Schwarz, J.H.
1985-01-01
Dual string theories, initially developed as phenomenological models of hadrons, now appear more promising as candidates for a unified theory of fundamental interactions. Type I superstring theory (SST I), is a ten-dimensional theory of interacting open and closed strings, with one supersymmetry, that is free from ghosts and tachyons. It requires that an SO(eta) or Sp(2eta) gauge group be used. A light-cone-gauge string action with space-time supersymmetry automatically incorporates the superstring restrictions and leads to the discovery of type II superstring theory (SST II). SST II is an interacting theory of closed strings only, with two D=10 supersymmetries, that is also free from ghosts and tachyons. By taking six of the spatial dimensions to form a compact space, it becomes possible to reconcile the models with our four-dimensional perception of spacetime and to define low-energy limits in which SST I reduces to N=4, D=4 super Yang-Mills theory and SST II reduces to N=8, D=4 supergravity theory. The superstring theories can be described by a light-cone-gauge action principle based on fields that are functionals of string coordinates. With this formalism any physical quantity should be calculable. There is some evidence that, unlike any conventional field theory, the superstring theories provide perturbatively renormalizable (SST I) or finite (SST II) unifications of gravity with other interactions
Yukawa couplings in superstring compactification. [in quantum gravity theory
Strominger, A.
1985-01-01
A topological formula is given for the entire tree-level contribution to the low-energy effective action of a Calabi-Yau superstring compactification. The constraints on proton lifetime in the Calabi-Yau compactification are discussed in detail.
Introduction to superstring theory
Nunez, Carmen
2009-01-01
This is a very basic introduction to the AdS/CFT correspondence. The first lecture motivates the duality between gauge theories and gravity/string theories. The next two lectures introduce the bosonic and supersymmetric string theories. The fourth lecture is devoted to study Dp-branes and finally, in the fifth lecture I discuss the two worlds: N=4 SYM in 3+1 flat dimensions and type IIB superstrings in AdS 5 x S5. (author)
Introduction to superstring theory
Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)], e-mail: carmen@iafe.uba.ar
2009-07-01
This is a very basic introduction to the AdS/CFT correspondence. The first lecture motivates the duality between gauge theories and gravity/string theories. The next two lectures introduce the bosonic and supersymmetric string theories. The fourth lecture is devoted to study Dp-branes and finally, in the fifth lecture I discuss the two worlds: N=4 SYM in 3+1 flat dimensions and type IIB superstrings in AdS{sub 5} x S5. (author)
Superstrings: a theory of everything
Anthony, S.
1985-01-01
The paper concerns the ''superstrings'' theory, a theory which may be capable of describing all physical phenomena. Superstring theories and its consequences are discussed, as well as quantum mechanics, general relativity and supergravity. (U.K.)
Nonrelativistic superstring theories
Kim, Bom Soo
2007-01-01
We construct a supersymmetric version of the critical nonrelativistic bosonic string theory [B. S. Kim, Phys. Rev. D 76, 106007 (2007).] with its manifest global symmetry. We introduce the anticommuting bc conformal field theory (CFT) which is the super partner of the βγ CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of type IIB superstring theory. There is one notable difference: the fermions are nonchiral. We further consider noncritical generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical nonrelativistic string theory and the lightlike linear dilaton theory
Green, M.B.
1984-01-01
Superstring field theories are formulated in terms of light-cone-gauge superfields that are functionals of string coordinates chi(sigma) and theta(sigma). The formalism used preserves only the manifest SU(4) symmetry that corresponds to rotations among six of the eight transverse directions. In type I theories, which have one ten-dimensional supersymmetry and describe both open and closed strings, there are five interaction terms of two basic kinds. One kind is a breaking or joining interaction, which is a string generalization of a cubic Yang-Mills coupling. It is relevant to both the three open-string vertex and the open-string to closed-string transition vertex. The other kind is an exchange or crossing-over interaction, which is a string generalization of a cubic gravitational coupling. All the interactions can be uniquely determined by requiring continuity of the coordinates chi(sigma) and theta(sigma) (which implies local conservation of the conjugate momenta) and by imposing the global supersymmetry algebra. Specific local operators are identified for each of the two kinds of interactions. In type II theories, which have two ten-dimensional supersymmetries and contain closed strings only, the entire interaction hamiltonian consists of a single cubic vertex. The higher-order contact terms of the N=8 supergravity theory that arises in the low-energy limit give an effective description of the exchange of massive string modes. (orig.)
Superstrings and the search for the theory of everything
Peat, D.
1988-01-01
This book contains the following chapters: A Crisis in Physics; From Points to Strings; Nambu's String Theory; Grand Unification; Superstrings; Heterotic Strings: Two Dimensions in One; From Spinors to Twistors; Twistor Space; Twistor Gravity; and Into Deep Waters
Developments in superstring field theory
Green, M.B.
1987-01-01
In this article the structure of superstring theories is outlined. The one-loop quantum superstring gauge anomalies are then described and it is shown that their absence leads to an interesting theory with gauge group SO(32). The one-loop infinities also cancel for this gauge group. The anomaly cancellation can be understood in terms of the low-energy effective supergravity-Yang-Mills field theory, from which it is shown that E 8 x E 8 is an equally good gauge group, which suggests that there should also be an interesting E 8 x E 8 superstring theory. A new type of superstring theory, known as the 'heterotic' string theory, which only describes strings with gauge groups E 8 x E 8 or SO(32) is described. Finally some very exciting prospects for obtaining a sensible description of four-dimensional physics from a ten-dimensional superstring theory with gauge group E 8 x E 8 is outlined. (author)
Superstrings: a theory of everything
Ehntoni, S.
1986-01-01
A possibility of developing the superstring comprehensive theory and its application for a full description of all physical phenomena, occuring in the Universe, is discussed. For this purpose principles of supersymmetric string theories and supergravity theories as well as their expected properties and effects are briefly described. The most interesting superstring theory prediction is mentioned, concerning a possibility of existence in the Universe of two matter forms with similar particles and interactions, but the second one, which is like the one we know, practically cannot be discovered by convevtional means. This quasipotential mass phenomenon is proposed as an explanation of the problem, related to the ''lacking'' mass in the Universe
Davies, P.C.W.; Brown, Julian
1988-01-01
The book on superstrings is a set of nine interviews collected for the BBC Radio 3 documentary programme entitled ''Desperately Seeking Superstrings'', which was broadcast in early 1988. The intention of the book was to give both physicists and interested non-physicists an insight into the essential ideas of string theory. The superstring theory promises to provide a unified description of all forces, all the fundamental particles of matter and space and time. As an introduction to the interviews, a brief account of quantum physics, the theory of relativity and a survey of particle physics is given. (U.K.)
Discreteness and determinism in superstring theory
CERN. Geneva
2013-01-01
Superstring Theory is mathematically equivalent to a completely deterministic automaton,yet the world it describes appears to be quantum mechanical. How can we reconcile these apparently conflicting observations, and what would John Bell have to say about them?
The superstring action coupled to superfield theory
Kapustnikov, A.A.
1991-11-01
We propose a new superfield for d = 4, N = 1 superstring that is invariant under the general reparametrizations of d = 2, N = 2 world-sheet superspace. This action turns out to be determined in terms of properly constrained world-sheet superfields recently revealed in the framework of the PBGS (Partial Breaking of Global Supersymmetry) theory. An equivalence to the sigma model representation for heterotic d = 4 superstring is achieved by local supersymmetry gauge fixing. (author). 11 refs
An overview of superstring theory. 26
Sharatchandra, H.S.
1989-01-01
In recent years the theory of superstrings (SST) has been a candidate for the Theory of Everything (TOE). Strings are idealized one-dimensional extended objects, a natural generalization of relativistic point particles. With SST one may have a quantum field theory whose internal consistency moreover requires a unique number of spacetime dimensions 26 for bosonic strings and 10 for superstrings. This is the subject of this chapter which proceeds from dual models and Veneziano formula to a discussion of the relativistic string. light cone and Hamiltonian quantization is followed by a treatment of Lorentz covariance and the spectrum of string excitations. The field theory limit of interacting strings leads to higher derivative corrections to the Einstein action. It ends with a discussion of superstrings, current problems and future prospects. (author). 5 refs.; 7 figs
Super-Chern-Simons Theory as Superstring Theory
Grassi, P A
2004-01-01
Superstrings and topological strings with supermanifolds as target space play a central role in the recent developments in string theory. Nevertheless the rules for higher-genus computations are still unclear or guessed in analogy with bosonic and fermionic strings. Here we present a common geometrical setting to develop systematically the prescription for amplitude computations. The geometrical origin of these difficulties is the theory of integration of superforms. We provide a translation between the theory of supermanifolds and topological strings with supertarget space. We show how in this formulation one can naturally construct picture changing operators to be inserted in the correlation functions to soak up the zero modes of commuting ghost and we derive the amplitude prescriptions from the coupling with an extended topological gravity on the worldsheet. As an application we consider a simple model on R^(3|2) leading to super-Chern-Simons theory.
Brink, L.
1985-01-01
The author investigates point-particle theories to work with the corresponding field theories. With string theories the author works in the same fashion. Field theories for superstrings have also been defined and one way to examine string theories would be to follow the same steps taken for non-abelian gauge field theories. This means that the author wants to be as fluent with field theories for strings as with field theories for point-particles. There are problems presenting themselves immediately. Field theories for string, are functional field theories which at the outset are quite badly defined. However, an oscillator basis is examined and in this way, functional expressions can be written in terms of well-defined sums. The second problem is that the field theories are only defined in the light-cone gauge so far. In the absence of a covariant formalism the author presents how to examine a field theory in the light-cone gauge. Finiteness or renormalizability, structure of counterterms, anomalies etc. in the light-cone gauge must be understood. For string theories, some great simplifications occur and even if a covariant formalism is found, it is not clear that it would be superior for explicit computations. Most of this paper sticks to the light-cone gauge and describes some of the aspects of superstring theories which make such a unifying theory of all interactions comprehensible
Anomaly mediation in superstring theory
Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theoretique, Ecole Polytechnique, CNRS, Palaiseau (France)
2010-08-15
We study anomaly mediated supersymmetry breaking in type IIB string theory and use our results to test the supergravity formula for anomaly mediated gaugino masses. We compute 1-loop gaugino masses for models of D3-branes on orbifold singularities with 3-form fluxes by calculating the annulus correlator of 3-form flux and two gauginos in the zero momentum limit. Consistent with supergravity expectations we find both anomalous and running contributions to 1-loop gaugino masses. For background Neveu-Schwarz H-flux we find an exact match with the supergravity formula. For Ramond-Ramond flux there is an off-shell ambiguity that precludes a full matching. The anomaly mediated gaugino masses, while determined by the infrared spectrum, arise from an explicit sum over UV open string winding modes. We also calculate brane-to-brane tree-level gravity mediated gaugino masses and show that there are two contributions coming from the dilaton and from the twisted modes, which are suppressed by the full T{sup 6} volume and the untwisted T{sup 2} volume respectively. (orig.)
Group-geometric methods in supergravity and superstring theories
Castellani, L.
1992-01-01
The purpose of this paper is to give a brief and pedagogical account of the group-geometric approach to (super)gravity and superstring theories. The authors summarize the main ideas and apply them to selected examples. Group geometry provides a natural and unified formulation of gravity and gauge theories. The invariance of both are interpreted as diffeomorphisms on a suitable group manifold. This geometrical framework has a fruitful output, in that it provides a systematic algorithm for the gauging of Lie algebras and the construction of (super)gravity or (super)string Lagrangians. The basic idea is to associate fundamental fields to the group generators. This is done by considering first a basis of tangent vectors on the group manifold. These vectors close on the same algebra as the abstract group generators. The dual basis, i.e. the vielbeins (cotangent basis of one-forms) is then identified with the set of fundamental fields. Thus, for example, the vielbein V a and the spin connection ω ab of ordinary Einstein-Cartan gravity are seen as the duals of the tangent vectors corresponding to translations and Lorentz rotations, respectively
Anomalies in Witten's NSR superstring field theory
Aref'eva, I.Ya.; Medvedev, P.B.
1988-01-01
The action of Witten's NSR superstring field theory if shown to depend on the regularization being choosen to define its value on non-smooth states that are generated by supertransformation. The necessity of additional regularization originates from the appearance of products of picture-changing operators in coincident points. Two different regularization are described, one corresponding to Witten's scheme and the other to the scheme based on the notion of truncated fields
Green-Schwarz superstring theory in two dimensions and topological field theories
Igarashi, Yuji; Kubo, Jisuke
1991-01-01
It is shown that the algebra associated with the local Κ-supersymmetry in the Green-Schwarz superstring theory in d=2 dimensions closes of shell. We quantize the theory in a Lorentz covariant fashion by using the generalized hamiltonian method of Batalin, Fradkin and Vilkovisky and derive a quantum mechanically consistent, gauge-fixed theory, which can be interpreted as a Κ-supersymmetric extension of conformal topological gravity. (orig.)
A superstring field theory for supergravity
Reid-Edwards, R. A.; Riccombeni, D. A.
2017-09-01
A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.
Cutkosky rules for superstring field theory
Pius, Roji; Sen, Ashoke
2016-01-01
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.
Supersymmetry in open superstring field theory
Erler, Theodore [Arnold Sommerfeld Center, Ludwig-Maximilians University,Theresienstrasse 37, 80333 Munich (Germany)
2017-05-19
We realize the 16 unbroken supersymmetries on a BPS D-brane as invariances of the action of the corresponding open superstring field theory. We work in the small Hilbert space approach, where a symmetry of the action translates into a symmetry of the associated cyclic A{sub ∞} structure. We compute the supersymmetry algebra, being careful to disentangle the components which produce a translation, a gauge transformation, and a symmetry transformation which vanishes on-shell. Via the minimal model theorem, we illustrate how supersymmetry of the action implies supersymmetry of the tree level open string scattering amplitudes.
Introduction to string and superstring theory II
Peskin, M.E.
1987-03-01
Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs
Introduction to string and superstring theory II
Peskin, M.E.
1987-03-01
Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)
Magnetic flux tube models in superstring theory
Russo, Jorge G
1996-01-01
Superstring models describing curved 4-dimensional magnetic flux tube backgrounds are exactly solvable in terms of free fields. We consider the simplest model of this type (corresponding to `Kaluza-Klein' Melvin background). Its 2d action has a flat but topologically non-trivial 10-dimensional target space (there is a mixing of angular coordinate of the 2-plane with an internal compact coordinate). We demonstrate that this theory has broken supersymmetry but is perturbatively stable if the radius R of the internal coordinate is larger than R_0=\\sqrt{2\\a'}. In the Green-Schwarz formulation the supersymmetry breaking is a consequence of the presence of a flat but non-trivial connection in the fermionic terms in the action. For R R/2\\a' there appear instabilities corresponding to tachyonic winding states. The torus partition function Z(q,R) is finite for R > R_0 (and vanishes for qR=2n, n=integer). At the special points qR=2n (2n+1) the model is equivalent to the free superstring theory compactified on a circle...
Scattering amplitudes in open superstring theory
Schlotterer, Oliver
2011-07-15
The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all
Scattering amplitudes in open superstring theory
Schlotterer, Oliver
2011-01-01
The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all
Theories of quantum gravity: Pt. 1
Aragone, C.
1990-01-01
Superstrings continue to be a source of inspiration for the basic understanding of quantum gravity. They seem to provide a more fundamental arena than quantum field theory. Even though we still do not have a theory of everything, string concepts bring a new theoretical richness to research in quantum and classical gravity. Papers presented at the session on this subject are reviewed. (author)
Witten, E.
1983-01-01
The paper contains lecture notes on the superstring theory (in ten dimensions), which would appear at the moment to be the one real contender as a renormalizable, physically sensible quantum theory of gravity
Quark soup al dente: applied superstring theory
Myers, R C; Vazquez, S E [Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario N2 L 2Y5 (Canada)], E-mail: rmyers@perimeterinstitute.ca, E-mail: svazquez@perimeterinstitute.ca
2008-06-07
In recent years, experiments have discovered an exotic new state of matter known as the strongly coupled quark-gluon plasma (sQGP). At present, it seems that standard theoretical tools, such as perturbation theory and lattice gauge theory, are poorly suited to understand this new phase. However, recent progress in superstring theory has provided us with a theoretical laboratory for studying very similar systems of strongly interacting hot non-Abelian plasmas. This surprising new perspective extracts the fluid properties of the sQGP from physical processes in a black hole spacetime. Hence we may find the answers to difficult particle physics questions about the sQGP from straightforward calculations in classical general relativity.
The superstring: theory of everything, or of nothing
Ellis, J.
1986-01-01
Superstring models excite theoretical physicists because they may unite the four fundamental forces. These theories are formulated in a ten-dimensional world of extraordinarily high energies. Recent work indicates how superstrings may nevertheless relate to our four-dimensional world and to laboratory experiments. (author)
Superstring field theory equivalence: Ramond sector
Kroyter, Michael
2009-01-01
We prove that the finite gauge transformation of the Ramond sector of the modified cubic superstring field theory is ill-defined due to collisions of picture changing operators. Despite this problem we study to what extent could a bijective classical correspondence between this theory and the (presumably consistent) non-polynomial theory exist. We find that the classical equivalence between these two theories can almost be extended to the Ramond sector: We construct mappings between the string fields (NS and Ramond, including Chan-Paton factors and the various GSO sectors) of the two theories that send solutions to solutions in a way that respects the linearized gauge symmetries in both sides and keeps the action of the solutions invariant. The perturbative spectrum around equivalent solutions is also isomorphic. The problem with the cubic theory implies that the correspondence of the linearized gauge symmetries cannot be extended to a correspondence of the finite gauge symmetries. Hence, our equivalence is only formal, since it relates a consistent theory to an inconsistent one. Nonetheless, we believe that the fact that the equivalence formally works suggests that a consistent modification of the cubic theory exists. We construct a theory that can be considered as a first step towards a consistent RNS cubic theory.
Supersymmetry restoration in superstring perturbation theory
Sen, Ashoke
2015-01-01
Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.
Supersymmetry restoration in superstring perturbation theory
Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India)
2015-12-14
Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.
The Big Bang, Superstring Theory and the origin of life on the Earth.
Trevors, J T
2006-03-01
This article examines the origin of life on Earth and its connection to the Superstring Theory, that attempts to explain all phenomena in the universe (Theory of Everything) and unify the four known forces and relativity and quantum theory. The four forces of gravity, electro-magnetism, strong and weak nuclear were all present and necessary for the origin of life on the Earth. It was the separation of the unified force into four singular forces that allowed the origin of life.
Open superstring field theory on the restricted Hilbert space
Konopka, Sebastian; Sachs, Ivo
2016-01-01
It appears that the formulation of an action for the Ramond sector of open superstring field theory requires to either restrict the Hilbert space for the Ramond sector or to introduce auxiliary fields with picture −3/2. The purpose of this note is to clarify the relation of the restricted Hilbert space with other approaches and to formulate open superstring field theory entirely in the small Hilbert space.
Higher point spin field correlators in D=4 superstring theory
Haertl, D.; Schlotterer, O.; Stieberger, S.
2010-01-01
Calculational tools are provided allowing to determine general tree-level scattering amplitudes for processes involving bosons and fermions in heterotic and superstring theories in four space-time dimensions. We compute higher-point superstring correlators involving massless four-dimensional fermionic and spin fields. In D=4 these correlators boil down to a product of two pure spin field correlators of left- and right-handed spin fields. This observation greatly simplifies the computation of such correlators. The latter are basic ingredients to compute multi-fermion superstring amplitudes in D=4. Their underlying fermionic structure and the fermionic couplings in the effective action are determined by these correlators.
Constraints on grand unified superstring theories
Ellis, J.; Lopez, J.L.; Nanopoulos, D.V.; Houston Advanced Research Center
1990-01-01
We evaluate some constraints on the construction of grand unified superstring theories (GUSTs) using higher level Kac-Moody algebras on the world-sheet. In the most general formulation of the heterotic string in four dimensions, an analysis of the basic GUST model-building constraints, including a realistic hidden gauge group, reveals that there are no E 6 models and any SO(10) models can only exist at level-5. Also, any such SU(5) models can exist only for levels 4≤k≤19. These SO(10) and SU(5) models risk having many large, massless, phenomenologically troublesome representations. We also show that with a suitable hidden sector gauge group, it is possible to avoid free light fractionally charged particles, which are endemic to string derived models. We list all such groups and their representations for the flipped SU(5)xU(1) model. We conclude that a sufficiently binding hidden sector gauge group becomes a basic model-building constraint. (orig.)
Consistent superstrings as solutions of the D=26 bosonic string theory
Casher, A.; Englert, F.; Nicolai, H.; Taormina, A.
1985-01-01
Consistent closed ten-dimensional superstrings, i.e. the two N=2 superstrings, are contained in the 26-dimensional bosonic closed string theory. The latter thus appears as the fundamental string theory. (orig.)
The monster sporadic group and a theory underlying superstring models
Chapline, G.
1996-09-01
The pattern of duality symmetries acting on the states of compactified superstring models reinforces an earlier suggestion that the Monster sporadic group is a hidden symmetry for superstring models. This in turn points to a supersymmetric theory of self-dual and anti-self-dual K3 manifolds joined by Dirac strings and evolving in a 13 dimensional spacetime as the fundamental theory. In addition to the usual graviton and dilaton this theory contains matter-like degrees of freedom resembling the massless states of the heterotic string, thus providing a completely geometric interpretation for ordinary matter. 25 refs
The S-matrix of superstring field theory
Konopka, Sebastian
2015-01-01
We show that the classical S-matrix calculated from the recently proposed superstring field theories give the correct perturbative S-matrix. In the proof we exploit the fact that the vertices are obtained by a field redefinition in the large Hilbert space. The result extends to include the NS-NS subsector of type II superstring field theory and the recently found equations of motions for the Ramond fields. In addition, our proof implies that the S-matrix obtained from Berkovits’ WZW-like string field theory then agrees with the perturbative S-matrix to all orders.
Analytic solutions for marginal deformations in open superstring field theory
Okawa, Y.
2007-04-01
We extend the calculable analytic approach to marginal deformations recently developed in open bosonic string field theory to open superstring field theory formulated by Berkovits. We construct analytic solutions to all orders in the deformation parameter when operator products made of the marginal operator and the associated superconformal primary field are regular. (orig.)
Introduction to covariant formulation of superstring (field) theory
Anon.
1987-01-01
The author discusses covariant formulation of superstring theories based on BRS invariance. New formulation of superstring was constructed by Green and Schwarz in the light-cone gauge first and then a covariant action was discovered. The covariant action has some interesting geometrical interpretation, however, covariant quantizations are difficult to perform because of existence of local supersymmetries. Introducing extra variables into the action, a modified action has been proposed. However, it would be difficult to prescribe constraints to define a physical subspace, or to reproduce the correct physical spectrum. Hence the old formulation, i.e., the Neveu-Schwarz-Ramond (NSR) model for covariant quantization is used. The author begins by quantizing the NSR model in a covariant way using BRS charges. Then the author discusses the field theory of (free) superstring
Type II Superstring Field Theory: Geometric Approach and Operadic Description
Jurco, Branislav
2013-01-01
We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a $\\mathcal{N}=1$ generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.
The hexagon gauge anomaly in type 1 superstring theory
Green, M.B.; Schwarz, J.H.
1985-01-01
Hexagon diagrams with external on-mass-shell Yang-Mills gauge particles are investigated in type I superstring theory. Both the annulus and the Moebuis-strip diagrams are shown to give anomalies, implying that spurious longitudinal modes cannot be consistently decoupled. However, the anomalies cancel when the two diagrams are added together if the gauge group is chosen to be SO(32). In carrying out the analysis, two different regulators are considered, but the same conclusions emerge in both cases. We point out where various terms in the low-energy effective action originate in superstring diagrams. (orig.)
Spring School on Superstring Theory and Related Topics
2017-01-01
ICTP's annual Spring School on Superstring Theory and Related Topics provides pedagogical treatment of these subjects through lectures by some of the world's top string theorists. The activity is intended for theoretical physicists or mathematicians with knowledge of quantum field theory, general relativity and string theory. It is organized in collaboration with the Asia Pacific Center for Theoretical Physics (APCTP) and the Italian Institute for Nuclear Physics (INFN).
Anon.
1985-06-15
Mathematics and particle physics have often gone their separate ways in an attitude of mutual 'benign neglect', diverging in both methodology and language. This uncomfortable gap was bridged to a unique degree at the Argonne-Fermilab-Chicago symposium on Anomalies, Geometry and Topology, which took place at Argonne pnd the University of Chicago from 28-30 March, and which highlighted the new optimism in string, and particularly superstring, theories. More than 300 theoretical physicists and mathematicians met together to discuss problems of current excitement and to report on recent progress in an atmosphere of remarkably unguarded optimism. In an overview, John Schwarz of Caltech described how superstring theories are now making dramatic strides towards achieving the ultimate goal of a unified quantum theory of all interactions including gravity.
On the construction of classical superstring field theories
Konopka, Sebastian Johann Hermann
2016-07-01
This thesis describes the construction of classical superstring field theories based on the small Hilbert space. First we describe the traditional construction of perturbative superstring theory as an integral over the supermoduli space of type II world sheets. The geometry of supermoduli space dictates many algebraic properties of the string field theory action. In particular it allows for an algebraisation of the construction problem for classical superstring field theories in terms of homotopy algebras. Next, we solve the construction problem for open superstrings based on Witten's star product. The construction is recursive and involves a choice of homotopy operator for the zero mode of the η-ghost. It turns out that the solution can be extended to the Neveu-Schwarz subsectors of all superstring field theories. The recursive construction involves a hierarchy of string products at various picture deficits. The construction is not entirely natural, but it is argued that different choices give rise to solutions related by a field redefinition. Due to the presence of odd gluing parameters for Ramond states the extension to full superstring field theory is non-trivial. Instead, we construct gauge-invariant equations of motion for all superstring field theories. The realisation of spacetime supersymmetry in the open string sector is highly non-trivial and is described explicitly for the solution based on Witten's star product. After a field redefinition the non-polynomial equations of motion and the small Hilbert space constraint become polynomial. This polynomial system is shown to be supersymmetric. Quite interestingly, the supersymmetry algebra closes only up to gauge transformations. This indicates that only the physical phase space realizes N=1 supersymmetry. Apart from the algebraic constraints dictated by the geometry of supermoduli space the equations of motion or action should reproduce the traditional string S-matrix. The S-matrix of a field
Massive supermultiplets in four-dimensional superstring theory
Feng Wanzhe; Lüst, Dieter; Schlotterer, Oliver
2012-01-01
We extend the discussion of Feng et al. (2011) on massive Regge excitations on the first mass level of four-dimensional superstring theory. For the lightest massive modes of the open string sector, universal supermultiplets common to all four-dimensional compactifications with N=1,2 and N=4 spacetime supersymmetry are constructed respectively - both their vertex operators and their supersymmetry variations. Massive spinor helicity methods shed light on the interplay between individual polarization states.
Supersymmetry: Kaluza-Klein theory, anomalies, and superstrings
Aref'eva, I.Y.; Volovich, I.V.
1985-01-01
Progress in the search for a unified theory of elementary particles is reviewed. The supersymmetrical Kaluza-Klein theories are described: 11-, 10-, and 6-dimensional models of supergravity. The methods of spontaneous compactification, with whose help the four-dimensional theories are obtained, are described. The properties of the massless sector: zero modes in the Kaluza-Klein theories: and the question of the stability of vacuum solutions are discussed. An important criterion for the selection of a self-consistent theory is the absence of anomalies. The basic formulas for multidimensional chiral and gravitational anomalies are presented. The mechanism of the cancellation of the anomaly for Green and Schwarz's 10-dimensional effective field theory of superstrings with the gauge groups SO(32) and E 8 x E 8 is described. The basic concepts and the results of the theory of superstrings are presented. This theory has no divergences and is at the present time a very attractive candidate for a unified theory of elementary particles
Wilsonian effective action of superstring theory
Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Homi Bhabha National Institute,Training School Complex, Anushakti Nagar, Mumbai 400085 (India)
2017-01-25
By integrating out the heavy fields in type II or heterotic string field theory one can construct the effective action for the light fields. This effective theory inherits all the algebraic structures of the parent theory and the effective action automatically satisfies the Batalin-Vilkovisky quantum master equation. This theory is manifestly ultraviolet finite, has only light fields as its explicit degrees of freedom, and the Feynman diagrams of this theory reproduce the exact scattering amplitudes of light states in string theory to any arbitrary order in perturbation theory. Furthermore in this theory the degrees of freedom of light fields above certain energy scale are also implicitly integrated out. This energy scale is determined by a particular parameter labelling a family of equivalent actions, and can be made arbitrarily low, leading to the interpretation of the effective action as the Wilsonian effective action.
String field theory. Algebraic structure, deformation properties and superstrings
Muenster, Korbinian
2013-01-01
This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the
Localization of effective actions in open superstring field theory
Maccaferri, Carlo; Merlano, Alberto
2018-03-01
We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D( p - 4) system are reproduced.
Determination of the low energy spectra in the superstring theory
Rausch de Traubenberg, M.
1990-01-01
There is one solution to the superstring theory in 10 dimensions (SO(32) ou E8xE8) but in a 4-dimensions space, there are plenty of solutions, so a classification is necessary. The author has used a formulation named fermionic, where the solution is easy to build and he has developed a program in terms of formal calculation (REDUCE). In a first time, this program verifies the constraints induced by the modular invariance and then reproduces the low energy spectra
Covariant field theory of closed superstrings
Siopsis, G.
1989-01-01
The authors construct covariant field theories of both type-II and heterotic strings. Toroidal compactification is also considered. The interaction vertices are based on Witten's vertex representing three strings interacting at the mid-point. For closed strings, the authors thus obtain a bilocal interaction
Superstrings, conformal field theories and holographic duality
Benichou, R.
2009-06-01
The first half of this work is dedicated to the study of non-compact Gepner models.The Landau-Ginzburg description provides an easy and direct access to the geometry of the singularity associated to the non-compact Gepner models. Using these tools, we are able to give an intuitive account of the chiral rings of the models, and of the massless moduli in particular. By studying orbifolds of the singular linear dilaton models, we describe mirror pairs of non-compact Gepner models by suitably adapting the Greene-Plesser construction of mirror pairs for the compact case. For particular models, we take a large level, low curvature limit in which we can analyze corrections to a flat space orbifold approximation of the non-compact Gepner models. We have also studied bound states in N=2 Liouville theory with boundary and deep throat D-branes. We have shown that the bound states can give rise to massless vector and hyper multiplets in a low-energy gauge theory on D-branes deep inside the throat. The second half of this work deals with the issue of the quantization of the string in the presence of Ramond-Ramond backgrounds. Using the pure spinor formalism on the world-sheet, we derive the T-duality rules for all target space couplings in an efficient manner. The world-sheet path integral derivation is a proof of the equivalence of the T-dual Ramond-Ramond backgrounds which is valid non-perturbatively in the string length over the curvature radius and to all orders in perturbation theory in the string coupling. Sigma models on supergroup manifolds are relevant for quantifying string in various Anti-de-Sitter space-time with Ramond-Ramond backgrounds. We show that the conformal current algebra is realized in non-linear sigma models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting
All the fundamental massless bosonic fields in superstring theory
Manoukian, E.B.
2012-01-01
A systematic analysis of all the massless bosonic fields in superstring theory is carried out. Emphasis is put on the derivation of their propagators, their polarization aspects and the investigation of their underlying constraints as well as their number of degrees of freedom. The treatment is given in the presence of external sources, in the celebrated Coulomb gauge, ensuring the positivity of the formalism - a result which is also established in the process. The challenge here is the investigation involved in the self-dual fourth rank anti-symmetric tensor field. No constraints are imposed on the external sources so that their components may be varied independently, thus the complete expressions of the propagators may be obtained. As emphasized in our earlier work, the latter condition is an important one in dynamical theories with constraints giving rise to modifications as Faddeev-Popov factors. The analysis is carried out in 10 dimensions, not only because of the consistency requirement by the superstrings, but also in order to take into account of the self-duality character of the fourth rank anti-symmetric tensor field as spelled out in the paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Anomaly-free gauges in superstring theory and double supersymmetric sigma-model
Demichev, A.P.; Iofa, M.Z.
1991-01-01
Superharmonic gauge which is a nontrivial analog of the harmonic gauge in bosonic string theory is constructed for the fermionic superstrings. In contrast to the conformal gauge, the harmonic gauge in bosonic string and superharmonic gauge in superstring theory are shown to be free from previously discovered BRST anomaly (in critical dimension) in higher orders of string perturbation theory and thus provide the setup for consistent quantization of (super)string theory. Superharmonic gauge appears to be closely connected with the supersymmetric σ-model with the target space being also a supermanifold. 28 refs
Field theory of interacting open superstrings of fermionic ghost representation
Aref'eva, I.Ya.; Medvedev, P.V.
1987-01-01
Field theory of interacting open superstring in fermionic ghost representation based on anticommuting and commuting ghosts corresponding respectively to world sheet bosonic x μ and fermionic φ μ coordinates is presented. The author have to revise once more the field theory of the free Ramond (R) string and starting from general algebraic point of view they obtain that the number of degrees of freedom in the R and NS (Neveu-Schwartz) sectors equalise themselves permitting to construct a supersymmetric operator. It is proposed to solve a specific equation guaranteeing superinvariance in order to find the R-R-NS and NS-R-R vertices in the term of the NS-NS-NS vertex
Neveu, A.C.
1986-01-01
Superstrings are seemingly irresistible for physicists in search of the ''Theory of Everything'', unifying all known forces and particles. However, as often happens in physics, superstrings were developed in a very different context, and the discovery of their remarkable properties came only slowly. (orig.).
Gell-Mann, M.
1985-01-01
The ''standard'' SU/sub 3/ x SU/sub 2/ x U/sub 1/ theory has three independent coupling constants and numerous dimensionless parameters determining mass ratios, the weak coupling matrix, etc. While N=1 supergravity, generalizing Einstein's gravity theory, is not necessarily very divergent itself, it is terribly divergent when coupled to external N=1 supermatter, such as N=1 super-Yang-Mills theory with N=1 supermultiplets of spin one-half and spin zero. Three paths are being explored in the search for the ultimate unified theory of physics. The first path involves N > 1 supergravity in four dimensions, without external supermatter, particularly the largest such theory, N=8 supergravity, where there is no room for external supermatter. The N=8 supergravity supermultiplet itself contains all the haplons (fundamental fields of the theory). During the last couple of years Michael Green and John Schwarz have found that there are two more 10-dimensional superstring theories IIA and IIB, with only closed strings. They reduce, on truncation to the initially massless actor, to N=2A and N=2B supergravity, respectively, in ten dimensions. But the superstring theories are finite to one loop instead of divergent like the corresponding supergravities. The author discusses that IIA and IIB superstrings, when truncated to the initially massless sector and trivially reduced to four dimensions, yield N=8 supergravity. All three superstring theories, although they have the traditional description as ''S-matrix'' theories on the mass shell, can also be written as field theories (with fields as functionals of strings instead of functions of points) with local couplings. So far, the field description is not covariant. This paper discusses various superstrings theories
Kaku, M.
1988-01-01
This tutorial introduces the development of, and current trends in, superstring theory, a significant and still controversial attempt to unify general relatively and quantum field theory. Stressing current areas of research activity, Introduction to Superstrings addresses topics including string field theory, multi-loops and Teichmuller spaces, conformal field theory, and four-dimensional superstrings
Green, M.B.
1986-01-01
Superstring theories have not yet been formulated in terms of a single compelling principle such as that of general relativity. However, enough is now known about the structure of these theories to justify the optimism that certain of them might be consistent quantum theories that unify gravity and the other forces. The fact that the quantum consistency of superstring theories restricts the possible ten-dimensional unifying symmetry groups to be E/sub 8/ x E/sub 8/ or SO(32) (or (Spin 32)/Z/sub 2/ which has the same algebra as SO(32)) is a novel development in particle physics. The case of E/sub 8/ x E/sub 8/ is particularly interesting since, in the process of compactification from ten to four dimensions, it can break to a realistic chiral symmetry group describing all the observed interactions and the spectrum of the known particles
On time variation of fundamental constants in superstring theories
Maeda, K.I.
1988-01-01
Assuming the action from the string theory and taking into account the dynamical freedom of a dilaton and its coupling to matter fluid, the authors show that fundamental 'constants' in string theories are independent of the 'radius' of the internal space. Since the scalar related to the 'constants' is coupled to the 4-dimensional gravity and matter fluid in the same way as in the Jordan-Brans Dicke theory with ω = -1, it must be massive and can get a mass easily through some symmetry breaking mechanism (e.g. the SUSY breaking due to a gluino condensation). Consequently, time variation of fundamental constants is too small to be observed
Capozziello, Salvatore; De Laurentis, Mariafelicia
2011-01-01
Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.
Peskin, M.E.
1986-12-01
The basic elements of string theory are presented after a brief review of the main properties of string theories, particularly the supersymmetric version. Lessons are provided on the basic quantized string, zero-point energy, the bosonic string, compactification on a torus, the superstring, the heterotic string, field compactification on an orbifold, and string compactification on an orbifold. 35 refs., 17 figs
1989-01-01
The book includes a selection of papers on the construction of superstring theories, mainly written during the years 1984-1987. It covers ten-dimensional supersymmetric and non-supersymmetric strings, four-dimensional heterotic strings and four-dimensional type-II strings. An introduction to more recent developments in conformal field theory in relation to string construction is provided.
Four-dimensional superstring models
Lykken, J.D.
1997-01-01
These five lectures give an elementary introduction to perturbative superstring theory, superstring phenomenology, and the fermionic construction of perturbative string models. These lectures assume no prior knowledge of string theory. (author) string theory. (author)
Carlip, S [Department of Physics, University of California, Davis, CA 95616 (United States)
2006-10-21
, it could easily be missed-but these are minor drawbacks. Readers will find clear answers to many 'frequently asked questions.' Are D-branes really necessary? Polchinski begins with T-duality for the closed string, and shows that the extension to open strings requires the existence of D-branes. How does string theory incorporate gravity? The two standard answers are that string theory contains a massless spin two 'graviton' and that consistent string propagation in a curved background requires that the background metric satisfy the Einstein field equations; Polchinski links the two, showing that the background metric can be viewed as a coherent state of the spin two excitations. Volume II, Superstring Theory and Beyond, extends Volume I to superstring theory, and then proceeds to treat a range of more advanced subjects: effective actions for branes, dualities and equivalences among string theories, M theory, stringy black holes, compactifications and four-dimensional field theories, and the like. The tone of this volume changes a bit-it is not as self-contained, and reads less like a textbook and more like an extended review article. I suspect, for example, that few students without a strong background in field theory will follow the discussion of anomalies in chapter 12. The change can be largely attributed to the content: the superstring is inherently more difficult than the bosonic string, and the newer material is not as deeply understood. But there are a few weaknesses in presentation as well: for instance, a discussion in chapter 11 of the relationship between symmetries and constraints omits any explanation of how one decides whether a transformation generates a symmetry or a constraint. Any two-volume book on string theory is necessarily incomplete. In his introduction, Polchinski cites the lack of a more thorough treatment of compactifications on curved manifolds. I would personally have liked to see more about noncritical strings and
Francaviglia, M.
1990-01-01
Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)
Real analytic solutions for marginal deformations in open superstring field theory
Okawa, Yuji
2007-01-01
We construct analytic solutions for marginal deformations satisfying the reality condition in open superstring field theory formulated by Berkovits when operator products made of the marginal operator and the associated superconformal primary field are regular. Our strategy is based on the recent observation by Erler that the problem of finding solutions for marginal deformations in open superstring field theory can be reduced to a problem in the bosonic theory of finding a finite gauge parameter for a certain pure-gauge configuration labeled by the parameter of the marginal deformation. We find a gauge transformation generated by a real gauge parameter which infinitesimally changes the deformation parameter and construct a finite gauge parameter by its path-ordered exponential. The resulting solution satisfies the reality condition by construction
Real analytic solutions for marginal deformations in open superstring field theory
Okawa, Y.
2007-04-01
We construct analytic solutions for marginal deformations satisfying the reality condition in open superstring field theory formulated by Berkovits when operator products made of the marginal operator and the associated superconformal primary field are regular. Our strategy is based on the recent observation by Erler that the problem of finding solutions for marginal deformations in open superstring field theory can be reduced to a problem in the bosonic theory of finding a finite gauge parameter for a certain pure-gauge configuration labeled by the parameter of the marginal deformation. We find a gauge transformation generated by a real gauge parameter which infinitesimally changes the deformation parameter and construct a finite gauge parameter by its path-ordered exponential. The resulting solution satisfies the reality condition by construction. (orig.)
Carlip, S
2006-01-01
-but these are minor drawbacks. Readers will find clear answers to many 'frequently asked questions.' Are D-branes really necessary? Polchinski begins with T-duality for the closed string, and shows that the extension to open strings requires the existence of D-branes. How does string theory incorporate gravity? The two standard answers are that string theory contains a massless spin two 'graviton' and that consistent string propagation in a curved background requires that the background metric satisfy the Einstein field equations; Polchinski links the two, showing that the background metric can be viewed as a coherent state of the spin two excitations. Volume II, Superstring Theory and Beyond, extends Volume I to superstring theory, and then proceeds to treat a range of more advanced subjects: effective actions for branes, dualities and equivalences among string theories, M theory, stringy black holes, compactifications and four-dimensional field theories, and the like. The tone of this volume changes a bit-it is not as self-contained, and reads less like a textbook and more like an extended review article. I suspect, for example, that few students without a strong background in field theory will follow the discussion of anomalies in chapter 12. The change can be largely attributed to the content: the superstring is inherently more difficult than the bosonic string, and the newer material is not as deeply understood. But there are a few weaknesses in presentation as well: for instance, a discussion in chapter 11 of the relationship between symmetries and constraints omits any explanation of how one decides whether a transformation generates a symmetry or a constraint. Any two-volume book on string theory is necessarily incomplete. In his introduction, Polchinski cites the lack of a more thorough treatment of compactifications on curved manifolds. I would personally have liked to see more about noncritical strings and Liouville theory and about the Green-Schwarz superstring
A singular one-parameter family of solutions in cubic superstring field theory
Arroyo, E. Aldo [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-170 São Paulo, SP (Brazil)
2016-05-03
Performing a gauge transformation of a simple identity-like solution of superstring field theory, we construct a one-parameter family of solutions, and by evaluating the energy associated to this family, we show that for most of the values of the parameter the solution represents the tachyon vacuum, except for two isolated singular points where the solution becomes the perturbative vacuum and the half brane solution.
T-dualization of type II superstring theory in double space
Nikolic, B.; Sazdovic, B. [University of Belgrade, Institute of Physics Belgrade, Belgrade (Serbia)
2017-03-15
In this article we offer a new interpretation of the T-dualization procedure of type II superstring theory in the double space framework. We use the ghost free action of type II superstring in pure spinor formulation in approximation of constant background fields up to the quadratic terms. T-dualization along any subset of the initial coordinates, x{sup a}, is equivalent to the permutation of this subset with subset of the corresponding T-dual coordinates, y{sub a}, in double space coordinate Z{sup M} = (x{sup μ}, y{sub μ}). Requiring that the T-dual transformation law after the exchange x{sup a} <-> y{sub a} has the same form as the initial one, we obtain the T-dual NS-NS and NS-R background fields. The T-dual R-R field strength is determined up to one arbitrary constant under some assumptions. The compatibility between supersymmetry and T-duality produces a change of bar spinors and R-R field strength. If we dualize an odd number of dimensions x{sup a}, such a change flips type IIA/B to type II B/A. If we T-dualize the time-like direction, one imaginary unit i maps type II superstring theories to type II{sup *} ones. (orig.)
On the absence of large-order divergences in superstring theory
Davis, S.
2003-01-01
The genus-dependence of multi-loop superstring amplitudes is estimated at large orders in perturbation theory using the super-Schottky group parameterization of supermoduli space. Restriction of the integration region to a subset of supermoduli space and a single fundamental domain of the super-modular group suggests an exponential dependence on the genus. Upper bounds for these estimates are obtained for arbitrary N-point superstring scattering amplitudes and are shown to be consistent with exact results obtained for special type II string amplitudes for orbifold or Calabi-Yau compactifications. The genus-dependence is then obtained by considering the effect of the remaining contribution to the superstring amplitudes after the coefficients of the formally divergent parts of the integrals vanish as a result of a sum over spin structures. The introduction of supersymmetry therefore leads to the elimination of large-order divergences in string perturbation theory, a result which is based only on the supersymmetric generalization of the Polyakov measure and not the gauge group of the string model. (Abstract Copyright [2003], Wiley Periodicals, Inc.)
Ne'eman, Y.
1998-01-01
The relatively simple Fibre-Bundle geometry of a Yang-Mills gauge theory - mainly the clear distinction between base and fibre - made it possible, between 1953 and 1971, to construct a fully quantized version and prove that theory's renormalizability; moreover, nonperturbative (topological) solutions were subsequently found in both the fully symmetric and the spontaneously broken modes (instantons, monopoles). Though originally constructed as a model formalism, it became in 1974 the mathematical mold holding the entire Standard Model (i.e. QCD and the Electroweak theory). On the other hand, between 1974 and 1984, Einstein's theory was shown to be perturbatively nonrenormalizable. Since 1974, the search for Quantum Gravity has therefore provided the main motivation for the construction of Gauge Theories of Gravity. Earlier, however, in 1958-76 several such attempts were initiated, for aesthetic or heuristic reasons, to provide a better understanding of the algebraic structure of GR. A third motivation has come from the interest in Unification, making it necessary to bring GR into a form compatible with an enlargement of the Standard Model. Models can be classified according to the relevant structure group in the fibre. Within the Poincare group, this has been either the R 4 translations, or the Lorentz group SL(2, C) - or the entire Poincare SL(2, C) x R 4 . Enlarging the group has involved the use of the Conformal SU(2, 2), the special Affine SA(4, R) = SL(4, R) x R 4 or Affine A(4, R) groups. Supergroups have included supersymmetry, i.e. the graded-Poincare group (n =1...8 m its extensions) or the superconformal SU(2, 2/n). These supergravity theories have exploited the lessons of the aesthetic-heuristic models - Einstein-Cartan etc. - and also achieved the Unification target. Although perturbative renormalizability has been achieved in some models, whether they satisfy unitarity is not known. The nonperturbative Ashtekar program has exploited the understanding of
Unity from duality: gravity, gauge theory and strings
Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.
2002-01-01
The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)
Low energy effective Lagrangians in open superstring theory
Medina, Ricardo
2008-01-01
The low energy effective Lagrangian describes the interactions of the massless modes of String Theory. Present work is being done to obtain all alpha' 3 terms (bosonic and fermionic) by means of the known 5-point amplitudes and SUSY
Relativistic theory of gravity
Logunov, A.A.; Mestvirishvili, M.A.
1985-01-01
This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes
Supergravities and superstrings
Ferrara, S.
1988-01-01
In this paper supergavity theories emerging as the point-field limit of various superstring compactifications are considered, and the higher-order corrections to the standard supergravity Lagrangians are discussed. The structure of the effective Lagrangian for the recently constructed four-dimensional superstring models is also reported
Open superstring field theory I: gauge fixing, ghost structure, and propagator
Kroyter, M.; Okawa, Y.; Schnabl, Martin; Torii, S.; Zwiebach, B.
2012-01-01
Roč. 2012, č. 3 (2012), 1-34 ISSN 1126-6708 R&D Projects: GA MŠk(CZ) LH11106 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : superstrings and heterotic strings * string field theory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.618, year: 2012 http://link.springer.com/article/10.1007%2FJHEP03%282012%29030
Danilov, G.S.
1995-01-01
A new formalism for ghosts on complex (1 bar 1) supermanifolds of genus n > 1 is discussed in superstring theory. In this formalism, vacuum correlation functions for ghost superfields differ substantially from correlation functions discussed earlier. In particular, the new correlation functions do not have unphysical poles. Among other things, these correlation functions take into account contributions to partition functions from the phase space of modular forms and from zero modes of ghosts. The above correlation functions, obtained for all even spinor structures, can be used to evaluate partition functions from equations that are nothing but Ward identities. 21 refs
Symplectic geometry of field theories and covariant quantization of superstrings and superparticles
Crnkovic, C.
1987-01-01
A detailed development of the symplectic geometry formalism for a general Lagrangian field theory is presented. Special attention is paid to the theories with constraints and/or gauge degrees of freedom. Special cases of Yang-Mills theory, general relativity and Witten's string field theory are studied and the generators of (super-) Poincare transformations are derived using their respective symplectic forms. The formalism extends naturally to theories formulated in the superspace. The second part of the thesis deals with issues in covariant quantization. By studying the symplectic geometry of the Green-Schwarz covariant superstring action, we elucidate some aspects of its covariant quantization. We derive the on-shell gauge-fixed action and the equations of motion for all the fields. Finally, turning to Siegel's version of the superparticle action, we perform its BRST quantization
Particle, superparticle, superstring and new approach to twistor theory
Eisenberg, Y.
1990-10-01
A new approach to twistor theory is proposed. The approach is based on certain reformulations of the classical massless particle and superparticle in terms of twistors. The first quantization of these systems leads to a full classification of all the free 4D field theories. The extension of one of this systems to the interacting case leads to a reformulation of the standard Dirac-Yang-Mills field equations in terms of gauge potential which fulfills certain curvatureless conditions in a generalized space (Minkowski+twistor). These conditions are a consequence of integrability conditions of an overdetermined system of linear equations whose vector field is composed from the components of the Dirac field and the Yang-Mills field strength. The twistorial reformulation allows us to gauge away all the ordinary space-time variables. By this procedure we obtain a description of the usual free massless field theories in terms of pure twistor space. These systems are invariant under an infinite dimensional algebra, which contains the two dimensional conformal algebera as a subalgebra. We propose this systems as candidates to a generalization of the notion of two-dimensional conformal field theories to four dimensions. Alternatively, we introduce an extension of the pure twistorial point particle to a two dimensional object, i.e. a pure twistorial string. (author)
Pure gauge configurations and solutions to fermionic superstring field theory equations of motion
Aref'eva, I Ya; Gorbachev, R V; Medvedev, P B
2009-01-01
Recent results on solutions to the equation of motion of the cubic fermionic string field theory and an equivalence of nonpolynomial and cubic string field theory are discussed. To have the possibility of dealing with both GSO(+) and GSO(-) sectors in the uniform way, a matrix formulation for the NS fermionic SFT is used. In constructions of analytical solutions to open-string field theories truncated pure gauge configurations parametrized by wedge states play an essential role. The matrix form of this parametrization for NS fermionic SFT is presented. Using the cubic open superstring field theory as an example we demonstrate explicitly that for the large parameter of the perturbation expansion these truncated pure gauge configurations give divergent contributions to the equations of motion on the subspace of the wedge states. The perturbation expansion is corrected by adding extra terms that are just those necessary for the equation of motion contracted with the solution itself to be satisfied.
Comments on complete actions for open superstring field theory
Matsunaga, Hiroaki
2016-01-01
We clarify a Wess-Zumino-Witten-like structure including Ramond fields and propose one systematic way to construct gauge invariant actions: Wess-Zumino-Witten-like complete action S_W_Z_W. We show that Kunitomo-Okawa’s action proposed in http://arxiv.org/abs/1508.00366 can obtain a topological parameter dependence of Ramond fields and belongs to our WZW-like framework. In this framework, once a WZW-like functional A_η=A_η[Ψ] of a dynamical string field Ψ is constructed, we obtain one realization of S_W_Z_W[Ψ] parametrized by Ψ. On the basis of this way, we construct an action S̃ whose on-shell condition is equivalent to the Ramond equations of motion proposed in http://arxiv.org/abs/1506.05774. Using these results, we provide the equivalence of two theories: http://arxiv.org/abs/1508.00366 and http://arxiv.org/abs/1506.05774.
Symmetry breaking in superstring theories: applications in cosmology and particle physics
Catelin-Julien, T.
2008-10-01
This thesis is devoted to the study of some applications of superstring theory in cosmology and in particle physics. The unifying principle of our work is the stringy spontaneous (super)symmetry breaking mechanism. Our manuscript starts with a general overview of string theory, where the emphasis is put on the aspects that will be important throughout our work. We introduce then our first work, in which we exhibit a new symmetry of the vacua of N = 1 heterotic string theory, exchanging the vectorial and spinorial representations of the grand unified gauge group. In a second part, we consider stringy cosmological evolutions, at non-zero temperature and in the presence of a supersymmetry breaking scale. We also give arguments for a stabilization of the compactification moduli. (author)
Novello, M.; Pinto Neto, N.
1987-01-01
A theory of gravity wich considers the topological invariant I = R* α βμυ R αβμυ as one of the basic quantities to be present in the description of the dynamics of gravitational interactions is presented. A cosmical scenario induced by this theory is sketched. (Author) [pt
Stochastic Gravity: Theory and Applications
Hu Bei Lok
2008-05-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out
Gravity, general relativity theory and alternative theories
Zel'dovich, Ya.B.; Grishchuk, L.P.; Moskovskij Gosudarstvennyj Univ.
1986-01-01
The main steps in plotting the current gravitation theory and some prospects of its subsequent development are reviewed. The attention is concentrated on a comparison of the relativistic gravitational field with other physical fields. Two equivalent formulations of the general relativity (GR) - geometrical and field-theoretical - are considered in detail. It is shown that some theories of gravity constructed as the field theories at a flat background space-time are in fact just different formulations of GR and not alternative theories
Is there a quantum theory of gravity
Strominger, A.
1984-01-01
The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)
Minimal theory of massive gravity
De Felice, Antonio; Mukohyama, Shinji
2016-01-01
We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT) massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than) −1 without introducing any extra degrees of freedom.
Minimal theory of massive gravity
Antonio De Felice
2016-01-01
Full Text Available We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than −1 without introducing any extra degrees of freedom.
Perturbative quantization of superstring theory in Anti de-Sitter spaces
Sundin, Per
2010-07-12
In this thesis we study superstring theory on AdS{sub 5} x S{sup 5}, AdS{sub 3} x S{sup 3} and AdS{sub 4} x CP{sub 3}. A shared feature of each theory is that their corresponding symmetry algebras allows for a decomposition under a Z{sub 4} grading. The grading can be realized through an automorphism which allows for a convenient construction of the string Lagrangians directly in terms of graded components. We adopt a uniform light-cone gauge and expand in a near plane wave limit, or equivalently, an expansion in transverse string coordinates. With a main focus on the two critical string theories, we perform a perturbative quantization up to quartic order in the number of fields. Each string theory is, through holographic descriptions, conjectured to be dual to lower dimensional gauge theories. The conjectures imply that the conformal dimensions of single trace operators in gauge theory should be equal to the energy of string states. What is more, through the use of integrable methods, one can write down a set of Bethe equations whose solutions encode the full spectral problem. One main theme of this thesis is to match the predictions of these equations, written in a language suitable for the light-cone gauge we employ, against explicit string theory calculations. We do this for a large class of string states and the perfect agreement we find lends strong support for the validity of the conjectures. (orig.)
Perturbative quantization of superstring theory in Anti de-Sitter spaces
Sundin, Per
2010-01-01
In this thesis we study superstring theory on AdS 5 x S 5 , AdS 3 x S 3 and AdS 4 x CP 3 . A shared feature of each theory is that their corresponding symmetry algebras allows for a decomposition under a Z 4 grading. The grading can be realized through an automorphism which allows for a convenient construction of the string Lagrangians directly in terms of graded components. We adopt a uniform light-cone gauge and expand in a near plane wave limit, or equivalently, an expansion in transverse string coordinates. With a main focus on the two critical string theories, we perform a perturbative quantization up to quartic order in the number of fields. Each string theory is, through holographic descriptions, conjectured to be dual to lower dimensional gauge theories. The conjectures imply that the conformal dimensions of single trace operators in gauge theory should be equal to the energy of string states. What is more, through the use of integrable methods, one can write down a set of Bethe equations whose solutions encode the full spectral problem. One main theme of this thesis is to match the predictions of these equations, written in a language suitable for the light-cone gauge we employ, against explicit string theory calculations. We do this for a large class of string states and the perfect agreement we find lends strong support for the validity of the conjectures. (orig.)
Compactification and inflation in the superstring theory from the condensation of gravitino pairs
Pollock, M. D.
1987-12-01
We discuss the possibility that inflation can occur in the E8×E8' heterotic superstring theory, if there is a pair condensation of the gravitino field ψA and also of the Majorana-Weyl spinor λ, as suggested by the Helayël-Neto and Smith. In the absence of a condensation of the anti-symmetric tensor field HMNP, then the associated potential V(θ,φ) is bounded from below and independent of the dilaton field φ. It can be made to vanish at the minimum, where the compactification scale θ is fixed. Alternatively, a small cosmological constant may remain (ultimately to be cancelled by radiative corrections at the lower energy scale of the gaugino condensation), which could in principle lead to inflation. Present address: Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400 005, India.
Gravity theories in more than four dimensions
Zumino, B.
1985-03-01
String theories suggest particular forms for gravity interactions in higher dimensions. We consider an interesting class of gravity theories in more than four dimensions, clarify their geometric meaning and discuss their special properties. 9 refs
Gribbin, John.
1990-01-01
This paper looks at Einstein's Theory of General Relativity and lists its accomplishments in explaining many problems in gravitation and astrophysics. It was Einstin's genius that led to our present comprehensive theory of gravity. Various ideas central to the theory are explained, such as the bending of space and time by massive objects, geodesics, the origin of the universe. In astrophysics, recent discoveries such as black holes, quasars, gravitational lenses, gravitational radiation, such as that coming from pulsars, can all be explained and understood using Einstein's ideas. (UK)
2-Dim. gravity and string theory
Narain, K.S.
1991-01-01
The role of 2-dim. gravity in string theory is discussed. In particular d=25 string theory coupled to 2-d. gravity is described and shown to give rise to the physics of the usual 26-dim. string theory (where one does not quantise 2-d. gravity. (orig.)
Saririan, K.
1997-05-01
In this thesis, the author presents some works in the direction of studying quantum effects in locally supersymmetric effective field theories that appear in the low energy limit of superstring theory. After reviewing the Kaehler covariant formulation of supergravity, he shows the calculation of the divergent one-loop contribution to the effective boson Lagrangian for supergravity, including the Yang-Mills sector and the helicity-odd operators that arise from integration over fermion fields. The only restriction is on the Yang-Mills kinetic energy normalization function, which is taken diagonal in gauge indices, as in models obtained from superstrings. He then presents the full result for the divergent one-loop contribution to the effective boson Lagrangian for supergravity coupled to chiral and Yang-Mills supermultiplets. He also considers the specific case of dilaton couplings in effective supergravity Lagrangians from superstrings, for which the one-loop result is considerably simplified. He studies gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, the author includes in the Kaehler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new running behavior of the dilaton arises which he attributes to S-duality. He also discusses the effects of the intermediate scale, and possible phenomenological implications of this model
On the application of the field-redefinition theorem to the heterotic superstring theory
Pollock, M. D.
2015-05-01
The ten-dimensional effective action which defines the heterotic superstring theory at low energy is constructed by hypothesis in such a way that the resulting classical equation of motion for the space-time metric simultaneously implies the vanishing of the beta-function for the N = 1 supersymmetric non-linear sigma-model on the world sheet. At four-loop order it was found by Grisaru and Zanon (see also Freeman et al.) that the effective Lagrangian so constructed differs in the numerical coefficient of the term from that obtained directly from the four-point gravitational scattering amplitude. The two expressions can be related via a metric field redefinition , activation of which, however, results in the appearance of ghosts at higher gravitational order , n > 4, as shown by Lawrence. Here, we prove, after reduction of to the physical dimensionality D = 4, that the corresponding field redefinition yields the identity g' ij = g ij , signified by L 3/ R = 0, in a Friedmann space-time generated by a perfect-fluid source characterized by adiabatic index γ ≡ 1 + p/ ρ, where p is the pressure and ρ is the energy density, if, and only if, κ 6 ρ 3 γ 2( γ - 1) = 0. That is, the theory remains free of ghosts in Minkowski space ρ = 0, in a maximally symmetric space-time γ = 0, or in a dust Universe γ = 1. Further aspects of ghost freedom and dimensional reduction, especially to D = 4, are discussed.
Local discrete symmetries from superstring derived models
Faraggi, A.E.
1996-10-01
Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations
Supersymmetry and Superstring Phenomenology
Gaillard, Mary K; Gaillard, Mary K.; Zumino, Bruno
2008-05-05
We briefly cover the early history of supersymmetry, describe the relation of SUSY quantum field theories to superstring theories and explain why they are considered a likely tool to describe the phenomenology of high energy particle theory beyond the Standard Model.
Stochastic Gravity: Theory and Applications
Hu Bei Lok
2004-01-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction
Theories at 10-17 and 10-33 cm
Bars, I.
1985-01-01
Rapid progress is reported in the areas of Superstring Theory, Composite Quarks and Leptons, Supergravity and Kaluza-Klein Theories. We have shifted our interest heavily toward the Superstring Theory since it has become the most promising unified theory for solving the fundamental questions in the standard model as well as quantum gravity. 23 refs
Lovelock gravities from Born–Infeld gravity theory
P.K. Concha
2017-02-01
Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
Lovelock gravities from Born-Infeld gravity theory
Concha, P. K.; Merino, N.; Rodríguez, E. K.
2017-02-01
We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
Corvi, M.; Kostelecky, V.A.; Moxhay, P.
1989-01-01
Superstrings with critical dimension two and two real bosonic spacetime coordinates may serve as useful toy models for the study of string properties. We present details of several such toy superstrings including open, closed, and heterotic models. Conformal methods are used to establish the spectrum and dimensionality. The spin fields are provided and Becchi-Rouet-Stora-Tyutin- (BRST-) invariant vertex operators are constructed. Four-point tree-level and four-point one-loop amplitudes in these models are obtained. The closed and heterotic toy superstrings are shown to be modular invariant to this order
Superstrings and harmonic superspace
Kallosh, R.E.; AN SSSR, Moscow. Fizicheskij Inst.)
1987-01-01
The paper on superstrings and harmonic superspace is a contribution to the book dedicated to E.S. Fradkin on his sixtieth birthday. The purpose of the paper is to propose a description of N = 2,3 superspace which could be used for the investigation of the effective d = 10 harmonic superspace corresponding to the heterotic superstring. A description is given of the structure of semi-simple Lie algebras in the Cartan-Weyl basis, as well as the general properties of the even, compact part of harmonic superspace. The main properties of the four-dimensional N = 2 SYM theory are discussed, along with the N = 3, d = 4 super Yang-Mills theory. Finally the relation between the harmonic superspace and the heterotic E 8 x E 8 superstring is examined. (U.K.)
String theory as a quantum theory of gravity
Horowitz, G.T.
1990-01-01
First, the connection between string theory and gravity is discussed - at first sight the theory of strings seem to have nothing to do with gravity but an intimate connection is shown. Then the quantum perturbation expansion is discussed. Thirdly, string theory is considered as a classical theory of gravity and finally recent speculation about a phase of string theory which is independent of a spacetime metric is discussed. (author)
Topics in string theory and quantum gravity
Alvarez-Gaume, Luis
1992-01-01
These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...
Proceeding of the workshop on quantum gravity and topology
Oda, Ichiro
1991-10-01
The workshop on Quantum Gravity and Topology was held at INS on February 21-23, 1991. Several introductory lectures and more than 15 talks were delivered for about 100 participants. The main subjects discussed were i) Topological quantum field theories and topological gravity ii) Low dimensional and four dimensional gravity iii) Topology change iv) Superstring theories etc. (J.P.N.)
A{sub ∞}/L{sub ∞} structure and alternative action for WZW-like superstring field theory
Goto, Keiyu [Institute of Physics, University of Tokyo,Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Matsunaga, Hiroaki [Institute of Physics, Academy of Sciences of the Czech Republic,Na Slovance 2, Prague 8 (Czech Republic); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan)
2017-01-09
We propose new gauge invariant actions for open NS, heterotic NS, and closed NS-NS superstring field theories. They are based on the large Hilbert space, and have Wess-Zumino-Witten-like expressions which are the ℤ{sub 2}-reversed versions of the conventional WZW-like actions. On the basis of the procedure proposed in https://arxiv.org/abs/1505.01659, we show that our new WZW-like actions are completely equivalent to A{sub ∞}/L{sub ∞} actions proposed in https://arxiv.org/abs/1403.0940 respectively.
Superstring field theories on super-flag manifolds: superdiff S1/S1 and superdiff S1/super S1
Zhao Zhiyong; Wu, Ke; Saito, Takesi
1987-01-01
We generalize the geometric approach of Bowick and Rajeev [BR] to superstring field theories. The anomaly is identified with nonvanishing of the Ricci curvature of the super-flag manifold. We explicitly calculate the curvatures of superdiff S 1 /S 1 and superdiff S 1 /superS 1 using super-Toeplitz operator techniques. No regularization is needed in this formalism. The critical dimension D=10 is rediscovered as a result of vanishing curvature of the product bundle over the super-flag manifold. (orig.)
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Cosmic string solution in a Born-Infeld type theory of gravity
Rocha, W.J. da; Guimaraes, M.E.X.
2009-01-01
Full text. Advances in the formal structure of string theory point to the emergence, and necessity, of a scalar-tensorial theory of gravity. It seems that, at least at high energy scales, the Einstein's theory is not enough to explain the gravitational phenomena. In other words, the existence of a scalar (gravitational) field acting as a mediator of the gravitational interaction together with the usual purely rank-2 tensorial field is, indeed, a natural prediction of unification models as supergravity, superstrings and M-theory. This type of modified gravitation was first introduced in a different context in the 60's in order to incorporate the Mach's principle into relativity, but nowadays it acquired different sense in cosmology and gravity theories. Although such unification theories are the most acceptable, they all exist in higher dimensional spaces. The compactification from these higher dimensions to the 4-dimensional physics is not unique and there exist many effective theories of gravity which come from the unification process. Each of them must, of course, satisfy some predictions. Here, in this paper, we will deal with one of them. The so-called NDL theory. One important assumption in General Relativity is that all field interact in the same way with gravity. This is the so called Strong Equivalence Principle (SEP). It is well known, with good accuracy, that this is true when we concern with matter to matter interaction, i.e, the Weak Equivalence Principle(WEP) is tested. But, until now, there is no direct observational confirmation of this affirmation to the gravity to gravity interaction. In an extension of the field theoretical description of General Relativity constructed by is used to propose an alternative field theory of gravity. In this theory gravitons propagate in a different spacetime. The velocity of propagation of the gravitational waves in this theory does not coincide with the General Relativity predictions. (author)
Group field theory and simplicial quantum gravity
Oriti, D
2010-01-01
We present a new group field theory for 4D quantum gravity. It incorporates the constraints that give gravity from BF theory and has quantum amplitudes with the explicit form of simplicial path integrals for first-order gravity. The geometric interpretation of the variables and of the contributions to the quantum amplitudes is manifest. This allows a direct link with other simplicial gravity approaches, like quantum Regge calculus, in the form of the amplitudes of the model, and dynamical triangulations, which we show to correspond to a simple restriction of the same.
Cosmological aspects of superstring models
Binetruy, P.
1986-10-01
I consider more specifically the cosmological aspects of supersymmetry breaking in ''superstring models'' (grand unified models which are believed to describe the effective theory obtained by compactification of superstring theories). The most interesting aspects are related to the presence of flat directions in the scalar potential (vacuum degeneracies). These flat directions are discussed both in the hidden sector of these models (do they give rise to inflation) and in the observable sector of quarks, leptons and Higgs particles, in connection with baryogenesis
A class of minimally modified gravity theories
Lin, Chunshan; Mukohyama, Shinji, E-mail: chunshan.lin@yukawa.kyoto-u.ac.jp, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2017-10-01
We investigate the Hamiltonian structure of a class of gravitational theories whose actions are linear in the lapse function. We derive the necessary and sufficient condition for a theory in this class to have two or less local physical degrees of freedom. As an application we then find several concrete examples of modified gravity theories in which the total number of local physical degrees of freedom in the gravity sector is two.
Superstrings and preons: a new approach to unification
Pati, J.C.
1987-01-01
The superstring theories generate the new prospect that one may finally have a consistent unified quantum theory of all forces including gravity. In spite of many attractive features, however, these theories appear so far to be beset with serious difficulties in describing the real world, like the problem of the fermion mass hierarchy and fermion mixings. For these reasons, it has been suggested that the advantages of the superstring theories as regards (a) uniqueness, (b) parameterlessness and (c) good quantum gravity may be retained and yet the difficulties may be circumvented if the fundamental four dimensional fields are identified with preons rather than with quarks and leptons. Such an identification would also enhance the prospect of an understanding of the fermion mass hierarchy because of new dynamics and new symmetries, which naturally arise within preonic theories, especially those with supersymmetry. Some new developments in preonic ideas are presented which may help remove certain dilemmas of preon dynamics. The so-called 'maximal' preon models are developed and it is indicated how they may have their origins from the superstring theories. A few crucial tests of these ideas are listed which can be verified by experiments at LEP, SLC and SSC and also by searches for certain rare processes. 29 refs.; 1 table
D-branes in non-critical superstrings and duality in N = 1 gauge theories with flavor
Murthy, S.; Troost, J.
2006-06-01
We study D-branes in the superstring background R 3,1 x SL(2, R) k =1/U(1) which are extended in the cigar direction. Some of these branes are new. The branes realize flavor in the four dimensional N = 1 gauge theories on the D-branes localized at the tip of the cigar. We study the analytic properties of the boundary conformal field theories on these branes with respect to their defining parameter and find non- trivial monodromies in this parameter. Through this approach, we gain a better understanding of the brane set-ups in ten dimensions involving wrapped NS5-branes. As one application, using the boundary conformal field theory description of the electric and magnetic D-branes, we can understand electric-magnetic (Seiberg) duality in N = 1 SQCD microscopically in a string theoretic context. (author)
Modified superstring in light cone gauge
Kamimura, Kiyoshi; Tatewaki, Machiko.
1988-01-01
We analyze the covariant superstring theory proposed by Siegel in light cone gauge. The physical states are the direct product of those of Green-Schwarz Superstring and the additional internal space spanned by light cone spinors. At clasical level, there is no difference among observables in Siegel's modified Superstring theory (SMST) and Green-Schwarz's one (GSST). However SMST can not be quantized with additional constraints as the physical state conditions. (author)
Generalized string theory mapping relations between gravity and gauge theory
Bjerrum-Bohr, N.E.J.
2003-01-01
A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, linking diagrams in gravity and Yang-Mills theory, as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings
Massive gravity and Fierz-Pauli theory
Blasi, Alberto; Maggiore, Nicola
2017-01-01
Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)
Massive gravity and Fierz-Pauli theory
Blasi, Alberto [Universita di Genova, Dipartimento di Fisica, Genova (Italy); Maggiore, Nicola [I.N.F.N.-Sezione di Genova, Genoa (Italy)
2017-09-15
Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)
Towards a superstring cosmology
Taylor, J.G.
1987-01-01
If superstring theory is a theory of everything then it must give a satisfactory description of the very early evolution of the universe. Since the very early universe is not directly observable, then by satisfactory it is mean that the later evolution following the earlier (pre-Planck time era) phase leads to agreement with prediction for the various observable phenomena such as (B-bar B), inflation, galaxy structure, the cosmological constant (infimum), etc. Moreover it is to be hoped that the initial singularity of classical general relativistic cosmology is also avoided. It is clear that superstring theory is not yet able to tackle these problems. This paper describes what has been done so far to construct very simplified versions of string theory relevant to the early universe, and discusses the critical questions still to be answered
Supersymmetry breaking from superstrings
Gaillard, M.K.; Lawrence Berkeley Lab., CA; California Univ., Berkeley
1990-01-01
The gauge hierarchy problem is briefly reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a clasical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated
Supersymmetry breaking from superstrings
Gaillard, M.K.
1990-05-01
The gauge hierarchy problem is briefly reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a classical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated. 26 refs
Kim, Sang-Woo; Nishimura, Jun; Tsuchiya, Asato
2012-01-06
We reconsider the matrix model formulation of type IIB superstring theory in (9+1)-dimensional space-time. Unlike the previous works in which the Wick rotation was used to make the model well defined, we regularize the Lorentzian model by introducing infrared cutoffs in both the spatial and temporal directions. Monte Carlo studies reveal that the two cutoffs can be removed in the large-N limit and that the theory thus obtained has no parameters other than one scale parameter. Moreover, we find that three out of nine spatial directions start to expand at some "critical time," after which the space has SO(3) symmetry instead of SO(9).
Soft collinear effective theory for gravity
Okui, Takemichi; Yunesi, Arash
2018-03-01
We present how to construct a soft collinear effective theory (SCET) for gravity at the leading and next-to-leading powers from the ground up. The soft graviton theorem and decoupling of collinear gravitons at the leading power are manifest from the outset in the effective symmetries of the theory. At the next-to-leading power, certain simple structures of amplitudes, which are completely obscure in Feynman diagrams of the full theory, are also revealed, which greatly simplifies calculations. The effective Lagrangian is highly constrained by effectively multiple copies of diffeomorphism invariance that are inevitably present in gravity SCET due to mode separation, an essential ingredient of any SCET. Further explorations of effective theories of gravity with mode separation may shed light on Lagrangian-level understandings of some of the surprising properties of gravitational scattering amplitudes. A gravity SCET with an appropriate inclusion of Glauber modes may serve as a powerful tool for studying gravitational scattering in the Regge limit.
Beyond Lovelock gravity: Higher derivative metric theories
Crisostomi, M.; Noui, K.; Charmousis, C.; Langlois, D.
2018-02-01
We consider theories describing the dynamics of a four-dimensional metric, whose Lagrangian is diffeomorphism invariant and depends at most on second derivatives of the metric. Imposing degeneracy conditions we find a set of Lagrangians that, apart form the Einstein-Hilbert one, are either trivial or contain more than 2 degrees of freedom. Among the partially degenerate theories, we recover Chern-Simons gravity, endowed with constraints whose structure suggests the presence of instabilities. Then, we enlarge the class of parity violating theories of gravity by introducing new "chiral scalar-tensor theories." Although they all raise the same concern as Chern-Simons gravity, they can nevertheless make sense as low energy effective field theories or, by restricting them to the unitary gauge (where the scalar field is uniform), as Lorentz breaking theories with a parity violating sector.
The zero-action hypothesis and high-temperature thermodynamics in the heterotic superstring theory
Pollock, M. D.
2005-07-01
The effective action S for the Einstein theory of gravity coupled to massless scalar fields phi, spinor fields ψ and gauge vector fields Fij describing radiation, so that FijFij = 0, vanishes identically after substitution from the classical equations of motion, thus allowing a perfect fluid for which the energy density ρ and pressure p = (γ - 1)ρ are related by values of the adiabatic index throughout the range 4/3 high-temperature limit T Gt TH, after Euclideanizing the time coordinate, where TH is the Hagedorn temperature. The response of the action to the operators T, C and P is also discussed, T-invariance requiring γ = 2 and hence S = 0, and P-invariance requiring S = 0, showing that the zero-action hypothesis can be understood in terms of these discrete symmetries.
One-loop mass shifts in O(32) open superstring theory
Yamamoto, Hisashi.
1987-08-01
One-loop amplitudes of O(N) open superstring with emission of massive bosons are studied. Divergences appearing at λ = 0 (λ: the over-all Teichmueller parameter) are shown to be canceled if N = 32 just as in the massless case. We explicitly evaluate the two-point on-shell amplitudes for all the levels of bosons lying on the leading (m 2 = 2 l, J = l + 1, m:mass J:spin l:level number of an excited state) and the next-to-leading (m 2 = 2 l, J = l) Regge trajectories and observe that they are nonvanishing even at N = 32. This implies that O(32) open super-string one-loop amplitudes with massive bosons generally suffer from external-line divergences. Further the obtained expressions of on-shell self energies (mass shifts δm 2 (l)) seem to have nontrivial dependences on l (being not proportional to l), although mass degeneracies remain. This strongly suggests that the Regge trajectories form a set of parallel polygonal lines at one-loop level so that the mass shifts cannot be absorbed by the shift of the slope parameter. The divergences would have to be cured by the vertex operator renormalizations at every excited level. (author)
Au, G.
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity
Au, G
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein`s classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity.
Danilov, G.S.
1994-01-01
It is shown that matrices of periods characterizing complex (1|1) supermanifolds of genus n > 1 depend on a spinor structure. This dependence manifests itself in terms proportional to odd moduli. Properties of matrices of periods exert a strong influence on the holomorphic structure of multiloop amplitudes in superstring theory. The supersymmetric analog of the Belavin-Knizhnik theorem is obtained by taking into account the above dependence on odd moduli. Superconformal versions of the Schottky group are used to study matrices of periods. This is essentially the only parametrization in which matrices of periods can be expressed explicitly in terms of even and odd moduli. Superconformal Schottky groups suitable for describing all spinor structures, including the structures for which superfields have branch points, are constructed. A method for calculating vacuum correlation functions of superfields for the above spinor structures is proposed. 18 refs
Cosmological perturbation theory and quantum gravity
Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)
2016-08-04
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.
Fundamental superstrings as holograms
Dabholkar, A.; Murthy, S.
2007-06-01
The worldsheet of a macroscopic fundamental superstring in the Green-Schwarz light-cone gauge is viewed as a possible boundary hologram of the near horizon region of a small black string. For toroidally compactified strings, the hologram has global symmetries of AdS 3 x S d-1 x T 8-d ( d = 3, . . . , 8), only some of which extend to local conformal symmetries. We construct the bulk string theory in detail for the particular case of d = 3. The symmetries of the hologram are correctly reproduced from this exact worldsheet description in the bulk. Moreover, the central charge of the boundary Virasoro algebra obtained from the bulk agrees with the Wald entropy of the associated small black holes. This construction provides an exact CFT description of the near horizon region of small black holes both in Type-II and heterotic string theory arising from multiply wound fundamental superstrings. (author)
Fundamental superstrings as holograms
Dabholkar, Atish; Murthy, Sameer
2008-01-01
The worldsheet of a macroscopic fundamental superstring in the Green-Schwarz light-cone gauge is viewed as a possible boundary hologram of the near horizon region of a small black string. For toroidally compactified strings, the hologram has global symmetries of AdS 3 x S d-1 x T 8-d (d = 3, ..., 8), only some of which extend to local conformal symmetries. We construct the bulk string theory in detail for the particular case of d = 3. The symmetries of the hologram are correctly reproduced from this exact worldsheet description in the bulk. Moreover, the central charge of the boundary Virasoro algebra obtained from the bulk agrees with the Wald entropy of the associated small black holes. This construction provides an exact CFT description of the near horizon region of small black holes both in Type-II and heterotic string theory arising from multiply wound fundamental superstrings
Solar system constraints on disformal gravity theories
Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy
2015-01-01
Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology
On a broken - symmetric theory of gravity
Fleming, H.
1979-09-01
A theory of gravity recently proposed by Zee is examined. The propagation of the special scalar field introduced by this theory is studied in cosmological models, and some problems are pointed out, connected with the possibility of a time-dependent vacuum expectation value for this scalar field. (Author) [pt
Nonabelian N=2 superstrings: Hamiltonian structure
Isaev, A.P.; Ivanov, E.A.
1991-04-01
We examine the Hamiltonian structure of nonabelian N=2 superstring models which are the supergroup manifold extensions of N=2 Green-Schwarz superstring. We find the Kac-Moody and Virasoro type superalgebras of the relevant constraints and present elements of the corresponding quantum theory. A comparison with the type IIA Green-Schwarz superstring moving in a general curved 10-d supergravity background is also given. We find that nonabelian superstrings (for d=10) present a particular case of this general system corresponding to a special choice of the background. (author). 22 refs
Strings - Links between conformal field theory, gauge theory and gravity
Troost, J.
2009-05-01
String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity
f(Lovelock) theories of gravity
Bueno, Pablo; Cano, Pablo A.; Óscar Lasso, A.; Ramírez, Pedro F.
2016-04-01
f(Lovelock) gravities are simple generalizations of the usual f( R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.
f(Lovelock) theories of gravity
Bueno, Pablo; Cano, Pablo A.; Óscar, Lasso A.; Ramírez, Pedro F.
2016-01-01
f(Lovelock) gravities are simple generalizations of the usual f(R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.
Restricted gravity: Abelian projection of Einstein's theory
Cho, Y.M.
2013-01-01
Treating Einstein's theory as a gauge theory of Lorentz group, we decompose the gravitational connection Γμ into the restricted connection made of the potential of the maximal Abelian subgroup H of Lorentz group G and the valence connection made of G/H part of the potential which transforms covariantly under Lorentz gauge transformation. With this we show that Einstein's theory can be decomposed into the restricted gravity made of the restricted connection which has the full Lorentz gauge invariance which has the valence connection as gravitational source. The decomposition shows the existence of a restricted theory of gravitation which has the full general invariance but is much simpler than Einstein's theory. Moreover, it tells that the restricted gravity can be written as an Abelian gauge theory,
Notes on the Wess-Zumino-Witten-like structure: L{sub ∞} triplet and NS-NS superstring field theory
Matsunaga, Hiroaki [Institute of Physics, the Czech Academy of Sciences,Na Slovance 2, Prague 8 (Czech Republic); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan)
2017-05-17
In the NS-NS sector of superstring field theory, there potentially exist three nilpotent generators of gauge transformations and two constraint equations: it makes the gauge algebra of type II theory somewhat complicated. In this paper, we show that every NS-NS actions have their WZW-like forms, and that a triplet of mutually commutative L{sub ∞} products completely determines the gauge structure of NS-NS superstring field theory via its WZW-like structure. We give detailed analysis about it and present its characteristic properties by focusing on two NS-NS actions proposed by https://www.doi.org/10.1007/JHEP01(2017)022 and https://www.doi.org/10.1007/JHEP08(2014)158.
Topics in Theories of Quantum Gravity
Perelstein, M.
2005-01-01
In this thesis, the author addresses several issues involving gravity. The first half of the thesis is devoted to studying quantum properties of Einstein gravity and its supersymmetric extensions in the perturbative regime. String theory suggests that perturbative scattering amplitudes in the theories of gravity are related to the amplitudes in gauge theories. This connection has been studied at classical (tree) level by Kawai, Lewellen and Tye. Here, they will explore the relationship between gravity and gauge theory at quantum (loop) level. This relationship, together with the cut-based approach to computing loop amplitudes, allow us to obtain new non-trivial results for quantum gravity. IN particular, they present two infinite sequences of one-loop n-graviton scattering amplitudes: the maximally helicity violating amplitudes in N = 8 supergravity, and the ''all-plus'' helicity amplitudes in Einstein gravity with any minimally coupled massless matter content. The results for n (le) 6 will be obtained by an explicit calculation, while those for n > 6 is inferred from the soft and collinear properties of the amplitudes. They also present an explicit expression for the two-loop contribution to the four-particle scattering amplitude in N = 8 supergravity, and observe a simple relation between this result and its counterpart in N = 4 super-Yang-Mills theory. Furthermore, the simple structure of the two-particle unitarity cuts in these theories suggests that similar relations exist to all loop orders. If this is the case, the first ultraviolet divergence in N = 8 supergravity should appear at five loops, contrary to the earlier expectation of a three-loop counterterm
Topics in Theories of Quantum Gravity
Perelstein, M.
2005-04-05
In this thesis, the author addresses several issues involving gravity. The first half of the thesis is devoted to studying quantum properties of Einstein gravity and its supersymmetric extensions in the perturbative regime. String theory suggests that perturbative scattering amplitudes in the theories of gravity are related to the amplitudes in gauge theories. This connection has been studied at classical (tree) level by Kawai, Lewellen and Tye. Here, they will explore the relationship between gravity and gauge theory at quantum (loop) level. This relationship, together with the cut-based approach to computing loop amplitudes, allow us to obtain new non-trivial results for quantum gravity. IN particular, they present two infinite sequences of one-loop n-graviton scattering amplitudes: the maximally helicity violating amplitudes in N = 8 supergravity, and the ''all-plus'' helicity amplitudes in Einstein gravity with any minimally coupled massless matter content. The results for n {le} 6 will be obtained by an explicit calculation, while those for n > 6 is inferred from the soft and collinear properties of the amplitudes. They also present an explicit expression for the two-loop contribution to the four-particle scattering amplitude in N = 8 supergravity, and observe a simple relation between this result and its counterpart in N = 4 super-Yang-Mills theory. Furthermore, the simple structure of the two-particle unitarity cuts in these theories suggests that similar relations exist to all loop orders. If this is the case, the first ultraviolet divergence in N = 8 supergravity should appear at five loops, contrary to the earlier expectation of a three-loop counterterm.
Eddington's theory of gravity and its progeny.
Bañados, Máximo; Ferreira, Pedro G
2010-07-02
We resurrect Eddington's proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington's theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe.
A history of the universe in a superstring model
Maeda, K.
1986-07-01
A superstring theory, which is most promising candidate for a unified theory, predicts a higher-dimensional 'space-time'. Its application to cosmology, especially reconsideration of the early history of the universe, is definitely important and interesting. Here, we discuss some scenario of the universe in a superstring model. Main problems in higher-dimensional unified theories, from the cosmological point of view, are: (i) Can the 4-dim Einstein gravity be obtained, rather than the Jordan-Brans-Dicke theory? (ii) Can the 4-dim Friedmann universe (F 4 ) be realized naturally in the higher-dimensional space-time? (iii) Does inflation really occur? The answers for (i) and (ii) are 'yes' in a superstring model, as we will see soon. (iii) is still an open question, although it seems to be difficult. Taking into account a quantum tunnelling effect of the anti-symmetric tensor field H μυρ , we also show that a hierarchical bubble structure might be formed due to a series of phase transitions
Unitarity problems in 3D gravity theories
Alkac, Gokhan; Basanisi, Luca; Kilicarslan, Ercan; Tekin, Bayram
2017-07-01
We revisit the problem of the bulk-boundary unitarity clash in 2 +1 -dimensional gravity theories, which has been an obstacle in providing a viable dual two-dimensional conformal field theory for bulk gravity in anti-de Sitter (AdS) spacetime. Chiral gravity, which is a particular limit of cosmological topologically massive gravity (TMG), suffers from perturbative log-modes with negative energies inducing a nonunitary logarithmic boundary field theory. We show here that any f (R ) extension of TMG does not improve the situation. We also study the perturbative modes in the metric formulation of minimal massive gravity—originally constructed in a first-order formulation—and find that the massive mode has again negative energy except in the chiral limit. We comment on this issue and also discuss a possible solution to the problem of negative-energy modes. In any of these theories, the infinitesimal dangerous deformations might not be integrable to full solutions; this suggests a linearization instability of AdS spacetime in the direction of the perturbative log-modes.
Relativistic astrophysics and theory of gravity
Zel'dovich, Ya.B.
1982-01-01
A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology
Campbell, B.A.; Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Hagelin, J.S.; Olive, K.A.
1986-02-01
It is argued that the lightest supersymmetric particle (LSP) emerging from the superstring theory is a mixture of neutral gauginos and matter fermions. Their mixing matrix is calculated in a plausible minimal low-energy model abstracted from the superstring and the composition of the LSP chi is exhibited. Its relic cosmological density is computed and it is found that it lies within a factor 2 of the critical density required for closure, over a wide range of possible input parameters. The flux of neutrinos from LSP annihilation in the Sun is computed and it is found that it straddles the upper bound from proton decay detectors. Acceptable fluxes are obtained if m chi is less than m/sub t/, in which case the superstring relic can have the critical density for a present Hubble expansion rate H 0 greater than or approximately equal to 50 km/s/Mpc only if m/sub t/ is greater than or approximately 40 GeV. 25 refs., 3 figs., 1 tab
Superstring amplitudes and contact interactions
Greensite, J.
1987-08-01
We show that scattering amplitudes computed from light-cone superstring field theory are divergent at tree level. The divergences can be eliminated, and supersymmetry restored, by the addition of certain counter terms to the light-cone Hamiltonian. These counter terms have the form of local contact interactions, whose existence we had previously deduced on grounds of vacuum stability, and closure of the super-Poincare algebra. The quartic contact interactions required in Type I and Type IIB superstring theories are constructed in detail. (orig.)
Gravitational lensing in metric theories of gravity
Sereno, Mauro
2003-01-01
Gravitational lensing in metric theories of gravity is discussed. I introduce a generalized approximate metric element, inclusive of both post-post-Newtonian contributions and a gravitomagnetic field. Following Fermat's principle and standard hypotheses, I derive the time delay function and deflection angle caused by an isolated mass distribution. Several astrophysical systems are considered. In most of the cases, the gravitomagnetic correction offers the best perspectives for an observational detection. Actual measurements distinguish only marginally different metric theories from each other
Low energy physics from superstrings
Segre, G.C.
1987-01-01
The developments of the past year have resulted in growing interest in the theory of superstrings, a subject which is on the one hand extraordinarily exciting in the promise it holds for solutions of many of the outstanding problems of particle physics and on the other hand rather forbidding in the amount of new knowledge which needs to be acquired by the average theorist to understand the papers that are now being published on the recent developments. In a sense the term low energy superstrings is misleading: the work of the past fifteen years in string theory, culminating in last summer's stunning developments by Green and Schwartz have led theorists to believe a finite, consistent superstring theory can be formulated. An enormous amount of work is going on in this subject, the premise that an effective field theory in ten space-time dimensions can be obtained from the superstring theory is the start of the lectures. The lectures will cover this later stage, namely how does one proceed from the effective ten dimensional theory to an effective four dimensional theory, describing the world as we see it. 87 references, 2 tables
Modifications of Einstein's theory of gravity at large distances
2015-01-01
In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories. In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments. Edite...
Perturbative Quantum Gravity from Gauge Theory
Carrasco, John Joseph
In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.
Large N field theories, string theory and gravity
Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)
2002-05-15
We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)
Cosmology in general massive gravity theories
Comelli, D.; Nesti, F.; Pilo, L.
2014-01-01
We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w eff has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w eff from -1. Taking into account current limits on w eff and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w eff form -1 in a weakly coupled massive gravity theory
Superstring thermodynamics and its application to cosmology
Matsuo, N.
1987-01-01
The thermodynamics of superstring theories (SST-I, SST-II) and heterotic string theory and its application to the cosmology are studied. The free energy of superstring gas is calculated in the one-loop approximation and the stability of the extra torus dimensions is discussed. Assuming that the Einstein equation dictates the evolution of the universe, we show that matter dominated universe filled with massive particles would never be realized at the beginning of the universe, contrary to the naive expectation in the superstring cosmology. (orig.)
Effective Lagrangian from superstrings
Cvetic, M.
1989-01-01
This paper presents a method to calculate the structure of the effective potential for four-dimensional vacua of the heterotic superstring with the space-time supersymmetry. The authors spell out the properties of the string vertices as defined in terms of the conformal field theory, the structure of the string amplitudes, in particular those that probe the superpotential terms, and present a method to evaluate such string amplitudes. The authors illustrate the approach by presenting certain results for the (blown-up) orbifolds
String theory and quantum gravity '92
Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.
1993-01-01
These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs
Superstring inspired models and phenomenology
Ross, G.G.
1987-01-01
An investigation of the effective low-energy theory resulting from the superstring is given. The possible light gauge and chiral super-multiplet structure is considered and a specific model leading to a SU(3)xSU(2)xU(1) gauge group is presented. Phenomenological implications for such models are briefly discussed
Quantum gravity from descriptive set theory
El Naschie, M.S.
2004-01-01
We start from Hilbert's criticism of the axioms of classical geometry and the possibility of abandoning the Archimedean axiom. Subsequently we proceed to the physical possibility of a fundamental limitation on the smallest length connected to certain singular points in spacetime and below which measurements become meaningless, Finally we arrive at the conclusion that maximising the Hawking-Bekenstein informational content of spacetime makes the existence of a transfinite geometry for physical 'spacetime' not only plausible but probably inevitable. The main part of the paper is then concerned with a proposal for a mathematical description of a transfinite, non-Archimedean geometry using descriptive set theory. Nevertheless, and despite all abstract mathematics, we remain quite close to similar lines of investigation initiated by physicists like A. Wheeler, D. Finkelstein and G. 'tHooft. In particular we introduce a logarithmic gauge transformation linking classical gravity with the electro weak via a version of informational entropy. That way we may claim to have accomplished an important step towards a general theory of quantum gravity using ε (∞) and complexity theory and finding that α G =(2) α-bar ew -1 congruent with (1.7)(10) 38 where α G is the dimensionless Newton gravity constant, and α ew ≅128 is the fine structure constant at the electro weak scale
Finding Horndeski theories with Einstein gravity limits
McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge, E-mail: ryanm@roe.ac.uk, E-mail: llo@roe.ac.uk, E-mail: jorpega@roe.ac.uk [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)
2016-11-01
The Horndeski action is the most general scalar-tensor theory with at most second-order derivatives in the equations of motion, thus evading Ostrogradsky instabilities and making it of interest when modifying gravity at large scales. To pass local tests of gravity, these modifications predominantly rely on nonlinear screening mechanisms that recover Einstein's Theory of General Relativity in regions of high density. We derive a set of conditions on the four free functions of the Horndeski action that examine whether a specific model embedded in the action possesses an Einstein gravity limit or not. For this purpose, we develop a new and surprisingly simple scaling method that identifies dominant terms in the equations of motion by considering formal limits of the couplings that enter through the new terms in the modified action. This enables us to find regimes where nonlinear terms dominate and Einstein's field equations are recovered to leading order. Together with an efficient approximation of the scalar field profile, one can then further evaluate whether these limits can be attributed to a genuine screening effect. For illustration, we apply the analysis to both a cubic galileon and a chameleon model as well as to Brans-Dicke theory. Finally, we emphasise that the scaling method also provides a natural approach for performing post-Newtonian expansions in screened regimes.
Strings and superstrings. Electron linear colliders
Alessandrini, V.; Bambade, P.; Binetruy, P.; Kounnas, C.; Le Duff, J.; Schwimmer, A.
1989-01-01
Basic string theory; strings in interaction; construction of strings and superstrings in arbitrary space-time dimensions; compactification and phenomenology; linear e+e- colliders; and the Stanford linear collider were discussed [fr
Signatures for exotic quark singlets from superstrings
Barger, V.; Deshpande, N.G.; Gunion, J.F.
1986-09-01
We consider various scenarios, at Superconducting Super Collider energy and luminosity, for detection of the extra colored, weak isospin singlet, charge -1/3 heavy fermion resulting from E 6 compactification in superstring theories
Loop amplitudes in an extended gravity theory
Dunbar, David C.; Godwin, John H.; Jehu, Guy R.; Perkins, Warren B.
2018-05-01
We extend the S-matrix of gravity by the addition of the minimal three-point amplitude or equivalently adding R3 terms to the Lagrangian. We demonstrate how Unitarity can be used to simply examine the renormalisability of this theory and determine the R4 counter-terms that arise at one-loop. We find that the combination of R4 terms that arise in the extended theory is complementary to the R4 counter-term associated with supersymmetric Lagrangians.
Information theory, spectral geometry, and quantum gravity.
Kempf, Achim; Martin, Robert
2008-01-18
We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.
Huebsch, T.
1987-01-01
Symmetry properties of a given physical system constrain greatly the theoretical models built in the attempt to describe the system. In complement, the symmetry properties of a system typically undergo dramatic changes during its evolution in time, underpinning the concept of phase transitions. Employing these two ideas we analyze models of Particle Physics at increasingly higher levels of unification, attempting to cover the wide span from the domain of experimentally accessible energies to scales where all the known interactions (including gravity) may be described as low-energy effects of the tremendous and intricate structure of Superstring theories. In particular, we study the scenario of compactification of the Heterotic Superstring theory involving Calabi-Yau manifolds and derive the basic properties of the effective point-field theory action, give a huge class of constructions and devise some techniques for future analysis. Further we study the possibility that the phase-transition from Superstrings to observed particles involves an intermediary phase where the observed particles exhibit compositeness, together with some consequences on the low-energy phenomenology. Finally we include our attempt to modify the SU(5) model, as one of the simplest Grand-unified models, to provide a solution to its difficulties. As we now show, the problems we were trying to address are so generic that some of them remain (in a disguised form) even at the present understanding of the Superstring theories, the most ample constructs of fundamental Physics so far
Stellar pulsations in beyond Horndeski gravity theories
Sakstein, Jeremy [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104 (United States); Kenna-Allison, Michael; Koyama, Kazuya, E-mail: sakstein@physics.upenn.edu, E-mail: mka1g13@soton.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)
2017-03-01
Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.
Stellar pulsations in beyond Horndeski gravity theories
Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya
2017-03-01
Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.
Weak lensing in generalized gravity theories
Acquaviva, Viviana; Baccigalupi, Carlo; Perrotta, Francesca
2004-01-01
We extend the theory of weak gravitational lensing to cosmologies with generalized gravity, described in the Lagrangian by a generic function depending on the Ricci scalar and a nonminimal coupled scalar field. We work out the generalized Poisson equations relating the dynamics of the fluctuating components to the two gauge-invariant scalar gravitational potentials, fixing the contributions from the modified background expansion and fluctuations. We show how the lensing equation gets modified by the cosmic expansion as well as by the presence of anisotropic stress, which is non-null at the linear level both in scalar-tensor gravity and in theories where the gravitational Lagrangian term features a nonminimal dependence on the Ricci scalar. Starting from the geodesic deviation, we derive the generalized expressions for the shear tensor and projected lensing potential, encoding the spacetime variation of the effective gravitational constant and isolating the contribution of the anisotropic stress, which introduces a correction due to the spatial correlation between the gravitational potentials. Finally, we work out the expressions of the lensing convergence power spectrum as well as the correlation between the lensing potential and the integrated Sachs-Wolfe effect affecting cosmic microwave background total intensity and polarization anisotropies. To illustrate phenomenologically the effects, we work out approximate expressions for the quantities above in extended quintessence scenarios where the scalar field coupled to gravity plays the role of the dark energy
Compact objects in relativistic theories of gravity
Okada da Silva, Hector
2017-05-01
In this dissertation we discuss several aspects of compact objects, i.e. neutron stars and black holes, in relativistic theories of gravity. We start by studying the role of nuclear physics (encoded in the so-called equation of state) in determining the properties of neutron stars in general relativity. We show that low-mass neutron stars are potentially useful astrophysical laboratories that can be used to constrain the properties of the equation of state. More specifically, we show that various bulk properties of these objects, such as their quadrupole moment and tidal deformability, are tightly correlated. Next, we develop a formalism that aims to capture how generic modifications from general relativity affect the structure of neutron stars, as predicted by a broad class of gravity theories, in the spirit of the parametrized post-Newtonian formalism (PPN). Our "post-Tolman-Oppenheimer-Volkoff" formalism provides a toolbox to study both stellar structure and the interior/exterior geometries of static, spherically symmetric relativistic stars. We also apply the formalism to parametrize deviations from general relativity in various astrophysical observables related with neutron stars, including surface redshift, apparent radius, Eddington luminosity. We then turn our attention to what is arguably the most well-motivated and well-investigated generalization of general relativity: scalar-tensor theory. We start by considering theories where gravity is mediated by a single extra scalar degree of freedom (in addition to the metric tensor). An interesting class of scalar-tensor theories passes all experimental tests in the weak-field regime of gravity, yet considerably deviates from general relativity in the strong-field regime in the presence of matter. A common assumption in modeling neutron stars is that the pressure within these object is spatially isotropic. We relax this assumption and examine how pressure anisotropy affects the mass, radius and moment of inertia
Is Quantum Gravity a Super-Quantum Theory?
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu
2013-01-01
We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.
String bit models for superstring
Bergman, O.; Thorn, C.B.
1995-01-01
The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D - 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D - 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring
String bit models for superstring
Bergman, O.; Thorn, C.B.
1995-12-31
The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.
Electrodynamics in scale-covariant gravity theory
Mansfield, V.N.; Malin, S.
1980-01-01
Utilizing the inherent scale-invariance of Maxwell's Equations, classical electrodynamics is incorporated into the theory of scale-invariant gravity. In this incorporation the gravitational constant G is shown to transform like β -2 (β is the gauge function), the generalized Lorentz Force Law is derived, the electric charge is shown to be invariant under gauge transformation, and matter creation is shown to be a necessity. In all nontrivial gauges a modified version of QED is obtained. The deviation from standard QED, however, is shown to be beyond the range of experimental detection when G α β -2 . (orig.)
Introduction to strings and superstrings
Traubenberg, M.R. de.
1988-01-01
We discuss the main features on the formulation of string theory that, in a primitive level, describe the hadronic phenomenon of duality. We also study an extension of the models of closed and strings with spin. Then, by using supersymmetry, it is formulated the theory of superstrings and heterotic strings with the aim of unify the fundamental interactions and matter. (M.W.O.) [pt
Two-loop statsum of superstring
Morozov, A.
1987-01-01
It is discussed, whether there is a choice of odd moduli on super-Riemnann surfaces of genus p ≥ 2, which leads to vanishing of statistical sums of of superstrings before integration over the space of even moduli. The answer is shown to be positive at least for p=2, when odd moduli are localized at ramification points. relation between various definitions of many-lopp statistical sums in superstring theory is discussed
Extension of loop quantum gravity to f(R) theories.
Zhang, Xiangdong; Ma, Yongge
2011-04-29
The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.
Overproduction of cosmic superstrings
Barnaby, Neil; Berndsen, Aaron; Cline, James M.; Stoica, Horace
2005-01-01
We show that the naive application of the Kibble mechanism seriously underestimates the initial density of cosmic superstrings that can be formed during the annihilation of D-branes in the early universe, as in models of brane-antibrane inflation. We study the formation of defects in effective field theories of the string theory tachyon both analytically, by solving the equation of motion of the tachyon field near the core of the defect, and numerically, by evolving the tachyon field on a lattice. We find that defects generically form with correlation lengths of order M s -1 rather than H -1 . Hence, defects localized in extra dimensions may be formed at the end of inflation. This implies that brane-antibrane inflation models where inflation is driven by branes which wrap the compact manifold may have problems with overclosure by cosmological relics, such as domain walls and monopoles
Superstrings fermionic solutions
Rausch de Traubenberg, M.
1990-06-01
The solutions proposed by the superstring theory are classified and compared. In order to obtain some of the equivalences, the demonstration is based on the coincidence of the excitation spectrum and the quantum numbers from different states. The fermionic representation of the heterotical strings is discussed. The conformal invariance and the supersymmetric results extended to two dimensions are investigated. Concerning the fermionic strings, the formalism and a phenomenological solution involving three families of quarks, chiral leptons and leptons from the E 6 gauge group are presented. The equivalence between real and complex fermions is discussed. The similarity between some of the solutions of the Wess-Zumino-Witten model and the orbifolds is considered. The formal calculation program developed for reproducing the theory's low energy spectra, in the fermionic string formalism is given [fr
Comment on non-renormalization theorem in the four dimensional superstrings
Soda, Jiro; Nakazawa, Naohito; Sakai, Kenji; Ojima, Shuichi.
1987-10-01
We discuss non-renormalization theorem in the context of the four dimensional superstrings. We explicitly demonstrate that the graviton 3-point one-loop amplitude does not vanish in contrast to the ten dimensional superstring theories. (author)
f(R) gravity and chameleon theories
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas J.
2008-01-01
We analyze f(R) modifications of Einstein's gravity as dark energy models in the light of their connection with chameleon theories. Formulated as scalar-tensor theories, the f(R) theories imply the existence of a strong coupling of the scalar field to matter. This would violate all experimental gravitational tests on deviations from Newton's law. Fortunately, the existence of a matter dependent mass and a thin-shell effect allows one to alleviate these constraints. The thin-shell condition also implies strong restrictions on the cosmological dynamics of the f(R) theories. As a consequence, we find that the equation of state of dark energy is constrained to be extremely close to -1 in the recent past. We also examine the potential effects of f(R) theories in the context of the Eoet-wash experiments. We show that the requirement of a thin shell for the test bodies is not enough to guarantee a null result on deviations from Newton's law. As long as dark energy accounts for a sizeable fraction of the total energy density of the Universe, the constraints that we deduce also forbid any measurable deviation of the dark energy equation of state from -1. All in all, we find that both cosmological and laboratory tests imply that f(R) models are almost coincident with a ΛCDM model at the background level.
Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory
Chan, H.A.; Paik, H.J.
1987-01-01
Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges
The generalized second law of thermodynamics in generalized gravity theories
Wu Shaofeng; Yang Guohong; Wang Bin; Zhang Pengming
2008-01-01
We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f(R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds
D-brane. Superstrings and new perspective of our world
Hashimoto, Koji [RIKEN, Saitama, Wako (Japan). Mathematical Physics Lab.
2012-07-01
Superstring theory is a promising theory which can potentially unify all the forces and the matters in particle physics. A new multi-dimensional object which is called ''D-brane'' was found. It drastically changed our perspective of a unified world. We may live on membrane-like hypersurfaces in higher dimensions (''braneworld scenario''), or we can create blackholes at particle accelerators, or the dynamics of quarks is shown to be equivalent to the higher dimensional gravity theory. All these scenarios are explained in this book with plain words but with little use of equations and with many figures. The book starts with a summary of long-standing problems in elementary particle physics and explains the D-branes and many applications of them. It ends with future roads for a unified ultimate theory of our world. (orig.)
Contact interactions of closed superstrings
Greensite, J.
1987-07-01
It is shown that closed light-cone superstring field theory, which is presently formulated with only cubic interaction terms, does not have a stable ground state, and that the global supersymmetry algebra is violated at second order in the coupling. Local contact interactions, of quartic (and possibly higher) order in the string fields, must be added to the light-cone Hamiltonian to restore supersymmetry and vacuum stability. (orig.)
Supersymmetry, supergravity and superstring models
Ross, G.G.
1987-01-01
The authors discuss the structure of models with a low-energy N=1 supersymmetry. This is extended to locally supersymmetric theories and to the models resulting if physics at the Planck scale is described by the superstring. The possible new light gauge and chiral supermultiplet structures are analysed and a specific model leading to the standard SU(3) x SU(2) x U(1) model is presented. Phenomenological implications of such models are discussed
General relativity and gauge gravity theories of higher order
Konopleva, N.P.
1998-01-01
It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one
Steps towards a quantum theory of gravity
Unruh, W.G.
1984-01-01
The paper concerns simple experiments in quantum gravity. 'Schroedinger's Cat' experiment to test semiclassical quantum gravity, and the gravitational single slit experiment to demonstrate the wave-particle duality for photons, are both described and discussed. (U.K.)
Evolution of curvature perturbation in generalized gravity theories
Matsuda, Tomohiro
2009-01-01
Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.
Statistical mechanics, gravity, and Euclidean theory
Fursaev, Dmitri V.
2002-01-01
A review of computations of free energy for Gibbs states on stationary but not static gravitational and gauge backgrounds is given. On these backgrounds wave equations for free fields are reduced to eigenvalue problems which depend non-linearly on the spectral parameter. We present a method to deal with such problems. In particular, we demonstrate how some results of the spectral theory of second-order elliptic operators, such as heat kernel asymptotics, can be extended to a class of non-linear spectral problems. The method is used to trace down the relation between the canonical definition of the free energy based on summation over the modes and the covariant definition given in Euclidean quantum gravity. As an application, high-temperature asymptotics of the free energy and of the thermal part of the stress-energy tensor in the presence of rotation are derived. We also discuss statistical mechanics in the presence of Killing horizons where canonical and Euclidean theories are related in a non-trivial way
Lectures on 2D gravity and 2D string theory
Ginsparg, P.; Moore, G.
1992-01-01
This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions
Generalised boundary terms for higher derivative theories of gravity
Teimouri, Ali; Talaganis, Spyridon; Edholm, James [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Mazumdar, Anupam [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands)
2016-08-24
In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.
Detection of low tension cosmic superstrings
Chernoff, David F.; Tye, S.-H. Henry
2018-05-01
Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ 10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).
Compactification of Superstrings and Chain or Oriented Strings in Interactions
Morales, Robert O.
2000-04-10
Superstring theories command the study of their various possible compactifications, and their consequence physics. Thus, the role of topology is likely to be far more central, in particular in ten-dimensional physics. Topological invariants on a chain of oriented strings in interaction are discussed. Attempts to link superstrings with the reality of the physical world in four dimensions are discussed.
Superstring Theory on $AdS_{3} x G/H$ and Boundary N=3 Superconformal Symmetry
Argurio, R; Shomer, A; Argurio, Riccardo; Giveon, Amit; Shomer, Assaf
2000-01-01
Superstrings propagating on backgrounds of the form AdS_3 x G/H are studiedusing the coset CFT approach. We focus on seven dimensional cosets which have asemiclassical limit, and which give rise to N=3 superconformal symmetry in thedual CFT. This is realized for the two cases AdS_3 x SU(3)/U(1) and AdS_3 xSO(5)/SO(3), for which we present an explicit construction. We also providesufficient conditions on a CFT background to enable a similar construction, andcomment on the geometrical interpretation of our results.
Perturbative Gravity and Gauge Theory Relations: A Review
Thomas Søndergaard
2012-01-01
Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.
New special operators in W-gravity theories
Rama, S.K.
1991-01-01
This paper reports on special physical operators of W 3 -gravity having non-trivial ghost sectors. Some of these operators may be viewed as the Liouville dressings of the energy operator of the Ising model coupled to two-dimensional (2D) gravity and this fills in the gap in the connection between pure W 3 -gravity and Ising model coupled to 2D gravity found in the authors' previous work. The authors formulate a selection rule required for the calculation of correlators in W-gravity theories. Using this rule, the authors construct the non-ghost part of the new operators of W N -gravity and find that they represent the (N,N + 1) minimal model operators from both inside and outside the minimal table. Along the way the authors obtain the canonical spectrum of W N -gravity for all N
Topological gravity from a transgression gauge field theory
Merino, N.; Perez, A.; Salgado, P.; Valdivia, O.
2010-01-01
It is shown that a topological action for gravity in even dimensions can be obtained from a gravity theory whose Lagrangian is given by a transgression form invariant under the Poincare group. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).
Iimori, Yuki; Torii, Shingo
2015-01-01
Developing the analysis in http://dx.doi.org/10.1007/JHEP03(2014)044 [http://arxiv.org/abs/1312.1677] by the present authors et al., we clarify the relation between the Witten formulation and the Berkovits formulation of open superstring field theory at the level of the master action, namely the solution to the classical master equation in the Batalin-Vilkovisky formalism, which is the key for the path-integral quantization. We first scrutinize the reducibility structure, a detailed gauge structure containing the information about ghost string fields. Then, extending the condition for partial gauge fixing introduced in the above-mentioned paper to the sector of ghost string fields, we investigate the master action. We show that the reducibility structure and the master action under partial gauge fixing of the Berkovits formulation can be regarded as the regularized versions of those in the Witten formulation.
Radar time delays in the dynamic theory of gravity
Haranas I.I.
2004-01-01
Full Text Available There is a new theory gravity called the dynamic theory, which is derived from thermodynamic principles in a five dimensional space, radar signals traveling times and delays are calculated for the major planets in the solar system, and compared to those of general relativity. This is done by using the usual four dimensional spherically symmetric space-time element of classical general relativistic gravity which has now been slightly modified by a negative inverse radial exponential term due to the dynamic theory of gravity potential.
Bars, I.; Nemeschansky, D.; Yankielowicz, S.
1986-01-01
In this paper the authors discuss string theories on a background manifold with torsion. In the first part, candidate vacuum configurations for ten-dimensional superstrings are discussed. The authors compactify these on M/sub 4/xK, where M/sub 4/ is four-dimensional and K some compact six-dimensional manifold. In particular they are interested in investigating the existence of solutions with non-zero torsion on K. The compactification problem is approached both from the effective field theory point of view and directly using string considerations. The second part of the talk is devoted to the construction of string theories in curved space with torsion. The authors discuss both the Neveu-Schwarz-Ramond type string and the Green-Schwarz type string. Particular emphasis is put on the resulting constraints on space-time supersymmetry in the Green-Schwarz approach. This study uses two-dimensional non-linear sigma models to describe the propagation of strings in background geometries with torsion. The background field can be understood as arising from condensation of infinite number of strings
Stability of the Einstein static universe in modified theories of gravity
Boehmer, Christian G.; Hollenstein, Lukas; Lobo, Francisco S. N.; Seahra, Sanjeev S.
2010-01-01
We present a brief overview of the stability analysis of the Einstein static universe in various modified theories of gravity, like f(R) gravity, Gauss-Bonnet or f(G) gravity, and Horava-Lifshitz gravity.
Matter coupled to quantum gravity in group field theory
Ryan, James
2006-01-01
We present an account of a new model incorporating 3d Riemannian quantum gravity and matter at the group field theory level. We outline how the Feynman diagram amplitudes of this model are spin foam amplitudes for gravity coupled to matter fields and discuss some features of the model. To conclude, we describe some related future work
Gomis, Joaquim [Departament de Fısica Quàntica i Astrofısica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona, Martıi Franquès 1, E-08028 Barcelona (Spain); Theory Group, Department of Physics, University of Texas,Austin, TX, 78712 (United States); Townsend, Paul K. [Department of Applied Mathematics and Theoretical Physics,Centre for Mathematical Sciences, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2017-02-21
The action for a Galilean superstring is found from a non-relativistic limit of the closed Green-Schwarz (GS) superstring; it has zero tension and provides an example of a massless super-Galilean system. A Wess-Zumino term leads to a topological central charge in the Galilean supersymmetry algebra, such that unitarity requires a upper bound on the total momentum. This Galilean-invariant bound, which is also implied by the classical phase-space constraints, is saturated by solutions of the superstring equations of motion that half-preserve supersymmetry. We discuss briefly the extension to the Galilean supermembrane.
Gomis, Joaquim; Townsend, Paul K.
2017-01-01
The action for a Galilean superstring is found from a non-relativistic limit of the closed Green-Schwarz (GS) superstring; it has zero tension and provides an example of a massless super-Galilean system. A Wess-Zumino term leads to a topological central charge in the Galilean supersymmetry algebra, such that unitarity requires a upper bound on the total momentum. This Galilean-invariant bound, which is also implied by the classical phase-space constraints, is saturated by solutions of the superstring equations of motion that half-preserve supersymmetry. We discuss briefly the extension to the Galilean supermembrane.
On a Lie-isotopic theory of gravity
Gasperini, M.
1984-01-01
Starting from the isotopic lifting of the Poincare algebra, a Lie-isotopic theory of gravity is formulated, its physical interpretation is given in terms of a generalized principle of equivalence, and it is shown that a local Lorentz-isotopic symmetry motivates the introduction of a generalized metric-affine geometrical structure. Finally, possible applications of a Lie-isotopic theory to the problem of unifying gravity with internal symmetries, in four and more than four dimensions, are discussed
From quantum gravity to quantum field theory via noncommutative geometry
Aastrup, Johannes; Grimstrup, Jesper Møller
2014-01-01
A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)
Thermal instability in a gravity-like scalar theory
Brandt, F. T.; Frenkel, J.; Das, Ashok
2008-01-01
We study the question of stability of the ground state of a scalar theory which is a generalization of the φ 3 theory and has some similarity to gravity with a cosmological constant. We show that the ground state of the theory at zero temperature becomes unstable above a certain critical temperature, which is evaluated in closed form at high temperature.
Perturbative quantum gravity as a double copy of gauge theory.
Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik
2010-08-06
In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.
Perturbative Quantum Gravity and its Relation to Gauge Theory
Bern Zvi
2002-01-01
Full Text Available In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.
String duality and novel theories without gravity
Kachru, Shamit
1998-01-01
We describe some of the novel 6d quantum field theories which have been discovered in studies of string duality. The role these theories (and their 4d descendants) may play in alleviating the vacuum degeneracy problem in string theory is reviewed. The DLCQ of these field theories is presented as one concrete way of formulating them, independent of string theory
Harmful axions in superstring models
Choi, K.; Kim, J.E.
1985-01-01
We show in this paper that the existing superstring models, E 8 x E 8 and O(32), have the axion decay constant problem. It is either 300 GeV or 10 16 GeV, which are outside the cosmologically allowed region. It is also pointed out that the invisible axion with 10 8 GeV 12 GeV is a necessity for all theories which have an effective interaction (PHIsub(n)/Msub(Pl))F tilde below the Planck scale. (orig.)
Scalar-tetrad theories of gravity
Hayward, J.
1981-01-01
A general theory of gravitation is constructed using a tetrad and a scalar field. The resulting theory, called a scalar-tetrad theory, does not contain Einstein's or the Brans-Dicke theories as special cases. However, there is a range of scalar-tetrad theories with the same post-Newtonian limit as Einstein's theory. Two particular models are interesting because of their simplicity. (author)
On vanishing of vacuum energy for superstrings
Morozov, A.; Perelomov, A.
1986-01-01
Hypothesis, concerning the structure of formulae for vacuum diagrams in the first-quantized superstring theory is proposed. The analytical measure in the integration over moduli space is proportional to the sum over spin structures on Riemann surfaces and vanishes because of the Riemann identities for Θ-constants
On the singularities of massive superstring amplitudes
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are
How far are we from the quantum theory of gravity?
Woodard, R P
2009-01-01
I give a pedagogical explanation of what it is about quantization that makes general relativity go from being a nearly perfect classical theory to a very problematic quantum one. I also explain why some quantization of gravity is unavoidable, why quantum field theories have divergences, why the divergences of quantum general relativity are worse than those of the other forces, what physicists think this means and what they might do with a consistent theory of quantum gravity if they had one. Finally, I discuss the quantum gravitational data that have recently become available from cosmology.
Applications of quantum information theory to quantum gravity
Smolin, L.
2005-01-01
Full text: I describe work by and with Fotini Markopoulou and Olaf Dreyeron the application of quantum information theory to quantum gravity. A particular application to black hole physics is described, which treats the black hole horizon as an open system, in interaction with an environment, which are the degrees of freedom in the bulk spacetime. This allows us to elucidate which quantum states of a general horizon contribute to the entropy of a Schwarzchild black hole. This case serves as an example of how methods from quantum information theory may help to elucidate how the classical limit emerges from a background independent quantum theory of gravity. (author)
Higher Curvature Gravity from Entanglement in Conformal Field Theories
Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles
2018-05-01
By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.
Introduction to string field theory
Horowitz, G.T.
1989-01-01
A light cone gauge superstring field theory is constructed. The BRST approach is described discussing generalizations to yield gauge invariant free superstring field theory and interacting theory for superstrings. The interaction term is explicitly expressed in terms of first quantized oscillators. A purily cubic action for superstring field theory is also derived. (author)
f(R)-theories of gravity and gravitational baryogenesis
Lambiase, G; Scarpetta, G [Dipartimento di Fisica ' E.R. Caianiello' Universita di Salerno, 84081 Baronissi (Italy); INFN - Gruppo Collegato di Salerno (Italy)
2007-05-15
The mechanism for generating the baryon asymmetry in the Universe is discussed in the framework of f(R)-theories of gravity. The gravitational baryogenesis, based on the coupling between the Ricci scalar curvature R and the baryon current, allows to determine the form of gravity Lagrangian, i.e. L(R) {approx} R{sup n}. The current bound on the observed matter-antimatter asymmetry and Big Bang Nucleosynthesis data lead to n = 0.97.
Introduction to strings and superstrings
Rausch de Traubenberg, M.
1988-01-01
The string theory is applied in the construction of a theory which allows the coupling of the four fundamental interactions and matter. The original model of the string theory describes the hadronic phenomenon of duality. The model extension, which describes the closed strings and those with a spin, is studied. The supersymmetry and the supersymmetric partner concepts are considered, in order to obtain a superstrings theory. The supersymmetry allows the formulation of a ''supertheory'', including matter, fields and gravitation. In order to explain the mass of the observable particles, the mechanism of symmetry breaking must be taken into account. The scalar state concept, originated from the supersymmetry breaking, is analyzed. This ''supertheory'' is not entirely accepted by the scientific world [fr
Les Houches lectures on large N field theories and gravity
Maldacena, J.
2002-01-01
We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. (authors)
Gravity duals of supersymmetric gauge theories on three-manifolds
Farquet, Daniel; Lorenzen, Jakob; Martelli, Dario; Sparks, James
2016-01-01
We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1)×U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.
Compact stars in vector-tensor-Horndeski theory of gravity
Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada)
2017-01-15
In this paper, we will analyze a theory of modified gravity, in which the field content of general relativity will be increased to include a vector field. We will use the Horndeski formalism to non-minimally couple this vector field to the metric. As we will be using the Horndeski formalism, this theory will not contain Ostrogradsky ghost degree of freedom. We will analyze compact stars using this vector-tensor-Horndeski theory. (orig.)
Frameworks for analyzing and testing theories of gravity
Lee, D.L.
1974-01-01
Theoretical frameworks are presented for the analysis and testing of gravitation theories--both metric and nonmetric. For nonmetric theories, the high precision Eotvos--Dicke--Braginskii (EBD) experiments are demonstrated to be powerful tests of their gravitational coupling to electromagnetic interactions. All known nonmetric theories are ruled out to within the precision of the EDB experiments. A new metric theory of gravity is presented that cannot be distinguished from general relativity in all current and planned solar system experiments. However, this theory has very different gravitational-wave properties. Hence, the need for further tests of metric theories beyond the Parametrized Post--Newtonian formalism is pointed out and the importance of the observation of gravitational waves as a tool for testing relativistic gravity in the future is emphasized. A theory-independent formalism delineating the properties of weak, plane gravitational waves in metric theories is set up. General conservation laws that follow from variational principles in metric theories of gravity are investigated. (U.S.)
Isaev, A.P.; Ivanov, E.A.
1990-04-01
The Green-Schwarz covariant N=2 superstring action can be consistently deduced as the action of the Wess-Zumino-Witten (WZW) sigma model defined on the direct product of two N=1, D=10 Poincare supertranslation groups. Generalizing this result, we construct new WZW sigma models on the supergroups with a nonabelian even part and interpret them as models of superstrings moving on the supergroup manifolds. We show that these models are completely integrable and in some special cases possess fermionic k-symmetry. (author). 20 refs
Induced gravity in quantum theory in a curved space
Etim, E.
1983-01-01
The reason for interest in the unorthodox view of first order (about R(x)) gravity as a matter-induced quantum effect is really to find an argument not to quantise it. According to this view quantum gravity should be constructed with an action which is, at least, quadratic in the scalar curvature R(x). Such a theory will not contain a dimensional parameter, like Newton's constant, and would probably be renormalisable. This lecture is intended to acquaint the non-expert with the phenomenon of induction of the scalar curvature term in the matter Lagrangian in a curved space in both relativistic and non-relativistic quantum theories
General scalar-tensor theories for induced gravity inflation
Boutaleb J, H.; Marrakchi, A.L.
1992-07-01
Some cosmological implications of a general scalar-tensor theory for induced gravity are discussed. The model exhibits a slow-rolling phase provided that the coupling function ε(φ) varies slowly enough such that φ dlnε(φ)/dφ much less than 2 during almost the inflationary epoch. It is then shown that, as in the ordinary induced gravity inflation, the chaotic scenario is more natural than the new scenario which proves to be even not self-consistent. The results are applied, for illustration, to a scalar-tensor theory of the Barker type. (author). 25 refs
Geometric scalar theory of gravity beyond spherical symmetry
Moschella, U.; Novello, M.
2017-04-01
We construct several exact solutions for a recently proposed geometric scalar theory of gravity. We focus on a class of axisymmetric geometries and a big-bang-like geometry and discuss their Lorentzian character. The axisymmetric solutions are parametrized by an integer angular momentum l . The l =0 (spherical) case gives rise to the Schwarzschild geometry. The other solutions have naked singular surfaces. While not a priori obvious, all the solutions that we present here are globally Lorentzian. The Lorentzian signature appears to be a robust property of the disformal geometries solving the vacuum geometric scalar theory of gravity equations.
Time machines and traversable wormholes in modified theories of gravity
Lobo Francisco S.N.
2013-09-01
Full Text Available We review recent work on wormhole geometries in the context of modified theories of gravity, in particular, in f(R gravity and with a nonminimal curvature-matter coupling, and in the recently proposed hybrid metric-Palatini theory. In principle, the normal matter threading the throat can be shown to satisfy the energy conditions and it is the higher order curvatures terms that sustain these wormhole geometries. We also briefly review the conversion of wormholes into time-machines, explore several of the time travel paradoxes and possible remedies to these intriguing side-effects in wormhole physics.
From thermodynamics to the solutions in gravity theory
Zhang, Hongsheng; Li, Xin-Zhou
2014-01-01
In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R) gravity in an n-dimensional (n≥3) spacetime which permits three-type (n−2)-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R) gravity
From thermodynamics to the solutions in gravity theory
Hongsheng Zhang
2014-10-01
Full Text Available In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R gravity in an n-dimensional (n≥3 spacetime which permits three-type (n−2-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R gravity.
Towards the gravity/CYBE correspondence — the current status —
Matsumoto, Takuya; Yoshida, Kentaroh
2016-01-01
We give a brief summary of Yang-Baxter deformations of the AdS 5 × S 5 superstring by focusing upon four examples, 1) gravity duals for noncommutative gauge theories, 2) γ-deformations of S 5 , 3) Schrödinger spacetimes and 4) abelian twists of the global AdS 5 . (paper)
Sundin, Per
2010-04-01
We perform a detailed study of the type IIA superstring in {text{Ad}}{{text{S}}_4} × mathbb{C}{mathbb{P}_3} . After introducing suitable bosonic light-cone and fermionic kappa worldsheet gauges we derive the pure boson and fermion SU(2|2)×U(1) covariant light-cone Hamiltonian up to quartic order in fields. As a first application of our derivation we calculate energy shifts for string configurations in a closed fermionic subsector and successfully match these with a set of light-cone Bethe equations. We then turn to investigate the mismatch between the degrees of freedom of scattering states and oscillatory string modes. Since only light string modes appear as fundamental Bethe roots in the scattering theory, the physical role of the remaining 4 F + 4 B massive oscillators is rather unclear. By continuing a line of research initiated by Zarembo, we shed light on this question by calculating quantum corrections for the propagators of the bosonic massive fields. We show that, once loop corrections are incorporated, the massive coordinates dissolve in a continuum state of two light particles.
Nonperturbative loop quantization of scalar-tensor theories of gravity
Zhang Xiangdong; Ma Yongge
2011-01-01
The Hamiltonian formulation of scalar-tensor theories of gravity is derived from their Lagrangian formulation by Hamiltonian analysis. The Hamiltonian formalism marks off two sectors of the theories by the coupling parameter ω(φ). In the sector of ω(φ)=-(3/2), the feasible theories are restricted and a new primary constraint generating conformal transformations of spacetime is obtained, while in the other sector of ω(φ)≠-(3/2), the canonical structure and constraint algebra of the theories are similar to those of general relativity coupled with a scalar field. By canonical transformations, we further obtain the connection-dynamical formalism of the scalar-tensor theories with real su(2) connections as configuration variables in both sectors. This formalism enables us to extend the scheme of nonperturbative loop quantum gravity to the scalar-tensor theories. The quantum kinematical framework for the scalar-tensor theories is rigorously constructed. Both the Hamiltonian constraint operator and master constraint operator are well defined and proposed to represent quantum dynamics. Thus the loop quantum gravity method is also valid for general scalar-tensor theories.
Neutron Star Models in Alternative Theories of Gravity
Manolidis, Dimitrios
We study the structure of neutron stars in a broad class of alternative theories of gravity. In particular, we focus on Scalar-Tensor theories and f(R) theories of gravity. We construct static and slowly rotating numerical star models for a set of equations of state, including a polytropic model and more realistic equations of state motivated by nuclear physics. Observable quantities such as masses, radii, etc are calculated for a set of parameters of the theories. Specifically for Scalar-Tensor theories, we also calculate the sensitivities of the mass and moment of inertia of the models to variations in the asymptotic value of the scalar field at infinity. These quantities enter post-Newtonian equations of motion and gravitational waveforms of two body systems that are used for gravitational-wave parameter estimation, in order to test these theories against observations. The construction of numerical models of neutron stars in f(R) theories of gravity has been difficult in the past. Using a new formalism by Jaime, Patino and Salgado we were able to construct models with high interior pressure, namely pc > rho c/3, both for constant density models and models with a polytropic equation of state. Thus, we have shown that earlier objections to f(R) theories on the basis of the inability to construct viable neutron star models are unfounded.
Knot theory and a physical state of quantum gravity
Liko, Tomas; Kauffman, Louis H
2006-01-01
We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity. (topical review)
NSR superstring measures revisited
Morozov, A.
2008-01-01
Review of remarkable progress in evaluation of NSR superstring measures, originated by E.D'Hoker and D.Phong. These recent results are presented in the old-fashioned form, what allows to highlight the options which have been overlooked in original considerations in late 1980's.
Superstring inspired phenomenology
Binetruy, P.
1988-01-01
Recent progress in superstring model building is reviewed with an emphasis on the general features of the models obtained. The problems associated with supersymmetry breaking and intermediate gauge symmetry breaking (M W I GUT ) are described. Finally, the phenomenology of these models is summarized, with a discussion of the role that new experimental results could play to help clearing up the above difficulties
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
Schenkel, Alexander
2011-10-24
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
Schenkel, Alexander
2011-01-01
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the noncommutative
Dynamical affine symmetry and covariant perturbation theory for gravity
Pervushin, V.N.
1975-01-01
The covariant perturbation theory for gravity with the simplest reduction properties is formulated. The main points are as follows: fundamental fields are the normal coordinates of ten-dimensional space of the gravitational field, and the fields are separated into the classical (background) and quantum ones in the generating functional along geodesics of this space
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
2002 Spring school on superstrings and related matters
Bachas, C [ENS, Paris (France); Gava, E [INFN, Trieste (Italy); [Abdus Salam ICTP, Trieste (Italy); Maldacena, J [Harvard University, Cambridge (United States); Narain, K S; Randjbar-Daemi, S [Abdus Salam ICTP, Trieste (Italy)
2003-08-15
This CD contains the lecture notes given at the Spring School on Superstrings and related Matters, held at the Abdus Salam International Centre for Theoretical Physics from 18 to 26 March 2002. It contains lectures about M theory, G{sub 2}-manifolds and four dimensional physics, covariant quantization of the superstring, mirror symmetry, strings in flat space and plane waves from N=4 super Yang Mills, phenomenological aspects of D-branes and open string star algebra.
2002 Spring school on superstrings and related matters
Bachas, C.; Gava, E.; Maldacena, J.; Narain, K.S.; Randjbar-Daemi, S.
2003-01-01
This CD contains the lecture notes given at the Spring School on Superstrings and related Matters, held at the Abdus Salam International Centre for Theoretical Physics from 18 to 26 March 2002. It contains lectures about M theory, G 2 -manifolds and four dimensional physics, covariant quantization of the superstring, mirror symmetry, strings in flat space and plane waves from N=4 super Yang Mills, phenomenological aspects of D-branes and open string star algebra
Constraints on cosmic superstrings from Kaluza-Klein emission.
Dufaux, Jean-François
2012-07-06
Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments.
Astrophysical tests of scale-covariant gravity theories
Mansfield, V.N.; Malin, S.
1980-01-01
Starting from the most general form of the conservation laws in scale-covariant gravitation theory, a conservation of energy equation appropriate for stars is derived. Applications to white dwarfs and neutron stars reveal serious difficulties for some choices of gauge that have been frequently employed in the literature on scale-covariant gravity. We also show how to restrict some of the possible gauges that result from theories which are independent of the Large Numbers Hypothesis
We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...
Gravity and matter in causal set theory
Sverdlov, Roman; Bombelli, Luca
2009-01-01
The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quantities that have a direct correspondent in the case of a causal set, namely volumes, causal relations and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density L(f;x) for a set of fields f is recast into a quasilocal expression L 0 (f;p,q) that depends on pairs of causally related points pprq and is a function of the values of f in the Alexandrov set defined by those points, and whose limit as p and q approach a common point x is L(f;x). We then describe how to discretize L 0 (f;p,q) and use it to define a causal-set-based action.
Priming the search for cosmic superstrings using GADGET2 simulations
Cousins, Bryce; Jia, Hewei; Braverman, William; Chernoff, David
2018-01-01
String theory is an extensive mathematical theory which, despite its broad explanatory power, is still lacking empirical support. However, this may change when considering the scope of cosmology, where “cosmic superstrings” may serve as observational evidence. According to string theory, these superstrings were stretched to cosmic scales in the early Universe and may now be detectable, via microlensing or gravitational radiation. Negative results from prior surveys have put some limits on superstring properties, so to investigate the parameter space more effectively, we ask: “where should we expect to find cosmic superstrings, and how many should we predict?” This research investigates these questions by simulating cosmic string behavior during structure formation in the universe using GADGET2. The sizes and locations of superstring clusters are assessed using kernel density estimation and radial correlation functions. Currently, only preliminary small-scale simulations have been performed, producing superstring clustering with low sensitivity. However, future simulations of greater magnitude will offer far higher resolution, allowing us to more precisely track superstring behavior within structures. Such results will guide future searches, most imminently those made possible by LSST and WFIRST.
Testing gravity with EG: mapping theory onto observations
Leonard, C. Danielle; Ferreira, Pedro G.; Heymans, Catherine
2015-12-01
We present a complete derivation of the observationally motivated definition of the modified gravity statistic EG. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of EG. We forecast errors on EG for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of EG under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using EG to test gravity with future surveys.
Towards quantum gravity via quantum field theory. Problems and perspectives
Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)
2016-07-01
General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.
The theory of spherically symmetric thin shells in conformal gravity
Berezin, Victor; Dokuchaev, Vyacheslav; Eroshenko, Yury
The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy-momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl-Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ( = massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl-Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.
Stealth configurations in vector-tensor theories of gravity
Chagoya, Javier; Tasinato, Gianmassimo
2018-01-01
Studying the physics of compact objects in modified theories of gravity is important for understanding how future observations can test alternatives to General Relativity. We consider a subset of vector-tensor Galileon theories of gravity characterized by new symmetries, which can prevent the propagation of the vector longitudinal polarization, even in absence of Abelian gauge invariance. We investigate new spherically symmetric and slowly rotating solutions for these systems, including an arbitrary matter Lagrangian. We show that, under certain conditions, there always exist stealth configurations whose geometry coincides with solutions of Einstein gravity coupled with the additional matter. Such solutions have a non-trivial profile for the vector field, characterized by independent integration constants, which extends to asymptotic infinity. We interpret our findings in terms of the symmetries and features of the original vector-tensor action, and on the number of degrees of freedom that it propagates. These results are important to eventually describe gravitationally bound configurations in modified theories of gravity, such as black holes and neutron stars, including realistic matter fields forming or surrounding the object.
Weyl gravity as a gauge theory
Trujillo, Juan Teancum
In 1920, Rudolf Bach proposed an action based on the square of the Weyl tensor or CabcdCabcd where the Weyl tensor is an invariant under a scaling of the metric. A variation of the metric leads to the field equation known as the Bach equation. In this dissertation, the same action is analyzed, but as a conformal gauge theory. It is shown that this action is a result of a particular gauging of this group. By treating it as a gauge theory, it is natural to vary all of the gauge fields independently, rather than performing the usual fourth-order metric variation only. We show that solutions of the resulting vacuum field equations are all solutions to the vacuum Einstein equation, up to a conformal factor---a result consistent with local scale freedom. We also show how solutions for the gauge fields imply there is no gravitational self energy.
Towards a theory of nonassociative gravity
Blumenhagen, Ralph; Fuchs, Michael
2016-01-01
Violating the strong constraint of double field theory, non-geometric fluxes were argued to give rise to noncommutative/nonassociative structures. We derive in a rather pedestrian physicist way a differential geometry on the simplest nonassociative (phase-)space arising for a constant non-geometric R-flux. This provides a complementary presentation to the quasi-Hopf representation categorial one delivered by Barnes, Schenkel, Szabo in http://arxiv.org/abs/1409.6331 + http://arxiv.org/abs/1507.02792. As there, the notions of tensors, covariant derivative, torsion and curvature find a star-generalization. We continue the construction with the introduction of a star-metric and its star-inverse where, due to the nonassociativity, we encounter major deviations from the familiar structure. Comments on the Levi-Civita connection, a star-Einstein-Hilbert action and the relation to string theory are included, as well.
Quantum field theory II introductions to quantum gravity, supersymmetry and string theory
Manoukian, Edouard B
2016-01-01
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...
On pseudoparticle solutions in the Poincare gauge theory of gravity
Mielke, E.W.
1983-12-01
The dynamical structure of the Poincare gauge field theory coupled to matter fields and some of its implications for a quantum theory of gravity are investigated. Essentially, the method of Belavin et al. for generating instanton solutions in Yang-Mills theory is transferred to the gravitational gauge model. The results are as follows: For configurations obeying a modified double duality Ansatz for the curvature the metrical background is determined by Einstein-type field equations coupled almost canonically to the stress-energy content of external fields. Exact electrovac solutions with non-trivial torsion are derived from the duality Ansatz. In a Euclidean space-time the corresponding pseudoparticle solutions are expected to play a dominant role in the quantization of gravity via Feynman's method of path integrals. (author)
Compact stars in alternative theories of gravity: Einstein-Dilaton-Gauss-Bonnet gravity
Pani, Paolo; Berti, Emanuele; Cardoso, Vitor; Read, Jocelyn
2011-01-01
We develop a theoretical framework to study slowly rotating compact stars in a rather general class of alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories from electromagnetic and gravitational-wave observations of compact stars. Our Lagrangian includes as special cases scalar-tensor theories (and indirectly f(R) theories) as well as models with a scalar field coupled to quadratic curvature invariants. As a first application of the formalism, we discuss (for the first time in the literature) compact stars in Einstein-Dilaton-Gauss-Bonnet gravity. We show that compact objects with central densities typical of neutron stars cannot exist for certain values of the coupling constants of the theory. In fact, the existence and stability of compact stars sets more stringent constraints on the theory than the existence of black hole solutions. This work is a first step in a program to systematically rule out (possibly using Bayesian model selection) theories that are incompatible with astrophysical observations of compact stars.
Modular Theory, Non-Commutative Geometry and Quantum Gravity
Wicharn Lewkeeratiyutkul
2010-08-01
Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.
Spin Gauge Theory of Gravity in Clifford Space
Pavsic, Matej
2006-01-01
A theory in which 16-dimensional curved Clifford space (C-space) provides a realization of Kaluza-Klein theory is investigated. No extra dimensions of spacetime are needed: 'extra dimensions' are in C-space. We explore the spin gauge theory in C-space and show that the generalized spin connection contains the usual 4-dimensional gravity and Yang-Mills fields of the U(1) x SU(2) x SU(3) gauge group. The representation space for the latter group is provided by 16-component generalized spinors composed of four usual 4-component spinors, defined geometrically as the members of four independent minimal left ideals of Clifford algebra
Conformal field theory and 2D quantum gravity
Distler, J.; Kawai, Hikaru
1989-01-01
Inspired by the recent work of Knizhnik, Polyakov and Zamolodchikov on the solution of 2D quantum gravity in the 'light cone' gauge, we present a proposal for solving the theory in the usual conformal gauge. Our results for the critical exponents of the theory agree with the genus-zero results of KPZ. Since our formalism naturally generalizes to higher-genus Riemann surfaces, we obtain the critical exponents for all genera. The corresponding results for the supersymmetric case are presented. We also show how to calculate correlation functions in these theories. (orig.)
New interactions for superstrings
Greensite, J.; Klinkhamer, F.R.
1987-01-01
The supersymmetry relation {Q -A , Qsup(anti B}=2Hδsup(Aanti B) implies the existence of a new quartic vertex in the open superstring light-cone hamiltonian, if the supercharges are cubic in the string fields. Green and Schwarz have argued that this vertex almost vanishes, due to exact cancellations among fermionic operators, with perhaps a non-local interaction remaining. In this article we show that these exact cancellations do not occur for certain contributions to the anticommutator, and that new local, and possibly divergent, 4-string interactions are generated. On the basis of vacuum stability, we argue that 4-string interaction terms should also exist for closed superstring hamiltonians. (orig.)
Canonical transformation path to gauge theories of gravity
Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.
2017-06-01
In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.
Rotating gravity currents. Part 1. Energy loss theory
Martin, J. R.; Lane-Serff, G. F.
2005-01-01
A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.
Testing Modified Gravity Theories via Wide Binaries and GAIA
Pittordis, Charalambos; Sutherland, Will
2018-06-01
The standard ΛCDM model based on General Relativity (GR) including cold dark matter (CDM) is very successful at fitting cosmological observations, but recent non-detections of candidate dark matter (DM) particles mean that various modified-gravity theories remain of significant interest. The latter generally involve modifications to GR below a critical acceleration scale ˜10-10 m s-2. Wide-binary (WB) star systems with separations ≳ 5 kAU provide an interesting test for modified gravity, due to being in or near the low-acceleration regime and presumably containing negligible DM. Here, we explore the prospects for new observations pending from the GAIA spacecraft to provide tests of GR against MOND or TeVes-like theories in a regime only partially explored to date. In particular, we find that a histogram of (3D) binary relative velocities, relative to equilibrium circular velocity predicted from the (2D) projected separation predicts a rather sharp feature in this distribution for standard gravity, with an 80th (90th) percentile value close to 1.025 (1.14) with rather weak dependence on the eccentricity distribution. However, MOND/TeVeS theories produce a shifted distribution, with a significant increase in these upper percentiles. In MOND-like theories without an external field effect, there are large shifts of order unity. With the external field effect included, the shifts are considerably reduced to ˜0.04 - 0.08, but are still potentially detectable statistically given reasonably large samples and good control of contaminants. In principle, followup of GAIA-selected wide binaries with ground-based radial velocities accurate to ≲ 0.03 { km s^{-1}} should be able to produce an interesting new constraint on modified-gravity theories.
Quantum Gravity, Information Theory and the CMB
Kempf, Achim
2018-04-01
We review connections between the metric of spacetime and the quantum fluctuations of fields. We start with the finding that the spacetime metric can be expressed entirely in terms of the 2-point correlator of the fluctuations of quantum fields. We then discuss the open question whether the knowledge of only the spectra of the quantum fluctuations of fields also suffices to determine the spacetime metric. This question is of interest because spectra are geometric invariants and their quantization would, therefore, have the benefit of not requiring the modding out of diffeomorphisms. Further, we discuss the fact that spacetime at the Planck scale need not necessarily be either discrete or continuous. Instead, results from information theory show that spacetime may be simultaneously discrete and continuous in the same way that information can. Finally, we review the recent finding that a covariant natural ultraviolet cutoff at the Planck scale implies a signature in the cosmic microwave background (CMB) that may become observable.
Warped conformal field theory as lower spin gravity
Hofman, Diego M.; Rollier, Blaise
2015-08-01
Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
Group manifold approach to gravity and supergravity theories
d'Auria, R.; Fre, P.; Regge, T.
1981-05-01
Gravity theories are presented from the point of view of group manifold formulation. The differential geometry of groups and supergroups is discussed first; the notion of connection and related Yang-Mills potentials is introduced. Then ordinary Einstein gravity is discussed in the Cartan formulation. This discussion provides a first example which will then be generalized to more complicated theories, in particular supergravity. The distinction between ''pure'' and ''impure' theories is also set forth. Next, the authors develop an axiomatic approach to rheonomic theories related to the concept of Chevalley cohomology on group manifolds, and apply these principles to N = 1 supergravity. Then the panorama of so far constructed pure and impure group manifold supergravities is presented. The pure d = 5 N = 2 case is discussed in some detail, and N = 2 and N = 3 in d = 4 are considered as examples of the impure theories. The way a pure theory becomes impure after dimensional reduction is illustrated. Next, the role of kinematical superspace constraints as a subset of the group-manifold equations of motion is discussed, and the use of this approach to obtain the auxiliary fields is demonstrated. Finally, the application of the group manifold method to supersymmetric Super Yang-Mills theories is addressed
Warped conformal field theory as lower spin gravity
Diego M. Hofman
2015-08-01
Full Text Available Two dimensional Warped Conformal Field Theories (WCFTs may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space–times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton–Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL(2,R×U(1 Chern–Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
Extreme neutron stars from Extended Theories of Gravity
Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I-80126 Italy (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)
2015-01-01
We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.
Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V.
1996-07-01
The authors discuss the possibility that CPT violation may appear as a consequence of microscopic decoherence due to quantum-gravity effects, that they describe using a density-matrix formalism motivated by their studies of non-critical string theory. The maximum possible order of magnitude of such decohering CPT-violating effects is not far from the sensitivity of present experiments on the neutral kaon system, and they review a simple parametrization for them. The authors also review a recent data analysis carried out together with the CPLEAR collaboration, which bounds any such decohering CPT-violating parameters to be approx-lt 10 -19 GeV
On the singularities of massive superstring amplitudes
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)
On the singularities of massive superstring amplitudes
Foda, O.
1987-06-04
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.
On the infinities of closed superstring amplitudes
Restuccia, A.; Taylor, J.G.
1988-01-01
The authors present an analysis of possible infinities that may be present in uncompactified multi-loop heterotic and type II superstring amplitudes constructed, without use of the short-string limit, in the light-cone gauge, and with use of a closed [10]-SUSY field theory algebra. Various types of degenerations of the integrand are discussed on the string worldsheet. No infinities are found, modulo (for type II) a particular identity for Green's functions
Kaluza-Klein gravity and scalar-tensor theories
Chauvineau, Bertrand
2007-01-01
In this paper, we propose a Kaluza-Klein approach to gravity in Δ=4+n 1 +n 2 +... dimensions, where n 1 ,n 2 ,... are the dimensions of independent internal spaces. One is interested in the case where each internal metric depends on the four-dimensional coordinates by a conformal factor. If all these conformal factors depend on the four-dimensional coordinates through a common scalar function Ψ, the induced effective four-dimensional gravity theory turns out to be of general scalar-tensor type. One shows that, if there are at least two internal spaces, the theory is not ruled out by experimental tests on gravitation, even if there is no massive scalar-potential term in the effective four-dimensional Lagrangian (contrary to what happens if there is only one internal space, in which case ω is of order unity, whatever the dimension of this internal space)
Nonmetric theories of gravity and the gravitational frequency shift
Coley, A.A.; Sarmiento G, A.F.; Universidad Nacional Autonoma de Mexico, Mexico City)
1988-01-01
A class of nonmetric theories of gravity called metric-affine theories is investigated, emphasizing a subclass of theories called Weyl-affine theories. An experimental configuration is modeled in which the gravitational redshift of light signals conecting an artificial satellite to the earth is measured. A situation in which both bodies are forced to follow circular orbits around the sun with angular speeds determined by the solar gravitational field is considered along with the more realistic situation in which the artificial satellite and the earth are both allowed to follow general coplanar orbits. The latter is found to give rise to more severe constraints. It is found that theories under investigation must coincide with their metric counterparts up to first order in the Newtonian gravitational potential U and that any nonmetric effects within the solar neighborhood can only manifest themselves at most through small contributions at the U-squared level or at the U-cubed level. 34 references
Light bending in F [ g (□) R ] extended gravity theories
Giacchini, Breno L.; Shapiro, Ilya L.
2018-05-01
We show that in the weak field limit the light deflection alone cannot distinguish between different R + F [ g (□) R ] models of gravity, where F and g are arbitrary functions. This does not imply, however, that in all these theories an observer will see the same deflection angle. Owed to the need to calibrate the Newton constant, the deflection angle may be model-dependent after all necessary types of measurements are taken into account.
Cosmological consistency tests of gravity theory and cosmic acceleration
Ishak-Boushaki, Mustapha B.
2017-01-01
Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.
Scalar-tensor theory of fourth-order gravity
Accioly, A.J.; Goncalves, A.T.
1986-04-01
A scalar-tensor theory of fourth-order gravity is considered. Some cosmological consequences, due to the presence of the scalar field, as well as of metric derivatives higher than second order, are analysed. In particular, upperbpunds are obtained for the coupling constant α and for the scale factor of the universe, respectively. The discussion is restricted to Robertson-Walker universes. (Author) [pt
A 2D Inspired 4D Theory of Gravity
Rodgers, V. G. J.
1994-01-01
Coadjoint orbits of the Virasoro and Kac-Moody algebras provide geometric actions for matter coupled to gravity and gauge fields in two dimensions. However, the Gauss' law constraints that arise from these actions are not necessarily endemic to two-dimensional topologies. Indeed the constraints associated with Yang-Mills naturally arise from the coadjoint orbit construction of the WZW model. One may in fact use a Yang-Mills theory to provide dynamics to the otherwise fixed coadjoint vectors t...
Group field theories for all loop quantum gravity
Oriti, Daniele; Ryan, James P.; Thürigen, Johannes
2015-02-01
Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.
Gauge theories as string theories: the first results
Gorsky, Aleksandr S
2005-01-01
The gauge/string theory duality in curved space is discussed mainly using a non-Abelian conformal N = 4 supersymmetric gauge theory and the theory of a closed superstring in the AdS 5 x S 5 metric as an example. It is shown that in the supergravity approximation, string duality yields the characteristics of a strong-coupling gauge theory. For a special shape of the contour, a Wilson loop expression is derived in the classical superstring approximation. The role of the hidden integrability in lower-loop calculations in gauge theory and in different approximations of string theory is discussed. It is demonstrated that in the large quantum-number limit, gauge theory operators can be described in terms of the dual string picture. Examples of metrics providing the dual description of gauge theories with broken conformal symmetry are presented, and formulations of the vacuum structure of such theories in terms of gravity are discussed. (reviews of topical problems)
Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity
Adami, H.; Setare, M.R. [University of Kurdistan, Department of Science, Sanandaj (Iran, Islamic Republic of)
2016-04-15
In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory. (orig.)
Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity
Adami, H.; Setare, M. R.
2016-04-01
In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory.
Disformal theories of gravity: from the solar system to cosmology
Sakstein, Jeremy, E-mail: j.a.sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2014-12-01
This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible.
Disformal theories of gravity: from the solar system to cosmology
Sakstein, Jeremy
2014-01-01
This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible
Zhitnikov, V.V.; Ponomarev, V.N.
1986-01-01
An attempt is made to compare the solution of field equations, corresponding to quadratic equations for the fields (g μν , Γ μν α ) in gauge gravitation theory (GGT) with general relativity theory solutions. Without restrictions for a concrete type of metrics only solutions of equations, for which torsion turns to zero, are considered. Equivalence of vacuum equations of gauge quadratic theory of gravity and general relativity theory is proved using the Newman-Penrose formalism
Black holes in Lorentz-violating gravity theories
Barausse, Enrico; Sotiriou, Thomas P
2013-01-01
Lorentz symmetry and the notion of light cones play a central role in the definition of horizons and the existence of black holes. Current observations provide strong indications that astrophysical black holes do exist in Nature. Here we explore what happens to the notion of a black hole in gravity theories where local Lorentz symmetry is violated, and discuss the relevant astrophysical implications. Einstein-aether theory and Hořava gravity are used as the theoretical background for addressing this question. We review earlier results about static, spherically symmetric black holes, which demonstrate that in Lorentz-violating theories there can be a new type of horizon and, hence, a new notion of black hole. We also present both known and new results on slowly rotating black holes in these theories, which provide insights on how generic these new horizons are. Finally, we discuss the differences between black holes in Lorentz-violating theories and in General Relativity, and assess to what extent they can be probed with present and future observations. (paper)
A new class of group field theories for 1st order discrete quantum gravity
Oriti, D.; Tlas, T.
2008-01-01
Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman
Quantum gravity with matter and group field theory
Krasnov, Kirill
2007-01-01
A generalization of the matrix model idea to quantum gravity in three and higher dimensions is known as group field theory (GFT). In this paper we study generalized GFT models that can be used to describe 3D quantum gravity coupled to point particles. The generalization considered is that of replacing the group leading to pure quantum gravity by the twisted product of the group with its dual-the so-called Drinfeld double of the group. The Drinfeld double is a quantum group in that it is an algebra that is both non-commutative and non-cocommutative, and special care is needed to define group field theory for it. We show how this is done, and study the resulting GFT models. Of special interest is a new topological model that is the 'Ponzano-Regge' model for the Drinfeld double. However, as we show, this model does not describe point particles. Motivated by the GFT considerations, we consider a more general class of models that are defined not using GFT, but the so-called chain mail techniques. A general model of this class does not produce 3-manifold invariants, but has an interpretation in terms of point particle Feynman diagrams
Particle theory and cosmology. Final report, July 16, 1984-March 31, 1986
Shafi, Q.
1986-01-01
The major thrust of the research reported was in the area of unified theories, in particular in grand unified and higher dimensional superstring theories. The problems that were addressed included: (1) the construction of realistic ''low energy'' (four dimensional) gauge models motivated from the ten-dimensional E 8 x E 8 superstring theory; (2) a study of the phenomenological and cosmological implications of such models; (3) implementation of the inflationary scenario in the context of higher dimensional theories of gravity; and (4) clarification of the role of extended structures such as strings, monopoles and domain walls in a cosmological setting, particularly in an inflationary cosmology
Topics in field theory-higher spins, CFT, and gravity
Yang, Z.
1990-01-01
Several topics in field theory are investigated. (1) Massive higher spin actions are obtained as gauge theories from the dimensional reduction of the corresponding massless ones. (2) The author considers a model of spin4 and spin2 interaction through the Bel-Robinson tensor of spin2 field, which in conserved at free level. The coupling is inconsistent, yet there are indications that adding still higher spin couplings would be a promising direction to achieve consistency. (3) Energy and Stability of Einstein-Gauss-Bonnet models of gravity are studied. It is shown that flat space is stable while AdS is not. (4) Gauged Wess-Zumino-Witten models are studied in detail. The equivalence to GKO construction of conformal field theory is considered. BRST quantization of the models is given. (5) Nonrenormalizability of quantum gravity is, in the binomial first order metric formulation, traced to a mismatch between the symmetries of its quadratic and cubic term. (6) The possibility that the gravitational model defined in D = 3 by an action which is the sum of Einstein and Chern-Simons terms is a viable quantum theory is investigated. It is shown that it is compatible with power-counting renormalizability. Gauge invariant regularizations, however, have not been found to exist. Detailed BRS analysis shows that there are possible anomalies
Warm inflation in f(G) theory of gravity
Sharif, M., E-mail: msharif.math@pu.edu.pk; Ikram, A., E-mail: ayeshamaths91@gmail.com [University of the Punjab, Quaid-e-Azam Campus, Department of Mathematics (Pakistan)
2016-07-15
The aim of this paper is to explore warm inflation in the background of f(G) theory of gravity using scalar fields for the FRW universe model. We construct the field equations under slow-roll approximations and evaluate the slow-roll parameters, scalar and tensor power spectra and their corresponding spectral indices using viable power-law model. These parameters are evaluated for a constant as well as variable dissipation factor during intermediate and logamediate inflationary epochs. We also find the number of e-folds and tensor- scalar ratio for each case. The graphical behavior of these parameters proves that the isotropic model in f(G) gravity is compatible with observational Planck data.
Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models
May R. D.
2011-01-01
Full Text Available Numerous experiments and observations have confirmed the existence of a dynamical 3-space, detectable directly by light-speed anisotropy experiments, and indirectly by means of novel gravitational effects, such as bore hole g anomalies, predictable black hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all without dark matter and dark energy. The dynamics for this 3-space follows from a unique generalisation of Newtonian gravity, once that is cast into a velocity formalism. This new theory of gravity is applied to the solar model of the sun to compute new density, pressure and temperature profiles, using polytrope modelling of the equation of state for the matter. These results should be applied to a re-analysis of solar neutrino production, and to stellar evolution in general.
Fermion masses from superstrings
Tanaka, K.
1986-01-01
It is assumed that the E 8 gauge group of the E 8 x E 8 heterotic superstring can be broken into SO(10) x SU(4). The mass relations among fermions m/sub u//m/sub d/ = m/sub c//m/sub s/ = m/sub t//m/sub b/ and m/sub ν e//m/sub e/ = m/sub ν mu//m/sub μ/ = m/sub ν tau//m/sub tau/ are discussed. 18 refs
Fusion basis for lattice gauge theory and loop quantum gravity
Delcamp, Clement [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo,Waterloo, Ontario N2L 3G1 (Canada); Dittrich, Bianca; Riello, Aldo [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2017-02-10
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2+1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel’d double of the gauge group, and can be readily “fused” together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2+1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Fusion basis for lattice gauge theory and loop quantum gravity
Delcamp, Clement; Dittrich, Bianca; Riello, Aldo
2017-01-01
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2+1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel’d double of the gauge group, and can be readily “fused” together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2+1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Group theory approach to unification of gravity with internal symmetry gauge interactions. Part 1
Samokhvalov, S.E.; Vanyashin, V.S.
1990-12-01
The infinite group of deformed diffeomorphisms of space-time continuum is put into the basis of the Gauge Theory of Gravity. This gives rise to some new ways for unification of gravity with other gauge interactions. (author). 7 refs
Millicharged dark matter in quantum gravity and string theory.
Shiu, Gary; Soler, Pablo; Ye, Fang
2013-06-14
We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons.
Einstein gravity 3-point functions from conformal field theory
Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein
2017-12-01
We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.
On the cosmology of scalar-tensor-vector gravity theory
Jamali, Sara; Roshan, Mahmood; Amendola, Luca
2018-01-01
We consider the cosmological consequences of a special scalar-tensor-vector theory of gravity, known as MOG (for MOdified Gravity), proposed to address the dark matter problem. This theory introduces two scalar fields G(x) and μ(x), and one vector field phiα(x), in addition to the metric tensor. We set the corresponding self-interaction potentials to zero, as in the standard form of MOG. Then using the phase space analysis in the flat Friedmann-Robertson-Walker background, we show that the theory possesses a viable sequence of cosmological epochs with acceptable time dependency for the cosmic scale factor. We also investigate MOG's potential as a dark energy model and show that extra fields in MOG cannot provide a late time accelerated expansion. Furthermore, using a dynamical system approach to solve the non-linear field equations numerically, we calculate the angular size of the sound horizon, i.e. θs, in MOG. We find that 8× 10‑3rad<θs<8.2× 10‑3 rad which is way outside the current observational bounds. Finally, we generalize MOG to a modified form called mMOG, and we find that mMOG passes the sound-horizon constraint. However, mMOG also cannot be considered as a dark energy model unless one adds a cosmological constant, and more importantly, the matter dominated era is still slightly different from the standard case.
Cosmology and a general scalar-tensor theory of gravity
Bishop, N.T.
1976-01-01
The cosmological models resulting from a general scalar-tensor theory of gravity are discussed. Those models for which the scalar field varies as a power of the cosmological expansion factor (i.e. phi varies as Rsup(n)) are considered in detail, leading to a set of such models compatible with observation. This set includes models in which the scalar coupling parameter ω is negative. The models described here are similar to those of Newtonian cosmology obtained from an impotence principle. (author)
Remarks on doubly special relativity theories and gravity
Hinterleitner, F
2008-01-01
Modifications of special relativity by the introduction of an invariant energy and/or momentum level (so-called doubly special relativity theories, DSR) or by an energy-momentum dependence of the Planck constant (generalized uncertainty principle, GUP) are compared with classical gravitational effects in an interaction process. For the low-energy limit of the usual formulations of DSR to be equivalent to Newtonian gravity, a restrictive condition is found. GUP yields an effective repulsion, in analogy to gravitational repulsion in loop quantum cosmology
Effective Einsteinian gravity from Poincare gauge field theory
Baekler, P.; Mielke, E.W.
1985-10-01
The Poincare gauge theory of gravity should apply in the microphysical domain. Here we investigate its implications for macrophysics. Weakly self double dual Riemann-Cartan curvature is assumed throughout. It is shown that the metrical background is then determined by Einstein's field equations with the Belinfante-Rosenfeld symmetrized energy-momentum current amended by spin squared terms. Moreover, the effective cosmological constant can be reconciled with the empirical data by absorbing the corresponding constant curvature part into the dynamical torsion of recently found exact solutions. Macroscopically this extra torsion remains undetectable. (author)
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
Quantization of Green-Schwarz superstring
Kallosh, R.E.
1987-04-01
The problem of quantization of superstrings is traced back to the nil-potency of gauge generators of the first-generation ghosts. The quantization of such theories is performed. The novel feature of this quantization is the freedom in choosing the number of ghost generations as well as gauge conditions. As an example, we perform quantization of heterotic string in a gauge, which preserves space-time supersymmetry. The equations of motion are those of a free theory. (author). 12 refs, 2 figs
Anisotropic deformations of spatially open cosmology in massive gravity theory
Mazuet, Charles; Volkov, Mikhail S. [Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Parc de Grandmont, 37200 Tours (France); Mukohyama, Shinji, E-mail: charles.mazuet@lmpt.univ-tours.fr, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: volkov@lmpt.univ-tours.fr [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502, Kyoto (Japan)
2017-04-01
We combine analytical and numerical methods to study anisotropic deformations of the spatially open homogeneous and isotropic cosmology in the ghost free massive gravity theory with flat reference metric. We find that if the initial perturbations are not too strong then the physical metric relaxes back to the isotropic de Sitter state. However, the dumping of the anisotropies is achieved at the expense of exciting the Stueckelberg fields in such a way that the reference metric changes and does not share anymore with the physical metric the same rotational and translational symmetries. As a result, the universe evolves towards a fixed point which does not coincide with the original solution, but for which the physical metric is still de Sitter. If the initial perturbation is strong, then its evolution generically leads to a singular anisotropic state or, for some parameter values, to a decay into flat spacetime. We also present an infinite dimensional family of new homogeneous and isotropic cosmologies in the theory.
Cosmology from group field theory formalism for quantum gravity.
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
2013-07-19
We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.
Gauge theory of gravity and supergravity on a group manifold
Ne'eman, Y.; Regge, T.
1977-12-01
The natural arena for the physics of gravity, supergravity and their enlargements appears to be the group manifold of the Poincare group P, the graded Poincare group GP of supersymmetry, and the corresponding enlargements. The dynamics of these theories correspond to geometrical algorithms in P and GP. Differential geometry on Lie groups is reviewed and results applied to P and GP. Curvature, gauge transformations and factorization are introduced. Also reviewed is the general coordinate transformation group and a hybrid gauge transformation, the anholonomized G.C.T. gauge. A study is made of the construction of an action, including the introduction of a set of special 2 forms, the ''pseudo curvatures.'' The possibilities of factorization in supersymmetry are analyzed. The version of supergravity is present which has now become a completely geometrical theory
Gravity, quantum theory and the evaporation of black holes. [Review
Wilkins, D C [Tata Inst. of Fundamental Research, Bombay (India)
1977-06-01
Recent developments in blackhole physics are reviewed. It is pointed out that black hole thermodynamics is a theory of exceptional unity and elegance. Starting from the discovery of thermal emission from black holes (evaporation process) by Hawking, the four thermodynamic laws they obey, the nonzero temperature and entropy, angular momentum and charge of the black holes are dealt with. The influence of this thermodynamics on quantum theory and gravitation is discussed in relation to particle creation and quantum gravity. The formation and basic properties of black holes are described in terms of significant milestones. The decade-long development of black hole thermodynamics from 1963-73 is highlighted. The fundamental issues arising in particle physics as a result of these discoveries are discussed.
Cosmological evolution in vector-tensor theories of gravity
Beltran Jimenez, Jose; Maroto, Antonio L.
2009-01-01
We present a detailed study of the cosmological evolution in general vector-tensor theories of gravity without potential terms. We consider the evolution of the vector field throughout the expansion history of the Universe and carry out a classification of models according to the behavior of the vector field in each cosmological epoch. We also analyze the case in which the Universe is dominated by the vector field, performing a complete analysis of the system phase map and identifying those attracting solutions which give rise to accelerated expansion. Moreover, we consider the evolution in a universe filled with a pressureless fluid in addition to the vector field and study the existence of attractors in which we can have a transition from matter domination to vector domination with accelerated expansion so that the vector field may play the role of dark energy. We find that the existence of solutions with late-time accelerated expansion is a generic prediction of vector-tensor theories and that such solutions typically lead to the presence of future singularities. Finally, limits from local gravity tests are used to get constraints on the value of the vector field at small (Solar System) scales.
Non-Critical Covariant Superstrings
Grassi, P A
2005-01-01
We construct a covariant description of non-critical superstrings in even dimensions. We construct explicitly supersymmetric hybrid type variables in a linear dilaton background, and study an underlying N=2 twisted superconformal algebra structure. We find similarities between non-critical superstrings in 2n+2 dimensions and critical superstrings compactified on CY_(4-n) manifolds. We study the spectrum of the non-critical strings, and in particular the Ramond-Ramond massless fields. We use the supersymmetric variables to construct the non-critical superstrings sigma-model action in curved target space backgrounds with coupling to the Ramond-Ramond fields. We consider as an example non-critical type IIA strings on AdS_2 background with Ramond-Ramond 2-form flux.
Towards strong field tests of beyond Horndeski gravity theories
Sakstein, Jeremy; Babichev, Eugeny; Koyama, Kazuya; Langlois, David; Saito, Ryo
2017-03-01
Theories of gravity in the beyond Horndeski class encompass a wide range of scalar-tensor theories that will be tested on cosmological scales over the coming decade. In this work, we investigate the possibility of testing them in the strong field regime by looking at the properties of compact objects—neutron, hyperon, and quark stars—embedded in an asymptotically de Sitter space-time, for a specific subclass of theories. We extend previous works to include slow rotation and find a relation between the dimensionless moment of inertia (I ¯ =I c2/GNM3 ) and the compactness C =GNM /R c2 (an I ¯-C relation), independent of the equation of state, that is reminiscent of but distinct from the general relativity prediction. Several of our equations of state contain hyperons and free quarks, allowing us to revisit the hyperon puzzle. We find that the maximum mass of hyperon stars can be larger than 2 M⊙ for small values of the beyond Horndeski parameter, thus providing a resolution of the hyperon puzzle based on modified gravity. Moreover, stable quark stars exist when hyperonic stars are unstable, which means that the phase transition from hyperon to quark stars is predicted just as in general relativity (GR), albeit with larger quark star masses. Two important and potentially observable consequences of some of the theories we consider are the existence of neutron stars in a range of masses significantly higher than in GR and I ¯-C relations that differ from their GR counterparts. In the former case, we find objects that, if observed, could not be accounted for in GR because they violate the usual GR causality condition. We end by discussing several difficult technical issues that remain to be addressed in order to reach more realistic predictions that may be tested using gravitational wave searches or neutron star observations.
Scalar-tensor Theories of Gravity: Some personal history
Brans, Carl H.
2008-12-01
From a perspective of some 50 years or more, this paper reviews my recall of the early days of scalar-tensor alternatives to standard Einstein general relativistic theory of gravity. Of course, the story begins long before my involvement, going back to the proposals of Nordström in 1914, and that of Kaluza, Klein, et al., a few years later, sol include reviews of these seminal ideas and those that followed in the 1920's through the 1940's. This early work concerned the search for a Unified Field Theory, unifying gravity and Electromagnetism, using five dimensional manifolds. This formalism included not only the electromagnetic spacetime vector potential within the five-metric, but also a spacetime scalar as the five-five metric component. Although this was at first regarded more as a nuisance, to be set to a constant, it turned out later that Fierz, Jordan, Einstein and Bergmann noticed that this scalar could be a field, possibly related to the Newtonian gravitational constant. Relatively little theoretical and experimental attention was given to these ideas until after the second world war when Bob Dicke, motivated by the ideas of Mach, Dirac, and others, suggested that this additional scalar, coupled only to the metric and matter, could provide a reasonable and viable alternative to standard Einstein theory. This is the point of my direct involvement with these topics. However, it was Dicke's prominence and expertise in experimental work, together with the blossoming of NASA's experimental tools, that caused the explosion of interest, experimental and theoretical, in this possible alternative to standard Einstein theory. This interest has waxed and waned over the last 50 years, and we summarize some of this work.
Superstrings and geometry of superspace
Dhar, A.
1986-05-01
These lectures present some recent developments in the sigma-model approach to the Green-Schwarzsuperstring. Among the topics included are: (1) interpretation of the free superstring as a flat superspace sigma-model; (2) propagation of the superstring in curved superspace; and (3) in the presence of background super Yang-Mills fields. The role of the world-sheet fermionic gauge symmetry needed to ensure consistent coupling to background fields is emphasized. 24 refs
Superstring cosmology for N4 = 1 → 0 superstring vacua
Estes, J.; Kounnas, C.; Partouche, H.
2011-01-01
We study the cosmology of perturbative heterotic superstring theory during the radiation-like era for semi-realistic backgrounds with initial N = 1 supersymmetry. This analysis is valid for times after the Hagedorn era (or alternatively inflation era) but before the electroweak symmetry breaking transition. We find an attraction to a radiation-like era with the ratio of the supersymmetry breaking scale to temperature stabilized. This provides a dynamical mechanism for setting the supersymmetry breaking scale and its corresponding hierarchy with the Planck scale. For the internal space, we find that orbifold directions never decompactify, while toroidal directions may decompactify only when they are wrapped by certain geometrical fluxes which break supersymmetry. This suggests a mechanism for generating spatial directions during the radiation-like era. Moreover, we show that certain moduli may be stabilized during the radiation-like era with masses near the supersymmetry breaking scale. In addition, the moduli do not dominate at late times, thus avoiding the cosmological moduli problem. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant
Cahill R. T.
2006-04-01
Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: G - Newton's constant, and a dimensionless constant alpha. Various experiments and astronomical observations have shown that alpha is the fine structure constant ~1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of alpha. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the "dark-matter" effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.
3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant
Cahill R. T.
2006-04-01
Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: GN — Newton’s constant, and a dimensionless constant α. Various experiments and astronomical observations have shown that α is the fine structure constant ≈ 1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of α. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the “dark-matter” effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.
Galaxy clustering in 3D and modified gravity theories
Munshi, D.; Pratten, G.; Valageas, P.; Coles, P.; Brax, P.
2016-02-01
We study Modified Gravity (MG) theories by modelling the redshifted matter power spectrum in a spherical Fourier-Bessel basis. We use a fully non-linear description of the real-space matter power spectrum and include the lowest order redshift-space correction (Kaiser effect), taking into account some additional non-linear contributions. Ignoring relativistic corrections, which are not expected to play an important role for a shallow survey, we analyse two different MG scenarios, namely the generalized Dilaton scalar-tensor theories and the f (R) models in the large curvature regime. We compute the 3D power spectrum C^s_{ℓ}(k_1,k_2) for various such MG theories with and without redshift-space distortions, assuming precise knowledge of background cosmological parameters. Using an all-sky spectroscopic survey with Gaussian selection function \\varphi (r)∝ exp (-{r^2/r^2_0}), r_0=150h^{-1} Mpc, and number density of galaxies bar{N} =10^{-4}Mpc^{-3}, we use a χ2 analysis, and find that the lower order (ℓ ≤ 25) multipoles of C^s_ℓ (k,k^' }) (with radial modes restricted to k 25 modes can further reduce the error bars and thus in principle make cosmological gravity constraints competitive with Solar system tests. However this will require an accurate modelling of non-linear redshift-space distortions. Using a tomographic β(a)-m(a) parametrization we also derive constraints on specific parameters describing the Dilaton models of MG.
Early universe with modified scalar-tensor theory of gravity
Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar
2018-05-01
Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.
Spherical perturbations of hairy black holes in designer gravity theories
Battarra, Lorenzo
2012-01-01
We study the spectrum of the scalar l = 0 quasi-normal frequencies of anti-de Sitter hairy black holes in four- and five-dimensional designer gravity theories of the Einstein-scalar type, arising as consistent truncations of N= 8 gauged supergravity. In the dual field theory, such hairy black holes represent thermal states in which the operator corresponding to the bulk scalar field is condensed, due to the multi-trace deformation associated with non-standard boundary conditions. We show that, in a particular class of models, the effective potential describing the vacua of the deformed dual theory can be identified, at large values of the condensate, with the deformation plus the conformal coupling of the condensate to the curvature of the boundary geometry. In this limit, we show that the least damped quasi-normal frequency of the corresponding hairy black holes can be accurately predicted by the curvature of the effective potential describing the field theory at finite entropy. (paper)
On Born's deformed reciprocal complex gravitational theory and noncommutative gravity
Castro, Carlos
2008-01-01
Born's reciprocal relativity in flat spacetimes is based on the principle of a maximal speed limit (speed of light) and a maximal proper force (which is also compatible with a maximal and minimal length duality) and where coordinates and momenta are unified on a single footing. We extend Born's theory to the case of curved spacetimes and construct a deformed Born reciprocal general relativity theory in curved spacetimes (without the need to introduce star products) as a local gauge theory of the deformed Quaplectic group that is given by the semi-direct product of U(1,3) with the deformed (noncommutative) Weyl-Heisenberg group corresponding to noncommutative generators [Z a ,Z b ]≠0. The Hermitian metric is complex-valued with symmetric and nonsymmetric components and there are two different complex-valued Hermitian Ricci tensors R μν ,S μν . The deformed Born's reciprocal gravitational action linear in the Ricci scalars R,S with Torsion-squared terms and BF terms is presented. The plausible interpretation of Z μ =E μ a Z a as noncommuting p-brane background complex spacetime coordinates is discussed in the conclusion, where E μ a is the complex vielbein associated with the Hermitian metric G μν =g (μν) +ig [μν] =E μ a E-bar ν b η ab . This could be one of the underlying reasons why string-theory involves gravity
Holographic renormalization group and cosmology in theories with quasilocalized gravity
Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John
2001-01-01
We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations
Theory and experiments in general relativity and other metric theories of gravity
Ciufolini, I.
1984-01-01
In Chapter I, after an introduction to theories of gravity alternative to general relativity, metric theories, and the post-Newtonian parameterized (PNN) formalism, a new class of metric theories of gravity is defined. As a result the post-Newtonian approximation of the new theories is not described by the PPN formalism. In fact under the weak field and slow motion hypothesis, the post-Newtonian expression of the metric tensor contains an infinite set of new terms and correspondingly an infinite set of new PPN parameters. Chapter II, III, and IV are devoted to new experiments to test general relativity and other metric theories of gravity. In particular, in chapter IV, it is shown that two general relativistics effects, the Lense-Thirring and De Sitter-Fokker precessions of the nodal lines of an Earth artificial satellite are today detectable using high altitude laser ranged artificial satellites such as Lageos. The orbit of this satellite is known with unprecedented accuracy. The author then describes a method of measuring these relativistic precessions using Lageos together with another high altitude laser ranged similar satellite with appropriately chosen orbital parameters
Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories
Nohle, Joshua David
In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at
Superstring threshold corrections to Yukawa couplings
Antoniadis, I.; Taylor, T.R.
1992-12-01
A general method of computing string corrections to the Kaehler metric and Yukawa couplings is developed at the one-loop level for a general compactification of the heterotic superstring theory. It also provides a direct determination of the so-called Green-Schwarz term. The matter metric has an infrared divergent part which reproduces the field-theoretical anomalous dimensions, and a moduli-dependent part which gives rise to threshold corrections in the physical Yukawa couplings. Explicit expressions are derived for symmetric orbifold compactifications. (author). 20 refs
Quarks and leptons from orbifolded superstring
Choi, K.S.; Kim, J.E.
2006-01-01
This book seeks to be a guidebook on the journey towards the minimal supersymmetric standard model down the orbifold road. It takes the viewpoint that the chirality of matter fermions is an essential aspect that orbifold compactification allows to derive from higher-dimensional string theories in a rather straight-forward manner. Halfway between a textbook and a tutorial review, ''Quarks and Leptons from Orbifolded Superstring'' is intended for the graduate student and particle phenomenologist wishing to get acquainted with this field. (orig.)
Green-Schwarz action and loop calculations for superstring
Kallosh, R.; Morozov, A.
1988-01-01
The authors that Green-Schwartz explicitly 10d supersymmetric and 2d covariant approach without spin 1/2 and 3/2 fields on world sheet may appear suitable for calculations of loops in superstring theory. The way the cancellation of Polyakov anomaly is realized and the answer for 1-loop 4-point amplitudes are reproduced
Spin foam models of Yang-Mills theory coupled to gravity
Mikovic, A
2003-01-01
We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barrett-Crane ansatz. In the Euclidean gravity case, we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidean gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity
Unified cosmology with scalar-tensor theory of gravity
Tajahmad, Behzad [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sanyal, Abhik Kumar [Jangipur College, Department of Physics, Murshidabad (India)
2017-04-15
Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)
Unified cosmology with scalar-tensor theory of gravity
Tajahmad, Behzad; Sanyal, Abhik Kumar
2017-01-01
Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-04-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
Evolution of universes in quadratic theories of gravity
Barrow, John D.; Hervik, Sigbjoern
2006-01-01
We use a dynamical systems approach to investigate Bianchi type I and II universes in quadratic theories of gravity. Because of the complicated nature of the equations of motion we focus on the stability of exact solutions and find that there exists an isotropic Friedmann-Robertson-Walker (FRW) universe acting as a past attractor. This may indicate that there is an isotropization mechanism at early times for these kind of theories. We also discuss the Kasner universes, elucidate the associated center manifold structure, and show that there exists a set of nonzero measure which has the Kasner solutions as a past attractor. Regarding the late-time behavior, the stability shows a dependence of the parameters of the theory. We give the conditions under which the de Sitter solution is stable and also show that for certain values of the parameters there is a possible late-time behavior with phantomlike behavior. New types of anisotropic inflationary behavior are found which do not have counterparts in general relativity
Stellar configurations in f(R) theories of gravity
Henttunen, K.; Multamaeki, T.; Vilja, I.
2008-01-01
We study stellar configurations and the space-time around them in metric f(R) theories of gravity. In particular, we focus on the polytropic model of the Sun in two specific cases: the f(R)=R-μ 4 /R model and a model with a stabilizing higher order term f(R)=R-μ 4 /R+βR 3 /(3μ 4 ). We show how the stellar configuration in the f(R) theory can, by appropriate initial conditions, be selected to be equal to that described by the Lane-Emden equation and how a simple scaling relation exists between the solutions. We also derive the correct solution analytically near the center of the star in f(R) theory. Previous analytical and numerical results are confirmed, indicating that the space-time around the Sun is incompatible with solar system constraints in the f(R)=R-μ 4 /R model. Numerical work shows that stellar configurations, with a regular metric at the center, lead to γ PPN ≅1/2 outside the star for both models, i.e., the Schwarzschild-de Sitter space-time is not the correct vacuum solution for such configurations. This shows that even when one fine-tunes the initial conditions inside a star such that the mass of the effective scalar in the equivalent scalar-tensor theory is large, γ PPN is still 1/2 outside the star. Conversely, by selecting the Schwarzschild-de Sitter metric as the outside solution, or equivalently setting the mass of the effective scalar to be large outside the star, we find that the stellar configuration is unchanged but the metric is irregular at the center. The possibility of constructing a f(R) theory compatible with the solar system experiments and possible new constraints arising from the radius-mass relation of stellar objects is discussed
Thierry-Mieg, J.
1985-01-01
This paper discusses the reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity
Thierry-Mieg, J.
1985-01-01
The reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity
Computing black hole entropy in loop quantum gravity from a conformal field theory perspective
Agulló, Iván; Borja, Enrique F.; Díaz-Polo, Jacobo
2009-01-01
Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity
Cosmological Observations in a Modified Theory of Gravity (MOG
John. W. Moffat
2013-06-01
Full Text Available Our Modified Gravity Theory (MOG is a gravitational theory without exotic dark matter, based on an action principle. MOG has been used successfully tomodel astrophysical phenomena, such as galaxy rotation curves, galaxy cluster masses and lensing. MOG may also be able to account for cosmological observations. We assume that the MOG point source solution can be used to describe extended distributions of matter via an appropriately modified Poisson equation. We use this result to model perturbation growth in MOG and find that it agrees well with the observed matter power spectrum at present. As the resolution of the power spectrum improves with increasing survey size, however, significant differences emerge between the predictions of MOG and the standard Λ-cold dark matter (Λ-CDM model, as in the absence of exotic darkmatter, oscillations of the power spectrum in MOG are not suppressed. We can also use MOG to model the acoustic power spectrum of the cosmic microwave background. A suitably adapted semi-analytical model offers a first indication that MOG may pass this test and correctly model the peak of the acoustic spectrum.
Ni, W.-T.
1972-01-01
Metric theories of gravity are compiled and classified according to the types of gravitational fields they contain, and the modes of interaction among those fields. The gravitation theories considered are classified as (1) general relativity, (2) scalar-tensor theories, (3) conformally flat theories, and (4) stratified theories with conformally flat space slices. The post-Newtonian limit of each theory is constructed and its Parametrized Post-Newtonian (PPN) values are obtained by comparing it with Will's version of the formalism. Results obtained here, when combined with experimental data and with recent work by Nordtvedt and Will and by Ni, show that, of all theories thus far examined by our group, the only currently viable ones are general relativity, the Bergmann-Wagoner scalar-tensor theory and its special cases (Nordtvedt; Brans-Dicke-Jordan), and a recent, new vector-tensor theory by Nordtvedt, Hellings, and Will.
Green-Schwarz superstring: Beltrami parametrization and world-sheet supersymmetric generalization
Binetruy, P.; Girardi, G.; Grimm, R.
1989-06-01
We study a generalization of the superstring theory in which both world-sheet and space-time supersymmetries are explicit. This hybrid superstring interpolates between the Green-Schwarz and the Ramond-Neveu-Schwarz formulations. We show that the Beltrami parametrization of the world-sheet provides a natural setting for the description of K-transformations already in the Green-Schwarz string. We construct the hybrid superstring action using the (1,1) supersymmetric version of the Beltrami parametrization. We discuss the generalization of k-transformations
Cosmological bound from the neutron star merger GW170817 in scalar–tensor and F(R gravity theories
Shin'ichi Nojiri
2018-04-01
Full Text Available We consider the evolution of cosmological gravitational waves in scalar–tensor theory and F(R gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations. Keywords: Gravitational waves, Alternative theories of gravity, Cosmology
Scalar particles in superstring models
Binetruy, P.
1989-01-01
The role played by scalar fields in superstring models is reviewed, with an emphasis on recent developments. The case of the dilaton and moduli fields is discussed in connection with the issues of spacetime duality and supersymmetry breaking. Constraints on the Higgs sector are reviewed in the different classes of models
New BCJ representations for one-loop amplitudes in gauge theories and gravity
He, Song; Schlotterer, Oliver; Zhang, Yong
2018-05-01
We explain a procedure to manifest the Bern-Carrasco-Johansson duality between color and kinematics in n-point one-loop amplitudes of a variety of supersymmetric gauge theories. Explicit amplitude representations are constructed through a systematic reorganization of the integrands in the Cachazo-He-Yuan formalism. Our construction holds for any nonzero number of supersymmetries and does not depend on the number of spacetime dimensions. The cancellations from supersymmetry multiplets in the loop as well as the resulting power counting of loop momenta is manifested along the lines of the corresponding superstring computations. The setup is used to derive the one-loop version of the Kawai-Lewellen-Tye formula for the loop integrands of gravitational amplitudes.
Guendelman, E.
2004-01-01
Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat
Spin foam model for pure gauge theory coupled to quantum gravity
Oriti, Daniele; Pfeiffer, Hendryk
2002-01-01
We propose a spin foam model for pure gauge fields coupled to Riemannian quantum gravity in four dimensions. The model is formulated for the triangulation of a four-manifold which is given merely combinatorially. The Riemannian Barrett-Crane model provides the gravity sector of our model and dynamically assigns geometric data to the given combinatorial triangulation. The gauge theory sector is a lattice gauge theory living on the same triangulation and obtains from the gravity sector the geometric information which is required to calculate the Yang-Mills action. The model is designed so that one obtains a continuum approximation of the gauge theory sector at an effective level, similarly to the continuum limit of lattice gauge theory, when the typical length scale of gravity is much smaller than the Yang-Mills scale
Hwang, Jai-chan; Noh, Hyerim
2005-01-01
We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others
Test of gauge invariance and unitarity of the quantized Einstein theory of gravity
Hsu, J.P.; Underwood, J.A.
1975-01-01
Explicit calculations at the 1-loop level verify that the usual quantized Einstein theory of gravity is indeed gauge independent and unitary for all values of the gauge parameter α. This lends nontrivial support to a general formal proof
Equilibrium and stability of relativistic stars in extended theories of gravity
Wojnar, Aneta [Maria Curie-Sklodowska University, Institute of Physics, Lublin (Poland); Univ. di Monte S. Angelo, Napoli (Italy); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); INFN, Napoli (Italy); Velten, Hermano [Universidade Federal do Espirito Santo (UFES), Vitoria (Brazil)
2016-12-15
We study static, spherically symmetric equilibrium configurations in extended theories of gravity (ETG) following the notation introduced by Capozziello et al. We calculate the differential equations for the stellar structure in such theories in a very generic form i.e., the Tolman-Oppenheimer-Volkoff generalization for any ETG is introduced. Stability analysis is also investigated with special focus on the particular example of scalar-tensor gravity. (orig.)
Clear evidence of a continuum theory of 4D Euclidean simplicial quantum gravity
Egawa, H.S.; Horata, S.; Yukawa, T.
2002-01-01
Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields (N X ) and gauge fields (N A ) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent γ (4) is estimated. Furthermore, we compare our numerical results with Background-Metric-Independent (BMI) formulation conjectured to describe the quantum field theory of gravity in 4D. The numerical results suggest that the 4D simplicial quantum gravity is related to the conformal gravity in 4D. Therefore, we propose a phase structure in detail with adding both scalar and gauge fields and discuss the possibility and the property of a continuum theory of 4D Euclidean simplicial quantum gravity
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Superstring interactions in a pp-wave background II
Spradlin, Marcus; Volovich, Anastasia
2003-01-01
In type-IIB light-cone superstring field theory, the cubic interaction has two pieces: a delta-functional overlap and an operator inserted at the interaction point. In this paper we extend our earlier work by computing the matrix elements of this operator in the oscillator basis of pp-wave string theory for all μ p +α '. By evaluating these matrix elements for large μ p +α ', we check a recent conjecture relating matrix elements of the light-cone string field theory hamiltonian (with prefactor) to certain three-point functions of BMN operators in the gauge theory. We also make several predictions for gauge theory. (author)
Solution of the dilaton problem in open bosonic string theories
Bern, Z. (Los Alamos National Lab., NM (United States)); Dunbar, D.C. (Liverpool Univ. (United Kingdom))
1991-01-01
One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.
Solution of the dilaton problem in open bosonic string theories
Bern, Z.; Dunbar, D.C.
1991-01-01
One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories
Exploring the lambda model of the hybrid superstring
Schmidtt, David M. [Instituto de Física Teórica IFT/UNESP,Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, CEP 01140-070, São Paulo-SP (Brazil)
2016-10-26
The purpose of this contribution is to initiate the study of integrable deformations for different superstring theory formalisms that manifest the property of (classical) integrability. In this paper we choose the hybrid formalism of the superstring in the background AdS{sub 2}×S{sup 2} and explore in detail the most immediate consequences of its λ-deformation. The resulting action functional corresponds to the λ-model of the matter part of the fairly more sophisticated pure spinor formalism, which is also known to be classical integrable. In particular, the deformation preserves the integrability and the one-loop conformal invariance of its parent theory, hence being a marginal deformation.
Beyond Einstein Gravity A Survey of Gravitational Theories for Cosmology and Astrophysics
Faraoni, Valerio
2011-01-01
Beyond Einstein’s Gravity is a graduate level introduction to extended theories of gravity and cosmology, including variational principles, the weak-field limit, gravitational waves, mathematical tools, exact solutions, as well as cosmological and astrophysical applications. The book provides a critical overview of the research in this area and unifies the existing literature using a consistent notation. Although the results apply in principle to all alternative gravities, a special emphasis is on scalar-tensor and f(R) theories. They were studied by theoretical physicists from early on, and in the 1980s they appeared in attempts to renormalize General Relativity and in models of the early universe. Recently, these theories have seen a new lease of life, in both their metric and metric-affine versions, as models of the present acceleration of the universe without introducing the mysterious and exotic dark energy. The dark matter problem can also be addressed in extended gravity. These applications are contr...
On inflation in the heterotic superstring model
Maeda, K.; Pollock, M.D.
1985-11-01
We consider the possibility of achieving inflation in the field-theory limit of the E 8 xE 8 superstring model. We show that neither type I inflation nor inflation due to a SUSY-breaking gaugino-condensation potential, is possible, essentially because of the absence of free dimensionless parameters. Kaluza-Klein type inflation is ruled out because the internal space is Ricci flat. The occurrence of type II inflation (due to some gauge singlet 'inflaton' field phi) depends upon the form of the superpotential F and of the Kaehler potential G, but this also seems not to be possible, unless the SU(n,1) symmetry can be broken in a particular way. Hence, some new type of compactification scheme may be called for, or a different type of inflation
Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology
Derakhshani, Maaneli
2014-01-01
We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.
Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology
Derakhshani, Maaneli, E-mail: maanelid@yahoo.com
2014-03-01
We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.
Multi-leg one-loop gravity amplitudes from gauge theory
Bern, Z.; Dixon, L.; Perelstein, M.; Rozowsky, J.S.
1999-01-01
By exploiting relations between gravity and gauge theories, we present two infinite sequences of one-loop n-graviton scattering amplitudes: the 'maximally helicity-violating' amplitudes in N = 8 supergravity, and the 'all-plus' helicity amplitudes in gravity with any minimally coupled massless matter content. The all-plus amplitudes correspond to self-dual field configurations and vanish in supersymmetric theories. We make use of the tree-level Kawai-Lewellen-Tye (KLT) relations between open and closed string theory amplitudes, which in the low-energy limit imply relations between gravity and gauge theory tree amplitudes. For n ≤ 6, we determine the all-plus amplitudes explicitly from their unitarity cuts. The KLT relations, applied to the cuts, allow us to extend to gravity a previously found 'dimension-shifting' relation between (the cuts of) the all-plus amplitudes in gauge theory and the maximally helicity-violating amplitudes in N = 4 super-Yang-Mills theory. The gravitational version of the relation lets us determine the n ≤ 6N = 8 supergravity amplitudes from the all-plus gravity amplitudes. We infer the two series of amplitudes for all n from their soft and collinear properties, which can also be derived from gauge theory using the KLT relations
New directions in quantum gravity
Penrose, Roger
1988-01-01
There has been much work over the past thirty years or so, concerned with trying to discover how Nature is able to achieve unity and harmony in combining two seemingly incompatible collections of phenomena: those of the sub-microscopic world, described by quantum mechanics, and those of the large-scale world, described by general relativity. The essential need for such a quantum gravity theory arose. Numerous heroic attempts to quantize the Einstein theory followed but these eventually foundered on the harsh rocks of non-renormalizability. This impasse led most workers in the field to explore possible modifications of Einstein's theory such as supergravity, increasing the number of space-time dimensions, replacing the standard (Hilbert) action of general relativity theory by something more complicated and superstring theory. Time-asymmetry in space-time singularity structure is discussed. In searching for a time-asymmetric quantum gravity theory the theories of general relativity and quantum mechanics both need to be modified. Then an objective wave-function collapse can occur at a level at which gravitation begins to be involved in a quantum process. (author)
On the dynamics of superstring compactification
Pollock, M. D.
2018-05-01
Compactification of the ten-dimensional heterotic superstring theory to four dimensions gives rise to two moduli potentials VA, VB, the positive semi-definiteness of which places constraints on the Euler characteristic \\bar{χ} of the internal space \\bar{g}_{μν}(y^{ξ}) and the adiabatic index γ of the effective matter source of energy-density ρ and pressure p = (γ -1)ρ that generates the physical four-space g_{ij}(xk), namely \\bar{χ} 0, 1 ≤ γ ≤ 4/3. Here, we show how fermion-bilinear condensation in the internal space, first put forward by Helayël-Neto and Smith, determines the field \\tilde{β} ≡ A_r B_r3, thus reducing the moduli space to a single canonical field \\tilde{σ}=2σB with a potential ˜ , which is positive semi-definite under the same conditions that ensure positive semi-definiteness of VA, VB, and has a minimum at a value of \\tilde{β} that is approximately constant far from the Planck era at t ≫ t_P. The fields σA, σB, which are canonically normalized in the zero-slope limit, are modified by contributions originating from the higher-derivative gravitational terms α^' \\hatR_E2 and α^' 3} \\hatR4, but the associated kinetic energy remains positive for times t ≳ t_P/2, guaranteeing classical stability of the solution, since the generalized indeterminacy principle implies a minimum physically measurable time t0 ≈ 50 t_P for the superstring theory.
Testing universal relations of neutron stars with a nonlinear matter-gravity coupling theory
Sham, Y.-H.; Lin, L.-M.; Leung, P. T.
2014-01-01
Due to our ignorance of the equation of state (EOS) beyond nuclear density, there is still no unique theoretical model for neutron stars (NSs). It is therefore surprising that universal EOS-independent relations connecting different physical quantities of NSs can exist. Lau et al. found that the frequency of the f-mode oscillation, the mass, and the moment of inertia are connected by universal relations. More recently, Yagi and Yunes discovered the I-Love-Q universal relations among the mass, the moment of inertia, the Love number, and the quadrupole moment. In this paper, we study these universal relations in the Eddington-inspired Born-Infeld (EiBI) gravity. This theory differs from general relativity (GR) significantly only at high densities due to the nonlinear coupling between matter and gravity. It thus provides us an ideal case to test how robust the universal relations of NSs are with respect to the change of the gravity theory. Due to the apparent EOS formulation of EiBI gravity developed recently by Delsate and Steinhoff, we are able to study the universal relations in EiBI gravity using the same techniques as those in GR. We find that the universal relations in EiBI gravity are essentially the same as those in GR. Our work shows that, within the currently viable coupling constant, there exists at least one modified gravity theory that is indistinguishable from GR in view of the unexpected universal relations.
Testing Universal Relations of Neutron Stars with a Nonlinear Matter-Gravity Coupling Theory
Sham, Y.-H.; Lin, L.-M.; Leung, P. T.
2014-02-01
Due to our ignorance of the equation of state (EOS) beyond nuclear density, there is still no unique theoretical model for neutron stars (NSs). It is therefore surprising that universal EOS-independent relations connecting different physical quantities of NSs can exist. Lau et al. found that the frequency of the f-mode oscillation, the mass, and the moment of inertia are connected by universal relations. More recently, Yagi and Yunes discovered the I-Love-Q universal relations among the mass, the moment of inertia, the Love number, and the quadrupole moment. In this paper, we study these universal relations in the Eddington-inspired Born-Infeld (EiBI) gravity. This theory differs from general relativity (GR) significantly only at high densities due to the nonlinear coupling between matter and gravity. It thus provides us an ideal case to test how robust the universal relations of NSs are with respect to the change of the gravity theory. Due to the apparent EOS formulation of EiBI gravity developed recently by Delsate and Steinhoff, we are able to study the universal relations in EiBI gravity using the same techniques as those in GR. We find that the universal relations in EiBI gravity are essentially the same as those in GR. Our work shows that, within the currently viable coupling constant, there exists at least one modified gravity theory that is indistinguishable from GR in view of the unexpected universal relations.
Canonical formulation of supergravity and the quantization of the ultralocal theory of gravity
Pilati, M.L.
1980-01-01
This thesis consists of two parts whose only common feature is that they are Hamiltonian field theories of geometric interest. The first part is concerned with the canonical formulation of supergravity and other geometrical, supersymmetric theories. The Hamiltonian for supergravity and the spinning membrane are computed, and the possible usefulness of the Hamiltonian formalism for finding the underlying geometry described. The second part attempts to give the quantization of the ultralocal theory of gravity. Classically the ultralocal theory corresponds to dropping g/sup 1/2//sup (3)/R from the Hamiltonian. The speed of light in this theory is zero; there is no propagation of information. It is desired to have the quantum version of this theory play the role that Fock space plays in ordinary quantum field theory, i.e., to the theory about which perturbations are made to obtain the full quantum theory of gravity. The quantum theory is begun by choosing variables consistent with the three-dimensional metric's having positive-definite spectrum. The representation of these operators is then given; it is an exponential representation. The operators script-H/sub perpendicular/ and script-H/sub i/ are constructed in this representation, the properties of script-H/sub i/ implying that the theory is coordinate invariant. It is found that script-H/sub perpendicular/ cannot be realized as a constraint in this theory in the way that one expects of a quantum theory of gravity
Vector theory of gravity: Universe without black holes and solution of dark energy problem
Svidzinsky, Anatoly A.
2017-12-01
We propose an alternative theory of gravity which assumes that background geometry of the Universe is fixed four dimensional Euclidean space and gravity is a vector field A k in this space which breaks the Euclidean symmetry. Direction of A k gives the time coordinate, while perpendicular directions are spatial coordinates. Vector gravitational field is coupled to matter universally and minimally through the equivalent metric f ik which is a functional of A k . We show that such assumptions yield a unique theory of gravity, it is free of black holes and, to the best of our knowledge, passes all available tests. For cosmology our theory predicts the same evolution of the Universe as general relativity with cosmological constant and zero spatial curvature. However, the present theory provides explanation of the dark energy as energy of longitudinal gravitational field induced by the Universe expansion and yields, with no free parameters, the value of {{{Ω }}}{{Λ }}=2/3≈ 0.67 which is consistent with the recent Planck result {{{Ω }}}{{Λ }}=0.686+/- 0.02. Such close agreement with cosmological data indicates that gravity has a vector, rather than tensor, origin. We demonstrate that gravitational wave signals measured by LIGO are compatible with vector gravity. They are produced by orbital inspiral of massive neutron stars which can exist in the present theory. We also quantize gravitational field and show that quantum vector gravity is equivalent to QED. Vector gravity can be tested by making more accurate measurement of the time delay of radar signal traveling near the Sun; by improving accuracy of the light deflection experiments; or by measuring propagation direction of gravitational waves relative to laser interferometer arms. Resolving the supermassive object at the center of our Galaxy with VLBA could provide another test of gravity and also shed light on the nature of dark matter.
Testing the master constraint programme for loop quantum gravity: V. Interacting field theories
Dittrich, B; Thiemann, T
2006-01-01
This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein-Yang-Mills theory and 2 + 1 gravity. Interestingly, while Yang-Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity
BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory
Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid
It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.
On the embedding of quantum field theory on curved spacetimes into loop quantum gravity
Stottmeister, Alexander
2015-01-01
The main theme of this thesis is an investigation into possible connections between loop quantum gravity and quantum field theory on curved spacetimes: On the one hand, we aim for the formulation of a general framework that allows for a derivation of quantum field theory on curved spacetimes in a semi-classical limit. On the other hand, we discuss representation-theoretical aspects of loop quantum gravity and quantum field theory on curved spacetimes as both of the latter presumably influence each other in the aforesaid semi-classical limit. Regarding the first point, we investigate the possible implementation of the Born-Oppenheimer approximation in the sense of space-adiabatic perturbation theory in models of loop quantum gravity-type. In the course of this, we argue for the need of a Weyl quantisation and an associated symbolic calculus for loop quantum gravity, which we then successfully define, at least to a certain extent. The compactness of the Lie groups, which models a la loop quantum gravity are based on, turns out to be a main obstacle to a fully satisfactory definition of a Weyl quantisation. Finally, we apply our findings to some toy models of linear scalar quantum fields on quantum cosmological spacetimes and discuss the implementation of space-adiabatic perturbation theory therein. In view of the second point, we start with a discussion of the microlocal spectrum condition for quantum fields on curved spacetimes and how it might be translated to a background-independent Hamiltonian quantum theory of gravity, like loop quantum gravity. The relevance of this lies in the fact that the microlocal spectrum condition selects a class of physically relevant states of the quantum matter fields and is, therefore, expected to play an important role in the aforesaid semi-classical limit of gravity-matter systems. Following this, we switch our perspective and analyse the representation theory of loop quantum gravity. We find some intriguing relations between the
Gravitational Wave Polarizations in f (R Gravity and Scalar-Tensor Theory
Gong Yungui
2018-01-01
Full Text Available The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in f (R gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar + and × polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.
Non-trivial frames for f(T) theories of gravity and beyond
Ferraro, Rafael; Fiorini, Franco
2011-01-01
Some conceptual issues concerning f(T) theories - a family of modified gravity theories based on absolute parallelism - are analyzed. Due to the lack of local Lorentz invariance, the autoparallel frames satisfying the field equations are evasive to an a priori physical understanding. We exemplify this point by working out the vierbein (tetrad) fields for closed and open Friedmann-Robertson-Walker cosmologies.
2 + 1 quantum gravity as a toy model for the 3 + 1 theory
Ashtekar, A.; Husain, V.; Smolin, L.; Samuel, J.; Utah Univ., Salt Lake City, UT
1989-01-01
2 + 1 Einstein gravity is used as a toy model for testing a program for non-perturbative canonical quantisation of the 3 + 1 theory. The program can be successfully implemented in the model and leads to a surprisingly rich quantum theory. (author)
Non-trivial frames for f(T) theories of gravity and beyond
Ferraro, Rafael, E-mail: ferraro@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Fiorini, Franco, E-mail: franco@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)
2011-08-03
Some conceptual issues concerning f(T) theories - a family of modified gravity theories based on absolute parallelism - are analyzed. Due to the lack of local Lorentz invariance, the autoparallel frames satisfying the field equations are evasive to an a priori physical understanding. We exemplify this point by working out the vierbein (tetrad) fields for closed and open Friedmann-Robertson-Walker cosmologies.
Radiation perturbation theory in gravity and quantum universe as a hydrogen atom
Pervushin, V.N.
1992-01-01
In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs
Triality invariance in the N=2 superstring
Castellani, Leonardo; Grassi, Pietro Antonio; Sommovigo, Luca
2009-01-01
We prove the discrete triality invariance of the N=2 NSR superstring moving in a D=2+2 target space. We find that triality holds also in the Siegel-Berkovits formulation of the selfdual superstring. A supersymmetric generalization of Cayley's hyperdeterminant, based on a quartic invariant of the SL(2|1) 3 superalgebra, is presented.
Triality invariance in the N=2 superstring
Castellani, Leonardo [Dipartimento di Scienze e Tecnologie Avanzate and INFN Gruppo collegato di Alessandria, Universita del Piemonte Orientale, Via Teresa Michel 11, 15121 Alessandria (Italy)], E-mail: leonardo.castellani@mfn.unipmn.it; Grassi, Pietro Antonio [Dipartimento di Scienze e Tecnologie Avanzate and INFN Gruppo collegato di Alessandria, Universita del Piemonte Orientale, Via Teresa Michel 11, 15121 Alessandria (Italy)], E-mail: pietro.grassi@mfn.unipmn.it; Sommovigo, Luca [Dipartimento di Scienze e Tecnologie Avanzate and INFN Gruppo collegato di Alessandria, Universita del Piemonte Orientale, Via Teresa Michel 11, 15121 Alessandria (Italy)], E-mail: luca.sommovigo@mfn.unipmn.it
2009-07-20
We prove the discrete triality invariance of the N=2 NSR superstring moving in a D=2+2 target space. We find that triality holds also in the Siegel-Berkovits formulation of the selfdual superstring. A supersymmetric generalization of Cayley's hyperdeterminant, based on a quartic invariant of the SL(2|1){sup 3} superalgebra, is presented.
Recent progress in the theory of random surfaces and simplicial quantum gravity
Ambjoern, J.
1995-01-01
Some of the recent developments in the theory of random surfaces and simplicial quantum gravity is reviewed. For 2d quantum gravity this includes the failure of Regge calculus, our improved understanding of the c>1 regime, some surprises for q-state Potts models with q>4, attempts to use renormalization group techniques, new critical behavior of random surface models with extrinsic curvature and improved algorithms. For simplicial quantum gravity in higher dimensions it includes a discussion of the exponential entropy bound needed for the models to be well defined, the question of ''computational ergodicity'' and the question of how to extract continuum behavior from the lattice simulations. ((orig.))
Group field theory formulation of 3D quantum gravity coupled to matter fields
Oriti, Daniele; Ryan, James
2006-01-01
We present a new group field theory describing 3D Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs coloured with SU(2) algebraic data, from which one can reconstruct at once a three-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3D quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss
Effective spacetime understanding emergence in effective field theory and quantum gravity
Crowther, Karen
2016-01-01
This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop quantum gravity.
Tamaki, Takashi; Torii, Takashi; Maeda, Kei-ichi
2003-01-01
We perform a linear perturbation analysis for black hole solutions with a 'massive' Yang-Mills field (the Proca field) in Brans-Dicke theory and find that the results are quite consistent with those via catastrophe theory where thermodynamic variables play an intrinsic role. Based on this observation, we show the general relation between these two methods in generalized theories of gravity which are conformally related to the Einstein-Hilbert action
Extension of Loop Quantum Gravity to Metric Theories beyond General Relativity
Ma Yongge
2012-01-01
The successful background-independent quantization of Loop Quantum Gravity relies on the key observation that classical General Relativity can be cast into the connection-dynamical formalism with the structure group of SU(2). Due to this particular formalism, Loop Quantum Gravity was generally considered as a quantization scheme that applies only to General Relativity. However, we will show that the nonperturbative quantization procedure of Loop Quantum Gravity can be extended to a rather general class of metric theories of gravity, which have received increased attention recently due to motivations coming form cosmology and astrophysics. In particular, we will first introduce how to reformulate the 4-dimensional metric f(R) theories of gravity, as well as Brans-Dicke theory, into connection-dynamical formalism with real SU(2) connections as configuration variables. Through these formalisms, we then outline the nonpertubative canonical quantization of the f(R) theories and Brans-Dicke theory by extending the loop quantization scheme of General Relativity.
Vlasov, A.A.
1988-01-01
The necessity of covariant connection of plane space metrics in the gravity theory ''on a plane background'' is underlined. It is shown that this connection in the relativistic gravity theory results in its difference from the general relativity theory ''on a plane background''
Cosmological bound from the neutron star merger GW170817 in scalar-tensor and F(R) gravity theories
Nojiri, Shin'ichi; Odintsov, Sergei D.
2018-04-01
We consider the evolution of cosmological gravitational waves in scalar-tensor theory and F (R) gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations.
Pure Lovelock gravity and Chern-Simons theory
Concha, P. K.; Durka, R.; Inostroza, C.; Merino, N.; Rodríguez, E. K.
2016-07-01
We explore the possibility of finding pure Lovelock gravity as a particular limit of a Chern-Simons action for a specific expansion of the AdS algebra in odd dimensions. We derive in detail this relation at the level of the action in five and seven dimensions. We provide a general result for higher dimensions and discuss some issues arising from the obtained dynamics.
Low-energy effective action for the superstring
Burgess, C.P.; Font, A.; Quevedo, F.
1986-01-01
We construct the low-energy D=4, N=1 supergravity that arises in superstring theories for an arbitrary number of generations. The coupling of all massless modes that carry low-energy gauge quantum numbers are calculated by truncating the heavy Kaluza-Klein modes of the ten-dimensional effective field theory. The resulting action is compared to the most general effective action compatible with the symmetries of the underlying ten-dimensional field (and string) theories. This comparison indicates which features of the truncation correctly approximate the exact low-energy action. (orig.)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Unification of gauge and gravity Chern-Simons theories in 3-D space-time
Saghir, Chireen A.; Shamseddine, Laurence W. [American University of Beirut, Physics Department, Beirut (Lebanon)
2017-11-15
Chamseddine and Mukhanov showed that gravity and gauge theories could be unified in one geometric construction provided that a metricity condition is imposed on the vielbein. In this paper we are going to show that by enlarging the gauge group we are able to unify Chern-Simons gauge theory and Chern-Simons gravity in 3-D space-time. Such a unification leads to the quantization of the coefficients for both Chern-Simons terms for compact groups but not for non-compact groups. Moreover, it leads to a topological invariant quantity of the 3-dimensional space-time manifold on which they are defined. (orig.)
Late inspiral and merger of binary black holes in scalar–tensor theories of gravity
Healy, James; Bode, Tanja; Laguna, Pablo; Shoemaker, Deirdre M; Haas, Roland; Pazos, Enrique; Yunes, Nicolás
2012-01-01
Gravitational wave observations will probe nonlinear gravitational interactions and thus enable strong tests of Einstein’s theory of general relativity. We present a numerical relativity study of the late inspiral and merger of binary black holes in scalar–tensor theories of gravity. We consider binaries inside a scalar field bubble, including in some cases a potential. We demonstrate how an evolving scalar field is able to trigger detectable differences between gravitational waves in scalar–tensor gravity and the corresponding waves in general relativity. (fast track communication)
Left-right symmetric superstring supergravitation
Burova, M.V.; Ter-Martirosyan, K.E.
1988-01-01
A left-right (L-R) symmetric model of four-dimensional supergravitation with a SO(10) gauge group obtained as the low-energy limit is superstring theory is considered. The spectrum of the gauge fields and their interactions are in agreement with the Weinberg-Salam theory. In addition, the model includes heavy W R ± and Z μ ' bosons. Beside the N g =3 generations of the 16-plets the SO(10) model includes the fragments of such generations which play the role of Higgs particles and also scalar chiral filds, the number of which exceeds by one the number of generations. As a result the neutrinos of each generation obtain a stable small Majorana mass. It is shown that the scalar field potential leads to spontaneous violation of the SU(2) R group and L-R symmetry and at low energies the standard Weinberg-Salam theory appears. However, reasonable values of X bosons masses M x and sun 2 Θ W (Θ W is the Weinberg angle) can be obtained in the model only in the case of high mass scale M R ∼10 10 -10 12 GeV of the right group SU(2) R violation
Physics on all scales. Scalar-tensor theories of quantum gravity in particle physics and cosmology
Henz, Tobias
2016-05-10
In this thesis, we investigate dilaton quantum gravity using a functional renormalization group approach. We derive and discuss flow equations both in the background field approximation and using a vertex expansion as well as solve the fixed point equations globally to show how realistic gravity, connecting ultraviolet and infrared physics, can be realized on a pure fixed point trajectory by virtue of spontaneous breaking of scale invariance. The emerging physical system features a dynamically generated moving Planck scale resembling the Newton coupling as well as slow roll inflation with an exponentially decreasing effective cosmological constant that vanishes completely in the infrared. The moving Planck scale might make quantum gravity experimentally accessible at a different energy scale than previously believed. We therefore not only provide further evidence for the existence of a consistent quantum theory of gravity based on general relativity, but also offer potential solutions towards the hierarchy and cosmological constant problems, thereby opening up exciting opportunities for further research.
New formulation of Horava-Lifshitz quantum gravity as a master constraint theory
Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Yang Jinsong, E-mail: Yangksong@gmail.com [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Yu, Hoi-Lai, E-mail: hlyu@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)
2011-07-04
Both projectable and non-projectable versions of Horava-Lifshitz gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra scalar mode which can be problematic. A new formulation of non-projectable Horava-Lifshitz gravity, naturally realized as a representation of the master constraint algebra studied by loop quantum gravity researchers, is presented. This yields a consistent canonical theory with first class constraints. It captures the essence of Horava-Lifshitz gravity in retaining only spatial diffeomorphisms (instead of full space-time covariance) as the physically relevant non-trivial gauge symmetry; at the same time the local Hamiltonian constraint needed to eliminate the extra mode is equivalently enforced by the master constraint.
The Born-Infeld action from conformal invariance of the open superstring
Bergshoeff, E.; Sezgin, E.; Pope, C.N.; Townsend, P.K.
1987-01-01
We show that the one-loop approximation to sigma-model perturbation theory for the open superstring leads to the low energy effective action of Born-Infeld for the gauge field coupled to the ends of the string. Thus the bosonic part of the low-energy open superstring effective action is just that of the open bosonic string. We also show that these results are exact to all-loop orders of sigma-model perturbation theory. (author). 12 refs, 5 figs
Scattering of fermions in the Yukawa theory coupled to unimodular gravity
Gonzalez-Martin, S.; Martin, C.P.
2018-01-01
We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion → fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κy 2 order of the vertex involving two fermions and one graviton only. (orig.)
CDT-a entropic theory of quantum gravity
Ambjørn, Jan; Görlich, A.; Jurkiewicz, J.
2010-01-01
High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)......High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)...
Hidden gravity in open-string field theory
Siegel, W.
1994-01-01
We clarify the nature of the graviton as a bound state in open-string field theory: The flat metric in the action appears as the vacuum value of an open string field. The bound state appears as a composite field in the free field theory
Cosmological Solutions of Tensor–Vector Theories of Gravity by ...
We consider tensor–vector theories by varying the space- time–matter coupling ... solutions by considering the character of critical points of the theory and their stability .... light (Magueijo 2003) that has arisen from the possibility of varying fine structure constant. ... Vector-like dark energy displays a series of properties that.
General dimensional reduction of ten-dimensional supergravity and superstring
Ferrara, S.; Porrati, M.
1986-01-01
Dimensional reductions of supergravity theories are shown to yield to specific glasses of four-dimensional no-scale models with N=4, 2 or 1 residual supersymmetry. N=1 ''maximal'' supergravity lagrangian, corresponding to the ''untwisted'' sector of orbifold compactification of superstrings, contains nine families and has a no-scale structure based on the Kaehler manifold [SU(3, 3+3n)/SU(3)xSU(3+3n)]x[SU(1, 1)/U(1)]. The quantum consistency of the resulting theories give information on the non Kaluza-Klein (string) ''twisted'' sector. (orig.)
Quantum theory of nonrelativistic particles interacting with gravity
Anastopoulos, C.
1996-01-01
We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We consider N nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the system of particles to first order in G. The effective interaction between the particles as well as the self-interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-induced collapse models. We finally comment on possible applications. copyright 1996 The American Physical Society
Thermodynamics in f(R,T) theory of gravity
Sharif, M.; Zubair, M.
2012-01-01
A non-equilibrium picture of thermodynamics is discussed at the apparent horizon of FRW universe in f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor. We take two forms of the energy-momentum tensor of dark components and demonstrate that equilibrium description of thermodynamics is not achievable in both cases. We check the validity of the first and second law of thermodynamics in this scenario. It is shown that the Friedmann equations can be expressed in the form of first law of thermodynamics T h dS' h +T h d jmath S' = −dE'+W'dV, where d jmath S' is the entropy production term. Finally, we conclude that the second law of thermodynamics holds both in phantom and non-phantom phases
Vacaru, Sergiu I
2014-01-01
The fundamental field equations in modified gravity (including general relativity; massive and bimetric theories; Ho\\vrava-Lifshits, HL; Einstein--Finsler gravity extensions etc) posses an important decoupling property with respect to nonholonomic frames with 2 (or 3) +2+2+... spacetime decompositions. This allows us to construct exact solutions with generic off--diagonal metrics depending on all spacetime coordinates via generating and integration functions containing (un-) broken symmetry parameters. Such nonholonomic configurations/ models have a nice ultraviolet behavior and seem to be ghost free and (super) renormalizable in a sense of covariant and/or massive modifications of HL gravity. The apparent noncommutativity and breaking of Lorentz invariance by quantum effects can be encoded into fibers of noncommutative tangent Lorentz bundles for corresponding "partner" anisotropically induced theories. We show how the constructions can be extended to include conjectured covariant reonormalizable models with...
Gravity Cutoff in Theories with Large Discrete Symmetries
Dvali, Gia; Redi, Michele; Sibiryakov, Sergey; Vainshtein, Arkady
2008-01-01
We set an upper bound on the gravitational cutoff in theories with exact quantum numbers of large N periodicity, such as Z N discrete symmetries. The bound stems from black hole physics. It is similar to the bound appearing in theories with N particle species, though a priori, a large discrete symmetry does not imply a large number of species. Thus, there emerges a potentially wide class of new theories that address the hierarchy problem by lowering the gravitational cutoff due to the existence of large Z 10 32 -type symmetries
First advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings
Fiziev, P.; Todorov, M.
2002-01-01
The aim of the First Advanced Workshop ‘Gravity, Astrophysics, and Strings’ was: 1)Bringing together scientists from various branches of gravitational physics, astrophysics and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2)Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference. The workshop covered wide aspects of gravity, astrophysics, and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Astrophysics, and Strings; Relativistic Gravity; (Super)Strings. About 40 participants from Europe, America and Asia gave 30 invited talks and contributed presentations. The full text of 17 of them are included in this book
On pseudoparticle solutions in Yang's theory of gravity
Mielke, E.W.
1980-03-01
Within the framework of differential geometry, Yang's parallel-displacement gauge theory is considered with respect to ''pure'' gravitational fields. In a four-dimensional Riemannian manifold it is shown that the double self-dual solutions obey Einstein's vacuum equations with cosmological term, whereas the double anti-self-dual configurations satisfy the Rainich conditions of Wheeler's geometrodynamics. Conformal methods reveal that the gravitational analogue of the ''instanton'' or pseudoparticle solution of Yang-Mills theory was already known to Riemann. (author)
The maximum sizes of large scale structures in alternative theories of gravity
Bhattacharya, Sourav [IUCAA, Pune University Campus, Post Bag 4, Ganeshkhind, Pune, 411 007 India (India); Dialektopoulos, Konstantinos F. [Dipartimento di Fisica, Università di Napoli ' Federico II' , Complesso Universitario di Monte S. Angelo, Edificio G, Via Cinthia, Napoli, I-80126 Italy (Italy); Romano, Antonio Enea [Instituto de Física, Universidad de Antioquia, Calle 70 No. 52–21, Medellín (Colombia); Skordis, Constantinos [Department of Physics, University of Cyprus, 1 Panepistimiou Street, Nicosia, 2109 Cyprus (Cyprus); Tomaras, Theodore N., E-mail: sbhatta@iitrpr.ac.in, E-mail: kdialekt@gmail.com, E-mail: aer@phys.ntu.edu.tw, E-mail: skordis@ucy.ac.cy, E-mail: tomaras@physics.uoc.gr [Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, 70013 Heraklion (Greece)
2017-07-01
The maximum size of a cosmic structure is given by the maximum turnaround radius—the scale where the attraction due to its mass is balanced by the repulsion due to dark energy. We derive generic formulae for the estimation of the maximum turnaround radius in any theory of gravity obeying the Einstein equivalence principle, in two situations: on a spherically symmetric spacetime and on a perturbed Friedman-Robertson-Walker spacetime. We show that the two formulae agree. As an application of our formula, we calculate the maximum turnaround radius in the case of the Brans-Dicke theory of gravity. We find that for this theory, such maximum sizes always lie above the ΛCDM value, by a factor 1 + 1/3ω, where ω>> 1 is the Brans-Dicke parameter, implying consistency of the theory with current data.
Connection dynamics of a gauge theory of gravity coupled with matter
Yang, Jian; Banerjee, Kinjal; Ma, Yongge
2013-01-01
We study the coupling of the gravitational action, which is a linear combination of the Hilbert–Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero–Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert–Palatini term and the quadratic torsion term in this gauge theory of gravity. (paper)
Astrophysical tests for the Novello-De Lorenci-Luciane theory of gravity
Mosquera Cuesta, H.J.
2001-01-01
The Novello-DeLorenci-Luciane (NDL) field theory of gravitation predicts that gravitational waves (GWs) follow geodesics of a modified (effective) geometry with a speed lower than the velocity of light. The theory also demonstrates that GWs exhibit the phenomenon of birefringence, formerly believed to be exclusive of electromagnetic waves. Here prospective astrophysical tests of these predictions are proposed. I point out that future measurements of gravitational waves in coincidence with a non-gravitational process such as a neutrino burst (and likely a burst of gamma-rays) may prove useful to discriminate among all the existing theories of gravity. It is also stressed that microlensing of gravitational waves emitted by known galactic sources (i.e., pulsars) in the bulge, lensed by either the Galaxy's central black hole (Sgr A*) or a MACHO object adrift among the Milky Way's stars, may provide a clean test of the birefringence phenomenon implied by the NDL gravity theory. (author)
Wormholes and time-machines in nonminimally coupled matter-curvature theories of gravity
Bertolami, O.; Ferreira, R. Z.
2013-01-01
In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies...
Wormholes and Time-Machines in Nonminimally Coupled Matter-Curvature Theories of Gravity
Bertolami Orfeu
2013-09-01
Full Text Available In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies the dominant energy condition.
Gauge-invariant metric fluctuations from NKK theory of gravity: de Sitter expansion
Aguilar, Jose Edgar Madriz; Anabitarte, Mariano; Bellini, Mauricio
2006-01-01
In this Letter we study gauge-invariant metric fluctuations from a noncompact Kaluza-Klein (NKK) theory of gravity in de Sitter expansion. We recover the well-known result δρ/ρ∼2Φ, obtained from the standard 4D semiclassical approach to inflation. The spectrum for these fluctuations should be dependent of the fifth (spatial-like) coordinate
Gravitational radiation in relativistic theory of gravity with a nonzero graviton mass
Vlasov, A.A.; Chugreev, Yu.V.
1987-01-01
Radiation of gravitation waves have been analysed in the linear approximation of the relative theory of gravity, with the mass of graviton being nonzero. It is shown that the main contribution to the energy loss due to gravitational radiation has been described by the well-known quadrupole formula. Linear approximation applicability conditions have been analysed
Space, time, and gravity. The theory of the big bang and black holes
Wald, R.M.
1977-01-01
In Einstein's theory of gravity, gravitation is described in terms of the curved geometry of space--time. The implications of these ideas for the universe: its origin, evolution, and large-scale structure are considered. Also discussed are gravitational collapse and black holes. (JFP)
Baryogenesis in superstring-motivated models
Lazarides, G.; Panagiotakopoulos, C.; Shafi, Q.
1988-01-01
Baryogenesis scenarios for a variety of superstring-motivated gauge models are discussed in detail. We restrict our attention to models that possess at least one intermediate scale between the Planck and the electroweak scales. (orig.)
Quantum gravity in more than four dimensions
Vaz, C.
1987-01-01
Ever since its inception, Einstein's general relativity has been considered a most remarkable theory. It is generally believed today, that the classical theory is well understood. Nevertheless, in the pursuit of a deeper understanding of physics in terms of a grand unification of forces, one would like to quantize the theory, thus bringing it under the known forces of nature. The author will address the possibility that space-time is of dimension greater that four. In the pursuit of Einstein's dream of a unification of physical interactions, many interesting ideas have been developed. Beginning with Weyl and Kaluza, we have progressed to strings and superstrings. The thing that is common to all these theories is the requirement of a space-time of more than four dimensions. While Kaluza's theory implicitly assumes that Einstein's gravity is classically correct in any number of dimensions, superstring phenomenology may suggest otherwise. Generalizations to Einstein's gravity are indicated, and the gravitational Casimir energy is explicitly approximate on a background configuration M 4 x S 6 , on a ten dimensional space-time. Weyl invariance is particularly interesting to the quantum gravitationalist. One finds that energy momentum tensor of the Weyl invariant quantum field picks up an anomalous trace, which is related to particle production by the curved background. He therefore computes the conformal anomaly for a conformally coupled scalar field and considers some of its consequences. He then suggest that the conformal anomaly, when combined with the perfect fluid hypothesis, can be used to determine the complete energy momentum tensor of the quantum field in certain backgrounds
N=1 superstrings with spontaneously broken symmetries
Ferrara, S.
1988-01-01
We construct N=1 chiral superstrings with spontaneously broken gauge symmetry in four space-time dimensions. These new string solutions are obtained by a generalized coordinate-dependent Z 2 orbifold compactification of some non-chiral five-dimensional N=1 and N=2 superstrings. The scale of symmetry breaking is arbitrary (at least classically) and it can be chosen hierarchically smaller than the string scale (α') -1/2 . (orig.)
Using scalars to probe theories of low scale quantum gravity
Rizzo, T.G.
1999-01-01
Arkani-Hamed, Dimopoulos and Dvali have recently suggested that gravity may become strong at energies near 1 TeV which would remove the hierarchy problem. Such a scenario can be tested at present and future colliders since the exchange of towers of Kaluza-Klein gravitons leads to a set of new dimension-8 operators that can play important phenomenological roles. In this paper we examine how the production of pairs of scalars at e + e - , γγ and hadron colliders can be used to further probe the effects of graviton tower exchange. In particular we examine the tree-level production of pairs of identical Higgs fields which occurs only at the loop level in both the standard model and its extension to the minimal supersymmetric standard model. Cross sections for such processes are found to be potentially large at the CERN LHC and the next generation of linear colliders. For the γγ case the role of polarization in improving sensitivity to graviton exchange is emphasized. copyright 1999 The American Physical Society
Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays
Cornish, Neil J.; O'Beirne, Logan; Taylor, Stephen R.; Yunes, Nicolás
2018-05-01
The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, AVL<4 ×10-16 and ASL<4 ×10-17, while the bounds on the energy density for a scale invariant cosmological background are ΩVLh2<4 ×10-11 and ΩSLh2<3 ×10-13.
Inflation in a superstring model
Maeda, K.; Pollock, M.D.; Vayonakis, C.E.
1986-01-01
A new type of inflation is presented in the heterotic E 8 xE 8 superstring model. The inflaton is identified with the ''Polonyi'' field tau, which is related to the radius of the internal space. Radiative corrections to the gluino-condensation potential are supposed to give rise to a suitable potential which is adjusted to vanish at the minimum by addition of a constant ΔV, whose magnitude is fixed by the requirement that density perturbations are of the right order. Reheating is due to the decay of the ''Polonyi'' field tau and/or to the production of light particles through its oscillations. The resultant constraints upon the parameters of the potential can be satisfied without excessive fine tuning. (author)
Cosmological Solutions of Tensor–Vector Theories of Gravity by ...
We consider tensor–vector theories by varying the space-time–matter coupling constant (varying Einstein velocity) in a spatially flat FRW universe.We examine the dynamics of this model by dynamical system method assuming a CDM background and we find some exact solutions by considering the character of critical ...
Remarks on high energy stability and renormalizability of gravity theory
Salam, A.; Strathdee, J.
1978-02-01
Arguing that high-energy (Froissart) boundedness of gravitational cross-sections may make it necessary to supplement Einstein's Lagrangian with terms containing R 2 and Rsup(μν)Rsub(μν), criteria are suggested which, if satisfied, could make the tensor ghost in such a theory innocuous
Charges and Energy in Chern-Simons Theories and Lovelock Gravity
Allemandi, G.; Francaviglia, M.; Raiteri, M.
2003-01-01
Starting from the SO(2,2n) Chern-Simons form in (2n+1) dimensions we calculate the variation of conserved quantities in Lovelock gravity and Lovelock-Maxwell gravity through the covariant formalism developed in gr-qc/0305047. Despite the technical complexity of the Lovelock Lagrangian we obtain a remarkably simple expression for the variation of the charges ensuing from the diffeomorphism covariance of the theory. The viability of the result is tested in specific applications and the formal e...
The curious history of relativity how Einstein's theory of gravity was lost and found again
Eisenstaedt, Jean
2006-01-01
Black holes may obliterate most things that come near them, but they saved the theory of general relativity. Einstein's theory was quickly accepted as the true theory of gravity after its publication in 1915, but soon took a back seat in physics to quantum mechanics and languished for decades on the blackboards of mathematicians. Not until the existence of black holes by Stephen Hawking and Roger Penrose in the 1960s, after Einstein's death, was the theory revived. Almost one hundred years after general relativity replaced Newton's theory of gravitation, The Curious History of Relativity tells the story of both events surrounding general relativity and the techniques employed by Einstein and the relativists to construct, develop, and understand his almost impenetrable theory. Jean Eisenstaedt, one of the world's leading experts on the subject, also discusses the theory's place in the evolution of twentieth-century physics. He describes the main stages in the development of general relativity: its beginnings,...
Chakraborty, Sumanta
2015-01-01
The hydrodynamic behavior of perfect fluid orbiting around black holes in spherically symmetric spacetime for various alternative gravity theories has been investigated. For this purpose we have assumed a uniform distribution for the angular momentum density of the rotating perfect fluid. The contours of equipotential surfaces are illustrated in order to obtain the nature of inflow and outflow of matter. It has been noticed that the marginally stable circular orbits originating from decreasing angular momentum density lead to closed equipotential surfaces along with cusps, allowing the existence of accretion disks. On the other hand, the growing part of the angular momentum density exhibits central rings for which stable configurations are possible. However, inflow of matter is prohibited. Among the solutions discussed in this work, the charged F(R) gravity and Einstein–Maxwell–Gauss–Bonnet solutions exhibit inflow and outflow of matter with central rings present. These varied accretion disk structures of perfect fluid attribute astrophysical importance to these spacetimes. The effect of higher curvature terms predominantly arises from the region near the black hole horizon. Hence the structural difference of the accretion disk in modified gravity theories in comparison to general relativity may act as an experimental probe for these alternative gravity theories. (paper)
Black holes in the gravity/gauge theory correspondence
Gregory, J.P.
2002-06-01
The AdS/CFT correspondence provides a microscopic description of black hole thermodynamics. In this thesis, I study the relation between the classical physics of black holes and this microscopic description. I first consider the gauge theory's holographic encoding of non-trivial global causal structure, by studying various probes of the black hole. I study the charged black hole, so that the thermal scale is separated from the horizon scale, to demonstrate which relates to the field theory scale size. I find that, when probing the horizon, both Wilson loops and the duals of static supergravity probes have a scale size determined by the horizon, but the field theory scale size is divergent for a time-dependent probe. I also use the bulk black hole geometry to study the physics of the boundary theory. If we consider a dynamical boundary, a braneworld cosmology is induced from the bulk. However, the presence of matter on the brane introduces unconventional quadratic terms in the FRW equations of this braneworld. I find that bulk black holes induce identical unconventional terms on a matterless brane, therefore providing an alternative description of the same cosmology. A new conjecture relating classical and thermodynamic stability of black branes has emerged from the AdS/CFT correspondence. I make progress in proving this for the case of Schwarzschild black holes in a finite cavity. I also extend the conjecture to the supergravity backgrounds of the direct product form Schwarzschild-AdS x Sphere, which are relevant to my study of the AdS/CFT correspondence. (author)
Analysis of Weyl-affine theories of gravity in terms of the gravitational frequency shift effect
Coley, A.A.; Sarmiento, G.A.
1986-01-01
A subclass of nonmetric theories of gravity, called Weyl-affine theories of gravity (WATGs), is analyzed by calculating their predictions for the gravitational frequency shift undergone by a wave signal in a planned solar probe. The analysis is carried out using a formalism in a spherically symmetric and static gravitational field. One of the advantages of the formalism is that any possible ''nonmetricity'' is contained in an arbitrary function, λ, of the Newtonian gravitational potential, U. The numerical results are calculated for a situation modeling a future experiment in the solar system. In the calculations, the metric components and the function, λ, are expanded up to third order in U. Within the limits of the gravitational redshift experiments performed to date, it is found that WATGs must coincide with their metric counterparts (i.e., λ is unity). It is hoped that the planned solar probe will test the nature of the theories under investigation to a higher degree of accuracy
Complexity growth in massive gravity theories, the effects of chirality, and more
Ghodrati, Mahdis
2017-11-01
To study the effect of parity violation on the rate of complexity growth, by using "complexity=action " conjecture, we find the complexity growth rates in different solutions of the chiral theory of topologically massive gravity (TMG) and parity-preserving theory of new massive gravity (NMG). Using the results, one can see that decreasing the parameter μ , which increases the effect of the Chern-Simons term and increases chirality, would increase the rate of growth of complexity. Also one can observe a stronger correlation between complexity growth and temperature rather than complexity growth and entropy. At the end we comment on the possible meaning of the deforming term of chiral Liouville action for the rate of complexity growth of warped conformal field theories in the tensor network renormalization picture.
On the covariant formalism of the effective field theory of gravity and leading order corrections
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well...... as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology...... on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime....
On the covariant formalism of the effective field theory of gravity and leading order corrections
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime. (paper)
Cosmological large-scale structures beyond linear theory in modified gravity
Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)
2011-06-01
We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.
An elementary introduction to the Gauge theory approach to gravity. 23
Mukunda, N.
1989-01-01
Can all the forces be unified by a gauge group? Can we get a clue by studying gravity itself which is also a gauge theory by gauging the Poincare group?. The main problems have been in the understanding of the role of invariants of the Lie algebra of the group if one has general covariance. One is led to theories more general than general relativity in that, in addition to curvature, one also has torsion. These and other aspects of gravitation as a gauge theory are treated. (author). 11 refs.; 1 fig
Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View
Bouchette, F.; Mohammadi, B.
2016-12-01
It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given
A three-generation superstring model. Pt. 1
Greene, B.R.; Kirklin, K.H.; Miron, P.J.; Ross, G.G.
1986-01-01
We present the preliminary analysis of a three-generation heterotic superstring-inspired model. A detailed mathematical description of the manifold of compactification is given, along with a determination of its Hodge numbers and of the associated light supermultiplet structure. For a particular choice of vacuum moduli we derive this manifold's symmetry and groups, and determine their action on the massless fields in the theory. These transformation properties shall be shown, in a companion paper, to give rise to a model with interesting phenomenological properties. (orig.)
The Rh = ct universe in alternative theories of gravity
Sultana, Joseph; Kazanas, Demosthenes
2017-12-01
The Λ cold dark matter (ΛCDM) model (one comprising of a cosmological constant Λ and cold dark matter) is generally considered the standard model in cosmology. One of the alternatives that has received attention in the last few years is the Rh = ct universe, which provides an age for the Universe similar to that of ΛCDM and whose (vanishing) deceleration parameter is apparently not inconsistent with observations. Like the ΛCDM, the Rh = ct universe is based on a Friedmann-Robertson-Walker cosmology with the total energy density ρ and pressure p of the cosmic fluid satisfying the simple equation of state ρ + 3p = 0, i.e. a vanishing total active gravitational mass. In an earlier paper, we examined the possible sources for the Rh = ct universe within general relativity, and we have shown that it still contains a dark energy component, albeit not in the form of a cosmological constant. The growing interest in gravitational theories, alternative to Einstein's general relativity, in cosmology, is mainly driven by the need for cosmological models that attain a late-time accelerated expansion without the presence of a cosmological constant as in the ΛCDM, and thereby avoiding the problems associated with it. In this paper, we discuss some of these common alternative theories and show that the Rh = ct is also a solution to some of them.
Torsion in a gravity theory with SO(k) x SO(d-k) as tangent group
Viswanathan, K.S.; Wong, B.; Simon Fraser Univ., Burnaby, British Columbia
1985-01-01
We consider a d-dimensional theory of gravity where the tangent group is SO(k) x SO(d-k) rather than SO(d) as in riemannian theories. This theory has nonvanishing torsion (which is required if the theory is to yield gauge fields). The torsion is determined consistently in terms of vielbein derivatives. (orig.)
Relations between the SU(2|4) symmetric theories and the gauge gravity correspondence
Tsuchiya, Asato
2008-01-01
We study theories with SU(2|4) symmetry, which include N=4 SYM on R x S 3 /Z k , 2+1 SYM on R x S 2 and the plane wave matrix model. All these theories possess many vacua. From Lin-Maldacena's method which gives the gravity dual of each vacuum, it is suggested that the theory around each vacuum of N=4 SYM on R x S 3 /Z k and 2+1 SYM on R x S 2 is equivalent to the theory around a certain vacuum of the plane wave matrix model. We show this directly on the gauge theory side. We realize theories around multi-monopole backgrounds in matrix model, and extend Taylor's matrix T-duality to that on spheres. (author)
Wigner's little group as a gauge generator in linearized gravity theories
Scaria, Tomy; Chakraborty, Biswajit
2002-01-01
We show that the translational subgroup of Wigner's little group for massless particles in 3 + 1 dimensions generates gauge transformation in linearized Einstein gravity. Similarly, a suitable representation of the one-dimensional translational group T(1) is shown to generate gauge transformation in the linearized Einstein-Chern-Simons theory in 2 + 1 dimensions. These representations are derived systematically from appropriate representations of translational groups which generate gauge transformations in gauge theories living in spacetime of one higher dimension by the technique of dimensional descent. The unified picture thus obtained is compared with a similar picture available for vector gauge theories in 3 + 1 and 2 + 1 dimensions. Finally, the polarization tensor of the Einstein-Pauli-Fierz theory in 2 + 1 dimensions is shown to split into the polarization tensors of a pair of Einstein-Chern-Simons theories with opposite helicities suggesting a doublet structure for the Einstein-Pauli-Fierz theory
Risk analysis of gravity dam instability using credibility theory Monte Carlo simulation model.
Xin, Cao; Chongshi, Gu
2016-01-01
Risk analysis of gravity dam stability involves complicated uncertainty in many design parameters and measured data. Stability failure risk ratio described jointly by probability and possibility has deficiency in characterization of influence of fuzzy factors and representation of the likelihood of risk occurrence in practical engineering. In this article, credibility theory is applied into stability failure risk analysis of gravity dam. Stability of gravity dam is viewed as a hybrid event considering both fuzziness and randomness of failure criterion, design parameters and measured data. Credibility distribution function is conducted as a novel way to represent uncertainty of influence factors of gravity dam stability. And combining with Monte Carlo simulation, corresponding calculation method and procedure are proposed. Based on a dam section, a detailed application of the modeling approach on risk calculation of both dam foundation and double sliding surfaces is provided. The results show that, the present method is feasible to be applied on analysis of stability failure risk for gravity dams. The risk assessment obtained can reflect influence of both sorts of uncertainty, and is suitable as an index value.
Description of a class of superstring compactifications related to semi-simple Lie algebras
Markushevich, D.I.; Ol'shanetskij, M.A.; Perelomov, A.M.
1986-01-01
A class of vacuum configurations in the superstring theory obtained by compactification of physical dimensions from ten to four is constructed. The compactification scheme involves taking quotients of tori of semisimple Lie algebras by finite symmetry group actions. The complete list of such configurations arising from actions by a Coxeter transformation is given. Some topological invariants having physical interpretations are calculated
On the field-antifield (a)symmetry of the pure spinor superstring
Lipinski Jusinskas, Renann
2015-01-01
Roč. 2015, č. 12 (2015), s. 136 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : superstrings and heterotic strings * superspaces Subject RIV: BD - Theory of Information Impact factor: 6.023, year: 2015
A new approach to strings and superstrings
Sparano, G.
1988-01-01
The subject of this thesis is a new, more general, action principle for strings, superstrings, and extended objects in any number of dimensions. The origin and motivations for this approach can be found in the context of the study of the symmetries of string theories and, more specifically, are related to the application of K.S.K. (Kirillov, Souriau, Kostant) construction to strings. The main results we find are: (A) A classification of string theories analogous to the classification of relativistic point particles as massive, massless and tachionic with or without spin. Nambu-Goto string and Schild null string emerge as special cases of a more general classification of strings. (B) A new method to introduce spin in strings by using a Wess-Zumino term in the action. (C) Several results are obtained through the study of the configuration space which shows a rich topological structure: for the Nambu-Goto string in any number of dimensions it is found the existence of theta states analogous to the theta-vacua of nonabelian gauge theories. For the closed Schild Null string, in four dimensions, this analysis shows Z2 solitons and the possibility of quantizing the system so that the states are spinorial (have half odd integral spin) even though the Lagrangian consists only of bosonic variables. (D) Unlike Nambu-Goto string, the quantization of Schild Null string is consistent in any number of space-time dimensions. Besides these concrete results, the formalism we introduce will hopefully give also new insights in the problem of the hidden symmetries of the string
Chakravarty, G. K.; Mohanty, S.; Lambiase, G.
Cosmological and astrophysical observations lead to the emerging picture of a universe that is spatially flat and presently undertaking an accelerated expansion. The observations supporting this picture come from a range of measurements encompassing estimates of galaxy cluster masses, the Hubble diagram derived from type-Ia supernovae observations, the measurements of Cosmic Microwave Background radiation anisotropies, etc. The present accelerated expansion of the universe can be explained by admitting the existence of a cosmic fluid, with negative pressure. In the simplest scenario, this unknown component of the universe, the Dark Energy, is represented by the cosmological constant (Λ), and accounts for about 70% of the global energy budget of the universe. The remaining 30% consist of a small fraction of baryons (4%) with the rest being Cold Dark Matter (CDM). The Lambda Cold Dark Matter (ΛCDM) model, i.e. General Relativity with cosmological constant, is in good agreement with observations. It can be assumed as the first step towards a new standard cosmological model. However, despite the satisfying agreement with observations, the ΛCDM model presents lack of congruence and shortcomings and therefore theories beyond Einstein’s General Relativity are called for. Many extensions of Einstein’s theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature R, coupling the Ricci curvature with scalar fields and generalized functions of R. In addition, when viewed from the perspective of Supergravity (SUGRA), many of these theories may originate from the same SUGRA theory, but interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these
The Brans-Dicke gravity as a theory of dark matter
Kim, Hongsu
2010-01-01
The pure Brans-Dicke (BD) gravity with or without the cosmological constant Λ has been taken as a model theory for dark matter. Indeed, there has been a consensus that unless one modifies either the standard theory of gravity, namely, general relativity, or the standard model for particle physics, or both, one can never achieve a satisfying understanding of the phenomena associated with dark matter and dark energy. Along this line, our dark matter model in this work can be thought of as an attempt to modify the gravity side alone in the simplest fashion to achieve the goal. Among others, it is demonstrated that our model theory can successfully predict the emergence of a dark matter halo-like configuration in terms of a self-gravitating spacetime solution to the BD field equations and reproduce the flattened rotation curve in this dark halo-like object in terms of the non-trivial energy density of the BD scalar field, which was absent in the context of general relativity, where Newton's constant is strictly a 'constant' having no dynamics. Our model theory, however, is not entirely without flaw, such as the prediction of relativistic jets in all types of galaxies, which actually is not the case.
The current ability to test theories of gravity with black hole shadows
Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano
2018-04-01
Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.
Dyons, Superstrings, and Wormholes: Exact Solutions of the Non-Abelian Dirac-Born-Infeld Action
Edward A. Olszewski
2015-01-01
Full Text Available We construct dyon solutions on coincident D4-branes, obtained by applying T-duality transformations to type I SO(32 superstring theory in 10 dimensions. These solutions, which are exact, are obtained from an action comprising the non-Abelian Dirac-Born-Infeld action and a Wess-Zumino-like action. When one spatial dimension of the D4-branes is taken to be vanishingly small, the dyons are analogous to the ’t Hooft/Polyakov monopole residing in a 3+1-dimensional spacetime, where the component of the Yang-Mills potential transforming as a Lorentz scalar is reinterpreted as a Higgs boson transforming in the adjoint representation of the gauge group. Applying a T-duality transformation to the vanishingly small spatial dimension, we obtain a collection of D3-branes, not all of which are coincident. Two of the D3-branes, distinct from the others, acquire intrinsic, finite curvature and are connected by a wormhole. The dyons possess electric and magnetic charges whose values on each D3-brane are the negative of one another. The gravitational effects, which arise after the T-duality transformation, occur despite the fact that the action of the system does not explicitly include the gravitational interaction. These solutions provide a simple example of the subtle relationship between the Yang-Mills and gravitational interactions, that is, gauge/gravity duality.
Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity
Eichhorn, Astrid
2011-09-06
In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension
Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity
Eichhorn, Astrid
2011-01-01
In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F μν F μν from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the β function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension which we find to be negative at the
Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo
2012-01-01
String theory is currently the best candidate for a unified theory of all forces and all forms of matter in nature. As such, it has become a focal point for physical and philosophical discussions. This unique book explores the history of the theory's early stages of development, as told by its main protagonists. The book journeys from the first version of the theory (the so-called dual resonance model) in the late sixties, as an attempt to describe the physics of strong interactions outside the framework of quantum field theory, to its reinterpretation around the mid-seventies as a quantum theory of gravity unified with the other forces, and its successive developments up to the superstring revolution in 1984. Providing important background information to current debates on the theory, this book is essential reading for students and researchers in physics, as well as historians and philosophers of science.
di Vecchia, Paolo; Cappelli, Andrea; Colomo, Filippo
tring theory is currently the best candidate for a unified theory of all forces and all forms of matter in nature. As such, it has become a focal point for physical and philosophical discussions. This unique book explores the history of the theory's early stages of development, as told by its main...... protagonists. The book journeys from the first version of the theory (the so-called dual resonance model) in the late sixties, as an attempt to describe the physics of strong interactions outside the framework of quantum field theory, to its reinterpretation around the mid-seventies as a quantum theory...... of gravity unified with the other forces, and its successive developments up to the superstring revolution in 1984. Providing important background information to current debates on the theory, this book is essential reading for students and researchers in physics, as well as historians and philosophers...
Cosmological singularity theorems for f ( R ) gravity theories
Alani, Ivo [Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina); Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com, E-mail: osantil@dm.uba.ar [Instituto de Matemáticas Luis Santaló (IMAS), Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina)
2016-05-01
In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T {sub ij} −( g {sub ij} /2) T ) k {sup i} k {sup j} ≥ 0 for any generic unit time like field k {sup i} ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.
Cosmological singularity theorems for f ( R ) gravity theories
Alani, Ivo; Santillán, Osvaldo P.
2016-01-01
In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T ij −( g ij /2) T ) k i k j ≥ 0 for any generic unit time like field k i ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.
Kaluza–Klein-type models of de Sitter and Poincaré gauge theories of gravity
Lu Jiaan; Huang Chaoguang
2013-01-01
We construct Kaluza–Klein-type models with a de Sitter or Minkowski bundle in the de Sitter or Poincaré gauge theory of gravity, respectively. A manifestly gauge-invariant formalism has been given. The gravitational dynamics is constructed by the geometry of the de Sitter or Minkowski bundle and a global section which plays an important role in the gauge-invariant formalism. Unlike the old Kaluza–Klein-type models of gauge theory of gravity, a suitable cosmological term can be obtained in the Lagrangian of our models and the models in the spin-current-free and torsion-free limit will come back to general relativity with a corresponding cosmological term. We also generalize the results to the case with a variable cosmological term. (paper)
The quantum cosmological wavefunction at very early times for a quadratic gravity theory
Davis, Simon
2003-01-01
The quantum cosmological wavefunction for a quadratic gravity theory derived from the heterotic string effective action is obtained near the inflationary epoch and during the initial Planck era. Neglecting derivatives with respect to the scalar field, the wavefunction would satisfy a third-order differential equation near the inflationary epoch which has a solution that is singular in the scale factor limit a(t) → 0. When scalar field derivatives are included, a sixth-order differential equation is obtained for the wavefunction and the solution by Mellin transform is regular in the a → 0 limit. It follows that inclusion of the scalar field in the quadratic gravity action is necessary for consistency of the quantum cosmology of the theory at very early times
Determination of angle of light deflection in higher-derivative gravity theories
Xu, Chenmei; Yang, Yisong
2018-03-01
Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.
Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology
Barvinsky, A O
2015-01-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of $\\varLambda$ -- a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scala...
Unusual square roots in the ghost-free theory of massive gravity
Golovnev, Alexey; Smirnov, Fedor
2017-06-01
A crucial building block of the ghost free massive gravity is the square root function of a matrix. This is a problematic entity from the viewpoint of existence and uniqueness properties. We accurately describe the freedom of choosing a square root of a (non-degenerate) matrix. It has discrete and (in special cases) continuous parts. When continuous freedom is present, the usual perturbation theory in terms of matrices can be critically ill defined for some choices of the square root. We consider the new formulation of massive and bimetric gravity which deals directly with eigenvalues (in disguise of elementary symmetric polynomials) instead of matrices. It allows for a meaningful discussion of perturbation theory in such cases, even though certain non-analytic features arise.
Effective equivalence of the Einstein-Cartan and Einstein theories of gravity
Nester, J.M.
1977-01-01
I prove that, for any choice of minimally coupled source field Lagrangian for the Einstein-Cartan-Sciama-Kibble theory of gravity, there exists a related minimally coupled source field Lagrangian for the Einstein theory which produces the same field equations for the metric and source field. By using a standard first-order form for source Lagrangians, the converse is also demonstrated. This establishes a one-to-one correspondence between source Lagrangians for the two theories which clearly reveals their similarities and their differences. Because of this ''equivalence,'' one can view either theory, in terms of the other, as minimal coupling for a related Minkowski source Lagrangian or as nonminimal coupling for the same Minkowski source Lagrangian. Consequently the two theories are, in this sense, indistinguishable. Some other implications of this ''equivalence'' are discussed
Cosmic censorship and Weak Gravity Conjecture in the Einstein-Maxwell-dilaton theory
Yu, Ten-Yeh; Wen, Wen-Yu
2018-06-01
We explore the cosmic censorship in the Einstein-Maxwell-dilaton theory following Wald's thought experiment to destroy a black hole by throwing in a test particle. We discover that at probe limit the extremal charged dilaton black hole could be destroyed by a test particle with specific energy. Nevertheless the censorship is well protected if backreaction or self-force is included. At the end, we discuss an interesting connection between Hoop Conjecture and Weak Gravity Conjecture.
Codello, Alessandro; Jain, Rajeev Kumar
2017-01-01
Following our previous work wherein the leading order effective action was computed in the covariant effective field theory of gravity, here we specialize the effective action to the FRW spacetime and obtain the effective Friedmann equations. In particular, we focus our attention on studying...... expansion of the universe at the present epoch even in the absence of a cosmological constant. We briefly discuss some phenomenological consequences of our results....
A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
The effective action in (2+1)-dimensional gravity and generalized BF topological field theory
Birmingham, D. (Theory Div., CERN, Geneva (Switzerland)); Gibbs, R.; Mokhtari, S. (Physics Dept., Louisiana Tech Univ., Ruston, LA (United States))
1991-07-11
The one-loop off-shell effective action is studied for the case of generalized BF theories in three dimensions, including, for example, (2 + 1)-dimensional gravity with a cosmological constant. The phase contribution to the effective action, originating from the {eta}-function of a particular first order operator, is calculated using a momentum space technique. It is found that the {eta}-function is proportional to the classical action. (orig.).
The effective action in (2+1)-dimensional gravity and generalized BF topological field theory
Birmingham, D.; Gibbs, R.; Mokhtari, S.
1991-01-01
The one-loop off-shell effective action is studied for the case of generalized BF theories in three dimensions, including, for example, (2 + 1)-dimensional gravity with a cosmological constant. The phase contribution to the effective action, originating from the η-function of a particular first order operator, is calculated using a momentum space technique. It is found that the η-function is proportional to the classical action. (orig.)
Gravity Dual for Reggeon Field Theory and Non-linear Quantum Finance
Yu Nakayama
2009-01-01
We study scale invariant but not necessarily conformal invariant deformations of non-relativistic conformal field theories from the dual gravity viewpoint. We present the corresponding metric that solves the Einstein equation coupled with a massive vector field. We find that, within the class of metric we study, when we assume the Galilean invariance, the scale invariant deformation always preserves the non-relativistic conformal invariance. We discuss applications to scaling regime of Reggeo...
The parameterized post-Newtonian limit of bimetric theories of gravity
Clifton, Timothy; Banados, Maximo; Skordis, Constantinos
2010-01-01
We consider the post-Newtonian limit of a general class of bimetric theories of gravity, in which both metrics are dynamical. The established parameterized post-Newtonian approach is followed as closely as possible, although new potentials are found that do not exist within the standard framework. It is found that these theories can evade solar system tests of post-Newtonian gravity remarkably well. We show that perturbations about Minkowski space in these theories contain both massless and massive degrees of freedom, and that in general there are two different types of massive mode, each with a different mass parameter. If both of these masses are sufficiently large then the predictions of the most general class of theories we consider are indistinguishable from those of general relativity, up to post-Newtonian order in a weak-field, low-velocity expansion. In the limit that the massive modes become massless, we find that these general theories do not exhibit a van Dam-Veltman-Zakharov-like discontinuity in their γ parameter, although there are discontinuities in other post-Newtonian parameters as the massless limit is approached. This smooth behaviour in γ is due to the discontinuities from each of the two different massive modes cancelling each other out. Such cancellations cannot occur in special cases with only one massive mode, such as the Isham-Salam-Strathdee theory.
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
Quantum spectral curve for the η-deformed AdS5 × S5 superstring
Klabbers, Rob; van Tongeren, Stijn J.
2017-12-01
The spectral problem for the AdS5 ×S5 superstring and its dual planar maximally supersymmetric Yang-Mills theory can be efficiently solved through a set of functional equations known as the quantum spectral curve. We discuss how the same concepts apply to the η-deformed AdS5 ×S5 superstring, an integrable deformation of the AdS5 ×S5 superstring with quantum group symmetry. This model can be viewed as a trigonometric version of the AdS5 ×S5 superstring, like the relation between the XXZ and XXX spin chains, or the sausage and the S2 sigma models for instance. We derive the quantum spectral curve for the η-deformed string by reformulating the corresponding ground-state thermodynamic Bethe ansatz equations as an analytic Y system, and map this to an analytic T system which upon suitable gauge fixing leads to a Pμ system - the quantum spectral curve. We then discuss constraints on the asymptotics of this system to single out particular excited states. At the spectral level the η-deformed string and its quantum spectral curve interpolate between the AdS5 ×S5 superstring and a superstring on "mirror" AdS5 ×S5, reflecting a more general relationship between the spectral and thermodynamic data of the η-deformed string. In particular, the spectral problem of the mirror AdS5 ×S5 string, and the thermodynamics of the undeformed AdS5 ×S5 string, are described by a second rational limit of our trigonometric quantum spectral curve, distinct from the regular undeformed limit.
Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models
Nojiri, Shin'Ichi; Odintsov, Sergei D.
2011-08-01
The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.
Mixmaster cosmological model in theories of gravity with a quadratic Lagrangian
Barrow, J.D.; Sirousse-Zia, H.
1989-01-01
We use the method of matched asymptotic expansions to examine the behavior of the vacuum Bianchi type-IX mixmaster universe in a gravity theory derived from a purely quadratic gravitational Lagrangian. The chaotic behavior characteristic of the general-relativistic mixmaster model disappears and the asymptotic behavior is of the monotonic, nonchaotic form found in the exactly soluble Bianchi type-I models of the quadratic theory. The asymptotic behavior far from the singularity is also found to be of monotonic nonchaotic type
A new quantum representation for canonical gravity and SU(2) Yang-Mills theory
Loll, R.
1990-04-01
Starting from Rovelli-Smolin's infinite-dimensional graded Poisson-bracket algebra of loop variables, we propose a new way of constructing a corresponding quantum representation. After eliminating certain quadratic constraints, we 'integrate' an infinite-dimensional subalgebra of loop variables, using a formal group law expansion. With the help of techniques from the representation theory of semidirect-product groups, we find an exact quantum representation of the full classical Poisson-bracket algebra of loop variables, without any higher-order correction terms. This opens new ways of tackling the quantum dynamics for both canonical gravity and Yang-Mills theory. (orig.)
A new quantum representation for canonical gravity and SU(2) Yang-Mills theory
Loll, R.
1991-01-01
Starting from Rovelli-Smolin's infinite-dimensional graded Poisson-bracket algebra of loop variables, we propose a new way of constructing a corresponding quantum representation. After eliminating certain quadratic constraints, we 'integrate' an infinite-dimensional subalgebra of loop variables, using a formal group law expansion. With the help of techniques from the representation theory of semidirect-product groups, we find an exact quantum representation of the full classical Poisson-bracket algebra of loop variables, without any higher-order correction terms. This opens new ways of tackling the quantum dynamics for both canonical gravity and Yang-Mills theory. (orig.)
Quantum analysis of Jackiw and Teitelboim's model for (1+1)D gravity and topological gauge theory
Terao, Haruhiko
1993-01-01
We study the BRST quantization of the (1+1)-dimensional gravity model proposed by Jackiw and Teitelboim and also the topological gauge model which is equivalent to the gravity model at least classically. The gravity model quantized in the light-cone gauge is found to be a free theory with a nilpotent BRST charge. We show also that there exist twisted N=2 superconformal algebras in the Jackiw-Teitelboim model as well as in the topological gauge model. We discuss the quantum equivalence between the gravity theory and the topological gauge theory. It is shown that these theories are indeed equivalent to each other in the light-cone gauge. (orig.)
NSR superstring measures in genus 5
Dunin-Barkowski, Petr; Sleptsov, Alexey; Stern, Abel
2013-01-01
Currently there are two proposed ansätze for NSR superstring measures: the Grushevsky ansatz and the OPSMY ansatz, which for genera g⩽4 are known to coincide. However, neither the Grushevsky nor the OPSMY ansatz leads to a vanishing two-point function in genus four, which can be constructed from the genus five expressions for the respective ansätze. This is inconsistent with the known properties of superstring amplitudes. In the present paper we show that the Grushevsky and OPSMY ansätze do not coincide in genus five. Then, by combining these ansätze, we propose a new ansatz for genus five, which now leads to a vanishing two-point function in genus four. We also show that one cannot construct an ansatz from the currently known forms in genus 6 that satisfies all known requirements for superstring measures
Effective gravitational wave stress-energy tensor in alternative theories of gravity
Stein, Leo C.; Yunes, Nicolas
2011-01-01
The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.
Medium generated gap in gravity and a 3D gauge theory
Gabadadze, Gregory; Older, Daniel
2018-05-01
It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.
M(atrix) theory: matrix quantum mechanics as a fundamental theory
Taylor, Washington
2001-01-01
This article reviews the matrix model of M theory. M theory is an 11-dimensional quantum theory of gravity that is believed to underlie all superstring theories. M theory is currently the most plausible candidate for a theory of fundamental physics which reconciles gravity and quantum field theory in a realistic fashion. Evidence for M theory is still only circumstantial -- no complete background-independent formulation of the theory exists as yet. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, it has appeared in a different guise as the discrete light-cone quantization of M theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory that reduces to a supersymmetric theory of gravity at low energies. Although its fundamental degrees of freedom are essentially pointlike, higher-dimensional fluctuating objects (branes) arise through the non-Abelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed
A flat Chern-Simons gauge theory for (2+1)-dimensional gravity coupled to point particles
Grignani, G.; Nardelli, G.
1991-01-01
We present a classical ISO (2,1) Chern-Simons gauge theory for planar gravity coupled to point-like sources. The theory is defined in terms of flat coordinates whose relation with the space-time coordinates is established. Though flat, the theory is equivalent to Einstein's as we show explicitly in two examples. (orig.)
Discrete gravity as a local theory of the Poincare group in the first-order formalism
Gionti, Gabriele [Vatican Observatory Research Group, Steward Observatory, 933 North Cherry Avenue, University of Arizona, Tucson, AZ 85721 (United States); Specola Vaticana, V-00120 Citta Del Vaticano (Vatican City State, Holy See,)
2005-10-21
A discrete theory of gravity, locally invariant under the Poincare group, is considered as in a companion paper. We define a first-order theory, in the sense of Palatini, on the metric-dual Voronoi complex of a simplicial complex. We follow the same spirit as the continuum theory of general relativity in the Cartan formalism. The field equations are carefully derived taking in account the constraints of the theory. They look very similar to first-order Einstein continuum equations in the Cartan formalism. It is shown that in the limit of small deficit angles these equations have Regge calculus, locally, as the only solution. A quantum measure is easily defined which does not suffer the ambiguities of Regge calculus, and a coupling with fermionic matter is easily introduced.
Discrete gravity as a local theory of the Poincare group in the first-order formalism
Gionti, Gabriele
2005-01-01
A discrete theory of gravity, locally invariant under the Poincare group, is considered as in a companion paper. We define a first-order theory, in the sense of Palatini, on the metric-dual Voronoi complex of a simplicial complex. We follow the same spirit as the continuum theory of general relativity in the Cartan formalism. The field equations are carefully derived taking in account the constraints of the theory. They look very similar to first-order Einstein continuum equations in the Cartan formalism. It is shown that in the limit of small deficit angles these equations have Regge calculus, locally, as the only solution. A quantum measure is easily defined which does not suffer the ambiguities of Regge calculus, and a coupling with fermionic matter is easily introduced
Topological amplitudes in heterotic superstring theory
Antoniadis, I.; Taylor, T.R.
1996-06-01
We show that certain heterotic string amplitudes are given in terms of correlators of the twisted topological (2,0) SCFT, corresponding to the internal sector of the N = 1 spacetime supersymmetric background. The genus g topological partition function F g corresponds to a term in the effective action of the form W 2g , where W is the gauge or gravitational superfield. We study also recursion relations related to holomorphic anomalies, showing that, contrary to the type II case, they involve correlators of anti-chiral superfields. The corresponding terms in the effective action are of the form W 2g II n , where II is a chiral superfield obtained by chiral projection of a general superfield. We observe that the structure of the recursion relations is that of N = 1 spacetime supersymmetry Ward identity. We give also a solution of the tree level recursion relations and discuss orbifold examples. (author). 23 refs, 2 figs
Tensionless superstrings: view from the worldsheet
Bagchi, Arjun [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Indian Institute of Technology Kanpur,Kanpur 208016 (India); Chakrabortty, Shankhadeep [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Parekh, Pulastya [Indian Institute of Technology Kanpur,Kanpur 208016 (India); Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan. Pune 411008, Iindia (India)
2016-10-21
In this brief note, we show that the residual symmetries that arise in the analysis of the tensionless superstrings in the equivalent of the conformal gauge is (a trivial extension of) the recently discovered 3d Super Bondi-Metzner-Sachs algebra, discussed in the context of asymptotic symmetries of 3d Supergravity in flat-spacetimes. This helps us uncover a limiting approach to the construction of the tensionless superstring from the point of view of the worldsheet, analogous to the one we had adopted earlier for the closed tensionless bosonic string.
Valkenburg, Wessel; Hu, Bin
2015-01-01
We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology
Nature of Microscopic Black Holes and Gravity in Theories with Particle Species
Dvali, Gia
2010-01-01
Relying solely on unitarity and the consistency with large-distance black hole physics, we derive model-independent properties of the microscopic black holes and of short-distance gravity in theories with N particle species. In this class of theories black holes can be as light as M_{Planck}/\\sqrt{N} and be produced in particle collisions above this energy. We show, that the micro black holes must come in the same variety as the species do, although their label is not associated with any conserved charge measurable at large distances. In contrast with big Schwarzschildian ones, the evaporation of the smallest black holes is maximally undemocratic and is biased in favor of particular species. With an increasing mass the democracy characteristic to the usual macro black holes is gradually regained. The lowest possible mass above which black holes become Einsteinian is \\sqrt{N} M_{Planck}. This fact uncovers the new fundamental scale (below the quantum gravity scale) above which gravity changes classically, and ...
Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure
Hardy, Lucien
2007-01-01
General relativity is a deterministic theory with non-fixed causal structure. Quantum theory is a probabilistic theory with fixed causal structure. In this paper, we build a framework for probabilistic theories with non-fixed causal structure. This combines the radical elements of general relativity and quantum theory. We adopt an operational methodology for the purposes of theory construction (though without committing to operationalism as a fundamental philosophy). The key idea in the construction is physical compression. A physical theory relates quantities. Thus, if we specify a sufficiently large set of quantities (this is the compressed set), we can calculate all the others. We apply three levels of physical compression. First, we apply it locally to quantities (actually probabilities) that might be measured in a particular region of spacetime. Then we consider composite regions. We find that there is a second level of physical compression for a composite region over and above the first level physical compression for the component regions. Each application of first and second level physical compression is quantified by a matrix. We find that these matrices themselves are related by the physical theory and can therefore be subject to compression. This is the third level of physical compression. The third level of physical compression gives rise to a new mathematical object which we call the causaloid. From the causaloid for a particular physical theory we can calculate everything the physical theory can calculate. This approach allows us to set up a framework for calculating probabilistic correlations in data without imposing a fixed causal structure (such as a background time). We show how to put quantum theory in this framework (thus providing a new formulation of this theory). We indicate how general relativity might be put into this framework and how the framework might be used to construct a theory of quantum gravity
Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory
Massimo Tessarotto
2018-03-01
Full Text Available A trajectory-based representation for the quantum theory of the gravitational field is formulated. This is achieved in terms of a covariant Generalized Lagrangian-Path (GLP approach which relies on a suitable statistical representation of Bohmian Lagrangian trajectories, referred to here as GLP-representation. The result is established in the framework of the manifestly-covariant quantum gravity theory (CQG-theory proposed recently and the related CQG-wave equation advancing in proper-time the quantum state associated with massive gravitons. Generally non-stationary analytical solutions for the CQG-wave equation with non-vanishing cosmological constant are determined in such a framework, which exhibit Gaussian-like probability densities that are non-dispersive in proper-time. As a remarkable outcome of the theory achieved by implementing these analytical solutions, the existence of an emergent gravity phenomenon is proven to hold. Accordingly, it is shown that a mean-field background space-time metric tensor can be expressed in terms of a suitable statistical average of stochastic fluctuations of the quantum gravitational field whose quantum-wave dynamics is described by GLP trajectories.
Biswas, Tirthabir; Koivisto, Tomi; Mazumdar, Anupam
2010-01-01
One of the greatest problems of standard cosmology is the Big Bang singularity. Previously it has been shown that non-local ghostfree higher-derivative modifications of Einstein gravity in the ultra-violet regime can admit non-singular bouncing solutions. In this paper we study in more details the dynamical properties of the equations of motion for these theories of gravity in presence of positive and negative cosmological constants and radiation. We find stable inflationary attractor solutions in the presence of a positive cosmological constant which renders inflation geodesically complete, while in the presence of a negative cosmological constant a cyclic universe emerges. We also provide an algorithm for tracking the super-Hubble perturbations during the bounce and show that the bouncing solutions are free from any perturbative instability
Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling
Huang, Qihong [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Zunyi Normal College, School of Physics and Electronic Science, Zunyi (China); Wu, Puxun [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Peking University, Center for High Energy Physics, Beijing (China); Yu, Hongwei [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)
2018-01-15
The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity. (orig.)
Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling
Huang, Qihong; Wu, Puxun; Yu, Hongwei
2018-01-01
The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.
Hořava-Lifshitz gravity and effective theory of the fractional quantum Hall effect
Wu, Chaolun [Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States); Wu, Shao-Feng [Department of Physics, Shanghai University,Shanghai 200444 (China); Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States)
2015-01-22
We show that Hořava-Lifshitz gravity theory can be employed as a covariant framework to build an effective field theory for the fractional quantum Hall effect that respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism is a set of correspondence relations that maps all the field degrees of freedom in the Hořava-Lifshitz gravity theory to external background (source) fields among others in the effective action of the quantum Hall effect, according to their symmetry transformation properties. We originally derive the map as a holographic dictionary, but its form is independent of the existence of holographic duality. This paves the way for the application of Hořava-Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic Chern-Simons model, we compute the low energy effective action at leading orders and show that it captures universal electromagnetic and geometric properties of quantum Hall states, including the Wen-Zee shift, Hall viscosity, angular momentum density and their relations. We identify the shift function in Hořava-Lifshitz gravity theory as minus of guiding center velocity and conjugate to guiding center momentum. This enables us to distinguish guiding center angular momentum density from the internal one, which is the sum of Landau orbit spin and intrinsic (topological) spin of the composite particles. Our effective action shows that Hall viscosity is minus half of the internal angular momentum density and proportional to Wen-Zee shift, and Hall bulk viscosity is half of the guiding center angular momentum density.
Towards Matrix Models in IIB Superstrings
Olesen, P.
1997-01-01
I review the properties of a matrix action of relevance for IIB superstrings. This model generalizes the action proposed by Ishibashi, Kawai, Kitazawa, and Tsuchiya by introducing an auxillary field Y, which is the matrix version of the auxillary field g in the Schild action.
Thin film silicon modules on plastic superstrates
Rath, J.K.; Liu, Y; Borreman, A.; Hamers, E.A.G.; Schlatmann, R.; Jongerden, G.J.; Schropp, R.E.I.
2008-01-01
The aim of this research is to fabricate high efficiency a-Si/μc-Si tandem solar cell modules on flexible (polymer) superstrates using the Helianthos concept. As a first step we began by depositing the top cell which contains an amorphous silicon (a-Si:H) i-layer of 350 nm made by VHF PECVD at 50
Surface density of spacetime degrees of freedom from equipartition law in theories of gravity
Padmanabhan, T.
2010-01-01
I show that the principle of equipartition, applied to area elements of a surface ∂V which are in equilibrium at the local Davies-Unruh temperature, allows one to determine the surface number density of the microscopic spacetime degrees of freedom in any diffeomorphism invariant theory of gravity. The entropy associated with these degrees of freedom matches with the Wald entropy for the theory. This result also allows one to attribute an entropy density to the spacetime in a natural manner. The field equations of the theory can then be obtained by extremizing this entropy. Moreover, when the microscopic degrees of freedom are in local thermal equilibrium, the spacetime entropy of a bulk region resides on its boundary.
BRS current and related anomalies in two-dimensional gravity and string theories
Fujikawa, Kazuo; Inagaki, Takeshi; Suzuki, Hiroshi.
1989-06-01
The BRS currents in two-dimensional gravity and supergravity theories, which are related to string theory, contain anomalous terms. The origin of these anomalies can be neatly understood in a carefully defined path integral. We present the detailed calculations of these BRS and related anomalies in the holomorphic or antiholomorphic sector separately in the conformal gauge. One-loop renormalization of the Liouville action becomes transparent in our formulation. We identify a BRS-invariant BRS current (and thus nil-potent charge) and a conformally invariant ghost number current by incorporating the dynamical Weyl freedom explicitly. The formal path integral construction of various composite operators is also checked by using the operator product technique. Implications of these BRS analyses on possible non-critical string theories at d<26 or d<10 are briefly discussed. (author)
Theoretical frameworks for testing relativistic gravity. V - Post-Newtonian limit of Rosen's theory
Lee, D. L.; Ni, W.-T.; Caves, C. M.; Will, C. M.
1976-01-01
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the post-Newtonian parameter alpha sub 2 (which is related to the difference in propagation speeds for gravitational and electromagnetic waves). Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific (but presumably special) form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity - and standard solar system experiments cannot distinguish between the two theories.
Theoretical frameworks for testing relativistic gravity. 5: Post-Newtonian limit of Rosen's theory
Lee, D. L.; Caves, C. M.
1974-01-01
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the PPN parameter alpha sub 2, which is related to the difference in propagation speeds for gravitational and electromagnetic waves. Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific but presumably special form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity--and standard solar system experiments cannot distinguish between the two theories.