent, R.; Stanley, S,; Johnson, C. L.; Carroll, K. A.; Hatch, D.; Williamson, M. C.; Garry, W. B.; Talwani, M.

    2016-01-01

    Surface gravity surveys can detect subsurface density variations that can reveal subsurface geologic features. In 1972, the Apollo 17 (A17) mission conducted the Traverse Gravimeter Experiment (TGE) using a gravimeter that measured the local gravity field near Taurus Littrow Valley (TLV), located on the south-eastern rim of the Serenitatis basin. TLV is hypothesized to be a basaltfilled radial graben resulting from the impact that formed Mare Serenitatis. It is bounded by both the North and South Massifs (NM and SM) as well as other smaller mountains to the East that are thought to be mainly composed of brecciated highland material. The TGE is the first and only successful gravity survey on the surface of the Moon. Other more recent satellite surveys, such as NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission (2011- 2012), have produced the best global gravity field to date (approx. 13km resolution). However, these satellite surveys are not sensitive enough to detect fine-scale (<1km) lunar subsurface structures. This underscores the value of the data collected at the surface by A17. In the original analysis of the data a 2D forward-modelling approach was used to derive a thickness of the subsurface basalt layer of 1.0 km by assuming a simple flat-faced rectangular geometry and using densities derived from Apollo lunar samples. We are investigating whether modern 3D modelling techniques in combination with high-resolution topographical and image datasets can reveal additional fine-scale subsurface structure in TLV.

  10. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  11. Polyhedral shape model for terrain correction of gravity and gravity gradient data based on an adaptive mesh

    Science.gov (United States)

    Guo, Zhikui; Chen, Chao; Tao, Chunhui

    2016-04-01

    Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model

  12. Atom interferometric gravity gradiometer: Disturbance compensation and mobile gradiometry

    Science.gov (United States)

    Mahadeswaraswamy, Chetan

    First ever mobile gravity gradient measurement based on Atom Interferometric sensors has been demonstrated. Mobile gravity gradiometers play a significant role in high accuracy inertial navigation systems in order to distinguish inertial acceleration and acceleration due to gravity. The gravity gradiometer consists of two atom interferometric accelerometers. In each of the accelerometer an ensemble of laser cooled Cesium atoms is dropped and using counter propagating Raman pulses (pi/2-pi-pi/2) the ensemble is split into two states for carrying out atom interferometry. The interferometer phase is proportional to the specific force experienced by the atoms which is a combination of inertial acceleration and acceleration due to gravity. The difference in phase between the two atom interferometric sensors is proportional to gravity gradient if the platform does not undergo any rotational motion. However, any rotational motion of the platform induces spurious gravity gradient measurements. This apparent gravity gradient due to platform rotation is considerably different for an atom interferometric sensor compared to a conventional force rebalance type sensor. The atoms are in free fall and are not influenced by the motion of the case except at the instants of Raman pulses. A model for determining apparent gravity gradient due to rotation of platform was developed and experimentally verified for different frequencies. This transfer function measurement also lead to the development of a new technique for aligning the Raman laser beams with the atom clusters to within 20 mu rad. This gravity gradiometer is situated in a truck for the purpose of undertaking mobile surveys. A disturbance compensation system was designed and built in order to compensate for the rotational disturbances experienced on the floor of a truck. An electric drive system was also designed specifically to be able to move the truck in a uniform motion at very low speeds of about 1cm/s. A 250 x10-9 s-2

  13. Detailed gravity survey to help seismic microzonation: Mapping the thickness of unconsolidated deposits in Ottawa, Canada

    Science.gov (United States)

    Lamontagne, M.; Thomas, M.; Silliker, J.; Jobin, D.

    2011-11-01

    In this study, measurements of gravity were made to map and model the thickness of Quaternary deposits (sand and clay) overlying Ordovician limestones in a suburb of Ottawa (Orléans, Ontario). Because ground motion amplification is partly related to the thickness of unconsolidated deposits, this work helps refine the assessment of the earthquake damage potential of the area. It also helps the mapping of clay basins, which can locally exceed 100 m in thickness, where ground motion amplification can occur. Previous work, including well log data and seismic methods, have yielded a wealth of information on near-surface geology in Orléans, thereby providing the necessary constraints to test the applicability of gravity modeling in other locations where other methods cannot always be used. Some 104 gravity stations were occupied in an 8 × 12 km test area in the Orléans. Stations were accurately located with differential GPS that provided centimetric accuracy in elevation. Densities of the unconsolidated Quaternary deposits (Champlain Sea clay) determined on core samples and densities determined on limestone samples from outcrops were used to constrain models of the clay layer overlying the higher density bedrock formations (limestone). The gravity anomaly map delineates areas where clay basins attain > 100 m depth. Assuming a realistic density for the Champlain Sea clays (1.9-2.1 g/cm 3), the thickness over the higher density bedrock formations (Ordovician carbonate rocks) was modeled and compared with well logs and two seismic reflection profiles. The models match quite well with the information determined from well logs and seismic methods. It was found that gravity and the thickness of unconsolidated deposits are correlated but the uncertainties in both data sets preclude the definition of a direct correlation between the two. We propose that gravity measurements at a local scale be used as an inexpensive means of mapping the thickness of unconsolidated deposits

  14. Scales of gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory

    2002-01-01

    We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework

  15. Increasing the resolution of marine gravity from CryoSat-2 using 20 and 80Hz altimetry

    DEFF Research Database (Denmark)

    Abulaitijiang, Adili; Andersen, Ole Baltazar

    Achieving a high resolution marine gravity field is essential for the derivation of bathymetry, exploring the ocean tectonics, and practically, safe navigation of ships in the poorly surveyed regions. The accuracy of marine gravity can be improved by the improved altimeter range and dense track...

  16. Airborne Gravimetry Survey for the Marine Area of the United Arab Emirates

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Alshamsi, Adel

    2012-01-01

    The Military Survey Department (MSD) of the United Arab Emirates (UAE) undertook an airborne gravity survey project for the marine area of the country in 2009, especially to strengthen the marine and coastal geoid in the near-shore regions. For the airborne gravity survey, 5 km spacing coast...... flight speed of 170 knots and a typical flight elevation of 900-1500 m, depending on weather conditions and topography. Gravity was measured with a ZLS-modified LaCoste and Romberg gravimeter (S-99), augmented with a Honeywell strap-down inertial navigation system unit. The estimated accuracy...

  17. PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity

    OpenAIRE

    Capozziello, S.; Troisi, A.

    2005-01-01

    Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.

  18. Imaging multipole gravity anomaly sources by 3D probability tomography

    International Nuclear Information System (INIS)

    Alaia, Raffaele; Patella, Domenico; Mauriello, Paolo

    2009-01-01

    We present a generalized theory of the probability tomography applied to the gravity method, assuming that any Bouguer anomaly data set can be caused by a discrete number of monopoles, dipoles, quadrupoles and octopoles. These elementary sources are used to characterize, in an as detailed as possible way and without any a priori assumption, the shape and position of the most probable minimum structure of the gravity sources compatible with the observed data set, by picking out the location of their centres and peculiar points of their boundaries related to faces, edges and vertices. A few synthetic examples using simple geometries are discussed in order to demonstrate the notably enhanced resolution power of the new approach, compared with a previous formulation that used only monopoles and dipoles. A field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging the geometry of the minimum gravity structure down to 8 km of depth bsl

  19. Terrestrial gravity data analysis for interim gravity model improvement

    Science.gov (United States)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  20. Testing Gravity Using Dwarf Stars

    OpenAIRE

    Sakstein, Jeremy

    2015-01-01

    Generic scalar-tensor theories of gravity predict deviations from Newtonian physics inside astrophysical bodies. In this paper, we point out that low mass stellar objects, red and brown dwarf stars, are excellent probes of these theories. We calculate two important and potentially observable quantities: the radius of brown dwarfs and the minimum mass for hydrogen burning in red dwarfs. The brown dwarf radius can differ significantly from the GR prediction and upcoming surveys that probe the m...

  1. Gravity Field Interpretation for Major Fault Depth Detection in a Region Located SW- Qa’im / Iraq

    Directory of Open Access Journals (Sweden)

    Wadhah Mahmood Shakir Al-Khafaji

    2017-09-01

    Full Text Available This research deals with the qualitative and quantitative interpretation of Bouguer gravity anomaly data for a region located to the SW of Qa’im City within Anbar province by using 2D- mapping methods. The gravity residual field obtained graphically by subtracting the Regional Gravity values from the values of the total Bouguer anomaly. The residual gravity field processed in order to reduce noise by applying the gradient operator and 1st directional derivatives filtering. This was helpful in assigning the locations of sudden variation in Gravity values. Such variations may be produced by subsurface faults, fractures, cavities or subsurface facies lateral variations limits. A major fault was predicted to extend with the direction NE-SW. This fault is mentioned by previous studies as undefined subsurface fault depth within the sedimentary cover rocks. The results of this research that were obtained by gravity quantitative interpretation find that the depth to this major fault plane center is about 2.4 Km.

  2. Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panahiyan, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Panah, B.E.; Momennia, M. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2016-03-15

    Motivated by the violation of Lorentz invariance in quantum gravity, we study black hole solutions in gravity's rainbow in the context of Einstein gravity coupled with various models of nonlinear electrodynamics. We regard an energy dependent spacetime and obtain the related metric functions and electric fields. We show that there is an essential singularity at the origin which is covered by an event horizon. We also compute the conserved and thermodynamical quantities and examine the validity of the first law of thermodynamics in the presence of rainbow functions. Finally, we investigate the thermal stability conditions for these black hole solutions in the context of canonical ensemble. We show that the thermodynamical structure of the solutions depends on the choices of nonlinearity parameters, charge, and energy functions. (orig.)

  3. Dualities and emergent gravity: Gauge/gravity duality

    Science.gov (United States)

    de Haro, Sebastian

    2017-08-01

    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on

  4. The potential of quantum technology gravity sensors in civil engineering

    Science.gov (United States)

    Tuckwell, G.; Metje, N.; Boddice, D.; Usher, C.

    2017-12-01

    Potential field techniques have advantages over active geophysical techniques as they are not limited to the depth they can image features, provided the signals of interest are detectable amongst the other variations recorded by the instrument. A new generation of gravity instruments based on quantum technology promise greatly increased measurement sensitivity, but with this comes significant challenges in data processing and noise suppression. In the UK Innovate UK funded SIGMA project (http://www.rsksigma.co.uk/) the field of opportunity for a step change in gravity sensor accuracy has been evaluated by comparison with existing geophysical sensors, identifying the range of targets and depths of interest to commercial end users that are currently undetectable and might become visible. Forward modelling was used to quantify the potential of a Quantum Technology (QT) gravity and gravity gradiometer sensor. A substantive improvement in detectability of targets is predicted, which can be considered as a factor of 1.5 to 2 increase in the depth of detectability, or in the reduction of the size of the feature of interest. To take further advantage of new instrument sensitivity, new survey workflows are required. The accuracy of measured gravity maps is limited by environmental vibration noise, and by the accuracy with which tidal variations and terrain signals can be removed. It is still common practice in engineering scale surveys for gravity values to be reduced to Bouguer residuals. However, with a more sensitive instrument comes the need to measure the terrain more accurately. This can be achieved within a commercially viable workflow using a laser scanner for rapid data acquisition and advanced processing to produce an accurate DEM. Initial tests on 4 commercial sites have shown that an improvement of 10s of mGal can be achieved if applying a full digital terrain model correction to the microgravity data even on sites with very minor topographic height variations

  5. Optimization of a Time-Lapse Gravity Network for Carbon Sequestration

    Science.gov (United States)

    Appriou, D.; Strickland, C. E.; Ruprecht Yonkofski, C. M.

    2017-12-01

    The objective of this study is to evaluate what could be a comprehensive and optimal state of the art gravity monitoring network that would meet the UIC class VI regulation and insure that 90% of the CO2 injected remain underground. Time-lapse gravity surveys have a long history of effective applications of monitoring temporal density changes in the subsurface. For decades, gravity measurements have been used for a wide range of applications. The interest of time-lapse gravity surveys for monitoring carbon sequestration sites started recently. The success of their deployment in such sites depends upon a combination of favorable conditions, such as the reservoir geometry, depth, thickness, density change over time induced by the CO2 injection and the location of the instrument. In most cases, the density changes induced by the CO2 plume in the subsurface are not detectable from the surface but the use of borehole gravimeters can provide excellent results. In the framework of the National Assessment and Risk Partnership (NRAP) funded by the Department of Energy, the evaluation of the effectiveness of the gravity monitoring of a CO2 storage site has been assessed using multiple synthetic scenarios implemented on a community model developed for the Kimberlina site (e.g., fault leakage scenarios, borehole leakage). The Kimberlina carbon sequestration project was a pilot project located in southern San Joaquin Valley, California, aimed to safely inject 250,000 t CO2/yr for four years. Although the project was cancelled in 2012, the site characterization efforts resulted in the development of a geologic model. In this study, we present the results of the time-lapse gravity monitoring applied on different multiphase flow and reactive transport models developed by Lawrence Berkeley National Laboratory (i.e., no leakage, permeable fault zone, wellbore leakage). Our monitoring approach considers an ideal network, consisting of multiple vertical and horizontal instrumented

  6. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  7. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  8. Two-dimensional coherence analysis of magnetic and gravity data from the Cascer Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    QEB, Inc. has completed a two-dimensional coherence analysis of gravity and magnetic data from the Casper, Wyoming NTMS quadrangle. Magnetic data from an airborne survey were reduced to produce a Residual Magnetic map, and gravity data obtained from several sources were reduced to produce a Complete Bouguer Gravity map. Both sets of data were upward continued to a plane one kilometer above the surface; and then, to make the magnetic and gravity data comparable, the magnetic data were transformed to pseudo-gravity data by the application of Poisson's relationship for rocks that are both dense and magnetic relative to the surrounding rocks. A pseudo-gravity map was then produced and an analysis made of the two-dimensional coherence between the upward continued Bouguer gravity and the pseudo-gravity data. Based on the results of the coherence analysis, digital filters were designed to either pass or reject wavelength bands with high coherence

  9. Gravity-matter entanglement in Regge quantum gravity

    International Nuclear Information System (INIS)

    Paunković, Nikola; Vojinović, Marko

    2016-01-01

    We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle. (paper)

  10. Lovelock gravities from Born-Infeld gravity theory

    Science.gov (United States)

    Concha, P. K.; Merino, N.; Rodríguez, E. K.

    2017-02-01

    We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  11. Astrophysical tests of gravity: a screening map of the nearby universe

    Energy Technology Data Exchange (ETDEWEB)

    Cabré, Anna; Vikram, Vinu; Jain, Bhuvnesh [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Zhao, Gong-Bo; Koyama, Kazuya, E-mail: annanusca@gmail.com, E-mail: vinu@sas.upenn.edu, E-mail: gong-bo.zhao@port.ac.uk, E-mail: bjain@physics.upenn.edu, E-mail: Kazuya.Koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)

    2012-07-01

    Astrophysical tests of modified gravity theories in the nearby universe have been emphasized recently by Hui 2009 and Jain 2011. A key element of such tests is the screening mechanism whereby general relativity is restored in massive halos or high density environments like the Milky Way. In chameleon theories of gravity, including all f(R) models, field dwarf galaxies may be unscreened and therefore feel an extra force, as opposed to screened galaxies. The first step to study differences between screened and unscreened galaxies is to create a 3D screening map. We use N-body simulations to test and calibrate simple approximations to determine the level of screening in galaxy catalogs. Sources of systematic errors in the screening map due to observational inaccuracies are modeled and their contamination is estimated. We then apply our methods to create a map out to 200 Mpc in the Sloan Digital Sky Survey footprint using data from the Sloan survey and other sources. In two companion papers this map will be used to carry out new tests of gravity using distance indicators and the disks of dwarf galaxies. We also make our screening map publicly available.

  12. Euler–Chern–Simons gravity from Lovelock–Born–Infeld gravity

    OpenAIRE

    Izaurieta, F.; Rodriguez, E.; Salgado, P.

    2004-01-01

    In the context of a gauge theoretical formulation, higher dimensional gravity invariant under the AdS group is dimensionally reduced to Euler-Chern-Simons gravity. The dimensional reduction procedure of Grignani-Nardelli [Phys. Lett. B 300, 38 (1993)] is generalized so as to permit reducing D-dimensional Lanczos Lovelock gravity to d=D-1 dimensions.

  13. Estimating Moho basement and faults using gravity inversion in Yushu-earthquake area, China

    Directory of Open Access Journals (Sweden)

    Yang Guangliang

    2012-05-01

    Full Text Available A gravity survey was conducted one month after the 2010 Yushu earthquake in the epicenter area. The cross-fault survey line was 500 km long, from Langqian county to Qingshuihe county, in a transition zone between Bayan Har block and Qiangtang block, in an area of high elevation, large undulating terrain, and complex geological features. An interpretation of the data was carried out together with other kinds of data, such as seismic exploration and magnetic exploration. The result shows that gravity is sensitive to fault boundary; the geologic structure of the region is complex at middle and upper depths, and the density profile reveals an eastward-pushing fault movement.

  14. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  15. Gravity field and structure of the Sorong Fault Zone, eastern Indonesia

    Science.gov (United States)

    Sardjono

    Gravity surveys along coastlines of islands in the region Banggai-Sula, Eastern Sulawesi, Halmahera, Bacan and Obi were carried out as part of the Sorong Fault Zone Project. Results of the Surveys were integrated with gravity data previously acquired by other projects, including on-land gravity data from the Bird Head area Irian Jaya (Dow et al 1986), Seram Island (Milsom 1977), Buru Island (Oemar and Reminton 1993) and Central Sulawesi (Silver et al. 1983) as well as marine gravity information within and surrounding the Sorong Fault Zone (Bowin et al. 1980). Gravity expeditions of the Sorong Fault Zone Project also include measurements in Mayu Island and the island group of Talaud, situated further north in the Central Molucca Sea region. A total of one hundred and forty two gravity data were acquired in the region of Banggai-Sula islands, forty seven in eastern part of Central Sulawesi, about four hundred in Halmahera, Bacan and Obi, and seventy nine in Mayu and Talaud. Surveys in the eastern part of Central Sulawesi were carried out for the purpose of tieing the older gravity data obtained from Silver et al. (1983) and the more recent data of the Sorong Fault Zone Project. About one thousand thirty hundred and thirty gravity data were acquired as part of the Irian Jaya Geological Mapping Project (IJGMP) in the period of 1978-1983, a project commissioned by the Indonesian Geological Research and Development Centre (GRDC) and the Australian Bureau of Mineral Resources (BMR). The remoteness of the survey areas of the Sorong Fault Zone Project necessitated a careful planning for travel arrangements and provision of logistics. A wide range of magnitude of gravity field was observed in the Sorong Fault Zone, extending from values below -250 mGal recorded in the southern part of the Molucca Sea to values in excess of +320 mGal measured near to sea level in the coastal areas south of Mangole and north of Sulabesi, the two islands of the Sula Group. Steep gradients of

  16. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  17. Free surface flows under compensated gravity conditions

    CERN Document Server

    Dreyer, Miachel E

    2007-01-01

    This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...

  18. Physical working conditions as covered in European monitoring questionnaires

    Directory of Open Access Journals (Sweden)

    Tore Tynes

    2017-06-01

    Full Text Available Abstract Background The prevalence of workers with demanding physical working conditions in the European work force remains high, and occupational physical exposures are considered important risk factors for musculoskeletal disorders (MSD, a major burden for both workers and society. Exposures to physical workloads are therefore part of the European nationwide surveys to monitor working conditions and health. An interesting question is to what extent the same domains, dimensions and items referring to the physical workloads are covered in the surveys. The purpose of this paper is to determine 1 which domains and dimensions of the physical workloads are monitored in surveys at the national level and the EU level and 2 the degree of European consensus among these surveys regarding coverage of individual domains and dimensions. Method Items on physical workloads used in one European wide/Spanish and five other European nationwide work environment surveys were classified into the domains and dimensions they cover, using a taxonomy agreed upon among all participating partners. Results The taxonomy reveals that there is a modest overlap between the domains covered in the surveys, but when considering dimensions, the results indicate a lower agreement. The phrasing of items and answering categories differs between the surveys. Among the domains, the three domains covered by all surveys are “lifting, holding & carrying of loads/pushing & pulling of loads”, “awkward body postures” and “vibrations”. The three domains covered less well, that is only by three surveys or less, are “physical work effort”, “working sitting”, and “mixed exposure”. Conclusions This is the fırst thorough overview to evaluate the coverage of domains and dimensions of self-reported physical workloads in a selection of European nationwide surveys. We hope the overview will provide input to the revisions and updates of the individual countries’ surveys in

  19. Sensitivity analysis of crustal correction for calculation of lithospheric mantle density from gravity data

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2016-01-01

    for the crust and (ii) uncertainties in the seismic crustal structure (thickness and average VP velocities of individual crustal layers, including the sedimentary cover). We examine the propagation of these uncertainties into determinations of lithospheric mantle density and analyse both sources of possible......We investigate how uncertainties in seismic and density structure of the crust propagate to uncertainties in mantle density structure. The analysis is based on interpretation of residual upper-mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect...... mantle, knowledge on uncertainties associated with incomplete information on crustal structure is of utmost importance for progress in gravity modelling. Uncertainties in the residual upper-mantle gravity anomalies result chiefly from uncertainties in (i) seismic VP velocity-density conversion...

  20. Lovelock gravities from Born–Infeld gravity theory

    Directory of Open Access Journals (Sweden)

    P.K. Concha

    2017-02-01

    Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  1. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  2. FY 1998 report on the verification survey of geothermal survey technology, etc./Development of the reservoir fluctuation survey method (Summary). Theme 2. Development of the gravity survey method; 1998 nendo chinetsu tansa gijutsu nado kensho chosa choryuso hendo tansaho kaihatsu hokokusho (yoyaku). 2. Juryoku tansaho kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    As to the construction of a network system for gravity measurement, the continued observation of groundwater level was carried out as a 24-hour observation by setting water-level gauges at 10 wells. At one of the wells (No. 5), the 24-hour continued measurement was conducted for gravity as well as groundwater level. At the 9 wells except No. 5 well, the traveling measurement of gravity was made. In relation to the gravity measurement, the periodic measurement of three times a year was conducted at 138 measuring points. And at the same time, the elevation at measuring point was asked by a combination of GPS measuring and level measuring. Concerning the borehole gravity meter, the existing gravity calculation program was revised, and the model calculation of borehole gravity values was made. In the analysis/evaluation, as to the gravity fluctuation analysis, relations were studied between the groundwater level fluctuation and gravity fluctuation. Also conducted were study of effects of the unsaturated zone density fluctuation on gravity and selection of a measuring method of the soil water content saturation degree. In regard to the study of the precise gravity measuring method, the vertical gravity gradient was measured, and the correction method was studied. Further, the development was made of tidal models which are adaptable to the Yanaizu-Nishiyama area. (NEDO)

  3. Land cover and vegetation data from an ecological survey of "key habitat" landscapes in England, 1992-1993

    Science.gov (United States)

    Wood, Claire M.; Bunce, Robert G. H.; Norton, Lisa R.; Smart, Simon M.; Barr, Colin J.

    2018-05-01

    Since 1978, a series of national surveys (Countryside Survey, CS) have been carried out by the Centre for Ecology and Hydrology (CEH) (formerly the Institute of Terrestrial Ecology, ITE) to gather data on the natural environment in Great Britain (GB). As the sampling framework for these surveys is not optimised to yield data on rarer or more localised habitats, a survey was commissioned by the then Department of the Environment (DOE, now the Department for Environment, Food and Rural Affairs, DEFRA) in the 1990s to carry out additional survey work in English landscapes which contained semi-natural habitats that were perceived to be under threat, or which represented areas of concern to the ministry. The landscapes were lowland heath, chalk and limestone (calcareous) grasslands, coasts and uplands. The information recorded allowed an assessment of the extent and quality of a range of habitats defined during the project, which can now be translated into standard UK broad and priority habitat classes. The survey, known as the "Key Habitat Survey", followed a design which was a series of gridded, stratified, randomly selected 1 km squares taken as representative of each of the four landscape types in England, determined from statistical land classification and geological data ("spatial masks"). The definitions of the landscapes are given in the descriptions of the spatial masks, along with definitions of the surveyed habitats. A total of 213 of the 1 km2 square sample sites were surveyed in the summers of 1992 and 1993, with information being collected on vegetation species, land cover, landscape features and land use, applying standardised repeatable methods. The database contributes additional information and value to the long-term monitoring data gathered by the Countryside Survey and provides a valuable baseline against which future ecological changes may be compared, offering the potential for a repeat survey. The data were analysed and described in a series of

  4. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  5. Patient Handoffs: Is Cross Cover or Night Shift Better?

    Science.gov (United States)

    Higgins, Alanna; Brannen, Melissa L; Heiman, Heather L; Adler, Mark D

    2017-06-01

    Studies show singular handoffs between health care providers to be risky. Few describe sequential handoffs or compare handoffs from different provider types. We investigated the transfer of information across 2 handoffs using a piloted survey instrument. We compared cross-cover (every fourth night call) with dedicated night-shift residents. Surveys assessing provider knowledge of hospitalized patients were administered to pediatric residents. Primary teams were surveyed about their handoff upon completion of daytime coverage of a patient. Night-shift or cross-covering residents were surveyed about their handoff of the same patient upon completion of overnight coverage. Pediatric hospitalists rated the consistency of information between the surveys. Absolute difference was calculated between the 2 providers' rating of a patient's (a) complexity and (b) illness severity. Scores were compared across provider type. Fifty-nine complete handoff pairs were obtained. Fourteen and 45 handoff surveys were completed by a cross-covering and a night-shift provider, respectively. There was no significant difference in information consistency between primary and night-shift (median, 4.0; interquartile range [IQR], 3-4) versus primary and cross-covering providers (median, 4.0; IQR, 3-4). There was no significant difference in median patient complexity ratings (night shift, 3.0; IQR, 1-5, versus cross cover, 3.5; IQR, 1-5) or illness severity ratings (night shift, 2.0; IQR, 1-4, versus cross-cover, 3.0; IQR, 1-6) when comparing provider types giving a handoff. We did not find a difference in physicians' transfer of information during 2 handoffs among providers taking traditional call or on night shift. Development of tools to measure handoff consistency is needed.

  6. Looking inside the Panarea Island (Aeolian Archipelago, Italy by gravity and magnetic data

    Directory of Open Access Journals (Sweden)

    F. Greco

    2008-06-01

    Full Text Available In this paper we show and discuss the results of gravity and magnetic surveys of Panarea Island and its archipelago. The most recent volcanic manifestation occurred in November 2002 with a shallow submarine gas eruption between the islets of Dattilo, Panarelli, Lisca Bianca, Bottaro and Lisca Nera. Currently, the activity of Panarea is monitored through a multidisciplinary study under the umbrella of the Italian Department of Civil Protection with the goal of defining the hazard of this area. With this aim, in May 2006 the first gravity and magnetic surveys of Panarea Island and its archipelago were performed. The offshore magnetic data were obtained using a marine magnetometer, a Geometrics G880, from the Istituto Idrografico dell Marina (IIM. Onshore and offshore magnetic data were integrated into an unique dataset for complete magnetic coverage of the study area. By using two micro-gravimeters (LaCoste & Romberg, gravity data were collected along tracks every 250 meters. The gravity dataset was processed using the standard method. A Bouguer reduction was applied to the free-air gravity dataset using a detailed digital elevation model of the island and the neighbouring sea after evaluation of the optimal Bouguer density to reduce the topographic effect. The result is a Bouguer anomaly map that shows lateral variations in density distribution and the relationships between the shallow volcanic/crustal features and tectonic lineaments. This evidence is also highlighted by the magnetic pattern, which suggests the importance of the youngest volcanic deposits with respect to the magnetic features of the island.

  7. First advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings

    International Nuclear Information System (INIS)

    Fiziev, P.; Todorov, M.

    2002-01-01

    The aim of the First Advanced Workshop ‘Gravity, Astrophysics, and Strings’ was: 1)Bringing together scientists from various branches of gravitational physics, astrophysics and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2)Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference. The workshop covered wide aspects of gravity, astrophysics, and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Astrophysics, and Strings; Relativistic Gravity; (Super)Strings. About 40 participants from Europe, America and Asia gave 30 invited talks and contributed presentations. The full text of 17 of them are included in this book

  8. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  9. Quantum gravity extension of the inflationary scenario.

    Science.gov (United States)

    Agullo, Ivan; Ashtekar, Abhay; Nelson, William

    2012-12-21

    Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This preinflationary dynamics also opens a small window for novel effects, e.g., a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early Universe.

  10. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  11. An introduction to covariant quantum gravity and asymptotic safety

    CERN Document Server

    Percacci, Roberto

    2017-01-01

    This book covers recent developments in the covariant formulation of quantum gravity. Developed in the 1960s by Feynman and DeWitt, by the 1980s this approach seemed to lead nowhere due to perturbative non-renormalizability. The possibility of non-perturbative renormalizability or "asymptotic safety," originally suggested by Weinberg but largely ignored for two decades, was revived towards the end of the century by technical progress in the field of the renormalization group. It is now a very active field of research, providing an alternative to other approaches to quantum gravity. Written by one of the early contributors to this subject, this book provides a gentle introduction to the relevant ideas and calculational techniques. Several explicit calculations gradually bring the reader close to the current frontier of research. The main difficulties and present lines of development are also outlined.

  12. Land cover and vegetation data from an ecological survey of "key habitat" landscapes in England, 1992–1993

    Directory of Open Access Journals (Sweden)

    C. M. Wood

    2018-05-01

    Full Text Available Since 1978, a series of national surveys (Countryside Survey, CS have been carried out by the Centre for Ecology and Hydrology (CEH (formerly the Institute of Terrestrial Ecology, ITE to gather data on the natural environment in Great Britain (GB. As the sampling framework for these surveys is not optimised to yield data on rarer or more localised habitats, a survey was commissioned by the then Department of the Environment (DOE, now the Department for Environment, Food and Rural Affairs, DEFRA in the 1990s to carry out additional survey work in English landscapes which contained semi-natural habitats that were perceived to be under threat, or which represented areas of concern to the ministry. The landscapes were lowland heath, chalk and limestone (calcareous grasslands, coasts and uplands. The information recorded allowed an assessment of the extent and quality of a range of habitats defined during the project, which can now be translated into standard UK broad and priority habitat classes. The survey, known as the "Key Habitat Survey", followed a design which was a series of gridded, stratified, randomly selected 1 km squares taken as representative of each of the four landscape types in England, determined from statistical land classification and geological data ("spatial masks". The definitions of the landscapes are given in the descriptions of the spatial masks, along with definitions of the surveyed habitats. A total of 213 of the 1 km2 square sample sites were surveyed in the summers of 1992 and 1993, with information being collected on vegetation species, land cover, landscape features and land use, applying standardised repeatable methods. The database contributes additional information and value to the long-term monitoring data gathered by the Countryside Survey and provides a valuable baseline against which future ecological changes may be compared, offering the potential for a repeat survey. The data were analysed and described

  13. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  14. Description of gravity cores from San Pablo Bay and Carquinez Strait, San Francisco Bay, California

    Science.gov (United States)

    Woodrow, Donald L.; John L. Chin,; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.

    2017-06-27

    Seventy-two gravity cores were collected by the U.S. Geological Survey in 1990, 1991, and 2000 from San Pablo Bay and Carquinez Strait, California. The gravity cores collected within San Pablo Bay contain bioturbated laminated silts and sandy clays, whole and broken bivalve shells (mostly mussels), fossil tube structures, and fine-grained plant or wood fragments. Gravity cores from the channel wall of Carquinez Strait east of San Pablo Bay consist of sand and clay layers, whole and broken bivalve shells (less than in San Pablo Bay), trace fossil tubes, and minute fragments of plant material.

  15. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  16. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  17. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  18. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  19. The Cause of Gravity

    OpenAIRE

    Byrne, Michael

    1999-01-01

    Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...

  20. Cutoff for extensions of massive gravity and bi-gravity

    International Nuclear Information System (INIS)

    Matas, Andrew

    2016-01-01

    Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware–Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity. (paper)

  1. 3D correlation imaging of the vertical gradient of gravity data

    International Nuclear Information System (INIS)

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2011-01-01

    We present a new 3D correlation imaging approach for vertical gradient of gravity data for deriving a 3D equivalent mass distribution in the subsurface. In this approach, we divide the subsurface space into a 3D regular grid, and then at each grid node calculate a cross correlation between the vertical gradient of the observed gravity data and the theoretical gravity vertical gradient due to a point mass source. The resultant correlation coefficients are used to describe the equivalent mass distribution in a probability sense. We simulate a geological syncline model intruded by a dike and later broken by two vertical faults. The vertical gradient of gravity anomaly of the model is calculated and used to test the approach. The results demonstrate that the equivalent mass distribution derived by the approach reflects the basic geological structures of the model. We also test the approach on the transformed vertical gradient of real Bouguer gravity data from a geothermal survey area in Northern China. The thermal reservoirs are located in the lower portion of the sedimentary basin. From the resultant equivalent mass distribution, we produce the depth distribution of the bottom interface of the basin and predict possible hidden faults present in the basin

  2. Major results of gravity and magnetic studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Ponce, D.A.; Sikora, R.F.

    1991-01-01

    About 4000 gravity stations have been obtained at Yucca Mountain and vicinity since the beginning of radioactive-waste studies there in 1978. These data have been integrated with data from about 29,000 stations previously obtained in the surrounding region to produce a series of Bouguer and isostatic-residual-gravity maps of the Nevada Test Site and southeastern Nevada. Yucca Mountain is characterized by a WNW-dipping gravity gradient whereby residual values of -10 mGal along the east edge of Yucca Mountain decrease to about -38 mGal over Crater Flat. Using these gravity data, two-dimensional modeling predicted the depth to pre-Cenozoic rocks near the proposed repository to be about 1220 ± 150 m, an estimate that was subsequently confirmed by drilling to be 1244 m. Three-dimensional modeling of the gravity low over Crater Flat indicates the thickness of Cenozoic volcanic rocks and alluvial cover to be about 3000 m. Considerable aeromagnetic coverage of southwestern Nevada was obtained in 1978--1979 to help characterize Yucca Mountain and vicinity. One significant result is the discovery of a series of circular magnetic anomalies in Crater Flat and the northern Amargosa Desert that suggest the presence of buried volcanic centers there. Elongate magnetic highs and associated lows over Yucca Mountain correlate with mapped faults, some of which are only partially exposed. Thus, the data provide inforamtion on the extent and continuity of these faults. 31 refs., 3 figs

  3. Gravity, Magnetism, and "Down": Non-Physics College Students' Conceptions of Gravity

    Science.gov (United States)

    Asghar, Anila; Libarkin, Julie C.

    2010-01-01

    This study investigates how students enrolled in entry-level geology, most of whom would graduate from college without university-level physics courses, thought about and applied the concept of gravity while solving problems concerning gravity. The repercussions of students' gravity concepts are then considered in the context of non-physics…

  4. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    International Nuclear Information System (INIS)

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.

    2012-01-01

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  5. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    Miguel A C Teixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  6. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  7. Artificial gravity - The evolution of variable gravity research

    Science.gov (United States)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  8. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    Science.gov (United States)

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on

  9. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Barceló Carlos

    2005-12-01

    Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  10. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  11. Isostatic Implications of Different Seismic and Gravity Derived Moho Depths for Antarctica

    Science.gov (United States)

    Ferraccioli, F.; Pappa, F.; Ebbing, J.

    2017-12-01

    Several studies with different methods have been performed to investigate the lithospheric structure of Antarctica, in particular the Moho as the crust-mantle boundary. Yet, seismological surveys are regionally limited or suffer from sparse station coverage due to the remoteness and size of the continent. On the other hand, gravity studies are inherently ambiguous and therefore not able to determine both the geometry and the density contrast of the Moho. Existing Moho depth models for Antarctica show large discrepancies, even among different seismological methods, but all the more between seismological and gravity models. As a first step towards a possible reconcilement, we perform non-linear gravity inversions with simultaneous consideration of seismological data. Depending on the seismological input data, different depths and density contrasts yield the best fit. The results, however, are not in line with the pure seismological models. Subsequently, we compute simple Airy-isostatic Moho depth models and evaluate these together with multiple Moho models from previous studies in terms of their gravitational signal, applying different values for the density contrast. The models' responses are checked against observational data: vertical gravity at 50 km altitude from the spherical harmonics expansion model GOCO05s, and the gravity gradient tensor at 225 km altitude from the GOCE gravity gradient grids. While the gravity responses from the seismological models show strong disagreements with the data, the Airy-isostatic models fit better. Yet, differences of up to 10 km in depth exist between the isostatic and the gravity-inverted Moho models. From these differences in vertical gravity, in the gravity gradients and in Moho depth, we identify regions where a simple density contrast is not sufficient to explain the observed gravitational field. We conclude that lateral and vertical density variations must be considered, which might originate from high-density lower

  12. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  13. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  14. Near-surface characterization for seismic exploration based on gravity and resistivity data

    Czech Academy of Sciences Publication Activity Database

    Mrlina, Jan

    (2016), č. článku 41892. [Middle East Geoscience Conference and Exhibition /12./. Manama, 07.03.2016-10.03.2016] Institutional support: RVO:67985530 Keywords : gravity and resistivity surveys * near-surface formations * seismic velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  15. Automated Burris gravity meter for single and continuous observation

    Directory of Open Access Journals (Sweden)

    Gerhard Jentzsch

    2018-05-01

    Full Text Available The Burris Gravity Meter™ manufactured by ZLS Corporation, Austin/Texas, USA, is based on the invention of L&R (L. LaCoste and A. Romberg: The ZLS (zero-length spring. A digital feedback system (range of about 50 mGal is used to null the beam. Now, more than 120 gravity meters of this make exist worldwide and are used successfully in exploration, volcanology, geodetic work and surveying.The sensor is made of the well-known (L&R metal-alloy zero-length spring providing a low drift characteristic. The drifts observed are comparable to L&R gravimeters and are less than 0.3 mGal per month, which is much lower than the drifts known for the fused quartz sensors.The dial is calibrated every 50 mGal over the entire 7000 mGal meter range. Since the gravity value is determined at these points, there are no periodic errors. By a fourth heater circuit temperature effects are totally avoided. The gravity meter is controlled via Bluetooth® either to a handheld computer (tablet or a notebook computer.The feedback responds with high stability and accuracy. The nulling of the beam is controlled by the UltraGrav™ control system which incorporates an inherently linear PWM (pulse-width modulated electrostatic feedback system. In order to improve the handling of the gravimeter we have developed two Windows based programs: AGESfield for single measurements and AGEScont for continuous readings. Keywords: Gravimeter, Micro-gravity measurements, Drift, Resolution, Single and continuous observations

  16. Free-Air Gravity Map of Taiwan and Its Applications

    Directory of Open Access Journals (Sweden)

    Horng-Yuan Yen

    1990-01-01

    Full Text Available An island-wide gravity in Taiwan was conducted by the Institute of Earth Sciences, Academia Sinica, between 1980 and 1987. The 603 stations at which the gravity values were determined included 308 points in the 500 m or higher mountain range where few readings were available previously. The average spacing of the stations in the present survey is about 7 km apart. A new Free-air gravity anomaly map has been constructed based on these values. The map is dominated by a NNE-SSW gravity high trend with a maximum value of 300 mgal, that follows closely the Central Range, a folded and faulted mountain belt with many peaks 3000 m or higher. The magnitude of the Free-air anomaly in the Taiwan area is quite large compared to that elsewhere in the world. The good correlation between the Free-air anomaly and elevation suggests that the Taiwan area is not in isostatic equilibrium. An average surface rock density of 2.57 g cm-3 is estimated from the Free-air gravity data by using the least-squares method. This value can be used for both terrain and Bouguer corrections. The undulation of the geoid and the deflections of the vertical in the Taiwan area are also calculated by using the Free-air anomaly data. The geoid undulation is not rugged over the Taiwan area. The maximum difference is about 5 m. And the deflection of the vertical seems mainly to be affected by both land and submarine topographies.

  17. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  18. influence of gravity

    Directory of Open Access Journals (Sweden)

    Animesh Mukherjee

    1991-01-01

    Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.

  19. Comparing scalar-tensor gravity and f(R)-gravity in the Newtonian limit

    International Nuclear Information System (INIS)

    Capozziello, S.; Stabile, A.; Troisi, A.

    2010-01-01

    Recently, a strong debate has been pursued about the Newtonian limit (i.e. small velocity and weak field) of fourth order gravity models. According to some authors, the Newtonian limit of f(R)-gravity is equivalent to the one of Brans-Dicke gravity with ω BD =0, so that the PPN parameters of these models turn out to be ill-defined. In this Letter, we carefully discuss this point considering that fourth order gravity models are dynamically equivalent to the O'Hanlon Lagrangian. This is a special case of scalar-tensor gravity characterized only by self-interaction potential and that, in the Newtonian limit, this implies a non-standard behavior that cannot be compared with the usual PPN limit of General Relativity. The result turns out to be completely different from the one of Brans-Dicke theory and in particular suggests that it is misleading to consider the PPN parameters of this theory with ω BD =0 in order to characterize the homologous quantities of f(R)-gravity. Finally the solutions at Newtonian level, obtained in the Jordan frame for an f(R)-gravity, reinterpreted as a scalar-tensor theory, are linked to those in the Einstein frame.

  20. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    Science.gov (United States)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  1. 3D Gravity Modeling of Complex Salt Features in the Southern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Mauricio Nava-Flores

    2016-01-01

    Full Text Available We present a three-dimensional (3D gravity modeling and inversion approach and its application to complex geological settings characterized by several allochthonous salt bodies embedded in terrigenous sediments. Synthetic gravity data were computed for 3D forward modeling of salt bodies interpreted from Prestack Depth Migration (PSDM seismic images. Density contrasts for the salt bodies surrounded by sedimentary units are derived from density-compaction curves for the northern Gulf of Mexico’s oil exploration surveys. By integrating results from different shape- and depth-source estimation algorithms, we built an initial model for the gravity anomaly inversion. We then applied a numerically optimized 3D simulated annealing gravity inversion method. The inverted 3D density model successfully retrieves the synthetic salt body ensemble. Results highlight the significance of integrating high-resolution potential field data for salt and subsalt imaging in oil exploration.

  2. Principles of astrophysics using gravity and stellar physics to explore the cosmos

    CERN Document Server

    Keeton, Charles

    2014-01-01

    This book gives a survey of astrophysics at the advanced undergraduate level.  It originates from a two-semester course sequence at Rutgers University that is meant to appeal not only to astrophysics students but also more broadly to physics and engineering students.  The organization is driven more by physics than by astronomy; in other words, topics are first developed in physics and then applied to astronomical systems that can be investigated, rather than the other way around. The first half of the book focuses on gravityGravity is the dominant force in many astronomical systems, so a tremendous amount can be learned by studying gravity, motion and mass.  The theme in this part of the book, as well as throughout astrophysics, is using motion to investigate mass.  The goal of Chapters 2-11 is to develop a progressively richer understanding of gravity as it applies to objects ranging from planets and moons to galaxies and the universe as a whole. The second half uses other aspects of physics to addr...

  3. High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data

    Science.gov (United States)

    Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.

  4. Geologic structure of the Yucaipa area inferred from gravity data, San Bernardino and Riverside Counties, California

    Science.gov (United States)

    Mendez, Gregory O.; Langenheim, V.E.; Morita, Andrew; Danskin, Wesley R.

    2016-09-30

    In the spring of 2009, the U.S. Geological Survey, in cooperation with the San Bernardino Valley Municipal Water District, began working on a gravity survey in the Yucaipa area to explore the three-dimensional shape of the sedimentary fill (alluvial deposits) and the surface of the underlying crystalline basement rocks. As water use has increased in pace with rapid urbanization, water managers have need for better information about the subsurface geometry and the boundaries of groundwater subbasins in the Yucaipa area. The large density contrast between alluvial deposits and the crystalline basement complex permits using modeling of gravity data to estimate the thickness of alluvial deposits. The bottom of the alluvial deposits is considered to be the top of crystalline basement rocks. The gravity data, integrated with geologic information from surface outcrops and 51 subsurface borings (15 of which penetrated basement rock), indicated a complex basin configuration where steep slopes coincide with mapped faults―such as the Crafton Hills Fault and the eastern section of the Banning Fault―and concealed ridges separate hydrologically defined subbasins.Gravity measurements and well logs were the primary data sets used to define the thickness and structure of the groundwater basin. Gravity measurements were collected at 256 new locations along profiles that totaled approximately 104.6 km (65 mi) in length; these data supplemented previously collected gravity measurements. Gravity data were reduced to isostatic anomalies and separated into an anomaly field representing the valley fill. The ‘valley-fill-deposits gravity anomaly’ was converted to thickness by using an assumed, depth-varying density contrast between the alluvial deposits and the underlying bedrock.To help visualize the basin geometry, an animation of the elevation of the top of the basement-rocks was prepared. The animation “flies over” the Yucaipa groundwater basin, viewing the land surface

  5. Modeling the topography of the salar de Uyuni, Bolivia as an equipotential surface of Earth’s gravity field

    OpenAIRE

    Borsa, Adrian

    2008-01-01

    The salar de Uyuni is a massive dry salt lake that lies at the lowest point of an internal drainage basin in the Bolivian Altiplano. A kinematic GPS survey of the salar in September 2002 found a topographic range of only 80 cm over a 54 × 45 km area and subtle surface features that appeared to correlate with mapped gravity. In order to confirm the correlation between topography and gravity/geopotential, we use local gravity measurements and the EGM96 global geopotential model to construct a c...

  6. Joint inversion of gravity and seismic data along a profile across the seismogenic fault of 2010 Yushu Ms7.1 earthquake

    Directory of Open Access Journals (Sweden)

    Yang Guangliang

    2011-11-01

    Full Text Available Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection, we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement, we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduction of the Indian plate.

  7. Hydrogeologic inferences from drillers' logs and from gravity and resistivity surveys in the Amargosa Desert, southern Nevada

    International Nuclear Information System (INIS)

    Oatfield, W.J.; Czarnecki, J.B.

    1989-01-01

    The Amargosa Desert of southern Nevada, in the Basin and Range province, is hydraulically downgradient from Yucca Mountain, the potential site of a repository for high-level nuclear waste. Ground-water flow paths and flow rates beneath the Amargosa Desert are controlled in part by the total saturated thickness and the hydraulic properties of basin-fill alluvial sediments. Drillers' logs of water wells completed in alluvium were analyzed to help characterize the hydrogeologic framework underlying the Amargosa Desert. Fractions of coarse-grained sediments, calculated from each of these logs, were contoured using a universal-kriging routine to interpolate values. Results from a previous electrical sounding survey also were contoured, including the estimated depth to Paleozoic basement rocks. The vertical electric sounding results were obtained from individual depth-to-resistivity profiles, from which the average resistivity of the total profile and the resistivity of the upper 75 meters were calculated. the distribution and variations in average resistivity of the total depth correlated reasonably well with the distribution of variations in regional gravity. 24 refs., 17 figs

  8. Major results of gravity and magnetic studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Ponce, D.A.; Sikora, R.F.

    1991-01-01

    About 4,000 gravity stations have been obtained at Yucca Mountain and vicinity since the beginning of radioactive-waste studies there in 1978. These data have been integrated with data from about 29,000 stations previously obtained in the surrounding region to produce a series of Bouguer and isostatic-residual-gravity maps of the Nevada Test Site and southeastern Nevada. Yucca Mountain is characterized by a WNW-dipping gravity gradient whereby residual values of -10 mGal along the east edge of Yucca Mountain decrease to about -38 mGal over Crater Flat. Using these gravity data, two-dimensional modeling predicted the depth to pre-Cenozoic rocks near the proposed repository to be about 1,220±150 m, an estimate that was subsequently confirmed by drilling to be 1,244 m. Three-dimensional modeling of the gravity low over Crater Flat indicates the thickness of Cenozoic volcanic rocks and alluvial cover to be about 3,000 m. Gravity interpretations also identified the Silent Canyon caldera before geologic mapping of Pahute Mesa and provided an estimate of the thickness of the volcanic section there of nearly 5 km. Considerable aeromagnetic coverage of southwestern Nevada was obtained in 1978-79 to help characterize Yucca Mountain and vicinity. One significant result is the discovery of a series of circular magnetic anomalies in Crater Flat and the northern Amargosa Desert that suggest the presence of buried volcanic centers there. If this interpretation is confirmed by drilling, the magnetic data can be used to help estimate the total volume of buried volcanic rocks, which, along with radiometric dating, could help provide a better prediction of future volcanism. Elongate magnetic highs and associated lows over Yucca Mountain correlate with mapped faults, some of which are only partially exposed. Thus, the data provide information on the extent and continuity of these faults

  9. Is Gravity an Entropic Force?

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2011-04-01

    Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

  10. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  11. Gravity interpretation via EULDPH

    International Nuclear Information System (INIS)

    Ebrahimzadeh Ardestani, V.

    2003-01-01

    Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented

  12. Radiological survey of the covered and uncovered drilling mud depository.

    Science.gov (United States)

    Jónás, Jácint; Somlai, János; Csordás, Anita; Tóth-Bodrogi, Edit; Kovács, Tibor

    2018-08-01

    In petroleum engineering, the produced drilling mud sometimes contains elevated amounts of natural radioactivity. In this study, a remediated Hungarian drilling mud depository was investigated from a radiological perspective. The depository was monitored before and after a clay layer was applied as covering. In this study, the ambient dose equivalent rate H*(10) of the depository has been measured by a Scintillator Probe (6150AD-b Dose Rate Meter). Outdoor radon concentration, radon concentration in soil gas, and in situ field radon exhalation measurements were carried out using a pulse-type ionization chamber (AlphaGUARD radon monitor). Soil gas permeability (k) measurements were carried out using the permeameter (RADON-JOK) in situ device. Geogenic radon potentials were calculated. The radionuclide content of the drilling mud and cover layer sample has been determined with an HPGe gamma-spectrometer. The gamma dose rate was estimated from the measured radionuclide concentrations and the results were compared with the measured ambient dose equivalent rate. Based on the measured results before and after covering, the ambient dose equivalent rates were 76 (67-85) nSv/h before and 86 (83-89) nSv/h after covering, radon exhalation was 9 (6-12) mBq/m 2 s before and 14 (5-28) mBq/m 2 s after covering, the outdoor radon concentrations were 11 (9-16) before and 13 (10-22) Bq/m 3 after covering and the soil gas radon concentrations were 6 (3-8) before and 24 (14-40) kBq/m 3 after covering. Soil gas permeability measurements were 1E-11 (7E-12-1E-11) and 1E-12 (5E-13-1E-12) m 2 and the calculated geogenic radon potential values were 6 (3-8) and 12 (6-21) before and after the covering. The main radionuclide concentrations of the drilling mud were C U-238 12 (10-15) Bq/kg, C Ra-226 31 (18-40) Bq/kg, C Th-232 35 (33-39) Bq/kg and C K-40 502 (356-673) Bq/kg. The same radionuclide concentrations in the clay were C U-238 31 (29-34) Bq/kg, C Ra-226 45 (40-51) Bq/kg, C Th-232 58 (55

  13. Anomalies and gravity

    International Nuclear Information System (INIS)

    Mielke, Eckehard W.

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed

  14. Gravity loop corrections to the standard model Higgs in Einstein gravity

    International Nuclear Information System (INIS)

    Yugo Abe; Masaatsu Horikoshi; Takeo Inami

    2016-01-01

    We study one-loop quantum gravity corrections to the standard model Higgs potential V(φ) à la Coleman-Weinberg and examine the stability question of V(φ) in the energy region of Planck mass scale, μ ≃ M_P_l (M_P_l = 1.22x10"1"9 GeV). We calculate the gravity one-loop corrections to V(φ) in Einstein gravity by using the momentum cut-off Λ. We have found that even small gravity corrections compete with the standard model term of V(φ) and affect the stability argument of the latter part alone. This is because the latter part is nearly zero in the energy region of M_P_l. (author)

  15. Brazil Geologic Basic Survey Program - Limoeiro - Sheet SB.25-Y-C-V -Pernambuco State

    International Nuclear Information System (INIS)

    Barbosa, A.G.

    1991-01-01

    The Limoeiro map-sheet (SB.25-Y-C-V;1:100,000 scale), State of Pernambuco is delimited by the meridians 35 0 00'W to 35 0 30' W and parallels 7 0 30' S to 8 0 00' S. The sheet covers an area of about 3,000 km 2 . The basement rocks probable Archaean age consist of gneiss and migmatite. The basement rocks are overlain by Lower Proterozoic metasediments (schist and para gneiss), locally with flows (amphibolite), metamorphosed in the middle to high amphibolite facies. Geochemical surveys including stream sediment sampling and rock chip sampling were carried out. Ground geophysics included magnetometer, gravity and radiometric (scintillometer) surveys. A provisional metallogenetic map at 1:100,000 scale was prepared on which areas with potential for economic deposits of gold, apatite, barium copper, nickel, cobalt, zinc, niobium, iron, titanium and vanadium are shown. (author)

  16. The location and nature of the Telemzan High Ghadames basin boundary in southern Tunisia based on gravity and magnetic anomalies

    Science.gov (United States)

    Gabtni, H.; Jallouli, C.; Mickus, K. L.; Zouari, H.; Turki, M. M.

    2006-03-01

    Gravity and magnetic data were analyzed to add constraints on the location and nature of the Telemzan-Ghadames boundary (TGB) and structure of the Ghadames basin in southern Tunisia. TGB is the boundary between the thick sedimentary cover of the intracratonic Ghadames basin to the south and the thin sedimentary cover of the Saharan platform to the north. The upward continuation of the Bouguer gravity anomalies showed that the TGB is a regional geophysical feature that may have controlled the amount of sediment being deposited both north and south of the boundary and the tectonic environment in the region since Paleozoic time. To emphasize the shorter wavelength gravity and magnetic anomalies, a series of gray scale images of the directional horizontal gradients were constructed that determined a series of previously unknown east-west-trending gravity and magnetic anomalies south of 31.6°N that correspond to lineaments seen on a Landsat 7 image and the location of the TGB. Also, an edge-enhancement analysis illustrated the same linear gravity anomalies and showed the subbasins and uplifts within the Ghadames basin had source depths of between 0.5 and 3.4 km. A north-south trending gravity model showed that the TGB is a relatively gradual feature (possibly basement stepped down by relatively low-displacement faulting) controlling the subsidence of the main Ghadames basin and confirms the edge-enhancement analysis that subbasin S3 and uplift U1 are the main structural features within the Ghadames basin. The knowledge of basement architecture of the Ghadames basin is important for future petroleum exploration within this intracratonic basin.

  17. Quantum gravity from noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2014-12-15

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  18. Quantum gravity from noncommutative spacetime

    International Nuclear Information System (INIS)

    Lee, Jungjai; Yang, Hyunseok

    2014-01-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  19. Gravity in the Brain as a Reference for Space and Time Perception.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka

    2015-01-01

    Moving and interacting with the environment require a reference for orientation and a scale for calibration in space and time. There is a wide variety of environmental clues and calibrated frames at different locales, but the reference of gravity is ubiquitous on Earth. The pull of gravity on static objects provides a plummet which, together with the horizontal plane, defines a three-dimensional Cartesian frame for visual images. On the other hand, the gravitational acceleration of falling objects can provide a time-stamp on events, because the motion duration of an object accelerated by gravity over a given path is fixed. Indeed, since ancient times, man has been using plumb bobs for spatial surveying, and water clocks or pendulum clocks for time keeping. Here we review behavioral evidence in favor of the hypothesis that the brain is endowed with mechanisms that exploit the presence of gravity to estimate the spatial orientation and the passage of time. Several visual and non-visual (vestibular, haptic, visceral) cues are merged to estimate the orientation of the visual vertical. However, the relative weight of each cue is not fixed, but depends on the specific task. Next, we show that an internal model of the effects of gravity is combined with multisensory signals to time the interception of falling objects, to time the passage through spatial landmarks during virtual navigation, to assess the duration of a gravitational motion, and to judge the naturalness of periodic motion under gravity.

  20. The integration of gravity, magnetic and seismic data in delineating the sedimentary basins of northern Sinai and deducing their structural controls

    Science.gov (United States)

    Selim, El Sayed Ibrahim

    2016-01-01

    The Sinai Peninsula is a part of the Sinai sub-plate that located between the southeast Nubian-Arabian shield and the southeastern Mediterranean northward. The main objectives of this investigation are to deduce the main sedimentary basin and its subdivisions, identify the subsurface structural framework that affects the study area and determine the thickness of sedimentary cover of the basement surface. The total intensity magnetic map, Bouguer gravity map and seismic data were used to achieve the study aims. Structural interpretation of the gravity and magnetic data were done by applying advanced processing techniques. These techniques include; Reduce to the pole (RTP), Power spectrum, Tile derivative and Analytical Signal techniques were applied on gravity and magnetic data. Two dimensional gravity and magnetic modeling and interpretation of seismic sections were done to determine the thickness of sedimentary cover of the study area. The integration of our interpretation suggests that, the northern Sinai area consists of elongated troughs that contain many high structural trends. Four major structural trends have been identified, that, reflecting the influence of district regional tectonic movements. These trends are: (1) NE-SW trend; (2) NNW-SSE trend; (3) ENE-WSW trend and (4) WNW-ESE trend. There are also many minor trends, E-W, NW-SE and N-S structural trends. The main sedimentary basin of North Sinai is divided into four sub-basins; (1) Northern Maghara; (2) Northeastern Sinai; (3) Northwestern Sinai and (4) Central Sinai basin. The sedimentary cover ranges between 2 km and 7 km in the northern part of the study area.

  1. The gravity field and GGOS

    DEFF Research Database (Denmark)

    Forsberg, René; Sideris, M.G.; Shum, C.K.

    2005-01-01

    The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...

  2. Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment

    International Nuclear Information System (INIS)

    Chan, H.A.; Moody, M.V.; Paik, H.J.

    1987-01-01

    A sensitive superconducting gravity gradiometer has been constructed and tested. Coupling to gravity signals is obtained by having two superconducting proof masses modulate magnetic fields produced by persistent currents. The induced electrical currents are differenced by a passive superconducting circuit coupled to a superconducting quantum interference device. The experimental behavior of this device has been shown to follow the theoretical model closely in both signal transfer and noise characteristics. While its intrinsic noise level is shown to be 0.07 E Hz/sup -1/2/ (1 Eequivalent10/sup -9/ sec/sup -2/), the actual performance of the gravity gradiometer on a passive platform has been limited to 0.3--0.7 E Hz/sup -1/2/ due to its coupling to the environmental noise. The detailed structure of this excess noise is understood in terms of an analytical error model of the instrument. The calibration of the gradiometer has been obtained by two independent methods: by applying a linear acceleration and a gravity signal in two different operational modes of the instrument. This device has been successfully operated as a detector in a new null experiment for the gravitational inverse-square law. In this paper we report the design, fabrication, and detailed test results of the superconducting gravity gradiometer. We also present additional theoretical analyses which predict the specific dynamic behavior of the gradiometer and of the test

  3. Thirty years of precise gravity measurements at Mt. Vesuvius: an approach to detect underground mass movements

    Directory of Open Access Journals (Sweden)

    Giovanna Berrino

    2013-11-01

    Full Text Available Since 1982, high precision gravity measurements have been routinely carried out on Mt. Vesuvius. The gravity network consists of selected sites most of them coinciding with, or very close to, leveling benchmarks to remove the effect of the elevation changes from gravity variations. The reference station is located in Napoli, outside the volcanic area. Since 1986, absolute gravity measurements have been periodically made on a station on Mt. Vesuvius, close to a permanent gravity station established in 1987, and at the reference in Napoli. The results of the gravity measurements since 1982 are presented and discussed. Moderate gravity changes on short-time were generally observed. On long-term significant gravity changes occurred and the overall fields displayed well defined patterns. Several periods of evolution may be recognized. Gravity changes revealed by the relative surveys have been confirmed by repeated absolute measurements, which also confirmed the long-term stability of the reference site. The gravity changes over the recognized periods appear correlated with the seismic crises and with changes of the tidal parameters obtained by continuous measurements. The absence of significant ground deformation implies masses redistribution, essentially density changes without significant volume changes, such as fluids migration at the depth of the seismic foci, i.e. at a few kilometers. The fluid migration may occur through pre-existing geological structures, as also suggested by hydrological studies, and/or through new fractures generated by seismic activity. This interpretation is supported by the analyses of the spatial gravity changes overlapping the most significant and recent seismic crises.

  4. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  5. Cineradiographic Analysis of Mouse Postural Response to Alteration of Gravity and Jerk (Gravity Deceleration Rate

    Directory of Open Access Journals (Sweden)

    Katsuya Hasegawa

    2014-04-01

    Full Text Available The ability to maintain the body relative to the external environment is important for adaptation to altered gravity. However, the physiological limits for adaptation or the disruption of body orientation are not known. In this study, we analyzed postural changes in mice upon exposure to various low gravities. Male C57BL6/J mice (n = 6 were exposed to various gravity-deceleration conditions by customized parabolic flight-maneuvers targeting the partial-gravity levels of 0.60, 0.30, 0.15 and μ g (<0.001 g. Video recordings of postural responses were analyzed frame-by-frame by high-definition cineradiography and with exact instantaneous values of gravity and jerk. As a result, the coordinated extension of the neck, spine and hindlimbs was observed during the initial phase of gravity deceleration. Joint angles widened to 120%–200% of the reference g level, and the magnitude of the thoracic-curvature stretching was correlated with gravity and jerk, i.e., the gravity deceleration rate. A certain range of jerk facilitated mouse skeletal stretching efficiently, and a jerk of −0.3~−0.4 j (g/s induced the maximum extension of the thoracic-curvature. The postural response of animals to low gravity may undergo differential regulation by gravity and jerk.

  6. Constraints on deviations from ΛCDM within Horndeski gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, Emilio; Cuesta, Antonio J. [ICCUB, University of Barcelona (IEEC-UB), Martí i Franquès 1, E08028 Barcelona (Spain); Jimenez, Raul; Verde, Licia, E-mail: emilio.bellini@icc.ub.edu, E-mail: ajcuesta@icc.ub.edu, E-mail: rauljimenez@g.harvard.edu, E-mail: liciaverde@icc.ub.edu [Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain)

    2016-02-01

    Recent anomalies found in cosmological datasets such as the low multipoles of the Cosmic Microwave Background or the low redshift amplitude and growth of clustering measured by e.g., abundance of galaxy clusters and redshift space distortions in galaxy surveys, have motivated explorations of models beyond standard ΛCDM. Of particular interest are models where general relativity (GR) is modified on large cosmological scales. Here we consider deviations from ΛCDM+GR within the context of Horndeski gravity, which is the most general theory of gravity with second derivatives in the equations of motion. We adopt a parametrization in which the four additional Horndeski functions of time α{sub i}(t) are proportional to the cosmological density of dark energy Ω{sub DE}(t). Constraints on this extended parameter space using a suite of state-of-the art cosmological observations are presented for the first time. Although the theory is able to accommodate the low multipoles of the Cosmic Microwave Background and the low amplitude of fluctuations from redshift space distortions, we find no significant tension with ΛCDM+GR when performing a global fit to recent cosmological data and thus there is no evidence against ΛCDM+GR from an analysis of the value of the Bayesian evidence ratio of the modified gravity models with respect to ΛCDM, despite introducing extra parameters. The posterior distribution of these extra parameters that we derive return strong constraints on any possible deviations from ΛCDM+GR in the context of Horndeski gravity. We illustrate how our results can be applied to a more general frameworks of modified gravity models.

  7. Group field theories for all loop quantum gravity

    Science.gov (United States)

    Oriti, Daniele; Ryan, James P.; Thürigen, Johannes

    2015-02-01

    Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.

  8. Dimensional comparability of psychosocial working conditions as covered in European monitoring questionnaires.

    Science.gov (United States)

    Formazin, Maren; Burr, Hermann; Aagestad, Cecilie; Tynes, Tore; Thorsen, Sannie Vester; Perkio-Makela, Merja; Díaz Aramburu, Clara Isabel; Pinilla García, Francisco Javier; Galiana Blanco, Luz; Vermeylen, Greet; Parent-Thirion, Agnes; Hooftman, Wendela; Houtman, Irene

    2014-12-09

    In most countries in the EU, national surveys are used to monitor working conditions and health. Since the development processes behind the various surveys are not necessarily theoretical, but certainly practical and political, the extent of similarity among the dimensions covered in these surveys has been unclear. Another interesting question is whether prominent models from scientific research on work and health are present in the surveys--bearing in mind that the primary focus of these surveys is on monitoring status and trends, not on mapping scientific models. Moreover, it is relevant to know which other scales and concepts not stemming from these models have been included in the surveys. The purpose of this paper is to determine (1) the similarity of dimensions covered in the surveys included and (2) the congruence of dimensions of scientific research and of dimensions present in the monitoring systems. Items from surveys representing six European countries and one European wide survey were classified into the dimensions they cover, using a taxonomy agreed upon among all involved partners from the six countries. The classification reveals that there is a large overlap of dimensions, albeit not in the formulation of items, covered in the seven surveys. Among the available items, the two prominent work-stress-models--job-demand-control-support-model (DCS) and effort-reward-imbalance-model (ERI)--are covered in most surveys even though this has not been the primary aim in the compilation of these surveys. In addition, a large variety of items included in the surveillance systems are not part of these models and are--at least partly--used in nearly all surveys. These additional items reflect concepts such as "restructuring", "meaning of work", "emotional demands" and "offensive behaviour/violence & harassment". The overlap of the dimensions being covered in the various questionnaires indicates that the interests of the parties deciding on the questionnaires in

  9. Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry

    NARCIS (Netherlands)

    Fuchs, M.J.; Bouman, J.; Broerse, D.B.T.; Visser, P.N.A.M.; Vermeersen, L.L.A.

    2013-01-01

    The Japan Tohoku-Oki earthquake (9.0 Mw) of 11 March 2011 has left signatures in the Earth's gravity field that are detectable by data of the Gravity field Recovery and Climate Experiment (GRACE) mission. Because the European Space Agency's (ESA) satellite gravity mission Gravity field and

  10. Study on relationship between evolution of regional gravity field and seismic hazard

    Science.gov (United States)

    Li, W.; Xu, C.; Shen, C.

    2017-12-01

    The lack of anomalous signal is a big issue for the study of geophysics using historical geodesy observations, which is a relatively new area of earth gravimetry application in seismology. Hence the use of the gravity anomaly (GA) derived from either a global geopotential model (GGM) or a regional gravity reanalysis (Ground Gravity Survey, GGS) becomes an important alternative solution. In this study, the GGS at 186 points for the period of 2010 2014 in the Sichuan-Yunnan region (SYR) stations are analyzed. To study the temporal and spatial distribution characteristics of regional gravity filed (RGF) and its evolution mechanism. Taking the geological and geophysical data as constraints. From the GGM expanded up to degree 360, GA were obtained after gravity reduction, especially removing the reference field. The dynamically evolutional characteristics of gravity field are closely relative to fault activity. The gravity changes with time about 5 years at LongMenShan fault (LMSF) have a slop of -12.83±2.9 μGal/a, indicating that LMSF has an uplift. To test the signal extraction algorithm in some geodynamic processes, GA from the SYR were inverted and it was also imposed as a priori information. Fortunately, some significant gravity variation have been detected at some stations in the thrust fault before and after four earthquakes, in which typical anomalies (earthquake precursor, EP) were positive GA variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the Lushan earthquake (Ms 7.0). The repeated observation results during about 5 years indicate that no significant gravity changes related to other geodynamical events were observed in most observation epochs. In addition, the mechanism of gravity changes at Lushan was also explored. We calculated the gravity change rates based on the model of Songpan-Ganze block (SGB) to Sichuan basin (SCB). And the changes is in good agreement with observed one, indicating

  11. Development of computerized stocktaking system in mine surveying for ore mineral volume calculation in covered storehouses

    Science.gov (United States)

    Valdman, V. V.; Gridnev, S. O.

    2017-10-01

    The article examines into the vital issues of measuring and calculating the raw stock volumes in covered storehouses at mining and processing plants. The authors bring out two state-of-the-art high-technology solutions: 1 - to use the ground-based laser scanning system (the method is reasonably accurate and dependable, but costly and time consuming; it also requires the stoppage of works in the storehouse); 2 - to use the fundamentally new computerized stocktaking system in mine surveying for the ore mineral volume calculation, based on the profile digital images. These images are obtained via vertical projection of the laser plane onto the surface of the stored raw materials.

  12. Effect of small floating disks on the propagation of gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Santi, F De; Olla, P, E-mail: olla@dsf.unica.it [ISAC-CNR, Sez. Cagliari, I-09042 Monserrato (Italy)

    2017-04-15

    A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided. (paper)

  13. Development of a new generation gravity map of Antarctica: ADGRAV Antarctic Digital Gravity Synthesis

    Directory of Open Access Journals (Sweden)

    R. A. Arko

    1999-06-01

    Full Text Available The U.S. National Science Foundation (NSF has agreed to support the development of a new generation gravity map of Antarctica (ADGRAV - Antarctic Digital Gravity Synthesis, funding the development of a web based access tool. The goal of this project is the creation of an on-line Antarctic gravity database which will facilitate access to improved high resolution satellite gravity models, in conjunction with shipboard, airborne, and land based gravity measurements for the continental regions. This database will complement parallel projects underway to develop new continental bedrock (BEDMAP and magnetic (ADMAP maps of Antarctica.

  14. Strapdown Airborne Gravimetry Using a Combination of Commercial Software and Stable-Platform Gravity Estimates

    DEFF Research Database (Denmark)

    Jensen, Tim E.; Nielsen, J. Emil; Olesen, Arne V.

    2017-01-01

    into the long-wavelengths of the gravity estimates. This has made the stable-platform approach the preferred method for geodetic applications. In the summer of 2016, during a large airborne survey in Malaysia, a SIMU system was flown alongside a traditional LaCoste&Romberg (LCR) gravimeter. The SIMU......For the past two decades, airborne gravimetry using a Strapdown Inertial Measurement Unit (SIMU) has been producing gravity estimates comparable to the traditional stable-platform single-axis gravimeters. The challenge has been to control the long term drift of the IMU sensors, propagating...

  15. Principal facts for gravity data collected in the southern Albuquerque Basin area and a regional compilation, central New Mexico

    Science.gov (United States)

    Gillespie, Cindy L.; Grauch, V.J.S.; Oshetski, Kim; Keller, Gordon R.

    2000-01-01

    Principal facts for 156 new gravity stations in the southern Albuquerque basin are presented. These data fill a gap in existing data coverage. The compilation of the new data and two existing data sets into a regional data set of 5562 stations that cover the Albuquerque basin and vicinity is also described. Bouguer anomaly and isostatic residual gravity data for this regional compilation are available in digital form from ftp://greenwood.cr.usgs.gov/pub/openfile- reports/ofr-00-490.

  16. A 3D gravity and magnetic model for the Entenschnabel area (German North Sea)

    Science.gov (United States)

    Dressel, Ingo; Barckhausen, Udo; Heyde, Ingo

    2018-01-01

    In this study, we focus on structural configuration of the Entenschnabel area, a part of the German exclusive economic zone within the North Sea, by means of gravity and magnetic modelling. The starting point of the 3D modelling approach is published information on subseafloor structures for shallow depths, acquired by wells and seismic surveys. Subsequent gravity and magnetic modelling of the structures of the deeper subsurface builds on this geophysical and geological information and on gravity and magnetic data acquired during a research cruise to the Entenschnabel area. On the one hand, our 3D model shows the density and susceptibility distribution of the sediments and the crust. In addition, the potential field modelling provides evidence for a differentiation between lower and upper crust. The thickness distribution of the crust is also discussed with respect to the tectonic framework. Furthermore, gravity as well as magnetic modelling points to an intrusive complex beneath the Central Graben within the Entenschnabel area. On the other hand, this work provides a geological-geophysical consistent 3D gravity and magnetic model that can be used as a starting point for further investigation of this part of the German North Sea.

  17. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    Science.gov (United States)

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  18. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    Science.gov (United States)

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  19. BOOK REVIEW: Quantum Gravity: third edition Quantum Gravity: third edition

    Science.gov (United States)

    Rovelli, Carlo

    2012-09-01

    The request by Classical and Quantum Gravity to review the third edition of Claus Kiefer's 'Quantum Gravity' puts me in a slightly awkward position. This is a remarkably good book, which every person working in quantum gravity should have on the shelf. But in my opinion quantum gravity has undergone some dramatic advances in the last few years, of which the book makes no mention. Perhaps the omission only attests to the current vitality of the field, where progress is happening fast, but it is strange for me to review a thoughtful, knowledgeable and comprehensive book on my own field of research, which ignores what I myself consider the most interesting results to date. Kiefer's book is unique as a broad introduction and a reliable overview of quantum gravity. There are numerous books in the field which (often notwithstanding titles) focus on a single approach. There are also countless conference proceedings and article collections aiming to be encyclopaedic, but offering disorganized patchworks. Kiefer's book is a careful and thoughtful presentation of all aspects of the immense problem of quantum gravity. Kiefer is very learned, and brings together three rare qualities: he is pedagogical, he is capable of simplifying matter to the bones and capturing the essential, and he offers a serious and balanced evaluation of views and ideas. In a fractured field based on a major problem that does not yet have a solution, these qualities are precious. I recommend Kiefer's book to my students entering the field: to work in quantum gravity one needs a vast amount of technical knowledge as well as a grasp of different ideas, and Kiefer's book offers this with remarkable clarity. This novel third edition simplifies and improves the presentation of several topics, but also adds very valuable new material on quantum gravity phenomenology, loop quantum cosmology, asymptotic safety, Horava-Lifshitz gravity, analogue gravity, the holographic principle, and more. This is a testament

  20. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  1. VizieR Online Data Catalog: Surface gravity determination in late-type stars (Morel+, 2012)

    Science.gov (United States)

    Morel, T.; Miglio, A.

    2012-06-01

    The frequency of maximum oscillation power measured in dwarfs and giants exhibiting solar-like pulsations provides a precise, and potentially accurate, inference of the stellar surface gravity. An extensive comparison for about 40 well-studied pulsating stars with gravities derived using classical methods (ionization balance, pressure-sensitive spectral features or location with respect to evolutionary tracks) supports the validity of this technique and reveals an overall remarkable agreement with mean differences not exceeding 0.05dex (although with a dispersion of up to ~0.2dex). It is argued that interpolation in theoretical isochrones may be the most precise way of estimating the gravity by traditional means in nearby dwarfs. Attention is drawn to the usefulness of seismic targets as benchmarks in the context of large-scale surveys. (1 data file).

  2. Gravity, a geometrical course

    CERN Document Server

    Frè, Pietro Giuseppe

    2013-01-01

    Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications,  updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes.   Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed  account  of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations.  Differe...

  3. Gravity gradiometry difference measurement as a tool for monitoring pumping and injection; forward modeling results

    International Nuclear Information System (INIS)

    Creed, R.; Edwards, A.

    1997-01-01

    Gravity gradiometry forward models have been developed at the Idaho National Engineering and Environmental laboratory (INEEL) that can characterize gravity gradient changes with the development of a cone of depression or injection mound in water table aquifers. Difference measurements at long time intervals reduce delayed drainage effects and eliminate the need for determining an initial density structure. Qualitative or semi-quantitative analysis of the gradient signal to determine changes in groundwater distribution with injection or pumping may be possible, particularly if the time varying nature of the signal is of interest. Gravity gradiometer instruments (such as the Gravity Gradient Survey System) have progressed to the point where the complete second order gravity gradient tensor can be measured with an instrument noise level of less than 1 Eotvos (0.1 microgals/meter). Modeling indicates direct gravity measurements for the injection mound perched aquifier case could produce similar signal to noise ratios. However gravity gradients provide 5 independent measurements and due to the common mode nature of the instruments are less susceptible to other effects (tide, latitude, elevation, etc.). The gradients also provide a sharper image of the edge of the anomaly. The systematic identification and removal of specific retention, rainfall and subsidence or uplift effects may be required to make gradiometry difference imaging practical for field use

  4. Measuring Gravity in International Trade Flows

    Directory of Open Access Journals (Sweden)

    E. Young Song

    2004-12-01

    Full Text Available The purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of income levels of countries, and in trade of most manThe purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of

  5. Modeling and Testing Dark Energy and Gravity with Galaxy Cluster Data

    Science.gov (United States)

    Rapetti, David; Cataneo, Matteo; Heneka, Caroline; Mantz, Adam; Allen, Steven W.; Von Der Linden, Anja; Schmidt, Fabian; Lombriser, Lucas; Li, Baojiu; Applegate, Douglas; Kelly, Patrick; Morris, Glenn

    2018-06-01

    The abundance of galaxy clusters is a powerful probe to constrain the properties of dark energy and gravity at large scales. We employed a self-consistent analysis that includes survey, observable-mass scaling relations and weak gravitational lensing data to obtain constraints on f(R) gravity, which are an order of magnitude tighter than the best previously achieved, as well as on cold dark energy of negligible sound speed. The latter implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. For this study, we recalibrated the halo mass function using the following non-linear characteristic quantities: the spherical collapse threshold, the virial overdensity and an additional mass contribution for cold dark energy. We also presented a new modeling of the f(R) gravity halo mass function that incorporates novel corrections to capture key non-linear effects of the Chameleon screening mechanism, as found in high resolution N-body simulations. All these results permit us to predict, as I will also exemplify, and eventually obtain the next generation of cluster constraints on such models, and provide us with frameworks that can also be applied to other proposed dark energy and modified gravity models using cluster abundance observations.

  6. Estimation of Bouguer Density Precision: Development of Method for Analysis of La Soufriere Volcano Gravity Data

    Directory of Open Access Journals (Sweden)

    Hendra Gunawan

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol3no3.20084The precision of topographic density (Bouguer density estimation by the Nettleton approach is based on a minimum correlation of Bouguer gravity anomaly and topography. The other method, the Parasnis approach, is based on a minimum correlation of Bouguer gravity anomaly and Bouguer correction. The precision of Bouguer density estimates was investigated by both methods on simple 2D syntetic models and under an assumption free-air anomaly consisting of an effect of topography, an effect of intracrustal, and an isostatic compensation. Based on simulation results, Bouguer density estimates were then investigated for a gravity survey of 2005 on La Soufriere Volcano-Guadeloupe area (Antilles Islands. The Bouguer density based on the Parasnis approach is 2.71 g/cm3 for the whole area, except the edifice area where average topography density estimates are 2.21 g/cm3 where Bouguer density estimates from previous gravity survey of 1975 are 2.67 g/cm3. The Bouguer density in La Soufriere Volcano was uncertainly estimated to be 0.1 g/cm3. For the studied area, the density deduced from refraction seismic data is coherent with the recent Bouguer density estimates. New Bouguer anomaly map based on these Bouguer density values allows to a better geological intepretation.    

  7. Butterfly effect in 3D gravity

    Science.gov (United States)

    Qaemmaqami, Mohammad M.

    2017-11-01

    We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.

  8. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  9. Nonsingular universe in massive gravity's rainbow

    Science.gov (United States)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  10. Gravity distribution characteristics and their relationship with the distribution of earthquakes and tectonic units in the North–South seismic belt, China

    Directory of Open Access Journals (Sweden)

    Guiju Wu

    2015-05-01

    Full Text Available The North–South Seismic Belt (NSSB is a Chinese tectonic boundary with a very complex structure, showing a sharp change in several geophysical field characteristics. To study these characteristics and their relationship with the distribution of earthquakes and faults in the study area, we first analyze the spatial gravity anomaly to achieve the Bouguer gravity anomaly (EGM2008 BGA and the regional gravity survey Bouguer gravity anomaly. Next, we ascertain the Moho depth and crustal thickness of the study area using interface inversion with the control points derived from the seismic and magnetotelluric sounding profiles achieved in recent years. In this paper, we summarize the relief, trend, Moho gradient, and crustal nature, in addition to their relationship with the distribution of earthquakes and faults in the study area. The findings show that earthquakes with magnitudes greater than Ms7.0 are mainly distributed in the Moho Bouguer anomaly variation belt and faults. The results of the study are important for future research on tectonic characteristics, geological and geophysical surveys, and seismicity patterns.

  11. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  12. Quantum Gravity (2nd edn)

    International Nuclear Information System (INIS)

    Husain, Viqar

    2008-01-01

    There has been a flurry of books on quantum gravity in the past few years. The first edition of Kiefer's book appeared in 2004, about the same time as Carlo Rovelli's book with the same title. This was soon followed by Thomas Thiemann's 'Modern Canonical Quantum General Relativity'. Although the main focus of each of these books is non-perturbative and non-string approaches to the quantization of general relativity, they are quite orthogonal in temperament, style, subject matter and mathematical detail. Rovelli and Thiemann focus primarily on loop quantum gravity (LQG), whereas Kiefer attempts a broader introduction and review of the subject that includes chapters on string theory and decoherence. Kiefer's second edition attempts an even wider and somewhat ambitious sweep with 'new sections on asymptotic safety, dynamical triangulation, primordial black holes, the information-loss problem, loop quantum cosmology, and other topics'. The presentation of these current topics is necessarily brief given the size of the book, but effective in encapsulating the main ideas in some cases. For instance the few pages devoted to loop quantum cosmology describe how the mini-superspace reduction of the quantum Hamiltonian constraint of LQG becomes a difference equation, whereas the discussion of 'dynamical triangulations', an approach to defining a discretized Lorentzian path integral for quantum gravity, is less detailed. The first few chapters of the book provide, in a roughly historical sequence, the covariant and canonical metric variable approach to the subject developed in the 1960s and 70s. The problem(s) of time in quantum gravity are nicely summarized in the chapter on quantum geometrodynamics, followed by a detailed and effective introduction of the WKB approach and the semi-classical approximation. These topics form the traditional core of the subject. The next three chapters cover LQG, quantization of black holes, and quantum cosmology. Of these the chapter on LQG is

  13. Mapping land cover through time with the Rapid Land Cover Mapper—Documentation and user manual

    Science.gov (United States)

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2017-02-15

    The Rapid Land Cover Mapper is an Esri ArcGIS® Desktop add-in, which was created as an alternative to automated or semiautomated mapping methods. Based on a manual photo interpretation technique, the tool facilitates mapping over large areas and through time, and produces time-series raster maps and associated statistics that characterize the changing landscapes. The Rapid Land Cover Mapper add-in can be used with any imagery source to map various themes (for instance, land cover, soils, or forest) at any chosen mapping resolution. The user manual contains all essential information for the user to make full use of the Rapid Land Cover Mapper add-in. This manual includes a description of the add-in functions and capabilities, and step-by-step procedures for using the add-in. The Rapid Land Cover Mapper add-in was successfully used by the U.S. Geological Survey West Africa Land Use Dynamics team to accurately map land use and land cover in 17 West African countries through time (1975, 2000, and 2013).

  14. Temporal variation of gravity field prior to the Ludian Ms6.5 and Kangding Ms6.3 earthquakes

    Directory of Open Access Journals (Sweden)

    Hongtao Hao

    2015-11-01

    Full Text Available Using mobile gravity data from the central area of Sichuan and Yunnan Provinces, the relationship between gravity variation and earthquakes was studied based on the Ludian Ms6.5 earthquake that occurred on August 3rd, 2014, and the Kangding Ms6.3 earthquake that occurred on November 22nd, 2014; the mechanism of gravity variation was also explored. The results are as follows: (1 Prior to both earthquakes, gravity variation exhibited similar characteristics as those observed before both the Tangshan and Wenchuan earthquakes, in which typical precursor anomalies were positive gravity variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the earthquake. (2 A relatively accurate prediction of the occurrence locations of the two earthquakes was made by the Gravity Network Center of China (GNCC based on these precursor anomalies. In the gravity study report on the 2014 earthquake trends submitted at the end of 2013, the Daofu-Shimian section at the junction of the Xianshuihe and Longmenshan fault zones was noted as an earthquake-risk region with a predicted magnitude of 6.5, which covered the epicenter of the Kangding Ms6.3 earthquake. In another report on earthquake trends in southwestern China submitted in mid-2014, the Lianfeng, Zhaotong fault zone was also classified as an earthquake-risk region with a magnitude of 6.0, and the central area of this region basically overlapped with the epicenter of the Ludian Ms6.5 earthquake. (3 The gravity variation characteristics are reasonably consistent with crustal movements, and deep material migration is likely the primary cause of gravity variation.

  15. Influence of coral cover and structural complexity on the accuracy of visual surveys of coral-reef fish communities

    KAUST Repository

    Coker, Darren James

    2017-04-20

    Using manipulated patch reefs with combinations of varying live-coral cover (low, medium and high) and structural complexity (low and high), common community metrics (abundance, diversity, richness and community composition) collected through standard underwater visual census techniques were compared with exhaustive collections using a fish anaesthetic (clove oil). This study showed that reef condition did not influence underwater visual census estimates at a community level, but reef condition can influence the detectability of some small and cryptic species and this may be exacerbated if surveys are conducted on a larger scale.

  16. Influence of coral cover and structural complexity on the accuracy of visual surveys of coral-reef fish communities

    KAUST Repository

    Coker, Darren James; Nowicki, J. P.; Graham, N. A. J.

    2017-01-01

    Using manipulated patch reefs with combinations of varying live-coral cover (low, medium and high) and structural complexity (low and high), common community metrics (abundance, diversity, richness and community composition) collected through standard underwater visual census techniques were compared with exhaustive collections using a fish anaesthetic (clove oil). This study showed that reef condition did not influence underwater visual census estimates at a community level, but reef condition can influence the detectability of some small and cryptic species and this may be exacerbated if surveys are conducted on a larger scale.

  17. 76 FR 58420 - Direct Investment Surveys: BE-12, Benchmark Survey of Foreign Direct Investment in the United States

    Science.gov (United States)

    2011-09-21

    ...] RIN 0691-AA80 Direct Investment Surveys: BE-12, Benchmark Survey of Foreign Direct Investment in the... of Foreign Direct Investment in the United States. Benchmark surveys are conducted every five years; the prior survey covered 2007. The benchmark survey covers the universe of foreign direct investment...

  18. Field estimates of gravity terrain corrections and Y2K-compatible method to convert from gravity readings with multiple base stations to tide- and long-term drift-corrected observations

    Science.gov (United States)

    Plouff, Donald

    2000-01-01

    Gravity observations are directly made or are obtained from other sources by the U.S. Geological Survey in order to prepare maps of the anomalous gravity field and consequently to interpret the subsurface distribution of rock densities and associated lithologic or geologic units. Observations are made in the field with gravity meters at new locations and at reoccupations of previously established gravity "stations." This report illustrates an interactively-prompted series of steps needed to convert gravity "readings" to values that are tied to established gravity datums and includes computer programs to implement those steps. Inasmuch as individual gravity readings have small variations, gravity-meter (instrument) drift may not be smoothly variable, and acommodations may be needed for ties to previously established stations, the reduction process is iterative. Decision-making by the program user is prompted by lists of best values and graphical displays. Notes about irregularities of topography, which affect the value of observed gravity but are not shown in sufficient detail on topographic maps, must be recorded in the field. This report illustrates ways to record field notes (distances, heights, and slope angles) and includes computer programs to convert field notes to gravity terrain corrections. This report includes approaches that may serve as models for other applications, for example: portrayal of system flow; style of quality control to document and validate computer applications; lack of dependence on proprietary software except source code compilation; method of file-searching with a dwindling list; interactive prompting; computer code to write directly in the PostScript (Adobe Systems Incorporated) printer language; and high-lighting the four-digit year on the first line of time-dependent data sets for assured Y2K compatibility. Computer source codes provided are written in the Fortran scientific language. In order for the programs to operate, they first

  19. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  20. THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY II: DATA ANALYSIS AND THE TIMING OF 10 NEW PULSARS, INCLUDING A RELATIVISTIC BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Ryan S.; Kaspi, Victoria M.; Archibald, Anne M.; Karako-Argaman, Chen [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Boyles, Jason; Lorimer, Duncan R.; McLaughlin, Maura A.; Cardoso, Rogerio F. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Ransom, Scott M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stairs, Ingrid H.; Berndsen, Aaron; Cherry, Angus; McPhee, Christie A. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hessels, Jason W. T.; Kondratiev, Vladislav I.; Van Leeuwen, Joeri [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands); Epstein, Courtney R. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Pennucci, Tim [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Roberts, Mallory S. E. [Eureka Scientific Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602 (United States); Stovall, Kevin, E-mail: rlynch@physics.mcgill.ca [Center for Advanced Radio Astronomy and Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States)

    2013-02-15

    We have completed a 350 MHz Drift-scan Survey using the Robert C. Byrd Green Bank Telescope with the goal of finding new radio pulsars, especially millisecond pulsars that can be timed to high precision. This survey covered {approx}10,300 deg{sup 2} and all of the data have now been fully processed. We have discovered a total of 31 new pulsars, 7 of which are recycled pulsars. A companion paper by Boyles et al. describes the survey strategy, sky coverage, and instrumental setup, and presents timing solutions for the first 13 pulsars. Here we describe the data analysis pipeline, survey sensitivity, and follow-up observations of new pulsars, and present timing solutions for 10 other pulsars. We highlight several sources-two interesting nulling pulsars, an isolated millisecond pulsar with a measurement of proper motion, and a partially recycled pulsar, PSR J0348+0432, which has a white dwarf companion in a relativistic orbit. PSR J0348+0432 will enable unprecedented tests of theories of gravity.

  1. Gravity gradient preprocessing at the GOCE HPF

    Science.gov (United States)

    Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.

    2009-04-01

    One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  2. New standards for reducing gravity data: The North American gravity database

    Science.gov (United States)

    Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.

    2005-01-01

    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  3. Scale-invariant gravity: geometrodynamics

    International Nuclear Information System (INIS)

    Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O

    2003-01-01

    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different

  4. Forest Cover Associated with Improved Child Health and Nutrition: Evidence from the Malawi Demographic and Health Survey and Satellite Data

    Science.gov (United States)

    Johnson, Kiersten B.; Jacob, Anila; Brown, Molly Elizabeth

    2013-01-01

    Healthy forests provide human communities with a host of important ecosystem services, including the provision of food, clean water, fuel, and natural medicines. Yet globally, about 13 million hectares of forests are lost every year, with the biggest losses in Africa and South America. As biodiversity loss and ecosystem degradation due to deforestation continue at unprecedented rates, with concomitant loss of ecosystem services, impacts on human health remain poorly understood. Here, we use data from the 2010 Malawi Demographic and Health Survey, linked with satellite remote sensing data on forest cover, to explore and better understand this relationship. Our analysis finds that forest cover is associated with improved health and nutrition outcomes among children in Malawi. Children living in areas with net forest cover loss between 2000 and 2010 were 19% less likely to have a diverse diet and 29% less likely to consume vitamin A-rich foods than children living in areas with no net change in forest cover. Conversely, children living in communities with higher percentages of forest cover were more likely to consume vitamin A-rich foods and less likely to experience diarrhea. Net gain in forest cover over the 10-year period was associated with a 34% decrease in the odds of children experiencing diarrhea (P5.002). Given that our analysis relied on observational data and that there were potential unknown factors for which we could not account, these preliminary findings demonstrate only associations, not causal relationships, between forest cover and child health and nutrition outcomes. However, the findings raise concerns about the potential short- and long-term impacts of ongoing deforestation and ecosystem degradation on community health in Malawi, and they suggest that preventing forest loss and maintaining the ecosystems services of forests are important factors in improving human health and nutrition outcomes.

  5. Dual geometric-gauge field aspects of gravity

    International Nuclear Information System (INIS)

    Huei Peng; Wang, K.

    1992-01-01

    We propose that the geometric and standard gauge field aspects of gravity are equally essential for a complete description of gravity and can be reconciled. We show that this dualism of gravity resolves the dimensional Newtonian constant problem in both quantum gravity and unification schemes involving gravity (i.e., the Newtonian constant is no longer the coupling constant in the gauge aspect of gravity) and reveals the profound similarity between gravity and other fields. 23 refs., 3 tabs

  6. Planarian regeneration under micro- and hyper-gravity simulated contexts

    Science.gov (United States)

    Auletta, Gennaro; Van Loon, ing.. Jack J. W. A.; Adell, Teresa; Salo, Emili

    Planarians are non-parasitic flatworms of the Turbellaria class, some of which show the striking ability to regenerate any part of their body, even the head, in few days. Planarians are common to many parts of the world, living in both saltwater and freshwater, as well as in terrestrial areas. Due to their plasticity Planarians have been a classical model for the study of the mechanisms of regeneration. Currently, their cheap and easy maintenance, as well as the establishment of robust genetic tools, have converted them into an essential system in the field of stem cells and regenerative medicine. The aim of our project is to study the effect that micro- and hyper- gravity could exert during the process of planarians regeneration. The reason for planarians extreme regenerative capability is the maintenance until adulthood of a population of totipotent stem cells as well as the continuous activation of the cell-cell communication molecular pathways. Our prediction is that the alteration of the forces could affect planarians regeneration at different levels: 1) To regenerate, planarians must activate both proliferative and apoptotic responses, in order to create new tissue and to remodel the pre-existing one, respectively. Both cellular processes have been reported to be altered in several models under differential gravitational forces; 2) In planarians, the main intercellular signalling pathways (Wnt, TGFb, BMP, Hh, EGF) must control the process of differentiation and determination of each cell. For instances, it has been demonstrated that the differential activity of the wnt/beta-catenin pathway specifies the posterior (tail) versus the anterior (head) identity. Those pathways rely on the distance that secreted molecules (morphogens) are able to reach. Either this mechanism consist in a passive diffusion or an active transport through phyllopodia, it could sense the magnitude of the gravitational force; 3) The epidermis of planarians is covered by cilia, which beat

  7. A comparison of Horava-Lifshitz gravity and Einstein gravity through thin-shell wormhole construction

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, F [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Kuhfittig, P K F [Department of Mathematics, Milwaukee School of Engineering, Milwaukee, WI 53202-3109 (United States); Kalam, M [Department of Physics, Aliah University, Sector V, Salt Lake, Kolkata 700091 (India); Usmani, A A [Department of Physics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh (India); Ray, S, E-mail: farook-rahaman@yahoo.com, E-mail: kuhfitti@msoe.edu, E-mail: mehedikalam@yahoo.co.in, E-mail: anisul@iucaa.ernet.in, E-mail: saibal@iucaa.ernet.in [Department of Physics, Govt College of Engineering and Ceramic Technology, Kolkata 700010 (India)

    2011-08-07

    In this paper, we have constructed a new class of thin-shell wormholes from black holes in Horava-Lifshitz gravity. Particular emphasis is placed on those aspects that allow a comparison of Horava-Lifshitz gravity to Einstein gravity. The former enjoys a number of advantages for small values of the throat radius.

  8. New design and facilities for the International Database for Absolute Gravity Measurements (AGrav): A support for the Establishment of a new Global Absolute Gravity Reference System

    Science.gov (United States)

    Wziontek, Hartmut; Falk, Reinhard; Bonvalot, Sylvain; Rülke, Axel

    2017-04-01

    After about 10 years of successful joint operation by BGI and BKG, the International Database for Absolute Gravity Measurements "AGrav" (see references hereafter) was under a major revision. The outdated web interface was replaced by a responsive, high level web application framework based on Python and built on top of Pyramid. Functionality was added, like interactive time series plots or a report generator and the interactive map-based station overview was updated completely, comprising now clustering and the classification of stations. Furthermore, the database backend was migrated to PostgreSQL for better support of the application framework and long-term availability. As comparisons of absolute gravimeters (AG) become essential to realize a precise and uniform gravity standard, the database was extended to document the results on international and regional level, including those performed at monitoring stations equipped with SGs. By this it will be possible to link different AGs and to trace their equivalence back to the key comparisons under the auspices of International Committee for Weights and Measures (CIPM) as the best metrological realization of the absolute gravity standard. In this way the new AGrav database accommodates the demands of the new Global Absolute Gravity Reference System as recommended by the IAG Resolution No. 2 adopted in Prague 2015. The new database will be presented with focus on the new user interface and new functionality, calling all institutions involved in absolute gravimetry to participate and contribute with their information to built up a most complete picture of high precision absolute gravimetry and improve its visibility. A Digital Object Identifier (DOI) will be provided by BGI to contributors to give a better traceability and facilitate the referencing of their gravity surveys. Links and references: BGI mirror site : http://bgi.obs-mip.fr/data-products/Gravity-Databases/Absolute-Gravity-data/ BKG mirror site: http

  9. The Effects of Lever Arm (Instrument Offset) Error on GRAV-D Airborne Gravity Data

    Science.gov (United States)

    Johnson, J. A.; Youngman, M.; Damiani, T.

    2017-12-01

    High quality airborne gravity collection with a 2-axis, stabilized platform gravity instrument, such as with a Micro-g LaCoste Turnkey Airborne Gravity System (TAGS), is dependent on the aircraft's ability to maintain "straight and level" flight. However, during flight there is constant rotation about the aircraft's center of gravity. Standard practice is to install the scientific equipment close to the aircraft's estimated center of gravity to minimize the relative rotations with aircraft motion. However, there remain small offsets between the instruments. These distance offsets, the lever arm, are used to define the rigid-body, spatial relationship between the IMU, GPS antenna, and airborne gravimeter within the aircraft body frame. The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, which is collecting airborne gravity data across the U.S., uses a commercial software package for coupled IMU-GNSS aircraft positioning. This software incorporates a lever arm correction to calculate a precise position for the airborne gravimeter. The positioning software must do a coordinate transformation to relate each epoch of the coupled GNSS-IMU derived position to the position of the gravimeter within the constantly-rotating aircraft. This transformation requires three inputs: accurate IMU-measured aircraft rotations, GNSS positions, and lever arm distances between instruments. Previous studies show that correcting for the lever arm distances improves gravity results, but no sensitivity tests have been done to investigate how error in the lever arm distances affects the final airborne gravity products. This research investigates the effects of lever arm measurement error on airborne gravity data. GRAV-D lever arms are nominally measured to the cm-level using surveying equipment. "Truth" data sets will be created by processing GRAV-D flight lines with both relatively small lever arms and large lever arms. Then negative and positive incremental

  10. Cosmological consistency tests of gravity theory and cosmic acceleration

    Science.gov (United States)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  11. Signatures of modified gravity on the 21 cm power spectrum at reionisation

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191 Gif/Yvette Cedex (France); Clesse, Sébastien; Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: s.clesse@damtp.cam.ac.uk, E-mail: a.c.davis@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-01-01

    Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21 cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z{sub *} ∼ 12 could be detectable for a scalar field range as low as 5kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.

  12. Gravity a very short introduction

    CERN Document Server

    Clifton, Timothy

    2017-01-01

    Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...

  13. Quantum Gravity

    OpenAIRE

    Alvarez, Enrique

    2004-01-01

    Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...

  14. Influence of cover defects on the attenuation of radon with earthen covers

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.; Mayer, D.W.

    1983-11-01

    Experimental and theoretical evaluations of radon flux through laboratory-scale defective soil columns are presented together with a survey of literature on the formation and prevention of defects in soil covers. This report focuses on air-filled, centimeter-scale defects that are most probable in earthen covers for attenuating radon emission from uranium-mill tailings. Examples include shirnkage and erosion cracks, erosion piping, animal burrows and air channels formed by the biodegradation of vegetation roots. Calculations based on mathematical models indicate that collections of defects which could increase the radon flux from an earthen cover by a factor of two would be easily detected by visual inspection. However, these models ignore air-turbulence in the defect and drying of the soil around the defect. Laboratory measurements showed that turbulent diffusion of radon occurred through defects as narrow as 0.3 cm when subjected to a transverse air velocity of 1 to 6 miles per hour at the surface. Both turbulence and more-rapid drying of soil can accelerate radon flux to the cover surface. Consequently, recommended methods to inhibit defect formation should be applied. 29 references, 3 figures, 5 tables

  15. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    Science.gov (United States)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  16. Broadscale Postseismic Gravity Change Following the 2011 Tohoku-Oki Earthquake and Implication for Deformation by Viscoelastic Relaxation and Afterslip

    Science.gov (United States)

    Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred

    2014-01-01

    The analysis of GRACE gravity data revealed post-seismic gravity increase by 6 micro-Gal over a 500 km scale within a couple of years after the 2011 Tohoku-Oki earthquake, which is nearly 40-50% of the co-seismic gravity change. It originates mostly from changes in the isotropic component corresponding to the M(sub rr) moment tensor element. The exponential decay with rapid change in a year and gradual change afterward is a characteristic temporal pattern. Both viscoelastic relaxation and afterslip models produce reasonable agreement with the GRACE free-air gravity observation, while their Bouguer gravity patterns and seafloor vertical deformations are distinctly different. The post-seismic gravity variation is best modeled by the bi-viscous relaxation with a transient and steady state viscosity of 10(exp 18) and 10(exp 19) Pa s, respectively, for the asthenosphere. Our calculated higher-resolution viscoelastic relaxation model, underlying the partially ruptured elastic lithosphere, yields the localized post-seismic subsidence above the hypocenter reported from the GPS-acoustic seafloor surveying.

  17. Black holes in pure Lovelock gravities

    International Nuclear Information System (INIS)

    Cai Ronggen; Ohta, Nobuyoshi

    2006-01-01

    Lovelock gravity is a fascinating extension of general relativity, whose action consists of dimensionally extended Euler densities. Compared to other higher order derivative gravity theories, Lovelock gravity is attractive since it has a lot of remarkable features such as the fact that there are no more than second order derivatives with respect to the metric in its equations of motion, and that the theory is free of ghosts. Recently, in the study of black strings and black branes in Lovelock gravity, a special class of Lovelock gravity is considered, which is named pure Lovelock gravity, where only one Euler density term exists. In this paper we study black hole solutions in the special class of Lovelock gravity and associated thermodynamic properties. Some interesting features are found, which are quite different from the corresponding ones in general relativity

  18. Seasonal Gravity Field Variations from GRACE and Hydrological Models

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Hinderer, Jacques; Lemoine, Frank G.

    2004-01-01

    . Four global hydrological models covering the same period in 2002–2003 as the GRACE observations were investigated to for their mutual consistency in estimates of annual variation in terrestrial water storage and related temporal changes in gravity field. The hydrological models differ by a maximum of 2...... µGal or nearly 5 cm equivalent water storage in selected regions. Integrated over all land masses the standard deviation among the annual signal from the four hydrological models are 0.6 µGal equivalent to around 1.4 cm in equivalent water layer thickness. The estimated accuracy of the annual...

  19. Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep-sea basins

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.

    Content-Type text/plain; charset=UTF-8 202 Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep... will undertake either regional, reconnaissance or detail gravity surveys. We generally deal with free air gravity anomalies in oceans. The free air gravity anomalies mostly mimic the seabed configuration and at times, the deviation observed in the free air...

  20. Gravity model improvement investigation. [improved gravity model for determination of ocean geoid

    Science.gov (United States)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.

    1973-01-01

    This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.

  1. The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models

    Science.gov (United States)

    Godah, Walyeldeen; Krynski, Jan; Szelachowska, Malgorzata

    2018-05-01

    The objective of this paper is to demonstrate the usefulness of absolute gravity data for the validation of Global Geopotential Models (GGMs). It is also aimed at improving quasigeoid heights determined from satellite-only GGMs using absolute gravity data. The area of Poland, as a unique one, covered with a homogeneously distributed set of absolute gravity data, has been selected as a study area. The gravity anomalies obtained from GGMs were validated using the corresponding ones determined from absolute gravity data. The spectral enhancement method was implemented to overcome the spectral inconsistency in data being validated. The quasigeoid heights obtained from the satellite-only GGM as well as from the satellite-only GGM in combination with absolute gravity data were evaluated with high accuracy GNSS/levelling data. Estimated accuracy of gravity anomalies obtained from GGMs investigated is of 1.7 mGal. Considering omitted gravity signal, e.g. from degree and order 101 to 2190, satellite-only GGMs can be validated at the accuracy level of 1 mGal using absolute gravity data. An improvement up to 59% in the accuracy of quasigeoid heights obtained from the satellite-only GGM can be observed when combining the satellite-only GGM with absolute gravity data.

  2. UV caps, IR modification of gravity, and recovery of 4D gravity in regularized braneworlds

    International Nuclear Information System (INIS)

    Kobayashi, Tsutomu

    2008-01-01

    In the context of six-dimensional conical braneworlds we consider a simple and explicit model that incorporates long-distance modification of gravity and regularization of codimension-2 singularities. To resolve the conical singularities we replace the codimension-2 branes with ringlike codimension-1 branes, filling in the interiors with regular caps. The six-dimensional Planck scale in the cap is assumed to be much greater than the bulk Planck scale, which gives rise to the effect analogous to brane-induced gravity. Weak gravity on the regularized brane is studied in the case of a sharp conical bulk. We show by a linear analysis that gravity at short distances is effectively described by the four-dimensional Brans-Dicke theory, while the higher dimensional nature of gravity emerges at long distances. The linear analysis breaks down at some intermediate scale, below which four-dimensional Einstein gravity is shown to be recovered thanks to the second-order effects of the brane bending.

  3. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  4. Precision surveying the principles and geomatics practice

    CERN Document Server

    Ogundare, John Olusegun

    2016-01-01

    A comprehensive overview of high precision surveying, including recent developments in geomatics and their applications This book covers advanced precision surveying techniques, their proper use in engineering and geoscience projects, and their importance in the detailed analysis and evaluation of surveying projects. The early chapters review the fundamentals of precision surveying: the types of surveys; survey observations; standards and specifications; and accuracy assessments for angle, distance and position difference measurement systems. The book also covers network design and 3-D coordinating systems before discussing specialized topics such as structural and ground deformation monitoring techniques and analysis, mining surveys, tunneling surveys, and alignment surveys. Precision Surveying: The Principles and Geomatics Practice: * Covers structural and ground deformation monitoring analysis, advanced techniques in mining and tunneling surveys, and high precision alignment of engineering structures *...

  5. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  6. Northern Oklahoma Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...

  7. From SU(3) to gravity: Festschrift in honor of Yuval Ne'eman

    International Nuclear Information System (INIS)

    Gotsman, E.; Tauber, G.

    1985-01-01

    This book contains papers covering the following topics: groups and gauges, particles, science policy, astronomy and astrophysics, and gravity and supergravity. Some of the titles of the papers include: General covariance and the passive equations of physics, Symmetry of wave functions for ''like'' unstable particles, Analytical calculations for masses in Hamiltonian lattice theories, on plane waves and nullicles, Descrete Yang-Milles theories, Refugee scientists and nuclear energy, QCD inequalities, Speculation in cosmology, and an alternative to general relativity

  8. Gravity anomalies of the Northern Hawaiian Islands: Implications on the shield evolutions of Kauai and Niihau

    Science.gov (United States)

    Flinders, Ashton F.; Ito, Garrett; Garcia, Michael O.

    2010-08-01

    New land and marine gravity data reveal two positive residual gravity anomalies in the Northern Hawaiian Islands: one over Kaua'i, the other between the islands of Kaua'i and Ni'ihau. These gravitational highs are similar in size and magnitude to those of other Hawaiian volcanoes, indicating local zones of high-density crust, attributed to olivine cumulates in solidified magma reservoirs. The residual gravity high over Kaua'i is located in the Līhu'e Basin, offset 8-12 km east of Kaua'i's geologically mapped caldera. This offset suggests that the mapped caldera is a collapsed feature later filled in with lava and not the long-term center of Kaua'i shield volcanism. A second residual gravity high, in the submarine channel between Kaua'i and Ni'ihau, marks the volcanic center of the Ni'ihau shield volcano. This second residual gravity anomaly implies that Ni'ihau's eastern boundary extended ˜20 km east of its present location. Through inversion, the residual gravity anomalies were modeled as being produced by two solidified magma reservoirs with average densities of 3100 kg/m3 and volumes between 2470 and 2540 km3. Considering the locations and sizes of the residual gravity anomalies/magma reservoirs, the extent of the two islands' paleoshorelines and potassium-argon dating of shield-stage lavas, we conclude that the two islands were not connected subaerially during their respective shield stages and that Ni'ihau's topographic summit was removed by an eastern flank collapse between 4.3 and 5.6 Ma. Continued constructional volcanism on western Kaua'i likely covered much of the submerged remains of eastern Ni'ihau.

  9. Vaidya spacetime in massive gravity's rainbow

    Directory of Open Access Journals (Sweden)

    Yaghoub Heydarzade

    2017-11-01

    Full Text Available In this paper, we will analyze the energy dependent deformation of massive gravity using the formalism of massive gravity's rainbow. So, we will use the Vainshtein mechanism and the dRGT mechanism for the energy dependent massive gravity, and thus analyze a ghost free theory of massive gravity's rainbow. We study the energy dependence of a time-dependent geometry, by analyzing the radiating Vaidya solution in this theory of massive gravity's rainbow. The energy dependent deformation of this Vaidya metric will be performed using suitable rainbow functions.

  10. Physics of Trans-Planckian Gravity

    CERN Document Server

    Dvali, Gia; Germani, Cristiano

    2011-01-01

    We study aspects of the phenomenon of gravitational UV-self-completeness and its implications for deformations of Einstein gravity. In a ghost-free theory flowing to Einstein gravity in the IR trans-Planckian propagating quantum degrees of freedom cannot exist. The only physical meaning of a trans-Planckian pole is the one of a classical state (Black Hole) which is fully described by the light IR quantum degrees of freedom and gives exponentially-suppressed contributions to virtual processes. In this sense Einstein gravity is UV self-complete, although not Wilsonian. We show that this UV/IR correspondence puts a severe constraint on any attempt of conventional Wilsonian UV-completion of trans-Planckian gravity. In particular, there is no well-defined energy domain in which gravity could become asymptotically weak or safe.

  11. Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Wicharn Lewkeeratiyutkul

    2010-08-01

    Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

  12. The National Land Cover Database

    Science.gov (United States)

    Homer, Collin G.; Fry, Joyce A.; Barnes, Christopher A.

    2012-01-01

    The National Land Cover Database (NLCD) serves as the definitive Landsat-based, 30-meter resolution, land cover database for the Nation. NLCD provides spatial reference and descriptive data for characteristics of the land surface such as thematic class (for example, urban, agriculture, and forest), percent impervious surface, and percent tree canopy cover. NLCD supports a wide variety of Federal, State, local, and nongovernmental applications that seek to assess ecosystem status and health, understand the spatial patterns of biodiversity, predict effects of climate change, and develop land management policy. NLCD products are created by the Multi-Resolution Land Characteristics (MRLC) Consortium, a partnership of Federal agencies led by the U.S. Geological Survey. All NLCD data products are available for download at no charge to the public from the MRLC Web site: http://www.mrlc.gov.

  13. Studying the Representation Accuracy of the Earth's Gravity Field in the Polar Regions Based on the Global Geopotential Models

    Science.gov (United States)

    Koneshov, V. N.; Nepoklonov, V. B.

    2018-05-01

    The development of studies on estimating the accuracy of the Earth's modern global gravity models in terms of the spherical harmonics of the geopotential in the problematic regions of the world is discussed. The comparative analysis of the results of reconstructing quasi-geoid heights and gravity anomalies from the different models is carried out for two polar regions selected within a radius of 1000 km from the North and South poles. The analysis covers nine recently developed models, including six high-resolution models and three lower order models, including the Russian GAOP2012 model. It is shown that the modern models determine the quasi-geoid heights and gravity anomalies in the polar regions with errors of 5 to 10 to a few dozen cm and from 3 to 5 to a few dozen mGal, respectively, depending on the resolution. The accuracy of the models in the Arctic is several times higher than in the Antarctic. This is associated with the peculiarities of gravity anomalies in every particular region and with the fact that the polar part of the Antarctic has been comparatively less explored by the gravity methods than the polar Arctic.

  14. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2008-05-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out

  15. Active Response Gravity Offload and Method

    Science.gov (United States)

    Dungan, Larry K. (Inventor); Valle, Paul S. (Inventor); Bankieris, Derek R. (Inventor); Lieberman, Asher P. (Inventor); Redden, Lee (Inventor); Shy, Cecil (Inventor)

    2015-01-01

    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.

  16. Physics of trans-Planckian gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Folkerts, Sarah; Germani, Cristiano

    2011-01-01

    We study the field theoretical description of a generic theory of gravity flowing to Einstein general relativity in IR. We prove that, if ghost-free, in the weakly-coupled regime such a theory can never become weaker than general relativity. Using this fact, as a by-product, we suggest that in a ghost-free theory of gravity trans-Planckian propagating quantum degrees of freedom cannot exist. The only physical meaning of a trans-Planckian pole is the one of a classical state (black hole) which is described by the light IR quantum degrees of freedom and gives exponentially-suppressed contributions to virtual processes. In this picture Einstein gravity is UV self-complete, although not Wilsonian, and sub-Planckian distances are unobservable in any healthy theory of gravity. We then finally show that this UV/IR correspondence puts a severe constraint on any attempt of conventional Wilsonian UV-completion of trans-Planckian gravity. Specifically, there is no well-defined energy domain in which gravity could become asymptotically weak or safe.

  17. Test of Gravity on Large Scales with Weak Gravitational Lensing and Clustering Measurements of SDSS Luminous Red Galaxies

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, R.; Seljak, U.; Gunn, J.; Lombriser, L.

    2009-01-01

    We perform a test of gravity on large scales (5-50 Mpc/h) using 70,000 luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) DR7 with redshifts 0.16gravity and is largely independent of galaxy bias and sigma_8. In particular, E_G is sensitive to the relation between the spatial and temporal scalar perturbations in the space-time metric. While these two potentials are equivalent in concordance cosmology (GR+LCDM) in the absence of anisotropic stress, they are not equivalent in alternative theories of gravity in general, so that different models make different predictions for E_G. We find E_G=0.37±0.05 averaged over scales 5gravity theories, including f(R), DGP, and TeVeS. This work serves as a proof of concept for the application of this test in future galaxy surveys such as LSST, for which a very high signal-to-noise measurement will be possible.

  18. A Bottom Gravity Survey of the Continental Shelf Between Point Lobos and Point Sur, California.

    Science.gov (United States)

    From an occupation of 68 ocean bottom and 38 land gravity stations between Pt. Lobos and Pt. Sur, California, a complete Bouguer anomaly map was...produced and analyzed. The steps in data reduction leading to the complete Bouguer anomaly field are presented, unique features of which are associated

  19. Dilaton gravity, Poisson sigma models and loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Reyes, Juan D

    2009-01-01

    Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.

  20. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  1. Progress in the global standardization of gravity: an analysis of the Woollard and Rose international gravity values

    International Nuclear Information System (INIS)

    Woollard, G.P.; Godley, V.M.

    1980-12-01

    The history of improvements in the global standarization of gravity values since the advent of high range gravimeters in 1948 is reviewed. In particular the gravity base values given in SEG special publication International Gravity Measurements (Woolard and Rose, 1963) are evaluated against the most recent set of standarized gravity base values, The International Gravity Standardization Net, 1971 (Morelli et al, 1974). Adjunct IGSN 71 values prepared by the US Defense Mapping Agency Aerospace Center (unpublished) are also used to give a more comprehensive worldwide comparison of values

  2. The Superheavy Elements and Anti-Gravity

    International Nuclear Information System (INIS)

    Anastasovski, Petar K.

    2004-01-01

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking

  3. Second advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings

    International Nuclear Information System (INIS)

    Fiziev, P.; Todorov, M.

    2005-01-01

    The Second Advanced Workshop ‘Gravity, Astrophysics, and Strings’ held on 10-16 June 2004. It served four purposes: 1) Bringing together scientists from various branches of gravitational physics, astrophysics, and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2) Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference; 4) Stimulated creation of a new generation of young physicists for further development of the above basic topics in fundamental science. The workshop covered wide aspects of gravity, astrophysics, and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Relativistic Gravity; (Super)Strings. About 35 participants from Europe, America and Asia gave 28 invited talks and contributed presentations. They and guided general discussion as well, which took place confirmed the considerable interest to the themes of the workshop. The full text of 16 of the presented papers are included in this book

  4. A sapphire monolithic differential accelerometer as core sensor for gravity gradiometric geophysical instrumentation

    Directory of Open Access Journals (Sweden)

    F. Mango

    2006-06-01

    Full Text Available Gradiometric gravimetry is a survey technique widely used in geological structure investigation. This work demonstrates the feasibility of a new class of low frequency accelerometers for geodynamics studies and space applications. We present the design features of a new low noise single-axis differential accelerometer; the sensor is suitable to be used in a Gravity Gradiometer (GG system for land geophysical survey and gravity gradient measurements. A resolution of 1 Eötvös (1 Eö=10?9s?2 at one sample per second is achievable in a compact, lightweight (less than 2 kg portable instrument, operating at room temperature. The basic components of the sensor are two identical rigidly connected accelerometers separated by a 15-cm baseline vector and the useful signal is extracted as the subtraction of the two outputs, by means of an interferometric microwave readout system. The structure will be engraved in a monocrystal of sapphire by means of Computer-Numerically-Controlled (CNC ultrasonic machining: the material was chosen because of its unique mix of outstanding mechanical and dielectric properties.

  5. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  6. Extended Theories of Gravity

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; De Laurentis, Mariafelicia

    2011-01-01

    Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.

  7. Airborne Gravity Data Denoising Based on Empirical Mode Decomposition: A Case Study for SGA-WZ Greenland Test Data

    DEFF Research Database (Denmark)

    Zhao, Lei; Wu, Meiping; Forsberg, René

    2015-01-01

    Surveying the Earth's gravity field refers to an important domain of Geodesy, involving deep connections with Earth Sciences and Geo-information. Airborne gravimetry is an effective tool for collecting gravity data with mGal accuracy and a spatial resolution of several kilometers. The main obstacle......-WZ carried out in Greenland. Comparing to the solutions of using finite impulse response filter (FIR), the new results are improved by 40% and 10% of root mean square (RMS) of internal consistency and external accuracy, respectively....

  8. No slip gravity

    Science.gov (United States)

    Linder, Eric V.

    2018-03-01

    A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.

  9. Zero-gravity movement studies

    Science.gov (United States)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  10. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  11. Systematic simulations of modified gravity: symmetron and dilaton models

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo

    2012-01-01

    We study the linear and nonlinear structure formation in the dilaton and symmetron models of modified gravity using a generic parameterisation which describes a large class of scenarios using only a few parameters, such as the coupling between the scalar field and the matter, and the range of the scalar force on very large scales. For this we have modified the N-body simulation code ECOSMOG, which is a variant of RAMSES working in modified gravity scenarios, to perform a set of 110 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a large portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM template cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc −1 . Our results show the full effect of screening on nonlinear structure formation and the associated deviation from ΛCDM. We also investigate how differences in the force mediated by the scalar field in modified gravity models lead to qualitatively different features for the nonlinear power spectrum and the halo mass function, and how varying the individual model parameters changes these observables. The differences are particularly large in the nonlinear power spectra whose shapes for f(R), dilaton and symmetron models vary greatly, and where the characteristic bump around 1 hMpc −1 of f(R) models is preserved for symmetrons, whereas an increase on much smaller scales is particular to symmetrons. No bump is present for dilatons where a flattening of the power spectrum takes place on small scales. These deviations from ΛCDM and the differences between modified gravity models, such as dilatons and symmetrons, could be tested with future surveys

  12. Partial gravity - Human impacts on facility design

    Science.gov (United States)

    Capps, Stephen; Moore, Nathan

    1990-01-01

    Partial gravity affects the body differently than earth gravity and microgravity environments. The main difference from earth gravity is human locomotion; while the main dfference from microgravity is the specific updown orientation and reach envelopes which increase volume requirements. Much data are available on earth gravity and microgravity design; however, very little information is available on human reactions to reduced gravity levels in IVA situations (without pressure suits). Therefore, if humans commit to permanent lunar habitation, much research should be conducted in the area of partial gravity effects on habitat design.

  13. Generalized uncertainty principle, quantum gravity and Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2009-01-01

    We investigate a close connection between generalized uncertainty principle (GUP) and deformed Horava-Lifshitz (HL) gravity. The GUP commutation relations correspond to the UV-quantum theory, while the canonical commutation relations represent the IR-quantum theory. Inspired by this UV/IR quantum mechanics, we obtain the GUP-corrected graviton propagator by introducing UV-momentum p i =p 0i (1+βp 0 2 ) and compare this with tensor propagators in the HL gravity. Two are the same up to p 0 4 -order.

  14. Weakening Gravity on Redshift-Survey Scales with Kinetic Matter Mixing

    CERN Document Server

    D'Amico, Guido; Mancarella, Michele; Vernizzi, Filippo

    2017-01-01

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field as well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a $\\Lambda$CDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectr...

  15. Gravity signals from the lithosphere in the Central European Basin System

    Science.gov (United States)

    Yegorova, T.; Bayer, U.; Thybo, H.; Maystrenko, Y.; Scheck-Wenderoth, M.; Lyngsie, S. B.

    2007-01-01

    We study the gravity signals from different depth levels in the lithosphere of the Central European Basin System (CEBS). The major elements of the CEBS are the Northern and Southern Permian Basins which include the Norwegian-Danish Basin (NDB), the North-German Basin (NGB) and the Polish Trough (PT). An up to 10 km thick sedimentary cover of Mesozoic-Cenozoic sediments, hides the gravity signal from below the basin and masks the heterogeneous structure of the consolidated crust, which is assumed to be composed of domains that were accreted during the Paleozoic amalgamation of Europe. We performed a three-dimensional (3D) gravity backstripping to investigate the structure of the lithosphere below the CEBS. Residual anomalies are derived by removing the effect of sediments down to the base of Permian from the observed field. In order to correct for the influence of large salt structures, lateral density variations are incorporated. These sediment-free anomalies are interpreted to reflect Moho relief and density heterogeneities in the crystalline crust and uppermost mantle. The gravity effect of the Moho relief compensates to a large extent the effect of the sediments in the CEBS and in the North Sea. Removal of the effects of large-scale crustal inhomogeneities shows a clear expression of the Variscan arc system at the southern part of the study area and the old crust of Baltica further north-east. The remaining residual anomalies (after stripping off the effects of sediments, Moho topography and large-scale crustal heterogeneities) reveal long wavelength anomalies, which are caused mainly by density variations in the upper mantle, though gravity influence from the lower crust cannot be ruled out. They indicate that the three main subbasins of the CEBS originated on different lithospheric domains. The PT originated on a thick, strong and dense lithosphere of the Baltica type. The NDB was formed on a weakened Baltica low-density lithosphere formed during the Sveco

  16. Quantum W3 gravity

    International Nuclear Information System (INIS)

    Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY

    1991-11-01

    We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity

  17. Modeling and estimation of a low degree geopotential model from terrestrial gravity data

    Science.gov (United States)

    Pavlis, Nikolaos K.

    1988-01-01

    The development of appropriate modeling and adjustment procedures for the estimation of harmonic coefficients of the geopotential, from surface gravity data was studied, in order to provide an optimum way of utilizing the terrestrial gravity information in combination solutions currently developed at NASA/Goddard Space Flight Center, for use in the TOPEX/POSEIDON mission. The mathematical modeling was based on the fundamental boundary condition of the linearized Molodensky boundary value problem. Atmospheric and ellipsoidal corrections were applied to the surface anomalies. Terrestrial gravity solutions were found to be in good agreement with the satellite ones over areas which are well surveyed (gravimetrically), such as North America or Australia. However, systematic differences between the terrestrial only models and GEMT1, over extended regions in Africa, the Soviet Union, and China were found. In Africa, gravity anomaly differences on the order of 20 mgals and undulation differences on the order of 15 meters, over regions extending 2000 km in diameter, occur. Comparisons of the GEMT1 implied undulations with 32 well distributed Doppler derived undulations gave an RMS difference of 2.6 m, while corresponding comparison with undulations implied by the terrestrial solution gave RMS difference on the order of 15 m, which implies that the terrestrial data in that region are substantially in error.

  18. Radion and holographic brane gravity

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Soda, Jiro

    2002-01-01

    The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function ω(Ψ)=3Ψ/2(1-Ψ) on the positive tension brane and ω(Φ)=-3Φ/2(1+Φ) on the negative tension brane, where Ψ and Φ are nonlinear realizations of the radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Ψ and Φ couples with the sum of the traces of the energy-momentum tensor on both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk geometry can be reconstructed from the solution of quasi-scalar-tensor gravity

  19. Failures in sand in reduced gravity environments

    Science.gov (United States)

    Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.

    2018-04-01

    The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.

  20. Gravity evidence for shaping of the crustal structure of the Ameca graben (Jalisco block northern limit). Western Mexico

    Science.gov (United States)

    Alatorre-Zamora, Miguel Angel; Campos-Enríquez, José Oscar; Fregoso-Becerra, Emilia; Quintanar-Robles, Luis; Toscano-Fletes, Roberto; Rosas-Elguera, José

    2018-03-01

    The Ameca tectonic depression (ATD) is located at the NE of the Jalisco Block along the southwestern fringe of the NW-SE trending Tepic-Zacoalco Rift, in the west-central part of the Trans-Mexican Volcanic Belt, western Mexico. To characterize its shallow crustal structure, we conducted a gravity survey based on nine N-S gravity profiles across the western half of the Ameca Valley. The Bouguer residual anomalies are featured by a central low between two zones of positive gravity values with marked gravity gradients. These anomalies have a general NW-SE trend similar to the Tepic-Zacoalco Rift general trend. Basement topography along these profiles was obtained by means of: 1) a Tsuboi's type inverse modeling, and 2) forward modeling. Approximately northward dipping 10° slopes are modeled in the southern half, with south tilted down faulted blocks of the Cretaceous granitic basement and its volcano-sedimentary cover along sub-vertical and intermediate normal faults, whereas southward dipping slopes of almost 15° are observed at the northern half. According to features of the obtained models, this depression corresponds to a slight asymmetric graben. The Ameca Fault is part of the master fault system along its northern limit. The quantitative interpretation shows an approximately 500 to 1100 m thick volcano-sedimentary infill capped by alluvial products. This study has several implications concerning the limit between the Jalisco Block and the Tepic-Zacoalco Rift. The established shallow crustal structure points to the existence of a major listric fault with its detachment surface beneath the Tepic-Zacoalco Rift. The Ameca Fault is interpreted as a secondary listric fault. The models indicate the presence of granitic bodies of the Jalisco Block beneath the TMVB volcanic products of the Tepic-Zacoalco rift. This implies that the limit between these two regional structures is not simple but involves a complex transition zone. A generic model suggests that the

  1. TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

    International Nuclear Information System (INIS)

    Wang Xin; Chen Xuelei; Park, Changbom

    2012-01-01

    The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

  2. Topological gravity with minimal matter

    International Nuclear Information System (INIS)

    Li Keke

    1991-01-01

    Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)

  3. Teleparallel equivalent of Lovelock gravity

    Science.gov (United States)

    González, P. A.; Vásquez, Yerko

    2015-12-01

    There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.

  4. What Is Gravity?

    Science.gov (United States)

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  5. Human manual control performance in hyper-gravity.

    Science.gov (United States)

    Clark, Torin K; Newman, Michael C; Merfeld, Daniel M; Oman, Charles M; Young, Laurence R

    2015-05-01

    Hyper-gravity provides a unique environment to study how misperceptions impact control of orientation relative to gravity. Previous studies have found that static and dynamic roll tilts are perceptually overestimated in hyper-gravity. The current investigation quantifies how this influences control of orientation. We utilized a long-radius centrifuge to study manual control performance in hyper-gravity. In the dark, subjects were tasked with nulling out a pseudo-random roll disturbance on the cab of the centrifuge using a rotational hand controller to command their roll rate in order to remain perceptually upright. The task was performed in 1, 1.5, and 2 G's of net gravito-inertial acceleration. Initial performance, in terms of root-mean-square deviation from upright, degraded in hyper-gravity relative to 1 G performance levels. In 1.5 G, initial performance degraded by 26 % and in 2 G, by 45 %. With practice, however, performance in hyper-gravity improved to near the 1 G performance level over several minutes. Finally, pre-exposure to one hyper-gravity level reduced initial performance decrements in a different, novel, hyper-gravity level. Perceptual overestimation of roll tilts in hyper-gravity leads to manual control performance errors, which are reduced both with practice and with pre-exposure to alternate hyper-gravity stimuli.

  6. Modeling the Salar de Uyuni, Bolivia as an Equipotential Surface of Earth's Gravity Field

    Science.gov (United States)

    Borsa, Adrian; Bills, Bruce

    2004-01-01

    The salar de Uyuni is a massive dry salt lake that lies at the lowest point of an internal/drainage basin in the Bolivian Altiplano. Its topography is remarkable for its extraordinary flatness over almost a full degree of latitude and longitude. We surveyed a 54 x 45 km region of the salar with kinematic GPS in September, 2002 and found a topographic range of only 80 cm over the entire surveyed area. Furthermore, the survey revealed distinct surface features with several dominant wavelengths and orientations. Some of these appear to be aligned with orographic features that intersect the salar, leading us to conjecture that they are the surface expression of high-density mountains that have been buried by low-density basin sediments. Over the oceans, a similar correspondence between basin bathymetry and surface topography is exploited to map the seafloor using sea-surface satellite altimetry measurements, with the sea surface following geoid undulations due to the underwater mass distribution. On the salar, annual flooding creates a shallow lake whose surface also lies on a equipotential surface shaped by the distribution of underlying mass. The link to the actual salar surface is via the dissolution and redeposition of salt by the lake waters, which appears to push the system to an equilibrium of constant water depth and the coincidence of the shapes of the lake surface and bottom. To test our hypothesis about the origin of the surface features on the salar, we compare our GPS survey elevations with the equipotential surface generated from local gravity measurements in conjunction with gravity and potential values from the EGM96 global geopotential model. 50% of the variance of the GPS elevations can be explained by equipotential surface undulations from the EGM96 model alone, and an additional 40% is explained by the shorter-wavelength equipotential surface derived from local gravity. We examine the unexplained 10% of elevation variance from the standpoint of

  7. Gravity/Fluid Correspondence and Its Application on Bulk Gravity with U(1) Gauge Field

    International Nuclear Information System (INIS)

    Hu, Ya-Peng; Zhang, Jian-Hui

    2014-01-01

    As the long wavelength limit of the AdS/CFT correspondence, the gravity/fluid correspondence has been shown to be a useful tool for extracting properties of the fluid on the boundary dual to the gravity in the bulk. In this paper, after briefly reviewing the algorithm of gravity/fluid correspondence, we discuss the results of its application on bulk gravity with a U(1) gauge field. In the presence of a U(1) gauge field, the dual fluid possesses more interesting properties such as its charge current. Furthermore, an external field A_μ"e"x"t could affect the charge current, and the U(1) Chern-Simons term also induces extra structures to the dual current giving anomalous transport coefficients.

  8. Gravity wave vertical energy flux at 95 km

    Science.gov (United States)

    Jacob, P. G.; Jacka, F.

    1985-01-01

    A three-field photometer (3FP) located at Mt. Torrens near Adelaide, is capable of monitoring different airglow emissions from three spaced fields in the sky. A wheel containing up to six different narrow bandpass interference filters can be rotated, allowing each of the filters to be sequentially placed into each of the three fields. The airglow emission of interest is the 557.7 nm line which has an intensity maximum at 95 km. Each circular field of view is located at the apexes of an equilateral triangle centered on zenith with diameters of 5 km and field separations of 13 km when projected to the 95-km level. The sampling period was 30 seconds and typical data lengths were between 7 and 8 hours. The analysis and results from the interaction of gravity waves on the 557.7 nm emission layer are derived using an atmospheric model similar to that proposed by Hines (1960) where the atmosphere is assumed isothermal and perturbations caused by gravity waves are small and adiabatic, therefore, resulting in linearized equations of motion. In the absence of waves, the atmosphere is also considered stationary. Thirteen nights of quality data from January 1983 to October 1984, covering all seasons, are used in this analysis.

  9. Three-dimensional Crustal Structure beneath the Tibetan Plateau Revealed by Multi-scale Gravity Analysis

    Science.gov (United States)

    Xu, C.; Luo, Z.; Sun, R.; Li, Q.

    2017-12-01

    The Tibetan Plateau, the largest and highest plateau on Earth, was uplifted, shorten and thicken by the collision and continuous convergence of the Indian and Eurasian plates since 50 million years ago, the Eocene epoch. Fine three-dimensional crustal structure of the Tibetan Plateau is helpful in understanding the tectonic development. At present, the ordinary method used for revealing crustal structure is seismic method, which is inhibited by poor seismic station coverage, especially in the central and western plateau primarily due to the rugged terrain. Fortunately, with the implementation of satellite gravity missions, gravity field models have demonstrated unprecedented global-scale accuracy and spatial resolution, which can subsequently be employed to study the crustal structure of the entire Tibetan Plateau. This study inverts three-dimensional crustal density and Moho topography of the Tibetan Plateau from gravity data using multi-scale gravity analysis. The inverted results are in agreement with those provided by the previous works. Besides, they can reveal rich tectonic development of the Tibetan Plateau: (1) The low-density channel flow can be observed from the inverted crustal density; (2) The Moho depth in the west is deeper than that in the east, and the deepest Moho, which is approximately 77 km, is located beneath the western Qiangtang Block; (3) The Moho fold, the directions of which are in agreement with the results of surface movement velocities estimated from Global Positioning System, exists clearly on the Moho topography.This study is supported by the National Natural Science Foundation of China (Grant No. 41504015), the China Postdoctoral Science Foundation (Grant No. 2015M572146), and the Surveying and Mapping Basic Research Programme of the National Administration of Surveying, Mapping and Geoinformation (Grant No. 15-01-08).

  10. Newton-Cartan gravity revisited

    NARCIS (Netherlands)

    Andringa, Roel

    2016-01-01

    In this research Newton's old theory of gravity is rederived using an algebraic approach known as the gauging procedure. The resulting theory is Newton's theory in the mathematical language of Einstein's General Relativity theory, in which gravity is spacetime curvature. The gauging procedure sheds

  11. Horizon thermodynamics in fourth-order gravity

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2017-03-01

    Full Text Available In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE=TdS−PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called “Legendre transformation” at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.

  12. Scaling in quantum gravity

    Directory of Open Access Journals (Sweden)

    J. Ambjørn

    1995-07-01

    Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.

  13. Self Completeness of Einstein Gravity

    CERN Document Server

    Dvali, Gia

    2010-01-01

    We argue, that in Einsteinian gravity the Planck length is the shortest length of nature, and any attempt of resolving trans-Planckian physics bounces back to macroscopic distances due to black hole formation. In Einstein gravity trans-Planckian propagating quantum degrees of freedom cannot exist, instead they are equivalent to the classical black holes that are fully described by lighter infra-red degrees of freedom and give exponentially-soft contribution into the virtual processes. Based on this property we argue that pure-Einstein (super)gravity and its high-dimensional generalizations are self-complete in deep-UV, but not in standard Wilsonian sense. We suggest that certain strong-coupling limit of string theory is built-in in pure Einstein gravity, whereas the role of weakly-coupled string theory limit is to consistently couple gravity to other particle species, with their number being set by the inverse string coupling. We also discuss some speculative ideas generalizing the notion of non-Wilsonian sel...

  14. Venus gravity - Analysis of Beta Regio

    Science.gov (United States)

    Esposito, P. B.; Sjogren, W. L.; Mottinger, N. A.; Bills, B. G.; Abbott, E.

    1982-01-01

    Radio tracking data acquired over Beta Regio were analyzed to obtain a surface mass distribution from which a detailed vertical gravity field was derived. In addition, a corresponding vertical gravity field was evaluated solely from the topography of the Beta region. A comparison of these two maps confirms the strong correlation between gravity and topography which was previously seen in line-of-sight gravity maps. It also demonstrates that the observed gravity is a significant fraction of that predicted from the topography alone. The effective depth of complete isostatic compensation for the Beta region is estimated to be 330 km, which is somewhat deeper than that found for other areas of Venus.

  15. Web survey methodology

    CERN Document Server

    Callegaro, Mario; Vehovar, Asja

    2015-01-01

    Web Survey Methodology guides the reader through the past fifteen years of research in web survey methodology. It both provides practical guidance on the latest techniques for collecting valid and reliable data and offers a comprehensive overview of research issues. Core topics from preparation to questionnaire design, recruitment testing to analysis and survey software are all covered in a systematic and insightful way. The reader will be exposed to key concepts and key findings in the literature, covering measurement, non-response, adjustments, paradata, and cost issues. The book also discusses the hottest research topics in survey research today, such as internet panels, virtual interviewing, mobile surveys and the integration with passive measurements, e-social sciences, mixed modes and business intelligence. The book is intended for students, practitioners, and researchers in fields such as survey and market research, psychological research, official statistics and customer satisfaction research.

  16. Estimation of regional mass anomalies from Gravity Recovery and Climate Experiment (GRACE) over Himalayan region

    Science.gov (United States)

    Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai

    2014-11-01

    Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and

  17. Gravity where do we stand ?

    CERN Document Server

    Colpi, Monica; Gorini, Vittorio; Moschella, Ugo

    2016-01-01

    This book presents an overview of the current understanding of gravitation, with a focus on the current efforts to test its theories, especially general relativity. It shows how the quest for a deeper understanding, which would possibly incorporate gravity in the quantum realm, is more than ever an open field. The majority of the contributions deals with the manifold facets of “experimental gravitation”, but the book goes beyond this and covers a broad range of subjects from the foundations of gravitational theories to astrophysics and cosmology. The book is divided into three parts. The first part deals with foundations and Solar System tests. An introductory pedagogical chapter reviews first Newtonian gravitational theory, special relativity, the equivalence principle and the basics of general relativity. Then it focuses on approximation methods, mainly the post-Newtonian formalism and the relaxed Einstein equations, with a discussion on how they are used in treating experimental tests and in the proble...

  18. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  19. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    Science.gov (United States)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  20. Galaxy clustering in 3D and modified gravity theories

    Science.gov (United States)

    Munshi, D.; Pratten, G.; Valageas, P.; Coles, P.; Brax, P.

    2016-02-01

    We study Modified Gravity (MG) theories by modelling the redshifted matter power spectrum in a spherical Fourier-Bessel basis. We use a fully non-linear description of the real-space matter power spectrum and include the lowest order redshift-space correction (Kaiser effect), taking into account some additional non-linear contributions. Ignoring relativistic corrections, which are not expected to play an important role for a shallow survey, we analyse two different MG scenarios, namely the generalized Dilaton scalar-tensor theories and the f (R) models in the large curvature regime. We compute the 3D power spectrum C^s_{ℓ}(k_1,k_2) for various such MG theories with and without redshift-space distortions, assuming precise knowledge of background cosmological parameters. Using an all-sky spectroscopic survey with Gaussian selection function \\varphi (r)∝ exp (-{r^2/r^2_0}), r_0=150h^{-1} Mpc, and number density of galaxies bar{N} =10^{-4}Mpc^{-3}, we use a χ2 analysis, and find that the lower order (ℓ ≤ 25) multipoles of C^s_ℓ (k,k^' }) (with radial modes restricted to k 25 modes can further reduce the error bars and thus in principle make cosmological gravity constraints competitive with Solar system tests. However this will require an accurate modelling of non-linear redshift-space distortions. Using a tomographic β(a)-m(a) parametrization we also derive constraints on specific parameters describing the Dilaton models of MG.

  1. Tunable Superconducting Gravity Gradiometer for Mars Climate, Atmosphere, and Gravity Field Investigation

    Science.gov (United States)

    Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.

    2015-01-01

    We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.

  2. Quantum gravito-optics: a light route from semiclassical gravity to quantum gravity

    International Nuclear Information System (INIS)

    Unnikrishnan, C S; Gillies, George T

    2015-01-01

    Quantum gravity remains an elusive theory, in spite of our thorough understanding of the quantum theory and the general theory of relativity separately, presumably due to the lack of any observational clues. We argue that the theory of quantum gravity has a strong constraining anchor in the sector of gravitational radiation, ensuring reliable physical clues, albeit in a limited observable form. In particular, all types of gravitational waves expected to be observable in LIGO-like advanced detectors are fully quantum mechanical states of radiation. Exact equivalence of the full quantum gravity theory with the familiar semiclassical theory is ensured in the radiation sector, in most real situations where the relevant quantum operator functions are normal ordered, by the analogue of the optical equivalence theorem in quantum optics. We show that this is indeed the case for the detection of the waves from a massive binary system, a single gravitational atom, that emits coherent radiation. The idea of quantum-gravitational optics can assist in guiding along the fuzzy roads to quantum gravity. (paper)

  3. Stability in designer gravity

    International Nuclear Information System (INIS)

    Hertog, Thomas; Hollands, Stefan

    2005-01-01

    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed

  4. Carroll versus Galilei gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2017-03-30

    We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.

  5. Benefits of integrated seismic and gravity exploration : an example from Norman Wells, NWT

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, J.H.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geology

    2003-07-01

    The theoretical gravity field was modelled for the following three structural models in the Norman Range, near Normal Wells, Northwest Territories: (1) a low angle thrust fault in the Upper Cambrian Saline River Formation, causing repetition of dense Palaeozoic dolomites and anhydrite, with no involvement of sub-Saline River sediments, (2) a high-angle reverse fault thrusting Proterozoic sediments into the core of the Norman Range, and (3) a vertical block fault model with a ridge of Proterozoic and basement rocks coring the Norman Range, with no horizontal shortening. The modelling was constrained by outcrop data, well data and density measurements. The gravity-derived model was then used to construct a velocity model for depth migration of seismic data which was obtained in an area of carbonate outcrop. The gravity survey was conducted to determine if the Saline River Formation had been tectonically thickened with the core of the Norman Range. Analysis of the two integrated data sets confirms a thin-skinned deformation model for the Norman Range. 5 refs., 6 figs.

  6. New special operators in W-gravity theories

    International Nuclear Information System (INIS)

    Rama, S.K.

    1991-01-01

    This paper reports on special physical operators of W 3 -gravity having non-trivial ghost sectors. Some of these operators may be viewed as the Liouville dressings of the energy operator of the Ising model coupled to two-dimensional (2D) gravity and this fills in the gap in the connection between pure W 3 -gravity and Ising model coupled to 2D gravity found in the authors' previous work. The authors formulate a selection rule required for the calculation of correlators in W-gravity theories. Using this rule, the authors construct the non-ghost part of the new operators of W N -gravity and find that they represent the (N,N + 1) minimal model operators from both inside and outside the minimal table. Along the way the authors obtain the canonical spectrum of W N -gravity for all N

  7. Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum

    International Nuclear Information System (INIS)

    Cui Weiguang; Zhang Pengjie; Yang Xiaohu

    2010-01-01

    A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter ζ, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution (ζ=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by ∼30% for 10% deviation from GR (|ζ-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.

  8. Annual Omnibus Survey: A survey of life in Qatar 2014

    OpenAIRE

    Diop, Abdoulaye; Gengler, Justin John; Khan, Mohammad N.; Traugott, Michael; Elawad, Elmogiera Fadlallh; Al Ansari, Majed; Le, Kien T.; El-Maghraby, Engi; Elkassem, Rima Charbaji; Qutteina, Yara; Al Khulaifi, Buthaina; Nasrallah, Catherine; Al Subaey, Mohammed; Mustafa, Semsia Al-Ali; Alqassass, Haneen

    2015-01-01

    This Executive Summary presents the highlights of the 2014 Omnibus survey, the fourth in a series of Omnibus surveys since 2010. The surveys were carried out by the Social and Economic Survey Research Institute (SESRI) of Qatar University. Each Omnibus survey interviews a large and representative sample of Qatari citizens, resident expatriates and laborers. In these surveys, we asked a number of questions covering several topics of importance to Qatari society, including their ...

  9. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  10. Renormalization and asymptotic freedom in quantum gravity

    International Nuclear Information System (INIS)

    Tomboulis, E.T.

    1984-01-01

    The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)

  11. 2-Dim. gravity and string theory

    International Nuclear Information System (INIS)

    Narain, K.S.

    1991-01-01

    The role of 2-dim. gravity in string theory is discussed. In particular d=25 string theory coupled to 2-d. gravity is described and shown to give rise to the physics of the usual 26-dim. string theory (where one does not quantise 2-d. gravity. (orig.)

  12. Report on the supplementary survey on the data processing in the FY 1997 survey of the promotion of geothermal development. Gravity filter analysis (No. B-6 Tsujino-dake area); 1997 nendo chinetsu kaihatsu sokushin chosa data shori ni kakawaru hosoku chosa (juryoku filter kaiseki) hokokusno. No.B-6 Tsujinodake chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    As a part of the FY 1997 survey of the promotion of geothermal development, the gravity filter analysis was made of the data processing in the Tsujino-dake area of Kagoshima prefecture, and the results were summarized. The geothermal fluid used in the Yamagawa geothermal power plant has the residual magma brought by activities of volcanic rocks of the Ata central shield volcano as heat source, and the fracture system and deep intrusive rocks are reservoirs. A small scale of gravity anomaly area is located, and it reflects high-density volcanic rock masses which are distributed on the earth surface or shallowly under the ground. The ridge stretching from Kiyomi-dake to the Narukawa tunnel and the ridge connecting Kuze-dake and Tsujino-dake are in the high-gravity area and reflect high-density rocks in the shallow part and deep part. There is a possibility of the existence of the fracture system in the high-density deep basement. Calderas continue close to the south of the high-gravity ridge stretching from the Kiyomi-dake to the Narukawa tunnel, and the fracture system which brings the eruption of volcanic rocks of the Ata central shield volcano and the fracture system forming caldera exist in parallel. From the aspect of the geothermal structure, a consideration was made of rock layers which possibly compose the rise of high-density basement in the deep part near the Tsujino-dake. (NEDO)

  13. Observational constraints on transverse gravity: A generalization of unimodular gravity

    International Nuclear Information System (INIS)

    Lopez-Villarejo, J J

    2010-01-01

    We explore the hypothesis that the set of symmetries enjoyed by the theory that describes gravity is not the full group of diffeomorphisms (Diff(M)), as in General Relativity, but a maximal subgroup of it (TransverseDiff(M)), with its elements having a jacobian equal to unity; at the infinitesimal level, the parameter describing the coordinate change x μ → x μ + ξ μ (x) is transverse, i.e., δ μ ξ μ = 0. Incidentally, this is the smaller symmetry one needs to propagate consistently a graviton, which is a great theoretical motivation for considering these theories. Also, the determinant of the metric, g, behaves as a 'transverse scalar', so that these theories can be seen as a generalization of the better-known unimodular gravity. We present our results on the observational constraints on transverse gravity, in close relation with the claim of equivalence with general scalar-tensor theory. We also comment on the structure of the divergences of the quantum theory to the one-loop order.

  14. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  15. And what if gravity is intrinsically quantic?

    International Nuclear Information System (INIS)

    Ziaeepour, Houri

    2009-01-01

    Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, string theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and the former is a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum mechanics (QM) and gravity. Without gravity, QM becomes ambiguous. We consider this observation as the evidence for an intrinsic relation between these fundamental laws of nature. We suggest a quantum role and definition for gravity in the context of a quantum Universe, and present a preliminary formulation for gravity in a system with a finite number of particles.

  16. Spin Entanglement Witness for Quantum Gravity

    NARCIS (Netherlands)

    Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W.; Ulbricht, Hendrik; Toros, Marko; Paternostro, Mauro; Geraci, Andrew A.; Barker, Peter F.; Kim, M. S.; Milburn, Gerard

    2017-01-01

    Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no

  17. Atom Interferometer Technologies in Space for Gravity Mapping and Gravity Science

    Science.gov (United States)

    Williams, Jason; Chiow, Sheng-Wey; Kellogg, James; Kohel, James; Yu, Nan

    2015-05-01

    Atom interferometers utilize the wave-nature of atomic gases for precision measurements of inertial forces, with potential applications ranging from gravity mapping for planetary science to unprecedented tests of fundamental physics with quantum gases. The high stability and sensitivity intrinsic to these devices already place them among the best terrestrial sensors available for measurements of gravitational accelerations, rotations, and gravity gradients, with the promise of several orders of magnitude improvement in their detection sensitivity in microgravity. Consequently, multiple precision atom-interferometer-based projects are under development at the Jet Propulsion Laboratory, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory onboard the International Space Station and a highly stable gravity gradiometer in a transportable design relevant for earth science measurements. We will present JPL's activities in the use of precision atom interferometry for gravity mapping and gravitational wave detection in space. Our recent progresses bringing the transportable JPL atom interferometer instrument to be competitive with the state of the art and simulations of the expected capabilities of a proposed flight project will also be discussed. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  18. Light fermions in quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Gies, Holger

    2011-01-01

    We study the impact of quantum gravity, formulated as a quantum field theory of the metric, on chiral symmetry in a fermionic matter sector. Specifically we address the question of whether metric fluctuations can induce chiral symmetry breaking and bound state formation. Our results based on the functional renormalization group indicate that chiral symmetry is left intact even at strong gravitational coupling. In particular, we found that asymptotically safe quantum gravity where the gravitational couplings approach a non-Gaußian fixed point generically admits universes with light fermions. Our results thus further support quantum gravity theories built on fluctuations of the metric field such as the asymptotic-safety scenario. A study of chiral symmetry breaking through gravitational quantum effects may also serve as a significant benchmark test for other quantum gravity scenarios, since a completely broken chiral symmetry at the Planck scale would not be in accordance with the observation of light fermions in our universe. We demonstrate that this elementary observation already imposes constraints on a generic UV completion of gravity. (paper)

  19. The Juno Gravity Science Instrument

    Science.gov (United States)

    Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo

    2017-11-01

    The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

  20. Searching for modified gravity with baryon oscillations: From SDSS to wide field multiobject spectroscopy (WFMOS)

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Bassett, Bruce A.; Nichol, Robert C.; Suto, Yasushi; Yahata, Kazuhiro

    2006-01-01

    We discuss how the baryon acoustic oscillation (BAO) signatures in the galaxy power spectrum can distinguish between modified gravity and the cosmological constant as the source of cosmic acceleration. To this end we consider a model characterized by a parameter n, which corresponds to the Dvali-Gabadadze-Porrati (DGP) model if n=2 and reduces to the standard spatially flat cosmological constant concordance model for n equal to infinity. We find that the different expansion histories of the modified gravity models systematically shifts the peak positions of BAO. A preliminary analysis using the current SDSS luminous red galaxy (LRG) sample indicates that the original DGP model is disfavored unless the matter density parameter exceeds 0.3. The constraints will be strongly tightened with future spectroscopic samples of galaxies at high redshifts. We demonstrate that WFMOS, in collaboration with other surveys such as Planck, will powerfully constrain modified gravity alternatives to dark energy as the explanation of cosmic acceleration

  1. Structural model of the Northern Latium volcanic area constrained by MT, gravity and aeromagnetic data

    Directory of Open Access Journals (Sweden)

    P. Gasparini

    1997-06-01

    Full Text Available The results of about 120 magnetotelluric soundings carried out in the Vulsini, Vico and Sabatini volcanic areas were modeled along with Bouguer and aeromagnetic anomalies to reconstruct a model of the structure of the shallow (less than 5 km of depth crust. The interpretations were constrained by the information gathered from the deep boreholes drilled for geothermal exploration. MT and aeromagnetic anomalies allow the depth to the top of the sedimentary basement and the thickness of the volcanic layer to be inferred. Gravity anomalies are strongly affected by the variations of morphology of the top of the sedimentary basement, consisting of a Tertiary flysch, and of the interface with the underlying Mesozoic carbonates. Gravity data have also been used to extrapolate the thickness of the neogenic unit indicated by some boreholes. There is no evidence for other important density and susceptibility heterogeneities and deeper sources of magnetic and/or gravity anomalies in all the surveyed area.

  2. Qualitative Interpretation Of Aerogravity And Aeromagnetic Survey Data Over The South Western Part Of The Volta River Basin Of Ghana

    Directory of Open Access Journals (Sweden)

    George Hinson

    2015-04-01

    Full Text Available Abstract The study area South western part of Volta River Basin of Ghana covering an area of 8570 km2 which is one-eleventh the area of the Volta River basin of Ghana has been subjected to numerous academic research works but geophysical survey works because of virtual perceptive reasons. It is now believed to overly mineral-rich geological structures hence the use of magnetic and gravity survey methods to bring out these mineral-rich geological structures.Geographically it study area is located at the south western part of the Voltaian basin at latitudes 07o 00 N and 08o 00 N and longitudes 02o 00 W and 01o 00 W respectively. Airborne gravity and magnetic survey methods were employed in the data collection. The field data correction and error reduction were applied to the two raw data on the field after which Geosoft Oasis Montaj 7.01 Encom Profile Analysis P.A 11 and 13 Model Vision 12 and ArcGIS 10.0 were used to process enhance e.g. reduce to pole at low latitude first vertical derivative etc. model the reduced and corrected airborne magnetic data and also to produce maps from them data. Low-to-moderate-to-high gravity and magnetic anomalies were obtained in the complete Bouguer anomaly CBA and total magnetic intensity TMI reduced to pole at low latitude with many of these anomalies trending NE-SW by which the Birimian Metasediments and Metavolcanics can be said to be part of the causative structures of these anomalies with cross-cut NW-SE faults. From the quantitative point of view the intrusive granitic bodies of the study area have a mean depth location of 1.7 km while the isolated anomaly is located at a depth of 1.4 km computed from Euler deconvolution. The NE-SW trending anomalies show the trend direction of their causative structures which are the basement rocks and the basinal intrusive bodies.

  3. Beyond δ : Tailoring marked statistics to reveal modified gravity

    Science.gov (United States)

    Valogiannis, Georgios; Bean, Rachel

    2018-01-01

    Models that seek to explain cosmic acceleration through modifications to general relativity (GR) evade stringent Solar System constraints through a restoring, screening mechanism. Down-weighting the high-density, screened regions in favor of the low density, unscreened ones offers the potential to enhance the amount of information carried in such modified gravity models. In this work, we assess the performance of a new "marked" transformation and perform a systematic comparison with the clipping and logarithmic transformations, in the context of Λ CDM and the symmetron and f (R ) modified gravity models. Performance is measured in terms of the fractional boost in the Fisher information and the signal-to-noise ratio (SNR) for these models relative to the statistics derived from the standard density distribution. We find that all three statistics provide improved Fisher boosts over the basic density statistics. The model parameters for the marked and clipped transformation that best enhance signals and the Fisher boosts are determined. We also show that the mark is useful both as a Fourier and real-space transformation; a marked correlation function also enhances the SNR relative to the standard correlation function, and can on mildly nonlinear scales show a significant difference between the Λ CDM and the modified gravity models. Our results demonstrate how a series of simple analytical transformations could dramatically increase the predicted information extracted on deviations from GR, from large-scale surveys, and give the prospect for a much more feasible potential detection.

  4. Application of isostatic gravity anomaly in the Yellow Sea area

    Science.gov (United States)

    Hao, Z.; Qin, J.; Huang, W.; Wu, X.

    2017-12-01

    In order to study the deep crustal structure of the Yellow Sea area, we used the Airy-Heiskanen model to calculate the isostatic gravity anomaly of this area. Based on the Bouguer gravity anomaly and water depth data of this area, we chose the calculating parameters as standard crustal thickness 30 km, crust-mantle density difference 0.6g/cm3and grid spacing 0.1°×0.1°. This study reveals that there are six faults and four isostatic negative anomalies in the study area. The isostatic anomalies in much of Yellow Sea areas give priority to those with positive anomalies. The isostatic anomalies in North Yellow Sea are higher than South Yellow Sea with Jiashan-Xiangshui fault as the boundary. In the north of the study area, isostatic anomalies are characterized by large areas of positive anomaly. The change is relatively slow, and the trends give priority to the trend NE or NEE. In the middle of the north Yellow Sea basin, there is a local negative anomaly, arranged as a string of beads in NE to discontinuous distribution. Negative anomaly range is small, basically corresponds to the region's former Cenozoic sedimentary basin position. To the south of Jiashan-Xiangshui fault and west of Yellow Sea eastern margin fault, including most of the south Yellow Sea and Jiangsu province, the isostatic anomalies are lower. And the positive and negative anomalies are alternative distribution, and negative anomaly trap in extensive development. The trends give priority to NE, NEE, both to the NW. On the basis of the characteristics of isostatic gravity anomalies, it is concluded that the Yellow Sea belongs to continental crustal isostatic area whose isostatic anomalies is smooth and slow. ReferencesHeiskanen, W. A., F. A. V. Meinesz, and S. A. Korff (1958), The Earth and Its Gravity Field, McGraw-Hill, New York. Meng, X. J., X. H. Zhang, and J. Y. Yang (2014), Geophysical survey in eastern China seas and the characteristics of gravity and magnetic fields, Marine Geoglogy

  5. Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment

    Science.gov (United States)

    Sun, W.; Miura, S.; Sato, T.; Sugano, T.; Freymueller, J.; Kaufman, M.; Larsen, C. F.; Cross, R.; Inazu, D.

    2010-12-01

    For the past 300 years, southeastern Alaska has undergone rapid ice-melting and land uplift attributable to global warming. Corresponding crustal deformation (3 cm/yr) caused by the Little Ice Age retreat is detectable with modern geodetic techniques such as GPS and tidal gauge measurements. Geodetic deformation provides useful information for assessing ice-melting rates, global warming effects, and subcrustal viscosity. Nevertheless, integrated geodetic observations, including gravity measurements, are important. To detect crustal deformation caused by glacial isostatic adjustment and to elucidate the viscosity structure in southeastern Alaska, Japanese and U.S. researchers began a joint 3-year project in 2006 using GPS, Earth tide, and absolute gravity measurements. A new absolute gravity network was established, comprising five sites around Glacier Bay, near Juneau, Alaska. This paper reports the network's gravity measurements during 2006-2008. The bad ocean model in this area hindered ocean loading correction: Large tidal residuals remain in the observations. Accurate tidal correction necessitated on-site tidal observation. Results show high observation precision for all five stations: day ice thickness changes. A gravity bias of about -13.2 ± 0.1 mGal exists between the Potsdam and current FG5 gravity data.

  6. Brane-Localized Gravity

    International Nuclear Information System (INIS)

    Gregory, Ruth

    2007-01-01

    The study of braneworlds has been an area of intense activity over the past decade, with thousands of papers being written, and many important technical advances being made. This book focuses on a particular aspect of braneworlds, namely perturbative gravity in one specific model: the Randall-Sundrum model. The book starts with an overview of the Randall-Sundrum model, discussing anti-de Sitter (AdS) space and the Israel equations in some detail. It then moves on to discuss cosmological branes, focusing on branes with constant curvature. The book then turns to brane gravity, i.e. what do we, as brane observers, perceive the gravitational interaction to be on the brane as derived from the actual five-dimensional gravitational physics? After a derivation of the general brane equations from the Israel equations, the remainder of the book deals with perturbative gravity. This part of the book is extremely detailed, with calculations given explicitly. Overall, the book is quite pedagogical in style, with the aim being to explain in detail the topics it chooses to cover. While it is not unusual to have books written on current and extremely popular research areas, it is unusual to have calculations written so explicitly. This is both a strength and a weakness of this book. It is a strength because the calculations are presented in a detail that students learning the topic will definitely appreciate; however, the narrow focus of the book also means that it lacks perspective and fails to present the broader context. In choosing to focus on one particular aspect of Randall-Sundrum branes, the book has not managed to communicate why a large number of theorists have worked so intensively on this model. In its early stages, the explicit detail of the Randall-Sundrum model would be extremely useful for a student starting out in this research area. In addition, the calculational detail later in the computation of the graviton propagator on the brane would also be welcome not

  7. Topics in string theory and quantum gravity

    CERN Document Server

    Alvarez-Gaume, Luis

    1992-01-01

    These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...

  8. Quantum Gravity Experiments

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2015-10-01

    Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.

  9. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  10. Magnetic and gravity studies of Mono Lake, east-central, California

    Science.gov (United States)

    Athens, Noah D.; Ponce, David A.; Jayko, Angela S.; Miller, Matt; McEvoy, Bobby; Marcaida, Mae; Mangan, Margaret T.; Wilkinson, Stuart K.; McClain, James S.; Chuchel, Bruce A.; Denton, Kevin M.

    2014-01-01

    From August 26 to September 5, 2011, the U.S. Geological Survey (USGS) collected more than 600 line-kilometers of shipborne magnetic data on Mono Lake, 20 line-kilometers of ground magnetic data on Paoha Island, 50 gravity stations on Paoha and Negit Islands, and 28 rock samples on Paoha and Negit Islands, in east-central California. Magnetic and gravity investigations were undertaken in Mono Lake to study regional crustal structures and to aid in understanding the geologic framework, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Furthermore, shipborne magnetic data illuminate local structures in the upper crust beneath Mono Lake where geologic exposure is absent. Magnetic and gravity methods, which sense contrasting physical properties of the subsurface, are ideal for studying Mono Lake. Exposed rock units surrounding Mono Lake consist mainly of Quaternary alluvium, lacustrine sediment, aeolian deposits, basalt, and Paleozoic granitic and metasedimentary rocks (Bailey, 1989). At Black Point, on the northwest shore of Mono Lake, there is a mafic cinder cone that was produced by a subaqueous eruption around 13.3 ka. Within Mono Lake there are several small dacite cinder cones and flows, forming Negit Island and part of Paoha Island, which also host deposits of Quaternary lacustrine sediments. The typical density and magnetic properties of young volcanic rocks contrast with those of the lacustrine sediment, enabling us to map their subsurface extent.

  11. Towards the map of quantum gravity

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2018-06-01

    In this paper we point out some possible links between different approaches to quantum gravity and theories of the Planck scale physics. In particular, connections between loop quantum gravity, causal dynamical triangulations, Hořava-Lifshitz gravity, asymptotic safety scenario, Quantum Graphity, deformations of relativistic symmetries and nonlinear phase space models are discussed. The main focus is on quantum deformations of the Hypersurface Deformations Algebra and Poincaré algebra, nonlinear structure of phase space, the running dimension of spacetime and nontrivial phase diagram of quantum gravity. We present an attempt to arrange the observed relations in the form of a graph, highlighting different aspects of quantum gravity. The analysis is performed in the spirit of a mind map, which represents the architectural approach to the studied theory, being a natural way to describe the properties of a complex system. We hope that the constructed graphs (maps) will turn out to be helpful in uncovering the global picture of quantum gravity as a particular complex system and serve as a useful guide for the researchers.

  12. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  13. Gravity Station Data for Portugal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  14. Interior Alaska Gravity Station Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...

  15. Gravity Station Data for Spain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  16. Generalized pure Lovelock gravity

    Science.gov (United States)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  17. Studies on the geological environment of the Nanjido waste disposal site: Gravity and magnetic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Byung Doo; Kim, Cha Seop; Chung, Ho Joon; Oh, Seok Hoon [Seoul National Univ., Seoul (Korea, Republic of)

    1995-10-01

    Gravity and magnetic surveys were carried out to investigate the three dimensional configuration and characteristics of the landfills at Nanjido waste disposal site. For terrain correction and three dimensional density inversion of gravity data an algorithm, which calculates the gravity effect of a three dimensional body by using the solid angle method, is developed. This algorithm has been proved to give more accurate terrain correction values for the small survey area having varied topography like Nanjido site as compared with widely used methods such as Hammer`s method and multiquadric equation method. Density inversion of gravity anomaly data gives very useful information about the lateral and vertical variation of the landfills, which can be used to discriminate the kinds of wastes. The average density of filled materials appears to be 1.7 g/cm{sup 3} which is much higher than the value (0.8 g/cm{sup 3}) estimated by Seoul City. The lateral variation of density shows high correlation with the pattern of ongoing depression of the landfills. The northern region of the landfill no. 1, which shows low density and high depression, is closely associated with the industrial waste and sludge filled area. The magnetic anomaly data provide information about relative concentration of magnetic materials, which is also very useful to investigate characteristics of the fills. Several high positive anomaly regions on the reduced-to-pole magnetic anomaly map are appeared to be associated with the industrial waste fills, but certain industrial waste fills show low negative anomalies. This kind of magnetic information can be used in selecting drilling locations over landfills away from buried metal products during the stabilization process. (author). 15 refs., 2 tabs., 15 figs.

  18. Constraining Earth's Rheology of the Barents Sea Using Grace Gravity Change Observations

    Science.gov (United States)

    van der Wal, W.; Root, B. C.; Tarasov, L.

    2014-12-01

    The Barents Sea region was ice covered during last glacial maximum and experiences Glacial Isostatic Adjustment (GIA). Because of the limited amount of relevant geological and geodetic observations, it is difficult to constrain GIA models for this region. With improved ice sheet models and gravity observations from GRACE, it is possible to better constrain Earth rheology. This study aims to constrain the upper mantle viscosity and elastic lithosphere thickness from GRACE data in the Barents Sea region. The GRACE observations are corrected for current ice melting on Svalbard, Novaya Zemlya and Frans Joseph Land. A secular trend in gravity rate trend is estimated from the CSR release 5 GRACE data for the period of February 2003 to July 2013. Furthermore, long wavelength effects from distant large mass balance signals such as Greenland ice melting are filtered out. A new high-variance set of ice loading histories from calibrated glaciological modeling are used in the GIA modeling as it is found that ICE-5G over-estimates the observed GIA gravity change in the region. It is found that the rheology structure represented by VM5a results in over-estimation of the observed gravity change in the region for all ice sheet chronologies investigated. Therefore, other rheological Earth models were investigated. The best fitting upper mantle viscosity and elastic lithosphere thickness in the Barents Sea region are 4 (±0.5)*10^20 Pas and 110 (±20) km, respectively. The GRACE satellite mission proves to be a useful constraint in the Barents Sea Region for improving our knowledge on the upper mantle rheology.

  19. Turning on gravity with the Higgs mechanism

    International Nuclear Information System (INIS)

    Alexander, Stephon; Barrow, John D; Magueijo, João

    2016-01-01

    We investigate how a Higgs mechanism could be responsible for the emergence of gravity in extensions of Einstein theory, with a suitable low energy limit. In this scenario, at high energies, symmetry restoration could ‘turn off’ gravity, with dramatic implications for cosmology and quantum gravity. The sense in which gravity is muted depends on the details of the implementation. In the most extreme case gravity’s dynamical degrees of freedom would only be unleashed after the Higgs field acquires a non-trivial vacuum expectation value, with gravity reduced to a topological field theory in the symmetric phase. We might also identify the Higgs and the Brans–Dicke fields in such a way that in the unbroken phase Newton’s constant vanishes, decoupling matter and gravity. We discuss the broad implications of these scenarios. (letter)

  20. Logamediate Inflation in f ( T ) Teleparallel Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, Kazem; Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, P.O. Box 66177-15175, Sanandaj (Iran, Islamic Republic of); Abdolmaleki, Asrin, E-mail: rezazadeh86@gmail.com [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2017-02-20

    We study logamediate inflation in the context of f ( T ) teleparallel gravity. f ( T )-gravity is a generalization of the teleparallel gravity which is formulated on the Weitzenbock spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. We consider an f ( T )-gravity model which is sourced by a canonical scalar field. Assuming a power-law f ( T ) function in the action, we investigate an inflationary universe with a logamediate scale factor. Our results show that, although logamediate inflation is completely ruled out by observational data in the standard inflationary scenario based on Einstein gravity, it can be compatible with the 68% confidence limit joint region of Planck 2015 TT,TE,EE+lowP data in the framework of f ( T )-gravity.

  1. Matter scattering in quadratic gravity and unitarity

    Science.gov (United States)

    Abe, Yugo; Inami, Takeo; Izumi, Keisuke; Kitamura, Tomotaka

    2018-03-01

    We investigate the ultraviolet (UV) behavior of two-scalar elastic scattering with graviton exchanges in higher-curvature gravity theory. In Einstein gravity, matter scattering is shown not to satisfy the unitarity bound at tree level at high energy. Among some of the possible directions for the UV completion of Einstein gravity, such as string theory, modified gravity, and inclusion of high-mass/high-spin states, we take R_{μν}^2 gravity coupled to matter. We show that matter scattering with graviton interactions satisfies the unitarity bound at high energy, even with negative norm states due to the higher-order derivatives of metric components. The difference in the unitarity property of these two gravity theories is probably connected to that in another UV property, namely, the renormalizability property of the two.

  2. The Superheavy Elements and Anti-Gravity

    Science.gov (United States)

    Anastasovski, Petar K.

    2004-02-01

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z Hawking, in honour of Stephen W. Hawking.

  3. Generalized Vaidya spacetime for cubic gravity

    Science.gov (United States)

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  4. Generalized pure Lovelock gravity

    Directory of Open Access Journals (Sweden)

    Patrick Concha

    2017-11-01

    Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  5. Gravity changes in mid-west Greenland from GOCE gravity model and gradient data using ground and airborne gravity

    DEFF Research Database (Denmark)

    Tscherning, Carl Christian; Herceg, Matija; Fredenslund Levinsen, Joanna

    GOCE TRF (terrestrial reference frame) vertical anomalous gradients (Tzz) from two periods have been used to determine gravity anomalies changes in mid-west Greenland, where a large mass-loss has been detected using GRACE (Fig. 1). As additional data were used the GOCE DIR-3 model and ground...... gravity at the coast on solid rock, where no mass loss is expected. The methods of Least-Squares Collocation (LSC) and the Reduced Point Mass (RPM) methods have been used, however only LSC included the ground data....

  6. Gravity Data for South America

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...

  7. Why is gravity so weak?

    International Nuclear Information System (INIS)

    Goradia, S.G.

    2006-01-01

    Why is gravity weak? Gravity is plagued with this and many other questions. After decades of exhausting work we do not have a clear answer. In view of this fact it will be shown in the following pages that there are reasons for thinking that gravity is just a composite force consisting of the long-range manifestations of short range nuclear forces that are too tiny to be measured at illuminated or long ranges by particle colliders. This is consistent with Einstein's proposal in 1919

  8. Estimating Antarctica land topography from GRACE gravity and ICESat altimetry data

    Science.gov (United States)

    Wu, I.; Chao, B. F.; Chen, Y.

    2009-12-01

    We propose a new method combining GRACE (Gravity Recovery and Climate Experiment) gravity and ICESat (Ice, Cloud, and land Elevation Satellite) altimetry data to estimate the land topography for Antarctica. Antarctica is the fifth-largest continent in the world and about 98% of Antarctica is covered by ice, where in-situ measurements are difficult. Some experimental airborne radar and ground-based radar data have revealed very limited land topography beneath heavy ice sheet. To estimate the land topography for the full coverage of Antarctica, we combine GRACE data that indicate the mass distribution, with data of ICESat laser altimetry that provide high-resolution mapping of ice topography. Our approach is actually based on some geological constraints: assuming uniform densities of the land and ice considering the Airy-type isostasy. In the beginning we construct an initial model for the ice thickness and land topography based on the BEDMAP ice thickness and ICESat data. Thereafter we forward compute the model’s gravity field and compare with the GRACE observed data. Our initial model undergoes the adjustments to improve the fit between modeled results and the observed data. Final examination is done by comparing our results with previous but sparse observations of ice thickness to reconfirm the reliability of our results. As the gravitational inversion problem is non-unique, our estimating result is just one of all possibilities constrained by available data in optimal way.

  9. Land Cover as a Framework For Assessing the Risk of Water Pollution

    Science.gov (United States)

    James D. Wickham; Kurt H. Riitters; Robert V. O' Neill; Kenneth H. Reckhow; Timothy G. Wade; K. Bruce Jones

    2000-01-01

    A survey of numerous field studies shows that nitrogen and phosphorous export coefficients are significantly different across forest, agriculture, and urban land-cover types. We used simulations to estimate the land-cover composition at which there was a significant risk of nutrient loads representative of watersheds without forest cover. The results suggest that at...

  10. Processing Marine Gravity Data Around Korea

    Science.gov (United States)

    Lee, Y.; Choi, K.; Kim, Y.; Ahn, Y.; Chang, M.

    2008-12-01

    In Korea currently 4 research ships are under operating in Korea, after the first research vessel equipped shipborne gravity meter was introduced in 1990s. These are Onnuri(launch 1991) of KORDI(Korea Ocean Research & Development Institute), Haeyang2000(launch 1996), Badaro1(launch 2002) of NORI(National Oceanographic Research Institute) and Tamhae2(launch 1997) of KIGAM(Korea Institute of Geoscience and Mineral Resources). Those of research vessel, Haeyang2000 have observed marine gravity data over 150,000 points each year from year 1996 to year 2003. Haeyang2000, about 2,500 tons, is unable to operate onshore so NORI has constructed another 600 tons research ship Badaro1 that has observed marine gravity data onshore since year 2002. Haeyang2000 finished observing marine gravity data offshore within Korean territorial waters until year 2003. Currently Badaro1 is observing marine gravity data onshore. These shipborne gravity data will be very useful and important on geodesy and geophysics research also those data can make a contribution to developing these studies. In this study NORI's shipbrne gravity data from 1996 to 2007 has been processed for fundamental data to compute Korean precise geoid. Marine gravity processing steps as followed. 1. Check the time sequence, latitude and longitude position, etc. of shipborne gravity data 2. Arrangement of the tide level below the pier and meter drift correction of each cruise. 3. Elimination of turning points. 4. The time lag correction. 5. Computation of RV's velocities, Heading angles and the Eötvös correction. 6. Kalman filtering of GPS navigation data using cross-over points. 7. Cross-over correction using least square adjustment. About 2,058,000 points have been processed with NORI's marine gravity data from 1996 to 2007 in this study. The distribution of free-air anomalies was -41.0 mgal to 136.0 mgal(mean 8.90mgal) within Korean territorial waters. The free-air anomalies processed with the marine gravity data are

  11. Is there a quantum theory of gravity

    International Nuclear Information System (INIS)

    Strominger, A.

    1984-01-01

    The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)

  12. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  13. Mars - Hellas Planitia gravity analysis

    Science.gov (United States)

    Sjogren, W. L.; Wimberley, R. N.

    1981-01-01

    Doppler radio tracking data from Viking Orbiter 1 has provided new detailed observations of gravity variations over Hellas Planitia. Line-of-sight Bouguer gravity definitely indicates that isostatic adjustment has occurred. Two theoretical models were tested to obtain fits to the gravity data. Results for a surface deficit model, and a model with a surface deficit and a mass excess at depth are displayed. The mass-at-depth model produced very marked improvement in the data fit as compared to the surface deficit model. The optimum depth for the mass excess is 130 km.

  14. CDT meets Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Ambjorn, J.; Goerlich, A.; Jordan, S.; Jurkiewicz, J.; Loll, R.

    2010-01-01

    The theory of causal dynamical triangulations (CDT) attempts to define a nonperturbative theory of quantum gravity as a sum over spacetime geometries. One of the ingredients of the CDT framework is a global time foliation, which also plays a central role in the quantum gravity theory recently formulated by Horava. We show that the phase diagram of CDT bears a striking resemblance with the generic Lifshitz phase diagram appealed to by Horava. We argue that CDT might provide a unifying nonperturbative framework for anisotropic as well as isotropic theories of quantum gravity.

  15. Gauge Gravity and Space-Time

    OpenAIRE

    Wu, Ning

    2012-01-01

    When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machin...

  16. USGS Land Cover (NLCD) Overlay Map Service from The National Map - National Geospatial Data Asset (NGDA) National Land Cover Database (NLCD)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — NLCD 1992, NLCD 2001, NLCD 2006, and NLCD 2011 are National Land Cover Database classification schemes based primarily on Landsat data along with ancillary data...

  17. Sea Scallop Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Sea Scallop Survey began in 1980 and has covered an area from Cape Hatteras to Georges Bank. The survey aims to determine the distribution and...

  18. A marked correlation function for constraining modified gravity models

    Science.gov (United States)

    White, Martin

    2016-11-01

    Future large scale structure surveys will provide increasingly tight constraints on our cosmological model. These surveys will report results on the distance scale and growth rate of perturbations through measurements of Baryon Acoustic Oscillations and Redshift-Space Distortions. It is interesting to ask: what further analyses should become routine, so as to test as-yet-unknown models of cosmic acceleration? Models which aim to explain the accelerated expansion rate of the Universe by modifications to General Relativity often invoke screening mechanisms which can imprint a non-standard density dependence on their predictions. This suggests density-dependent clustering as a `generic' constraint. This paper argues that a density-marked correlation function provides a density-dependent statistic which is easy to compute and report and requires minimal additional infrastructure beyond what is routinely available to such survey analyses. We give one realization of this idea and study it using low order perturbation theory. We encourage groups developing modified gravity theories to see whether such statistics provide discriminatory power for their models.

  19. A marked correlation function for constraining modified gravity models

    Energy Technology Data Exchange (ETDEWEB)

    White, Martin, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-11-01

    Future large scale structure surveys will provide increasingly tight constraints on our cosmological model. These surveys will report results on the distance scale and growth rate of perturbations through measurements of Baryon Acoustic Oscillations and Redshift-Space Distortions. It is interesting to ask: what further analyses should become routine, so as to test as-yet-unknown models of cosmic acceleration? Models which aim to explain the accelerated expansion rate of the Universe by modifications to General Relativity often invoke screening mechanisms which can imprint a non-standard density dependence on their predictions. This suggests density-dependent clustering as a 'generic' constraint. This paper argues that a density-marked correlation function provides a density-dependent statistic which is easy to compute and report and requires minimal additional infrastructure beyond what is routinely available to such survey analyses. We give one realization of this idea and study it using low order perturbation theory. We encourage groups developing modified gravity theories to see whether such statistics provide discriminatory power for their models.

  20. Discretization of 3d gravity in different polarizations

    Science.gov (United States)

    Dupuis, Maïté; Freidel, Laurent; Girelli, Florian

    2017-10-01

    We study the discretization of three-dimensional gravity with Λ =0 following the loop quantum gravity framework. In the process, we realize that different choices of polarization are possible. This allows us to introduce a new discretization based on the triad as opposed to the connection as in the standard loop quantum gravity framework. We also identify the classical nontrivial symmetries of discrete gravity, namely the Drinfeld double, given in terms of momentum maps. Another choice of polarization is given by the Chern-Simons formulation of gravity. Our framework also provides a new discretization scheme of Chern-Simons, which keeps track of the link between the continuum variables and the discrete ones. We show how the Poisson bracket we recover between the Chern-Simons holonomies allows us to recover the Goldman bracket. There is also a transparent link between the discrete Chern-Simons formulation and the discretization of gravity based on the connection (loop gravity) or triad variables (dual loop gravity).

  1. An introduction to atmospheric gravity waves

    CERN Document Server

    Nappo, Carmen J

    2012-01-01

    Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation.An accompanying website contains real data, computer codes for data analysis, and linear gravity wave models to further enhance the reader's understanding of the book's material. Companion web site features animations and streaming video Foreword by George Chimonas, a renowned expert on the interac...

  2. A regional strategy for geothermal exploration with emphasis on gravity and magnetotellurics

    International Nuclear Information System (INIS)

    Aiken, C.L.V.; Ander, M.E.; Los Alamos Scientific Lab., NM

    1981-01-01

    Part of the resource evaluationProgram conducted by Los Alamos Scientific Laboratory for the national Hot Dry Rock (HDR) Geothermal Program, a regional magnetotelluric (MT) survey of New Mexico and Arizona is being performed. The MT lines are being located in areas where the results of anaylsis of residual gravity anomaly maps of Arizona and New Mexico, integrated with other geologic and geophysical studies indicate the greatest potential for HDR resources. (orig./ME)

  3. Human Performance in Simulated Reduced Gravity Environments

    Science.gov (United States)

    Cowley, Matthew; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. Our current understanding of human performance in reduced gravity in a planetary environment (the moon or Mars) is limited to lunar observations, studies from the Apollo program, and recent suit tests conducted at JSC using reduced gravity simulators. This study will look at our most recent reduced gravity simulations performed on the new Active Response Gravity Offload System (ARGOS) compared to the C-9 reduced gravity plane. Methods: Subjects ambulated in reduced gravity analogs to obtain a baseline for human performance. Subjects were tested in lunar gravity (1.6 m/sq s) and Earth gravity (9.8 m/sq s) in shirt-sleeves. Subjects ambulated over ground at prescribed speeds on the ARGOS, but ambulated at a self-selected speed on the C-9 due to time limitations. Subjects on the ARGOS were given over 3 minutes to acclimate to the different conditions before data was collected. Nine healthy subjects were tested in the ARGOS (6 males, 3 females, 79.5 +/- 15.7 kg), while six subjects were tested on the C-9 (6 males, 78.8 +/- 11.2 kg). Data was collected with an optical motion capture system (Vicon, Oxford, UK) and was analyzed using customized analysis scripts in BodyBuilder (Vicon, Oxford, UK) and MATLAB (MathWorks, Natick, MA, USA). Results: In all offloaded conditions, variation between subjects increased compared to 1-g. Kinematics in the ARGOS at lunar gravity resembled earth gravity ambulation more closely than the C-9 ambulation. Toe-off occurred 10% earlier in both reduced gravity environments compared to earth gravity, shortening the stance phase. Likewise, ankle, knee, and hip angles remained consistently flexed and had reduced peaks compared to earth gravity. Ground reaction forces in lunar gravity (normalized to Earth body weight) were 0.4 +/- 0.2 on

  4. Gravity on-shell diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Enrico [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)

    2016-11-22

    We study on-shell diagrams for gravity theories with any number of supersymmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only dlog-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in http://dx.doi.org/10.1007/JHEP06(2015)202.

  5. Exact Solutions in Three-Dimensional Gravity

    Science.gov (United States)

    García-Díaz, Alberto A.

    2017-09-01

    Preface; 1. Introduction; 2. Point particles; 3. Dust solutions; 4. AdS cyclic symmetric stationary solutions; 5. Perfect fluid static stars; 6. Static perfect fluid stars with Λ; 7. Hydrodynamic equilibrium; 8. Stationary perfect fluid with Λ; 9. Friedmann–Robertson–Walker cosmologies; 10. Dilaton-inflaton FRW cosmologies; 11. Einstein–Maxwell solutions; 12. Nonlinear electrodynamics black hole; 13. Dilaton minimally coupled to gravity; 14. Dilaton non-minimally coupled to gravity; 15. Low energy 2+1 string gravity; 16. Topologically massive gravity; 17. Bianchi type spacetimes in TMG; 18. Petrov type N wave metrics; 19. Kundt spacetimes in TMG; 20. Cotton tensor in Riemannian spacetimes; References; Index.

  6. Fixed points of quantum gravity

    OpenAIRE

    Litim, D F

    2003-01-01

    Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.

  7. Topological strings from Liouville gravity

    International Nuclear Information System (INIS)

    Ishibashi, N.; Li, M.

    1991-01-01

    We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)

  8. Neutron Stars : Magnetism vs Gravity

    Indian Academy of Sciences (India)

    however, in the magnetosphere, electromagnetic forces dominate over gravity : Fgr = mg ~ 10-18 Newton ; Fem = e V B ~ 10-5 Newton; (for a single electron of mass m and charge e ) ; Hence, the electromagnetic force is 1013 times stronger than gravity !!

  9. Delineation of Urban Active Faults Using Multi-scale Gravity Analysis in Shenzhen, South China

    Science.gov (United States)

    Xu, C.; Liu, X.

    2015-12-01

    In fact, many cities in the world are established on the active faults. As the rapid urban development, thousands of large facilities, such as ultrahigh buildings, supersized bridges, railway, and so on, are built near or on the faults, which may change the balance of faults and induce urban earthquake. Therefore, it is significant to delineate effectively the faults for urban planning construction and social sustainable development. Due to dense buildings in urban area, the ordinary approaches to identify active faults, like geological survey, artificial seismic exploration and electromagnetic exploration, are not convenient to be carried out. Gravity, reflecting the mass distribution of the Earth's interior, provides a more efficient and convenient method to delineate urban faults. The present study is an attempt to propose a novel gravity method, multi-scale gravity analysis, for identifying urban active faults and determining their stability. Firstly, the gravity anomalies are decomposed by wavelet multi-scale analysis. Secondly, based on the decomposed gravity anomalies, the crust is layered and the multilayer horizontal tectonic stress is inverted. Lastly, the decomposed anomalies and the inverted horizontal tectonic stress are used to infer the distribution and stability of main active faults. For validating our method, a case study on active faults in Shenzhen City is processed. The results show that the distribution of decomposed gravity anomalies and multilayer horizontal tectonic stress are controlled significantly by the strike of the main faults and can be used to infer depths of the faults. The main faults in Shenzhen may range from 4km to 20km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  10. Algebraic definition of topological W gravity

    International Nuclear Information System (INIS)

    Hosono, S.

    1992-01-01

    In this paper, the authors propose a definition of the topological W gravity using some properties of the principal three-dimensional subalgebra of a simple Lie algebra due to Kostant. In the authors' definition, structures of the two-dimensional topological gravity are naturally embedded in the extended theories. In accordance with the definition, the authors will present some explicit calculations for the W 3 gravity

  11. Cosmic censorship in quantum Einstein gravity

    Science.gov (United States)

    Bonanno, A.; Koch, B.; Platania, A.

    2017-05-01

    We study the quantum gravity modification of the Kuroda-Papapetrou model induced by the running of the Newton’s constant at high energy in quantum Einstein gravity. We argue that although the antiscreening character of the gravitational interaction favours the formation of a naked singularity, quantum gravity effects turn the classical singularity into a ‘whimper’ singularity which remains naked for a finite amount of advanced time.

  12. The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko

    2014-01-01

    When people are asked to indicate the vanishing location of a moving target, errors in the direction of motion (representational momentum) and in the direction of gravity (representational gravity) are usually found. These errors possess a temporal course wherein the memory for the location of the target drifts downwards with increasing temporal intervals between target's disappearance and participant's responses (representational trajectory). To assess if representational trajectory is a body-referenced or a world-referenced phenomenon. A behavioral localization method was employed with retention times between 0 and 1400 ms systematically imposed after the target's disappearance. The target could move horizontally (rightwards or leftwards) or vertically (upwards or downwards). Body posture was varied in a counterbalanced order between sitting upright and lying on the side (left lateral decubitus position). In the upright task, the memory for target location drifted downwards with time in the direction of gravity. This time course did not emerge for the decubitus task, where idiotropic dominance was found. The dynamic visual representation of gravity is neither purely body-referenced nor world-referenced. It seems to be modulated instead by the relationship between the idiotropic vector and physical gravity.

  13. Circulation-based Modeling of Gravity Currents

    Science.gov (United States)

    Meiburg, E. H.; Borden, Z.

    2013-05-01

    Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related

  14. Preliminary isostatic residual gravity map of the Tremonton 30' x 60' quadrangle, Box Elder and Cache Counties, Utah, and Franklin and Oneida Counties, Idaho

    Science.gov (United States)

    Langenheim, Victoria; Oaks, R.Q.; Willis, H.; Hiscock, A.I.; Chuchel, Bruce A.; Rosario, Jose J.; Hardwick, C.L.

    2014-01-01

    A new isostatic residual gravity map of the Tremonton 30' x 60' quadrangle of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over North Bay, northwest of Brigham City, and Malad and Blue Creek Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Promontory, Clarkston, and Wellsville Mountains. The highest gravity values are located in southern Curlew Valley and may be produced in part by deeper crustal density variations or crustal thinning. Steep, linear gravity gradients coincide with Quaternary faults bounding the Wellsville and Clarkston Mountains. Steep gradients also coincide with the margins of the Promontory Mountains, Little Mountain, West Hills, and the eastern margin of the North Promontory Mountains and may define concealed basin-bounding faults.

  15. Gravity Before Einstein and Schwinger Before Gravity

    Science.gov (United States)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  16. Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions

    Science.gov (United States)

    McCullough, Christopher; Bettadpur, Srinivas

    2015-04-01

    In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.

  17. Preliminary isostatic gravity map of the Grouse Creek and east part of the Jackpot 30 by 60 quadrangles, Box Elder County, Utah, and Cassia County, Idaho

    Science.gov (United States)

    Langenheim, Victoria; Willis, H.; Athens, N.D.; Chuchel, Bruce A.; Roza, J.; Hiscock, H.I.; Hardwick, C.L.; Kraushaar, S.M.; Knepprath, N.E.; Rosario, Jose J.

    2013-01-01

    A new isostatic residual gravity map of the northwest corner of Utah is based on compilation of preexisting data and new data collected by the Utah and United States Geological Surveys. Pronounced gravity lows occur over Junction, Grouse Creek, and upper Raft River Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Raft River Mountains. Higher values in the eastern part of the map may be produced in part by deeper crustal density variations or crustal thinning. Steep linear gravity gradients coincide with mapped Neogene normal faults near Goose Creek and may define basin-bounding faults concealed beneath Junction and Upper Raft River Valleys.

  18. What goes up... gravity and scientific method

    CERN Document Server

    Kosso, Peter

    2017-01-01

    The concept of gravity provides a natural phenomenon that is simultaneously obvious and obscure; we all know what it is, but rarely question why it is. The simple observation that 'what goes up must come down' contrasts starkly with our current scientific explanation of gravity, which involves challenging and sometimes counterintuitive concepts. With such extremes between the plain and the perplexing, gravity forces a sharp focus on scientific method. Following the history of gravity from Aristotle to Einstein, this clear account highlights the logic of scientific method for non-specialists. Successive theories of gravity and the evidence for each are presented clearly and rationally, focusing on the fundamental ideas behind them. Using only high-school level algebra and geometry, the author emphasizes what the equations mean rather than how they are derived, making this accessible for all those curious about gravity and how science really works.

  19. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  20. 14 CFR 29.27 - Center of gravity limits.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  1. Subsurface density structure of Taurus-Littrow Valley using Apollo 17 gravity data

    Science.gov (United States)

    Urbancic, N.; Ghent, R.; Johnson, C. L.; Stanley, S.; Hatch, D.; Carroll, K. A.; Garry, W. B.; Talwani, M.

    2017-06-01

    The Traverse Gravimeter Experiment (TGE) from the Apollo 17 mission was the first and only successful gravity survey on the surface of the Moon, revealing the local gravity field at Taurus-Littrow Valley (TLV). TLV is hypothesized to be a basalt-filled graben, oriented radial to Serenitatis basin. We implemented modern 3-D modeling techniques using recent high-resolution Lunar Reconnaisance Orbiter topography and image data sets to reinvestigate the subsurface structure of TLV and constrain the volcanic and tectonic history of the region. Updated topography led to significant improvements in the accuracy of free-air, Bouguer, and terrain corrections. To determine the underlying geometry for TLV, we tested a range of possible thicknesses, dips, and wall positions for the graben fill. We found that the thickness and position previously determined by Talwani et al. (1973) represent our preferred model for the data, but with walls with dips of 30°, rather than 90°. We found large model misfits due to unmodeled 3-D structure and density anomalies, as well as parameter trade-offs. We performed a sensitivity analysis to quantify the parameter trade-offs in an ideal future survey, assuming dominantly 2-D geological structure. At the TGE survey noise level (2.5 mGal), the fill thickness was constrained to ±150 m, the wall angle to ±5∘20∘ and the wall positions to ±1 km of the preferred model. This information can be used to inform the design of future lunar gravimetry experiments in regions similar to TLV.

  2. Hydrology signal from GRACE gravity data in the Nelson River basin, Canada: a comparison of two approaches

    Science.gov (United States)

    Li, Tanghua; Wu, Patrick; Wang, Hansheng; Jia, Lulu; Steffen, Holger

    2018-03-01

    The Gravity Recovery and Climate Experiment (GRACE) satellite mission measures the combined gravity signal of several overlapping processes. A common approach to separate the hydrological signal in previous ice-covered regions is to apply numerical models to simulate the glacial isostatic adjustment (GIA) signals related to the vanished ice load and then remove them from the observed GRACE data. However, the results of this method are strongly affected by the uncertainties of the ice and viscosity models of GIA. To avoid this, Wang et al. (Nat Geosci 6(1):38-42, 2013. https://doi.org/10.1038/NGEO1652; Geodesy Geodyn 6(4):267-273, 2015) followed the theory of Wahr et al. (Geophys Res Lett 22(8):977-980, 1995) and isolated water storage changes from GRACE in North America and Scandinavia with the help of Global Positioning System (GPS) data. Lambert et al. (Postglacial rebound and total water storage variations in the Nelson River drainage basin: a gravity GPS Study, Geological Survey of Canada Open File, 7317, 2013a, Geophys Res Lett 40(23):6118-6122, https://doi.org/10.1002/2013GL057973, 2013b) did a similar study for the Nelson River basin in North America but applying GPS and absolute gravity measurements. However, the results of the two studies in the Nelson River basin differ largely, especially for the magnitude of the hydrology signal which differs about 35%. Through detailed comparison and analysis of the input data, data post-processing techniques, methods and results of these two works, we find that the different GRACE data post-processing techniques may lead to this difference. Also the GRACE input has a larger effect on the hydrology signal amplitude than the GPS input in the Nelson River basin due to the relatively small uplift signal in this region. Meanwhile, the influence of the value of α , which represents the ratio between GIA-induced uplift rate and GIA-induced gravity-rate-of-change (before the correction for surface uplift), is more obvious in

  3. Petroleum Economist's 1993 North Sea survey

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A survey is presented for 51 oil fields in the North Sea belonging to the United Kingdom, 17 belonging to Norway, 4 belonging to the Netherlands and 7 belonging to Denmark. Similarly data is presented for 32 gas fields belonging to the United Kingdom, 5 belonging to Norway, 42 belonging to the Netherlands, and 1 belonging to Denmark. The information given in the surveys includes the original recoverable reserves, remaining reserves, water depth, gravity, sulphur content, discovery date, start-up date, participants and production. (U.K.)

  4. FRW cosmology in F(R,T) gravity

    International Nuclear Information System (INIS)

    Myrzakulov, Ratbay

    2012-01-01

    In this paper, we consider a theory of gravity with a metric-dependent torsion namely the F(R,T) gravity, where R is the curvature scalar and T is the torsion scalar. We study the geometric root of such theory. In particular we give the derivation of the model from the geometrical point of view. Then we present the more general form of F(R,T) gravity with two arbitrary functions and give some of its particular cases. In particular, the usual F(R) and F(T) gravity theories are particular cases of the F(R,T) gravity. In the cosmological context, we find that our new gravitational theory can describe the accelerated expansion of the Universe. (orig.)

  5. Subduction zones seen by GOCE gravity gradients

    DEFF Research Database (Denmark)

    Švarc, Mario; Herceg, Matija; Cammarano, Fabio

    In this study, the GOCE (Gravity field and steady state Ocean Circulation Explorer) gradiometry data were used to study geologic structures and mass variations within the lithosphere in areas of known subduction zones. The advantage of gravity gradiometry over other gravity methods is that gradie...

  6. 14 CFR 27.27 - Center of gravity limits.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must be...

  7. Spin Entanglement Witness for Quantum Gravity.

    Science.gov (United States)

    Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W; Ulbricht, Hendrik; Toroš, Marko; Paternostro, Mauro; Geraci, Andrew A; Barker, Peter F; Kim, M S; Milburn, Gerard

    2017-12-15

    Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.

  8. Modeling human perception of orientation in altered gravity

    Science.gov (United States)

    Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2015-01-01

    Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822

  9. Modeling Human Perception of Orientation in Altered Gravity

    Directory of Open Access Journals (Sweden)

    Torin K. Clark

    2015-05-01

    Full Text Available Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal otolith interaction model based upon the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: a static roll tilt in hyper-gravity, b static pitch tilt in hyper-gravity, c static roll tilt in hypo-gravity, and d static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.

  10. Tests of chameleon gravity

    Science.gov (United States)

    Burrage, Clare; Sakstein, Jeremy

    2018-03-01

    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.

  11. Observational tests of modified gravity

    International Nuclear Information System (INIS)

    Jain, Bhuvnesh; Zhang Pengjie

    2008-01-01

    Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the Universe. Modified gravity theories have richer observational consequences for large-scale structures than conventional dark energy models, in that different observables are not described by a single growth factor even in the linear regime. We examine the relationships between perturbations in the metric potentials, density and velocity fields, and discuss strategies for measuring them using gravitational lensing, galaxy cluster abundances, galaxy clustering/dynamics, and the integrated Sachs-Wolfe effect. We show how a broad class of gravity theories can be tested by combining these probes. A robust way to interpret observations is by constraining two key functions: the ratio of the two metric potentials, and the ratio of the gravitational 'constant' in the Poisson equation to Newton's constant. We also discuss quasilinear effects that carry signatures of gravity, such as through induced three-point correlations. Clustering of dark energy can mimic features of modified gravity theories and thus confuse the search for distinct signatures of such theories. It can produce pressure perturbations and anisotropic stresses, which break the equality between the two metric potentials even in general relativity. With these two extra degrees of freedom, can a clustered dark energy model mimic modified gravity models in all observational tests? We show with specific examples that observational constraints on both the metric potentials and density perturbations can in principle distinguish modifications of gravity from dark energy models. We compare our result with other recent studies that have slightly different assumptions (and apparently contradictory conclusions).

  12. Quasi-topological Ricci polynomial gravities

    Science.gov (United States)

    Li, Yue-Zhou; Liu, Hai-Shan; Lü, H.

    2018-02-01

    Quasi-topological terms in gravity can be viewed as those that give no contribution to the equations of motion for a special subclass of metric ansätze. They therefore play no rôle in constructing these solutions, but can affect the general perturbations. We consider Einstein gravity extended with Ricci tensor polynomial invariants, which admits Einstein metrics with appropriate effective cosmological constants as its vacuum solutions. We construct three types of quasi-topological gravities. The first type is for the most general static metrics with spherical, toroidal or hyperbolic isometries. The second type is for the special static metrics where g tt g rr is constant. The third type is the linearized quasitopological gravities on the Einstein metrics. We construct and classify results that are either dependent on or independent of dimensions, up to the tenth order. We then consider a subset of these three types and obtain Lovelock-like quasi-topological gravities, that are independent of the dimensions. The linearized gravities on Einstein metrics on all dimensions are simply Einstein and hence ghost free. The theories become quasi-topological on static metrics in one specific dimension, but non-trivial in others. We also focus on the quasi-topological Ricci cubic invariant in four dimensions as a specific example to study its effect on holography, including shear viscosity, thermoelectric DC conductivities and butterfly velocity. In particular, we find that the holographic diffusivity bounds can be violated by the quasi-topological terms, which can induce an extra massive mode that yields a butterfly velocity unbound above.

  13. Thermosyphon Flooding in Reduced Gravity Environments

    Science.gov (United States)

    Gibson, Marc Andrew

    2013-01-01

    An innovative experiment to study the thermosyphon flooding limits was designed and flown on aparabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtainempirical data for analysis. Current correlation models of Faghri and Tien and Chung do not agreewith the data. A new model is presented that predicts the flooding limits for thermosyphons inearths gravity and lunar gravity with a 95 confidence level of +- 5W.

  14. Internal model of gravity influences configural body processing.

    Science.gov (United States)

    Barra, Julien; Senot, Patrice; Auclair, Laurent

    2017-01-01

    Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  16. Loop-quantum-gravity vertex amplitude.

    Science.gov (United States)

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  17. Natural inflation and quantum gravity.

    Science.gov (United States)

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.

  18. Lanczos–Lovelock models of gravity

    International Nuclear Information System (INIS)

    Padmanabhan, T.; Kothawala, D.

    2013-01-01

    Lanczos–Lovelock models of gravity represent a natural and elegant generalization of Einstein’s theory of gravity to higher dimensions. They are characterized by the fact that the field equations only contain up to second derivatives of the metric even though the action functional can be a quadratic or higher degree polynomial in the curvature tensor. Because these models share several key properties of Einstein’s theory they serve as a useful set of candidate models for testing the emergent paradigm for gravity. This review highlights several geometrical and thermodynamical aspects of Lanczos–Lovelock models which have attracted recent attention

  19. The covariant formulation of f ( T ) gravity

    International Nuclear Information System (INIS)

    Krššák, Martin; Saridakis, Emmanuel N

    2016-01-01

    We show that the well-known problem of frame dependence and violation of local Lorentz invariance in the usual formulation of f ( T ) gravity is a consequence of neglecting the role of spin connection. We re-formulate f ( T ) gravity starting from, instead of the ‘pure tetrad’ teleparallel gravity, the covariant teleparallel gravity, using both the tetrad and the spin connection as dynamical variables, resulting in a fully covariant, consistent, and frame-independent version of f ( T ) gravity, which does not suffer from the notorious problems of the usual, pure tetrad, f ( T ) theory. We present the method to extract solutions for the most physically important cases, such as the Minkowski, the Friedmann–Robertson–Walker (FRW) and the spherically symmetric ones. We show that in covariant f ( T ) gravity we are allowed to use an arbitrary tetrad in an arbitrary coordinate system along with the corresponding spin connection, resulting always in the same physically relevant field equations. (paper)

  20. Total body irradiation with an arc and a gravity-oriented compensator

    International Nuclear Information System (INIS)

    Chui, C.-S.; Fontenla, Doracy P.; Mullokandov, Edward; Kapulsky, Alex; Lo, Y.-C.; Lo, C.-J.

    1997-01-01

    Purpose: To deliver uniform dose distributions for total-body irradiation (TBI) with an arc field and a gravity-oriented compensator. This technique allows the patient to be treated lying on the floor in a small treatment room. Methods and Materials: Through the sweeping motion of the gantry, a continuous arc field can deliver a large field to a patient lying on the floor. The dose profile, however, would not be uniform if no compensator were used, due to the effects of inverse square variation of beam intensity with distance as well as the slanted depth in patient. To solve this problem, a gravity-oriented compensator made of cerrobend alloy was designed. This compensator has a cross-section of an inverted isosceles triangle, with the apex always pointing downward, due to gravity. By properly selecting the thickness of the compensator, the width of the base, and the distance between the pivots to the base, the difference in the path length through the compensator can be made just right to compensate the effects of inverse-square and slanted depth, thus producing a uniform dose profile. Results: Arc fields with a gravity-oriented compensator were used for 6, 10, 15, and 18 MV photon beams. The arc field can cover a patient with a height up to 180 cm. The field width was chosen from 32 to 40 cm at the machine isocenter. The optimal thickness of the compensator was found to be 2.5 cm, and its base was 25 cm wide. The distance from the pivot points to the flat surface of the compensator proximal to the beam ranges from 13 to 14 cm for different beam energies. The dose uniformity at a depth of 10 cm is within ±5% for all beam energies used in this study. Conclusion: Highly uniform dose profiles for TBI treatments can be delivered with an arc and a gravity-oriented compensator. The proposed technique is simple and versatile. A single compensator can be used for all energies, because the amount of compensation can be adjusted by changing the distance to the pivot and