WorldWideScience

Sample records for gravity string theory

  1. String theory as a quantum theory of gravity

    International Nuclear Information System (INIS)

    Horowitz, G.T.

    1990-01-01

    First, the connection between string theory and gravity is discussed - at first sight the theory of strings seem to have nothing to do with gravity but an intimate connection is shown. Then the quantum perturbation expansion is discussed. Thirdly, string theory is considered as a classical theory of gravity and finally recent speculation about a phase of string theory which is independent of a spacetime metric is discussed. (author)

  2. 2-Dim. gravity and string theory

    International Nuclear Information System (INIS)

    Narain, K.S.

    1991-01-01

    The role of 2-dim. gravity in string theory is discussed. In particular d=25 string theory coupled to 2-d. gravity is described and shown to give rise to the physics of the usual 26-dim. string theory (where one does not quantise 2-d. gravity. (orig.)

  3. Strings - Links between conformal field theory, gauge theory and gravity

    International Nuclear Information System (INIS)

    Troost, J.

    2009-05-01

    String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity

  4. Generalized string theory mapping relations between gravity and gauge theory

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2003-01-01

    A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, linking diagrams in gravity and Yang-Mills theory, as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings

  5. Unity from duality: gravity, gauge theory and strings

    International Nuclear Information System (INIS)

    Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.

    2002-01-01

    The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)

  6. String theory and quantum gravity '92

    International Nuclear Information System (INIS)

    Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.

    1993-01-01

    These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs

  7. Topics in string theory and quantum gravity

    CERN Document Server

    Alvarez-Gaume, Luis

    1992-01-01

    These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...

  8. Large N field theories, string theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)

    2002-05-15

    We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)

  9. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  10. Lectures on 2D gravity and 2D string theory

    International Nuclear Information System (INIS)

    Ginsparg, P.; Moore, G.

    1992-01-01

    This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions

  11. Millicharged dark matter in quantum gravity and string theory.

    Science.gov (United States)

    Shiu, Gary; Soler, Pablo; Ye, Fang

    2013-06-14

    We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons.

  12. Quantum field theory II introductions to quantum gravity, supersymmetry and string theory

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...

  13. Aspects of some dualities in string theory

    Science.gov (United States)

    Kim, Bom Soo

    AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma

  14. Black holes, strings and quantum gravity

    International Nuclear Information System (INIS)

    Maldacena, Juan

    2001-01-01

    Most physical phenomena can be explained by 'Quantum Mechanics' and 'Einstein Theory of Gravity'. Quantum mechanics is needed for descriptions involving small objects (atoms, nuclei, molecules, etc.) whereas gravity is required for understanding big objects (planets, galaxies). Since, usually small objects are light while big ones are heavy, when one theory is called for, the other is not relevant. Interestingly enough, if we pretend to use both theories simultaneously, for instance when small and very heavy objects are considered (as those in the beginning of our universe), we find that they are mutually inconsistent. Thus, a new theory, so called 'Quantum Gravity', is needed. This works comments on above inconsistencies and indicates how the string theory, rather than a pointlike particle theory, could provide us with a quantum theory of gravity. Though a discussion of black holes it shows us how a string theory on certain space, ca be equivalently described by a particle theory on its boundary, like a sort of hologram. (author)

  15. The status and future prospects of string theory

    International Nuclear Information System (INIS)

    Gross, D.J.

    1990-01-01

    After a general introduction to the description of the fundamental forces by gauge theories and the difficulties occurring in the attemps of unifying these theories with gravity the reasons for the introduction of string theory are explained. After a description of the construction of a string theory the string theory of gravity is considered. Then the problems of string theory are described. Thereafter elastic scattering in string theory at energies comparable with the Planck mass is considered. Finally some prospects for string theory are discussed. (HSI)

  16. Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity

    Science.gov (United States)

    Saadi, Maha

    1991-01-01

    The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  17. String duality and novel theories without gravity

    International Nuclear Information System (INIS)

    Kachru, Shamit

    1998-01-01

    We describe some of the novel 6d quantum field theories which have been discovered in studies of string duality. The role these theories (and their 4d descendants) may play in alleviating the vacuum degeneracy problem in string theory is reviewed. The DLCQ of these field theories is presented as one concrete way of formulating them, independent of string theory

  18. String amplitudes: from field theories to number theory

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...

  19. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, A.V.

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru

  20. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, Andrei V

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)

  1. Is the string theory doomed?

    International Nuclear Information System (INIS)

    Le Meur, H.; Daninos, F.; Bachas, C.

    2007-01-01

    Since its beginning, in the sixties, the string theory has succeeded in overcoming a lot of theoretical difficulties but now the complete absence of experimental validation entertains doubts about its ability to represent the real world and questions its hegemony in today's theoretical physics. Other space-time theories like the twistors, or the non-commutative geometry, or the loop quantum gravity, or the causal dynamics triangulation might begin receiving more attention. Despite all that, the string theory can be given credit for 4 achievements. First, the string theory has provided a consistent quantum description of gravity. Secondly, the string theory has built a theoretical frame that has allowed the unification of the 4 basic interactions. Thirdly, the string theory applied to astrophysics issues has demonstrated that the evaporation of a black hole does not necessarily lead to a loss of information which comforts the universality of the conservation of the quantity of information in any system and as a consequence put a fatal blow to the so-called paradox observed in black holes. Fourthly, the string theory has given a new and original meaning on the true nature of space-time. (A.C.)

  2. Solution of the dilaton problem in open bosonic string theories

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z. (Los Alamos National Lab., NM (United States)); Dunbar, D.C. (Liverpool Univ. (United Kingdom))

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.

  3. Solution of the dilaton problem in open bosonic string theories

    International Nuclear Information System (INIS)

    Bern, Z.; Dunbar, D.C.

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories

  4. BRS current and related anomalies in two-dimensional gravity and string theories

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Inagaki, Takeshi; Suzuki, Hiroshi.

    1989-06-01

    The BRS currents in two-dimensional gravity and supergravity theories, which are related to string theory, contain anomalous terms. The origin of these anomalies can be neatly understood in a carefully defined path integral. We present the detailed calculations of these BRS and related anomalies in the holomorphic or antiholomorphic sector separately in the conformal gauge. One-loop renormalization of the Liouville action becomes transparent in our formulation. We identify a BRS-invariant BRS current (and thus nil-potent charge) and a conformally invariant ghost number current by incorporating the dynamical Weyl freedom explicitly. The formal path integral construction of various composite operators is also checked by using the operator product technique. Implications of these BRS analyses on possible non-critical string theories at d<26 or d<10 are briefly discussed. (author)

  5. Cosmological horizons, quintessence and string theory

    International Nuclear Information System (INIS)

    Kaloper, Nemanja

    2003-01-01

    String theory is presently the best candidate for a quantum theory of gravity unified with other forces. It is natural to hope that applications of string theory to cosmology may shed new light on the cosmological conundra, such as singularities, initial conditions, cosmological constant problem and the origin of inflation. Before we can apply string theory to cosmology, there are important conceptual and practical problems which must be addressed. We have reviewed here some of these problems, related to how one defines string theory in a cosmological setting. (author)

  6. Cosmic string solution in a Born-Infeld type theory of gravity

    International Nuclear Information System (INIS)

    Rocha, W.J. da; Guimaraes, M.E.X.

    2009-01-01

    Full text. Advances in the formal structure of string theory point to the emergence, and necessity, of a scalar-tensorial theory of gravity. It seems that, at least at high energy scales, the Einstein's theory is not enough to explain the gravitational phenomena. In other words, the existence of a scalar (gravitational) field acting as a mediator of the gravitational interaction together with the usual purely rank-2 tensorial field is, indeed, a natural prediction of unification models as supergravity, superstrings and M-theory. This type of modified gravitation was first introduced in a different context in the 60's in order to incorporate the Mach's principle into relativity, but nowadays it acquired different sense in cosmology and gravity theories. Although such unification theories are the most acceptable, they all exist in higher dimensional spaces. The compactification from these higher dimensions to the 4-dimensional physics is not unique and there exist many effective theories of gravity which come from the unification process. Each of them must, of course, satisfy some predictions. Here, in this paper, we will deal with one of them. The so-called NDL theory. One important assumption in General Relativity is that all field interact in the same way with gravity. This is the so called Strong Equivalence Principle (SEP). It is well known, with good accuracy, that this is true when we concern with matter to matter interaction, i.e, the Weak Equivalence Principle(WEP) is tested. But, until now, there is no direct observational confirmation of this affirmation to the gravity to gravity interaction. In an extension of the field theoretical description of General Relativity constructed by is used to propose an alternative field theory of gravity. In this theory gravitons propagate in a different spacetime. The velocity of propagation of the gravitational waves in this theory does not coincide with the General Relativity predictions. (author)

  7. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others

  8. Hidden gravity in open-string field theory

    International Nuclear Information System (INIS)

    Siegel, W.

    1994-01-01

    We clarify the nature of the graviton as a bound state in open-string field theory: The flat metric in the action appears as the vacuum value of an open string field. The bound state appears as a composite field in the free field theory

  9. A string theory which isn't about strings

    Science.gov (United States)

    Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.

    2017-11-01

    Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.

  10. Large-D gravity and low-D strings.

    Science.gov (United States)

    Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro

    2013-06-21

    We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.

  11. String duality transformations in f(R) gravity from Noether symmetry approach

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Gionti, Gabriele S.J. [Specola Vaticana, Vatican City, V-00120, Vatican City State (Vatican City State, Holy See); Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr [Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut d' Astrophysique de Paris, GReCO, 98bis Bd Arago, 75014 Paris (France)

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians are shown in cases where the duality transformation becomes a parity inversion.

  12. String duality transformations in f(R) gravity from Noether symmetry approach

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians are shown in cases where the duality transformation becomes a parity inversion

  13. First advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings

    International Nuclear Information System (INIS)

    Fiziev, P.; Todorov, M.

    2002-01-01

    The aim of the First Advanced Workshop ‘Gravity, Astrophysics, and Strings’ was: 1)Bringing together scientists from various branches of gravitational physics, astrophysics and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2)Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference. The workshop covered wide aspects of gravity, astrophysics, and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Astrophysics, and Strings; Relativistic Gravity; (Super)Strings. About 40 participants from Europe, America and Asia gave 30 invited talks and contributed presentations. The full text of 17 of them are included in this book

  14. Progress in string theory research

    CERN Document Server

    2016-01-01

    At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...

  15. Does string theory lead to extended inflation?

    Science.gov (United States)

    Campbell, Bruce A.; Linde, Andrei; Olive, Keith A.

    1991-05-01

    We consider the relationship between string theory and currently proposed models of extended inflation. In doing so, we discuss the conformal actions in string theory and in Jordan-Brans-Dicke gravity. We show explicitly the equivalence of pictures in which either gauge or gravitational couplings are changing with time. We demonstrate that the existence of the dilation in string theory does not naturally lead to extended inflation as currently discussed. We also discuss the resolution of the graceful exit problem of old inflation in Einstein gravity using either power-law inflation, or exponential inflation with a changing bubble formation rate. On leave of absence from School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA.

  16. Cosmic strings in f(R,L{sub m}) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Lake, Matthew J. [Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Ministry of Education, Thailand Center of Excellence in Physics, Bangkok (Thailand)

    2015-02-01

    We consider Kasner-type static, cylindrically symmetric interior string solutions in the f(R,L{sub m}) theory of modified gravity. The physical properties of the string are described by an anisotropic energy-momentum tensor satisfying the condition T{sub t}{sup t} = T{sub z}{sup z}; that is, the energy density of the string along the z-axis is equal to minus the string tension. As a first step in our study we obtain the gravitational field equations in the f(R,L{sub m}) theory for a general static, cylindrically symmetric metric, and then for a Kasner-type metric, in which the metric tensor components have a power law dependence on the radial coordinate r. String solutions in two particular modified gravity models are investigated in detail. The first is the so-called ''exponential'' modified gravity, in which the gravitational action is proportional to the exponential of the sum of the Ricci scalar and matter Lagrangian, and the second is the ''self-consistent model'', obtained by explicitly determining the gravitational action from the field equations under the assumption of a power law dependent matter Lagrangian. In each case, the thermodynamic parameters of the string, as well as the precise form of the matter Lagrangian, are explicitly obtained. (orig.)

  17. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  18. Gauge theories as string theories: the first results

    International Nuclear Information System (INIS)

    Gorsky, Aleksandr S

    2005-01-01

    The gauge/string theory duality in curved space is discussed mainly using a non-Abelian conformal N = 4 supersymmetric gauge theory and the theory of a closed superstring in the AdS 5 x S 5 metric as an example. It is shown that in the supergravity approximation, string duality yields the characteristics of a strong-coupling gauge theory. For a special shape of the contour, a Wilson loop expression is derived in the classical superstring approximation. The role of the hidden integrability in lower-loop calculations in gauge theory and in different approximations of string theory is discussed. It is demonstrated that in the large quantum-number limit, gauge theory operators can be described in terms of the dual string picture. Examples of metrics providing the dual description of gauge theories with broken conformal symmetry are presented, and formulations of the vacuum structure of such theories in terms of gravity are discussed. (reviews of topical problems)

  19. String Theory for Pedestrians (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  20. String Theory for Pedestrians (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  1. String Theory for Pedestrians (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  2. Little String Theory at a TeV

    CERN Document Server

    Antoniadis, Ignatios; Giveon, Amit; Antoniadis, Ignatios; Dimopoulos, Savas; Giveon, Amit

    2001-01-01

    We propose a framework where the string scale as well as all compact dimensions are at the electroweak scale $\\sim$ TeV$^{-1}$. The weakness of gravity is attributed to the small value of the string coupling $g_s \\sim 10^{-16}$, presumably a remnant of the dilaton's runaway behavior, suggesting the possibility of a common solution to the hierarchy and dilaton-runaway problems. In spite of the small $g_s$, in type II string theories with gauge interactions localized in the vicinity of NS5-branes, the standard model gauge couplings are of order one and are associated with the sizes of compact dimensions. At a TeV these theories exhibit higher dimensional and stringy behavior. The models are holographically dual to a higher dimensional non-critical string theory and this can be used to compute the experimentally accessible spectrum and self-couplings of the little strings. In spite of the stringy behavior, gravity remains weak and can be ignored at collider energies. The Damour-Polyakov mechanism is an automatic...

  3. Cosmic strings in a braneworld theory with metastable gravitons

    International Nuclear Information System (INIS)

    Lue, Arthur

    2002-01-01

    If the graviton possesses an arbitrarily small (but nonvanishing) mass, perturbation theory implies that cosmic strings have a nonzero Newtonian potential. Nevertheless in Einstein gravity, where the graviton is strictly massless, the Newtonian potential of a cosmic string vanishes. This discrepancy is an example of the van Dam-Veltman-Zakharov (VDVZ) discontinuity. We present a solution for the metric around a cosmic string in a braneworld theory with a graviton metastable on the brane. This theory possesses those features that yield a VDVZ discontinuity in massive gravity, but nevertheless is generally covariant and classically self-consistent. Although the cosmic string in this theory supports a nontrivial Newtonian potential far from the source, one can recover the Einstein solution in a region near the cosmic string. That latter region grows as the graviton's effective linewidth vanishes (analogous to a vanishing graviton mass), suggesting the lack of a VDVZ discontinuity in this theory. Moreover, the presence of scale dependent structure in the metric may have consequences for the search for cosmic strings through gravitational lensing techniques

  4. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  5. Multiple-Trace Operators and Non-Local String Theories

    International Nuclear Information System (INIS)

    Silverstein, Eva M.

    2001-01-01

    We propose that a novel deformation of string perturbation theory, involving non-local interactions between strings, is required to describe the gravity duals of field theories deformed by multiple-trace operators. The new perturbative expansion involves a new parameter, which is neither the string coupling nor the coefficient of a vertex operator on the worldsheet. We explore some of the properties of this deformation, focusing on a special case where the deformation in the field theory is exactly marginal

  6. A Chern-Simons-like action for closed-string field theory

    International Nuclear Information System (INIS)

    Taylor, C.C.

    1989-01-01

    A Chern-Simons-like action is proposed for closed-string field theory. The action involves auxiliary fields of arbitrary ghost number and is defined in terms of the closed-string operations ∫, Q and *, analogous to those introduced by Witten in the construction of open-string field theory. The action is an extension of one proposed for free closed strings and bears a formal relationship to 2 + 1 gravity analogous to that between open-string field theory and (2 + 1)-dimensional Yang-Mills theory. (author)

  7. New twistor string theories revisited

    International Nuclear Information System (INIS)

    Broedel, Johannes; Wurm, Bernhard

    2009-01-01

    A gauged version of Berkovits twistor string theory featuring the particle content of N=8 supergravity was suggested by Abou-Zeid, Hull and Mason. The equations of motion for a particular multiplet in the modified theory are examined on the level of basic twistor fields and thereby shown to imply the vanishing of the negative helicity graviton on-shell. Additionally, the restrictions emerging from the equation of motion for the new gauge field B-bar reveal the chiral nature of interactions in theories constructed in this manner. Moreover, a particular amplitude in Berkovits open string theory is shown to be in agreement with the corresponding result in Einstein gravity.

  8. String Theory in a Nutshell

    International Nuclear Information System (INIS)

    Skenderis, Kostas

    2007-01-01

    The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to

  9. Gravity theories in more than four dimensions

    International Nuclear Information System (INIS)

    Zumino, B.

    1985-03-01

    String theories suggest particular forms for gravity interactions in higher dimensions. We consider an interesting class of gravity theories in more than four dimensions, clarify their geometric meaning and discuss their special properties. 9 refs

  10. String Theory Methods for Condensed Matter Physics

    Science.gov (United States)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  11. Kac-Moody Eisenstein series in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Fleig, Philipp

    2013-12-19

    Understanding nature on its very smallest 'physical-length' scale has always been a central goal of physics. Theoretical investigations into this problem over the last fifty years or so were largely driven by the aim of reconciling the theory of general relativity, the theory which describes the fundamental force of gravity and therefore the dynamics of space-time, with the theory of quantum mechanics, which dominates the physical phenomena on very small (sub-atomic) scales, within one big framework, referred to as the theory of quantum gravity. One candidate for such a theory is string theory. The fundamental assumption of this theory is that the smallest constituents of nature are not given by point particles, but rather by one dimensional strings the size of the Planck length. Through their different vibrational modes, strings are thought to produce the different properties of the observed spectrum of particles in nature. With this basic idea, string theory is not only predicted to describe the gravitational force, but also all other known forces of nature, and therefore extends far beyond the concept of only being a theory of quantised gravity. Since its initial proposal, the theory has developed into a vast and complex mathematical web of different theories, which all seem to be part of a larger, all-encompassing theory. Key to understanding the complicated mathematical structure of this theory is the concept of symmetries. Such symmetries, which are also known as duality relations, for instance manifest themselves in special mathematical functions, contained in the amplitudes that capture information about the interaction processes of strings with one another. A particularly relevant example of such a function is given by the so-called Eisenstein series, which display invariance under certain discrete duality groups. The central goal of this thesis is to study the properties of Eisenstein series invariant under special, particularly large (in fact

  12. Kac-Moody Eisenstein series in string theory

    International Nuclear Information System (INIS)

    Fleig, Philipp

    2013-01-01

    Understanding nature on its very smallest 'physical-length' scale has always been a central goal of physics. Theoretical investigations into this problem over the last fifty years or so were largely driven by the aim of reconciling the theory of general relativity, the theory which describes the fundamental force of gravity and therefore the dynamics of space-time, with the theory of quantum mechanics, which dominates the physical phenomena on very small (sub-atomic) scales, within one big framework, referred to as the theory of quantum gravity. One candidate for such a theory is string theory. The fundamental assumption of this theory is that the smallest constituents of nature are not given by point particles, but rather by one dimensional strings the size of the Planck length. Through their different vibrational modes, strings are thought to produce the different properties of the observed spectrum of particles in nature. With this basic idea, string theory is not only predicted to describe the gravitational force, but also all other known forces of nature, and therefore extends far beyond the concept of only being a theory of quantised gravity. Since its initial proposal, the theory has developed into a vast and complex mathematical web of different theories, which all seem to be part of a larger, all-encompassing theory. Key to understanding the complicated mathematical structure of this theory is the concept of symmetries. Such symmetries, which are also known as duality relations, for instance manifest themselves in special mathematical functions, contained in the amplitudes that capture information about the interaction processes of strings with one another. A particularly relevant example of such a function is given by the so-called Eisenstein series, which display invariance under certain discrete duality groups. The central goal of this thesis is to study the properties of Eisenstein series invariant under special, particularly large (in fact infinite

  13. Quantum gravity and taoist cosmology: Exploring the ancient origins of phenomenological string theory.

    Science.gov (United States)

    Rosen, Steven M

    2017-12-01

    This paper carries forward the author's contribution to PBMP's previous special issue on Integral Biomathics (Rosen 2015). In the earlier paper, the crisis in contemporary theoretical physics was described and it was demonstrated that the problem can be addressed effectively only by shifting the foundations of physics from objectivist Cartesian philosophy to phenomenological philosophy. To that end, a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current presentation takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a deep connection between the Klein bottle, which is crucial to the theory, and the Ho-t'u, an old Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the curious psychophysical (phenomenological) action pattern at the heart of microphysics. But tackling the question of quantum gravity requires that a whole family of topological dimensions be brought into play. What we find in engaging with these structures is a closely related family of Taoist forebears that, in concert with their successors, provide a blueprint for cosmic evolution. Whereas conventional string theory accounts for the generation of nature's fundamental forces via a notion of symmetry breaking that is essentially static and thus unable to explain cosmogony successfully, phenomenological/Taoist string theory is guided by the dialectical interplay between symmetry and asymmetry inherent in the principle of synsymmetry. This dynamic concept of cosmic change is elaborated on in the three concluding sections of the paper. Here, a detailed analysis of cosmogony is offered, first in terms of the theory of dimensional development and its Taoist (yin-yang) counterpart, then in terms of the evolution of the elemental force particles through cycles of expansion and contraction in a spiraling universe. The paper

  14. Second advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings

    International Nuclear Information System (INIS)

    Fiziev, P.; Todorov, M.

    2005-01-01

    The Second Advanced Workshop ‘Gravity, Astrophysics, and Strings’ held on 10-16 June 2004. It served four purposes: 1) Bringing together scientists from various branches of gravitational physics, astrophysics, and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2) Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference; 4) Stimulated creation of a new generation of young physicists for further development of the above basic topics in fundamental science. The workshop covered wide aspects of gravity, astrophysics, and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Relativistic Gravity; (Super)Strings. About 35 participants from Europe, America and Asia gave 28 invited talks and contributed presentations. They and guided general discussion as well, which took place confirmed the considerable interest to the themes of the workshop. The full text of 16 of the presented papers are included in this book

  15. What every physicist should know about string theory

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Edward

    2015-11-15

    Some of nature’s rhymes—the appearance of similar structures in different areas of physics—underlie the way that string theory potentially unifies gravity with the other forces of nature and eliminates the ultraviolet divergences that plague quantum gravity.

  16. What every physicist should know about string theory

    International Nuclear Information System (INIS)

    Witten, Edward

    2015-01-01

    Some of nature’s rhymes—the appearance of similar structures in different areas of physics—underlie the way that string theory potentially unifies gravity with the other forces of nature and eliminates the ultraviolet divergences that plague quantum gravity

  17. Physics is in trouble, the string theory has failed

    International Nuclear Information System (INIS)

    Smolin, L.

    2007-01-01

    The popularity of the string theory is based on its claim to explain both the very big and the very small: gravity and elementary particles. The string theory assumes that the real world contains dimensions that have not yet been observed and that any elementary particle is a vibration of a unique entity called string that obeys simple and elegant laws. Most theoretical physicists and mathematicians have focused their attention on this theory for the last 25 years and the diagnosis is clear: string theory fails to cope with the standard model and to explain the existence of dark matter or the mass of neutrinos. The string theory is hailed for its beauty or elegancy but this theory has never been backed by experimental data. While science has made significant progress in numerous domains, particle physics seems to have reached a dead-end. It is high time we officially questioned the string theory and opened the gate for alternative theories. (A.C.)

  18. Two field formulation of closed string field theory

    International Nuclear Information System (INIS)

    Bogojevic, A.R.

    1990-09-01

    A formulation of closed string field theory is presented that is based on a two field action. It represents a generalization of Witten's Chern-Simons formulation of 3d gravity. The action contains only 3 string interactions and no string field truncations, unlike the previous non-polynomial action of Zwiebach. The two field action is found to follow from a purely cubic, background independent action similar to the one for open strings. (orig.)

  19. Minimal Liouville gravity correlation numbers from Douglas string equation

    International Nuclear Information System (INIS)

    Belavin, Alexander; Dubrovin, Boris; Mukhametzhanov, Baur

    2014-01-01

    We continue the study of (q,p) Minimal Liouville Gravity with the help of Douglas string equation. We generalize the results of http://dx.doi.org/10.1016/0550-3213(91)90548-Chttp://dx.doi.org/10.1088/1751-8113/42/30/304004, where Lee-Yang series (2,2s+1) was studied, to (3,3s+p 0 ) Minimal Liouville Gravity, where p 0 =1,2. We demonstrate that there exist such coordinates τ m,n on the space of the perturbed Minimal Liouville Gravity theories, in which the partition function of the theory is determined by the Douglas string equation. The coordinates τ m,n are related in a non-linear fashion to the natural coupling constants λ m,n of the perturbations of Minimal Lioville Gravity by the physical operators O m,n . We find this relation from the requirement that the correlation numbers in Minimal Liouville Gravity must satisfy the conformal and fusion selection rules. After fixing this relation we compute three- and four-point correlation numbers when they are not zero. The results are in agreement with the direct calculations in Minimal Liouville Gravity available in the literature http://dx.doi.org/10.1103/PhysRevLett.66.2051http://dx.doi.org/10.1007/s11232-005-0003-3http://dx.doi.org/10.1007/s11232-006-0075-8

  20. Minimal string theory is logarithmic

    International Nuclear Information System (INIS)

    Ishimoto, Yukitaka; Yamaguchi, Shun-ichi

    2005-01-01

    We study the simplest examples of minimal string theory whose worldsheet description is the unitary (p,q) minimal model coupled to two-dimensional gravity ( Liouville field theory). In the Liouville sector, we show that four-point correlation functions of 'tachyons' exhibit logarithmic singularities, and that the theory turns out to be logarithmic. The relation with Zamolodchikov's logarithmic degenerate fields is also discussed. Our result holds for generic values of (p,q)

  1. Story of the string theory. From hadrons to Planck scale

    International Nuclear Information System (INIS)

    Petropoulos, P.M.

    2010-01-01

    Originally the string theory was devised to describe the scattering between hadron particles but was quickly put aside by the success of the quantum chromodynamics. Now string theory appears in the quantum gravity theory and has been involved in almost all attempts to define a physics beyond the standard model and to unify basic interactions. (A.C.)

  2. The search for higher symmetry in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Witten, E [Institute for Advanced Study, Princeton, NJ (USA)

    1989-11-17

    Some remarks are made about the nature and role of the search for higher symmetry in string theory. These symmetries are most likely to be uncovered in a mysterious 'unbroken phase', for which (2+1)-dimensional gravity provides an interesting and soluble model. New insights about conformal field theory, in which one gets 'out of flatland' to see a wider symmetry from a higher-dimensional vantage point, may offer clues to the unbroken phase of string theory. (author).

  3. The effective supergravity of little string theory

    Science.gov (United States)

    Antoniadis, Ignatios; Delgado, Antonio; Markou, Chrysoula; Pokorski, Stefan

    2018-02-01

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N=2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N=1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory.

  4. The effective supergravity of little string theory

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Sorbonne Universite, CNRS, Laboratoire de Physique Theorique et Hautes Energies, LPTHE, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Delgado, Antonio [University of Notre Dame, Department of Physics, Notre Dame, IN (United States); Markou, Chrysoula [Sorbonne Universite, CNRS, Laboratoire de Physique Theorique et Hautes Energies, LPTHE, Paris (France); Pokorski, Stefan [University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland)

    2018-02-15

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N = 2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N = 1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory. (orig.)

  5. Quantum mechanics vs. general covariance in gravity and string models

    International Nuclear Information System (INIS)

    Martinec, E.J.

    1984-01-01

    Quantization of simple low-dimensional systems embodying general covariance is studied. Functional methods are employed in the calculation of effective actions for fermionic strings and 1 + 1 dimensional gravity. The author finds that regularization breaks apparent symmetries of the theory, providing new dynamics for the string and non-trivial dynamics for 1 + 1 gravity. The author moves on to consider the quantization of some generally covariant systems with a finite number of physical degrees of freedom, assuming the existence of an invariant cutoff. The author finds that the wavefunction of the universe in these cases is given by the solution to simple quantum mechanics problems

  6. Chronology protection in string theory

    International Nuclear Information System (INIS)

    Dyson, Lisa

    2004-01-01

    Many solutions of General Relativity appear to allow the possibility of time travel. This was initially a fascinating discovery, but geometries of this type violate causality, a basic physical law which is believed to be fundamental. Although string theory is a proposed fundamental theory of quantum gravity, geometries with closed timelike curves have resurfaced as solutions to its low energy equations of motion. In this paper, we will study the class of solutions to low energy effective supergravity theories related to the BMPV black hole and the rotating wave-D1-D5-brane system. Time travel appears to be possible in these geometries. We will attempt to build the causality violating regions and propose that stringy effects prohibit their construction. The proposed chronology protection agent for these geometries mirrors a mechanism string theory employs to resolve a class of naked singularities. (author)

  7. String theory

    International Nuclear Information System (INIS)

    Chan Hongmo.

    1987-10-01

    The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)

  8. Theories of quantum gravity: Pt. 1

    International Nuclear Information System (INIS)

    Aragone, C.

    1990-01-01

    Superstrings continue to be a source of inspiration for the basic understanding of quantum gravity. They seem to provide a more fundamental arena than quantum field theory. Even though we still do not have a theory of everything, string concepts bring a new theoretical richness to research in quantum and classical gravity. Papers presented at the session on this subject are reviewed. (author)

  9. Recent progress in the theory of noncritical strings

    International Nuclear Information System (INIS)

    Kazakov, V.A.; Migdal, A.A.

    1988-01-01

    We compare the results of analytical and numerical studies of lattice 2D quantum gravity, where the internal quantum metric is described by random (dynamical) triangulation, with the recent results of conformal approach developed by Knizhnik, Polyakov and Zamolodchikov. The remarkable agreement is underlined for the interactions of gravity with matter fields: Potts spins, D-dimensional Gaussian fields (bosonic string). Some new results are presented for D=1 discretized bosonic strings satisfying the predictions of conformal theory for the critical exponents: γ str =0, ν str =0, but with unusual logarithmic corrections. (orig.)

  10. The heterotic string

    International Nuclear Information System (INIS)

    Gross, D.J.

    1986-01-01

    Traditional string theories, either bosonic or supersymmetric, came in two varieties, closed string theories and open string theories. Closed string are neutral objects which describe at low energies gravity or supergravity. Open strings have geometrically invariant ends to which charge can be attached, thereby obtaining, in addition to gravity, Yang-Mills gauge interactions. Recently a new kind of string theory was discovered--the heterotic string, which is a chiral hybrid of the closed superstring and the closed bosonic string, and which produces by an internal dynamical mechanism gauge interactions of a totally specified kind. Although this theory is found in an attempt to produce a superstring theory which would yield a low energy E/sub 8/xE/sub 8/ supersymmetric, anomaly free, gauge theory, as suggested by the anomaly cancellation mechanism of Green and Schwarz, it fits naturally into the general framework of consistent string theories

  11. String Theory and M-Theory

    Science.gov (United States)

    Becker, Katrin; Becker, Melanie; Schwarz, John H.

    String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line

  12. String theory: A brand new theory that claims to explain everything in existence

    International Nuclear Information System (INIS)

    Pal, P.B.

    1988-01-01

    Background of the origin of the string theories which have shown possibilities of unifying all four basic forces including gravity is described and the concepts behind these theories are explained for the layman. (M.G.R.)

  13. Chern-Simons Theory, Matrix Models, and Topological Strings

    International Nuclear Information System (INIS)

    Walcher, J

    2006-01-01

    This book is a find. Marino meets the challenge of filling in less than 200 pages the need for an accessible review of topological gauge/gravity duality. He is one of the pioneers of the subject and a clear expositor. It is no surprise that reading this book is a great pleasure. The existence of dualities between gauge theories and theories of gravity remains one of the most surprising recent discoveries in mathematical physics. While it is probably fair to say that we do not yet understand the full reach of such a relation, the impressive amount of evidence that has accumulated over the past years can be regarded as a substitute for a proof, and will certainly help to delineate the question of what is the most fundamental quantum mechanical theory. Here is a brief summary of the book. The journey begins with matrix models and an introduction to various techniques for the computation of integrals including perturbative expansion, large-N approximation, saddle point analysis, and the method of orthogonal polynomials. The second chapter, on Chern-Simons theory, is the longest and probably the most complete one in the book. Starting from the action we meet Wilson loop observables, the associated perturbative 3-manifold invariants, Witten's exact solution via the canonical duality to WZW models, the framing ambiguity, as well as a collection of results on knot invariants that can be derived from Chern-Simons theory and the combinatorics of U (∞) representation theory. The chapter also contains a careful derivation of the large-N expansion of the Chern-Simons partition function, which forms the cornerstone of its interpretation as a closed string theory. Finally, we learn that Chern-Simons theory can sometimes also be represented as a matrix model. The story then turns to the gravity side, with an introduction to topological sigma models (chapter 3) and topological string theory (chapter 4). While this presentation is necessarily rather condensed (and the beginner may

  14. Topological conformal algebra and BRST algebra in non-critical string theories

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Suzuki, Hiroshi.

    1991-03-01

    The operator algebra in non-critical string theories is studied by treating the cosmological term as a perturbation. The algebra of covariantly regularized BRST and related currents contains a twisted N = 2 superconformal algebra only at d = -2 in bosonic strings, and a twisted N = 3 superconformal algebra only at d = ±∞ in spinning strings. The bosonic string at d = -2 is examined by replacing the string coordinate by a fermionic matter with c = -2. The resulting bc-βγ system accommodates various forms of BRST cohomology, and the ghost number assignment and BRST cohomology are different in the c = -2 string theory and two-dimensional topological gravity. (author)

  15. Cosmological singularities in string and M-theory cosmology

    NARCIS (Netherlands)

    Vazquez-Mozo, M.A.; Ibanez, J.

    2000-01-01

    I discuss the point of view that non-renormalizability in General Relativity is a consequence of dealing with a low-energy effective field theory of the gravitational field, and how Einstein-Brans-Dicke gravity is retrieved from string/M-theory at low energies. After examining the role of stringy

  16. String field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1987-01-01

    In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory

  17. Proceedings of the 14. Claude Itzykson Meeting-2009 recent advances in string theory

    International Nuclear Information System (INIS)

    Aharoni, O.; Arkani-Hamed, N.; Becker, K.; Berkovits, N.; Bern, Z.; De Boer, J.; Emparan, R.; Green, M.; Hartnoll, S.; Heckman, J.; Kachru, S.; Lambert, N.; Louis, J.; Marino, M.; Mathur, S.; McAllister, L.; McGreevy, J.; Polchinski, J.; Sen, A.; Weigand, T.

    2009-01-01

    This document is made up of the slides of the presentations. The titles of the 20 presentations are the following: 1) On d=3 Yang-Mills Chern-Simons theories with 'fractional branes' and their gravity duals; 2) Holography and the S-Matrix; 3) Torsional heterotic geometries; 4) Spin chains from the topological AdS 5 xS 5 string; 5) Harmony of Scattering Amplitudes: from N=4 Super-Yang-Mills Theory to N=8 Supergravity; 6) Quantum aspects of black holes; 7) Black-folds; 8) Supersymmetric String and Field Theory Scattering Amplitudes; 9) Quantum bosons for holographic superconductors; 10) The Point of E8 in F-theory GUTs; 11) Gauge/gravity duality and particle physics; 12) Coupling M2-branes to Background Fields; 13) Compactifications and Generalized Geometries; 14) Nonperturbative aspects of the topological string; 15) Lessons from the information paradox: 16) Inflation in String Theory; 17) Holographic descriptions of quantum liquids; 18) Holography from CFT; 19) Black hole hair removal; and 20) Type IIB GUT vacua and their F-theory uplift

  18. Third advanced research workshop: Gravity, astrophysics and strings at the Black Sea. Proceedings

    International Nuclear Information System (INIS)

    Fiziev, P.; Todorov, M.

    2006-01-01

    The Third Advanced Workshop ‘Gravity, Astrophysics, and Strings’ held on 13-20 June 2005. The workshop: 1) Bringing together scientists from various branches of gravitational physics, astrophysics, particle physics, fundamental interactions and string theory gave an opportunity for interdisciplinary exchange of views and enhanced possible collaborations; 2) Provided a unique opportunity to scientists from various countries to communicate with colleagues on the hottest topics of gravitational physics, astrophysics, particle physics, fundamental interactions and string theory; 3) Opened new venue to young talented scientists to communicate and work with major research groups on the topics of the conference; 4) Stimulated creation of a new generation of young physicists for further development of the above basic topics in fundamental science. The workshop covered wide aspects of gravitational physics, astrophysics, particle physics, fundamental interactions and string theory concerning the topics: Astrophysics; Mathematical Modeling and Numerical Simulations in Relativity; Relativistic Gravity; Particle Physics and Fundamental Interactions; (Super)Strings. About 40 participants from Europe, America and Asia gave 32 invited talks and contributed presentations. They and guided general discussion as well, which took place confirmed the considerable interest to the themes of the workshop. The full text of 22 of the presented papers are included in this book

  19. Conformal techniques in string theory and string field theory

    International Nuclear Information System (INIS)

    Giddings, S.B.

    1987-01-01

    The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string

  20. On topological string theory with Calabi-Yau backgrounds

    International Nuclear Information System (INIS)

    Haghighat, Babak

    2009-01-01

    String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the verification of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)

  1. On topological string theory with Calabi-Yau backgrounds

    International Nuclear Information System (INIS)

    Haghighat, Babak

    2010-06-01

    String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the veri cation of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)

  2. On topological string theory with Calabi-Yau backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Haghighat, Babak

    2010-06-15

    String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the veri cation of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)

  3. On topological string theory with Calabi-Yau backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Haghighat, Babak

    2009-10-29

    String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the verification of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)

  4. Gravity and strings

    CERN Document Server

    Ortín, Tomás

    2015-01-01

    Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

  5. Sequestering in string theory

    International Nuclear Information System (INIS)

    Kachru, Shamit; McAllister, Liam; Sundrum, Raman

    2007-01-01

    We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification

  6. Why string theory?

    CERN Document Server

    Conlon, Joseph

    2016-01-01

    Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.

  7. The emergence of spacetime in string theory

    CERN Document Server

    Vistarini, Tiziana

    2018-01-01

    The nature of space and time is one of the most fascinating and fundamental philosophical issues which presently engages at the deepest level with physics. During the last thirty years this notion has been object of an intense critical review in the light of new scientific theories which try to combine the principles of both general relativity and quantum theory—called theories of quantum gravity. This book considers the way string theory shapes its own account of spacetime disappearance from the fundamental level.

  8. Introduction to string theory and string compactifications

    International Nuclear Information System (INIS)

    GarcIa-Compean, Hugo

    2005-01-01

    Basics of some topics on perturbative and non-perturbative string theory are reviewed. After a mathematical survey of the Standard Model of particle physics and GUTs, the bosonic string kinematics for the free case and with interaction is described. The effective action of the bosonic string and the spectrum is also discussed. T-duality in closed and open strings and the definition of D-brane are surveyed. Five perturbative superstring theories and their spectra is briefly outlined. Calabi-Yau three-fold compactifications of heterotic strings and their relation to some four-dimensional physics are given. Finally, non-perturbative issues like S-duality, M-theory and F-theory are also reviewed

  9. ((F, D1), D3) bound state, S-duality and noncommutative open string/Yang-Mills theory

    International Nuclear Information System (INIS)

    Lu, J.X.; Roy, S.; Singh, H.

    2000-01-01

    We study decoupling limits and S-dualities for noncommutative open string/Yang-Mills theory in a gravity setup by considering an SL(2,Z) invariant supergravity solution of the form ((F, D1), D3) bound state of type IIB string theory. This configuration can be regarded as D3-branes with both electric and magnetic fields turned on along one of the spatial directions of the brane and preserves half of the space-time supersymmetries of the string theory. Our study indicates that there exists a decoupling limit for which the resulting theory is an open string theory defined in a geometry with noncommutativity in both space-time and space-space directions. We study S-duality of this noncommutative open string (NCOS) and find that the same decoupling limit in the S-dual description gives rise to a space-space noncommutative Yang-Mills theory (NCYM). We also discuss independently the decoupling limit for NCYM in this D3 brane background. Here we find that S-duality of NCYM theory does not always give a NCOS theory. Instead, it can give an ordinary Yang-Mills with a singular metric and an infinitely large coupling. We also find that the open string coupling relation between the two S-duality related theories is modified such that S-duality of a strongly coupled open-string/Yang-Mills theory does not necessarily give a weakly coupled theory. The relevant gravity dual descriptions of NCOS/NCYM are also given. (author)

  10. Kleinian singularities and the ground ring of c=1 string theory

    International Nuclear Information System (INIS)

    Ghoshal, D.; Jatkar, D.P.; Mukhi, S.

    1993-01-01

    We investigate the nature of the ground ring of c=1 string theory at the special ADE points in the c=1 moduli space associated to discrete subgroups of SU(2). The chiral ground rings at these points are shown to define the ADE series of singular varieties introduced by Klein. The non-chiral ground rings relevant to closed-string theory are 3 real dimensional singular varieties obtained as U(1) quotients of the kleinian varieties. The unbroken symmetries of the theory at these points are the volume-preserving diffeomorphisms of these varieties. The theory of kleinian singularities has a close relation to that of complex hyperKaehler surfaces, or gravitational instantons. We speculate on the relevance of these instantons and of self-dual gravity in c=1 string theory. (orig.)

  11. A novel string field theory solving string theory by liberating left and right movers

    International Nuclear Information System (INIS)

    Nielsen, Holger B.; Ninomiya, Masao

    2014-01-01

    We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X L μ (τ+σ) and X R μ (τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model

  12. BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory

    Science.gov (United States)

    Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid

    It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.

  13. Perturbative Gravity and Gauge Theory Relations: A Review

    Directory of Open Access Journals (Sweden)

    Thomas Søndergaard

    2012-01-01

    Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.

  14. Reparametrization BRS cohomology in two-dimensional gravity and non-critical string theories

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1989-07-01

    Various anomalies related to the gravitational BRS current in two-dimensional theories are explained from the view point of the path integral formalism, and the algebraic properties of composite operators are confirmed by the operator product technique. The implications of the reparametrization BRS cohomology on possible non-critical string theory are illustrated by using the string field theoretical technique. The appearance of the Higgs (or Stueckelberg)-like mechanism due to the Liouville freedom is shown. (author)

  15. Les Houches lectures on large N field theories and gravity

    International Nuclear Information System (INIS)

    Maldacena, J.

    2002-01-01

    We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. (authors)

  16. Some no-go theorems for string duals of non-relativistic Lifshitz-like theories

    International Nuclear Information System (INIS)

    Li Wei; Takayanagi, Tadashi; Nishioka, Tatsuma

    2009-01-01

    We study possibilities of string theory embeddings of the gravity duals for non-relativistic Lifshitz-like theories with anisotropic scale invariance. We search classical solutions in type IIA and eleven-dimensional supergravities which are expected to be dual to (2+1)-dimensional Lifshitz-like theories. Under reasonable ansaetze, we prove that such gravity duals in the supergravities are not possible. We also discuss a possible physical reason behind this.

  17. Physical properties of W gravities and W strings

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Rama, S.K.

    1991-01-01

    This paper investigates some basic physical properties of W gravities and W strings, using a free field realization. The authors argue that the configuration space of W gravities have global characteristics in addition to the Euler characteristic. The authors identify one such global quantity to be a monopole charge and show how this charge appears in the exponents. The free energy would then involve a θ parameter. Using a BRST procedure the authors find all the physical states of W 3 and W 4 gravities, and show that physical operators are nonsingular composites of the screening charge operators. (The latter are not physical operators for N ≥ 3.) For W strings we show how the W constraints lead to the emergence of a single (and not many) extra dimension coming from the W-gravity sector. By analyzing the resulting dispersion relations the authors find that both the lower and upper critical dimensions are lowered compared to ordinary two-dimensional gravity. The pure W gravity spectrum reveals an intriguing numerological connection with unitary minimal models coupled to ordinary gravity

  18. String Theory Volume 1: An Introduction to the Bosonic String and Volume 2: Superstring Theory and Beyond

    International Nuclear Information System (INIS)

    Carlip, S

    2006-01-01

    -but these are minor drawbacks. Readers will find clear answers to many 'frequently asked questions.' Are D-branes really necessary? Polchinski begins with T-duality for the closed string, and shows that the extension to open strings requires the existence of D-branes. How does string theory incorporate gravity? The two standard answers are that string theory contains a massless spin two 'graviton' and that consistent string propagation in a curved background requires that the background metric satisfy the Einstein field equations; Polchinski links the two, showing that the background metric can be viewed as a coherent state of the spin two excitations. Volume II, Superstring Theory and Beyond, extends Volume I to superstring theory, and then proceeds to treat a range of more advanced subjects: effective actions for branes, dualities and equivalences among string theories, M theory, stringy black holes, compactifications and four-dimensional field theories, and the like. The tone of this volume changes a bit-it is not as self-contained, and reads less like a textbook and more like an extended review article. I suspect, for example, that few students without a strong background in field theory will follow the discussion of anomalies in chapter 12. The change can be largely attributed to the content: the superstring is inherently more difficult than the bosonic string, and the newer material is not as deeply understood. But there are a few weaknesses in presentation as well: for instance, a discussion in chapter 11 of the relationship between symmetries and constraints omits any explanation of how one decides whether a transformation generates a symmetry or a constraint. Any two-volume book on string theory is necessarily incomplete. In his introduction, Polchinski cites the lack of a more thorough treatment of compactifications on curved manifolds. I would personally have liked to see more about noncritical strings and Liouville theory and about the Green-Schwarz superstring

  19. String Theory Volume 1: An Introduction to the Bosonic String and Volume 2: Superstring Theory and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Carlip, S [Department of Physics, University of California, Davis, CA 95616 (United States)

    2006-10-21

    , it could easily be missed-but these are minor drawbacks. Readers will find clear answers to many 'frequently asked questions.' Are D-branes really necessary? Polchinski begins with T-duality for the closed string, and shows that the extension to open strings requires the existence of D-branes. How does string theory incorporate gravity? The two standard answers are that string theory contains a massless spin two 'graviton' and that consistent string propagation in a curved background requires that the background metric satisfy the Einstein field equations; Polchinski links the two, showing that the background metric can be viewed as a coherent state of the spin two excitations. Volume II, Superstring Theory and Beyond, extends Volume I to superstring theory, and then proceeds to treat a range of more advanced subjects: effective actions for branes, dualities and equivalences among string theories, M theory, stringy black holes, compactifications and four-dimensional field theories, and the like. The tone of this volume changes a bit-it is not as self-contained, and reads less like a textbook and more like an extended review article. I suspect, for example, that few students without a strong background in field theory will follow the discussion of anomalies in chapter 12. The change can be largely attributed to the content: the superstring is inherently more difficult than the bosonic string, and the newer material is not as deeply understood. But there are a few weaknesses in presentation as well: for instance, a discussion in chapter 11 of the relationship between symmetries and constraints omits any explanation of how one decides whether a transformation generates a symmetry or a constraint. Any two-volume book on string theory is necessarily incomplete. In his introduction, Polchinski cites the lack of a more thorough treatment of compactifications on curved manifolds. I would personally have liked to see more about noncritical strings and

  20. The birth of string theory

    CERN Document Server

    Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo

    2012-01-01

    String theory is currently the best candidate for a unified theory of all forces and all forms of matter in nature. As such, it has become a focal point for physical and philosophical discussions. This unique book explores the history of the theory's early stages of development, as told by its main protagonists. The book journeys from the first version of the theory (the so-called dual resonance model) in the late sixties, as an attempt to describe the physics of strong interactions outside the framework of quantum field theory, to its reinterpretation around the mid-seventies as a quantum theory of gravity unified with the other forces, and its successive developments up to the superstring revolution in 1984. Providing important background information to current debates on the theory, this book is essential reading for students and researchers in physics, as well as historians and philosophers of science.

  1. The operator formalism and contact terms in string theory

    International Nuclear Information System (INIS)

    Doyle, M.D.

    1992-01-01

    The operator formalism has proven to be a powerful tool in string theory. In particular, by making explicit the role of a choice of local coordinates (or, equivalently, a normal-ordering prescription) at vertex operator insertions, it provides a framework for understanding the insertion of very general states in both on-shell string theory and string field theory, for formulating a semirigid N = 2 geometry-based approach to topological gravity, for resolving ambiguities in fermionic string theory, and for analyzing contact interactions. The main focus of this thesis on this last application of the operator formalism, although it touches on each of the others. The first goal is the analysis of the dilaton contact terms required for the dilaton equation in the bosonic and heterotic strings. In the bosonic case, a coordinate family appropriate for a punctured sphere is given and is used to calculate dilaton two-point functions. This coordinate family is later generalized to a 'good' coordinate family appropriate for dilaton calculations on higher genus surfaces. It is found that dilaton-dilaton contact terms are improperly normalized resulting in the failure of the dilaton equation, suggesting that the zero-momentum dilaton is not the string coupling constant. This seems to be the result of a tachyon divergence. A similar calculation in the heterotic case, where there is no tachyon, shows that the dilaton contact terms are properly normalized, and that the dilaton equation and the interpretation of the dilaton as the string coupling constant goes through. The other major goal is re-examination of Green and Seiberg's work which showed that, in simple treatments of fermionic string theory, it is necessary to introduce contact interactions when vertex operators collide to avoid the failure of certain superconformal Ward identities

  2. Perturbative Quantum Gravity and its Relation to Gauge Theory

    Directory of Open Access Journals (Sweden)

    Bern Zvi

    2002-01-01

    Full Text Available In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.

  3. Black string in dRGT massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Tannukij, Lunchakorn [Mahidol University, Department of Physics, Faculty of Science, Bangkok (Thailand); Hanyang University, Department of Physics, Seoul (Korea, Republic of); Naresuan University, The Institute for Fundamental Study, Phitsanulok (Thailand); Wongjun, Pitayuth [Naresuan University, The Institute for Fundamental Study, Phitsanulok (Thailand); Ministry of Education, Thailand Center of Excellence in Physics, Bangkok (Thailand); Ghosh, Suchant G. [Jamia Millia Islamia, Centre of Theoretical Physics, New Delhi (India); University of Kwazulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)

    2017-12-15

    We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This ''dRGT black string'' can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r > r{sub c} with negative thermodynamical potential and positive heat capacity while it is unstable for r < r{sub c} where the potential is positive. (orig.)

  4. Discrete state moduli of string theory from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We propose a new formulation of the space-time interpretation of the c=1 matrix model. Our formulation uses the well-known leg-pole factor that relates the matrix model amplitudes to that of the 2-dimensional string theory, but includes fluctuations around the fermi vacuum on {\\sl both sides} of the inverted harmonic oscillator potential of the double-scaled model, even when the fluctuations are small and confined entirely within the asymptotes in the phase plane. We argue that including fluctuations on both sides of the potential is essential for a consistent interpretation of the leg-pole transformed theory as a theory of space-time gravity. We reproduce the known results for the string theory tree level scattering amplitudes for flat space and linear dilaton background as a special case. We show that the generic case corresponds to more general space-time backgrounds. In particular, we identify the parameter corresponding to background metric perturbation in string theory (black hole mass) in terms of the ...

  5. Inflationary string theory?

    Indian Academy of Sciences (India)

    strongly motivate a detailed search for inflation within string theory, although it has ... between string theory and observations provides a strong incentive for ..... sonably be expected to arise for any system having very many degrees of freedom.

  6. Introductory lectures on conformal field theory and strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. The are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these lectures

  7. Introductory lectures on Conformal Field Theory and Strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. They are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these

  8. Gravity from strings

    International Nuclear Information System (INIS)

    Deser, S.

    1987-01-01

    We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)

  9. Closed string field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1987-01-01

    A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)

  10. Deriving the four-string and open-closed string interactions from geometric string field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1990-01-01

    One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e μσ νρ , which allows us to gauge the string length and σ parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or the interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included

  11. String theory constructions and conformal invariance

    International Nuclear Information System (INIS)

    Govaerts, J.

    1990-01-01

    This paper reports that as is rather well known, string theories are regarded nowadays by theoretical physicists as a possible framework for the Theory of Everything, or more correctly, for a consistent unified quantum theory of all particles and all their interactions, including gravity. One of the many fascinating facets of these theories is that they could make a centuries old dream come true in a most unique way. Indeed, string theories could well provide the ultimate unification of Nature: the Universe and all that it contains being made of only one fundamental object, with dynamics so rich that it leads to this infinitely large variety of physical phenomena that we observe at all energy scales in our Universe. Moreover, the mathematical structures involved in these theories are so profound and beautiful that they bring together so far unrelated fields in pure mathematics, and have led to important developments in other fields of physics as well. All of physics and all of mathematics coming together in our understanding of the world: was that not the ultimate dream of the Ancient Greeks? But, what are string theories? In the first qualitative approach of this introduction, it may be useful to contrast these theories against the more familiar description of relativistic point-particles. When a single particle propagates freely in space-time, it describes a one- dimensional manifold: its world line. In a quantum description, we associate to this process a quantum amplitude: the Feynman propagator. It is also possible to describe interactions between such particles, by defining probability amplitudes for the splitting and joining of the corresponding world-lines (a priori, the number of particles involved in any such single interaction could be arbitrary but finite)

  12. On the influence of gravity on the static state of an inclined tensioned string

    NARCIS (Netherlands)

    Van Horssen, W.T.

    2004-01-01

    In this paper the static state of an inclined stretched string due to gravity is considered. The string is stretched between two fixed supports which are situated at two different levels. It is assumed that the tension in the string is suffiently large such that the sag of the string due to gravity

  13. Nonrelativistic closed string theory

    International Nuclear Information System (INIS)

    Gomis, Jaume; Ooguri, Hirosi

    2001-01-01

    We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting

  14. Worldsheet factorization for twistor-strings

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim [Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2014-04-10

    We study the multiparticle factorization properties of two worldsheet theories which — at tree-level — describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for N=4 super-Yang-Mills coupled to N=4 conformal supergravity, and the Skinner twistor-string for N=8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner’s twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner’s theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions.

  15. Worldsheet factorization for twistor-strings

    International Nuclear Information System (INIS)

    Adamo, Tim

    2014-01-01

    We study the multiparticle factorization properties of two worldsheet theories which — at tree-level — describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for N=4 super-Yang-Mills coupled to N=4 conformal supergravity, and the Skinner twistor-string for N=8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner’s twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner’s theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions

  16. Physical states and scaling properties of W gravities and W strings

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Rama, S.K.

    1992-01-01

    In this paper the authors discuss some physical aspects of W gravities and W strings. The authors identify global characteristics in W gravities (in addition to the usual Euler characteristic) and show how the dependence of the partition function on the various chemical potentials involves these quantities. The authors find the operators which create physical states in W 3 and W 4 gravities and discuss their relationship with screening operators. W strings are discussed in the framework of a natural way of coupling matter to W gravity, and the issues of extra dimensions and critical dimensions are clarified. The authors find a remarkable relationship between pure W gravities and ordinary gravity coupled to c < 1 unitary minimal models

  17. Chern-Simons couplings for dielectric F-strings in matrix string theory

    International Nuclear Information System (INIS)

    Brecher, Dominic; Janssen, Bert; Lozano, Yolanda

    2002-01-01

    We compute the non-abelian couplings in the Chern-Simons action for a set of coinciding fundamental strings in both the type IIA and type IIB Matrix string theories. Starting from Matrix theory in a weakly curved background, we construct the linear couplings of closed string fields to type IIA Matrix strings. Further dualities give a type IIB Matrix string theory and a type IIA theory of Matrix strings with winding. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  18. Interpolating string field theories

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1992-01-01

    This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles

  19. Oriented open-closed string theory revisited

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1998-01-01

    String theory on D-brane backgrounds is open-closed string theory. Given the relevance of this fact, we give details and elaborate upon our earlier construction of oriented open-closed string field theory. In order to incorporate explicitly closed strings, the classical sector of this theory is open strings with a homotopy associative A ∞ algebraic structure. We build a suitable Batalin-Vilkovisky algebra on moduli spaces of bordered Ricmann surfaces, the construction of which involves a few subtleties arising from the open string punctures and cyclicity conditions. All vertices coupling open and closed strings through disks are described explicitly. Subalgebras of the algebra of surfaces with boundaries are used to discuss symmetries of classical open string theory induced by the closed string sector, and to write classical open string field theory on general closed string backgrounds. We give a preliminary analysis of the ghost-dilaton theorem. copyright 1998 Academic Press, Inc

  20. Alternative gravity theories

    International Nuclear Information System (INIS)

    Francaviglia, M.

    1990-01-01

    Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)

  1. String Theory in a Nutshell

    CERN Document Server

    Kiritsis, Elias

    2007-01-01

    This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, String Theory in a Nutshell brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended ""strings"" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, includin

  2. The theta-structure in string theories - 1: bosonic strings

    International Nuclear Information System (INIS)

    Li Miao.

    1985-09-01

    We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)

  3. String theory and water waves

    International Nuclear Information System (INIS)

    Iyer, Ramakrishnan; Johnson, Clifford V; Pennington, Jeffrey S

    2011-01-01

    We uncover a remarkable role that an infinite hierarchy of nonlinear differential equations plays in organizing and connecting certain c-hat <1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A, A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A, D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.

  4. Critical behavior in two-dimensional quantum gravity and equations of motion of the string

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Wadia, S.R.

    1990-01-01

    The authors show how consistent quantization determines the renormalization of couplings in a quantum field theory coupled to gravity in two dimensions. The special status of couplings corresponding to conformally invariant matter is discussed. In string theory, where the dynamical degree of freedom of the two-dimensional metric plays the role of time in target space, these renormalization group equations are themselves the classical equations of motion. Time independent solutions, like classical vacuua, correspond to the situation in which matter is conformally invariant. Time dependent solutions, like tunnelling configurations between vacuua, correspond to special trajectories in theory space. The authors discuss an example of such a trajectory in the space containing the c ≤ 1 minimal models. The authors also discuss the connection between this work and the recent attempts to construct non-pertubative string theories based on matrix models

  5. Topics in Theories of Quantum Gravity

    International Nuclear Information System (INIS)

    Perelstein, M.

    2005-01-01

    In this thesis, the author addresses several issues involving gravity. The first half of the thesis is devoted to studying quantum properties of Einstein gravity and its supersymmetric extensions in the perturbative regime. String theory suggests that perturbative scattering amplitudes in the theories of gravity are related to the amplitudes in gauge theories. This connection has been studied at classical (tree) level by Kawai, Lewellen and Tye. Here, they will explore the relationship between gravity and gauge theory at quantum (loop) level. This relationship, together with the cut-based approach to computing loop amplitudes, allow us to obtain new non-trivial results for quantum gravity. IN particular, they present two infinite sequences of one-loop n-graviton scattering amplitudes: the maximally helicity violating amplitudes in N = 8 supergravity, and the ''all-plus'' helicity amplitudes in Einstein gravity with any minimally coupled massless matter content. The results for n (le) 6 will be obtained by an explicit calculation, while those for n > 6 is inferred from the soft and collinear properties of the amplitudes. They also present an explicit expression for the two-loop contribution to the four-particle scattering amplitude in N = 8 supergravity, and observe a simple relation between this result and its counterpart in N = 4 super-Yang-Mills theory. Furthermore, the simple structure of the two-particle unitarity cuts in these theories suggests that similar relations exist to all loop orders. If this is the case, the first ultraviolet divergence in N = 8 supergravity should appear at five loops, contrary to the earlier expectation of a three-loop counterterm

  6. String theory in four dimensions

    International Nuclear Information System (INIS)

    Dine, M.

    1988-01-01

    A representative sample of current ideas about how one might develop a string phenomenology is presented. Some of the obstacles which lie in between string theory and contact with experiment are described. It is hoped that this volume will provide the reader with ways of thinking about string theory in four dimensions and provide tools for asking questions about string theory and ordinary physics. 102 refs

  7. Quantum backreaction in string theory

    International Nuclear Information System (INIS)

    Evnin, O.

    2012-01-01

    There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Functional integral approach to string theories

    International Nuclear Information System (INIS)

    Sakita, B.

    1987-01-01

    Fermionic string theory can be made supersymmetric: the superstring. It contains among others mass zero gauge fields of spin 1 and 2. The recent revival of interests in string field theories is due to the recognition of the compactified superstring theory as a viable theory of grandunification of all interactions, especially after Green and Schwarz's discovery of the gauge and gravitational anomaly cancellation in 0(32) superstring theory. New developments include string phenomenology, general discussions of compactification, new models, especially the heterotic string. These are either applications or extensions of string field theories. Although these are very exciting developments, the author limits his attention to the basics of the bosonic string theory

  9. Matrix String Theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.

  10. QCD and string theories

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1990-01-01

    This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality

  11. On Field Theory of Open Strings, Tachyon Condensation and Closed Strings

    OpenAIRE

    Shatashvili, Samson L.

    2001-01-01

    I review the physical properties of different vacua in the background independent open string field theory. Talk presented at Strings 2001, Mumbai, India, http://theory.theory.tifr.res.in/strings/Proceedings/#sha-s.

  12. String field theory solution for any open string background

    Czech Academy of Sciences Publication Activity Database

    Erler, T.; Maccaferri, Carlo

    2014-01-01

    Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014

  13. The regular cosmic string in Born-Infeld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael; Fiorini, Franco, E-mail: ferraro@iafe.uba.ar, E-mail: franco@iafe.uba.ar [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2011-09-22

    It is shown that Born-Infeld gravity -a high energy deformation of Einstein gravity-removes the singularities of a cosmic string. The respective vacuum solution results to be free of conical singularity and closed timelike curves. The space ends at a minimal circle where the curvature invariants vanish; but this circle cannot be reached in a finite proper time.

  14. Testing string theory at LHC?

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    A theory with such mathematical beauty cannot be wrong: this is one of the main arguments in favour of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, nor the space of extra dimensions where they live. However there are good reasons to believe that the 'hidden' dimensions of string theory may be much larger than what we thought in the past and that they may be within experimental reach in the near future - together with the strings themselves. In my talk, I will give an elementary introduction of string theory and describe the main experimental predictions.Organiser(s): Jasper Kirkby / EP DivisionNote: Tea & coffee will be served at 16.00 hrs.

  15. String cosmology. Large-field inflation in string theory

    International Nuclear Information System (INIS)

    Westphal, Alexander

    2014-09-01

    This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.

  16. Topics in Theories of Quantum Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Perelstein, M.

    2005-04-05

    In this thesis, the author addresses several issues involving gravity. The first half of the thesis is devoted to studying quantum properties of Einstein gravity and its supersymmetric extensions in the perturbative regime. String theory suggests that perturbative scattering amplitudes in the theories of gravity are related to the amplitudes in gauge theories. This connection has been studied at classical (tree) level by Kawai, Lewellen and Tye. Here, they will explore the relationship between gravity and gauge theory at quantum (loop) level. This relationship, together with the cut-based approach to computing loop amplitudes, allow us to obtain new non-trivial results for quantum gravity. IN particular, they present two infinite sequences of one-loop n-graviton scattering amplitudes: the maximally helicity violating amplitudes in N = 8 supergravity, and the ''all-plus'' helicity amplitudes in Einstein gravity with any minimally coupled massless matter content. The results for n {le} 6 will be obtained by an explicit calculation, while those for n > 6 is inferred from the soft and collinear properties of the amplitudes. They also present an explicit expression for the two-loop contribution to the four-particle scattering amplitude in N = 8 supergravity, and observe a simple relation between this result and its counterpart in N = 4 super-Yang-Mills theory. Furthermore, the simple structure of the two-particle unitarity cuts in these theories suggests that similar relations exist to all loop orders. If this is the case, the first ultraviolet divergence in N = 8 supergravity should appear at five loops, contrary to the earlier expectation of a three-loop counterterm.

  17. String theory in four dimensions

    CERN Document Server

    1988-01-01

    ``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.

  18. Minimal string theories and integrable hierarchies

    Science.gov (United States)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non

  19. String-Math 2015

    CERN Document Server

    2015-01-01

    Welcome to String-Math 2015 at Sanya. The conference will be opened in December 31, 2015- January 4, 2016. String theory plays a central role in theoretical physics as a candidate for the quantum theory unifying gravity with other interactions. It has profound connections with broad branches of modern mathematics ever since the birth. In the last decades, the prosperous interaction, built upon the joint efforts from both mathematicians and physicists, has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side. The interplay is two-fold. The mathematics has provided powerful tools to fulfill the physical interconnection of ideas and clarify physical structures to understand the nature of string theory. On the other hand, ideas from string theory and quantum field theory have been a source of sign...

  20. A primer on string theory

    CERN Document Server

    Schomerus, Volker

    2017-01-01

    Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.

  1. Grand Unification as a Bridge Between String Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Jogesh C.

    2006-06-09

    In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.

  2. Grand Unification as a Bridge Between String Theory and Phenomenology

    Science.gov (United States)

    Pati, Jogesh C.

    In the first part of this paper, we explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity — be it string/M-theory or a reincarnation — this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2)L × SU(2)R × SU(4)c or SO(10) symmetry in 4D in explaining (i) observed neutrino oscillations, (ii) baryogenesis via leptogenesis, and (iii) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M-theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.

  3. Grand Unification as a Bridge Between String Theory and Phenomenology

    International Nuclear Information System (INIS)

    Pati, J

    2006-01-01

    In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2) L x SU(2) R x SU(4) c or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism

  4. String theory compactifications

    CERN Document Server

    Graña, Mariana

    2017-01-01

    The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.

  5. Introduction to string theory

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    I will present a simple and non-technical overview of string theory, aimed for non-experts who like to get some idea what string theory is about. Besides introductory material, I intend to cover also some of the more recent developments.

  6. String theory as a Lilliputian world

    International Nuclear Information System (INIS)

    Ambjørn, J.; Makeenko, Y.

    2016-01-01

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  7. String theory as a Lilliputian world

    Energy Technology Data Exchange (ETDEWEB)

    Ambjørn, J., E-mail: ambjorn@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); IMAPP, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Makeenko, Y., E-mail: makeenko@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2016-05-10

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  8. Introduction to field theory of strings

    International Nuclear Information System (INIS)

    Kikkawa, K.

    1987-01-01

    The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed

  9. A Note on Tensionless Strings in M-Theory

    OpenAIRE

    Davis, K.

    1996-01-01

    In this article we examine the appearance of tensionless strings in M-Theory. We subsequently interpret these tensionless strings in a String Theory context. In particular, we examine tensionless strings appearing in M-Theory on $S^{1}$, M-Theory on $S^{1} / {\\bf Z}_{2}$, and M-Theory on $T^{2}$; we then interpret the appearance of such strings in a String Theory context. Then we reverse this process and examine the appearance of some tensionless strings in String Theory. Subsequently we inte...

  10. Cosmic string in compactified gauge theory

    International Nuclear Information System (INIS)

    Nakamura, A.; Hirenzaki, S.; Shiraishi, K.

    1989-08-01

    A solution of the vortex type is given in a six-dimensional SU(2)xU(1) pure gauge theory coupled to Einstein gravity in a compactified background geometry. We construct the solution of an effective Abelian-Higgs model in terms of dimensional reduction. The solution, however, has a peculiarity in its physically relevant quantity, a deficit angle, which is given as a function of the ratio of the gauge couplings of SU(2) and U(1). The size of the extra space (sphere) is shown to vary with the distance from the axis of the 'string'. (author)

  11. Non-linear σ-models and string theories

    International Nuclear Information System (INIS)

    Sen, A.

    1986-10-01

    The connection between σ-models and string theories is discussed, as well as how the σ-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs

  12. Charting the Landscape of Supercritical String Theory

    International Nuclear Information System (INIS)

    Hellerman, Simeon; Swanson, Ian

    2007-01-01

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories

  13. Hosotani model in closed string theory

    International Nuclear Information System (INIS)

    Shiraishi, Kiyoshi.

    1988-11-01

    Hosotani mechanism in the closed string theory with current algebra symmetry is described by the (old covariant) operator method. We compare the gauge symmetry breaking mechanism in a string theory which has SU(2) symmetry with the one in an equivalent compactified closed string theory. We also investigate the difference between Hosotani mechanism and Higgs mechanism in closed string theories by calculation of a fourpoint amplitude of 'Higgs' bosons at tree level. (author)

  14. Open-closed string correspondence in open string field theory

    International Nuclear Information System (INIS)

    Baumgartl, M.; Sachs, I.

    2008-01-01

    We address the problem of describing different closed string backgrounds in background independent open string field theory: A shift in the closed string background corresponds to a collective excitation of open strings. As an illustration we apply the formalism to the case where the closed string background is a group manifold. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  15. Boundary string field theory and an open string one-loop

    International Nuclear Information System (INIS)

    Lee, Tae Jin; Viswanathan, K. S.; Yang, Yi

    2003-01-01

    We discuss the open string one-loop partition function in the tachyon condensation background of an unstable D-brane system. We evaluate the partition function by using the boundary-state formulation and find that it is in complete agreement with the result obtained in the boundary string field theory. This suggests that the open string higher loop diagrams may be produced consistently by using a closed string field theory, where the D-brane plays the role of a source for the closed string field

  16. Strings, Cosmology and Gravity Student Conference 2010 - SCGSC10. Booklet of abstracts and slides of the presentations

    International Nuclear Information System (INIS)

    Goi, E.; Orsi, F.; Kiefer, F.; Noller, F.; Pugh, T.

    2011-01-01

    This conference is designed to bring together young Ph.D. scholars and postdoctoral scientists working in theoretical high energy physics, especially in the areas of string theory, cosmology and gravity. This document is composed of a booklet of abstracts and the slides of the presentations

  17. Stringing physics along

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, M. [Stanford University and the University of California, Santa Cruz (United States)]. E-mail: mriordan@ucsc.edu

    2007-02-15

    In the last few decades, however, physical theory has drifted away from the professional norms advocated by Newton and other enlightenment philosophers. A vast outpouring of hypotheses has occurred under the umbrella of what is widely called string theory. But string theory is not really a 'theory' at all - at least not in the strict sense that scientists generally use the term. It is instead a dense, weedy thicket of hypotheses and conjectures badly in need of pruning. That pruning, however, can come only from observation and experiment, to which string theory (a phrase I will grudgingly continue using) is largely inaccessible. String theory was invented in the 1970s in the wake of the Standard Model of particle physics. Encouraged by the success of gauge theories of the strong, weak and electromagnetic forces, theorists tried to extend similar ideas to energy and distance scales that are orders of magnitude beyond what can be readily observed or measured. The normal, healthy intercourse between theory and experiment - which had led to the Standard Model - has broken down, and fundamental physics now finds itself in a state of crisis. So it is refreshing to hear from a theorist - one who was deeply involved with string theory and championed it in his previous book, Three Roads to Quantum Gravity - that all is not well in this closeted realm. Smolin argues from the outset that viable hypotheses must lead to observable consequences by which they can be tested and judged. String theory by its very nature does not allow for such probing, according to Smolin, and therefore it must be considered as an unprovable conjecture. Towards the end of his book, Smolin suggests other directions fundamental physics can take, particularly in the realm of quantum gravity, to resolve its crisis and reconnect with the observable world. From my perspective, he leans a bit too heavily towards highly speculative ideas such as doubly special relativity, modified Newtonian

  18. Multi-leg one-loop gravity amplitudes from gauge theory

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.; Perelstein, M.; Rozowsky, J.S.

    1999-01-01

    By exploiting relations between gravity and gauge theories, we present two infinite sequences of one-loop n-graviton scattering amplitudes: the 'maximally helicity-violating' amplitudes in N = 8 supergravity, and the 'all-plus' helicity amplitudes in gravity with any minimally coupled massless matter content. The all-plus amplitudes correspond to self-dual field configurations and vanish in supersymmetric theories. We make use of the tree-level Kawai-Lewellen-Tye (KLT) relations between open and closed string theory amplitudes, which in the low-energy limit imply relations between gravity and gauge theory tree amplitudes. For n ≤ 6, we determine the all-plus amplitudes explicitly from their unitarity cuts. The KLT relations, applied to the cuts, allow us to extend to gravity a previously found 'dimension-shifting' relation between (the cuts of) the all-plus amplitudes in gauge theory and the maximally helicity-violating amplitudes in N = 4 super-Yang-Mills theory. The gravitational version of the relation lets us determine the n ≤ 6N = 8 supergravity amplitudes from the all-plus gravity amplitudes. We infer the two series of amplitudes for all n from their soft and collinear properties, which can also be derived from gauge theory using the KLT relations

  19. Spin chains and string theory.

    Science.gov (United States)

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  20. Basic concepts of string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph

    2013-01-01

    The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.

  1. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  2. Basic Concepts of String Theory

    CERN Document Server

    Blumenhagen, Ralph; Theisen, Stefan

    2013-01-01

    The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.

  3. On background-independent open-string field theory

    International Nuclear Information System (INIS)

    Witten, E.

    1992-01-01

    A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical ''space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator

  4. String theory on the edge

    International Nuclear Information System (INIS)

    Thorlacius, L.

    1989-01-01

    Open string vacuum configurations are described in terms of a one-dimensional field theory on the worldsheet boundary. The one-dimensional path integral has direct physical interpretation as a source term for closed string fields. This means that the vacuum divergences (Mobius infinities) of the path integral must be renormalized correctly. The author shows that reparametrization invariance Ward identities, apart from specifying the equations of motion of spacetime background gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. He argues that vacuum configurations of open strings correspond to Caldeira-Leggett models of dissipative quantum mechanics (DQM) evaluated at a delocalization critical point. This connection reveals that critical DQM will manifest reparametrization invariance (inherited from the conformal invariance of string theory) rather than just scale invariance. This connection should open up new ways of constructing analytic and approximate solutions of open string theory (in particular, topological solitons such as monopoles and instantons). Type I superstring theory gives rise to a supersymmetric boundary field theory. Bose-Fermi cancellation eliminates vacuum divergences but the one-loop beta function remains the same as in the bosonic theory. Reparametrization invariance Ward identities dictate a boundary state normalization which yields consistent string-loop corrections to spacetime equations of motion, in both the periodic and anti-periodic fermion sectors

  5. Remarks on entanglement entropy in string theory

    Science.gov (United States)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  6. Zero-point length from string fluctuations

    International Nuclear Information System (INIS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-01-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory

  7. Automated Systematic Generation and Exploration of Flat Direction Phenomenology in Free Fermionic Heterotic String Theory

    Science.gov (United States)

    Greenwald, Jared

    Any good physical theory must resolve current experimental data as well as offer predictions for potential searches in the future. The Standard Model of particle physics, Grand Unied Theories, Minimal Supersymmetric Models and Supergravity are all attempts to provide such a framework. However, they all lack the ability to predict many of the parameters that each of the theories utilize. String theory may yield a solution to this naturalness (or self-predictiveness) problem as well as offer a unifed theory of gravity. Studies in particle physics phenomenology based on perturbative low energy analysis of various string theories can help determine the candidacy of such models. After a review of principles and problems leading up to our current understanding of the universe, we will discuss some of the best particle physics model building techniques that have been developed using string theory. This will culminate in the introduction of a novel approach to a computational, systematic analysis of the various physical phenomena that arise from these string models. We focus on the necessary assumptions, complexity and open questions that arise while making a fully-automated at direction analysis program.

  8. Strings draw theorists together

    International Nuclear Information System (INIS)

    Green, Michael

    2000-01-01

    Theorists are confident that they are closer than ever to finding a quantum theory that unites gravity with the three other fundamental forces in nature. Many of the leading figures in the world of string theory met at the California Institute of Technology in January to discuss recent progress in the field and to reflect on the state of the theory. The enthusiastic mood of the gathering was based on the fact that string theory provides an elegant framework for a unified theory of all the forces and particles in nature, and also gives a consistent quantum-mechanical description of general relativity. String theory, and more precisely superstring theory, describes the assortment of elementary particles such as quarks and leptons, and the gauge bosons responsible for mediating forces in a unified manner as different modes of vibration of a single extended string. This version of the theory also embodies supersymmetry a conjectured symmetry that unifies fermions and bosons. Furthermore, the fact that the string has a fundamental length scale - the ''string length'' - apparently cures the short-distance problems of uniting general relativity with quantum theory. The main problem with the early formulations of superstring theory was that they emphasized the ''perturbative'' point of view, an approximation that describes string-like quantum-mechanical particles moving through classical (that is non quantum-mechanical) space-time. However, very general arguments require that any quantum theory of gravity should also describe space-time geometry in a quantum-mechanical manner. The classical geometry of space-time should then emerge as an approximate description at distance scales much larger than the so-called Planck scale of 10 -33 m. This requires an understanding of the theory beyond the perturbative approximation. It is the quest for this more fundamental description of string theory that has provided the main challenge for string theorists over the past decade. Much

  9. Tadpole resummations in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in 'wrong' vacua. In this Letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken supersymmetry is also discussed

  10. Nonlocal String Theories on AdS3 x S3 and Stable Non-Supersymmetric Backgrounds

    International Nuclear Information System (INIS)

    Silverstein, Eva M

    2002-01-01

    We exhibit a simple class of exactly marginal ''double-trace'' deformations of two dimensional CFTs which have AdS 3 duals, in which the deformation is given by a product of left and right-moving U(1) currents. In this special case the deformation on AdS 3 is generated by a local boundary term in three dimensions, which changes the physics also in the bulk via bulk-boundary propagators. However, the deformation is non-local in six dimensions and on the string worldsheet, like generic non-local string theories (NLSTs). Due to the simplicity of the deformation we can explicitly make computations in the non-local string theory and compare them to CFT computations, and we obtain precise agreement. We discuss the effect of the deformation on closed strings and on D-branes. The examples we analyze include a supersymmetry-breaking but exactly marginal ''double-trace'' deformation, which is dual to a string theory in which no destabilizing tadpoles are generated for moduli nonperturbatively in all couplings, despite the absence of supersymmetry. We explain how this cancellation works on the gravity side in string perturbation theory, and also non-perturbatively at leading order in the deformation parameter. We also discuss possible flat space limits of our construction

  11. String-coupling constant and dilaton vacuum expectation value in string field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    1987-01-01

    In the first quantized approaches to strings, it is well known that the string-coupling constant is determined by the vacuum expectation value of the dilaton field. This property, however, has never been demonstrated within the framework of string field theory. An explicit reparametrization of the string field associated with the shifts of the dilaton vacuum expectation value and the string-coupling constant is constructed exhibiting the above property in the light-cone field theory of the closed bosonic string. (orig.)

  12. Electric magnetic duality in string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1992-07-01

    The electric-magnetic duality transformation in four dimensional heterotic string theory discussed by Shapere, Trivedi and Wilczek is shown to be an exact symmetry of the equations of motion of low energy effective field theory even after including the scalar and the vector fields, arising due to compactification, in the effective field theory. Using this duality transformation we construct rotating black hole solutions in the effective field theory carrying both electric and magnetic charges. The spectrum of extremal magnetically charged black holes turn out to be similar to that of electrically charged elementary string excitations lying on the leading Regge trajectory. We also discuss the possibility that the duality symmetry is an exact symmetry of the full string theory under which electrically charged elementary string excitations get exchanged with magnetically charged soliton like solutions. This proposal might be made concrete following the suggestion of Dabholkar et. al. that fundamental strings may be regarded as soliton like classical solutions in the effective field theory. (author). 20 refs

  13. Gauge-string duality for superconformal deformations of N = 4 Super Yang-Mills theory

    International Nuclear Information System (INIS)

    Frolov, Sergey A.; Roiban, Radu; Tseytlin, Arkady A.

    2005-01-01

    We analyze in detail the relation between an exactly marginal deformation of N = 4 SYM - the Leigh-Strassler or 'β-deformation' - and its string theory dual (recently constructed in hep-th/0502086) by comparing energies of semiclassical strings to anomalous dimensions of gauge-theory operators in the two-scalar sector. We stress the existence of integrable structures on the two sides of the duality. In particular, we argue that the integrability of strings in AdS 5 x S 5 implies the integrability of the deformed world sheet theory with real deformation parameter. We compare the fast string limit of the worldsheet action in the sector with two angular momenta with the continuum limit of the coherent state action of an anisotropic XXZ spin chain describing the one-loop anomalous dimensions of the corresponding operators and find a remarkable agreement for all values of the deformation parameter. We discuss some of the properties of the Bethe Ansatz for this spin chain, solve the Bethe equations for small number of excitations and comment on higher loop properties of the dilatation operator. With the goal of going beyond the leading order in the 't Hooft expansion we derive the analog of the Bethe equations on the string-theory side, and show that they coincide with the thermodynamic limit of the Bethe equations for the spin chain. We also compute the 1/J corrections to the anomalous dimensions of operators with large R-charge (corresponding to strings with angular momentum J) and match them to the 1-loop corrections to the fast string energies. Our results suggest that the impressive agreement between the gauge theory and semiclassical strings in AdS 5 x S 5 is part of a larger picture underlying the gauge/gravity duality

  14. Unified string theories

    International Nuclear Information System (INIS)

    Gross, D.J.

    1985-01-01

    String theories offer a way of realizing the potential of supersymmetry, Kaluza-Klein and much more. They represent a radical departure from ordinary quantum field theory, but in the direction of increased symmetry and structure. They are based on an enormous increase in the number of degrees of freedom, since in addition to fermionic coordinates and extra dimensions, the basic entities are extended one dimensional objects instead of points. Correspondingly the symmetry group is greatly enlarged, in a way that we are only beginning to comprehend. At the very least this extended symmetry contains the largest group of symmetries that can be contemplated within the framework of point field theories-those of ten-dimensional supergravity and super Yang-Mills theory. Types of string theories and the phenomenology to be expected from them are reviewed

  15. Differential formulation in string theories

    International Nuclear Information System (INIS)

    Guzzo, M.M.

    1987-01-01

    The equations of gauge invariance motion for theories of boson open strings and Neveu-Schwarz and Ramond superstring are derived. A construction for string theories using differential formalism, is introduced. The importance of BRST charge for constructing such theories and the necessity of introduction of auxiliary fields are verified. (M.C.K.) [pt

  16. Clear evidence of a continuum theory of 4D Euclidean simplicial quantum gravity

    International Nuclear Information System (INIS)

    Egawa, H.S.; Horata, S.; Yukawa, T.

    2002-01-01

    Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields (N X ) and gauge fields (N A ) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent γ (4) is estimated. Furthermore, we compare our numerical results with Background-Metric-Independent (BMI) formulation conjectured to describe the quantum field theory of gravity in 4D. The numerical results suggest that the 4D simplicial quantum gravity is related to the conformal gravity in 4D. Therefore, we propose a phase structure in detail with adding both scalar and gauge fields and discuss the possibility and the property of a continuum theory of 4D Euclidean simplicial quantum gravity

  17. Strings draw theorists together

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge (United Kingdom)

    2000-03-01

    Theorists are confident that they are closer than ever to finding a quantum theory that unites gravity with the three other fundamental forces in nature. Many of the leading figures in the world of string theory met at the California Institute of Technology in January to discuss recent progress in the field and to reflect on the state of the theory. The enthusiastic mood of the gathering was based on the fact that string theory provides an elegant framework for a unified theory of all the forces and particles in nature, and also gives a consistent quantum-mechanical description of general relativity. String theory, and more precisely superstring theory, describes the assortment of elementary particles such as quarks and leptons, and the gauge bosons responsible for mediating forces in a unified manner as different modes of vibration of a single extended string. This version of the theory also embodies supersymmetry a conjectured symmetry that unifies fermions and bosons. Furthermore, the fact that the string has a fundamental length scale - the ''string length'' - apparently cures the short-distance problems of uniting general relativity with quantum theory. The main problem with the early formulations of superstring theory was that they emphasized the ''perturbative'' point of view, an approximation that describes string-like quantum-mechanical particles moving through classical (that is non quantum-mechanical) space-time. However, very general arguments require that any quantum theory of gravity should also describe space-time geometry in a quantum-mechanical manner. The classical geometry of space-time should then emerge as an approximate description at distance scales much larger than the so-called Planck scale of 10{sup -33} m. This requires an understanding of the theory beyond the perturbative approximation. It is the quest for this more fundamental description of string theory that has provided the main challenge for

  18. International conference on string theory

    CERN Document Server

    2017-01-01

    The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.

  19. A Yang-Mills structure for string field theory

    International Nuclear Information System (INIS)

    Tsousheung Tsun

    1990-01-01

    String theorists believe that one way to achieve a fully quantized theory of string is through string field theory. The other way is to study conformal field theory on Riemann surfaces of different genera, which is the subject of many of the talks at this Conference. In a way, string field theory is the more conservative approach, since it aims just to replace the spacetime points of conventional quantum field theory by string, which are extended objects. However, from this point of view string theory has one rather unsatisfactory aspect, in the sense that although it has been very well developed and minutely studied, we are still rather unclear about its basic structure. We can contrast this to both general relativity, which is based on the geometry of spacetime, and to gauge theory, which is about the structure of various natural bundles over spacetime. And yet string theory is supposed to embody both these two essentially geometric theories. To paraphrase Witten, in string theory we seem to have to work backwards to get at the still unknown basic structure. Some joint work with Chan Hong-Mo is reported in an attempt to gain some understanding in that general direction. It seems that one could in some sense consider string field theory as a generalized Yang-Mills theory. This idea is explored. (author)

  20. Introduction to the theory of strings

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1985-10-01

    These lectures present, from an introductory perspective, some basic aspects of the quantum theory of strings. They treat (1) the kinematics, spectrum, and scattering amplitude of the bosonic string, (2) the spectrum and supersymmetry of Green-Schwarz superstring, and (3) the identification of the underlying gauge invariances of the string theory. 43 refs

  1. Hermiticity and CPT in string theory

    International Nuclear Information System (INIS)

    Sonoda, Hidenori

    1989-01-01

    In the application of conformal field theory to string theory S-matrix elements are obtained from correlation functions of vertex operators. By studying the relation between the vertex operators for the incoming states and those for the outgoing states we obtain two results: First we show that hermiticity of the string vertices is equivalent to the CPT invariance of the corresponding conformal field theory. Secondly we prove that the S-matrix elements in any string theory in flat space-time background are invariant under CPT. (orig.)

  2. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  3. Regularization of finite temperature string theories

    International Nuclear Information System (INIS)

    Leblanc, Y.; Knecht, M.; Wallet, J.C.

    1990-01-01

    The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)

  4. Field theory of relativistic strings: I. Trees

    International Nuclear Information System (INIS)

    Kaku, M.; Kikkawa, K.

    1985-01-01

    The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken

  5. Strings reinterpreted as topological elements of space time

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1986-01-01

    In 1974, Scherk and Schwarz suggested a reinterpretation of string dynamics as a theory of quantum gravity with unification. We suggest completing the transition through the reinterpretation of the strings themselves as Feynman-paths, spanning the topology of space time in the Hawking-King-McCarthy model. This explains the emergency of gravity

  6. On integrable c < 1 open-closed string theory

    International Nuclear Information System (INIS)

    Johnson, C.V.

    1994-01-01

    The integrable structure of open-closed string theories in the (p, q) conformal minimal model backgrounds is presented. The relation between the τ-function of the closed string theory and that of the open-closed string theory is uncovered. The resulting description of the open-closed string theory is shown to fit very naturally into the framework of the sl(q, C) KdV hierarchies. In particular, the twisted bosons which underlie and organise the structure of the closed string theory play a similar role here and may be employed to derive loop equations and correlation function recursion relations for the open-closed strings in a simple way. (orig.)

  7. Symmetry breaking in string theory

    International Nuclear Information System (INIS)

    Potting, R.

    1998-01-01

    A mechanism for a spontaneous breakdown of CPT symmetry appears in string theory, with possible implications for particle models. A realistic string theory might exhibit CPT violation at levels detectable in current or future experiments. A possible new mechanism for baryogenesis in the early Universe is also discussed

  8. On novel string theories from 4d gauge theories

    Directory of Open Access Journals (Sweden)

    Kiritsis Elias

    2014-04-01

    Full Text Available We investigate strings theories as defined from four dimensional gauge theories. It is argued that novel (superstring theories exist up to 26 dimensions. Some of them may support weakly curved geometries. A proposal is outlined to link their local conformal invariance to the dynamics of the bulk string theory.

  9. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    Science.gov (United States)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  10. Cosmological string theory with thermal energy

    International Nuclear Information System (INIS)

    Shiraishi, Kiyoshi.

    1988-09-01

    An attempt to construct a cosmological scenario directly from string theory is made. Cosmological string theory was presented by Antoniadis, Bachas, Ellis and Nanopoulos. They also expect loop effects on cosmological string theory. In this paper, we point out the other importance of the one-loop effect, the finite temperature effect. The equations of motion for background geometry at finite temperature is given. We address a problem on derivation of the effective action at non-zero temperature. (author)

  11. Lectures on string theory

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    Several topics are discussed in string theory presented as three lectures to the Spring School on Superstrings at the ICTP at Trieste, Italy, in April, 1988. The first lecture is devoted to some general aspects of conformal invariance and duality. The second sketches methods for carrying out perturbative calculations in string field theory. The final lecture presents an alternative lattice approach to a nonperturbative formulation of the sum over world surfaces. 35 refs., 12 figs

  12. An introduction to string theory

    OpenAIRE

    West, Peter C

    1989-01-01

    These notes are based on lectures given by Michael Green during Part III of the Mathematics Tripos (the Certificate for Advanced Study in Mathematics) in the Spring of 2003. The course provided an introduction to string theory, focussing on the Bosonic string, but treating the superstring as well. A background in quantum field theory and general relativity is assumed. Some background in particle physics, group theory and conformal field theory is useful, though not essential. A number of appe...

  13. Cosmic strings in unified gauge theories

    International Nuclear Information System (INIS)

    Everett, A.E.

    1981-01-01

    Some spontaneously broken gauge theories can give rise to stringlike vacuum structures (vortices). It has been pointed out by Vilenkin that in grand unified theories these can be sufficiently massive to have cosmological implications, e.g., in explaining the formation of galaxies. The circumstances in which such structures occur are examined. They do not occur in the simplest grand unified theories, but can occur in some more elaborate models which have been proposed. The cross section for the scattering of elementary particles by strings is estimated. This is used to evaluate the effect of collisions on the dynamics of a collapsing circular string, with particular attention to the question of whether energy dissipation by collision can reduce the rate of formation of black holes by collapsed strings, which may be unacceptably large in models where strings occur. It is found that the effect of collisions is not important in the case of grand unified strings, although it can be important for lighter strings

  14. Deformation of the cubic open string field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin, E-mail: taejin@kangwon.ac.kr

    2017-05-10

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  15. Deformation of the cubic open string field theory

    International Nuclear Information System (INIS)

    Lee, Taejin

    2017-01-01

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  16. Deformation of the cubic open string field theory

    Directory of Open Access Journals (Sweden)

    Taejin Lee

    2017-05-01

    Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  17. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  18. Big bang models in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes Pleinlaan 2, B-1050 Brussels (Belgium)

    2006-11-07

    These proceedings are based on lectures delivered at the 'RTN Winter School on Strings, Supergravity and Gauge Theories', CERN, 16-20 January 2006. The school was mainly aimed at PhD students and young postdocs. The lectures start with a brief introduction to spacetime singularities and the string theory resolution of certain static singularities. Then they discuss attempts to resolve cosmological singularities in string theory, mainly focusing on two specific examples: the Milne orbifold and the matrix big bang.

  19. Hagedorn Behavior of Little String Theories from string corrections to NS5-branes

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2000-01-01

    We examine the Hagedorn behavior of little string theory using its conjectured duality with near-horizon NS5-branes. In particular, by studying the string-corrected NS5-brane supergravity solution, it is shown that tree-level corrections to the temperature vanish, while the leading one-loop string...... correction generates the correct temperature dependence of the entropy near the Hagedorn temperature. Finally, the Hagedorn behavior of ODp-brane theories, which are deformed versions of little string theory, is considered via their supergravity duals....

  20. Vacuum degeneracy in four-dimensional string theories

    International Nuclear Information System (INIS)

    Nilles, H.P.

    1988-01-01

    I present results obtained in collaboration with A. Font, L. Ibanez and F. Quevedo using a method that links explicit string constructions with the techniques of supergravity field theories. We make use of the fact that the supersymmetric vacua of the field theory limit of d=4 N=1 superstring theories are all degenerate. Given a particular string theory we can then test for new 'nearby' string theories by an examination of flat directions in the scalar potential of the underlying field theory. As input from string theory we need the knowledge of the Yukawa couplings (i.e., the superpotential) for any number of fields. In the language of conformal field theory, this amounts to a search for exactly marginal operators and the classification of multicritical points. (orig./HSI)

  1. Quantum consistency of open string theories

    International Nuclear Information System (INIS)

    Govaerts, J.

    1989-01-01

    We discuss how Virasoro anomalies in open string theories uniquely select the gauge group SO(2 D/2 ) independently of any regularisation, although the cancellation of these anomalies does not occur in tachyonic theories, and regulators can always be chosen to make these theories (one-loop) finite for any SO(n) and USp(n) gauge group. The discussion is mainly restricted to open bosonic strings. These results open new perspectives for the recent suggestion made by Sagnotti, the generalisations of which allow for the construction of new open string theories in less than ten dimensions. (orig.)

  2. EFFECTIVE ACTIONS FOR HETEROTIC STRING THEORY

    NARCIS (Netherlands)

    SUELMANN, H

    Heterotic String Theory is an attempt to construct a description of nature that is more satisfying than the Standard Model. A major problem is that it is very difficult to do explicit calculations in string theory. Therefore, it is useful to construct a 'normal' field theory that approximates HST.

  3. Tensor constructions of open string theories. I. Foundations

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Zwiebach, B.

    1997-01-01

    The possible tensor constructions of open string theories are analyzed from first principles. To this end the algebraic framework of open string field theory is clarified, including the role of the homotopy associative A ∞ algebra, the odd symplectic structure, cyclicity, star conjugation, and twist. It is also shown that two string theories are off-shell equivalent if the corresponding homotopy associative algebras are homotopy equivalent in a strict sense. It is demonstrated that a homotopy associative star algebra with a compatible even bilinear form can be attached to an open string theory. If this algebra does not have a space-time interpretation, positivity and the existence of a conserved ghost number require that its cohomology is at degree zero, and that it has the structure of a direct sum of full matrix algebras. The resulting string theory is shown to be physically equivalent to a string theory with a familiar open string gauge group. (orig.)

  4. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  5. Geometry, topology, and string theory

    International Nuclear Information System (INIS)

    Varadarajan, Uday

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated

  6. Two-loop string theory on null compactifications

    International Nuclear Information System (INIS)

    Cove, Henry C.D.; Szabo, Richard J.

    2006-01-01

    We compute the two-loop contributions to the free energy in the null compactification of perturbative string theory at finite temperature. The cases of bosonic, type II and heterotic strings are all treated. The calculation exploits an explicit reductive parametrization of the moduli space of infinite-momentum frame string worldsheets in terms of branched cover instantons. Various arithmetic and physical properties of the instanton sums are described. Applications to symmetric product orbifold conformal field theories and to the matrix string theory conjecture are also briefly discussed

  7. Supersymmetry and String Theory: Beyond the Standard Model

    International Nuclear Information System (INIS)

    Rocek, Martin

    2007-01-01

    When I was asked to review Michael Dine's new book, 'Supersymmetry and String Theory', I was pleased to have a chance to read a book by such an established authority on how string theory might become testable. The book is most useful as a list of current topics of interest in modern theoretical physics. It gives a succinct summary of a huge variety of subjects, including the standard model, symmetry, Yang-Mills theory, quantization of gauge theories, the phenomenology of the standard model, the renormalization group, lattice gauge theory, effective field theories, anomalies, instantons, solitons, monopoles, dualities, technicolor, supersymmetry, the minimal supersymmetric standard model, dynamical supersymmetry breaking, extended supersymmetry, Seiberg-Witten theory, general relativity, cosmology, inflation, bosonic string theory, the superstring, the heterotic string, string compactifications, the quintic, string dualities, large extra dimensions, and, in the appendices, Goldstone's theorem, path integrals, and exact beta-functions in supersymmetric gauge theories. Its breadth is both its strength and its weakness: it is not (and could not possibly be) either a definitive reference for experts, where the details of thorny technical issues are carefully explored, or a textbook for graduate students, with detailed pedagogical expositions. As such, it complements rather than replaces the much narrower and more focussed String Theory I and II volumes by Polchinski, with their deep insights, as well the two older volumes by Green, Schwarz, and Witten, which develop string theory pedagogically. (book review)

  8. Supergravity duals of matrix string theory

    International Nuclear Information System (INIS)

    Morales, Jose F.; Samtleben, Henning

    2002-01-01

    We study holographic duals of type II and heterotic matrix string theories described by warped AdS 3 supergravities. By explicitly solving the linearized equations of motion around near horizon D-string geometries, we determine the spectrum of Kaluza-Klein primaries for type I, II supergravities on warped AdS 3 xS 7 . The results match those coming from the dual two-dimensional gauge theories living on the D-string worldvolumes. We briefly discuss the connections with the N=(8,8), N=(8,0) orbifold superconformal field theories to which type IIB/heterotic matrix strings flow in the infrared. In particular, we associate the dimension (h,h-bar) (32,32) twisted operator which brings the matrix string theories out from the conformal point (R; 8 ) N /S N with the dilaton profile in the supergravity background. The familiar dictionary between masses and 'scaling' dimensions of field and operators are modified by the presence of non-trivial warp factors and running dilatons. These modifications are worked out for the general case of domain wall/QFT correspondences between supergravities on warped AdS d+1 xS q geometries and super Yang-Mills theories with 16 supercharges. (author)

  9. Massive IIA string theory and Matrix theory compactification

    International Nuclear Information System (INIS)

    Lowe, David A.; Nastase, Horatiu; Ramgoolam, Sanjaye

    2003-01-01

    We propose a Matrix theory approach to Romans' massive Type IIA supergravity. It is obtained by applying the procedure of Matrix theory compactifications to Hull's proposal of the massive Type IIA string theory as M-theory on a twisted torus. The resulting Matrix theory is a super-Yang-Mills theory on large N three-branes with a space-dependent noncommutativity parameter, which is also independently derived by a T-duality approach. We give evidence showing that the energies of a class of physical excitations of the super-Yang-Mills theory show the correct symmetry expected from massive Type IIA string theory in a lightcone quantization

  10. Supersymmetrical dual string theories and their field theory limits: A review

    International Nuclear Information System (INIS)

    Green, M.B.

    1985-01-01

    This paper outlines the construction and properties of supersymmetric string theories. Such theories, which describe the quantum mechanics of relativistic strings in ten-space time dimensions contain both N=4 Yang-Mills and N=8 supergravity field theories as special limits in which the string tension becomes infinite. Calculations of one-loop S-matrix elements reveal remarkable finiteness properties

  11. Introduction to conformal field theory. With applications to string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Plauschinn, Erik

    2009-01-01

    Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)

  12. From N=2 strings to M-theory

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1997-01-01

    Taking the N=2 strings as the starting point, we discuss the equivalent self-dual field theories and analyze their symmetry structure in 2 + 2 dimensions. Restoring the full 'Lorentz' invariance in the target space necessarily leads to an extension of the N=2 string theory to a theory of 2 + 2 dimensional supermembranes propagating in 2 + 10 dimensional target space. The supermembrane requires maximal conformal supersymmetry in 2 + 2 dimensions, in the way advocated by Siegel, and it leads to the self-dual N=4 super-Yang-Mills theory and the self-dual N=8 (gauged) supergravity in 2+2 dimensions. The N=2 strings now appear on equal footing with the other string models as particular limits of the M-theory. (orig.)

  13. On the universality class of certain string theory hadrons

    International Nuclear Information System (INIS)

    Bertoldi, G.; Bigazzi, F.; Cotrone, A.L.; Nunez, C.; Pando Zayas, L.A.

    2003-12-01

    Exploiting the gauge/gravity correspondence we d the spectrum of hadronic-like bound states of adjoint particles with a large global charge in several confining theories. In particular, we consider an embedding of four-dimensional N = 1 supersymmetric Yang-Mills into IIA string theory, two classes of three-dimensional gauge theories and the softly broken version of one of them. In all cases we describe the low energy excitations of a heavy hadron with mass proportional to its global charge. These excitations include: the hadron's nonrelativistic motion, its stringy excitations and excitations corresponding to the addition of massive constituents. Our analysis provides ample evidence for the universality of such hadronic states in con ing theories admitting supergravity duals. Besides, we d numerically a new smooth solution that can be thought of as a non-supersymmetric deformation of G 2 holonomy manifolds. (author)

  14. Geometric derivation of string field theory from first principles: Closed strings and modular invariance

    International Nuclear Information System (INIS)

    Kaku, M.

    1988-01-01

    We present an entirely new approach to closed-string field theory, called Igeometric string field theory R, which avoids the complications found in Becchi-Rouet-Stora-Tyutin string field theory (e.g., ghost counting, infinite overcounting of diagrams, midpoints, lack of modular invariance). Following the analogy with general relativity and Yang-Mills theory, we define a new infinite-dimensional local gauge group, called the unified string group, which uniquely specifies the connection fields, the curvature tensor, the measure and tensor calculus, and finally the action itself. Geometric field theory, when gauge fixed, yields an entirely new class of gauges called the interpolating gauge which allows us to smoothly interpolate between the midpoint gauge and the end-point gauge (''covariantized light-cone gauge''). We can show that geometric string field theory reproduces one copy of the Shapiro-Virasoro model. Surprisingly, after the gauge is broken, a new Iclosed four-string interactionR emerges as the counterpart of the instantaneous four-fermion Coulomb term in QED. This term restores modular invariance and precisely fills the missing region of the complex plane

  15. Self Completeness of Einstein Gravity

    CERN Document Server

    Dvali, Gia

    2010-01-01

    We argue, that in Einsteinian gravity the Planck length is the shortest length of nature, and any attempt of resolving trans-Planckian physics bounces back to macroscopic distances due to black hole formation. In Einstein gravity trans-Planckian propagating quantum degrees of freedom cannot exist, instead they are equivalent to the classical black holes that are fully described by lighter infra-red degrees of freedom and give exponentially-soft contribution into the virtual processes. Based on this property we argue that pure-Einstein (super)gravity and its high-dimensional generalizations are self-complete in deep-UV, but not in standard Wilsonian sense. We suggest that certain strong-coupling limit of string theory is built-in in pure Einstein gravity, whereas the role of weakly-coupled string theory limit is to consistently couple gravity to other particle species, with their number being set by the inverse string coupling. We also discuss some speculative ideas generalizing the notion of non-Wilsonian sel...

  16. String theory and the scientific method

    CERN Document Server

    Dawid, Richard

    2013-01-01

    String theory has played a highly influential role in theoretical physics for nearly three decades and has substantially altered our view of the elementary building principles of the Universe. However, the theory remains empirically unconfirmed, and is expected to remain so for the foreseeable future. So why do string theorists have such a strong belief in their theory? This book explores this question, offering a novel insight into the nature of theory assessment itself. Dawid approaches the topic from a unique position, having extensive experience in both philosophy and high-energy physics. He argues that string theory is just the most conspicuous example of a number of theories in high-energy physics where non-empirical theory assessment has an important part to play. Aimed at physicists and philosophers of science, the book does not use mathematical formalism and explains most technical terms.

  17. Topics in string theory

    International Nuclear Information System (INIS)

    Neveu, A.

    1986-01-01

    There exist several string models. In the first lecture, the simplest one, the open bosonic string, which turns out to live most naturally in 26 dimensions will be described in some detail. In the second lecture, the closed bosonic strings, and the open and closed 10-dimensional strings (superstrings) are reviewed. In the third lecture, various compactification schemes which have been proposed to deal with the extra space dimensions, from 4 to 10 or 26 are dealt with; in particular, the Frenkel-Kac construction which builds non-Abelian internal symmetry groups out of the compactified dimensions, and the resulting heterotic string are described. Finally, in the fourth lecture, the important problem of the second quantization of string theories, and of the underlying gauge invariance which is responsible for the possibility of dealing, in a consistent fashion, with interacting high-spin states without negative metric is addressed. 41 references, 8 figures

  18. Orbifolds of M-theory and type II string theories in two dimensions

    International Nuclear Information System (INIS)

    Roy, S.

    1997-01-01

    We consider several orbifold compactifications of M-theory and theircorresponding type II duals in two space-time dimensions. In particular, we show that while the orbifold compactification of M-theory on T 9 /J 9 is dual to the orbifold compactification of type IIB string theory on T 8 /I 8 , the same orbifold T 8 /I 8 of type IIA string theory is dual to M-theory compactified on a smooth product manifold K3 x T 5 . Similarly, while the orbifold compactification of M-theory on (K3 x T 5 )/σ. J 5 is dual to the orbifold compactification of type IIB string theory on (K3 x T 4 )/σ.I 4 , the same orbifold of type IIA string theory is dual to the orbifold T 4 x (K3 x S 1 )/σ.J 1 of M-theory. The spectrum of various orbifold compactifications of M-theory and type II string theories on both sides are compared giving evidence in favor of these duality conjectures. We also comment on a connection between the Dasgupta-Mukhi-Witten conjecture and the Dabholkar-Park-Sen conjecture for the six-dimensional orbifold models of type IIB string theory and M-theory. (orig.)

  19. String field theory. Algebraic structure, deformation properties and superstrings

    International Nuclear Information System (INIS)

    Muenster, Korbinian

    2013-01-01

    This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the

  20. Topological strings from Liouville gravity

    International Nuclear Information System (INIS)

    Ishibashi, N.; Li, M.

    1991-01-01

    We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)

  1. σ-models and string theories

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.

    1987-01-01

    The propagation of closed bosonic strings interacting with background gravitational and dilaton fields is reviewed. The string is treated as a quantum field theory on a compact 2-dimensional manifold. The question is posed as to how the conditions for the vanishing trace anomaly and the ensuing background field equations may depend on global features of the manifold. It is shown that to the leading order in σ-model perturbation theory the string loop effects do not modify the gravitational and the dilaton field equations. However for the purely bosonic strings new terms involving the modular parameter of the world sheet are induced by quantum effects which can be absorbed into a re-definition of the background fields. The authors also discuss some aspects of several regularization schemes such as dimensional, Pauli-Villars and the proper-time cut off in an appendix

  2. On noncommutative open string theories

    International Nuclear Information System (INIS)

    Russo, J.G.; Sheikh-Jabbari, M.M.

    2000-08-01

    We investigate new compactifications of OM theory giving rise to a 3+1 dimensional open string theory with noncommutative x 0 -x 1 and x 2 -x 3 coordinates. The theory can be directly obtained by starting with a D3 brane with parallel (near critical) electric and magnetic field components, in the presence of a RR scalar field. The magnetic parameter permits to interpolate continuously between the x 0 -x 1 noncommutative open string theory and the x 2 -x 3 spatial noncommutative U(N) super Yang-Mills theory. We discuss SL(2, Z) transformations of this theory. Using the supergravity description of the large N limit, we also compute corrections to the quark-antiquark Coulomb potential arising in the NCOS theory. (author)

  3. Noncompact symmetries in string theory

    International Nuclear Information System (INIS)

    Maharana, J.; Schwarz, J.H.

    1993-01-01

    Noncompact groups, similar to those that appeared in various supergravity theories in the 1970's have been turning up in recent studies of string theory. First it was discovered that moduli spaces of toroidal compactification are given by noncompact groups modded out by their maximal compact subgroups and discrete duality groups. Then it was found that many other moduli spaces have analogous descriptions. More recently, noncompact group symmetries have turned up in effective actions used to study string cosmology and other classical configurations. This paper explores these noncompact groups in the case of toroidal compactification both from the viewpoint of low-energy effective field theory, using the method of dimensional reduction, and from the viewpoint of the string theory world-sheet. The conclusion is that all these symmetries are intimately related. In particular, we find that Chern-Simons terms in the three-form field strength H μνρ play a crucial role. (orig.)

  4. Non-renormalisation theorems in string theory

    International Nuclear Information System (INIS)

    Vanhove, P.

    2007-10-01

    In this thesis we describe various non renormalisation theorems for the string effective action. These results are derived in the context of the M theory conjecture allowing to connect the four gravitons string theory S matrix elements with that of eleven dimensional supergravity. These theorems imply that N = 8 supergravity theory has the same UV behaviour as the N = 4 supersymmetric Yang Mills theory at least up to three loops, and could be UV finite in four dimensions. (author)

  5. E(lementary) Strings in Six-Dimensional Heterotic F-Theory

    OpenAIRE

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-01-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small in...

  6. Supersymmetric gauge theories from string theory

    International Nuclear Information System (INIS)

    Metzger, St.

    2005-12-01

    This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G 2 -manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G 2 -manifold is known. Here we construct families of metrics on compact weak G 2 -manifolds, which contain two conical singularities. Weak G 2 -manifolds have properties that are similar to the ones of proper G 2 -manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E 8 x E 8 -heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)

  7. A non-supersymmetric open-string theory and S-duality

    International Nuclear Information System (INIS)

    Bergman, O.; Gaberdiel, M.R.

    1997-01-01

    A non-supersymmetric ten-dimensional open-string theory is constructed as an orbifold of type I string theory, and as an orientifold of the bosonic type B theory. It is purely bosonic, and cancellation of massless tadpoles requires the gauge group to be SO(32) x SO(32). The spectrum of the theory contains a closed-string tachyon, and open-string tachyons in the (32,32) multiplet. The D-branes of this theory are analyzed, and it is found that the massless excitations of one of the 1-branes coincide with the world-sheet degrees of freedom of the D=26 bosonic string theory compactified on the SO(32) lattice. This suggests that the two theories are related by S-duality. (orig.)

  8. Proceedings of strings, 89

    International Nuclear Information System (INIS)

    Arnowitt, R.; Bryan, R.; Duff, M.J.; Nanopoulos, D.; Pope, C.N.

    1990-01-01

    Does string theory provide us with a consistent quantum theory of gravity? Is it that Holy Grail of elementary particle physics, a Theory of Everything with embraces all the forces and particles of Nature? Even if it is, can we extract concrete predictions about our low-energy world that can be tested experimentally at the SSC and other particle accelerators? What does it have to say about the origin of the Universe and the thorny problem of the cosmological constant? Are superstring theories unique, or might the eleven-dimensional supermembrane prove equally consistent? These are just some of the question posed and debated at Strings '89

  9. The tension as perturbative parameter in string theory

    International Nuclear Information System (INIS)

    Gamboa, J.

    1990-01-01

    We propose an approach to string theory where the zero theory is the null string. We find an explicit form of the propagator for the null string in the momentum space. We show that considering the tension as perturbative parameter, the perturbative series is completely summable and we find the propagator of the bosonic open string with tension T. (author) [pt

  10. Calculations in perturbative string field theory

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1987-01-01

    The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules

  11. A brief history of string theory. From dual models to M-theory

    International Nuclear Information System (INIS)

    Rickles, Dean

    2014-01-01

    First monograph devoted to the history of superstring theory. Objective presentation of a controversial area of physics enabling readers to see through the divisive hype and hysteria forming the 'String Wars'. Interweaves conceptual issues with the wider historical development. Reveals string theory's historically close connections with other areas of physics. Self-contained approach brings string theory within the grasp of non-specialists. During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  12. Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity

    CERN Document Server

    Amelino-Camelia, G; Mavromatos, Nikolaos E; Nanopoulos, Dimitri V

    1997-01-01

    Within a Liouville approach to non-critical string theory, we discuss space-time foam effects on the propagation of low-energy particles. We find an induced frequency-dependent dispersion in the propagation of a wave packet, and observe that this would affect the outcome of measurements involving low-energy particles as probes. In particular, the maximum possible order of magnitude of the space-time foam effects would give rise to an error in the measurement of distance comparable to that independently obtained in some recent heuristic quantum-gravity analyses. We also briefly compare these error estimates with the precision of astrophysical measurements.

  13. String Theory: Big Problem for Small Size

    Science.gov (United States)

    Sahoo, S.

    2009-01-01

    String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…

  14. Nonassociativity, Malcev algebras and string theory

    International Nuclear Information System (INIS)

    Guenaydin, M.; Minic, D.

    2013-01-01

    Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Notes on entanglement entropy in string theory

    International Nuclear Information System (INIS)

    He, Song; Numasawa, Tokiro; Takayanagi, Tadashi; Watanabe, Kento

    2015-01-01

    In this paper, we study the conical entropy in string theory in the simplest setup of dividing the nine dimensional space into two halves. This corresponds to the leading quantum correction to the horizon entropy in string theory on the Rindler space. This entropy is also called the conical entropy and includes surface term contributions. We first derive a new simple formula of the conical entropy for any free higher spin fields. Then we apply this formula to computations of conical entropy in open and closed superstring. In our analysis of closed string, we study the twisted conical entropy defined by making use of string theory on Melvin backgrounds. This quantity is easier to calculate owing to the folding trick. Our analysis shows that the conical entropy in closed superstring is UV finite owing to the string scale cutoff.

  16. Fayet-Iliopoulos D terms in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A.

    1987-06-01

    One loop scalar masses induced by Fayet-Ilipoulos D terms in string theory are calculated directly in the heterotic string theory for an arbitrary compactification which preserves space-time supersymmetry at the string tree level. The result is shown to be a total derivative in the moduli space of a torus with two punctures, and hence receives contribution only from the boundary of this moduli space.

  17. Fayet-Iliopoulos D terms in string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1987-06-01

    One loop scalar masses induced by Fayet-Ilipoulos D terms in string theory are calculated directly in the heterotic string theory for an arbitrary compactification which preserves space-time supersymmetry at the string tree level. The result is shown to be a total derivative in the moduli space of a torus with two punctures, and hence receives contribution only from the boundary of this moduli space

  18. String Theory Rocks!

    CERN Multimedia

    2008-01-01

    String Theory supporters argue that the universe we live in has eleven dimensions, out of which three spacial dimensions and a temporal one, which define the void and the space-time environment we experience daily.

  19. Bianchi Type-V Bulk Viscous Cosmic String in f(R,T Gravity with Time Varying Deceleration Parameter

    Directory of Open Access Journals (Sweden)

    Bïnaya K. Bishi

    2015-01-01

    Full Text Available We study the Bianchi type-V string cosmological model with bulk viscosity in f(R,T theory of gravity by considering a special form and linearly varying deceleration parameter. This is an extension of the earlier work of Naidu et al., 2013, where they have constructed the model by considering a constant deceleration parameter. Here we find that the cosmic strings do not survive in both models. In addition we study some physical and kinematical properties of both models. We observe that in one of our models these properties are identical to the model obtained by Naidu et al., 2013, and in the other model the behavior of these parameters is different.

  20. Some exact solutions of magnetized viscous model in string ...

    Indian Academy of Sciences (India)

    Recently, the string cosmology has received considerable attention in the ... require a quantum theory of gravity, for which string theory seems to be the most promis- ..... where d2 is a constant of integration, which is taken as unity without the loss of ..... The solutions present interesting features in the presence of vis-.

  1. Exotic configurations for gauge theory strings

    International Nuclear Information System (INIS)

    Yajnik, U.A.

    1987-01-01

    This paper discusses a class of string configurations occuring in nonabelian gauge theories, which are such that a component of the charged scalar field responsible for the string has a nonvanishing expectation value in the core of the string. A systematic procedure is given for setting up the ansatz for such configurations. (orig.)

  2. Topics in string theory

    Science.gov (United States)

    Gorbatov, Elie

    In the first part of the dissertation we study noncommutative field theories at finite temperature. We find evidence for winding states and observe the existence of a transition to a new phase where there is a reduction of the degrees of freedom in the non-planar sector of the theory. We emphasize that such a transition is generic and insensitive to the particulars of the UV definition of the theory. In the second part we investigate some aspects of M-theory compactifications on orbifolds. The heterotic E8 x E 8 string compactified on T4/ ZN has gauge group G x G˜ with massless states in the twisted sector charged under both factors. In the dual M-theory description on T4/ ZN x S1/Z 2 the two groups do not communicate with each other since they reside on the boundary of the eleven dimensional spacetime. This leads to a conundrum for the twisted states of the perturbative heterotic string for there does not seem to be local degrees of freedom which carry charges under both G and G˜. We propose a resolution of this apparent paradox by nonperturbative states in M-theory. In support of our argument we review the consideration of six-dimensional gauge couplings and verify the local anomaly cancellation. In order to understand the dynamical properties of these states we deform the orbifold geometry, find an equivalent string theory background, and brane engineer the low energy six-dimensional field theories. In the process we encounter many exotic and surprising phenomena which are intrinsically M-theoretic and completely invisible to the perturbative observer.

  3. String theory of the Regge intercept.

    Science.gov (United States)

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  4. Boundary operators in effective string theory

    Energy Technology Data Exchange (ETDEWEB)

    Hellerman, Simeon [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Swanson, Ian [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2017-04-13

    Various universal features of relativistic rotating strings depend on the organization of allowed local operators on the worldsheet. In this paper, we study the set of Neumann boundary operators in effective string theory, which are relevant for the controlled study of open relativistic strings with freely moving endpoints. Relativistic open strings are thought to encode the dynamics of confined quark-antiquark pairs in gauge theories in the planar approximation. Neumann boundary operators can be organized by their behavior under scaling of the target space coordinates X{sup μ}, and the set of allowed X-scaling exponents is bounded above by +1/2 and unbounded below. Negative contributions to X-scalings come from powers of a single invariant, or “dressing' operator, which is bilinear in the embedding coordinates. In particular, we show that all Neumann boundary operators are dressed by quarter-integer powers of this invariant, and we demonstrate how this rule arises from various ways of regulating the short-distance singularities of the effective theory.

  5. A brief history of string theory. From dual models to M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Rickles, Dean [Sydney Univ. (Australia). Unit for History and Philosophy of Science

    2014-04-01

    First monograph devoted to the history of superstring theory. Objective presentation of a controversial area of physics enabling readers to see through the divisive hype and hysteria forming the 'String Wars'. Interweaves conceptual issues with the wider historical development. Reveals string theory's historically close connections with other areas of physics. Self-contained approach brings string theory within the grasp of non-specialists. During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  6. Calculating the jet quenching parameter in the plasma of noncommutative Yang-Mills theory from gauge/gravity duality

    Science.gov (United States)

    Chakraborty, Somdeb; Roy, Shibaji

    2012-02-01

    A particular decoupling limit of the nonextremal (D1, D3) brane bound state system of type IIB string theory is known to give the gravity dual of space-space noncommutative Yang-Mills theory at finite temperature. We use a string probe in this background to compute the jet quenching parameter in a strongly coupled plasma of hot noncommutative Yang-Mills theory in (3+1) dimensions from gauge/gravity duality. We give expressions for the jet quenching parameter for both small and large noncommutativity. For small noncommutativity, we find that the value of the jet quenching parameter gets reduced from its commutative value. The reduction is enhanced with temperature as T7 for fixed noncommutativity and fixed ’t Hooft coupling. We also give an estimate of the correction due to noncommutativity at the present collider energies like in RHIC or in LHC and find it too small to be detected. We further generalize the results for noncommutative Yang-Mills theories in diverse dimensions.

  7. Perturbation theory for quantized string fields

    International Nuclear Information System (INIS)

    Thorn, C.B.; Florida Univ., Gainesville

    1987-01-01

    We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)

  8. Dynamics of Strings in Noncommutative Gauge Theory

    International Nuclear Information System (INIS)

    Gross, David J.; Nekrasov, Nikia A.

    2000-01-01

    We continue our study of solitons in noncommutative gauge theories and present an extremely simple BPS solution of N=4 U(1) noncommutative gauge theory in 4 dimensions, which describes N infinite D1 strings that pierce a D3 brane at various points, in the presence of a background B-field in the Seiberg-Witten limit. We call this solution the N-fluxon. For N=1 we calculate the complete spectrum of small fluctuations about the fluxon and find three kinds of modes: the fluctuations of the superstring in 10 dimensions arising from fundamental strings attached to the D1 strings, the ordinary particles of the gauge theory in 4 dimensions and a set of states with discrete spectrum, localized at the intersection point - corresponding to fundamental strings stretched between the D1 string and the D3 brane. We discuss the fluctuations about the N-fluxon as well and derive explicit expressions for the amplitudes of interactions between these various modes. We show that translations in noncommutative gauge theories are equivalent to gauge transformations (plus a constant shift of the gauge field) and discuss the implications for the translational zeromodes of our solitons. We also find the dyonic versions of N-fluxon, as well as of our previous string-monopole solution. (author)

  9. Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston E

    2003-06-07

    The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmological constant leads one to consider additional constraints on the parameters of the theory, even though the conformal anomaly is independent of the cosmological constant. The constraints agree with the necessary conditions required to ensure that the tachyon field turns out to be a primary prelogarithmic operator within the context of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows one to impose the diagonal condition for the interaction term. We analyse the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The standard free field prescription leads one to obtain explicit expressions for three-point functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals; this fact is a consequence of the mentioned neutralization effect.

  10. D-branes in little string theory

    International Nuclear Information System (INIS)

    Israel, Dan; Pakman, Ari; Troost, Jan

    2005-01-01

    We analyze in detail the D-branes in the near-horizon limit of NS5-branes on a circle, the holographic dual of little string theory in a double scaling limit. We emphasize their geometry in the background of the NS5-branes and show the relation with D-branes in coset models. The exact one-point functions giving the coupling of the closed string states with the D-branes and the spectrum of open strings are computed. Using these results, we analyze several aspects of Hanany-Witten setups, using exact CFT analysis. In particular we identify the open string spectrum on the D-branes stretched between NS5-branes which confirms the low-energy analysis in brane constructions, and that allows to go to higher energy scales. As an application we show the emergence of the beta-function of the N=2 gauge theory on D4-branes stretching between NS5-branes from the boundary states describing the D4-branes. We also speculate on the possibility of getting a matrix model description of little string theory from the effective theory on the D1-branes. By considering D3-branes orthogonal to the NS5-branes we find a CFT incarnation of the Hanany-Witten effect of anomalous creation of D-branes. Finally we give an brief description of some non-BPS D-branes

  11. On the background independence of string field theory

    International Nuclear Information System (INIS)

    Sen, A.

    1990-01-01

    Given a solution Ψ cl of the classical equations of motion in either closed or open string field theory formulated around a given conformal field theory background, we can construct a new operator Q B in the corresponding two-dimensional field theory such that (Q B ) 2 =0. It is shown that in the limit when the background field Ψ cl is weak, Q B can be identified with the BRST charge of a new local conformal field theory. This indicates that the string field theories formulated around these two different conformal field theories are actually the same theory, and that these two conformal field theories may be regarded as different classical solutions of this string field theory. (orig.)

  12. Comparing double string theory actions

    International Nuclear Information System (INIS)

    De Angelis, L.; Gionti, S.J.G.; Marotta, R.; Pezzella, F.

    2014-01-01

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed

  13. Comparing double string theory actions

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L. [Dipartimento di Fisica, Università degli Studi “Federico II” di Napoli,Complesso Universitario Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy); Gionti, S.J.G. [Specola Vaticana, Vatican City, V-00120, Vatican City State and Vatican Observatory Research Group, Steward Observatory, The University Of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 (United States); Marotta, R.; Pezzella, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy)

    2014-04-28

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.

  14. A global string with an event horizon

    International Nuclear Information System (INIS)

    Harari, D.; Polychronakos, A.P.

    1990-01-01

    An idealized infinite straight global string in flat space-time has a logarithmically divergent energy per unit length. With gravity included, the standard field theoretical model for a straight global string has been shown to give rise to a repulsive gravitational field, and to develop a curvature singularity at a finite proper distance off the string core. Here we point out that alternative (although probably unrealistic) equations of state for the core of the global string produce a non-singular cylindrically symmetric metric with an event horizon at a finite proper distance off the core, such that timelike observers beyond the horizon are bound to move away from the string. The same geometric structure applies to the standard field theoretical model for a vortex in (2+1)-dimensional gravity. Thermal effects in a quantum field theory around the string due to the presence of the horizon are also calculated. (orig.)

  15. Tree-level stability without spacetime fermions: novel examples in string theory

    International Nuclear Information System (INIS)

    Israel, Dan; Niarchos, Vasilis

    2007-01-01

    Is perturbative stability intimately tied with the existence of spacetime fermions in string theory in more than two dimensions? Type 0'B string theory in ten-dimensional flat space is a rare example of a non-tachyonic, non-supersymmetric string theory with a purely bosonic closed string spectrum. However, all known type 0' constructions exhibit massless NSNS tadpoles signaling the fact that we are not expanding around a true vacuum of the theory. In this note, we are searching for perturbatively stable examples of type 0' string theory without massless tadpoles in backgrounds with a spatially varying dilaton. We present two examples with this property in non-critical string theories that exhibit four- and six-dimensional Poincare invariance. We discuss the D-branes that can be embedded in this context and the type of gauge theories that can be constructed in this manner. We also comment on the embedding of these non-critical models in critical string theories and their holographic (Little String Theory) interpretation and propose a general conjecture for the role of asymptotic supersymmetry in perturbative string theory

  16. Open and Closed String field theory interpreted in classical Algebraic Topology

    OpenAIRE

    Sullivan, Dennis

    2003-01-01

    There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.

  17. High-energy collisions of particles, strings, and branes

    CERN Document Server

    Veneziano, Gabriele

    2015-01-01

    This chapter summarizes some 25 years of work on the transplanckian-energy collisions of particles, strings, and branes, seen as a theoretical laboratory for understanding how gravity and quantum mechanics can be consistently combined in string theory. The ultimate aim of the exercise is to understand whether and how a consistent quantization of gravity can solve some longstanding paradoxes, such as the apparent loss of information in the production and decay of black holes at a semiclassical level. Considerable progress has been made in understanding the emergence of General Relativity expectations and in evaluating several kinds of quantum string corrections to them in the weak-gravity regime while keeping unitarity manifest. While some progress has also been made in the strong-gravity/gravitational collapse domain, full control of how unitarity works in that regime is still lacking.

  18. Yang-Mills theory - a string theory in disguise

    International Nuclear Information System (INIS)

    Foerster, D.

    1979-01-01

    An examination of the Schwinger-Dyson equations of U(N) lattice Yang-Mills theory shows that this theory is exactly equivalent to a theory of strings that interact with one another only through their topology. (Auth.)

  19. Conformal symmetry and string theories

    International Nuclear Information System (INIS)

    Kumar, A.

    1987-01-01

    This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories

  20. Open string theory in 1+1 dimensions

    International Nuclear Information System (INIS)

    Bershadsky, M.; Kutasov, D.

    1992-01-01

    We show that tree level open two dimensional string theory is exactly solvable; the solution exhibits some unusual features, and is qualitatively different from the closed case. The open string 'tachyon' S-matrix describes free fermions, which can be interpreted as the quarks at the ends of the string. These 'quarks' live naturally on a lattice in space-time. We also find an exact vacuum solution of the theory, corresponding to a charged black hole. (orig.)

  1. String theory of Calabi-Yau compactifications

    International Nuclear Information System (INIS)

    Luetken, C.A.

    1989-01-01

    The conformal field theory description of Calabi-Yau compactifications of the heterotic superstring from 10 to 4 dimensions is outlined. The basic ideas of ordinary (bosonic) conformal field theory are explained before describing the exactly solvable N=2 superconformal minimal models which are needed in the tensor construction of certain particularly simple string vacua. Using a simple sigma-model construction of algebraic varieties and drawing on insight gained from the Landau-Ginzburg description of critical phenomena, it is explained how the critical behaviour of these 2-dimensional solvable quantum field theories with complex supersymmetry may be regarded as string compactification on a Calabi-Yau background. The virtue of this is to provide a tool for computing exact (tree level) results for strings in these highly non-trivial vacua, including all the Yukawa couplings needed in the construction of the low-energy effective field theory. (orig.)

  2. Introduction to string and superstring theory II

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1987-03-01

    Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs

  3. Introduction to string and superstring theory II

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1987-03-01

    Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)

  4. Phase transitions, double-scaling limit, and topological strings

    International Nuclear Information System (INIS)

    Caporaso, Nicola; Griguolo, Luca; Pasquetti, Sara; Marino, Marcos; Seminara, Domenico

    2007-01-01

    Topological strings on Calabi-Yau manifolds are known to undergo phase transitions at small distances. We study this issue in the case of perturbative topological strings on local Calabi-Yau threefolds given by a bundle over a two-sphere. This theory can be regarded as a q-deformation of Hurwitz theory, and it has a conjectural nonperturbative description in terms of q-deformed 2D Yang-Mills theory. We solve the planar model and find a phase transition at small radius in the universality class of 2D gravity. We give strong evidence that there is a double-scaled theory at the critical point whose all-genus free energy is governed by the Painleve I equation. We compare the critical behavior of the perturbative theory to the critical behavior of its nonperturbative description, which belongs to the universality class of 2D supergravity, and we comment on possible implications for nonperturbative 2D gravity. We also give evidence for a new open/closed duality relating these Calabi-Yau backgrounds to open strings with framing

  5. General relativity invariance and string field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Volovich, I.V.

    1987-04-01

    The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs

  6. Conformal field theory and its application to strings

    International Nuclear Information System (INIS)

    Verlinde, E.P.

    1988-01-01

    Conformal field theories on Riemann surfaces are considered and the result is applied to study the loop amplitudes for bosonic strings. It is shown that there is a close resemblance between the loop amplitudes for φ 3 -theory and the expressions for string multi-loop amplitudes. The similarity between φ 3 -amplitudes in curved backgrounds and the analytic structure of string amplitudes in backgrounds described by conformal field theories is also pointed out. 60 refs.; 5 figs.; 200 schemes

  7. Covariant amplitudes in Polyakov string theory

    International Nuclear Information System (INIS)

    Aoyama, H.; Dhar, A.; Namazie, M.A.

    1986-01-01

    A manifestly Lorentz-covariant and reparametrization-invariant procedure for computing string amplitudes using Polyakov's formulation is described. Both bosonic and superstring theories are dealt with. The computation of string amplitudes is greatly facilitated by this formalism. (orig.)

  8. Experimental Signatures of Strings and Branes

    CERN Document Server

    Antoniadis, I.

    2007-01-01

    Type I string theory provides a D-brane world description of our universe and leads to two new scenaria for physics beyond the Standard Model: low string scale and plit supersymmetry. Lowering the string scale in the TeV region provides a heoretical framework for solving the mass hierarchy problem and unifymg all interactions. The apparent weakn'ess of gravity can then be accounted by the existence of large internal dimensions, in the submillimeter region, and transverse to a braneworld where we must be confined. I review the main properties of this scenario and its implications for observations at both particle cofiders, and in non-accelerator gravity experiments. I also review the main properties of split supersymmetry and present a concrete string realization which guarantees gauge coupling unification at the conventional scale $M_{GUT}\\approx2$ x $10^{16}$GeV.

  9. Discrete field theories and spatial properties of strings

    International Nuclear Information System (INIS)

    Klebanov, I.; Susskind, L.

    1988-10-01

    We use the ground-state wave function in the light-cone gauge to study the spatial properties of fundamental strings. We find that, as the cut-off in the parameter space is removed, the strings are smooth and have a divergent size. Guided by these properties, we consider a large-N lattice gauge theory which has an unstable phase where the size of strings diverges. We show that this phase exactly describes free fundamental strings. The lattice spacing does not have to be taken to zero for this equivalence to hold. Thus, exact rotation and translation invariance is restored in a discrete space. This suggests that the number of fundamental short-distance degrees of freedom in string theory is much smaller than in a conventional field theory. 11 refs., 4 figs

  10. Warped models in string theory

    International Nuclear Information System (INIS)

    Acharya, B.S.; Benini, F.; Valandro, R.

    2006-12-01

    Warped models, originating with the ideas of Randall and Sundrum, provide a fascinating extension of the standard model with interesting consequences for the LHC. We investigate in detail how string theory realises such models, with emphasis on fermion localisation and the computation of Yukawa couplings. We find, in contrast to the 5d models, that fermions can be localised anywhere in the extra dimension, and that there are new mechanisms to generate exponential hierarchies amongst the Yukawa couplings. We also suggest a way to distinguish these string theory models with data from the LHC. (author)

  11. String creation, D-branes and effective field theory

    International Nuclear Information System (INIS)

    Hung Lingyan

    2008-01-01

    This paper addresses several unsettled issues associated with string creation in systems of orthogonal Dp-D(8-p) branes. The interaction between the branes can be understood either from the closed string or open string picture. In the closed string picture it has been noted that the DBI action fails to capture an extra RR exchange between the branes. We demonstrate how this problem persists upon lifting to M-theory. These D-brane systems are analysed in the closed string picture by using gauge-fixed boundary states in a non-standard lightcone gauge, in which RR exchange can be analysed precisely. The missing piece in the DBI action also manifests itself in the open string picture as a mismatch between the Coleman-Weinberg potential obtained from the effective field theory and the corresponding open string calculation. We show that this difference can be reconciled by taking into account the superghosts in the (0+1) effective theory of the chiral fermion, that arises from gauge fixing the spontaneously broken world-line local supersymmetries

  12. An exact bosonization rule for c = 1 noncritical string theory

    International Nuclear Information System (INIS)

    Ishibashi, Nobuyuki; Yamaguchi, Atsushi

    2007-01-01

    We construct a string field theory for c = 1 noncritical strings using the loop variables as the string field. We show how one can express the nonrelativistic free fermions which describes the theory, in terms of these string fields

  13. Big bang and big crunch in matrix string theory

    OpenAIRE

    Bedford, J; Papageorgakis, C; Rodríguez-Gómez, D; Ward, J

    2007-01-01

    Following the holographic description of linear dilaton null Cosmologies with a Big Bang in terms of Matrix String Theory put forward by Craps, Sethi and Verlinde, we propose an extended background describing a Universe including both Big Bang and Big Crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using Matrix String Theory. We provide a simple theory capable of...

  14. Strong/weak coupling duality relations for non-supersymmetric string theories

    International Nuclear Information System (INIS)

    Blum, J.D.; Dienes, K.R.

    1998-01-01

    Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)

  15. The space-time operator product expansion in string theory duals of field theories

    International Nuclear Information System (INIS)

    Aharony, Ofer; Komargodski, Zohar

    2008-01-01

    We study the operator product expansion (OPE) limit of correlation functions in field theories which possess string theory duals, from the point of view of the string worldsheet. We show how the interesting ('single-trace') terms in the OPE of the field theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a dominant saddle point which appears in computations of worldsheet correlation functions in the space-time OPE limit. The worldsheet OPE generically contains only non-physical operators, but all the non-physical contributions are resummed by the saddle point to a contribution similar to that of a physical operator, which exactly matches the field theory expectations. We verify that the OPE limit of the worldsheet theory does not have any other contributions to the OPE limit of space-time correlation functions. Our discussion is completely general and applies to any local field theory (conformal at high energies) that has a weakly coupled string theory dual (with arbitrary curvature). As a first application, we compare our results to a proposal of R. Gopakumar for the string theory dual of free gauge theories

  16. EDITORIAL: Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, 21 25 January 2008

    Science.gov (United States)

    Derendinger, J.-P.; Orlando, D.; Uranga, A.

    2008-11-01

    This special issue is devoted to the proceedings of the conference 'RTN Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, on the 21 25 January 2008. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous ones have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next one will again take place at CERN, in February 2009. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years is the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti-de Sitter spacetimes with gauge theories. The duality relates the weak coupling regime of one system to the strongly coupled regime of the other, and is therefore very non-trivial to test beyond the supersymmetry-protected BPS sector. One of the key ideas to quantitatively match several quantities on both sides is the use of integrability, both in the gauge theory and the string side. The lecture notes by Nick Dorey provide a pedagogical introduction to the fascinating topic of integrability in AdS/CFT. On the string theory side, progress has

  17. Kac-Moody algebras and string theory

    International Nuclear Information System (INIS)

    Cleaver, G.B.

    1993-01-01

    The focus of this thesis is on (1) the role of Kac-Moody algebras in string theory and the development of techniques for systematically building string theory models based on a higher level (K ≥ 2) KM algebras and (2) fractional superstrings, a new class of solutions based on SU(2) K /U(1) conformal field theories. The content of this thesis is as follows. In chapter two they review KM algebras and their role in string theory. In the next chapter they present two results concerning the construction of modular invariant partition functions for conformal field theories build by tensoring together other conformal field theories. First they show how the possible modular invariants for the tensor product theory are constrained if the allowed modular invariants of the individuals conformal field theory factors have been classified. They illustrate the use of these constraints for theories of the type SU(2) KA direct-product SU(2) KB , finding all consistent theories for K A and K B odd. Second they show how known diagonal modular invariants can be used to construct inherently asymmetric invariants where the holomorphic and anti-holomorphic theories do not share the same chiral algebra. Explicit examples are given. Next, in chapter four they investigate some issues relating to recently proposed fractional superstring theories with D critical K/4 K/4 , as source of spacetime fermions, is demonstrated

  18. Classical open-string field theory: A∞-algebra, renormalization group and boundary states

    International Nuclear Information System (INIS)

    Nakatsu, Toshio

    2002-01-01

    We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles

  19. On low rank classical groups in string theory, gauge theory and matrix models

    International Nuclear Information System (INIS)

    Intriligator, Ken; Kraus, Per; Ryzhov, Anton V.; Shigemori, Masaki; Vafa, Cumrun

    2004-01-01

    We consider N=1 supersymmetric U(N), SO(N), and Sp(N) gauge theories, with two-index tensor matter and added tree-level superpotential, for general breaking patterns of the gauge group. By considering the string theory realization and geometric transitions, we clarify when glueball superfields should be included and extremized, or rather set to zero; this issue arises for unbroken group factors of low rank. The string theory results, which are equivalent to those of the matrix model, refer to a particular UV completion of the gauge theory, which could differ from conventional gauge theory results by residual instanton effects. Often, however, these effects exhibit miraculous cancellations, and the string theory or matrix model results end up agreeing with standard gauge theory. In particular, these string theory considerations explain and remove some apparent discrepancies between gauge theories and matrix models in the literature

  20. MHV, CSW and BCFW: field theory structures in string theory amplitudes

    International Nuclear Information System (INIS)

    Boels, Rutger; Larsen, Kasper Jens; Obers, Niels A.; Vonk, Marcel

    2008-01-01

    Motivated by recent progress in calculating field theory amplitudes, we study applications of the basic ideas in these developments to the calculation of amplitudes in string theory. We consider in particular both non-Abelian and Abelian open superstring disk amplitudes in a flat space background, focusing mainly on the four-dimensional case. The basic field theory ideas under consideration split into three separate categories. In the first, we argue that the calculation of α'-corrections to MHV open string disk amplitudes reduces to the determination of certain classes of polynomials. This line of reasoning is then used to determine the α' 3 -correction to the MHV amplitude for all multiplicities. A second line of attack concerns the existence of an analog of CSW rules derived from the Abelian Dirac-Born-Infeld action in four dimensions. We show explicitly that the CSW-like perturbation series of this action is surprisingly trivial: only helicity conserving amplitudes are non-zero. Last but not least, we initiate the study of BCFW on-shell recursion relations in string theory. These should appear very naturally as the UV properties of the string theory are excellent. We show that all open four-point string amplitudes in a flat background at the disk level obey BCFW recursion relations. Based on the naturalness of the proof and some explicit results for the five-point gluon amplitude, it is expected that this pattern persists for all higher point amplitudes and for the closed string.

  1. The Gravity of Dark Vortices: Effective Field Theory for Branes and Strings Carrying Localized Flux

    CERN Document Server

    Burgess, C P; Williams, M

    2015-01-01

    A Nielsen-Olesen vortex usually sits in an environment that expels the flux that is confined to the vortex, so flux is not present both inside and outside. We construct vortices for which this is not true, where the flux carried by the vortex also permeates the `bulk' far from the vortex. The idea is to mix the vortex's internal gauge flux with an external flux using off-diagonal kinetic mixing. Such `dark' vortices could play a phenomenological role in models with both cosmic strings and a dark gauge sector. When coupled to gravity they also provide explicit ultra-violet completions for codimension-two brane-localized flux, which arises in extra-dimensional models when the same flux that stabilizes extra-dimensional size is also localized on space-filling branes situated around the extra dimensions. We derive simple formulae for observables such as defect angle, tension, localized flux and on-vortex curvature when coupled to gravity, and show how all of these are insensitive to much of the microscopic detail...

  2. Effective string theory and QCD scattering amplitudes

    International Nuclear Information System (INIS)

    Makeenko, Yuri

    2011-01-01

    QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.

  3. Anomalies and modular invariance in string theory

    International Nuclear Information System (INIS)

    Schellekens, A.N.; Warner, N.P.

    1986-01-01

    All known anomaly cancellations of heterotic string theories are derived directly from one-loop modular invariance, and are shown to be related to a property of modular functions of weight 2. Using modular invariance infinite classes of anomaly free field theories are constructed in (8m+2) dimensions for any m. A generating function is obtained for the anomalies of string-related field theories in (8m+2) dimensions. (orig.)

  4. Big bang and big crunch in matrix string theory

    International Nuclear Information System (INIS)

    Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.

    2007-01-01

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe

  5. BPS limit of multi- D- and DF-strings in boundary string field theory

    International Nuclear Information System (INIS)

    Go, Gyungchoon; Ishida, Akira; Kim, Yoonbai

    2007-01-01

    A BPS limit is systematically derived for straight multi- D- and DF-strings from the D3D-bar3 system in the context of boundary superstring field theory. The BPS limit is obtained in the limit of thin D(F)-strings, where the Bogomolny equation supports singular static multi-D(F)-string solutions. For the BPS multi-string configurations with arbitrary separations, BPS sum rule is fulfilled under a Gaussian type tachyon potential and reproduces exactly the descent relation. For the DF-strings ((p,q)-strings), the distribution of fundamental string charge density coincides with its energy density and the Hamiltonian density takes the BPS formula of square-root form

  6. Non critical super string amplitudes in more than two dimensions

    International Nuclear Information System (INIS)

    Foerste, S.

    1993-01-01

    Neveu-Schwarz string theory is coupled to two dimensional gravity which contains besides the anomaly induced Liouville action the Jackiw-Teitelboim action describing pure 2D super gravity. Considering correlation functions we obtain a trivial KPZ relation. As possible interpretations we discuss a d + 2-dimensional critical string picture as well as a four dimensional non critical one. It turns out that a GSO projection is possible. (orig.)

  7. Spin chain and duality between string theory and gauge theories

    International Nuclear Information System (INIS)

    Gorskij, A.S.

    2005-01-01

    One discusses a string pattern hidden by the integrable spin chains describing the evolution equations in the Yang- Mills theory. It is shown that the single-loop correction to the dilatation operator in N = 4 theory may be expressed in terms of two-point correlation functions at two-dimensional world surface of a string. Correspondence between the Neumann integrable systems and the spin chains leads us to believe that passing to the finite values of the coupling constants in the gauge theory corresponds to the quantization of the world surface. The model of string bits for the digitized world surface is assumed to be in line with representation of the integrable spin chains in terms of the separable variables [ru

  8. On tadpoles and vacuum redefinitions in String Theory

    International Nuclear Information System (INIS)

    Dudas, E.; Nicolosi, M.; Pradisi, G.; Sagnotti, A.

    2005-01-01

    Tadpoles accompany, in one form or another, all attempts to realize supersymmetry breaking in String Theory, making the present constructions at best incomplete. Whereas these tadpoles are typically large, a closer look at the problem from a perturbative viewpoint has the potential of illuminating at least some of its qualitative features in String Theory. A possible scheme to this effect was proposed long ago by Fischler and Susskind, but incorporating background redefinitions in string amplitudes in a systematic fashion has long proved very difficult. In the first part of this paper, drawing from field theory examples, we thus begin to explore what one can learn by working perturbatively in a 'wrong' vacuum. While unnatural in Field Theory, this procedure presents evident advantages in String Theory, whose definition in curved backgrounds is mostly beyond reach at the present time. At the field theory level, we also identify and characterize some special choices of vacua where tadpole resummations terminate after a few contributions. In the second part we present a notable example where vacuum redefinitions can be dealt with to some extent at the full string level, providing some evidence for a new link between IIB and 0B orientifolds. We finally show that NS-NS tadpoles do not manifest themselves to lowest order in certain classes of string constructions with broken supersymmetry and parallel branes, including brane-antibrane pairs and brane supersymmetry breaking models, that therefore have UV-finite threshold corrections at one loop

  9. Tensor modes on the string theory landscape

    International Nuclear Information System (INIS)

    Westphal, Alexander

    2012-06-01

    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  10. Tensor modes on the string theory landscape

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, Alexander

    2012-06-15

    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  11. String perturbation theory diverges

    International Nuclear Information System (INIS)

    Gross, D.J.; Periwal, V.

    1988-01-01

    We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence

  12. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models

    Science.gov (United States)

    Nojiri, Shin'Ichi; Odintsov, Sergei D.

    2011-08-01

    The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.

  13. CP and other gauge symmetries in string theory

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; MacIntire, D.A.

    1992-01-01

    We argue that CP is a gauge symmetry in string theory. As a consequence, CP cannot be explicitly broken either perturbatively or nonperturbatively; there can be no nonperturbative CP-violating parameters. String theory is thus an example of a theory where all θ angles arise due to spontaneous CP violation, and are in principle calculable

  14. Cosmological string solutions by dimensional reduction

    International Nuclear Information System (INIS)

    Behrndt, K.; Foerste, S.

    1993-12-01

    We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of the Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert produces a special dilaton potential in the four dimensional effective string action. Cosmological scenarios implement by our solutions are discussed

  15. Functional determinants in gauge theory and string theory

    International Nuclear Information System (INIS)

    Della Pietra, V.J.

    1988-01-01

    Determinants arise whenever Gaussian functional integrals are evaluated. As a result, they are pervasive in physics. In this thesis the author studied, in a mathematically precise fashion, some questions concerning functional determinants in Quantum Field Theory and String Theory. The emphasis is on deriving explicit general identities which can be applied to physical problems. In Chapters 1-3, he studies determinants of families of Weyl operators on compact manifolds. The motivation for this work comes from Chiral Gauge Theory. In a theory containing chiral Fermions coupled to Bosons y, a partial integration in the functional integral over the Fermi fields yields terms involving determinants of Weyl operators ∂y. In Chapter 4 he turns his attention to a problem in String Theory. In the Polyakov formulation of string perturbation theory, the partition function and scattering amplitudes are calculated as sums of contributions from different world sheet topologies. The contribution from surfaces of a particular topology is given by a functional integral, which, after gauge-fixing, can be expressed as an integral of a certain measure over an appropriate moduli space. For an arbitrary finite group acting on a compact manifold, he defines an analytic torsion for the invariant subcomplex of the de Rham complex, generalizing the definition given by Ray and Singer in the absence of a group action. Motivated by the work of Quillen, he uses this torsion to define a natural norm on the determinant line of the invariant cohomology

  16. The super G-string

    International Nuclear Information System (INIS)

    Gates, V.; Kangaroo, E.; Roachcock, M.; Gall, W.C.

    1986-01-01

    The authors describe a string theory which gives all the phenomenology of symmetry breaking. It makes use of higher dimensions, higher derivatives, higher spin, higher twist, and hierarchy. It discusses the problems of renormalizability of gravity, the cosmological constant, grand unification, supersymmetry breaking, and the command cold

  17. Deconfinement and the Hagedorn transition in string theory.

    Science.gov (United States)

    Chaudhuri, S

    2001-03-05

    We introduce a new definition of the thermal partition function in string theory. With this new definition, the thermal partition functions of all of the string theories obey thermal duality relations with self-dual Hagedorn temperature beta(2)(H) = 4pi(2)alpha('). A beta-->beta(2)(H)/beta transformation maps the type I theory into a new string theory (type I) with thermal D p-branes, spatial hypersurfaces supporting a p-dimensional finite temperature non-Abelian Higgs-gauge theory for p< or =9. We demonstrate a continuous phase transition in the behavior of the static heavy quark-antiquark potential for small separations r(2)(*)

  18. The universal wave function interpretation of string theory

    International Nuclear Information System (INIS)

    Gang, Dr. Sha Zhi; Xiu, Rulin

    2016-01-01

    In this work, we will show that a deeper understanding of space-time provided by both quantum physics and general relativity can lead to a new way to understand string theory. This new way of understanding and applying string theory, the universal wave function interpretation of string theory (UWFIST), may yield to a more powerful string theory and testable prediction. We will show how to derive UWFIST and what new result we can obtain from UWFIST. We will demonstrate that UWFIST indicates that the observed space-time and all phenomena are the projections from the world-sheet hologram. UWFIST provides the possible source for dark energy and dark matter and the explanation about why the dark energy and dark matter is beyond the detection of our current detector. We will show that UWFIST may also yield correct prediction of the cosmological constant to be of the order 10-121 in the unit of Planck scale. It may also help us understand and derive the energy source for inflation and the flatness of our observed 4-dimensional universe. UWFIST may also make other testable predictions that may be detected by interferometers. We conclude that UWFIST has the potential to make string theory a more powerful physics theory that can yield testable predictions. It is worth further investigation by more physicists

  19. An introduction to conformal field theory in two dimensions and string theory

    International Nuclear Information System (INIS)

    Wadia, S.R.

    1989-01-01

    This paper provides information on The S-Matrix; Elements of conformally invariant field theory in 2-dim.; The Virasoro gauge conditions; Some representations of the Virasoro algebra; The S-matrix of the Bosonic string theory; Super conformal field theory; Superstring; superstring spectrum and GSO projection; The (β,γ) ghost system; BRST formulation; and String propagation in background fields

  20. Little string theory from double-scaling limits of field theories

    International Nuclear Information System (INIS)

    Ling, Henry; Shieh, H.-H.; Anders, Greg van

    2007-01-01

    We show that little string theory on S 5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on R x S 2 and R x S 3 /Z k . By matching the gauge theory parameters with those in the dual supergravity solutions found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on R x S 2 , the 't Hooft coupling must be scaled like ln 3 N, and on R x S 3 /Z k , like ln 2 N. Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S 5

  1. On multibrane solutions in open string field theory

    Czech Academy of Sciences Publication Activity Database

    Murata, Masaki; Schnabl, Martin

    2011-01-01

    Roč. 2011, č. 188 (2011), s. 50-55 ISSN 0375-9687. [International Conference on String Field Theory and Related Aspects (SFT2010). Kyoto, 18.10.2010-22.10.2010] Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * D-branes * open strings Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.063, year: 2011 http://ptp.ipap.jp/link?PTPS/188/50/

  2. Supertwistor orbifolds: gauge theory amplitudes and topological strings

    International Nuclear Information System (INIS)

    Park, Jaemo; Rey, Soojong

    2004-01-01

    Witten established correspondence between multiparton amplitudes in four-dimensional maximally supersymmetric gauge theory and topological string theory on supertwistor space CP 3verticalbar4 . We extend Witten's correspondence to gauge theories with lower supersymmetries, product gauge groups, and fermions and scalars in complex representations. Such gauge theories arise in high-energy limit of the Standard Model of strong and electroweak interactions. We construct such theories by orbifolding prescription. Much like gauge and string theories, such prescription is applicable equally well to topological string theories on supertwistor space. We work out several examples of orbifolds of CP 3verticalbar4 that are dual to N=2,1,0 quiver gauge theories. We study gauged sigma model describing topological B-model on the superorbifolds, and explore mirror pairs with particular attention to the parity symmetry. We check the orbifold construction by studying multiparton amplitudes in these theories with particular attention to those involving fermions in bifundamental representations and interactions involving U(1) subgroups. (author)

  3. Stochastic quantization of gravity and string fields

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)

  4. On the S-matrix of type-0 string theory

    International Nuclear Information System (INIS)

    DeWolfe, Oliver; Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia; Walcher, Johannes

    2003-01-01

    The recent discovery of non-perturbatively stable two-dimensional string back-grounds and their dual matrix models allows the study of complete scattering matrices in string theory. In this note we adapt work of Moore, Plesser, and Ramgoolam on the bosonic string to compute the exact S-matrices of 0A and 0B string theory in two dimensions. Unitarity of the 0B theory requires the inclusion of massless soliton sectors carrying RR scalar charge as asymptotic states. We propose a regularization of IR divergences and find transition probabilities that distinguish the otherwise energetically degenerate soliton sectors. Unstable D-branes can decay into distinct soliton sectors. (author)

  5. Universal moduli space and string theory

    International Nuclear Information System (INIS)

    Schwarz, A.S.

    1989-09-01

    The construction of the universal supermoduli space is given. The super-Mumford form (the holomorphic square root from the string measure) is extended to the universal supermoduli space and expressed through the superanalog of Sato's τ-function. The hidden N=2 superconformal symmetry in the string theory is considered. (author). 13 refs

  6. Continuing between closed and open strings

    International Nuclear Information System (INIS)

    Green, M.B.; Thorn, C.B.

    1991-01-01

    A family of dual models is defined that interpolates between the tree diagrams of non-orientable bosonic closed-string theory (which has a massless spin-2 state) and the open-string theory with no internal symmetry (in which the lowest-mass spin-2 state is massive). These models are parametrized by the intercept, Δ, of the leading Regge pole. The only models that have an infinite-dimensional conformal invariance and are consequently free of ghosts are the two familiar string theories with Δ=2 (closed strings) and Δ=1 (open strings with no internal symmetry). For arbitrary Δ the models are invariant under the finite dimensional conformal group, SO(Δ,2), which guarantees the crossing symmetry and consistent factorization of tree amplitudes. The spectrum of the level-two states is exhibited explicitly as Δ varies from 2 to 1 in order to illustrate the manner in which the graviton (the lowest-mass spin-2 state) acquires a mass. The scalar ghost generically associated with massive gravity cancels with the 'dilaton' precisely at Δ=1. (orig.)

  7. The quantum cosmological wavefunction at very early times for a quadratic gravity theory

    International Nuclear Information System (INIS)

    Davis, Simon

    2003-01-01

    The quantum cosmological wavefunction for a quadratic gravity theory derived from the heterotic string effective action is obtained near the inflationary epoch and during the initial Planck era. Neglecting derivatives with respect to the scalar field, the wavefunction would satisfy a third-order differential equation near the inflationary epoch which has a solution that is singular in the scale factor limit a(t) → 0. When scalar field derivatives are included, a sixth-order differential equation is obtained for the wavefunction and the solution by Mellin transform is regular in the a → 0 limit. It follows that inclusion of the scalar field in the quadratic gravity action is necessary for consistency of the quantum cosmology of the theory at very early times

  8. String field theory-inspired algebraic structures in gauge theories

    International Nuclear Information System (INIS)

    Zeitlin, Anton M.

    2009-01-01

    We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.

  9. Strings on AdS2 and the high-energy limit of noncritical M-theory

    International Nuclear Information System (INIS)

    Horava, Petr; Horava, Petr; Keeler, Cynthia A.

    2007-01-01

    Noncritical M-theory in 2+1 dimensions has been defined as a double-scaling limit of a nonrelativistic Fermi liquid on a flat two-dimensional plane. Here we study this noncritical M-theory in the limit of high energies, analogous to the alpha(prime) → ∞ limit of string theory. In the related case of two-dimensional Type 0A strings, it has been argued that the conformal alpha(prime) → ∞ limit leads to AdS 2 with a propagating fermion whose mass is set by the value of the RR flux. Here we provide evidence that in the high-energy limit, the natural ground state of noncritical M-theory similarly describes the AdS 2 x S 1 spacetime, with a massless propagating fermion. We argue that the spacetime effective theory in this background is captured by a topological higher-spin extension of conformal Chern-Simons gravity in 2+1 dimensions, consistently coupled to a massless Dirac field. Intriguingly, the two-dimensional plane populated by the original nonrelativistic fermions is essentially the twistor space associated with the symmetry group of the AdS 2 x S 1 spacetime; thus, at least in the high-energy limit, noncritical M-theory can be nonperturbatively described as a 'Fermi liquid on twistor space'

  10. String tensions in deformed Yang-Mills theory

    Science.gov (United States)

    Poppitz, Erich; Shalchian T., M. Erfan

    2018-01-01

    We study k-strings in deformed Yang-Mills (dYM) with SU(N) gauge group in the semiclassically calculable regime on R^3× S^1 . Their tensions Tk are computed in two ways: numerically, for 2 ≤ N ≤ 10, and via an analytic approach using a re-summed perturbative expansion. The latter serves both as a consistency check on the numerical results and as a tool to analytically study the large-N limit. We find that dYM k-string ratios Tk/T1 do not obey the well-known sine- or Casimir-scaling laws. Instead, we show that the ratios Tk/T1 are bound above by a square root of Casimir scaling, previously found to hold for stringlike solutions of the MIT Bag Model. The reason behind this similarity is that dYM dynamically realizes, in a theoretically controlled setting, the main model assumptions of the Bag Model. We also compare confining strings in dYM and in other four-dimensional theories with abelian confinement, notably Seiberg-Witten theory, and show that the unbroken Z_N center symmetry in dYM leads to different properties of k-strings in the two theories; for example, a "baryon vertex" exists in dYM but not in softly-broken Seiberg-Witten theory. Our results also indicate that, at large values of N, k-strings in dYM do not become free.

  11. Higher-dimensional string theory in Lyra geometry

    Indian Academy of Sciences (India)

    Cosmic strings as source of gravitational field in general relativity was discussed by ... tensor theory of gravitation and constructed an analog of Einstein field ... As string concept is useful before the particle creation and can explain galaxy for-.

  12. Born reciprocity in string theory and the nature of spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Freidel, Laurent, E-mail: lfreidel@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St., N, Ontario N2L 2Y5, Waterloo (Canada); Leigh, Robert G., E-mail: rgleigh@uiuc.edu [Department of Physics, University of Illinois, 1110 West Green St., Urbana, IL 61801 (United States); Minic, Djordje, E-mail: dminic@vt.edu [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2014-03-07

    After many years, the deep nature of spacetime in string theory remains an enigma. In this Letter we incorporate the concept of Born reciprocity in order to provide a new point of view on string theory in which spacetime is a derived dynamical concept. This viewpoint may be thought of as a dynamical chiral phase space formulation of string theory, in which Born reciprocity is implemented as a choice of a Lagrangian submanifold of the phase space, and amounts to a generalization of T-duality. In this approach the fundamental symmetry of string theory contains phase space diffeomorphism invariance and the underlying string geometry should be understood in terms of dynamical bi-Lagrangian manifolds and an apparently new geometric structure, somewhat reminiscent of para-quaternionic geometry, which we call Born geometry.

  13. Born reciprocity in string theory and the nature of spacetime

    International Nuclear Information System (INIS)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2014-01-01

    After many years, the deep nature of spacetime in string theory remains an enigma. In this Letter we incorporate the concept of Born reciprocity in order to provide a new point of view on string theory in which spacetime is a derived dynamical concept. This viewpoint may be thought of as a dynamical chiral phase space formulation of string theory, in which Born reciprocity is implemented as a choice of a Lagrangian submanifold of the phase space, and amounts to a generalization of T-duality. In this approach the fundamental symmetry of string theory contains phase space diffeomorphism invariance and the underlying string geometry should be understood in terms of dynamical bi-Lagrangian manifolds and an apparently new geometric structure, somewhat reminiscent of para-quaternionic geometry, which we call Born geometry.

  14. Introduction to bosonic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)], e-mail: carmen@iafe.uba.ar

    2009-07-01

    This is an introductory set of five lectures on bosonic string theory. The first one deals with the classical theory of bosonic strings. The second and third lectures cover quantization. Three basic quantization methods are sketched: the old covariant formalism, the light-cone gauge quantization, where the spectrum is derived and the Polyakov path integral formalism and in particular the partition function at one loop. Finally, the last lecture covers interactions, low energy effective action, the general idea of compactification and in particular toroidal compactification. The notes are based on books by Green, Schwarz and Witten, Polchinski, Lust and Theissen and Kaku and review papers by D'Hocker and Phong and O. Alvarez. (author)

  15. Perturbative string theory in BRST invariant formalism

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Hornfeck, K.; Frau, M.; Lerda, A.

    1988-01-01

    In this talk we present a constructive and very explicit way of calculating multiloop amplitudes in string theories. The main ingredients are the BRST invariant N String Vertex and the BRST invariant twisted propagator. This approach naturally leads to the Schottky parametrization of moduli space in terms of multipliers and fixed points of the g projective transformations which characterize a Riemann surface of genus g. The complete expression (including measure) of the multiloop corrections to the N String Vertex for the bosonic string is exhibited. (orig.)

  16. Introduction to string theory

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1987-10-01

    These notes are based on a set of six introductory lectures given jointly by the authors. After developing the canonical methods we discuss the covariant quantization of the bosonic as well as the fermionic string. Conformal field theory methods are also introduced and used to calculate the anomaly coefficient, c, as well as the critical dimensions for bosonic and superstrings. We briefly sketch the BRS quantization and then offer an elementary derivation of the anomaly in the ghost number current. Finally, we address the one-loop partition function of the bosonic string and the question of SL(2,Z) invariance. (author). 15 refs

  17. Open branes in space-time non-commutative little string theory

    International Nuclear Information System (INIS)

    Harmark, T.

    2001-01-01

    We conjecture the existence of two new non-gravitational six-dimensional string theories, defined as the decoupling limit of NS5-branes in the background of near-critical electrical two- and three-form RR fields. These theories are space-time non-commutative Little String Theories with open branes. The theory with (2,0) supersymmetry has an open membrane in the spectrum and reduces to OM theory at low energies. The theory with (1,1) supersymmetry has an open string in the spectrum and reduces to (5+1)-dimensional NCOS theory for weak NCOS coupling and low energies. The theories are shown to be T-dual with the open membrane being T-dual to the open string. The theories therefore provide a connection between (5+1)-dimensional NCOS theory and OM theory. We study the supergravity duals of these theories and we consider a chain of dualities that shows how the T-duality between the two theories is connected with the S-duality between (4+1)-dimensional NCOS theory and OM theory

  18. From fractals to wormholes via string theory

    International Nuclear Information System (INIS)

    Felce, A.G.

    1992-01-01

    The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibit critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view

  19. Probing the string winding sector

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, Gerardo; Mayo, Martín [G. Física CAB-CNEA and CONICET, Centro Atómico Bariloche,Av. Bustillo 9500, Bariloche (Argentina); Instituto Balseiro, Centro Atómico Bariloche,Av. Bustillo 9500, Bariloche (Argentina); Nuñez, Carmen [Instituto de Astronomía y Física del Espacio (CONICET-UBA),C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, FCEN, Universidad de Buenos Aires,C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)

    2017-03-17

    We probe a slice of the massive winding sector of bosonic string theory from toroidal compactifications of Double Field Theory (DFT). This string subsector corresponds to states containing one left and one right moving oscillators. We perform a generalized Kaluza Klein compactification of DFT on generic 2n-dimensional toroidal constant backgrounds and show that, up to third order in fluctuations, the theory coincides with the corresponding effective theory of the bosonic string compactified on n-dimensional toroidal constant backgrounds, obtained from three-point amplitudes. The comparison between both theories is facilitated by noticing that generalized diffeomorphisms in DFT allow to fix generalized harmonic gauge conditions that help in identifying the physical degrees of freedom. These conditions manifest as conformal anomaly cancellation requirements on the string theory side. The explicit expression for the gauge invariant effective action containing the physical massless sector (gravity+antisymmetric+gauge+ scalar fields) coupled to towers of generalized Kaluza Klein massive states (corresponding to compact momentum and winding modes) is found. The action acquires a very compact form when written in terms of fields carrying O(n,n) indices, and is explicitly T-duality invariant. The global algebra associated to the generalized Kaluza Klein compactification is discussed.

  20. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  1. A note on flux induced superpotentials in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Melanie [Department of Physics, University of Maryland, College Park, MD 20742-4111 (United States)]. E-mail: melanieb@physics.umd.edu; Constantin, Dragos [Department of Physics, University of Maryland, College Park, MD 20742-4111 (United States)

    2003-08-01

    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction. (author)

  2. A note on flux induced superpotentials in string theory

    International Nuclear Information System (INIS)

    Becker, Melanie; Constantin, Dragos

    2003-01-01

    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction. (author)

  3. Anatomy of zero-norm states in string theory

    International Nuclear Information System (INIS)

    Chan, C.-T.; Lee, J.-C.; Yi Yang

    2005-01-01

    We calculate and identify the counterparts of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string in two other quantization schemes of string theory, namely, the light-cone Del Giudice-Di Vecchia-Fubine zero-norm states and the off-shell Becchi-Rouet-Stora-Tyutin (BRST) zero-norm states (with ghost) in the Witten string field theory (WSFT). In particular, special attention is paid to the interparticle zero-norm states in all quantization schemes. For the case of the off-shell BRST zero-norm states, we impose the no-ghost conditions and recover exactly two types of on-shell zero-norm states in the OCFQ string spectrum for the first few low-lying mass levels. We then show that off-shell gauge transformations of WSFT are identical to the on-shell stringy gauge symmetries generated by two types of zero-norm states in the generalized massive σ-model approach of string theory. The high-energy limit of these stringy gauge symmetries was recently used to calculate the proportionality constants, conjectured by Gross, among high-energy scattering amplitudes of different string states. Based on these zero-norm state calculations, we have thus related gauge symmetry of WSFT to the high-energy stringy symmetry of Gross

  4. Supersymmetric grand unified theories from quarks to strings via SUSY GUTs

    CERN Document Server

    Raby, Stuart

    2017-01-01

    These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...

  5. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  6. Nuclear force from string theory

    International Nuclear Information System (INIS)

    Hashimoto, Koji; Sakai, Tadakatsu; Sugimoto, Shigeki

    2009-01-01

    We compute the nuclear force in a holographic model of QCD on the basis of a D4-D8 brane configuration in type IIA string theory. The repulsive core of nucleons is important in nuclear physics, but its origin has not been well understood in strongly coupled QCD. We find that the string theory via gauge/string duality deduces this repulsive core at a short distance between nucleons. Since baryons in the model are realized as solitons given by Yang-Mills instanton configuration on flavor D8-branes, ADHM construction of two instantons probes well the nucleon interaction at short scale, which provides the nuclear force quantitatively. We obtain a central force, as well as a tensor force, which is strongly repulsive as suggested in experiments and lattice results. In particular, the nucleon-nucleon potential V(r) (as a function of the distance) scales as r -2 , which is peculiar to the holographic model. We compare our results with the one-boson exchange model using the nucleon-nucleon-meson coupling obtained in our previous paper. (author)

  7. Straight spinning cosmic strings in Brans-Dicke gravity

    Science.gov (United States)

    Dos Santos, S. Mittmann; da Silva, J. M. Hoff; Cindra, J. L.

    2018-03-01

    An exact solution of straight spinning cosmic strings in Brans-Dicke theory of gravitation is presented. The possibility of the existence of closed time-like curves around these cosmic strings is analyzed. Furthermore, the stability about the formation of the topological defect discussed here is checked. It is shown that the existence of a suitable choice for the integration constants in which closed time-like curves are not allowed. We also study the (im)possibility of using the obtained spacetime in the rotational curves problem.

  8. PREFACE: Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009 Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009

    Science.gov (United States)

    Uranga, A. M.

    2009-11-01

    This special section is devoted to the proceedings of the conference `Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland 9-13 February 2009. This event is part of a yearly series of scientific schools, which represents a well established tradition. Previous events have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006, January 2007 and January 2008, and were funded by the European Mobility Research and Training Network `Constituents, Fundamental Forces and Symmetries of the Universe'. The next event will take place again at CERN, in January 2010. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in this special section, and six working group discussion sessions, focused on specific topics of the network research program. It was well attended by over 200 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years has been the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti de Sitter spacetimes with certain quantum (gauge) field theories. The duality has recently been applied to understanding the hydrodynamical properties of a hot plasma in gauge theories (like the quark-gluon plasma created in heavy ion collisions at the RHIC experiment at Brookhaven, and soon at the LHC at CERN) in terms of a dual gravitational AdS theory in the presence of a black hole. These developments were reviewed in the lecture notes by M Rangamani. In addition, the AdS/CFT duality has been proposed as a tool to study interesting physical properties in other

  9. Geometrical theory of the relativistic string in t=tau gauge

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Nesterenko, V.V.

    1982-01-01

    Using the co-moving frame method and the exterior differential forms in the surface theory the classical theory of the relativistic string in the gauge is constructed. The moving frame on the string world-sheet is chosen in a special form. As a result, the theory of the free relativistic string in the four-dimensional space-time is reduced to the D'Alembert equation for one scalar function

  10. Solving the open bosonic string in perturbation theory

    International Nuclear Information System (INIS)

    Samuel, S.

    1990-01-01

    The integrand and integration region for the N-point amplitude in the open oriented bosonic string are obtained to all orders in perturbation theory. The result is derived from the Witten covariant string field theory by using on-shell and off-shell conformal methods and Riemann surface mathematics. Although only the off-shell g-loop tachyon amplitudes are computed explicitly, the methods generalize to other external states. We derive the g-loop ghost-Jacobi identity in which the ghost correlation function cancels the jacobian factor in changing from second-quantized to first-quantized variables. Moduli space is discussed from several viewpoints and it is shown that string field theory provides an algorithm for its determination. (orig.)

  11. The Rise and Fall of the Cosmic String Theory for Cosmological Perturbations

    International Nuclear Information System (INIS)

    Perivolaropoulos, L.

    2005-01-01

    The cosmic string theory for cosmological fluctuations is a good example of healthy scientific progress in cosmology. It is a well defined physically motivated model that has been tested by cosmological observations and has been ruled out as a primary source of primordial fluctuations. Until about fifteen years ago, the cosmic string theory of cosmological perturbations provided one of the two physically motivated candidate theories for the generation of primordial perturbations. The cosmological data that appeared during the last decade have been compared with the well defined predictions of the theory and have ruled out cosmic strings as a primary source of primordial cosmological perturbations. Since cosmic strings are predicted to form after inflation in a wide range of microphysical theories (including supersymmetric and fundamental string theories) their observational bounds may serve a source of serious constraints for these theories. This is a pedagogical review of the historical development, the main predictions of the cosmic string theory and the constraints that have been imposed on it by cosmological observations. Recent lensing events that could be attributed to lighter cosmic strings are also discussed

  12. Towards a Theory of the QCD String

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    I will review recent progress in understanding the dynamics of confining strings in non-supersymmetric gluodynamics in 3 and 4 space time dimensions. I will argue that the present lattice data allows to formulate a non-trivial straw man Ansatz for the worldsheet theory of long confining strings. According to this Ansatz, pure gluodynamics in 3D is described by a non-critical bosonic string theory without any extra local worldsheet degrees of freedom. I argue that the Ansatz allows to fix quantum numbers of (almost) all glueball states. I confront the resulting predictions with the properties of approximately 39 lightest glueball states observed on a lattice and find a good agreement.

  13. An equivalence between momentum and charge in string theory

    International Nuclear Information System (INIS)

    Horne, J.H.; Horowitz, G.T.; Steif, A.R.

    1992-01-01

    It is shown that for a translationally invariant solution to string theory, spacetime duality interchanges the momentum in the symmetry direction and the axion charge per unit length. As one application, we show explicitly that charged black strings are equivalent to boosted (uncharged) black strings. The extremal black strings (which correspond to the field outside of a fundamental macroscopic string) are equivalent to plane-fronted waves describing strings moving at the speed of light

  14. Puzzles in quantum gravity : what can black hole microstates teach us about quantum gravity?

    NARCIS (Netherlands)

    El-Showk, S.

    2009-01-01

    In this thesis we review two independent lines of research directed towards helping us construct a theory of Quantum Gravity. While, in string/M-theory, we already enjoy a potential theory of this type there remain many unanswered foundational questions and missing precepts. By probing the

  15. Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, 16 20 January, 2006

    Science.gov (United States)

    Derendinger, J.-P.; Scrucca, C. A.; Uranga, A. M.

    2006-11-01

    This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 16 to the 20 of January 2006. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools which have become a traditional rendezvous for young researchers of the community. The previous one was held at SISSA, in Trieste, Italy, in February 2005, and the next one will take place again at CERN, in January 2007. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of five general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximately 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress and to the open problems in string theory. String theory is expected to provide insights into the description of systems where the role of gravity is crucial. One prominent example of such systems are time-dependent backgrounds with big bang singularities, whose status in string theory is reviewed in the lecture notes by Ben Craps. In another main problem in quantum gravity, string theory gives a fascinating microscopic description of black holes and their properties. The lectures by Shiraz Minwalla review the thermal properties of black holes from their microscopic description in terms of a holographically dual large N field theory. Progress in the description of black hole microstates, and its interplay with the macroscopic description in terms of supergravity solutions via the

  16. Ambiguity in determining the effective action for string-corrected Einstein gravity

    International Nuclear Information System (INIS)

    Hochberg, D.; Shimada, T.

    1986-11-01

    The authors attempt to clarify some issues dealing with the determination of some of the coefficients appearing in the low-energy gravitational effective action for closed strings. In particular, the coefficients of the Rsub(μv) 2 and R 2 terms of the quadratic curvature corrections to the Einstein-Hilbert action are shown not to be determined by matching the on-shell S-matrices of the effective theory with that of the string theories. The mechanism responsible for the ambiguity of these coefficients is revealed as a cancellation among the contact, exchange and point-insertion terms contributing to the tree S-matrix of the effective local theory. Although ghost poles will appear in the graviton propagator for general quadratic curvature corrections, the effective theory remains unitary. The manifest absence of ghosts is achieved by choosing the Gauss-Bonnet combination of quadratic curvature terms, but the string does not single out this combination over any other. (author)

  17. String tensions for lattice gauge theories in 2+1 dimensions

    International Nuclear Information System (INIS)

    Ambjoern, J.; Hey, A.J.G.; Otto, S.

    1982-01-01

    Compact U(1) and SU(2) lattice gauge theories in 3 euclidean dimensions are studied by standard Monte Carlo techniques. The question of extracting reliable string tensions from these theories is examined in detail, including a comparison of the Monte Carlo Wilson loop data with weak coupling predictions and a careful error analysis: our conclusions are rather different from those of previous investigations of these theories. In the case of U(1) theory, we find that only a tiny range of β values can possibly be relevant for extracting a string tension and we are unable to convincingly demonstrate the expected exponential dependence of the string tension on β. For the SU(2) theory we are able to determine, albeit with rather large errors, a string tension from a study of Wilson loops. (orig.)

  18. Regge behavior saves string theory from causality violations

    DEFF Research Database (Denmark)

    di Vecchia, Paolo; Giuseppe, D'Appollonio; Russo, Rodolfo

    2015-01-01

    Higher-derivative corrections to the Einstein-Hilbert action are present in bosonic string theory leading to the potential causality violations recently pointed out by Camanho et al. [1]. We analyze in detail this question by considering high-energy string-brane collisions at impact parameters b....... Such violations are instead neatly avoided when the full structure of string theory — and in particular its Regge behavior — is taken into account....... ≤ l s (the string-length parameter) with l s ≫ R p (the characteristic scale of the Dp-brane geometry). If we keep only the contribution of the massless states causality is violated for a set of initial states whose polarization is suitably chosen with respect to the impact parameter vector...

  19. Heterotic string solutions and coset conformal field theories

    CERN Document Server

    Giveon, Amit; Tseytlin, Arkady A

    1993-01-01

    We discuss solutions of the heterotic string theory which are analogous to bosonic and superstring backgrounds related to coset conformal field theories. A class of exact `left-right symmetric' solutions is obtained by supplementing the metric, antisymmetric tensor and dilaton of the superstring solutions by the gauge field background equal to the generalised Lorentz connection with torsion. As in the superstring case, these backgrounds are $\\a'$-independent, i.e. have a `semiclassical' form. The corresponding heterotic string sigma model is obtained from the combination of the (1,0) supersymmetric gauged WZNW action with the action of internal fermions coupled to the target space gauge field. The pure (1,0) supersymmetric gauged WZNW theory is anomalous and does not describe a consistent heterotic string solution. We also find (to the order $\\alpha'^3$) a two-dimensional perturbative heterotic string solution with the trivial gauge field background. To the leading order in $\\alpha'$ it coincides with the kno...

  20. Topological insulators and superconductors from string theory

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-01-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  1. Topological defects in open string field theory

    Science.gov (United States)

    Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin

    2018-04-01

    We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.

  2. Open string Regge trajectory and its field theory limit

    International Nuclear Information System (INIS)

    Rojas, Francisco; Thorn, Charles B.

    2011-01-01

    We study the properties of the leading Regge trajectory in open string theory including the open string planar one-loop corrections. With SU(N) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N→∞ with Ng s 2 fixed. Our motivation is to improve the understanding of open string theory at finite α ' as a model of gauge field theories. SU(N) gauge theories in D space-time dimensions are described by requiring open strings to end on a stack of N Dp-branes of space-time dimension D=p+1. The large N leading trajectory α(t)=1+α ' t+Σ(t) can be extracted, through order g 2 , from the s→-∞ limit, at fixed t, of the four open string tree and planar loop diagrams. We analyze the t→0 behavior with the result that Σ(t)∼-Cg 2 (-α ' t) (D-4)/2 /(D-4). This result precisely tracks the 1-loop Reggeized gluon of gauge theory in D>4 space-time dimensions. In particular, for D→4 it reproduces the known infrared divergences of gauge theory in 4 dimensions with a Regge trajectory behaving as -ln(-α ' t). We also study Σ(t) in the limit t→-∞ and show that, when D ' t/(ln(-α ' t)) γ , where γ>0 depends on D and the number of massless scalars. Thus, as long as 4 ' t arbitrarily large. Finally we present the results of numerical calculations of Σ(t) for all negative t.

  3. On the field/string theory approach to theta dependence in large N Yang-Mills theory

    International Nuclear Information System (INIS)

    Gabadadze, Gregory

    1999-01-01

    The theta dependence of the vacuum energy in large N Yang-Mills theory has been studied some time ago by Witten using a duality of large N gauge theories with the string theory compactified on a certain space-time. We show that within the field theory context vacuum fluctuations of the topological charge give rise to the vacuum energy consistent with the string theory computation. Furthermore, we calculate 1/N suppressed corrections to the string theory result. The reconciliation of the string and field theory approaches is based on the fact that the gauge theory instantons carry zerobrane charge in the corresponding D-brane construction of Yang-Mills theory. Given the formula for the vacuum energy we study certain aspects of stability of the false vacua of the model for different realizations of the initial conditions. The vacuum structure appears to be different depending on whether N is infinite or, alternatively, large but finite

  4. Noncritical String Liouville Theory and Geometric Bootstrap Hypothesis

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    The applications of the existing Liouville theories for the description of the longitudinal dynamics of noncritical Nambu-Goto string are analyzed. We show that the recently developed DOZZ solution to the Liouville theory leads to the cut singularities in tree string amplitudes. We propose a new version of the Polyakov geometric approach to Liouville theory and formulate its basic consistency condition — the geometric bootstrap equation. Also in this approach the tree amplitudes develop cut singularities.

  5. Zk string fluxes and monopole confinement in non-Abelian theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A.C.; Centro Brasileiro de Pesquisas Fisicas

    2002-11-01

    Recently we considered N = 2 Super Yang-Mills with a mass breaking term and showed the existence of BPS Z k -string solutions for arbitrary simple gauge groups which are spontaneously broken to non-Abelian residual gauge groups. We also calculated their string tensions exactly. In doing so, we have considered in particular the hyper multiplet in the representation of a diquark condensate. In the present work we shall analyze some of the different phases of the theory and find that the magnetic fluxes of the monopoles and Z k strings of the theory are proportional to one another, allowing for monopole confinement in one of the phase transitions of the theory. Then we will calculate the threshold length for a string to break in a new pair of monopole-anti monopole. We will further show that some of the resulting confining theories can obtained by adding a deformation term to N 2 or N = 4 superconformal theories and, as such, may satisfy a gauge/string correspondence. (author)

  6. Aspects of type $0$ string theory

    CERN Document Server

    Blumenhagen, R; Kumar, A; Lüst, Dieter

    2000-01-01

    A construction of compact tachyon-free orientifolds of the non-supersymmetric Type 0B string theory is presented. Moreover, we study effective non-supersymmetric gauge theories arising on self-dual D3-branes in Type 0B orbifolds and orientifolds.

  7. The enhancon mechanism in string theory

    International Nuclear Information System (INIS)

    Jarv, Laur

    2002-01-01

    The enhancon mechanism is a specific phenomenon in string theory which resolves a certain naked spacetime singularity arising in the supergravity description related to N = 2 supersymmetric pure gauge theory. After reviewing the problem of singularities in general relativity as well as in string theory, and discussing the prototypical enhancon example constructed by wrapping D6-branes on a K3 surface, the thesis presents three generalisations to this static spherically symmetric case pertaining to large N SU(N) gauge theory. First we will use orientifolds to show how the enhancon mechanism also works in similar situations related to SO(2N+1), USp(2N) and SO(2N) gauge theories. Second we will wrap D-brane distributions on K3 to obtain the enhancon in oblate, toroidal and prolate shapes. Third we will study a rotating enhancon configuration and consider its implications for the black hole entropy and the second law of thermodynamics. (author)

  8. Conformal tension in string theories and M-theory

    International Nuclear Information System (INIS)

    Barros, Manuel; Ferrandez, Angel; Lucas, Pascual

    2000-01-01

    This paper deals with string theories and M-theories on backgrounds of the form AdSxM,M being a compact principal U(1)-bundle. These configurations are the natural settings to study Hopf T-dualities (Duff et al., Nucl. Phys. B 544 (1999) 145), and so to define duality chains connecting different string theories and M-theories. There is an increasing great interest in studying those properties (physical or geometrical) which are preserved along the duality chains. For example, it is known that Hopf T-dualities preserve the black hole entropies (Duff et al., Nucl. Phys. B 544 (1999) 145). In this paper we consider a two-parameter family of actions which constitutes a natural variation of the conformal total tension action (also known as Willmore-Chen functional in differential geometry). Then, we show that the existence of wide families of solutions (in particular compact solutions) for the corresponding motion equations is preserved along those duality chains. In particular, we exhibit ample classes of Willmore-Chen submanifolds with a reasonable degree of symmetry in a wide variety of conformal string theories and conformal M-theories, that in addition are solutions of a second variational problem known as the area-volume isoperimetric problem. These are good reasons to refer those submanifolds as the best worlds one can find in a conformal universe. The method we use to obtain this invariant under Hopf T-dualities is based on the principle of symmetric criticality. However, it is used in a two-fold sense. First to break symmetry and so to reduce variables. Second to gain rigidity in direct approaches to integrate the Euler-Lagrange equations. The existence of generalized elastic curves is also important in the explicit exhibition of those configurations. The relationship between solutions and elasticae can be regarded as a holographic property

  9. A simple solvable model of quantum field theory of open strings

    International Nuclear Information System (INIS)

    Kazakov, V.A.; AN SSSR, Moscow

    1990-01-01

    A model of quantum field theory of open strings without any embedding (D=0) is solved. The world sheets of interacting strings are represented by dynamical planar graphs with dynamical holes of arbitrary sizes. The phenomenon of spontaneous tearing of the world sheet is noticed, which gives a singularity at zero coupling constant of string interaction. This phenomenon can be considered as a nonperturbative effect, similar to renormalons in planar field theories and is closely related to the α' → 0 limit of string field theories. (orig.)

  10. Introduction to conformal field theory and string theory

    International Nuclear Information System (INIS)

    Dixon, L.J.

    1989-12-01

    These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs

  11. Two-matrix models and c =1 string theory

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong Chuansheng

    1994-05-01

    We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)

  12. Towards a UV completion of chameleons in string theory

    International Nuclear Information System (INIS)

    Hinterbichler, Kurt; Khoury, Justin; Nastase, Horatiu

    2011-01-01

    Full text: Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, thus effectively modifying the gravitational interaction, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. In the original formulation, one could simply describe the modification as the scalar mass depending on the matter density, but in the general set-up one can have a more complicated description. In any case, chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. We now show that it is in general possible for chameleons to arise in string and supergravity theories, as the volume modulus (for extra dimensions). We consider as a general chameleon set-up a potential for the volume modulus with a minimum, i.e. stabilized, and an exponentially increasing form on the side of large volume. We show that in fact the scenario proposed within string theory by Kachru, Kallosh, Linde and Trivedi (KKLT) is of this type, provided we change the sign of the exponent a in the superpotential W = W 0 + Ae iap (such a change has been considered before even within the KKLT scenario, and also in general compactifications). We show that these chameleon models satisfy Earth and astrophysical constraints, thus finding experimental constraints on the parameters of the potential, both for the general case, and for KKLT. For the KKLT potential, the constraints imply a KK scale (for the extra dimensions) of about 10 11 GeV , and the constant term in the superpotential of about 10 -30 M P 3 . (author)

  13. On the geometrical approach to the relativistic string theory

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Nesterenko, V.V.

    1978-01-01

    In a geometrical approach to the string theory in the four-dimensional Minkowski space the relativistic invariant gauge proposed earlier for the string moving in three-dimensional space-time is used. In contrast to the results of previous paper the system of equations for the coefficients of the fundamental forms of the string model world sheet can be reduced now to one nonlinear Lionville equation again but for a complex valued function u. It is shown that in the case of space-time with arbitrary dimension there are such string motions which are described by one non-linear equation with a real function u. And as a consequence the soliton solutions investigated earlier take place in a geometrical approach to the string theory in any dimensional space-time

  14. Developing the covariant Batalin-Vilkovisky approach to string theory

    International Nuclear Information System (INIS)

    Hata, H.; Zwiebach, B.

    1994-01-01

    In this work the authors investigate the variation of the string field action under changes of the string field vertices giving rise to different decompositions of the moduli spaces of Riemann surfaces. The authors establish that any such change in the string action arises from a field transformation canonical with respect to the Batalin-Vilkovisky (BV) antibracket and find the explicit form of the generator of the infinitesimal transformations. Two theories using different decompositions of moduli space are shown to yield the same gauge-fixed action upon use of different gauge-fixing conditions. The authors also elaborate on recent work on the covariant BV formalism, and emphasize the necessity of a measure in the space of two-dimensional field theories in order to extend a recent analysis of background independence to quantum string field theory. 22 refs., 2 figs

  15. One-loop masses of open-string scalar fields in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.

  16. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  17. High-energy symmetries of string theory

    International Nuclear Information System (INIS)

    Lee Jenchi.

    1990-01-01

    The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation

  18. Supersymmetric Gödel Universes in string theory

    DEFF Research Database (Denmark)

    Harmark, Troels; Takayanagi, Tadashi

    2003-01-01

    Supersymmetric backgrounds in string and M-theory of the Gödel Universe type are studied. We find several new Gödel Universes that preserve up to 20 supersymmetries. In particular, we obtain an interesting Gödel Universe in M-theory with 18 supersymmetries which does not seem to be dual to a pp......-wave. We show that not only T-duality but also the type-IIA/M-theory S-duality can give supersymmetric Gödel Universes from pp-waves. We find solutions that can interpolate between Gödel Universes and pp-waves. We also compute the string spectrum on two type IIA Gödel Universes. Furthermore, we obtain...

  19. String GUTs

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1995-01-01

    Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)

  20. sigma model approach to the heterotic string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1985-09-01

    Relation between the equations of motion for the massless fields in the heterotic string theory, and the conformal invariance of the sigma model describing the propagation of the heterotic string in arbitrary background massless fields is discussed. It is emphasized that this sigma model contains complete information about the string theory. Finally, we discuss the extension of the Hull-Witten proof of local gauge and Lorentz invariance of the sigma-model to higher order in α', and the modification of the transformation laws of the antisymmetric tensor field under these symmetries. Presence of anomaly in the naive N = 1/2 supersymmetry transformation is also pointed out in this context. 12 refs

  1. Gauge/gravity duality. A road towards reality

    International Nuclear Information System (INIS)

    Kerner, Patrick

    2012-01-01

    In this dissertation we use gauge/gravity duality to investigate various phenomena of strongly coupled systems. In particular, we consider applications of the duality to real-world systems such as condensed matter systems and the quark-gluon plasma created by heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Gauge/gravity duality which originates from string theory relates strongly coupled gauge theories to weakly coupled gravity theories. This duality allows for computations of non-perturbative results on the field theory side by perturbative calculations on the gravity side. As we have learned in the recent years, the duality is especially suitable to describe hot and dense plasmas as well as real-time processes related to transport properties or spectral functions. Unfortunately, so far there is no dual gravity description modeling every aspect of a strongly coupled real-world system. However, there are many gravity duals which describe several phenomena. The general idea of this thesis is to study different gravity duals in order to develop a gravity description of hot and dense plasmas. In particular, we focus on physics in thermal equilibrium and close to equilibrium. Motivated by the experimentally observed mesonic resonances in the quark-gluon plasma, we first study quasinormal modes of a gravity dual which contains such resonances. The quasinormal modes on the gravity side are identified with the poles of the Green's function on the field theory side. By studying these quasinormal modes, we observe how quasiparticle resonances develop in a hot and dense plasma. We find interesting trajectories of quasinormal frequencies which may be found experimentally as the temperature and density is varied. In addition, we find an instability in the quasinormal mode spectrum at large chemical potential or magnetic field. At large chemical potential, this instability triggers the condensation of a field which breaks

  2. Gauge/gravity duality. A road towards reality

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Patrick

    2012-02-23

    In this dissertation we use gauge/gravity duality to investigate various phenomena of strongly coupled systems. In particular, we consider applications of the duality to real-world systems such as condensed matter systems and the quark-gluon plasma created by heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Gauge/gravity duality which originates from string theory relates strongly coupled gauge theories to weakly coupled gravity theories. This duality allows for computations of non-perturbative results on the field theory side by perturbative calculations on the gravity side. As we have learned in the recent years, the duality is especially suitable to describe hot and dense plasmas as well as real-time processes related to transport properties or spectral functions. Unfortunately, so far there is no dual gravity description modeling every aspect of a strongly coupled real-world system. However, there are many gravity duals which describe several phenomena. The general idea of this thesis is to study different gravity duals in order to develop a gravity description of hot and dense plasmas. In particular, we focus on physics in thermal equilibrium and close to equilibrium. Motivated by the experimentally observed mesonic resonances in the quark-gluon plasma, we first study quasinormal modes of a gravity dual which contains such resonances. The quasinormal modes on the gravity side are identified with the poles of the Green's function on the field theory side. By studying these quasinormal modes, we observe how quasiparticle resonances develop in a hot and dense plasma. We find interesting trajectories of quasinormal frequencies which may be found experimentally as the temperature and density is varied. In addition, we find an instability in the quasinormal mode spectrum at large chemical potential or magnetic field. At large chemical potential, this instability triggers the condensation of a field which

  3. Strings as perturbations of evolving spin networks

    International Nuclear Information System (INIS)

    Smolin, Lee

    2000-01-01

    One step in the construction of a background independent formulation of string theory is detailed, in which it is shown how perturbative strings may arise as small fluctuations around histories in a formulation of non-perturbative dynamics of spin networks due to Markopoulou. In this formulation the dynamics of spin network states and their generalizations is described in terms of histories which have discrete analogues of the causal structure and many fingered time of Lorentzian spacetimes. Perturbations of these histories turn out to be described in terms of spin systems defined on 2-dimensional timelike surfaces embedded in the discrete spacetime. When the history has a classical limit which is Minkowski spacetime, the action of the perturbation theory is given to leading order by the spacetime area of the surface, as in bosonic string theory. This map between a non-perturbative formulation of quantum gravity and a 1+1 dimensional theory generalizes to a large class of theories in which the group SU(2) i s extended to any quantum group or supergroup. It is argued that a necessary condition for the non-perturbative theory to have a good classical limit is that the resulting 1+1 dimensional theory defines a consistent and stable perturbative string theory

  4. String theory and applications to phenomenology and cosmology

    International Nuclear Information System (INIS)

    Florakis, I.G.

    2011-07-01

    This thesis treats applications of String Theory to problems of cosmology and high energy phenomenology. In particular, we investigate problems related to the description of the initial state of the universe, using the methods of perturbative String Theory. After a review of the string-theoretic tools that will be employed, we discuss a novel degeneracy symmetry between the bosonic and fermionic massive towers of states (MSDS symmetry), living at particular points of moduli space. We study the marginal deformations of MSDS vacua and exhibit their natural thermal interpretation, in connection with the resolution of the Hagedorn divergences of string thermodynamics. The cosmological evolution of a special, 2-dimensional thermal 'Hybrid' model is presented and the correct implementation of the full stringy degrees of freedom leads to the absence of gravitational singularities, within a fully perturbative treatment. (author)

  5. Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons theory and their string theory duals

    International Nuclear Information System (INIS)

    Drukker, Nadav; Plefka, Jan; Young, Donovan

    2008-01-01

    We study Wilson loops in the three-dimensional N = 6 supersymmetric Chern-Simons theory recently constructed by Aharony, Bergman, Jafferis and Maldacena, that is conjectured to be dual to type IIA string theory on AdS 4 x CP 3 . We construct loop operators in the Chern-Simons theory which preserve 1/6 of the supercharges and calculate their expectation value up to 2-loop order at weak coupling. The expectation value at strong coupling is found by constructing the string theory duals of these operators. For low dimensional representations these are fundamental strings, for high dimensional representations these are D2-branes and D6-branes. In support of this identification we demonstrate that these string theory solutions match the symmetries, charges and the preserved supersymmetries of their Chern-Simons theory counterparts.

  6. New gauge symmetries in Witten's Ramond string field theory

    International Nuclear Information System (INIS)

    Kugo, Taichiro; Terao, Haruhiko

    1988-01-01

    Witten's Raymond string field theory is observed to possess new gauge symmetries, which guarantee the consistency and the equivalence of Witten's theory to the other formulation based on the constrained string field. The projection operator into the gauge-invariant sector is explicitly constructed using an operator similar to the picture changing operator. (orig.)

  7. Constructing 5d orbifold grand unified theories from heterotic strings

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuo; Raby, Stuart; Zhang Renjie

    2004-01-01

    A three-generation Pati-Salam model is constructed by compactifying the heterotic string on a particular T 6 /Z 6 Abelian symmetric orbifold with two discrete Wilson lines. The compactified space is taken to be the Lie algebra lattice G 2 -bar SU(3)-bar SO(4). When one dimension of the SO(4) lattice is large compared to the string scale, this model reproduces many features of a 5d SO(10) grand unified theory compactified on an S 1 /Z 2 orbifold. (Of course, with two large extra dimensions we can obtain a 6d SO(10) grand unified theory.) We identify the orbifold parities and other ingredients of the orbifold grand unified theories in the string model. Our construction provides a UV completion of orbifold grand unified theories, and gives new insights into both field theoretical and string theoretical constructions

  8. P-adic space-time and string theory

    International Nuclear Information System (INIS)

    Volovich, I.V.

    1987-01-01

    Arguments for the possibility of a p-adic structure of space-time are advanced. The p-adic analog of the Veneziano amplitude is proposed, and this permits a start to be made on the construction of the theory of p-adic strings. The same questions are considered over Galois fields, for which the analog of the Veneziano amplitude is a Jacobi sum that can be expressed in terms of p-adic cohomologies of Fermat curves. An explicit expression for the vertex operator of the corresponding string theory is given

  9. Butterfly tachyons in vacuum string field theory

    International Nuclear Information System (INIS)

    Matlock, Peter

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in vacuum string field theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation

  10. Description of hadrons using string theory

    International Nuclear Information System (INIS)

    Sugimoto, Shigeki

    2013-01-01

    We give a brief overview of 'holographic QCD' for JPS members. Applying the idea of gauge/string duality to QCD, We obtain a description of hadrons based on string theory. Using this description, a lot of properties of hadrons can be analyzed and the results are in reasonable agreement with the observations. We try to explain the basic idea and some of the interesting results in a way accessible to non-experts. (author)

  11. Loose ends of the theory of everything

    International Nuclear Information System (INIS)

    Linden, Noah

    1990-01-01

    This article examines to what extent string theory has achieved its objective of being a 'theory of everything' and unifying the four fundamental forces of nature, gravity, the strong and weak nuclear forces and electromagnetism. String theory uses one-dimensional strings, rather than points, as the fundamental objects. String theory, unlike previous models, provides a quantum theory of gravitation which has a meaningful perturbative expansion. However our present understanding of string theory does not match up with our observed spectrum of particles, nor answer questions about spacetime at the Planck scale. (UK)

  12. A brief history of string theory from dual models to M-theory

    CERN Document Server

    Rickles, Dean

    2014-01-01

    During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  13. Energy momentum tensor and marginal deformations in open string field theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2004-01-01

    Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a co-dimension one D-brane. (author)

  14. And what if gravity is intrinsically quantic?

    International Nuclear Information System (INIS)

    Ziaeepour, Houri

    2009-01-01

    Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, string theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and the former is a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum mechanics (QM) and gravity. Without gravity, QM becomes ambiguous. We consider this observation as the evidence for an intrinsic relation between these fundamental laws of nature. We suggest a quantum role and definition for gravity in the context of a quantum Universe, and present a preliminary formulation for gravity in a system with a finite number of particles.

  15. Z2 vortex strings in grand unified theories

    International Nuclear Information System (INIS)

    Olive, D.; Turok, N.

    1982-01-01

    Spontaneously broken gauge theories may display distinct vortex string solutions for the disconnected components of the exact gauge symmetry group. A type of Higgs mechanism thought to apply in grand unified theories as being responsible for fermion masses yields Z 2 vortex lines, irrespectively of the group. These could seed galaxy formation if the corresponding fermion masses are superheavy. More generally a Higgs mechanism producing Zsub(n) vortex strings is presented. (orig.)

  16. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    recent times, string theory is providing new perspectives of such singularities which .... holes appear as stacks of a large number of D-branes wrapped in internal .... results into a well-known measure factor which makes the wave function into a.

  17. Vacuum expectation value of the stress-energy tensor of a 2D-gravity field and loop amplitudes for strings of noncritical dimensions

    International Nuclear Information System (INIS)

    Danilov, G.S.

    1995-01-01

    It is shown that, in the theory of free noncritical strings, there are no modular-invariant partition functions on surfaces of higher genus. This is due to the fact that the vacuum expectation value of the stress-energy tensor is singular in the fundamental region on the complex plane in which Riemann surfaces are mapped. The above singularity is associated with a nonzero vacuum expectation value of the 2D-gravity field. 15 refs

  18. Twisted tachyon condensation in closed string field theory

    International Nuclear Information System (INIS)

    Okawa, Yuji; Zwiebach, Barton

    2004-01-01

    We consider twisted tachyons on C/Z N orbifolds of bosonic closed string theory. It has been conjectured that these tachyonic instabilities correspond to decays of the orbifolds into flat space or into orbifolds with smaller deficit angles. We examine this conjecture using closed string field theory, with the string field truncated to low-level tachyons. We compute the tachyon potentials for C/Z 2 and C/Z 3 orbifolds and find critical points at depths that generate about 70% of the expected change in the deficit angle. We find that both twisted fields and untwisted modes localized near the apex of the cone acquire vacuum expectation values and contribute to the potential. (author)

  19. Twistor theory at fifty: from contour integrals to twistor strings.

    Science.gov (United States)

    Atiyah, Michael; Dunajski, Maciej; Mason, Lionel J

    2017-10-01

    We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space-time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold-the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics-anti-self-duality equations on Yang-Mills or conformal curvature-can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang-Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang-Mills equations, and Einstein-Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose's proposal for a role of gravity in quantum collapse of a wave function.

  20. Space-time versus world-sheet renormalization group equation in string theory

    International Nuclear Information System (INIS)

    Brustein, R.; Roland, K.

    1991-05-01

    We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)

  1. String perturbation theory and effective Lagrangians

    International Nuclear Information System (INIS)

    Klebanov, I.

    1987-09-01

    We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory with a cosmological term, which also contains an effective potential for the dilation. Also, corrections to β-functions are compared with variations of the effective action. In both cases we find an inconsistency between the two. This is a serious problem which could undermine our ability to remove divergences from the bosonic string

  2. PREFACE: Conceptual and Technical Challenges for Quantum Gravity 2014 - Parallel session: Noncommutative Geometry and Quantum Gravity

    Science.gov (United States)

    Martinetti, P.; Wallet, J.-C.; Amelino-Camelia, G.

    2015-08-01

    The conference Conceptual and Technical Challenges for Quantum Gravity at Sapienza University of Rome, from 8 to 12 September 2014, has provided a beautiful opportunity for an encounter between different approaches and different perspectives on the quantum-gravity problem. It contributed to a higher level of shared knowledge among the quantum-gravity communities pursuing each specific research program. There were plenary talks on many different approaches, including in particular string theory, loop quantum gravity, spacetime noncommutativity, causal dynamical triangulations, asymptotic safety and causal sets. Contributions from the perspective of philosophy of science were also welcomed. In addition several parallel sessions were organized. The present volume collects contributions from the Noncommutative Geometry and Quantum Gravity parallel session4, with additional invited contributions from specialists in the field. Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: • from models of quantum space-time (with or without breaking of Lorentz symmetry) to loop gravity and string theory, • from early considerations on UV-divergencies in quantum field theory to recent models of gauge theories on noncommutative spacetime, • from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. This volume provides an overview of these various topics, interesting for the specialist as well as accessible to the newcomer. 4partially funded by CNRS PEPS /PTI ''Metric aspect of noncommutative geometry: from Monge to Higgs''

  3. Hawking radiation in string theories

    International Nuclear Information System (INIS)

    Sakai, N.

    1986-01-01

    String theories in a uniform gravitational field are studied to examine the Hawking radiation. An upper limit is found for the strength of the possible gravitational field: the corresponding Hawking temperature cannot be larger than the Hagedorn limiting temperature divided by π

  4. String Theory on AdS Spaces

    NARCIS (Netherlands)

    de Boer, J.

    2000-01-01

    In these notes we discuss various aspects of string theory in AdS spaces. We briefly review the formulation in terms of Green-Schwarz, NSR, and Berkovits variables, as well as the construction of exact conformal field theories with AdS backgrounds. Based on lectures given at the Kyoto YITP Workshop

  5. On deformations and quantization in topological string theory

    International Nuclear Information System (INIS)

    Kay, Michael

    2014-01-01

    The study of moduli spaces of N=(2,2) superconformal field theories and more generally of N=(2,2) supersymmetric quantum field theories, has been a longstanding, multifaceted area of research. In this thesis we focus on certain selected general aspects of this study and develop general techniques within the framework of topological string theory. This work is naturally divided into two parts. The first is concerned with aspects of closed topological string theory, and culminates with a theory, where the geometrical structure of the topological anti-topological moduli spaces of N=(2,2) superconformal field theories with central charge c=9 is rediscovered in the light of quantization, within a general framework. The second part is concerned with aspects of the study of the open and closed moduli space of topological conformal field theories at genus zero. In particular, it contains an exposition of a paper, where general results on the classification and computation of bulk-induced deformations of open topological conformal field theories were obtained from a coherent algebraic approach, drawing from the defining L ∞ and A ∞ structures involved. In part, the latter investigation is restricted to arbitrary affine B-twisted Landau Ginzburg models. Subsequently, further original work is presented that completes the topological string field theory structure of B-twisted Landau Ginzburg models.

  6. On the short distance behavior of string theories

    International Nuclear Information System (INIS)

    Guida, R.; Konishi, K.; Provero, P.

    1991-01-01

    Short distance behavior of string theories is investigated by the use of the discretized path-integral formulation. In particular, the minimum physical length and the generalized uncertainty relation are re-derived from a set of Ward-Takahashi identities. In this paper several issues related to the form of the generalized uncertainty relation and to its implications are discussed. A consistent qualitative picture of short distance behavior of string theory seems to emerge from such a study

  7. Towards a UV completion of chameleons in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Hinterbichler, Kurt; Khoury, Justin [University of Pennsylvania, PA (United States); Nastase, Horatiu [Instituto de Fisica Teorica (IFT/UNESP), SP (Brazil)

    2011-07-01

    Full text: Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, thus effectively modifying the gravitational interaction, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. In the original formulation, one could simply describe the modification as the scalar mass depending on the matter density, but in the general set-up one can have a more complicated description. In any case, chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. We now show that it is in general possible for chameleons to arise in string and supergravity theories, as the volume modulus (for extra dimensions). We consider as a general chameleon set-up a potential for the volume modulus with a minimum, i.e. stabilized, and an exponentially increasing form on the side of large volume. We show that in fact the scenario proposed within string theory by Kachru, Kallosh, Linde and Trivedi (KKLT) is of this type, provided we change the sign of the exponent a in the superpotential W = W{sub 0} + Ae{sup iap} (such a change has been considered before even within the KKLT scenario, and also in general compactifications). We show that these chameleon models satisfy Earth and astrophysical constraints, thus finding experimental constraints on the parameters of the potential, both for the general case, and for KKLT. For the KKLT potential, the constraints imply a KK scale (for the extra dimensions) of about 10{sup 11}GeV , and the constant term in the superpotential of about 10{sup -30}M{sub P}{sup 3}. (author)

  8. Experimental tests of relativistic gravity

    International Nuclear Information System (INIS)

    Damour, Thibault

    2000-01-01

    The confrontation between Einstein's gravitation theory and experimental results, notably binary pulsar data, is summarized and its significance discussed. Experiment and theory agree at the 10 -3 level or better. All the basic structures of Einstein's theory (coupling of gravity matter; propagation and self-interaction of the gravitational field, including in strong field conditions) have been verified. However, the theoretical possibility that scalar couplings be naturally driven toward zero by the cosmological expansion suggests that the present agreement between Einstein's theory and experiment might be compatible with the existence of a long-range scalar contribution to gravity (such as the dilation field, or a moduli field, of string theory). This provides a new theoretical paradigm, and new motivations for improving the experimental tests of gravity

  9. Consistent superstrings as solutions of the D=26 bosonic string theory

    International Nuclear Information System (INIS)

    Casher, A.; Englert, F.; Nicolai, H.; Taormina, A.

    1985-01-01

    Consistent closed ten-dimensional superstrings, i.e. the two N=2 superstrings, are contained in the 26-dimensional bosonic closed string theory. The latter thus appears as the fundamental string theory. (orig.)

  10. Extended Theories of Gravity

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; De Laurentis, Mariafelicia

    2011-01-01

    Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.

  11. Field theory and strings

    International Nuclear Information System (INIS)

    Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.

    1987-01-01

    It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper

  12. Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude

    Science.gov (United States)

    Nielsen, H. B.; Ninomiya, M.

    2018-02-01

    We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.

  13. Bosonic Liouville string theory in conformal gauge

    International Nuclear Information System (INIS)

    Schnittger, J.

    1990-01-01

    The object of the present thesis are the so-called Liouville theories as possibilities for the consistent formulation of string theories beyond the critical dimension. First we discuss the general framework for the quantum theory and explain common properties and differences of different approaches. These considerations lead us to the main demand of the thesis, the formulation of a unified quantum theory for open and closed strings. Of central importance is thereby the construction of the field operator for the Weyl degree of freedom on a suitably defined Hilbert space, so that also in the quantum theory locality and Hermiticity of the Energy-Momentum tensor are respected. In the study of the allowed ground states of the Hilbert space an interesting particularity in comparison to the structure of usual conformal field theories comes across, the importance and consequences of which we intensively study. In the last section we enter the consistence of the theory on the 1-loop level and come then to the final consideration, where we indicate some still open questions of the Liouville theory. (orig.) [de

  14. Vacua and inflation in string theory and supergravity

    International Nuclear Information System (INIS)

    Rummel, Markus

    2013-07-01

    We study the connection between the early and late accelerated expansion of the universe and string theory. In Part I of this thesis, the observational degeneracy between single field models of inflation with canonical kinetic terms and noncanonical kinetic terms, in particular string theory inspired models, is discussed. The 2-point function observables of a given non-canonical theory and its canonical transform that is obtained by matching the inflationary trajectories in phase space are found to match in the case of Dirac-Born-Infeld (DBI) inflation. At the level of the 3-point function observables (non-Gaussianities), we find degeneracy between non-canonical inflation and canonical inflation with a potential that includes a sum of modulated terms. In Part II, we present explicit examples for de Sitter vacua in type IIB string theory. After deriving a sufficient condition for de Sitter vacua in the Kahler uplifting scenario, we show that a globally consistent de Sitter model can be realized on a certain Calabi-Yau manifold. All geometric moduli are stabilized and all known consistency constraints are fulfilled. The complex structure moduli stabilization by fluxes is studied explicitly for a small number of cycles. Extrapolating to a larger number of flux carrying cycles, we verify statistical studies in the literature which show that, in principle, the string landscape can account for a universe with an extremely small cosmological constant.

  15. Vacua and inflation in string theory and supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Markus

    2013-07-15

    We study the connection between the early and late accelerated expansion of the universe and string theory. In Part I of this thesis, the observational degeneracy between single field models of inflation with canonical kinetic terms and noncanonical kinetic terms, in particular string theory inspired models, is discussed. The 2-point function observables of a given non-canonical theory and its canonical transform that is obtained by matching the inflationary trajectories in phase space are found to match in the case of Dirac-Born-Infeld (DBI) inflation. At the level of the 3-point function observables (non-Gaussianities), we find degeneracy between non-canonical inflation and canonical inflation with a potential that includes a sum of modulated terms. In Part II, we present explicit examples for de Sitter vacua in type IIB string theory. After deriving a sufficient condition for de Sitter vacua in the Kahler uplifting scenario, we show that a globally consistent de Sitter model can be realized on a certain Calabi-Yau manifold. All geometric moduli are stabilized and all known consistency constraints are fulfilled. The complex structure moduli stabilization by fluxes is studied explicitly for a small number of cycles. Extrapolating to a larger number of flux carrying cycles, we verify statistical studies in the literature which show that, in principle, the string landscape can account for a universe with an extremely small cosmological constant.

  16. Non-extremal instantons and wormholes in string theory

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Collinucci, A.; Gran, U.; Roest, D.; Vandoren, S.

    2005-01-01

    We construct the most general non-extremal spherically symmetric instanton solution of a gravity-dilaton-axion system with SL(2,R) symmetry, for arbitrary euclidean spacetime dimension D≥3. A subclass of these solutions describe completely regular wormhole geometries, whose size is determined by an invariant combination of the SL(2,R) charges. Our results can be applied to four-dimensional effective actions of type II strings compactified on a Calabi-Yau manifold, and in particular to the universal hypermultiplet coupled to gravity. We show that these models contain regular wormhole solutions, supported by regular dilaton and RR scalar fields of the universal hypermultiplet. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  17. Neutrino Majorana masses from string theory instanton effects

    International Nuclear Information System (INIS)

    Ibanez, Luis E.; Uranga, Angel M.

    2007-01-01

    Finding a plausible origin for right-handed neutrino Majorana masses in semirealistic compactifications of string theory remains one of the most difficult problems in string phenomenology. We argue that right-handed neutrino Majorana masses are induced by non-perturbative instanton effects in certain classes of string compactifications in which the U(1) B-L gauge boson has a Stueckelberg mass. The induced operators are of the form e -U ν R ν R where U is a closed string modulus whose imaginary part transforms appropriately under B-L. This mass term may be quite large since this is not a gauge instanton and Re U is not directly related to SM gauge couplings. Thus the size of the induced right-handed neutrino masses could be a few orders of magnitude below the string scale, as phenomenologically required. It is also argued that this origin for neutrino masses would predict the existence of R-parity in SUSY versions of the SM. Finally we comment on other phenomenological applications of similar instanton effects, like the generation of a μ-term, or of Yukawa couplings forbidden in perturbation theory

  18. Symmetries of string, M- and F-theories

    NARCIS (Netherlands)

    Bergshoeff, Eric; Proeyen, Antoine Van

    2001-01-01

    The d = 10 type II string theories, d = 11 M-theory and d = 12 F-theory have the same symmetry group. It can be viewed either as a subgroup of a conformal group OSp(1|64) or as a contraction of OSp(1|32). The theories are related by different identifications of their symmetry operators as generators

  19. Monads, strings, and M theory

    NARCIS (Netherlands)

    Hofman, C.; Park, J.-S.

    1997-01-01

    The recent developmen ts in string theory suggest that the space-time coordinates should be generalized to non-comm uting matrices. P ostulating this suggestion as the fun- damen tal geometrical principle, w e form ulate a candidate for covariant second quantized RNS superstrings as a topological

  20. Bosonization methods in string theory

    International Nuclear Information System (INIS)

    Abdalla, E.

    1988-02-01

    The use of bosonization/fermionization techniques to convert non-linear operators of the dual, is discussed. Non abelian bosonization to the case where the central charge of the Kac-Moody algebra is not unity, is generalized. In particular, using this generalization of non-abelian bosonization, the bosonic string vertex of the compactified theory; turns out to be fundamental field of thre fermionic theory, or bound states of it thus permiting explicit computations easily. (author) [pt

  1. The tachyon potential in string theory

    International Nuclear Information System (INIS)

    Banks, T.

    1991-01-01

    We argue that the tachyon potential in string theory is exactly given by the unstable quadratic mass term calculated perturbatively around the critical string. The argument is given in terms of the sigma model formulation. The same result follows from the exact Wilson renormalization group equations. The discrepancy with previous calculations of the tachyon potential is explained by the fact that other authors worked near the tachyon mass shell where it is impossible to distinguish a potential from derivative terms in the effective action. (orig.)

  2. Lectures on interacting string field theory

    International Nuclear Information System (INIS)

    Jevicki, A.

    1986-09-01

    We give a detailed review of the current formulations of interacting string field theory. The historical development of the subject is taken beginning with the old dual resonance model theory. The light cone approach is reviewed in some detail with emphasis on conformal mapping techniques. Witten's covariant approach is presented. The main body of the lectures concentrates on developing the operator formulation of Witten's theory. 38 refs., 22 figs., 5 tabs

  3. Differential geometry of groups in string theory

    International Nuclear Information System (INIS)

    Schmidke, W.B. Jr.

    1990-09-01

    Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1|1). The quantum group GL q (1|1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL q (1|1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S 1 )/S 1 . We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs

  4. On the consistency and high-energy behavior of string theory

    International Nuclear Information System (INIS)

    Mende, P.F.

    1988-01-01

    In Part I, it is shown that the heterotic string is free of gauge and gravitational anomalies by showing that (a) unless the gauge group is E S x E S or Spin(32)/Z 2 or a subgroup, the internal sector partition function vanishes so there is no consistent theory; and (b) for E 8 x E 8 and Spin(32)/Z 2 compactifications, the longitudinal modes of the massless gauge particles decouple, as required by gauge invariance. We discuss the geometric interpretation for string theory when the action is invariant under a modular subgroup. In Part II, the high-energy behavior of string scattering amplitudes is studied to all orders in perturbation theory, with the aim of exploring the short-distance structure of string theory. It is shown that the sum over all Riemann surfaces is dominated by a saddle point. Consequently, the high-energy limit is universal and simple to calculate. In this limit the amplitudes fall off much faster than allowed by field theory. The dominant saddle points are identified as coming from world sheets which are Z G+1 symmetric algebraic curves, and their contribution to the scattering amplitude is evaluated for the bosonic to all orders and for the heterotic string to two-loop order. An interesting spacetime picture of the high-energy limit emerges. The issue of summing the perturbation expansion is addressed

  5. String Theory and Pre-big bang Cosmology

    CERN Document Server

    Gasperini, M.

    In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe "bounce" into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a "hot big bounce" in which the bouncing and heating mechanisms originate from the quantum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its si...

  6. Counting dyons in N=4 string theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    We present a microscopic index formula for the degeneracy of dyons in four-dimensional N=4 string theory. This counting formula is manifestly symmetric under the duality group, and its asymptotic growth reproduces the macroscopic Bekenstein-Hawking entropy. We give a derivation of this result in terms of the type II five-brane compactified on K3, by assuming that its fluctuations are described by a closed string theory on its world-volume. We find that the degeneracies are given in terms of the denominator of a generalized super Kac-Moody algebra. We also discuss the correspondence of this result with the counting of D-brane states.

  7. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.

  8. On quantization of relativistic string theory

    International Nuclear Information System (INIS)

    Isaev, A.P.

    1982-01-01

    Quantization of the relativistic string theory based on methods of the constrained Hamiltonian systems quantization is considered. Connections of this approach and Polyakov's quantization are looked. New representation of a loop heat kernel is obtained

  9. Soft theorems from conformal field theory

    International Nuclear Information System (INIS)

    Lipstein, Arthur E.

    2015-01-01

    Strominger and collaborators recently proposed that soft theorems for gauge and gravity amplitudes can be interpreted as Ward identities of a 2d CFT at null infinity. In this paper, we will consider a specific realization of this CFT known as ambitwistor string theory, which describes 4d Yang-Mills and gravity with any amount of supersymmetry. Using 4d ambtwistor string theory, we derive soft theorems in the form of an infinite series in the soft momentum which are valid to subleading order in gauge theory and sub-subleading order in gravity. Furthermore, we describe how the algebra of soft limits can be encoded in the braiding of soft vertex operators on the worldsheet and point out a simple relation between soft gluon and soft graviton vertex operators which suggests an interesting connection to color-kinematics duality. Finally, by considering ambitwistor string theory on a genus one worldsheet, we compute the 1-loop correction to the subleading soft graviton theorem due to infrared divergences.

  10. From gravity to thermal gauge theories. The AdS/CFT correspondence

    International Nuclear Information System (INIS)

    Papantonopoulos, Eleftherios

    2011-01-01

    The AdS/CFT correspondence is a powerful tool in studying strongly coupled phenomena in gauge field theories, using results from a weakly coupled gravity background studied in the realm of string theory. AdS/CFT was first successfully applied to the study of phenomena such as the quark-gluon plasma produced in heavy ions collisions. Soon it was realized that its applicability can be extended, in a more phenomenological approach, to condensed matter systems and to systems described by fluid dynamics. The set of tutorial reviews in this volume is intended as an introduction to and survey of the principle of the AdS/CFT correspondence in its field/string theoretic formulation, its applicability to holographic QCD and to heavy ions collisions, and to give a first account of processes in fluid dynamics and condensed matter physics, which can be studied with the use of this principle. Written by leading researchers in the field and cast into the form of a high-level but approachable multi-author textbook, this volume will be of benefit to all postgraduate students, and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research. (orig.)

  11. Antisymmetric tensor Zp gauge symmetries in field theory and string theory

    International Nuclear Information System (INIS)

    Berasaluce-González, Mikel; Ramírez, Guillermo; Uranga, Angel M.

    2014-01-01

    We consider discrete gauge symmetries in D dimensions arising as remnants of broken continuous gauge symmetries carried by general antisymmetric tensor fields, rather than by standard 1-forms. The lagrangian for such a general Z p gauge theory can be described in terms of a r-form gauge field made massive by a (r−1)-form, or other dual realizations, that we also discuss. The theory contains charged topological defects of different dimensionalities, generalizing the familiar charged particles and strings in D=4. We describe realizations in string theory compactifications with torsion cycles, or with background field strength fluxes. We also provide examples of non-abelian discrete groups, for which the group elements are associated with charged objects of different dimensionality

  12. The sewing technique for strings and conformal field theories

    International Nuclear Information System (INIS)

    Di Vecchia, P.

    1989-01-01

    We discuss recent results obtained from the sewing procedure for strings and conformal field theories. They are summarized by the N Point [String] g loop Vertex V N;g , that is the 'generating functional' of all correlation functions [scattering amplitudes] of the theory on a genus g Riemann surface. We discuss V N;g for free bosonic theory with arbitrary background charge and for fermionic and bosonic bc systems. By saturating those vertices with highest weight states we obtain in a simple way the correlation functions of the corresponding primary fields on genus g Riemann surfaces that reproduce known results including the correlation functions of a bosonic bc system, that present a number of peculiarities. We construct also V N;g for the bosonic and fermionic string. In particular this technique allows one to explicitly construct the measure of integration over the moduli and to study the various pinching limits in order to check the finiteness of superstring theories. (orig.)

  13. De Sitter universes and the emerging landscape in string theory

    Indian Academy of Sciences (India)

    We discuss a recent proposal to construct de Sitter vacua in string theory. It is based on flux compactifications in string theory where all the moduli are stabilised and supersymmetry is broken with control. The resulting picture is that of a complicated landscape with many vacua of widely varying values for the cosmological ...

  14. Non-static local string in Brans–Dicke theory

    Indian Academy of Sciences (India)

    Abstract. A recent investigation showed that a local gauge string with a phenomenological energy momentum tensor, as prescribed by Vilenkin, is inconsistent in Brans–Dicke theory. In this work it has been shown that such a string is indeed consistent if one introduces time dependences in the metric. A set of solutions of full ...

  15. Matter scattering in quadratic gravity and unitarity

    Science.gov (United States)

    Abe, Yugo; Inami, Takeo; Izumi, Keisuke; Kitamura, Tomotaka

    2018-03-01

    We investigate the ultraviolet (UV) behavior of two-scalar elastic scattering with graviton exchanges in higher-curvature gravity theory. In Einstein gravity, matter scattering is shown not to satisfy the unitarity bound at tree level at high energy. Among some of the possible directions for the UV completion of Einstein gravity, such as string theory, modified gravity, and inclusion of high-mass/high-spin states, we take R_{μν}^2 gravity coupled to matter. We show that matter scattering with graviton interactions satisfies the unitarity bound at high energy, even with negative norm states due to the higher-order derivatives of metric components. The difference in the unitarity property of these two gravity theories is probably connected to that in another UV property, namely, the renormalizability property of the two.

  16. Tensions and Luescher terms for (2+1)-dimensional k-strings from holographic models

    International Nuclear Information System (INIS)

    Doran, Christopher A.; Rodgers, Vincent G.J.; Stiffler, Kory; Zayas, Leopoldo A. Pando

    2009-01-01

    The leading term for the energy of a bound state of k-quarks and k-antiquarks is proportional to its separation L. These k-string configurations have a Luescher term associated with their quantum fluctuations which is typically a 1/L correction to the energy. We review the status of tensions and Luescher terms in the context of lattice gauge theory, Hamiltonian methods, and gauge/gravity correspondence. Furthermore we explore how different representations of the k-string manifest themselves in the gauge/gravity duality. We calculate the Luescher term for a strongly coupled SU(N) gauge theory in (2+1) dimensions using the gauge/gravity correspondence. Namely, we compute one-loop corrections to a probe D4-brane embedded in the Cvetic, Gibbons, Lue, and Pope supergravity background. We investigate quantum fluctuations of both the bosonic and the fermionic sectors.

  17. Minimal Liouville gravity on the torus via the Douglas string equation

    International Nuclear Information System (INIS)

    Spodyneiko, Lev

    2015-01-01

    In this paper we assume that the partition function in minimal Liouville gravity (MLG) obeys the Douglas string equation. This conjecture makes it possible to compute the torus correlation numbers in (3,p) MLG. We perform this calculation using also the resonance relations between the coupling constants in the KdV frame and in the Liouville frame. We obtain explicit expressions for the torus partition function and for the one- and two-point correlation numbers. (paper)

  18. Aspects of non-geometry in string theory

    International Nuclear Information System (INIS)

    Patalong, Peter

    2013-01-01

    This thesis investigates various manifestations of non-geometry in string theory. It utilises different frameworks to study how non-geometry appears in the target space, how non-geometry and non-geometric fluxes are interconnected, how non-geometry can be captured in effective field theories and how a possible extension of the standard string worldsheet model can accommodate non-geometric setups. The first part provides an example that non-geometry can imply non-commutativity of the closed string coordinate fields. Three T-dual frames are investigated, the three-torus with constant H-flux, the twisted torus and the torus with non-geometric flux Q. Under the assumption of dilute flux, a mode expansion and the canonical quantisation are carried out in the second case up to linear order in the flux parameter. T-duality is then used to relate the commutators of the string expansion modes to the coordinate field commutator in the non-geometric third frame. Non-commutativity is found and related to the non-geometric flux Q and the string winding, it therefore appears as an intrinsically string theoretic feature. The second part investigates non-geometry in the context of ten-dimensional effective field theories, i.e. double field theory and supergravity. A field redefinition is implemented that takes the form of a T-duality transformation, it reveals an alternative set of field variables allowing to define non-geometric fluxes Q and R in higher dimensions. The perspective of double field theory provides a geometric interpretation of those by taking into account a new type of covariant winding derivative. The perspective of the ten-dimensional supergravity allows to investigate the interplay between non-geometric field configurations and non-geometric fluxes. For the three-torus example, a well-defined action can be found, and a simple dimensional reduction makes contact to the known four-dimensional potential. It thus proves the correct uplift of Q and R to higher

  19. A covariant open bosonic string field theory including the endpoint and middlepoint interaction

    International Nuclear Information System (INIS)

    Liu, B.G.; Northwest Univ., Xian; Chen, Y.X.

    1988-01-01

    Extending the usual endpoint and midpoint interactions, we introduce numerous kinds of interactions, labelled by a parameter λ and obtain a non-commutative and associative string field algebra by adding up all interactions. With this algebra we develop a covariant open bosonic string field theory, which reduces to Witten's open bosonic string field theory under a special string length choice. (orig.)

  20. What is the magnetic Weak Gravity Conjecture for axions

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Henkenjohann, Philipp [Institute for Theoretical Physics, University of Heidelberg (Germany); Witkowski, Lukas T. [APC, Universite Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cite, Paris (France)

    2017-03-15

    The electric Weak Gravity Conjecture demands that axions with large decay constant f couple to light instantons. The resulting large instantonic corrections pose problems for natural inflation. We explore an alternative argument based on the magnetic Weak Gravity Conjecture for axions, which we try to make more precise. Roughly speaking, it demands that the minimally charged string coupled to the dual 2-form-field exists in the effective theory. Most naively, such large-f strings curve space too much to exist as static solutions, thus ruling out large-f axions. More conservatively, one might allow non-static string solutions to play the role of the required charged objects. In this case, topological inflation would save the superplanckian axion. Furthermore, a large-f axion may appear in the low-energy effective theory based on two subplanckian axions in the UV. The resulting effective string is a composite object built from several elementary strings and domain walls. It may or may not satisfy the magnetic Weak Gravity Conjecture depending on how strictly the latter is interpreted and on the cosmological dynamics of this composite object, which remain to be fully understood. Finally, we recall that large-field brane inflation is naively possible in the codimension-one case. We show how string-theoretic back-reaction closes this apparent loophole of large-f (non-periodic) pseudo-axions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Analytic study of nonperturbative solutions in open string field theory

    International Nuclear Information System (INIS)

    Bars, I.; Kishimoto, I.; Matsuo, Y.

    2003-01-01

    We propose an analytic framework to study the nonperturbative solutions of Witten's open string field theory. The method is based on the Moyal star formulation where the kinetic term can be split into two parts. The first one describes the spectrum of two identical half strings which are independent from each other. The second one, which we call midpoint correction, shifts the half string spectrum to that of the standard open string. We show that the nonlinear equation of motion of string field theory is exactly solvable at zeroth order in the midpoint correction. An infinite number of solutions are classified in terms of projection operators. Among them, there exists only one stable solution which is identical to the standard butterfly state. We include the effect of the midpoint correction around each exact zeroth order solution as a perturbation expansion which can be formally summed to the complete exact solution

  2. UV / IR mixing in noncommutative field theory via open string loops

    International Nuclear Information System (INIS)

    Kiem, Youngjai; Lee, Sangmin

    2000-01-01

    We explicitly evaluate one-loop (annulus) planar and nonplanar open string amplitudes in the presence of the background NS-NS two-form field. In the decoupling limit of Seiberg and Witten, we find that the nonplanar string amplitudes reproduce the UV/IR mixing of noncommutative field theories. In particular, the investigation of the UV regime of the open string amplitudes shows that certain IR closed string degrees of freedom survive the decoupling limit as previously predicted from the noncommutative field theory analysis. These degrees of freedom are responsible for the quadratic, linear and logarithmic IR singularities when the D-branes embedded in space-time have the codimension zero, one and two, respectively. The analysis is given for both bosonic and supersymmetric open strings

  3. Quark Synthesis String Theory From Dark Matter to Light Emitting Atoms

    Science.gov (United States)

    Webb, William

    2012-10-01

    Forefather physicists formulated fusion based on nucleosynthesis. They directed that whole nucleons synthesize. Quark Synthesis String Theory now shows that it's the string-like quarks that do the synthesizing: not whole nucleons. In a dark region, string-like quarks synthesize with other string-like quarks to make rope-like quarks. Quarks structure into threesomes bound only by electrostatic and gravitational forces. Quarks not structuring as threesomes remain dark. Balanced threesomes of string-like quarks become neutrons. Balanced threesomes of rope-like quarks become more massive neutroniumA nuclei. After their formation, neutrons and neutroniumAs quickly begin emitting electrons. This paper develops equations that correctly describe nuclear structures and their electron emissions. Electron emission beta decay is calculated for the 30 least massive neutroniumA nuclei and their subsequent transmutation thru 203 intermediate nuclei on their way to becoming well known nuclei centering the 30 least massive light emitting atoms. This is a perfect 233 for 233 match between calculations of Quark Synthesis String Theory and factual nuclear data. This perfect match provides affirmation that nuclei have no need for the unknown strong or week forces and mediating particles. Nuclear physics succeeds using a string theory that has the quarks doing the synthesizing.

  4. Classical limit of quantum gravity in an accelerating universe

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2005-01-01

    A one-parameter deformation of Einstein-Hilbert gravity with an inverse Riemann curvature term is derived as the classical limit of quantum gravity compatible with an accelerating universe. This result is based on the investigation of semi-classical theories with sectional curvature bounds which are shown not to admit static spherically symmetric black holes if otherwise of phenomenological interest. We discuss the impact on the canonical quantization of gravity, and observe that worldsheet string theory is not affected

  5. Semiclassical spinning strings and confining gauge theories

    International Nuclear Information System (INIS)

    Bigazzi, F.; Cotrone, A.L.; Martucci, L.

    2004-03-01

    We study multi-charged rotating string states on Type II B regular backgrounds dual to confining SU(N) gauge theories with (softly broken) N=1 supersymmetry, in the infra red regime. After exhibiting the classical energy/charge relations for the folded and circular two-charge strings, we compute in the latter case the one loop sigma-model quantum correction. The classical relation has an expansion in positive powers of the analogous of the BMN effective coupling, while the quantum corrections are non perturbative in nature and are not subleading in the limit of infinite charge. We comment about the dual field theory multi-charged hadrons and the implications of our computation for the AdS/N=4 duality. (author)

  6. A proposal for an effective interacting field theory of open and closed strings

    International Nuclear Information System (INIS)

    Baulieu, L.; Grossman, B.

    1987-01-01

    We propose the use of the reggeon-pomeron vertex to obtain an effective field theory for open and closed strings. We suggest that closed string fields are necessary in order to go off-shell in an open string field theory. We then find that the closed string fields satisfy the Virasoro constraints (including equal number of left and right movers) in an appropriate choice of gauge. (orig.)

  7. Non-perturbative aspects of string theory from elliptic curves

    International Nuclear Information System (INIS)

    Reuter, Jonas

    2015-08-01

    We consider two examples for non-perturbative aspects of string theory involving elliptic curves. First, we discuss F-theory on genus-one fibered Calabi-Yau manifolds with the fiber being a hypersurface in a toric fano variety. We discuss in detail the fiber geometry in order to find the gauge groups, matter content and Yukawa couplings of the corresponding supergravity theories for the four examples leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 , U(1) and Z 3 . The theories are connected by Higgsings on the field theory side and conifold transitions on the geometry side. We extend the discussion to the network of Higgsings relating all theories stemming from the 16 hypersurface fibrations. For the models leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 and U(1) we discuss the construction of vertical G 4 fluxes. Via the D3-brane tadpole cancelation condition we can restrict the minimal number of families in the first two of these models to be at least three. As a second example for non-perturbative aspects of string theory we discuss a proposal for a non-perturbative completion of topological string theory on local B-model geometries. We discuss in detail the computation of quantum periods for the examples of local F 1 , local F 2 and the resolution of C 3 /Z 5 . The quantum corrections are calculated order by order using second order differential operators acting on the classical periods. Using quantum geometry we calculate the refined free energies in the Nekrasov-Shatashvili limit. Finally we check the non-perturbative completion of topological string theory for the geometry of local F 2 against numerical calculations.

  8. Closed string field theory: Quantum action and the Batalin-Vilkovsky master equation

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1993-01-01

    The complete quantum theory of covariant closed strings is constructed in detail. The nonpolynomial action is defined by elementary vertices satisfying recursion relations that give rise to Jacobi-like identities for an infinite chain of string field products. The genus zero string field algebra is the homotopy Lie algebra L ∞ encoding the gauge symmetry of the classical theory. The higher genus algebraic structure implies the Batalin-Vilkovisky (BV) master equation and thus consistent BRST quantization of the quantum action. From the L ∞ algebra, and the BV equation on the off-shell state space we derive the L ∞ algebra, and the BV equation on physical states that were recently constructed in d=2 string theory. The string diagrams are surfaces with minimal area metrics, foliated by closed geodesics of length 2π. These metrics generalize quadratic differentials in that foliation bands can cross. The string vertices are succinctly characterized; they include the surfaces whose foliation bands are all of height smaller than 2π. (orig.)

  9. String fields, higher spins and number theory

    CERN Document Server

    Polyakov, Dimitri

    2018-01-01

    The book aims to analyze and explore deep and profound relations between string field theory, higher spin gauge theories and holography the disciplines that have been on the cutting edge of theoretical high energy physics and other fields. These intriguing relations and connections involve some profound ideas in number theory, which appear to be part of a unifying language to describe these connections.

  10. Amplitude relations in heterotic string theory and Einstein-Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2016-11-11

    We present all-multiplicity evidence that the tree-level S-matrix of gluons and gravitons in heterotic string theory can be reduced to color-ordered single-trace amplitudes of the gauge multiplet. Explicit amplitude relations are derived for up to three gravitons, up to two color traces and an arbitrary number of gluons in each case. The results are valid to all orders in the inverse string tension α{sup ′} and generalize to the ten-dimensional superamplitudes which preserve 16 supercharges. Their field-theory limit results in an alternative proof of the recently discovered relations between Einstein-Yang-Mills amplitudes and those of pure Yang-Mills theory. Similarities and differences between the integrands of the Cachazo-He-Yuan formulae and the heterotic string are investigated.

  11. Star products from commutative string theory

    Indian Academy of Sciences (India)

    in commutative open-string theory performed in [2], and an impressive ... formed to all orders in the derivative expansion, but keeping only terms of order(F 2) ... nonlogarithmic finite parts [2] and come from propagators for which there is no self-.

  12. Purely cubic action for string field theory

    Science.gov (United States)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  13. Ghost sector of vacuum string field theory and the projection equation

    International Nuclear Information System (INIS)

    Potting, Robertus; Raeymaekers, Joris

    2002-01-01

    We study the ghost sector of vacuum string field theory where the BRST operator Q is given by the midpoint insertion proposed by Gaiotto, Rastelli, Sen and Zwiebach. We introduce a convenient basis of half-string modes in terms of which Q takes a particularly simple form. We show that there exists a field redefinition which reduces the ghost sector field equation to a pure projection equation for string fields satisfying the constraint that the ghost number is equally divided over the left- and right halves of the string. When this constraint is imposed, vacuum string field theory can be reformulated as a U(∞) cubic matrix model. Ghost sector solutions can be constructed from projection operators on half-string Hilbert space just as in the matter sector. We construct the ghost sector equivalent of various well-known matter sector projectors such as the sliver, butterfly and nothing states. (author)

  14. Forty Years of String Theory: Reflecting on the Foundations

    NARCIS (Netherlands)

    de Haro, S.; Dieks, D.G.B.J.; t Hooft, G.; Verlinde, E.

    2013-01-01

    The history of string theory started around 1970 when Nambu, Nielsen, and Susskind realized that Veneziano’s 1968 dual model, devised to explain the particle spectrum of the strong interactions, actually describes the properties of quantum mechanical strings. A few years later, QCD appeared as a

  15. Lovelock gravities from Born-Infeld gravity theory

    Science.gov (United States)

    Concha, P. K.; Merino, N.; Rodríguez, E. K.

    2017-02-01

    We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  16. String theory in the bathtub

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The presence of the surrounding medium makes their dynamics dramatically different from those of ordinary string-like objects propagating in empty space, leading to quite peculiar phenomena, observed in experiments and simulations. I will argue that the effective theory provides an optimal theoretical framework to understand such phenomena, and to make precise quantitative predictions about them.

  17. Remarks on the relation between different (open) string field theories

    International Nuclear Information System (INIS)

    De Alwis, S.P.

    1987-01-01

    It is shown that the different three-string vertices, related by conformal transformations, are in the same BRST cohomology class. We use this result to discuss the relation between different (open) string field theories. (orig.)

  18. A mapping between Feynman and string motivated one-loop rules in gauge theories

    International Nuclear Information System (INIS)

    Bern, Z.

    1992-01-01

    Recently, computationally efficient rules for one-loop gauge theory amplitudes have been derived from string theory. We demonstrate the relationship of the compact string organization of the amplitude to Feynman diagrams. In particular, we explicitly show how large cancellations inherent in conventional Feynman diagram computations are avoided by the string motivated rules. (orig.)

  19. Origin of gauge invariance in string theory

    Science.gov (United States)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  20. Multiloop world-line Green functions from string theory

    International Nuclear Information System (INIS)

    Roland, K.; Sato, H.T.

    1996-01-01

    We show how the multiloop bosonic Green function of closed string theory reduces to the world-line Green function as defined by Schmidt and Schubert in the limit where the string world-sheet degenerates into a Φ 3 particle diagram. To obtain this correspondence we have to make an appropriate choice of the local coordinates defined on the degenerate string world sheet. We also present a set of simple rules that specify, in the explicit setting of the Schottky parametrization, which is the corner of moduli space corresponding to a given multiloop Φ 3 diagram. (orig.)

  1. Cosmological footprints of loop quantum gravity.

    Science.gov (United States)

    Grain, J; Barrau, A

    2009-02-27

    The primordial spectrum of cosmological tensor perturbations is considered as a possible probe of quantum gravity effects. Together with string theory, loop quantum gravity is one of the most promising frameworks to study quantum effects in the early universe. We show that the associated corrections should modify the potential seen by gravitational waves during the inflationary amplification. The resulting power spectrum should exhibit a characteristic tilt. This opens a new window for cosmological tests of quantum gravity.

  2. Black holes in pure Lovelock gravities

    International Nuclear Information System (INIS)

    Cai Ronggen; Ohta, Nobuyoshi

    2006-01-01

    Lovelock gravity is a fascinating extension of general relativity, whose action consists of dimensionally extended Euler densities. Compared to other higher order derivative gravity theories, Lovelock gravity is attractive since it has a lot of remarkable features such as the fact that there are no more than second order derivatives with respect to the metric in its equations of motion, and that the theory is free of ghosts. Recently, in the study of black strings and black branes in Lovelock gravity, a special class of Lovelock gravity is considered, which is named pure Lovelock gravity, where only one Euler density term exists. In this paper we study black hole solutions in the special class of Lovelock gravity and associated thermodynamic properties. Some interesting features are found, which are quite different from the corresponding ones in general relativity

  3. Proposal for testing quantum gravity in the lab

    International Nuclear Information System (INIS)

    Ali, Ahmed Farag; Das, Saurya; Vagenas, Elias C.

    2011-01-01

    Attempts to formulate a quantum theory of gravitation are collectively known as quantum gravity. Various approaches to quantum gravity such as string theory and loop quantum gravity, as well as black hole physics and doubly special relativity theories predict a minimum measurable length, or a maximum observable momentum, and related modifications of the Heisenberg Uncertainty Principle to a so-called generalized uncertainty principle (GUP). We have proposed a GUP consistent with string theory, black hole physics, and doubly special relativity theories and have showed that this modifies all quantum mechanical Hamiltonians. When applied to an elementary particle, it suggests that the space that confines it must be quantized, and in fact that all measurable lengths are quantized in units of a fundamental length (which can be the Planck length). On the one hand, this may signal the breakdown of the spacetime continuum picture near that scale, and on the other hand, it can predict an upper bound on the quantum gravity parameter in the GUP, from current observations. Furthermore, such fundamental discreteness of space may have observable consequences at length scales much larger than the Planck scale. Because this influences all the quantum Hamiltonians in an universal way, it predicts quantum gravity corrections to various quantum phenomena. Therefore, in the present work we compute these corrections to the Lamb shift, simple harmonic oscillator, Landau levels, and the tunneling current in a scanning tunneling microscope.

  4. Lovelock gravities from Born–Infeld gravity theory

    Directory of Open Access Journals (Sweden)

    P.K. Concha

    2017-02-01

    Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  5. On natural inflation and moduli stabilisation in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Palti, Eran [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)

    2015-10-28

    Natural inflation relies on the existence of an axion decay constant which is super-Planckian. In string theory only sub-Planckian axion decay constants have been found in any controlled regime. However in field theory it is possible to generate an enhanced super-Planckian decay constant by an appropriate aligned mixing between axions with individual sub-Planckian decay constants. We study the possibility of such a mechanism in string theory. In particular we construct a new realisation of an alignment scenario in type IIA string theory compactifications on a Calabi-Yau where the alignment is induced through fluxes. Within field theory the original decay constants are taken to be independent of the parameters which induce the alignment. In string theory however they are moduli dependent quantities and so interact gravitationally with the physics responsible for the mixing. We show that this gravitational effect of the fluxes on the moduli can precisely cancel any enhancement of the effective decay constant. This censorship of an effective super-Planckian decay constant depends on detailed properties of Calabi-Yau moduli spaces and occurs for all the examples and classes that we study. We expand these results to a general superpotential assuming only that the axion superpartners are fixed supersymmetrically and are able to show for a large class of Calabi-Yau manifolds, but not all, that the cancellation effect occurs and is independent of the superpotential. We also study simple models where the moduli are fixed non-supersymmetrically and find that similar cancellation behaviour can emerge. Finally we make some comments on a possible generalisation to axion monodromy inflation models.

  6. Zero-norm states and high-energy symmetries of string theory

    International Nuclear Information System (INIS)

    Chan, C.-T.; Lee, J.-C.

    2004-01-01

    We derive stringy Ward identities from the decoupling of two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. These Ward identities are valid to all energy α' and all loop orders χ in string perturbation theory. The high-energy limit α'→∞ of these stringy Ward identities can then be used to fix the proportionality constants between scattering amplitudes of different string states algebraically without referring to Gross and Mende's saddle point calculation of high-energy string-loop amplitudes. As examples, all Ward identities for the mass level M 2 =4,6 are derived, their high-energy limits are calculated and the proportionality constants between scattering amplitudes of different string states are determined. In addition to those identified before, we discover some new nonzero components of high-energy amplitudes not found previously by Gross and Manes. These components are essential to preserve massive gauge invariances or decouple massive zero-norm states of string theory. A set of massive scattering amplitudes and their high-energy limits are calculated explicitly for each mass level M 2 =4,6 to justify our results

  7. Mass corrections in string theory and lattice field theory

    International Nuclear Information System (INIS)

    Del Debbio, Luigi; Kerrane, Eoin; Russo, Rodolfo

    2009-01-01

    Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of 4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1 loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius R is much bigger than the scale of the UV completion (R>>√(α ' ), a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2, 4 super Yang-Mills is highly suppressed, even if the lattice regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.

  8. Quantum gravity as Escher's dragon

    International Nuclear Information System (INIS)

    Smilga, A.V.

    2003-01-01

    The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D = 4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N = 4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N= 1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N = 4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives

  9. Matrix models of 2d gravity

    International Nuclear Information System (INIS)

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date

  10. A unique theory of all forces

    International Nuclear Information System (INIS)

    Di Vecchia, Paolo

    1997-01-01

    In discussing the construction of a consistent theory of quantum gravity unified with the gauge interactions we are naturally led to a string theory. We review its properties and the five consistent supersymmetric string theories in ten dimensions. We finally discuss the evidence that these theories are actually special limits of a unique 11-dimensional theory, called M-theory, and a recent conjecture for its explicit formulation as a supersymmetric Matrix theory

  11. String Theory, the Crisis in Particle Physics and the Ascent of Metaphoric Arguments

    Science.gov (United States)

    Schroer, Bert

    This essay presents a critical evaluation of the concepts of string theory and its impact on particle physics. The point of departure is a historical review of four decades of string theory within the broader context of six decades of failed attempts at an autonomous S matrix approach to particle theory. The central message, contained in Secs. 5 and 6, is that string theory is not what its name suggests, namely a theory of objects in space-time whose localization is string-instead of pointlike. Contrary to popular opinion, the oscillators corresponding to the Fourier models of a quantum-mechanical string do not become embedded in space-time and neither does the "range space" of a chiral conformal QFT acquire the interpretation of stringlike-localized quantum matter. Rather, string theory represents a solution to a problem which enjoyed some popularity in the 1960s: find a principle which, similar to the SO(4,2) group in the case of the hydrogen spectrum, determines an infinite component wave function with a (realistic) mass/spin spectrum. Instead of the group theory used in the old failed attempts, it creates this mass/spin spectrum by combining an internal oscillator quantum mechanics with a pointlike-localized quantum-field-theoretic object, i.e. the mass/spin tower "sits" over one point and does not arise from a wiggling string in space-time. The widespread acceptance of a theory whose interpretation has been based on metaphoric reasoning had a corroding influence on particle theory, a point which will be illustrated in the last section with some remarks of a more sociological nature. These remarks also lend additional support to observations on connections between the discourse in particle physics and the present Zeitgeist of the post-Cold War period that are made in the introduction.

  12. Super-Chern-Simons Theory as Superstring Theory

    CERN Document Server

    Grassi, P A

    2004-01-01

    Superstrings and topological strings with supermanifolds as target space play a central role in the recent developments in string theory. Nevertheless the rules for higher-genus computations are still unclear or guessed in analogy with bosonic and fermionic strings. Here we present a common geometrical setting to develop systematically the prescription for amplitude computations. The geometrical origin of these difficulties is the theory of integration of superforms. We provide a translation between the theory of supermanifolds and topological strings with supertarget space. We show how in this formulation one can naturally construct picture changing operators to be inserted in the correlation functions to soak up the zero modes of commuting ghost and we derive the amplitude prescriptions from the coupling with an extended topological gravity on the worldsheet. As an application we consider a simple model on R^(3|2) leading to super-Chern-Simons theory.

  13. Local grand unification and string theory

    International Nuclear Information System (INIS)

    Nilles, Hans Peter; Vaudrevange, Patrick K.S.

    2009-09-01

    The low energy effective action of string theory depends strongly on the process of compactification and the localization of fields in extra dimensions. Explicit string constructions towards the minimal supersymmetric standard model (MSSM) reveal interesting results leading to the concept of local grand unification. Properties of the MSSM indicate that we might live at a special location close to an orbifold fixed point rather than a generic point in Calabi-Yau moduli space. We observe an enhancement of (discrete) symmetries that have various implications for the properties of the MSSM such as proton stability as well as solutions to the flavor problem, the m-problem and the strong CP-problem. (orig.)

  14. Topics in supergravity and string theory

    International Nuclear Information System (INIS)

    Eastaugh, A.G.

    1987-01-01

    The first topic covered in this dissertation concerns the harmonic expansion technique and its application to the dimensional compactification of higher dimensional supergravity. A simple example is given to explain the method and then the method is applied to the problem of obtaining the mass spectrum of the squashed seven-sphere compactification of eleven dimensional supergravity. The second topic concerns the application of Fujikawa's method of anomaly calculation to the calculation of the critical dimension of various string models. The third topic is a study and explicit calculation of the Fock space representation of the vertex in Witten's formulation of the interacting open bosonic string field theory

  15. Cosmology in Gauge Field Theory and String Theory

    International Nuclear Information System (INIS)

    Garcia Compean, H

    2005-01-01

    This new book is intended for students and researchers who want to go into the interplay between cosmology and high-energy physics. It assumes a prior knowledge of these subjects such as some of the topics contained in the previous books by the authors, Introduction to Gauge Field Theory (1993 Bristol: Institute of Physics Publishing) and Supersymmetric Gauge Field Theory and String Theory (1994 Bristol: Institute of Physics Publishing). However, the book is intended to be self-contained, explaining, from a modern perspective, some background material mainly in standard cosmology, topological defects, baryogenesis, inflationary cosmology and, at the end of the book, some of the basics of string theory. What is distinctively new about this book is that it lies in the interplay between cosmology and high-energy physics typically above 100 GeV (10 15 K). Often these subjects are presented in regular textbooks in a disconnected way, or in research papers, proceedings and review papers but usually not in a pedagogical style. Thus, in this sense, the book is unique and deserves a special place in the recent literature. The book starts by reviewing the standard material of the early universe. The standard model of cosmology from a modern perspective is revised in chapter 1. In chapter 2, phase transitions in different models are discussed, Higgs, electroweak, GUTs, supersymmetric GUTs and supergravity, by using quantum field theory at finite temperature. Chapter 3 is devoted to a general account of topological defects and discusses how they arise as possible remnants of these phase transitions in GUTs. Other relics, such as neutrinos and axions, are introduced in chapter 5 and their impact in cosmology is assessed. In chapter 4, some of the most relevant mechanisms of baryogenesis are discussed in the context of the different GUTs and the minimal supersymmetric standard model (MSSM). Inflation is also discussed in the context of GUTs. In chapter 6, the authors introduce

  16. Supersymmetry and string theory beyond the standard model

    CERN Document Server

    Dine, Michael

    2015-01-01

    The past decade has witnessed dramatic developments in the fields of experimental and theoretical particle physics and cosmology. This fully updated second edition is a comprehensive introduction to these recent developments and brings this self-contained textbook right up to date. Brand new material for this edition includes the groundbreaking Higgs discovery, results of the WMAP and Planck experiments. Extensive discussion of theories of dynamical electroweak symmetry breaking and a new chapter on the landscape, as well as a completely rewritten coda on future directions gives readers a modern perspective on this developing field. A focus on three principle areas: supersymmetry, string theory, and astrophysics and cosmology provide the structure for this book which will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password-protected solutions will be available to lecturers at www.cambrid...

  17. SLAC physicists develop test for string theory

    CERN Multimedia

    Yajnik, Juhi

    2006-01-01

    "Under certain conditions, string theory solves many of the questions wracking the minds of physicists, but until recently it had one major flaw - it could not be tested. SLAC (Stanford Linear Accelerator Center) scientists have found a way to test this revolutionary theory, which posits that there are 10 or 11 dimensions in our universe" (1 page)

  18. Generalized canonical quantization and background fields equations of motion in the Bosonic string theory

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Lyakhovich, S.L.; Pershin, V.D.; Fradkin, E.S.

    1991-01-01

    At present, superstring theory is the only candidate to be a unified theory of all fundamental interactions. For this reason, the various aspects of the string theory have been attracting great attention. String theory has a nontrivial gauge symmetry and therefore is an interesting object from the viewpoint of application of general quantization methods. This paper discusses the bosonic string theory. The purpose of this paper is a consistent operator quantization of the theory with the action. The natural basis for it is provided by the method of the generalized canonical quantization

  19. Gravity in 2+ 1 dimensions

    International Nuclear Information System (INIS)

    Gerbert, P.S.

    1989-01-01

    A review of 2+1-dimensional gravity, and recent results concerning the quantum scattering of Klein-Gordon and Dirac test particles in background of point sources with and without spin are presented. The classical theory and general remarks of 2+1 dimensional gravity are reviewed. The space-time in presence of point sources is described. The classical scattering and applications to (Spinning) cosmic strings are discussed. The quantum theory is considered analysing the two body scattering problem. The scattering of spinless particles is discussed including spin-effects. Some classifying remarks about three-dimensional analogue of hte Weyl tensor and Chern-Simons theories of gravitation are also presented. (M.C.K.)

  20. Thermodynamics of 2D string theory

    International Nuclear Information System (INIS)

    Alexandrov, Sergei Yu.; V.A. Fock Department of Theoretical Physics, St. Petersburg University

    2003-01-01

    We calculate the free energy, energy and entropy in the matrix quantum mechanical formulation of 2D string theory in a background strongly perturbed by tachyons with the imaginary minkowskian momentum ±i/R ('Sine-Liouville' theory). The system shows a thermodynamical behaviour corresponding to the temperature T={1/(2π R)}. We show that the microscopically calculated energy of the system satisfies the usual thermodynamical relations and leads to a non-zero entropy. (author)

  1. 1. Vienna central european seminar on particle physics and quantum field theory. Advances in quantum field theory. Program

    International Nuclear Information System (INIS)

    Hueffel, H.

    2004-01-01

    The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)

  2. Supersymmetric gauge theories from string theory; Theorie de jauge supersymetrique de la theorie des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, St

    2005-12-15

    This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G{sub 2}-manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G{sub 2}-manifold is known. Here we construct families of metrics on compact weak G{sub 2}-manifolds, which contain two conical singularities. Weak G{sub 2}-manifolds have properties that are similar to the ones of proper G{sub 2}-manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E{sub 8} x E{sub 8}-heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the

  3. On the domain of string perturbation theory

    International Nuclear Information System (INIS)

    Davis, S.

    1989-06-01

    For a large class of effectively closed surfaces, it is shown that the only divergences in string scattering amplitudes at each order in perturbation theory are those associated with the coincidence of vertex operators and the boundary of moduli space. This class includes all closed surfaces of finite genus, and infinite-genus surfaces which can be uniformized by a group of Schottky type. While the computation is done explicitly for bosonic strings in their ground states, it can also be extended to excited states and to superstrings. The properties of these amplitudes lead to a definition of the domain of perturbation theory as the set of effectively closed surfaces. The implications of the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed. (author). 20 refs, 6 figs

  4. Superstrings and the search for the theory of everything

    International Nuclear Information System (INIS)

    Peat, D.

    1988-01-01

    This book contains the following chapters: A Crisis in Physics; From Points to Strings; Nambu's String Theory; Grand Unification; Superstrings; Heterotic Strings: Two Dimensions in One; From Spinors to Twistors; Twistor Space; Twistor Gravity; and Into Deep Waters

  5. Why two local BRS algebras in bosonic string theory

    International Nuclear Information System (INIS)

    Bouda, A.

    1993-01-01

    This paper is the first of a set of two articles in which a local Becchi-Rouet-Stora (BRS) operator for string and superstring theories is constructed by using a new procedure in which the nil potency is automatically guaranteed. In this article, it is shown that in bosonic string theory, there are two different methods of dilating the ghost which give rise to two different local BRS algebras. The first method leads to well-known results, already obtained by another procedure. The second method has been applied previously by the author. (author). 8 refs

  6. Physical states at the tachyonic vacuum of open string field theory

    International Nuclear Information System (INIS)

    Giusto, S.; Imbimbo, C.

    2004-01-01

    We illustrate a method for computing the number of physical states of open string theory at the stable tachyonic vacuum in level truncation approximation. The method is based on the analysis of the gauge-fixed open string field theory quadratic action that includes Fadeev-Popov ghost string fields. Computations up to level 9 in the scalar sector are consistent with Sen's conjecture about the absence of physical open string states at the tachyonic vacuum. We also derive a long exact cohomology sequence that relates relative and absolute cohomologies of the BRS operator at the non-perturbative vacuum. We use this exact result in conjunction with our numerical findings to conclude that the higher ghost number non-perturbative BRS cohomologies are non-empty

  7. The early years of string theory: The dual resonance model

    International Nuclear Information System (INIS)

    Ramond, P.

    1987-10-01

    This paper reviews the past quantum mechanical history of the dual resonance model which is an early string theory. The content of this paper is listed as follows: historical review, the Veneziano amplitude, the operator formalism, the ghost story, and the string story

  8. Dirichlet branes and nonperturbative aspects of supersymmetric string and gauge theories

    International Nuclear Information System (INIS)

    Yin, Zheng

    1999-01-01

    In chapter 1 the author reviews some elements of string theory relevant to the rest of this report. He touches on both the classical, i.e. perturbative, string physics before D-branes rise to prominence, and some of the progresses they brought forth. In chapter 2 he proceeds to give an exact algebraic formulation of D-branes in curved spaces. This allows one to classify them in backgrounds of interest and study their geometric properties. He applies this formalism to string theory on Calabi-Yau and other supersymmetry preserving manifolds. Then he studies the behavior of the D-branes under mirror symmetry in chapter 3. Mirror symmetry is known to be a symmetry of string theory perturbatively. He finds evidence for its nonperturbative validity when D-branes are also considered and compute some dynamical consequences. In chapter 4 he turns to examine the consistency of curved and/or intersecting D-brane configurations. They have been used recently to extract information about the field theories that arise in certain limits. It turns out that there are potential quantum mechanical inconsistencies associated with them. What saves the day are certain subtle topological properties of D-branes. This resolution has implications for the conserved charges carried by the D-branes, which he computes for the cases studied in chapter 2. In chapter 5 he uses intersecting brane configurations to study three dimensional supersymmetric gauge theories. There is also a mirror symmetry there that, among other things, exchanges classical and quantum mechanical quantities of a (mirror) pair of theories. It has an elegant realization in term of a symmetry of string theory involving D-branes. The author employs it to study a wide class of 3d models. He also predicts new mirror pairs and unconventional 3d field theories without Lagrangian descriptions

  9. On the interplay between string theory and field theory

    International Nuclear Information System (INIS)

    Brunner, I.

    1998-01-01

    In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T 6 , which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)

  10. On the interplay between string theory and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, I.

    1998-07-08

    In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T{sup 6}, which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)

  11. An ambiguity in fermionic string perturbation theory

    International Nuclear Information System (INIS)

    Atick, J.J.; Rabin, J.M.

    1988-01-01

    Recent investigation by Verlinde and Verlinde has shown that the fermionic string loop amplitudes change by a total derivative term in the moduli space under a change of basis of the supermoduli. This ambiguity is addressed in the context of the heterotic string theory, and shown to be a consequence of an inherent ambiguity in defining integration over the variables of a Grassmann algebra - in this case the Grassmann-valued coordinates of the supermoduli space. A resolution of this ambiguity in genus-two within this formalism is also presented. (orig.)

  12. Wilson loop, Regge trajectory and hadron masses in a Yang-Mills theory from semiclassical strings

    International Nuclear Information System (INIS)

    Bigazzi, F.; Cotrone, A.L.; Martucci, L.; Pando Zayas, L.A.

    2004-07-01

    We compute the one-loop string corrections to the Wilson loop, glueball Regge trajectory and stringy hadron masses in the Witten model of non supersymmetric, large-N Yang-Mills theory. The classical string configurations corresponding to the above field theory objects are respectively: open straight strings, folded closed spinning strings, and strings orbiting in the internal part of the supergravity background. For the rectangular Wilson loop we show that besides the standard Luscher term, string corrections provide a rescaling of the field theory string tension. The one-loop corrections to the linear glueball Regge trajectories render them nonlinear with a positive intercept, as in the experimental soft Pomeron trajectory. Strings orbiting in the internal space predict a spectrum of hadronic-like states charged under global flavor symmetries which falls in the same universality class of other confining models. (author)

  13. Quantum gravity

    International Nuclear Information System (INIS)

    Isham, C.

    1989-01-01

    Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)

  14. New infinite-dimensional hidden symmetries for heterotic string theory

    International Nuclear Information System (INIS)

    Gao Yajun

    2007-01-01

    The symmetry structures of two-dimensional heterotic string theory are studied further. A (2d+n)x(2d+n) matrix complex H-potential is constructed and the field equations are extended into a complex matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear systems, explicit formulations of new hidden symmetry transformations for the considered theory are given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras: the semidirect product of the Kac-Moody o(d,d+n-circumflex) and Virasoro algebras (without center charges). These results demonstrate that the heterotic string theory under consideration possesses more and richer symmetry structures than previously expected

  15. New variations on two old themes - String Theory and Baryonium

    International Nuclear Information System (INIS)

    Chan Hong-Mo.

    1989-07-01

    A trace factor introduced twenty years ago to incorporate internal symmetry into String Theory is generalised to include also string dynamics, while some new spectroscopic data are examined in relation to a ten year old model of exotic qq-q-barq-bar mesons. (author)

  16. The spectra of supersymmetric states in string theory

    NARCIS (Netherlands)

    Cheng, M.C.N.

    2008-01-01

    In this thesis we study the spectra of supersymmetric states in string theory compactifications with eight and sixteen supercharges, with special focus placed on the quantum states of black holes and the phenomenon of wall-crossing in these theories. A self-contained introduction to the relevant

  17. Instantons and cosmologies in string theory

    NARCIS (Netherlands)

    Collinucci, Giulio

    2005-01-01

    This thesis deals with problems in two subdomains of string theory that are a priori unrelated, and in the last chapter, links are established between those two. The first topic of research is that of D-instantons. These are mathematical objects that allow one to compute physical effects that are

  18. Loop homotopy algebras in closed string field theory

    International Nuclear Information System (INIS)

    Markl, M.

    2001-01-01

    Barton Zwiebach (1993) constructed ''string products'' on the Hilbert space of a combined conformal field theory of matter and ghosts, satisfying the ''main identity''. It has been well known that the ''tree level'' of the theory gives an example of a strongly homotopy Lie algebra (though, as we will see later, this is not the whole truth). Strongly homotopy Lie algebras are now well-understood objects. On the one hand, strongly homotopy Lie algebra is given by a square zero coderivation on the cofree cocommutative connected coalgebra on the other hand, strongly homotopy Lie algebras are algebras over the cobar dual of the operad Com for commutative algebras. No such characterization of the structure of string products for arbitrary genera has been available, though there are two series of papers directly pointing towards the requisite characterization. As far as the characterization in terms of (co)derivations is concerned, we need the concept of higher order (co)derivations. For our characterization we need to understand the behavior of these higher (co)derivations on (co)free (co)algebras. The necessary machinery for the operadic approach is that of modular operads. We also indicate how to adapt the loop homotopy structure to the case of open string field theory. (orig.)

  19. A unifying theory The universe on a string

    CERN Multimedia

    Greene, Brian

    2006-01-01

    Seventy-five years ago, Albert Einstein completed his unified field theory; but, as had happened before and would happen again, Einstein had to go bak to the drawing board. Much progress have been inspired, with the most recent advances coming from an approach called string theory. (1,5 page)

  20. Improved Off-Shell Scattering Amplitudes in String Field Theory and New Computational Methods

    CERN Document Server

    Park, I Y; Bars, Itzhak

    2004-01-01

    We report on new results in Witten's cubic string field theory for the off-shell factor in the 4-tachyon amplitude that was not fully obtained explicitly before. This is achieved by completing the derivation of the Veneziano formula in the Moyal star formulation of Witten's string field theory (MSFT). We also demonstrate detailed agreement of MSFT with a number of on-shell and off-shell computations in other approaches to Witten's string field theory. We extend the techniques of computation in MSFT, and show that the j=0 representation of SL(2,R) generated by the Virasoro operators $L_{0},L_{\\pm1}$ is a key structure in practical computations for generating numbers. We provide more insight into the Moyal structure that simplifies string field theory, and develop techniques that could be applied more generally, including nonperturbative processes.

  1. $\\mathcal{N}=2^\\star$ from Topological Amplitudes in String Theory

    CERN Document Server

    Florakis, Ioannis

    2016-01-01

    In this paper, we explicitly construct string theory backgrounds that realise the so-called $\\mathcal N=2^\\star$ gauge theory. We prove the consistency of our models by calculating their partition function and obtaining the correct gauge theory spectrum. We further provide arguments in favour of the universality of our construction which covers a wide class of models all of which engineer the same gauge theory. We reproduce the corresponding Nekrasov partition function once the $\\Omega$-deformation is included and the appropriate field theory limit taken. This is achieved by calculating the topological amplitudes $F_g$ in the string models. In addition to heterotic and type II constructions, we also realise the mass deformation in type I theory, thus leading to a natural way of uplifting the result to the instanton sector.

  2. String Gas Cosmology

    OpenAIRE

    Brandenberger, Robert H.

    2008-01-01

    String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...

  3. Representation dependence of k -strings in pure Yang-Mills theory via supersymmetry

    Science.gov (United States)

    Anber, Mohamed M.; Pellizzani, Vito

    2017-12-01

    We exploit a conjectured continuity between super Yang-Mills on R3×S1 and pure Yang-Mills to study k -strings in the latter theory. As expected, we find that Wilson-loop correlation functions depend on the N-ality of a representation R to the leading order. However, the next-to-leading order correction is not universal and is given by the group characters, in the representation R , of the permutation group. We also study W-bosons in super Yang-Mills. We show that they are deconfined on the string world sheet, and therefore, they can change neither the string N-ality nor its tension. This phenomenon mirrors the fact that soft gluons do not screen probe charges with nonzero N-ality in pure Yang-Mills. Finally, we comment on the scaling law of k -strings in super Yang-Mills and compare our findings with strings in Seiberg-Witten theory, deformed Yang-Mills theory, and holographic studies that were performed in the 't Hooft large-N limit.

  4. A nonperturbative solution of D=1 string theory

    International Nuclear Information System (INIS)

    Gross, D.J.; Miljkovic, N.

    1990-01-01

    We derive a nonperturbative solution of D=1 string theory, based on a double scaling limit of the one dimensional random matrix model. We derive an exact expression for the partition function in terms of the string coupling constant. The weak coupling expansion suffers from infrared divergences, which we attribute to massless tadpoles. The continuum limit seems to be well defined, however, in a strong coupling expansion. This could correspond to a different stable nonperturbative vacuum. (orig.)

  5. Three-dimensional dilatonic gravity's rainbow: Exact solutions

    International Nuclear Information System (INIS)

    Hossein Hendi, Seyed; Eslam Panah, Behzad; Panahiyan, Shahram

    2016-01-01

    Deep relations of dark energy scenario and string theory results into dilaton gravity, on the one hand, and the connection between quantum gravity and gravity's rainbow, on the other hand, motivate us to consider three-dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions, which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.

  6. F-Theory, spinning black holes and multi-string branches

    International Nuclear Information System (INIS)

    Haghighat, Babak; Murthy, Sameer; Vafa, Cumrun; Vandoren, Stefan

    2016-01-01

    We study 5d supersymmetric black holes which descend from strings of generic N=(1,0) supergravity in 6d. These strings have an F-theory realization in 6d as D3 branes wrapping smooth genus g curves in the base of elliptic 3-folds. They enjoy (0,4) worldsheet supersymmetry with an extra SU(2) L current algebra at level g realized on the left-movers. When the smooth curves degenerate they lead to multi-string branches and we find that the microscopic worldsheet theory flows in the IR to disconnected 2d CFTs having different central charges. The single string sector is the one with maximal central charge, which when wrapped on a circle, leads to a 5d spinning BPS black hole whose horizon volume agrees with the leading entropy prediction from the Cardy formula. However, we find new phenomena where this branch meets other branches of the CFT. These include multi-string configurations which have no bound states in 6 dimensions but are bound through KK momenta when wrapping a circle, as well as loci where the curves degenerate to spheres. These loci lead to black hole configurations which can have total angular momentum relative to a Taub-Nut center satisfying J 2 >M 3 and whose number of states, though exponentially large, grows much slower than those of the large spinning black hole.

  7. f(Lovelock) theories of gravity

    Science.gov (United States)

    Bueno, Pablo; Cano, Pablo A.; Óscar Lasso, A.; Ramírez, Pedro F.

    2016-04-01

    f(Lovelock) gravities are simple generalizations of the usual f( R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.

  8. f(Lovelock) theories of gravity

    International Nuclear Information System (INIS)

    Bueno, Pablo; Cano, Pablo A.; Óscar, Lasso A.; Ramírez, Pedro F.

    2016-01-01

    f(Lovelock) gravities are simple generalizations of the usual f(R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.

  9. Introduction to superstring theory

    International Nuclear Information System (INIS)

    Nunez, Carmen

    2009-01-01

    This is a very basic introduction to the AdS/CFT correspondence. The first lecture motivates the duality between gauge theories and gravity/string theories. The next two lectures introduce the bosonic and supersymmetric string theories. The fourth lecture is devoted to study Dp-branes and finally, in the fifth lecture I discuss the two worlds: N=4 SYM in 3+1 flat dimensions and type IIB superstrings in AdS 5 x S5. (author)

  10. Introduction to superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)], e-mail: carmen@iafe.uba.ar

    2009-07-01

    This is a very basic introduction to the AdS/CFT correspondence. The first lecture motivates the duality between gauge theories and gravity/string theories. The next two lectures introduce the bosonic and supersymmetric string theories. The fourth lecture is devoted to study Dp-branes and finally, in the fifth lecture I discuss the two worlds: N=4 SYM in 3+1 flat dimensions and type IIB superstrings in AdS{sub 5} x S5. (author)

  11. Negative energy in string theory and cosmic censorship violation

    International Nuclear Information System (INIS)

    Hertog, Thomas; Horowitz, Gary T.; Maeda, Kengo

    2004-01-01

    We find asymptotically anti-de Sitter solutions in N=8 supergravity which have a negative total energy. This is possible since the boundary conditions required for the positive energy theorem are stronger than those required for a finite mass (and allowed by string theory). But the stability of the anti-de Sitter vacuum is still ensured by the positivity of a modified energy, which includes an extra surface term. Some of the negative energy solutions describe the classical evolution of nonsingular initial data to naked singularities. Since there is an open set of such solutions, cosmic censorship is violated generically in supergravity. Using the dual field theory description, we argue that these naked singularities will be resolved in the full string theory

  12. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamenta...

  13. Instability of black strings in the third-order Lovelock theory

    Science.gov (United States)

    Giacomini, Alex; Henríquez-Báez, Carla; Lagos, Marcela; Oliva, Julio; Vera, Aldo

    2016-05-01

    We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D =9 , which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the time of the perturbation is the largest in general relativity and it decreases with the number of curvatures involved in the Lagrangian.

  14. Complex geometry and quantum string theory

    International Nuclear Information System (INIS)

    Belavin, A.A.; Knizhnik, V.G.

    1986-01-01

    Summation over closed oriented surfaces of genus p ≥ 2 (p - loop vacuum amplitudes in boson string theory) in a critical dimensions D=26 is reduced to integration over M p space of complex structures of Riemann surfaces of genus p. The analytic properties of the integration measure as a function of the complex coordinates on M p are studied. It is shown that the measure multiplied by (det Im τ-circumflex) 13 (τ-circumflex is the surface period matrix) is the square of the modulus of a function which is holomorphic on M p and does not vanish anywhere. The function has a second order pole at infinity of compactified space of moduli M p . These properties define the measure uniquely up to a constant multiple and this permits one to set up explicitformulae for p=2,3 in terms of the theta-constants. Power and logarithmic divergences connected with renormalization of the tachyon wave function and of the slope respectively are involved in the theory. Quantum geometry of critical strings turns out to be a complex geometry

  15. Evolution of Bianchi I magnetized cosmic strings in Brans–Dicke gravity

    International Nuclear Information System (INIS)

    Sharif, M; Waheed, Saira

    2013-01-01

    In this paper, we consider a locally rotationally symmetric Bianchi I universe filled with magnetized viscous string fluid in Brans–Dicke gravity. For the exact solutions, we use the law of variation of the Hubble parameter that leads to volumetric expansion laws and assume power law ansatz for the scalar field. We discuss the nature of the resulting models through different parameters and their graphs. It is concluded that the constructed universe models yield an accelerated expanding behavior with an isotropic nature for the final stages of the universe evolution, which is consistent with recent observations. (paper)

  16. An overview of progress in string theory

    Indian Academy of Sciences (India)

    There has been many interesting developments in string theory in last .... on T is S-dual to type IIA compactified on K¿, although in D = 10 these are two distinct .... matrix that will describe the above process will loose its unitarity property.

  17. E-string theory on Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Cheol; Vafa, Cumrun [Jefferson Physical Laboratory, Harvard University, Cambridge, MA (United States); Razamat, Shlomo S. [Physics Department, Technion, Haifa (Israel); Zafrir, Gabi [Kavli IPMU (WPI), UTIAS, the University of Tokyo, Kashiwa, Chiba (Japan)

    2018-01-15

    We study compactifications of the 6d E-string theory, the theory of a small E{sub 8} instanton, to four dimensions. In particular we identify N = 1 field theories in four dimensions corresponding to compactifications on arbitrary Riemann surfaces with punctures and with arbitrary non-abelian flat connections as well as fluxes for the abelian sub-groups of the E{sub 8} flavor symmetry. This sheds light on emergent symmetries in a number of 4d N = 1 SCFTs (including the 'E7 surprise' theory) as well as leads to new predictions for a large number of 4-dimensional exceptional dualities and symmetries. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. From twistor string theory to recursion relations

    International Nuclear Information System (INIS)

    Spradlin, Marcus; Volovich, Anastasia

    2009-01-01

    Witten's twistor string theory gives rise to an enigmatic formula 1 known as the 'connected prescription' for tree-level Yang-Mills scattering amplitudes. We derive a link representation for the connected prescription by Fourier transforming it to mixed coordinates in terms of both twistor and dual twistor variables. We show that it can be related to other representations of amplitudes by applying the global residue theorem to deform the contour of integration. For six and seven particles we demonstrate explicitly that certain contour deformations rewrite the connected prescription as the Britto-Cachazo-Feng-Witten representation, thereby establishing a concrete link between Witten's twistor string theory and the dual formulation for the S matrix of the N=4 SYM recently proposed by Arkani-Hamed et al. Other choices of integration contour also give rise to 'intermediate prescriptions'. We expect a similar though more intricate structure for more general amplitudes.

  19. Non-perturbative unitarity constraints on the ratio of shear viscosity to entropy density in UV complete theories with a gravity dual

    CERN Document Server

    Brustein, Ram

    2011-01-01

    We reconsider, from a novel perspective, how unitarity constrains the corrections to the ratio of shear viscosity \\eta\\ to entropy density s. We start with higher-derivative extensions of Einstein gravity in asymptotically anti-de Sitter spacetimes. It is assumed that these theories are derived from string theory and thus have a unitary UV completion that is dual to a unitary, UV-complete boundary gauge theory. We then propose that the gravitational perturbations about a solution of the UV complete theory are described by an effective theory whose linearized equations of motion have at most two time derivatives. Our proposal leads to a concrete prescription for the calculation of \\eta/s for theories of gravity with arbitrary higher-derivative corrections. The resulting ratio can take on values above or below 1/4\\pi\\ and is consistent with all the previous calculations, even though our reasoning is substantially different. For the purpose of calculating \\eta/s, our proposal also leads to only two possible cand...

  20. Introduction to string field theory. A pedestrian approach to the covariant formulation

    International Nuclear Information System (INIS)

    West, G.B.

    1986-01-01

    A relatively elementary account is given of what a string field represents and what is involved in the construction of its covariant action. Emphasis is on drawing a correspondence with similar problems in ordinary field theory and, particularly, using the language and mathematics used in ordinary field theory. Only the free string is discussed. 17 refs., 3 figs