WorldWideScience

Sample records for gravity geoid geodynamics

  1. The Canadian Gravity Geoid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A detailed gravimetric geoid has been computed on a 10' by 10' grid for Canada by the University of New Brunswick. This data base was received in April 1989....

  2. Gravity and low-frequency geodynamics

    CERN Document Server

    Teisseyre, Roman

    1989-01-01

    This fourth volume in the series Physics and Evolution of the Earth's Interior, provides a comprehensive review of the geophysical and geodetical aspects related to gravity and low-frequency geodynamics. Such aspects include the Earth's gravity field, geoid shape theory, and low-frequency phenomena like rotation, oscillations and tides.Global-scale phenomena are treated as a response to source excitation in spherical Earth models consisting of several shells: lithosphere, mantle, core and sometimes also the inner solid core. The effect of gravitation and rotation on the Earth's shape is anal

  3. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2014-01-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  4. Improved representations of the Mediterranean Geoid within the GEOMED 2 project. Contributions of local gravity, GOCE and Cryosat2 data

    DEFF Research Database (Denmark)

    Barzaghi, Riccardo; Vergos, George S.; Albertella, Alberta

    The Mediterranean Sea has always been a lab for geosciences, given its geodynamic peculiarities, the large short-scale variations of the gravity field and the complex circulation. Within the GEOMED 2 project, new improved representations of the Mediterranean marine geoid have been deemed...... of a Mediterranean-wide gravity database. The data employed within GEOMED 2 for the determination of the marine geoid are land and marine gravity data, GOCE/GRACE based Global Geopotential Models and a combination of MISTRAL and SRTM/bathymetry terrain models. The processing methodology will be based on the well......)-based techniques have provided the geoid estimation in the frequency domain. In this work, the pre-processing steps consisting in merging and validating all the available gravity observations for the wider Mediterranean are presented and discussed. Furthermore, the latest basin-wide geoid models are estimated from...

  5. Refining geoid and vertical gradient of gravity anomaly

    Directory of Open Access Journals (Sweden)

    Zhang Chijun

    2011-11-01

    Full Text Available We have derived and tested several relations between geoid (N and quasi-geoid (ζ with model validation. The elevation correction consists of the first-term (Bouguer anomaly and second-term (vertical gradient of gravity anomaly. The vertical gradient was obtained from direct measurement and terrain calculation. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.

  6. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  7. Geoid of Nepal from airborne gravity survey

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Einarsson, Indriði

    2011-01-01

    An airborne gravity survey of Nepal was carried out December 2010 in a cooperation between DTU-Space, Nepal Survey Department, and NGA, USA. The entire country was flown with survey lines spaced 6 nm with a King Air aircraft, with a varying flight altitude from 4 to 10 km. The survey operations...... as well as recent GPS-heights of Mt. Everest. The new airborne data also provide an independent validation of GOCE gravity field results at the local ~100 km resolution scale....

  8. Gravity model improvement investigation. [improved gravity model for determination of ocean geoid

    Science.gov (United States)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.

    1973-01-01

    This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.

  9. Gravity anomalies, compensation mechanisms, and the geodynamics of western Ishtar Terra, Venus

    Science.gov (United States)

    Grimm, Robert E.; Phillips, Roger J.

    1991-01-01

    Pioneer Venus line-of-sight orbital accelerations were utilized to calculate the geoid and vertical gravity anomalies for western Ishtar Terra on various planes of altitude z sub 0. The apparent depth of isostatic compensation at z sub 0 = 1400 km is 180 + or - 20 km based on the usual method of minimum variance in the isostatic anomaly. An attempt is made here to explain this observation, as well as the regional elevation, peripheral mountain belts, and inferred age of western Ishtar Terra, in terms of one or three broad geodynamic models.

  10. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    Science.gov (United States)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  11. Alaska Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' geoid height grid for Alaska is distributed as a GEOID96 model. The computation used 1.1 million terrestrial and marine gravity data held in the...

  12. Global gravity and the geodynamic model of the Earth

    International Nuclear Information System (INIS)

    Nedoma, J.

    1988-01-01

    Plate tectonic hypotheses require the formation of a new oceanic lithosphere at mid-oceanic ridges and imply the further modification and continued evolution towards the continental type of lithosphere in the regions of island arcs and orogenic belts. All these phenomena observed on the Earths's surface are results of all geodynamic processes passing through the Earth's interior. Since geodynamic processes change through the geological epochs, the gravity field also changes during the same geological periods. Thus, the paper is concerned with physical relationships between the global gravity field and the geodynamic processes as well as all geophysical fields affected by the geodynamic processes inside the Earth. The aim of this paper is to analyse the inner and outer gravity field of the Earth during the evolution of the Earth in the course of the geological epochs, and to build the generalized theory of the global gravity field of the Earth from the point of view of the global and local geodynamic processes taking place within the Earth's interior. (author)

  13. Use of GOCE L2 Gravity Gradients for full resolution Geoid

    DEFF Research Database (Denmark)

    Herceg, Matija; Tscherning, Carl Christian; Knudsen, Per

    The objective of this study is to develop methodology to use GOCE gravity gradients for enhanced geoid modelling and ocean circulation modelling. In specific regions with a rough gravity field, the resolution of the geoid may be enhanced substantially if GOCE gradiometer data are used in addition...... of the GOCE spherical harmonic coefficient model (EGMs) since in such areas the GOCE gradients contain more information than the EGM itself. Hence, the use of gradients may lead to improve the resolution of e.g. the marine geoid which in turn will improve the estimation of the ocean circulation....... This is tested using GOCE gravity gradient data, the GEOCOL program (GRAVSOFT) and Reduced Point Mass (RPM) program. Tests are carried out in the GOCINA region and in the Mediterranean basin. Furthermore, the effect of the decreasing height of the GOCE satellite on gravity gradients and associated MDT...

  14. Arctic Ocean gravity, geoid and sea-ice freeboard heights from ICESat and GRACE

    DEFF Research Database (Denmark)

    Forsberg, René; Skourup, Henriette

    2005-01-01

    Gravity Project in combination with GRACE gravity field models to derive an improved Arctic geoid model. This model is then used to convert ICESat measurements to sea-ice freeboard heights with a coarse lowest-level surface method. The derived freeboard heights show a good qualitative agreement...... all major tectonic features of the Arctic Ocean, and has an accuracy of 6 mGal compared to recent airborne gravity data, illustrating the usefulness of ICESat data for gravity field determination....

  15. Estimating Gravity Biases with Wavelets in Support of a 1-cm Accurate Geoid Model

    Science.gov (United States)

    Ahlgren, K.; Li, X.

    2017-12-01

    Systematic errors that reside in surface gravity datasets are one of the major hurdles in constructing a high-accuracy geoid model at high resolutions. The National Oceanic and Atmospheric Administration's (NOAA) National Geodetic Survey (NGS) has an extensive historical surface gravity dataset consisting of approximately 10 million gravity points that are known to have systematic biases at the mGal level (Saleh et al. 2013). As most relevant metadata is absent, estimating and removing these errors to be consistent with a global geopotential model and airborne data in the corresponding wavelength is quite a difficult endeavor. However, this is crucial to support a 1-cm accurate geoid model for the United States. With recently available independent gravity information from GRACE/GOCE and airborne gravity from the NGS Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, several different methods of bias estimation are investigated which utilize radial basis functions and wavelet decomposition. We estimate a surface gravity value by incorporating a satellite gravity model, airborne gravity data, and forward-modeled topography at wavelet levels according to each dataset's spatial wavelength. Considering the estimated gravity values over an entire gravity survey, an estimate of the bias and/or correction for the entire survey can be found and applied. In order to assess the accuracy of each bias estimation method, two techniques are used. First, each bias estimation method is used to predict the bias for two high-quality (unbiased and high accuracy) geoid slope validation surveys (GSVS) (Smith et al. 2013 & Wang et al. 2017). Since these surveys are unbiased, the various bias estimation methods should reflect that and provide an absolute accuracy metric for each of the bias estimation methods. Secondly, the corrected gravity datasets from each of the bias estimation methods are used to build a geoid model. The accuracy of each geoid model

  16. Approach of regional gravity field modeling from GRACE data for improvement of geoid modeling for Japan

    Science.gov (United States)

    Kuroishi, Y.; Lemoine, F. G.; Rowlands, D. D.

    2006-12-01

    The latest gravimetric geoid model for Japan, JGEOID2004, suffers from errors at long wavelengths (around 1000 km) in a range of +/- 30 cm. The model was developed by combining surface gravity data with a global marine altimetric gravity model, using EGM96 as a foundation, and the errors at long wavelength are presumably attributed to EGM96 errors. The Japanese islands and their vicinity are located in a region of plate convergence boundaries, producing substantial gravity and geoid undulations in a wide range of wavelengths. Because of the geometry of the islands and trenches, precise information on gravity in the surrounding oceans should be incorporated in detail, even if the geoid model is required to be accurate only over land. The Kuroshio Current, which runs south of Japan, causes high sea surface variability, making altimetric gravity field determination complicated. To reduce the long-wavelength errors in the geoid model, we are investigating GRACE data for regional gravity field modeling at long wavelengths in the vicinity of Japan. Our approach is based on exclusive use of inter- satellite range-rate data with calibrated accelerometer data and attitude data, for regional or global gravity field recovery. In the first step, we calibrate accelerometer data in terms of scales and biases by fitting dynamically calculated orbits to GPS-determined precise orbits. The calibration parameters of accelerometer data thus obtained are used in the second step to recover a global/regional gravity anomaly field. This approach is applied to GRACE data obtained for the year 2005 and resulting global/regional gravity models are presented and discussed.

  17. First Release of Gravimetric Geoid Model over Saudi Arabia Based on Terrestrial Gravity and GOCE Satellite Data: KSAG01

    Science.gov (United States)

    Alothman, Abdulaziz; Elsaka, Basem

    2016-04-01

    A new gravimetric quasi-geoid, known as KSAG0, has been developed recently by Remove-Compute-Restore techniques (RCR), provided by the GRAVSOFT software, using gravimetric free air anomalies. The terrestrial gravity data used in this computations are: 1145 gravity field anomalies observed by ARAMCO (Saudi Arabian Oil Company) and 2470 Gravity measurements from BGI (Bureau Gravimétrique International). The computations were carried out implementing the least squares collocation method through the RCR techniques. The KSAG01 is based on merging in addition to the terrestrial gravity observations, GOCE satellite model (Eigen-6C4) and global gravity model (EGM2008) have been utilized in the computations. The long, medium and short wavelength spectrum of the height anomalies were compensated from Eigen-6C4 and EGM2008 geoid models truncated up to Degree and order (d/o) up to 2190. KSAG01 geoid covers 100 per cent of the kingdom, with geoid heights range from - 37.513 m in the southeast to 23.183 m in the northwest of the country. The accuracy of the geoid is governed by the accuracy, distribution, and spacing of the observations. The standard deviation of the predicted geoid heights is 0.115 m, with maximum errors of about 0.612 m. The RMS of geoid noise ranges from 0.019 m to 0.04 m. Comparison of the predicted gravimetric geoid with EGM, GOCE, and GPS/Levelling geoids, reveals a considerable improvements of the quasi-geoid heights over Saudi Arabia.

  18. U.S. Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for the conterminous United States is the GEOID96 model. The computation used about 1.8 million terrestrial and marine gravity data held in...

  19. PR/VI Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for Puerto Rico and the Virgin Islands is distributed as a GEOID96 model. The computation used 26,000 terrestrial and marine gravity data...

  20. Principal Hawaiian Islands Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for the Principal Hawaiian Islands is distributed as a GEOID96 model. The computation used 61,000 terrestrial and marine gravity data held...

  1. Assessment of Gravity Field and Steady State Ocean Circulation Explorer (GOCE) geoid model using GPS levelling over Sabah and Sarawak

    Science.gov (United States)

    Othman, A. H.; Omar, K. M.; Din, A. H. M.; Som, Z. A. M.; Yahaya, N. A. Z.; Pa'suya, M. F.

    2016-06-01

    The GOCE satellite mission has significantly contributed to various applications such as solid earth physics, oceanography and geodesy. Some substantial applications of geodesy are to improve the gravity field knowledge and the precise geoid modelling towards realising global height unification. This paper aims to evaluate GOCE geoid model based on the recent GOCE Global Geopotential Model (GGM), as well as EGM2008, using GPS levelling data over East Malaysia, i.e. Sabah and Sarawak. The satellite GGMs selected in this study are the GOCE GGM models which include GOCE04S, TIM_R5 and SPW_R4, and the EGM2008 model. To assess these models, the geoid heights from these GGMs are compared to the local geometric geoid height. The GGM geoid heights was derived using EGMLAB1 software and the geometric geoid height was computed by available GPS levelling information obtained from the Department Survey and Mapping Malaysia. Generally, the GOCE models performed better than EGM2008 over East Malaysia and the best fit GOCE model for this region is the TIM_R5 model. The TIM_R5 GOCE model demonstrated the lowest R.M.S. of ± 16.5 cm over Sarawak, comparatively. For further improvement, this model should be combined with the local gravity data for optimum geoid modelling over East Malaysia.

  2. Geodynamics implication of GPS and satellite altimeter and gravity observations to the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    Khaled H. Zahran

    2012-06-01

    Results show important zones of mass discontinuity in this region correlated with the seismological activities and temporal gravity variations agree with the crustal deformation obtained from GPS observations. The current study indicates that satellite gravity data is a valuable source of data in understanding the geodynamical behavior of the studied region and that satellite gravity data is an important contemporary source of data in the geodynamical studies.

  3. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...... relies on the development of airborne gravimetry, which in turn is dependent on developments in kinematic GPS. Routine accuracy of airborne gravimetry are now at the 2 mGal level, which may translate into 5-10 cm geoid accuracy on regional scales. The error behaviour of airborne gravimetry is well......-suited for geoid determination, with high-frequency survey and downward continuation noise being offset by the low-pass gravity to geoid filtering operation. In the paper the basic principles of airborne geoid determination are outlined, and examples of results of recent airborne gravity and geoid surveys...

  4. Mexico Geoid Heights (MEXICO97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for Mexico, and North-Central America, is the MEXICO97 geoid model. The computation used about one million terrestrial and marine gravity...

  5. The influence of the atmosphere on geoid and potential coefficient determinations from gravity data

    Science.gov (United States)

    Rummel, R.; Rapp, R. H.

    1976-01-01

    For the precise computation of geoid undulations the effect of the attraction of the atmosphere on the solution of the basic boundary value problem of gravimetric geodesy must be considered. This paper extends the theory of Moritz for deriving an atmospheric correction to the case when the undulations are computed by combining anomalies in a cap surrounding the computation point with information derived from potential coefficients. The correction term is a function of the cap size and the topography within the cap. It reaches a value of 3.0 m for a cap size of 30 deg, variations on the decimeter level being caused by variations in the topography. The effect of the atmospheric correction terms on potential coefficients is found to be small, reaching a maximum of 0.0055 millionths at n = 2, m = 2 when terrestrial gravity data are considered. The magnitude of this correction indicates that in future potential coefficient determination from gravity data the atmospheric correction should be made to such data.

  6. Absolute gravity change in Taiwan: Present result of geodynamic process investigation

    Directory of Open Access Journals (Sweden)

    Ricky Kao

    2017-01-01

    Full Text Available Gravity values at 24 sites over 2004 - 2016 measured with absolute gravimeters are used to study geodynamic processes in Taiwan. We model rain-induced grav­ity effects and other temporal effects of non-geodynamic origins to obtain residual gravity, which cannot be fully explained by GPS-derived vertical displacements. We explain the gravity changes associated with deposited debris, earthquake, volcanism and Moho deepening. Gravity changes of 53.37 and 23.38 μGal near Sinwulyu and Laonong Rivers are caused by typhoon Morakot, leading to estimated volumes of 6.0 × 105 and 3.6 × 105 m3 in deposited debris. The observed co-seismic gravity change near the epicenter of the M 6.9 Pingtung earthquake (26 December 2006 is 3.12 ± 0.99 μGal, consistent with a dislocation-based gravity change at the μGal level, thereby supplying a gravity constraint on the modeled fault parameters. The AG re­cord at the Tatun Volcano Group is the longest, but large temporal gravity effects here has led to a current gravity signal-to-noise ratio of less than one, which cannot convince a sinking magma chamber, but supply an error bound for gravity detections of long-term or transient magma movements. The gravity values at Ludao and Lanyu decline steadily at the rates of -2.20 and -0.50 μGal yr-1, consistent with the expected magma states of the two extinct volcanoes. The gravity rates at an uplifting site in central Taiwan and three subsiding sites in eastern Taiwan are negative, and are po­tentially caused by Moho deepening at a rate of -3.34 cm yr-1 and a combined Moho deepening and plate subduction at the rates of -0.18, -2.03, and -1.34 cm yr-1.

  7. Geoid undulation accuracy

    Science.gov (United States)

    Rapp, Richard H.

    1993-01-01

    The determination of the geoid and equipotential surface of the Earth's gravity field, has long been of interest to geodesists and oceanographers. The geoid provides a surface to which the actual ocean surface can be compared with the differences implying information on the circulation patterns of the oceans. For use in oceanographic applications the geoid is ideally needed to a high accuracy and to a high resolution. There are applications that require geoid undulation information to an accuracy of +/- 10 cm with a resolution of 50 km. We are far from this goal today but substantial improvement in geoid determination has been made. In 1979 the cumulative geoid undulation error to spherical harmonic degree 20 was +/- 1.4 m for the GEM10 potential coefficient model. Today the corresponding value has been reduced to +/- 25 cm for GEM-T3 or +/- 11 cm for the OSU91A model. Similar improvements are noted by harmonic degree (wave-length) and in resolution. Potential coefficient models now exist to degree 360 based on a combination of data types. This paper discusses the accuracy changes that have taken place in the past 12 years in the determination of geoid undulations.

  8. Topographic Effects in Geoid Determinations

    Directory of Open Access Journals (Sweden)

    Lars E. Sjöberg

    2018-04-01

    Full Text Available Traditionally, geoid determination is applied by Stokes’ formula with gravity anomalies after removal of the attraction of the topography by a simple or refined Bouguer correction, and restoration of topography by the primary indirect topographic effect (PITE after integration. This technique leads to an error of the order of the quasigeoid-to-geoid separation, which is mainly due to an incomplete downward continuation of gravity from the surface to the geoid. Alternatively, one may start from the modern surface gravity anomaly and apply the direct topographic effect on the anomaly, yielding the no-topography gravity anomaly. After downward continuation of this anomaly to sea-level and Stokes integration, a theoretically correct geoid height is obtained after the restoration of the topography by the PITE. The difference between the Bouguer and no-topography gravity anomalies (on the geoid or in space is the “secondary indirect topographic effect”, which is a necessary correction in removing all topographic signals. In modern applications of an Earth gravitational model (EGM in geoid determination a topographic correction is also needed in continental regions. Without the correction the error can range to a few metres in the highest mountains. The remove-compute-restore and Royal Institute of Technology (KTH techniques for geoid determinations usually employ a combination of Stokes’ formula and an EGM. Both techniques require direct and indirect topographic corrections, but in the latter method these corrections are merged as a combined topographic effect on the geoid height. Finally, we consider that any uncertainty in the topographic density distribution leads to the same error in gravimetric and geometric geoid estimates, deteriorating GNSS-levelling as a tool for validating the topographic mass distribution correction in a gravimetric geoid model.

  9. Geoid and gravity anomaly data of conjugate regions of Bay of Bengal and Enderby Basin: New constraints on breakup and early spreading history between India and Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Michael, L.; Bhattacharyya, R.; Majumdar, T.J.

    the anomalies. Since the magnetic anomalies in the western Enderby Basin have lower amplitude, Gaina et al. (2007) could not identify the anomalies with confidence and found difficulty to correlate the spreading history with that of the central and eastern... Geoid and gravity anomaly data of conjugate regions of Bay of Bengal and Enderby Basin – new constraints on breakup and early spreading history between India and Antarctica K.S. Krishna*, Laju Michael National Institute of Oceanography, Council...

  10. Lithospheric structure of southern Indian shield and adjoining oceans: integrated modelling of topography, gravity, geoid and heat flow data

    Science.gov (United States)

    Kumar, Niraj; Zeyen, H.; Singh, A. P.; Singh, B.

    2013-07-01

    For the present 2-D lithospheric density modelling, we selected three geotransects of more than 1000 km in length each crossing the southern Indian shield, south of 16°N, in N-S and E-W directions. The model is based on the assumption of local isostatic equilibrium and is constrained by the topography, gravity and geoid anomalies, by geothermal data, and where available by seismic data. Our integrated modelling approach reveals a crustal configuration with the Moho depth varying from ˜40 km beneath the Dharwar Craton, and ˜39 km beneath the Southern Granulite Terrane to about 15-20 km beneath the adjoining oceans. The lithospheric thickness varies significantly along the three profiles from ˜70-100 km under the adjoining oceans to ˜130-135 km under the southern block of Southern Granulite Terrane including Sri Lanka and increasing gradually to ˜165-180 km beneath the northern block of Southern Granulite Terrane and the Dharwar Craton. This step-like lithosphere-asthenosphere boundary (LAB) structure indicates a normal lithospheric thickness beneath the adjoining oceans, the northern block of Southern Granulite Terrane and the Dharwar Craton. The thin lithosphere below the southern block of Southern Granulite Terrane including Sri Lanka is, however, atypical considering its age. Our results suggest that the southern Indian shield as a whole cannot be supported isostatically only by thickened crust; a thin and hot lithosphere beneath the southern block of Southern Granulite Terrane including Sri Lanka is required to explain the high topography, gravity, geoid and crustal temperatures. The widespread thermal perturbation during Pan-African (550 Ma) metamorphism and the breakup of Gondwana during late Cretaceous are proposed as twin cause mechanism for the stretching and/or convective removal of the lower part of lithospheric mantle and its replacement by hotter and lighter asthenosphere in the southern block of Southern Granulite Terrane including Sri Lanka

  11. High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean - An input to geological understanding

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Rajesh, S.; Majumdar, T.J.; Rao, G.S.; Radhakrishna, M.; Krishna, K.S.; Rajawat, A.S.

    ') geoid anomaly map of the northern Indian Ocean generated from the altimeter data obtained from Geodetic Missions of GEOSAT and ERS-1 along with ERS-2, TOPEX/POSIDEON and JASON satellites is presented. The geoid map of the Indian Ocean is dominated by a...

  12. Airborne gravity tests in the Italian area to improve the geoid model of Italy

    DEFF Research Database (Denmark)

    Barzaghi, R; Borghi, A; Keller, K

    2009-01-01

    Airborne gravimetry is an important method for measuring gravity over large unsurveyed areas. This technology has been widely applied in Canada, Antarctica and Greenland to map the gravity fields of these regions and in recent years, in the oil industry. In 2005, two tests in the Italian area were...... performed by ENI in cooperation with the Politecnico di Milano and the Danish National Space Center. To the knowledge of the authors, these were the first experiments of this kind in Italy and were performed over the Ionian coasts of Calabria and the Maiella Mountains. The Calabria test field......, the collocation method applied to compare and merge ground-based and airborne data proved to be efficient and reliable. The standard deviation of the discrepancies between airborne data and collocation upward continued gravity is, in both cases, less than 8 mgal. In the Maiella test, the gravity field obtained...

  13. Geoid Model and Altitude at Mount Aconcagua Region (Argentina) from Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Cristina Pacino, M.; Jaeger, Eric; Forsberg, René

    2014-01-01

    Aconcagua is part of the Southern Andes in the Argentine Province of Mendoza and it is the highest mountain in the Americas. The Aconcagua region is mostly inaccessible for land surveys. The existing gravity data are sparsely distributed, and mainly along the route currently used to climb the mou...

  14. Study of high-resolution satellite geoid and gravity anomaly data over the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Majumdar, T. J.; Krishna, K.S.; Chatterjee, S.; Bhattacharya, R.; Michael, L.

    research vessels. Solid line shows location of the profile along which interpreted seismic results and var i- ous products of satellite gravity data are shown in Fi gure 4. RESEARCH COMMUNICATIONS CURRENT SCIENCE, VOL. 90, NO. 2 , 25 JANUARY 2006... depth le v els. Location o f the profile is shown with solid line in Figure 3. of the Bay of Bengal can be reasonably co n sidered in mapping the structural features of the region. Thereby the results can be used to study the tectonics...

  15. Geodynamical behavior of some active area in Egypt, as deduced from geodetic and gravity data

    Science.gov (United States)

    Issawy, E.; Mrlina, J.; Radwan, A.; Mahmoud, S.; Rayan, A.

    2009-04-01

    Temporal gravity variation in parallel with the space geodetic technique (GPS) had been started in Egypt for real campaigns in 1997. The geodetic networks around the High Dam, Aswan area was the first net to be measured. More than five measurement epochs were performed. The results had a considerable limit of coincidence between gravity and GPS observations. The trend of gravity changes indicated a positive stress and had the vertical displacement observed for leveling points. The lowest gravity changes along Kalabsha fault reflect extensional and/or strike component of the stress field. Also, the areas around Cairo (Greater Cairo) and due to the occurrence of an earthquake of 1992, such type of measurements were useful for monitoring the recent activity. The data of the geodetic network around Cairo after 5 campaigns showed that, the estimated horizontal velocities for almost all points are 5.5± mm/year in approximately NW-SE direction. The non-tidal changes can explain the dynamic process within the upper crust related to the development of local stress conditions. The trends of gravity changes are more or less coincident with that deduced from GPS deformation analysis and the occurrence of the main shocks in the area. In additions, in 2005 the geodetic network around the southern part of Sinai and the Gulf of Suez were established. One campaign of measurements had been performed and the gravity values were obtained.

  16. GRAVITY VARIATIONS AND RECENT GEODYNAMICS OF THE SOUTH-WESTERN PART OF THE BAIKAL REGION

    Directory of Open Access Journals (Sweden)

    V. Yu. Timofeev

    2013-01-01

    Full Text Available Modern methods for determination of gravity values make it possible to obtain measurements with the accuracy up to 10–9 from g0 of the normal value (up to 1 microgal = 10 m/sec2. While all the systematic and periodic effects are excluded, a question is raised about stability of the gravity field of the Earth over time. Changes of the altitude (the Earth’s radius with time can be estimated with an accuracy of 0.1 mm by modern space geodetic techniques, such as VLBI method. Our experiments for evaluation of stability of the gravity values over the past decades are based on the data obtained by Russian and foreign observatories using absolute ballistic laser gravimeters. The results put a limit of 10–10 per year to changes of the Earth’s radius. These estimations can be useful for testing hypotheses in tectonics.Measurements of non-tidal variations of gravity (Δg, which were obtained from 1992 to 2012 at the Talaya seismic station (located in the south-western part of the Baikal region, are interpreted together with GPS observation data. At the Talaya seismic station, the linear component of gravity variations corresponds to changes in the elevation of this site. The correlation coefficient is close to the normal value of the vertical gradient of gravity. At this site, coseismic gravity variations at the time of the Kultuk earthquake (27 August 2008, Mw=6.3 were caused by a combined effect of the change of the site’s elevation and deformation of the crust. Our estimations of the coseismic effects are consistent with results obtained by modeling based on the available seismic data.

  17. Research Progress of the Gravity Field Application in Earth's Geodynamics and Interior Structure

    Directory of Open Access Journals (Sweden)

    SUN Heping

    2017-10-01

    Full Text Available The exploration of deep internal structure and internal dynamics of the earth has always been a hot topic in the field of basic geoscience research.Traditional approach relies mainly on seismic technology. However, in recent decades, the innovation of modern gravity observation technology (especially the successful application of high-precision superconducting gravity technology makes it possible to detect the earth's internal dynamics and physical information. In this paper, we summarize the research progress of Chinese group in detecting the earth's free oscillation, free core nutation, inner core translational oscillation, tidal model and polar tide and the internal structure by using modern high-precision gravity technology in recent years.

  18. Gravity and geodetic control of geodynamic activity near Aswan Lake, Egypt

    Czech Academy of Sciences Publication Activity Database

    Mrlina, Jan; Radwan, A. H.; Issawy, E. S. A.; Rayan, A.; Mahmoud, S. M.

    2009-01-01

    Roč. 16, č. 1-2 (2009), s. 1-8 ISSN 1803-1447 R&D Projects: GA AV ČR IAA300120905 Institutional research plan: CEZ:AV0Z30120515 Keywords : gravity monitoring * surface movements * Lake Aswan * groundwater change Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  19. A detailed gravimetric geoid from North America to Eurasia

    Science.gov (United States)

    Vincent, S. F.; Strange, W. E.; Marsh, J. G.

    1972-01-01

    A detailed gravimetric geoid of the United States, North Atlantic, and Eurasia, which was computed from a combination of satellite derived and surface gravity data, is presented. The precision of this detailed geoid is + or - 2 to + or - 3 m in the continents but may be in the range of 5 to 7 m in those areas where data is sparse. Comparisons of the detailed gravimetric geoid with results of Rapp, Fischer, and Rice for the United States, Bomford in Europe, and Heiskanen and Fischer in India are presented. Comparisons are also presented with geoid heights from satellite solutions for geocentric station coordinates in North America, the Caribbean, and Europe.

  20. U.S. Geoid Heights, Scientific Model (G96SSS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for the conterminous United States is the G96SSS model. The computation used about 1.8 million terrestrial and marine gravity data held in...

  1. Airborne gravimetry used in precise geoid computations by ring integration

    DEFF Research Database (Denmark)

    Kearsley, A.H.W.; Forsberg, René; Olesen, Arne Vestergaard

    1998-01-01

    Two detailed geoids have been computed in the region of North Jutland. The first computation used marine data in the offshore areas. For the second computation the marine data set was replaced by the sparser airborne gravity data resulting from the AG-MASCO campaign of September 1996. The results...... of comparisons of the geoid heights at on-shore geometric control showed that the geoid heights computed from the airborne gravity data matched in precision those computed using the marine data, supporting the view that airborne techniques have enormous potential for mapping those unsurveyed areas between...

  2. The International Gravity Field Service (IGFS): Present Day Activities And Future Plans

    Science.gov (United States)

    Barzaghi, R.; Vergos, G. S.

    2016-12-01

    IGFS is a unified "umbrella" IAG service that coordinates the servicing of the geodetic and geophysical community with gravity field related data, software and information. The combined data of the IGFS entities will include global geopotential models, terrestrial, airborne, satellite and marine gravity observations, Earth tide data, GPS/levelling data, digital models of terrain and bathymetry, as well as ocean gravity field and geoid from satellite altimetry. The IGFS structure is based on the Gravity Services, the "operating arms" of IGFS. These Services related to IGFS are: BGI (Bureau Gravimetrique International), Toulouse, France ISG (International Service for the Geoid), Politecnico di Milano, Milano, Italy IGETS (International Geodynamics and Earth Tides Service), EOST, Strasbourg, France ICGEM (International Center for Global Earth Models), GFZ, Potsdam, Germany IDEMS (International Digital Elevation Model Service), ESRI, Redlands, CA, USA The Central Bureau, hosted at the Aristotle Thessaloniki University, is in charge for all the interactions among the services and the other IAG bodies, particularly GGOS. In this respect, connections with the GGOS Bureaus of Products and Standards and of Networks and Observations have been recently strengthened in order to align the Gravity services to the GGOS standards. IGFS is also strongly involved in the most relevant projects related to the gravity field such as the establishment of the new Global Absolute Gravity Reference System and of the International Height Reference System. These projects, along with the organization of Geoid Schools devoted to methods for gravity and geoid estimate, will play a central role in the IGFS future actions in the framework of GGOS.

  3. The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data

    DEFF Research Database (Denmark)

    Featherstone, W.E.; Kirby, J.F.; Kearsley, A.H.W.

    2001-01-01

    The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on ...

  4. Airborne geoid mapping of land and sea areas of East Malaysia

    Science.gov (United States)

    Jamil, H.; Kadir, M.; Forsberg, R.; Olesen, A.; Isa, M. N.; Rasidi, S.; Mohamed, A.; Chihat, Z.; Nielsen, E.; Majid, F.; Talib, K.; Aman, S.

    2017-02-01

    This paper describes the development of a new geoid-based vertical datum from airborne gravity data, by the Department of Survey and Mapping Malaysia, on land and in the South China Sea out of the coast of East Malaysia region, covering an area of about 610,000 square kilometres. More than 107,000 km flight line of airborne gravity data over land and marine areas of East Malaysia has been combined to provide a seamless land-to-sea gravity field coverage; with an estimated accuracy of better than 2.0 mGal. The iMAR-IMU processed gravity anomaly data has been used during a 2014-2016 airborne survey to extend a composite gravity solution across a number of minor gaps on selected lines, using a draping technique. The geoid computations were all done with the GRAVSOFT suite of programs from DTU-Space. EGM2008 augmented with GOCE spherical harmonic model has been used to spherical harmonic degree N = 720. The gravimetric geoid first was tied at one tide-gauge (in Kota Kinabalu, KK2019) to produce a fitted geoid, my_geoid2017_fit_kk. The fitted geoid was offset from the gravimetric geoid by +0.852 m, based on the comparison at the tide-gauge benchmark KK2019. Consequently, orthometric height at the six other tide gauge stations was computed from HGPS Lev = hGPS - Nmy_geoid2017_.t_kk. Comparison of the conventional (HLev) and GPS-levelling heights (HGPS Lev) at the six tide gauge locations indicate RMS height difference of 2.6 cm. The final gravimetric geoidwas fitted to the seven tide gauge stations and is known as my_geoid2017_fit_east. The accuracy of the gravimetric geoid is estimated to be better than 5 cm across most of East Malaysia land and marine areas

  5. A detailed gravimetric geoid of North America, the North Atlantic, Eurasia, and Australia

    Science.gov (United States)

    Marsh, J. G.

    1973-01-01

    A computer program was developed for the calculation of a goid based upon a combination of satellite and surface gravity data. A detailed gravimetric geoid of North America, the North Atlantic, Eurasia, and Australia was derived by using this program.

  6. Reference Ellipsoid and Geoid in Chronometric Geodesy

    Science.gov (United States)

    Kopeikin, Sergei M.

    2016-02-01

    Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height). We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it in chronometric

  7. Reference ellipsoid and geoid in chronometric geodesy

    Directory of Open Access Journals (Sweden)

    Sergei M Kopeikin

    2016-02-01

    Full Text Available Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height. We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it

  8. Reference Ellipsoid and Geoid in Chronometric Geodesy

    Energy Technology Data Exchange (ETDEWEB)

    Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO (United States); Department of Physical Geodesy and Remote Sensing, Siberian State University of Geosystems and Technologies, Novosibirsk (Russian Federation)

    2016-02-25

    Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height). We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it in

  9. Rigorous covariance propagation of geoid errors to geodetic MDT estimates

    Science.gov (United States)

    Pail, R.; Albertella, A.; Fecher, T.; Savcenko, R.

    2012-04-01

    The mean dynamic topography (MDT) is defined as the difference between the mean sea surface (MSS) derived from satellite altimetry, averaged over several years, and the static geoid. Assuming geostrophic conditions, from the MDT the ocean surface velocities as important component of global ocean circulation can be derived from it. Due to the availability of GOCE gravity field models, for the very first time MDT can now be derived solely from satellite observations (altimetry and gravity) down to spatial length-scales of 100 km and even below. Global gravity field models, parameterized in terms of spherical harmonic coefficients, are complemented by the full variance-covariance matrix (VCM). Therefore, for the geoid component a realistic statistical error estimate is available, while the error description of the altimetric component is still an open issue and is, if at all, attacked empirically. In this study we make the attempt to perform, based on the full gravity VCM, rigorous error propagation to derived geostrophic surface velocities, thus also considering all correlations. For the definition of the static geoid we use the third release of the time-wise GOCE model, as well as the satellite-only combination model GOCO03S. In detail, we will investigate the velocity errors resulting from the geoid component in dependence of the harmonic degree, and the impact of using/no using covariances on the MDT errors and its correlations. When deriving an MDT, it is spectrally filtered to a certain maximum degree, which is usually driven by the signal content of the geoid model, by applying isotropic or non-isotropic filters. Since this filtering is acting also on the geoid component, the consistent integration of this filter process into the covariance propagation shall be performed, and its impact shall be quantified. The study will be performed for MDT estimates in specific test areas of particular oceanographic interest.

  10. Towards an exact relativistic theory of Earth's geoid undulation

    Science.gov (United States)

    Kopeikin, Sergei M.; Mazurova, Elena M.; Karpik, Alexander P.

    2015-08-01

    The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns equation for calculation of geoid's height with full account for relativistic effects beyond the Newtonian approximation. A brief discussion of the relativistic Bruns formula is provided.

  11. Towards an exact relativistic theory of Earth's geoid undulation

    International Nuclear Information System (INIS)

    Kopeikin, Sergei M.; Mazurova, Elena M.; Karpik, Alexander P.

    2015-01-01

    The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns equation for calculation of geoid's height with full account for relativistic effects beyond the Newtonian approximation. A brief discussion of the relativistic Bruns formula is provided. - Highlights: • We apply general relativity to define the exact concept of relativistic geoid. • We derive relativistic equation of geoid and the reference level surface. • We employ the manifold perturbation theory to discuss geoid's undulation

  12. Towards an exact relativistic theory of Earth's geoid undulation

    Energy Technology Data Exchange (ETDEWEB)

    Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211 (United States); Siberian State Geodetic Academy, 10 Plakhotny St., Novosibirsk 630108 (Russian Federation); Mazurova, Elena M., E-mail: e_mazurova@mail.ru [Moscow State University of Geodesy and Cartography, 4 Gorokhovsky Alley, Moscow 105064 (Russian Federation); Siberian State Geodetic Academy, 10 Plakhotny St., Novosibirsk 630108 (Russian Federation); Karpik, Alexander P., E-mail: rector@ssga.ru [Siberian State Geodetic Academy, 10 Plakhotny St., Novosibirsk 630108 (Russian Federation)

    2015-08-14

    The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns equation for calculation of geoid's height with full account for relativistic effects beyond the Newtonian approximation. A brief discussion of the relativistic Bruns formula is provided. - Highlights: • We apply general relativity to define the exact concept of relativistic geoid. • We derive relativistic equation of geoid and the reference level surface. • We employ the manifold perturbation theory to discuss geoid's undulation.

  13. Airborne gravimetry for geoid and GOCE

    DEFF Research Database (Denmark)

    Forsberg, R.; Olesen, A. V.; Nielsen, E.

    2014-01-01

    DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability and redun......DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability...... in Antarctica and Tanzania based on DTU-Space aerogravity and GOCE. In both cases the airborne data validate GOCE to very high degrees, and confirms the synergy of airborne gravity and GOCE. For Antarctica, the deep interior Antarctic survey (continued in 2013 from a remote field camp), shows...... that it is possible efficiently to cover even the most remote regions on the planet with good aerogravity. With the recent termination of the GOCE mission, it is therefore timely to initiate a coordinated, preferably international, airborne gravity effort to cover the polar gap south of 83° S; such a survey can...

  14. A new formulation of Stokes’ approach in determining the global gravimetric geoid

    Directory of Open Access Journals (Sweden)

    Wen-Bin Shen

    2013-08-01

    Full Text Available According to Stokes’ approach, given the gravity anomaly on the geoid as the boundary, a disturbing potential function satisfying some boundary conditions should be solved. The basic requirement is that the disturbing potential function should be harmonic in the region outside the geoid. However, since the normal gravity potential is not defined inside the reference ellipsoid (taking the WGS84 ellipsoid as an example, when the geoid is below the ellipsoidal surface, the disturbing potential function is not harmonic in the whole region outside the geoid, and is not defined on the whole geoid itself. These are theoretical difficulties in Stokes’ approach. To remove these difficulties from Stokes’ approach, this study provides a new formulation of Stokes’ approach. An inner ellipsoid with four fundamental parameters is chosen, two of which, the geocentric gravitational constant and the rotational angular velocity, coincide with the corresponding parameters of the WGS84 ellipsoid. The other two parameters, the semi-major axis and flattening, are different from the corresponding ones of the ellipsoid. Then, the normal gravity potential generated by the inner ellipsoid is determined, by requiring that it holds a constant on the surface of the inner ellipsoid or on the surface of the ellipsoid. With this new formulation, the disturbing potential function is harmonic in the whole region outside the geoid, and the difficulties in Stokes’ approach disappear. The new formulation proposed in this study is also adequate for analogous geodetic boundary-value problems.

  15. Spatial uncertainty of a geoid undulation model in Guayaquil, Ecuador

    Directory of Open Access Journals (Sweden)

    Chicaiza E.G.

    2017-06-01

    Full Text Available Geostatistics is a discipline that deals with the statistical analysis of regionalized variables. In this case study, geostatistics is used to estimate geoid undulation in the rural area of Guayaquil town in Ecuador. The geostatistical approach was chosen because the estimation error of prediction map is getting. Open source statistical software R and mainly geoR, gstat and RGeostats libraries were used. Exploratory data analysis (EDA, trend and structural analysis were carried out. An automatic model fitting by Iterative Least Squares and other fitting procedures were employed to fit the variogram. Finally, Kriging using gravity anomaly of Bouguer as external drift and Universal Kriging were used to get a detailed map of geoid undulation. The estimation uncertainty was reached in the interval [-0.5; +0.5] m for errors and a maximum estimation standard deviation of 2 mm in relation with the method of interpolation applied. The error distribution of the geoid undulation map obtained in this study provides a better result than Earth gravitational models publicly available for the study area according the comparison with independent validation points. The main goal of this paper is to confirm the feasibility to use geoid undulations from Global Navigation Satellite Systems and leveling field measurements and geostatistical techniques methods in order to use them in high-accuracy engineering projects.

  16. Spatial uncertainty of a geoid undulation model in Guayaquil, Ecuador

    Science.gov (United States)

    Chicaiza, E. G.; Leiva, C. A.; Arranz, J. J.; Buenańo, X. E.

    2017-06-01

    Geostatistics is a discipline that deals with the statistical analysis of regionalized variables. In this case study, geostatistics is used to estimate geoid undulation in the rural area of Guayaquil town in Ecuador. The geostatistical approach was chosen because the estimation error of prediction map is getting. Open source statistical software R and mainly geoR, gstat and RGeostats libraries were used. Exploratory data analysis (EDA), trend and structural analysis were carried out. An automatic model fitting by Iterative Least Squares and other fitting procedures were employed to fit the variogram. Finally, Kriging using gravity anomaly of Bouguer as external drift and Universal Kriging were used to get a detailed map of geoid undulation. The estimation uncertainty was reached in the interval [-0.5; +0.5] m for errors and a maximum estimation standard deviation of 2 mm in relation with the method of interpolation applied. The error distribution of the geoid undulation map obtained in this study provides a better result than Earth gravitational models publicly available for the study area according the comparison with independent validation points. The main goal of this paper is to confirm the feasibility to use geoid undulations from Global Navigation Satellite Systems and leveling field measurements and geostatistical techniques methods in order to use them in high-accuracy engineering projects.

  17. GRAVTool, a Package to Compute Geoid Model by Remove-Compute-Restore Technique

    Science.gov (United States)

    Marotta, G. S.; Blitzkow, D.; Vidotti, R. M.

    2015-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astro-geodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove-Compute-Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and global geopotential coefficients, respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and that adjust these models to one local vertical datum. This research presents a developed package called GRAVTool based on MATLAB software to compute local geoid models by RCR technique and its application in a study area. The studied area comprehends the federal district of Brazil, with ~6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show the local geoid model computed by the GRAVTool package (Figure), using 1377 terrestrial gravity data, SRTM data with 3 arc second of resolution, and geopotential coefficients of the EIGEN-6C4 model to degree 360. The accuracy of the computed model (σ = ± 0.071 m, RMS = 0.069 m, maximum = 0.178 m and minimum = -0.123 m) matches the uncertainty (σ =± 0.073) of 21 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.099 m, RMS = 0.208 m, maximum = 0.419 m and minimum = -0.040 m).

  18. Alaska/Yukon Geoid Improvement by a Data-Driven Stokes's Kernel Modification Approach

    Science.gov (United States)

    Li, Xiaopeng; Roman, Daniel R.

    2015-04-01

    Geoid modeling over Alaska of USA and Yukon Canada being a trans-national issue faces a great challenge primarily due to the inhomogeneous surface gravity data (Saleh et al, 2013) and the dynamic geology (Freymueller et al, 2008) as well as its complex geological rheology. Previous study (Roman and Li 2014) used updated satellite models (Bruinsma et al 2013) and newly acquired aerogravity data from the GRAV-D project (Smith 2007) to capture the gravity field changes in the targeting areas primarily in the middle-to-long wavelength. In CONUS, the geoid model was largely improved. However, the precision of the resulted geoid model in Alaska was still in the decimeter level, 19cm at the 32 tide bench marks and 24cm on the 202 GPS/Leveling bench marks that gives a total of 23.8cm at all of these calibrated surface control points, where the datum bias was removed. Conventional kernel modification methods in this area (Li and Wang 2011) had limited effects on improving the precision of the geoid models. To compensate the geoid miss fits, a new Stokes's kernel modification method based on a data-driven technique is presented in this study. First, the method was tested on simulated data sets (Fig. 1), where the geoid errors have been reduced by 2 orders of magnitude (Fig 2). For the real data sets, some iteration steps are required to overcome the rank deficiency problem caused by the limited control data that are irregularly distributed in the target area. For instance, after 3 iterations, the standard deviation dropped about 2.7cm (Fig 3). Modification at other critical degrees can further minimize the geoid model miss fits caused either by the gravity error or the remaining datum error in the control points.

  19. Monterey Bay Geoid

    Science.gov (United States)

    1994-03-01

    thought to be a flat disk. The first scientific hypothesis that the earth was spherical is credited to Thales of Milet in 600 B.C. or Pythagoras in 550...acceleration can be integrated over the surface, by Gauss’s theorem and gives: 35 v1 Wv2 <v3 Figure 12. Equipotential Surfaces and Gravity: V,, V2, V3 are...continuous derivatives where they satisfy Laplace’s equation. Stokes’ theorem states that a harmonic function outside a surface is uniquely determined by

  20. Geoid models around Sognefjord using depth data

    DEFF Research Database (Denmark)

    Dahl, O.C.; Forsberg, René

    1998-01-01

    the computed gravimetric geoid by as much as a few decimeters. The effect was detectable to a distance of more than 100 km. All calculated geoids, both with and without bathymetry data in the terrain model, fit the geoidal heights determined by available Global Positioning System (GPS) and levelling heights...... at the sub-decimetre level. Contrary to expectations, the accuracy in geoid prediction was reduced when using bathymetric data. The geoid changes were largest over the fjord where no GPS points were located. Different methods on the same area [isostatic and Residual Terrain Model (RTM)-terrain reductions...

  1. An ocean modelling and assimilation guide to using GOCE geoid products

    DEFF Research Database (Denmark)

    Haines, K.; Johannessen, J. A.; Knudsen, Per

    2011-01-01

    We review the procedures and challenges that must be considered when using geoid data derived from the Gravity and steady-state Ocean Circulation Explorer (GOCE) mission in order to constrain the circulation and water mass representation in an ocean general circulation model. It covers the combin...

  2. The Geodynamic Approach

    DEFF Research Database (Denmark)

    Steenfelt, Jørgen S.; Ibsen, Lars Bo

    1996-01-01

    The Danish National lecture: The Geodynamic approach - problem or possibility? - mirrors the authors involvement in projects and research focusing on the impact of the geodynamic approach. The lecture discusses the why and how of some of the geotechnical anomalies and the differences in traditional...

  3. Principles of geodynamics

    CERN Document Server

    Scheidegger, Adrian E

    1982-01-01

    Geodynamics is commonly thought to be one of the subjects which provide the basis for understanding the origin of the visible surface features of the Earth: the latter are usually assumed as having been built up by geodynamic forces originating inside the Earth ("endogenetic" processes) and then as having been degrad­ ed by geomorphological agents originating in the atmosphere and ocean ("exogenetic" agents). The modem view holds that the sequence of events is not as neat as it was once thought to be, and that, in effect, both geodynamic and geomorphological processes act simultaneously ("Principle of Antagonism"); however, the division of theoretical geology into the principles of geodynamics and those of theoretical geomorphology seems to be useful for didactic purposes. It has therefore been maintained in the present writer's works. This present treatise on geodynamics is the first part of the author's treatment of theoretical geology, the treatise on Theoretical Geomorphology (also published by the Sprin...

  4. Deep structure of the Tristan-Gough plume revealed by geoid anomalies

    Science.gov (United States)

    Maia, M.; Flamme, J.; Cadio, C.; Lalancette, M. F.; Metivier, L.; Pajot-Métivier, G.; Diament, M.

    2017-12-01

    The origin of the hotspot Tristan da Cunha located at the southwestern end of Walvis Ridge in the Atlantic Ocean is still a controversial topic. We especially question on the nature of the involved geodynamical processes and on their origin depth. The latest results based on local seismic and magnetic data (Schlömer et al., 2016; Baba et al., 2016; Geissler et al., 2016) suggest the existence of a plume coming from the mid-mantle in the southwest of the archipelago. Here we give a regional view of mantle dynamics patterns in the area by using the high-quality satellite geoid data. To extract the mantle signature, we estimate the crustal and lithospheric signals of the ocean basin and South American and African continents, which contribute to mid- and long-wavelengths in the total geoid. We pay particular attention to the modeling of continental margins and their effects on the residual geoid signal. In addition, we explore a large density values set derived from petrological and geochemical studies in the calculation of the lithospheric geoid model. After subtracting the lithospheric signature to the EGM2008 geoid, we apply a multi-scale analysis, which unfolds the different components of the geoid residual signal. The analysis underlines a set of positive anomalies at 200-400 km in the study area, notably in north and west of Tristan de Cunha, and a positive anomaly at 700-1100 km scale in the southwest of the archipelago. These patterns do not change by using different lithospheric geoid models, which allow us to evaluate the reliability of the residual geoid anomalies. These results indicate the existence of small-scale density anomalies in the upper mantle and a larger scale density anomaly in the mid-mantle. Our study suggests that a large dome toped by plume clusters could be a good candidate to explain the volcanism of Tristan da Cunha.Schlömer et al., 2016 Hunting for the Tristan mantle plume..., EPSL, http://dx.doi.org/10.1016/j.epsl.2016.12.028Baba et

  5. Investigating the Indian Ocean Geoid Low

    Science.gov (United States)

    Ghosh, A.; Gollapalli, T.; Steinberger, B. M.

    2016-12-01

    The lowest geoid anomaly on Earth lies in the Indian Ocean just south of the Indian peninsula.Several theories have been proposed to explain this geoid low, most of which invoke past subduction. Some recent studies have alsoargued that high velocity anomalies in the lower mantle coupled with low velocity anomalies in the upper mantle are responsible for these negative geoidanomalies. However, there is no general consensus regarding the source of the Indian Ocean negative geoid. We investigate the source of this geoid low by using forward models of density driven mantle convection using CitcomS. We test various tomography models in our flow calculations with different radial and lateral viscosity variations. Many tomography modelsproduce a fairly high correlation to the global geoid, however none could match the precise location of the geoid low in the Indian Ocean. Amerged P-wave model of LLNL-G3DV3 in the Indian Ocean region and S40rts elsewhere yields a good fit to the geoid anomaly, both in pattern and magnitude.The source of this geoid low seems to stem from a low velocity anomaly stretching from a depth of 300 km up to 700 km in the northern Indian Ocean region.This velocity anomaly could potentially arise from material rising along the edge of the African LLSVP and moving towards the northeast, facilitated by the movementof the Indian plate in the same direction.

  6. Global Gravity Grids, Geoid Height and Gravity Anomaly Profiles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The entire collection of GEOSAT ERM (Nov.'86 - Dec. '89) data over land and ice regions is held at the National Geophysical Data Center (NGDC). These data will yield...

  7. Simultaneous solution of the geoid and the surface density anomalies

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.; Karimi, R.; AllahTavakoli, Y.

    2012-04-01

    The main application of the land gravity data in geodesy is "local geoid" or "local gravity field" modeling, whereas the same data could play a vital role for the anomalous mass-density modeling in geophysical explorations. In the realm of local geoid computations based on Geodetic Boundary Value Problems (GBVP), it is needed that the effect of the topographic (or residual terrain) masses be removed via application of the Newton integral in order to perform the downward continuation in a harmonic space. However, harmonization of the downward continuation domain may not be perfectly possible unless accurate information about the mass-density of the topographic masses be available. On the other hand, from the exploration point of view the unwanted topographical masses within the aforementioned procedure could be regarded as the signal. In order to overcome the effect of the remaining masses within the remove step of the GBVP, which cause uncertainties in mathematical modeling of the problem, here we are proposing a methodology for simultaneous solution of the geoid and residual surface density modeling In other words, a new mathematical model will be offered which both provides the needed harmonic space for downward continuation and at the same time accounts for the non-harmonic terms of gravitational field and makes use of it for residual mass density modeling within the topographic region. The presented new model enjoys from uniqueness of the solution, opposite to the inverse application of the Newton integral for mass density modeling which is non-unique, and only needs regularization to remove its instability problem. In this way, the solution of the model provides both the incremental harmonic gravitational potential on surface of the reference ellipsoid as the gravity field model and the lateral surface mass-density variations via the second derivatives of the non harmonic terms of gravitational field. As the case study and accuracy verification, the proposed

  8. Goce derived geoid changes before the Pisagua 2014 earthquake

    Directory of Open Access Journals (Sweden)

    Orlando Álvarez

    2018-01-01

    Full Text Available The analysis of space – time surface deformation during earthquakes reveals the variable state of stress that occurs at deep crustal levels, and this information can be used to better understand the seismic cycle. Understanding the possible mechanisms that produce earthquake precursors is a key issue for earthquake prediction. In the last years, modern geodesy can map the degree of seismic coupling during the interseismic period, as well as the coseismic and postseismic slip for great earthquakes along subduction zones. Earthquakes usually occur due to mass transfer and consequent gravity variations, where these changes have been monitored for intraplate earthquakes by means of terrestrial gravity measurements. When stresses and correspondent rupture areas are large, affecting hundreds of thousands of square kilometres (as occurs in some segments along plate interface zones, satellite gravimetry data become relevant. This is due to the higher spatial resolution of this type of data when compared to terrestrial data, and also due to their homogeneous precision and availability across the whole Earth. Satellite gravity missions as GOCE can map the Earth gravity field with unprecedented precision and resolution. We mapped geoid changes from two GOCE satellite models obtained by the direct approach, which combines data from other gravity missions as GRACE and LAGEOS regarding their best characteristics. The results show that the geoid height diminished from a year to five months before the main seismic event in the region where maximum slip occurred after the Pisagua Mw = 8.2 great megathrust earthquake. This diminution is interpreted as accelerated inland-directed interseismic mass transfer before the earthquake, coinciding with the intermediate degree of seismic coupling reported in the region. We highlight the advantage of satellite data for modelling surficial deformation related to pre-seismic displacements. This deformation, combined to

  9. Geoid determination in the coastal areas of the Gulf of Mexico

    Science.gov (United States)

    Song, HongZhi

    Coastal areas of the Gulf of Mexico are important for many reasons. This part of the United States provides vital coastal habitats for many marine species; the area has seen-ever increasing human settlement along the coast, ever increasing infrastructure for marine transportation of the nation's imports and exports through Gulf ports, and ever increasing recreational users of coastal resources. These important uses associated with the Gulf coast are subject to dynamic environmental and physical changes including: coastal erosion (Gulf-wide rates of 25 square miles per year), tropical storm surges, coastal subsidence, and global sea level rise. Coastal land subsidence is a major component of relative sea level rise along the coast of the Gulf of Mexico. These dynamic coastal changes should be evident in changes to the geoid along the coast. The geoid is the equipotential gravity surface of the earth, which the best fits the global mean sea level. The geoid is not only been seen as the most natural shape of the Earth, but also it serves as the reference surface for most of the height systems. By using satellites (GRACE mission) scientists have been able to measure the large scale geoid for the Earth. A small scale geoid model is required to monitor local events such as flooding, for example, flooding created by storm surges from hurricanes such as Katrina (2005), Rita (2005), and Ike (2008). The overall purpose of this study is to evaluate the accuracy of the local coastal geoid. The more precise geoid will enable to improve coastal flooding predictions, and will enable more cost effective and accurate measurement of coastal topography using global navigation satellite systems (GNSS). The main objective of this study is to devise mathematical models and computational methods to achieve the best possible precision for evaluation of the geoid in the coastal areas of the Gulf of Mexico. More specifically, the numerical objectives of this study are 1) to obtain a

  10. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  11. The gravity field and GGOS

    DEFF Research Database (Denmark)

    Forsberg, René; Sideris, M.G.; Shum, C.K.

    2005-01-01

    The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...

  12. New geoid of Greenland: A case study of terrain and ice effects, GOCE and use of local sea level data

    DEFF Research Database (Denmark)

    Forsberg, René; Jensen, Tim Enzlberger

    2015-01-01

    Making an accurate geoid model of Greenland has always been a challenge due to the ice sheet and glaciers, and the rough topography and deep fjords in the ice free parts. Terrestrial gravity coverage has for the same reasons been relatively sparse, with an older airborne survey of the interior be...

  13. Direct regional quasi-geoid determination using EGM2008 and DEM: A case study for Mainland China and its vicinity areas

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-11-01

    Full Text Available Earth's gravity model (EGM helps people better determine the figure of Earth, which is generally represented by a global geoid. For a considerable amount of practical applications, people use quasi-geoid to approximate the geoid, thus the quasi-geoid is also treated as an important height datum. In this study we revisit the method to directly determine regional quasi-geoid using EGM and digital elevation model (DEM, on the basis of Molodensky theory. According to the method we obtain a 5′ × 5′ quasi-geoid for Mainland China and its vicinity areas, based on the EGM2008 gravitational potential model and the Shuttle Radar Topography Mission (SRTM DEM model. By comparing height anomalies derived from EGM2008 with observations at 70 GPS/leveling points in areas including northwest, mid-west, mid-east and southeast of China, we find that the 5′ × 5′ EGM2008 quasi-geoid well fits the GPS/leveling results, with average deviations less than 10 cm for the selected areas in east China (with mainly plain topography and ∼20 cm for the selected areas in west China (highland or mountainous areas. We also discuss a few technical issues for directly determining height anomalies based on EGM and DEM, under the frame of Molodensky theory.

  14. Learning-based computing techniques in geoid modeling for precise height transformation

    Science.gov (United States)

    Erol, B.; Erol, S.

    2013-03-01

    Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.

  15. Local Marine Geoid Variations and Jason-2 Bias Determination using the Gavdos Permanent Cal/Val Facility

    DEFF Research Database (Denmark)

    Mertikas, S. P.; Daskalakis, A.; Tziavos, I. N.

    2012-01-01

    This work outlines how changes in steep bathymetry (from 200 m to 3500 m depth over a distance of 10 km) are reflected on the determined sea surface anomalies at the Gavdos site used for satellite altimeter calibration. After almost 4 years of Jason-2 calibration activities, it has been observed......, but others are related to under-sampling of the Earth's gravity field due to the resolution of the geoid model. New reference surfaces for calibration have thus emerged. Finally, new updated values for the Jason-2 altimeter bias have been determined as 191.81 ± 2.80 mm with the geoid model and as 181.51 ± 2...

  16. gravity

    Indian Academy of Sciences (India)

    We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...

  17. How to handle topography in practical geoid determination: three examples

    DEFF Research Database (Denmark)

    Omang, O.C.D.; Forsberg, René

    2000-01-01

    Three different methods of handling topography in geoid determination were investigated. The first two methods employ the residual terrain model (RTM) remove-restore technique, yielding the quasi-geoid, whereas the third method uses the classical Helmert condensation method, yielding the geoid. All...

  18. Practical application of the geometric geoid for heighting over ...

    African Journals Online (AJOL)

    This is because a geoid model is required to convert ellipsoidal heights to orthometric heights that are used in practice. A local geometric geoid ... The geoid height is expressed as a function of the local plane coordinates through a biquadratic surface polynomial, using 14 GPS/levelling points. Five points have been used ...

  19. GEOSAT 44: High-Accuracy, High-Resolution Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This satellite altimeter data base contains precise geoid and gravity anomaly profiles which were constructed from the average of 44 repeat cycles of Geosat. The...

  20. GEOSAT44: High-Accuracy, High-Resolution Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This satellite altimeter data base contains precise geoid and gravity anomaly profiles which were constructed from the average of 44 repeat cycles of Geosat. The...

  1. The direct effect on geoid computations

    OpenAIRE

    Juan G. Serpas

    2016-01-01

    La técnica más popular para la reducción de observaciones gravimétricas al geoide es el método de condensación de Helmert. Dos maneras deferentes de aplicar dicha reducción son estudiadas: el enfoque clásico (Wang y Rapp, 1990, Heiskanen y Morits, 1967) y el enfoque por Vanicek and Kleusberg (1987), extendido por Martinec et al. (1993). El enfoque clásico (Wang y Rapp, 1990, Heiskanen y Moritz, 1967) argumenta que el efecto de la capa condensada tiene que ser evaluado en el geoide y no en el ...

  2. Using GPS and leveling data in local precise geoid determination and case study

    Science.gov (United States)

    Erol, B.; Çelik, R. N.; Erol, S.

    2003-04-01

    As an important result of developments in high technology, satellite based positioning system has become to use in geodesy and surveying professions. These developments made the measurement works more accurate, more practical and more economic. Today, one of the most recent used satellite based positioning system is GPS (Global Positioning System) and it serves to a very wide range of geodetic applications from monitoring earth crustal deformations till building the basis for a GIS (Geographical Information Systems). The most efficient way to utilize GPS measurement system for mentioned aims is having a reliable geodetic infrastructure in working area. Geodetic infrastructure is a extraterrestrial and time system and involved 4D geodetic reference networks. The forth element of mentioned geodetic reference system is time because having an accurate and reliable geodetic infrastructure is needed to up-date according to physical realities of the region. By the help of a well designed geodetic infrastructure accurate and reliable coordinates of a point can be generated economically every time in a global and up-to-date system. Geoid is one of the important parts of a geodetic infrastructure. As it is well known, geoid is the equipotential surface of the Earth's gravity field which best fits, in a least squares sense, global mean sea level and it is reference for physical height systems like orthometric and normal heights. In the most of the applications, vertical position of a point is expressed with orthometric or normal height. Orthometric or normal height is a physical concept and gives vertical position of a point uniquely. On the other hand, vertical position of a point is derived in a geometrical system according to GPS measurements. GPS datum is WGS84 and in this system, an ellipsoidal height of a point is calculated according to WGS84 ellipsoid. So, it is an necessity to transform the ellipsoidal heights to orthometric heights and this procedure is managed with

  3. Geoid Height and Deflections of the Vertical Models - National Geospatial Data Asset (NGDA) Geoid Models

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In Gauss' words, the geoid is "the mathematical figure of the Earth". This figure is an equipotential surface coincident with the idealized mean sea surface. The...

  4. Reconciling Long-Wavelength Dynamic Topography, Geoid Anomalies and Mass Distribution on Earth

    Science.gov (United States)

    Hoggard, M.; Richards, F. D.; Ghelichkhan, S.; Austermann, J.; White, N.

    2017-12-01

    Since the first satellite observations in the late 1950s, we have known that that the Earth's non-hydrostatic geoid is dominated by spherical harmonic degree 2 (wavelengths of 16,000 km). Peak amplitudes are approximately ± 100 m, with highs centred on the Pacific Ocean and Africa, encircled by lows in the vicinity of the Pacific Ring of Fire and at the poles. Initial seismic tomography models revealed that the shear-wave velocity, and therefore presumably the density structure, of the lower mantle is also dominated by degree 2. Anti-correlation of slow, probably low density regions beneath geoid highs indicates that the mantle is affected by large-scale flow. Thus, buoyant features are rising and exert viscous normal stresses that act to deflect the surface and core-mantle boundary (CMB). Pioneering studies in the 1980s showed that a viscosity jump between the upper and lower mantle is required to reconcile these geoid and tomographically inferred density anomalies. These studies also predict 1-2 km of dynamic topography at the surface, dominated by degree 2. In contrast to this prediction, a global observational database of oceanic residual depth measurements indicates that degree 2 dynamic topography has peak amplitudes of only 500 m. Here, we attempt to reconcile observations of dynamic topography, geoid, gravity anomalies and CMB topography using instantaneous flow kernels. We exploit a density structure constructed from blended seismic tomography models, combining deep mantle imaging with higher resolution upper mantle features. Radial viscosity structure is discretised, and we invert for the best-fitting viscosity profile using a conjugate gradient search algorithm, subject to damping. Our results suggest that, due to strong sensitivity to radial viscosity structure, the Earth's geoid seems to be compatible with only ± 500 m of degree 2 dynamic topography.

  5. Precisión de la aproximación geoide y geoestadística: cómo encontrar un mapa contínuo de datos de gravedad absoluta

    Directory of Open Access Journals (Sweden)

    Hongzhi Song

    2015-10-01

    Full Text Available An accurate geoid model is needed for surveyors and engineers who require orthometric heights on a common datum, and environ- ment scientists who require elevations relative to present sea level. Airborne gravity data has been collected by the National Geodetic Survey (NGS under the Gravity for the Redefinition of the Amer- ican Vertical Datum (GRAV-D project and is available along the coasts of the Gulf of Mexico. For this study we obtained a set of abso- lute gravity data derived from full-field gravity at altitude/elevation. We used the data to derive free-air gravity anomalies to establish gravity on the geoid. For spatial interpolation we used the kriging method to estimate gravity on the geoid in any location and krig- ing of the difference between gravity on the ellipsoid of reference and the geoid. Various kriging methods were used for evaluation of errors calculated in this study. The mean precision of the predicted val- ues is around 1.23 cm, a very good result for coastal regions, which traditionally have sparse gravity data sets.

  6. Towards unification of terrestrial gravity data sets in Estonia

    Directory of Open Access Journals (Sweden)

    Ellmann, Artu

    2009-12-01

    Full Text Available Gravity data in Estonia have been collected by different institutions over many decades. This study assesses the suitability of available gravity data for ensuring a 1 cm geoid modelling accuracy over Estonia and in the Baltic Sea region in general. The main focus of this study is on the determination and elimination of discrepancies between three nationwide datasets. It was detected that one tested historic gravity dataset contained inadmissible systematic biases with respect to other tested datasets. Possible ways of gravity data improvement are discussed. More specifically, new field observation campaigns and aspects of using their outcomes in subsequent regional geoid modelling are suggested.

  7. Validation of ERS-1 and high-resolution satellite gravity with in-situ shipborne gravity over the Indian offshore regions: Accuracies and implications to subsurface modeling

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterjee, S.; Bhattacharyya, R.; Michael, L.; Krishna, K.S.; Majumdar, T.J.

    Geoid and gravity anomalies derived from satellite altimetry are gradually gaining importance in marine geoscientific investigations. Keeping this in mind, we have validated ERS-1 (168 day repeat) altimeter data and very high-resolution free...

  8. The northern European geoid: a case study on long-wavelength geoid errors

    DEFF Research Database (Denmark)

    Omang, O.C.D.; Forsberg, René

    2002-01-01

    . This method of removing lower-order terms in the Stokes kernel appears to improve the geoid. The best fit to the global positioning system (GPS) leveling points is obtained with a degree of modification of approximately 30. In addition to the study of modification errors, the results of different methods...

  9. Seismological Constraints on Geodynamics

    Science.gov (United States)

    Lomnitz, C.

    2004-12-01

    Earth is an open thermodynamic system radiating heat energy into space. A transition from geostatic earth models such as PREM to geodynamical models is needed. We discuss possible thermodynamic constraints on the variables that govern the distribution of forces and flows in the deep Earth. In this paper we assume that the temperature distribution is time-invariant, so that all flows vanish at steady state except for the heat flow Jq per unit area (Kuiken, 1994). Superscript 0 will refer to the steady state while x denotes the excited state of the system. We may write σ 0=(J{q}0ṡX{q}0)/T where Xq is the conjugate force corresponding to Jq, and σ is the rate of entropy production per unit volume. Consider now what happens after the occurrence of an earthquake at time t=0 and location (0,0,0). The earthquake introduces a stress drop Δ P(x,y,z) at all points of the system. Response flows are directed along the gradients toward the epicentral area, and the entropy production will increase with time as (Prigogine, 1947) σ x(t)=σ 0+α {1}/(t+β )+α {2}/(t+β )2+etc A seismological constraint on the parameters may be obtained from Omori's empirical relation N(t)=p/(t+q) where N(t) is the number of aftershocks at time t following the main shock. It may be assumed that p/q\\sim\\alpha_{1}/\\beta times a constant. Another useful constraint is the Mexican-hat geometry of the seismic transient as obtained e.g. from InSAR radar interferometry. For strike-slip events such as Landers the distribution of \\DeltaP is quadrantal, and an oval-shaped seismicity gap develops about the epicenter. A weak outer triggering maxiμm is found at a distance of about 17 fault lengths. Such patterns may be extracted from earthquake catalogs by statistical analysis (Lomnitz, 1996). Finally, the energy of the perturbation must be at least equal to the recovery energy. The total energy expended in an aftershock sequence can be found approximately by integrating the local contribution over

  10. From Geodynamics to Simplicity

    Science.gov (United States)

    Anderson, D. L.

    2002-12-01

    Mantle convection and plate tectonics are often thought as synonymous. Convection is sometimes treated as the driver or plate tectonics is viewed as simply a manifestation of mantle convection. Mantle plumes are regarded as supplying some of the elements missing in the plate tectonic and mantle convection paradigms, such as island chains, swells and large igneous provinces. An alternate view is motivated by Prigogine's concept of far-from-equilibrium self-organization ( SOFFE), not to be confused with Bak's self-organized criticality ( SOC) . In a SOFFE system the components interact, and the system is small compared to the outside world to which it is open. There must be multiple possible states and dissipation is important. Such a system is sensitive to small changes. Rayleigh-Benard convection in a container with isothermal walls is such a self-organizing system ; the driving bouyancy and the dissipation ( viscosity ) are in the fluid. In Marangoni convection the driving forces ( surface tension ) and dissipation are in the surface film and this organizes the surface and the underlying fluid. The mantle provides energy and matter to the interacting plate system but forces in the plates drive and dissipate the energy. Thus, plate tectonics may be a SOFFEE system that drives convection,as are systems cooled from above, in general. If so, plates will reorganize as boundary conditions change ; incipient plate boundaries will emerge as volcanic chains at tensile regions. Plates are defined as regions of lateral compression ( force chains ), rather than strength, and they are ephemeral. The plate system, rather than mantle viscosity, will modulate mantle cooling. The supercontinent cycle, with episodes of reorganization and massive magmatism, may be a manifestation of this far-from-equilibrium, driven from above, system. Geodynamics may be simpler than we think. Plate tectonics is certainly a more powerful concept once the concepts of rididity, elasticity, homogeneity

  11. Gravity model development for precise orbit computations for satellite altimetry

    Science.gov (United States)

    Marsh, James G.; Lerch, Francis, J.; Smith, David E.; Klosko, Steven M.; Pavlis, Erricos

    1986-01-01

    Two preliminary gravity models developed as a first step in reaching the TOPEX/Poseidon modeling goals are discussed. They were obtained by NASA-Goddard from an analysis of exclusively satellite tracking observations. With the new Preliminary Gravity Solution-T2 model, an improved global estimate of the field is achieved with an improved description of the geoid.

  12. Bouguer gravity anomalies for terrain modeling | Orupabo | Journal ...

    African Journals Online (AJOL)

    Gravity anomalies have been applied in geodesy to determine the geoid, and the associated composition and crustal properties of the earth. Applications of solution of the gravity inversion problems include the study of crustal dynamics as a result of the extraction of fluids in the form of oil, gas and water from ...

  13. GRAVTool, Advances on the Package to Compute Geoid Model path by the Remove-Compute-Restore Technique, Following Helmert's Condensation Method

    Science.gov (United States)

    Marotta, G. S.

    2017-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astrogeodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove Compute Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and Global Geopotential Model (GGM), respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and adjust these models to one local vertical datum. This research presents the advances on the package called GRAVTool to compute geoid models path by the RCR, following Helmert's condensation method, and its application in a study area. The studied area comprehends the federal district of Brazil, with 6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show a geoid model computed by the GRAVTool package, after analysis of the density, DTM and GGM values, more adequate to the reference values used on the study area. The accuracy of the computed model (σ = ± 0.058 m, RMS = 0.067 m, maximum = 0.124 m and minimum = -0.155 m), using density value of 2.702 g/cm³ ±0.024 g/cm³, DTM SRTM Void Filled 3 arc-second and GGM EIGEN-6C4 up to degree and order 250, matches the uncertainty (σ =± 0.073) of 26 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.076 m, RMS = 0.098 m, maximum = 0.320 m and minimum = -0.061 m).

  14. Venus spherical harmonic gravity model to degree and order 60

    Science.gov (United States)

    Konopliv, Alex S.; Sjogren, William L.

    1994-01-01

    The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.

  15. Geoid modeling in Mexico and the collaboration with Central America and the Caribbean.

    Science.gov (United States)

    Avalos, D.; Gomez, R.

    2012-12-01

    The model of geoidal heights for Mexico, named GGM10, is presented as a geodetic tool to support vertical positioning in the context of regional height system unification. It is a purely gravimetric solution computed by the Stokes-Helmert technique in resolution of 2.5 arc minutes. This product from the Instituto Nacional de Estadistica y Geografia (INEGI) is released together with a series of 10 gravimetric models which add to the improvements in description of the gravity field. In the recent years, the INEGI joined the initiative of the U.S. National Geodetic Survey and the Canada's Geodetic Survey Division to promote the regional height system unification. In an effort to further improve the compatibility among national geoid models in the region, the INEGI has begun to champion a network of specialists that includes national representatives from Central America and the Caribbean. Through the opening of opportunities for training and more direct access to international agreements and discussions, the tropical region is gaining participation. Now a significantly increased number of countries is pushing for a future North and Central American geoid-based vertical datum as support of height system unification.eoidal height in Mexico, mapped from the model GGM10.

  16. Variation of Marine Geoid Due to Ocean Circulation and Sea Level Change

    Science.gov (United States)

    Chu, P. C.

    2017-12-01

    Sea level (S) change and ocean circulation largely affect the gravity field and in turns the marine geoid (N). Difference between the two, D = S - N, is the dynamic ocean topography (DOT), whose gradient represents the large-scale surface geostrophic circulations. Thus, temporal variability of marine geoid (δN) is caused by the sea level change (δS) and the DOT variation (δD), δN = δS - δD. Here, δS is identified from temporally varying satellite altimeter measures; δD is calculated from the change of DOT. For large-scale processes with conservation of potential vorticity, the geostrophic flows take minimum energy state. Based on that, a new elliptic equation is derived in this study to determine D. Here, H is the water depth; and (X, Y) are forcing functions calculated from the in-situ density. The well-posed elliptic equation is integrated numerically on 1o grids for the world oceans with the boundary values taken from the mean DOT (1993-2006) field at the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-typography/, the forcing function F calculated from the three-dimensional temperature and salinity of the NOAA National Centers for Environmental Information (NCEI) World Ocean Atlas 2013 version 2, and sea-floor topography (H) from the NOAA ETOPO5. The numerical solution compares reasonably well (relative root mean square difference of 0.09) with the NASA/JPL satellite observation of the difference between the time-averaged sea surface height and the geoid. In-situ ocean measurements of temperature, salinity, and velocity have also rapidly advanced such that the global ocean is now continuously monitored by near 4,000 free-drifting profiling floats (called Argo) from the surface to 2000 m depth with all data being relayed and made publicly available within hours after collection (http://www.argo.ucsd.edu/). This provides a huge database of temperature and salinity and in turns the forcing function F for the governing elliptic

  17. Geodynamics Project. US progress report, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The recommendations of the US Geodynamics Committee relative to program activities are presented. US Program progress is reviewed in the following areas: fine structure of the crust and upper mantle; continuous seismic reflection profiling of the deep basement: Hardeman County, Texas; Mid-Atlantic Ridge - evolution of oceanic lithosphere; internal processes and properties; crystal growing; chemical differentiation of magmas; geodynamic modelling; magnetic problems; plate boundaries; plate interiors; geodynamic syntheses; and eustatic cycles of sea level changes. (MHR)

  18. Geoid-to-Quasigeoid Separation Computed Using the GRACE/GOCE Global Geopotential Model GOCO02S - A Case Study of Himalayas and Tibet

    Directory of Open Access Journals (Sweden)

    Mohammad Bagherbandi Robert Tenzer

    2013-01-01

    Full Text Available The geoid-to-quasigeoid correction has been traditionally computed approximately as a function of the planar Bouguer gravity anomaly and the topographic height. Recent numerical studies based on newly developed theoretical models, however, indicate that the computation of this correction using the approximate formula yields large errors especially in mountainous regions with computation points at high elevations. In this study we investigate these approximation errors at the study area which comprises Himalayas and Tibet where this correction reaches global maxima. Since the GPS-leveling and terrestrial gravity datasets in this part of the world are not (freely available, global gravitational models (GGMs are used to compute this correction utilizing the expressions for a spherical harmonic analysis of the gravity field. The computation of this correction can be done using the GGM coefficients taken from the Earth Gravitational Model 2008 (EGM08 complete to degree 2160 of spherical harmonics. The recent studies based on a regional accuracy assessment of GGMs have shown that the combined GRACE/GOCE solutions provide a substantial improvement of the Earth¡¦s gravity field at medium wavelengths of spherical harmonics compared to EGM08. We address this aspect in numerical analysis by comparing the gravity field quantities computed using the satellite-only combined GRACE/GOCE model GOCO02S against the EGM08 results. The numerical results reveal that errors in the geoid-to-quasigeoid correction computed using the approximate formula can reach as much as ~1.5 m. We also demonstrate that the expected improvement of the GOCO02S gravity field quantities at medium wavelengths (within the frequency band approximately between 100 and 250 compared to EGM08 is as much as ±60 mGal and ±0.2 m in terms of gravity anomalies and geoid/quasigeoid heights respectively.

  19. Inter-comparison of state-of-the-art MSS and geoid models in the Arctic Ocean

    DEFF Research Database (Denmark)

    Skourup, Henriette; Farrell, Sinead; Hendricks, Stefan

    in errors in the estimated freeboard heights, especially in areas with a sparse lead distribution in consolidated ice conditions. Additionally these errors can impact ocean geostrophic current estimates and remaining biases in the models may impact longer-term, multi-sensor oceanographic time-series of sea......State-of-the-art Arctic Ocean mean sea surface (MSS) and geoid models are used to support sea ice freeboard estimation from satellite altimeters, and for oceanographic studies. However, errors in a given model in the high frequency domain, e.g. due to unresolved gravity features, can result...

  20. A new Ellipsoidal Gravimetric-Satellite Altimetry Boundary Value Problem; Case study: High Resolution Geoid of Iran

    Science.gov (United States)

    Ardalan, A.; Safari, A.; Grafarend, E.

    2003-04-01

    A new ellipsoidal gravimetric-satellite altimetry boundary value problem has been developed and successfully tested. This boundary value problem has been constructed for gravity observables of the type (i) gravity potential (ii) gravity intensity (iii) deflection of vertical and (iv) satellite altimetry data. The developed boundary value problem is enjoying the ellipsoidal nature and as such can take advantage of high precision GPS observations in the set-up of the problem. The highlights of the solution are as follows: begin{itemize} Application of ellipsoidal harmonic expansion up to degree/order and ellipsoidal centrifugal field for the reduction of global gravity and isostasy effects from the gravity observable at the surface of the Earth. Application of ellipsoidal Newton integral on the equal area map projection surface for the reduction of residual mass effects within a radius of 55 km around the computational point. Ellipsoidal harmonic downward continuation of the residual observables from the surface of the earth down to the surface of reference ellipsoid using the ellipsoidal height of the observation points derived from GPS. Restore of the removed effects at the application points on the surface of reference ellipsoid. Conversion of the satellite altimetry derived heights of the water bodies into potential. Combination of the downward continued gravity information with the potential equivalent of the satellite altimetry derived heights of the water bodies. Application of ellipsoidal Bruns formula for converting the potential values on the surface of the reference ellipsoid into the geoidal heights (i.e. ellipsoidal heights of the geoid) with respect to the reference ellipsoid. Computation of the high-resolution geoid of Iran has successfully tested this new methodology!

  1. Computational Infrastructure for Geodynamics (CIG)

    Science.gov (United States)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to

  2. Software development and its description for Geoid determination based on Spherical-Cap-Harmonics Modelling using digital-zenith camera and gravimetric measurements hybrid data

    Science.gov (United States)

    Morozova, K.; Jaeger, R.; Balodis, J.; Kaminskis, J.

    2017-10-01

    Over several years the Institute of Geodesy and Geoinformatics (GGI) was engaged in the design and development of a digital zenith camera. At the moment the camera developments are finished and tests by field measurements are done. In order to check these data and to use them for geoid model determination DFHRS (Digital Finite element Height reference surface (HRS)) v4.3. software is used. It is based on parametric modelling of the HRS as a continous polynomial surface. The HRS, providing the local Geoid height N, is a necessary geodetic infrastructure for a GNSS-based determination of physcial heights H from ellipsoidal GNSS heights h, by H=h-N. The research and this publication is dealing with the inclusion of the data of observed vertical deflections from digital zenith camera into the mathematical model of the DFHRS approach and software v4.3. A first target was to test out and validate the mathematical model and software, using additionally real data of the above mentioned zenith camera observations of deflections of the vertical. A second concern of the research was to analyze the results and the improvement of the Latvian quasi-geoid computation compared to the previous version HRS computed without zenith camera based deflections of the vertical. The further development of the mathematical model and software concerns the use of spherical-cap-harmonics as the designed carrier function for the DFHRS v.5. It enables - in the sense of the strict integrated geodesy approach, holding also for geodetic network adjustment - both a full gravity field and a geoid and quasi-geoid determination. In addition, it allows the inclusion of gravimetric measurements, together with deflections of the vertical from digital-zenith cameras, and all other types of observations. The theoretical description of the updated version of DFHRS software and methods are discussed in this publication.

  3. A conventional value for the geoid reference potential

    Czech Academy of Sciences Publication Activity Database

    Sánchez, L.; Čundrlík, R.; Dayoub, N.; Mikula, K.; Minarechová, Z.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2016-01-01

    Roč. 90, č. 9 (2016), s. 815-835 ISSN 0949-7714 Institutional support: RVO:67985815 Keywords : gobal W-0 value * W-0 best estimate * potential value of the geoid Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.949, year: 2016

  4. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    Science.gov (United States)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other

  5. GNSS Wave Glider: First results from Loch Ness and demonstration of its suitability for determining the marine geoid

    Science.gov (United States)

    Penna, N. T.; Morales Maqueda, M.; Williams, S. D.; Foden, P.; Martin, I.; Pugh, J.

    2013-12-01

    We report on a first deployment of a GNSS Wave Glider designed for precise, unmanned, autonomous, mobile self-propelled sea level and sea state measurement in the open ocean. The Wave Glider, equipped with a dual frequency GPS+GLONASS receiver, was deployed in Loch Ness, Scotland, autonomously travelling 32 km in a north-easterly direction along the length of the loch in 26 hours, propelled by energy generated from waves of typical amplitude only 100-150 mm and frequency on the order 0.5-1 Hz. The Wave Glider GNSS data were analysed using a post-processed kinematic GPS+GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations at either end of the loch. The PPP heights of the loch's surface revealed a clear geoid gradient of about 30 mm/km (i.e. just under 1 m over the whole length of the loch), very similar to both the EGM2008 and OSGM02 geoid models, demonstrating the potential use of a GNSS Wave Glider for marine geoid determination. After applying a low pass filter, the GNSS heights showed local deviations from both EGM2008 and OSGM02, potentially caused by omission errors or a lack of gravity data over Loch Ness. In addition to dual frequency GNSS data, the Wave Glider also recorded inclinometer data, bathymetry, and surface currents, which, in combination with tide gauge and wind data, were used to further control and interpret the GNSS time series.

  6. Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2

    Science.gov (United States)

    Nerem, R. S.; Lerch, F. J.; Marshall, J. A.; Pavlis, E. C.; Putney, B. H.; Tapley, B. D.; Eanes, R. J.; Ries, J. C.; Schutz, B. E.; Shum, C. K.

    1994-01-01

    The TOPEX/POSEIDON (T/P) prelaunch Joint Gravity Model-1 (JGM-1) and the postlaunch JGM-2 Earth gravitational models have been developed to support precision orbit determination for T/P. Each of these models is complete to degree 70 in spherical harmonics and was computed from a combination of satellite tracking data, satellite altimetry, and surface gravimetry. While improved orbit determination accuracies for T/P have driven the improvements in the models, the models are general in application and also provide an improved geoid for oceanographic computations. The postlaunch model, JGM-2, which includes T/P satellite laser ranging (SLR) and Doppler orbitography and radiopositioning integrated by satellite (DORIS) tracking data, introduces radial orbit errors for T/P that are only 2 cm RMS with the commission errors of the marine geoid for terms to degree 70 being +/- 25 cm. Errors in modeling the nonconservative forces acting on T/P increase the total radial errors to only 3-4 cm root mean square (RMS), a result much better than premission goals. While the orbit accuracy goal for T/P has been far surpassed geoid errors still prevent the absolute determination of the ocean dynamic topography for wavelengths shorter than about 2500 km. Only a dedicated gravitational field satellite mission will likely provide the necessary improvement in the geoid.

  7. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means

    Science.gov (United States)

    Besutiu, Lucian; Zlagnean, Luminita

    2015-04-01

    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal

  8. Gravity Field Parameter Estimation Using QR Factorization

    Science.gov (United States)

    Klokocnik, J.; Wagner, C. A.; McAdoo, D.; Kostelecky, J.; Bezdek, A.; Novak, P.; Gruber, C.; Marty, J.; Bruinsma, S. L.; Gratton, S.; Balmino, G.; Baboulin, M.

    2007-12-01

    This study compares the accuracy of the estimated geopotential coefficients when QR factorization is used instead of the classical method applied at our institute, namely the generation of normal equations that are solved by means of Cholesky decomposition. The objective is to evaluate the gain in numerical precision, which is obtained at considerable extra cost in terms of computer resources. Therefore, a significant increase in precision must be realized in order to justify the additional cost. Numerical simulations were done in order to examine the performance of both solution methods. Reference gravity gradients were simulated, using the EIGEN-GL04C gravity field model to degree and order 300, every 3 seconds along a near-circular, polar orbit at 250 km altitude. The simulation spanned a total of 60 days. A polar orbit was selected in this simulation in order to avoid the 'polar gap' problem, which causes inaccurate estimation of the low-order spherical harmonic coefficients. Regularization is required in that case (e.g., the GOCE mission), which is not the subject of the present study. The simulated gravity gradients, to which white noise was added, were then processed with the GINS software package, applying EIGEN-CG03 as the background gravity field model, followed either by the usual normal equation computation or using the QR approach for incremental linear least squares. The accuracy assessment of the gravity field recovery consists in computing the median error degree-variance spectra, accumulated geoid errors, geoid errors due to individual coefficients, and geoid errors calculated on a global grid. The performance, in terms of memory usage, required disk space, and CPU time, of the QR versus the normal equation approach is also evaluated.

  9. Satellite-derived geoid for the estimation of lithospheric cooling and ...

    Indian Academy of Sciences (India)

    The northern Indian Ocean consists of older Bay of Bengal (BOB) oceanic .... Andaman & Nicobar Islands m ... The long wavelength classical geoid anomaly over the northern Indian Ocean with the largest geoid anomaly low ... and 'Snm' are the mass distribution functions. ..... in the Pacific Plate that caused the long wave-.

  10. PRELIMINARY GEOID MODEL IN SAN JUAN PROVINCE: A CASE STUDY IN THE ANDES

    DEFF Research Database (Denmark)

    Tocho, Claudia; Miranda, Silvia; Pacino, Maria Cristina

    2008-01-01

    A high-resolution and high-precision detailed gravimetric geoid has been computed for San Juan province in Argentina, ranging from 27 degrees S to 34 degrees S in latitude and 72 degrees W to 65 degrees W in longitude. The gravimetric geoid was calculated using the RTM method, a multiband spheric...

  11. New standards for reducing gravity data: The North American gravity database

    Science.gov (United States)

    Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.

    2005-01-01

    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  12. Different ways to handle topography in practical geoid determination

    DEFF Research Database (Denmark)

    Dahl, O.C.; Forsberg, René

    1999-01-01

    In this paper two different methods of how to handle topography in geoid determination is investigated. First method employs the Residual Terrain Model (RTM) remove-restore technique and yields the quasigeoid, whereas the second method is the classical Helmert condensation method, yielding...... the topography was represented by either a detailed (100 m) or a coarse (1000 m) digital terrain model. The inclusion of bathymetry in the terrain model was also investigated. Even if two different methods were used, they produced almost identical results at the 5 cm level in the mountains, but small systematic...

  13. IERS and its importance for global geodynamics

    Czech Academy of Sciences Publication Activity Database

    Kostelecký, J.; Vondrák, Jan

    2003-01-01

    Roč. 24, č. 131 (2003), s. 7-15 ISSN 1211-1910 R&D Projects: GA MŠk LN00A005 Institutional research plan: CEZ:AV0Z1003909 Keywords : astrometry * geodesy * geodynamics Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  14. GOCE in ocean modelling - Point mass method applied on GOCE gravity gradients

    DEFF Research Database (Denmark)

    Herceg, Matija; Knudsen, Per

    This presentation is an introduction to my Ph.D project. The main objective of the study is to improve the methodology for combining GOCE gravity field models with satellite altimetry to derive optimal dynamic ocean topography models for oceanography. Here a method for geoid determination using...

  15. Subducted slabs and lateral viscosity variations: effects on the long-wavelength geoid

    Science.gov (United States)

    Tosi, Nicola; Čadek, Ondřej; Martinec, Zdeněk

    2009-11-01

    The characteristic broad local maxima exhibited by the long-wavelength geoid over subduction zones are investigated with a numerical model of mantle flow. In a spherical axisymmetric geometry, a synthetic model of buoyancy driven subduction is used to test the effects on the geoid caused by the depth of penetration of the lithosphere into the mantle, by the viscosity stratification and by lateral viscosity variations (LVV) in the lithosphere, upper and lower mantle. The presence of anomalous slab density in the lower mantle guarantees geoid amplitudes comparable with the observations, favouring the picture of slabs that penetrate the transition zone and sink into the deep mantle. The viscosity of the lower mantle controls the long-wavelength geoid to the first order, ensuring a clear positive signal when it is at least 30-times greater than the upper-mantle viscosity. The presence of LVV in the lithosphere, in the form of weak plate margins, helps to increase the contribution of the surface topography, causing a pronounced reduction of the geoid. Localized LVV associated with the cold slab play a secondary role if they are in the upper mantle. On the other hand, highly viscous slabs in the lower mantle exert a large influence on the geoid. They cause its amplitude to increase dramatically, way beyond the values typically observed over subduction zones. Long-wavelength flow becomes less vigorous as the slab viscosity increases. Deformation in the upper mantle becomes more localized and power is transferred to short wavelengths, causing the long-wavelength surface topography to diminish and the total geoid to increase. Slabs may be then weakened in the lower mantle or retain their high viscosity while other mechanisms act to lower the geoid. It is shown that a phase change from perovskite to post-perovskite above the core-mantle boundary can cause the geoid to reduce significantly, thereby helping to reconcile models and observations.

  16. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  17. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones

    Science.gov (United States)

    Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.

    2007-02-01

    We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.

  18. Ocean tides and quasi-stationary departures from the marine geoid investigation

    Science.gov (United States)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. O.

    1973-01-01

    The detection of tides and/or currents through the analysis of data generated in connection with the Ocean Geoid Determination Investigation is presented. A discussion of the detailed objectives and approach are included.

  19. Oceanic Geoid and Tides Obtained from GEOS-3 Satellite Data in the Northwestern Atlantic Ocean

    Science.gov (United States)

    Won, I. J.; Miller, L. S.

    1978-01-01

    Two sets of GEO-3 altimeter data which fall within about a 2.5 degree width are analyzed for ocean geoid and tides. One set covers a linear path from Newfoundland to Cuba and the other from Puerto Rico to the North Carolina coast. Forty different analyses using various parameters are performed in order to investigate convergence. Profiles of the geoid and four tides, M sub 2 O sub 1, S sub 2, and K sub 1, are obtained along the two strips. The results demonstrate convergent solutions for all forty cases and show, within expectation, fair agreement with those obtained from the MODE deep-sea tide gauge. It is also shown that the oceanic geoid obtained through this analysis can potentially improve the short wavelength structure over existing geoid models.

  20. Multi-mission mean sea surface and geoid models for ocean monitoring within the GOCINA project

    Science.gov (United States)

    Andersen, O. B.; Knudsen, P.; Anne, V. L.

    2004-05-01

    A major goal of the EU project GOCINA (Geoid and Ocean Circulation In the North Atlantic) is to develop tools for ocean monitoring using satellite altimetry combined with satellite gravimetry. Furthermore, the project will determine an accurate geoid in the region between Greenland and the UK and, hereby, create a platform for validation of future GOCE Level 2 data and higher order scientific products. The central quantity bridging the geoid and the ocean circulation is the mean dynamic topography, which is the difference between the mean sea surface and the geoid. The mean dynamic topography provides the absolute reference surface for the ocean circulation. The improved determination of the mean circulation will advance the understanding of the role of the ocean mass and heat transport in climate change. To calculate the best possible synthetic mean dynamic topographies a new mean sea surface (KMS03) has been derived from nine years of altimetric data (1993-2001). The regional geoid has furthermore being updated using GRACE and gravimetric data from a recent airborne survey. New synthetic mean dynamic topography models have been computed from the best available geoid models (EGM96, GRACE, GOCINA) and the present mean sea surface models (i.e. CLS01, GSFC00, KMS03). These models will be compared with state of the art hydrodynamic mean dynamic topography models in the North Atlantic GOCINA area. An extended comparison in the Artic Ocean will also be presented to demonstrate the impact of improved geoid and mean sea surface modeling. Particularly using the GRACE derived geoid models, and the KMS03 mean sea surface.

  1. Geodynamic Effects of Ocean Tides: Progress and Problems

    Science.gov (United States)

    Richard, Ray

    1999-01-01

    Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.

  2. Impact Of GOCE On The Nordic Gravity Field Modelling

    DEFF Research Database (Denmark)

    Yidiz, Hasan; Forsberg, René; Tscherning, C. C.

    2011-01-01

    GOCE level-2 Tzz and Txx gravity gradients at satellite altitude are used in combination as input data to predict surface free air gravity anomalies over the Nordic region using Least Square Collocation. We test the performance of using covariance functions created separately from Tzz gradients a...... Surface model, both the NKG-2004 quasi-geoid model of the Nordic and Baltic Area and the one obtained using second generation GOCE spherical harmonic coefficients based on time-wise method can successfully reproduce the higher level of the Baltic Sea relative to the Atlantic Ocean....

  3. Merging of airborne gravity and gravity derived from satellite altimetry: Test cases along the coast of greenland

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Andersen, Ole Baltazar; Tscherning, C.C.

    2002-01-01

    for the use of gravity data especially, when computing geoid models in coastal regions. The presence of reliable marine gravity data for independent control offers an opportunity to study procedures for the merging of airborne and satellite data around Greenland. Two different merging techniques, both based......The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing...... onshore gravity coverage and fill in new data in the very-near coastal area, where altimetry data may contain gross errors. The airborne surveys extend from the coastline to approximately 100 km offshore, along 6000 km of coastline. An adequate merging of these different data sources is important...

  4. Monitoring temporal gravity changes in different geological conditions

    Czech Academy of Sciences Publication Activity Database

    Mrlina, Jan

    20 (124) (2002), s. 125-131 ISSN 1211-1910 R&D Projects: GA AV ČR IAA3012807; GA ČR GA205/00/1470 Grant - others:Copernicus(XE) Project ASPELEA Institutional research plan: CEZ:AV0Z3012916 Keywords : gravity changes * geodynamics * Western Bohemia * Corinth rift * Aswan Lake Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  5. Effect of the Earth's inner structure on the gravity in definitions of height systems

    Science.gov (United States)

    Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal

    2017-04-01

    In context of the vertical datum unification, the geoid-to-quasi-geoid separation has been of significant interest in recent years, because most of existing local vertical datums are realized in the system of either normal or orthometric heights. Nevertheless, the normal-orthometric heights are still used in many other countries where the normal gravity values along leveling lines were adopted instead of the observed gravity. Whereas the conversion between the orthometric and normal heights is defined by means of the mean gravity disturbances (i.e. differences between the mean values of the actual and normal gravity) along the plumbline within the topography, differences between the normal and normal-orthometric heights can be described by means of the surface gravity disturbances. Since the normal gravity field does not reflect the topographic masses and actual mass density distribution inside the Earth, the definition of gravity represents a principal aspect for a realization of particular vertical datum. To address this issue in this study, we investigate effects of the Earth's inner density structure on the surface and mean gravity disturbances, and discuss their impact on the vertical datum realization. These two gravity field quantities are computed globally with a spectral resolution complete to a spherical harmonic degree 2160 using the global gravity, terrain, ice-thickness, inland bathymetry and crustal structure models. Our results reveal that both, the surface and mean gravity disturbances mostly comprise the gravitational signal of topography and masses distributed below the geoid surface. Moreover, in polar areas, a significant contribution comes from large glaciers. In contrast, the contributions of anomalous density distribution within the topography attributed to major lakes, sediments and bedrock density variations are much less pronounced. We also demonstrate that the mean gravity disturbances within the topography are significantly modified

  6. Unraveling African plate structure from elevation, geoid and geology data

    Science.gov (United States)

    Chardon, Dominique; Bajolet, Flora; Robert, Alexandra; Rouby, Delphine

    2014-05-01

    The aim of our project is to simulate the long-wavelength, flexural isostatic response of the African plate to sediment transfers due to Meso-Cenozoic erosion - deposition processes in order to extract the residual topography driven by mantle dynamics. Our work will be based on the reconstruction and subtraction of two continental-scale erosional-depositional surfaces of Eocene and Late Cretaceous ages and their offshore extensions. The first step of our project consists in computing crustal and lithospheric maps of the African plate considering its various crustal geological components (cratons, mobile belts, basins, rifts and passive margins of various ages and strengths). In order to consider these heterogeneities, we compute a 2D distribution of crustal densities and thermal parameters from geological data and use it as an input of our modeling. We combine elevation and geoid anomaly data using a thermal analysis, following the method of Fullea et al. (2007) in order to map crustal and lithospheric thicknesses. In this approach, we assume local isostasy and consider a four-layer model made of crust and lithospheric mantle plus seawater and asthenosphere. In addition, we compare our results with crustal thickness datasets compiled from bibliography, existing global models such as CRUST 1.0, and tomographic lithospheric models. The obtained crustal thicknesses range from 30 to 45km, with the thickest crust confined to the northern part of the West African Craton, the Kaapvaal craton, and the Congo cuvette. The crust in the East African Rift appears unrealistically thick (40-45 km) as it is not isotatically compensated, highlighting the dynamic effect of the African superswell. The thinnest crust (30-35km) follows a central East-West trend coinciding with Cretaceous rifts and the Cameroon volcanic line. Pan-African mobile belts yield intermediate values of ca. 35-40 km. The lithosphere reaches 250 km beneath cratons, but remains globally thin (ca. 150-180 km

  7. What drives the Tibetan crust to the South East Asia? Role of upper mantle density discontinuities as inferred from the continental geoid anomalies

    Science.gov (United States)

    Rajesh, S.

    2012-04-01

    upper mantle beneath the Himalaya-Tibet has been studied by analyzing the geoid undulation data obtained from various satellite geodetic missions along with the recent and old (EGM2008 and EGM2006) Earth Gravity models. Results show that the net geoid anomaly varies from -65 m to -20 m, which signify a density stratified upper mantle beneath the Himalaya-Tibet and the same has been confirmed from the results of regional seismic tomography studies. The density anomaly distribution beneath Tibet from 163 km depth to its upper mantle thickness of 1063 km show a strong NW-SE elliptically oriented positive geoid anomalies of magnitude around 40 meter. Asymmetric density anomaly gradient have been observed along the Himalayan arc from west to east as well as across the arc from north to south. This caused differential gravitational potential gradient and hence an elliptical flow structure of the Tibetan continental mantle along the resultant NW-SE direction, which is in concurrence with the observed present day direction of the Tibetan crustal flow. Thus the geoid anomalies distributed at various depth ranges show how the gradient in the upper mantle gravitational potential energy, especially across the deformed discontinuity surface, is significant in determining the transfer of deviatoric stresses and providing traction to the flow of crustal layers of the Tibetan Plateau. This suggests the viscous flow model could be a preferable choice, which could better accommodate the dynamics of the upper mantle, in explaining the crustal extrusion processes of the Tibetan Plateau.

  8. ERRORS MEASUREMENT OF INTERPOLATION METHODS FOR GEOID MODELS: STUDY CASE IN THE BRAZILIAN REGION

    Directory of Open Access Journals (Sweden)

    Daniel Arana

    Full Text Available Abstract: The geoid is an equipotential surface regarded as the altimetric reference for geodetic surveys and it therefore, has several practical applications for engineers. In recent decades the geodetic community has concentrated efforts on the development of highly accurate geoid models through modern techniques. These models are supplied through regular grids which users need to make interpolations. Yet, little information can be obtained regarding the most appropriate interpolation method to extract information from the regular grid of geoidal models. The use of an interpolator that does not represent the geoid surface appropriately can impair the quality of geoid undulations and consequently the height transformation. This work aims to quantify the magnitude of error that comes from a regular mesh of geoid models. The analysis consisted of performing a comparison between the interpolation of the MAPGEO2015 program and three interpolation methods: bilinear, cubic spline and neural networks Radial Basis Function. As a result of the experiments, it was concluded that 2.5 cm of the 18 cm error of the MAPGEO2015 validation is caused by the use of interpolations in the 5'x5' grid.

  9. Toward Joint Inversion of Gravity and Dyanamics

    Science.gov (United States)

    Jacoby, W. R.

    To better understand geodynamic processes as seafloor spreading, plumes, subduction, and isostatic adjustment, gravity is inverted with "a prioriinformation from topography/bathymetry, seismic structure and dynamic models. Examples are subduction of the Juan de Fuca plate below Vancouver Island, the passive Black Sea­Turkey margin and Iceland ridge-plume interaction. Gravity and other data are averaged 50 km wide strips. Mass balances are estimated (showing also that the free air anomaly is misleading for narrow structures). The mass balances represent plate forces and plate bending, affecting the gravity signals and the isostatic state of continental margins and ridge-plume effects, which are highly correlated in space and cannot be separated without a priori information from modelling. The examples from widely different tectonic situations demonstrate that the art of regional-scale gravity inversion requires extensive background knowledge and inclusion of dynamic processes. It is difficult to conceive any formal, globally applicable procedure taking care of this; it is even a question, what is data, what a priori information? They are not distinguishable if all are included as foreward routines. The "accuracy" of models cannot be perfectly determined, if the "real" mass distribution is not known ­ if known, gravity inversion would be unnecessary. In reality only guesses are possible on the basis of observations and physical laws governing geodynamics. A priori information and gravity data limit the resolution of gravity inversion. Different model types are indistinguishable because adjustments within their parameter uncertainties permit a good fit. But gravity excludes wrong models (Karl Popper: science evolves by falsification of wrong models), and precise gravity guides and defines aims, targets and strategies for new observations.

  10. An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval

    DEFF Research Database (Denmark)

    Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan

    2017-01-01

    in a given model in the high frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean......State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors...... geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multi-sensor oceanographic time-series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04, DTU15...

  11. Gravity field modeling at the sea areas using satellite altimetry observations Case study: Gravity field modeling at the Coastal Fars

    International Nuclear Information System (INIS)

    Jomegi, A.

    2007-01-01

    Nowadays, satellite altimetry observations had made it possible to determine sea surface variations, in the global scale, to high degree of precision. Using satellite altimetry observations, Mean Sea Level (MSL) can be determined, which by Kowing Sea Surface Topography (SST), can be converted into high-resolution marine geoid. In this paper we are proposing a method for computation of the Earth's gravity field at the sea areas, which is different from usual methods. Indeed, our method is based on conversion of geoidal heights into gravity potential values at the reference ellipsoid 2 Ea,b , by using ellipsoidal Brun's formula, and forward application of solution of Fixed-Free Two Boundary Value Problem (FFTBVP), previously proposed by the authors for the geoid computations without application of Stokes formula. Numerical results of application of the proposed method at the test area of CoastalFars (at southern part of Iran) show the success of the method. Considering the low cost and high precision of satellite altimetry observations, the proposed method suggests an efficient substitution to shipborne gravity observations for gravity field molding at the sea areas

  12. Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle

    Science.gov (United States)

    Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.

    2017-12-01

    Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).

  13. Chapter 4: Regional magnetic domains of the Circum-Arctic: A framework for geodynamic interpretation

    Science.gov (United States)

    Saltus, R.W.; Miller, E.L.; Gaina, C.; Brown, P.J.

    2011-01-01

    We identify and discuss 57 magnetic anomaly pattern domains spanning the Circum-Arctic. The domains are based on analysis of a new Circum-Arctic data compilation. The magnetic anomaly patterns can be broadly related to general geodynamic classification of the crust into stable, deformed (magnetic and nonmagnetic), deep magnetic high, oceanic and large igneous province domains. We compare the magnetic domains with topography/bathymetry, regional geology, regional free air gravity anomalies and estimates of the relative magnetic 'thickness' of the crust. Most of the domains and their geodynamic classification assignments are consistent with their topographic/bathymetric and geological expression. A few of the domains are potentially controversial. For example, the extent of the Iceland Faroe large igneous province as identified by magnetic anomalies may disagree with other definitions for this feature. Also the lack of definitive magnetic expression of oceanic crust in Baffin Bay, the Norwegian-Greenland Sea and the Amerasian Basin is at odds with some previous interpretations. The magnetic domains and their boundaries provide clues for tectonic models and boundaries within this poorly understood portion of the globe. ?? 2011 The Geological Society of London.

  14. New insights in geodynamics of wider Zagreb area: results of GPS measurements series 2009 on Zagreb Geodynamic Network

    Science.gov (United States)

    Pribičević, Boško; Medak, Damir; ĐApo, Almin

    2010-05-01

    The Geodynamic GPS-Network of the City of Zagreb represents the longest and the most intensive research effort in the field of geodynamics in Croatia. Since the establishment of the Network in 1997, several series of precise GPS measurements have been conducted on specially stabilized points of Geodynamical Network of City of Zagreb with purpose of investigation of tectonic movements and related seismic activity of the wider area of the City of Zagreb. The Network has been densified in 2005 in the most active region of northeastern Mount Medvednica. Since then, several GPS campaigns have been conducted including the last in summer 2009. The paper presents latest results of geodynamic movements of the network points.

  15. The Computational Infrastructure for Geodynamics: An Example of Software Curation and Citation in the Geodynamics Community

    Science.gov (United States)

    Hwang, L.; Kellogg, L. H.

    2017-12-01

    Curation of software promotes discoverability and accessibility and works hand in hand with scholarly citation to ascribe value to, and provide recognition for software development. To meet this challenge, the Computational Infrastructure for Geodynamics (CIG) maintains a community repository built on custom and open tools to promote discovery, access, identification, credit, and provenance of research software for the geodynamics community. CIG (geodynamics.org) originated from recognition of the tremendous effort required to develop sound software and the need to reduce duplication of effort and to sustain community codes. CIG curates software across 6 domains and has developed and follows software best practices that include establishing test cases, documentation, and a citable publication for each software package. CIG software landing web pages provide access to current and past releases; many are also accessible through the CIG community repository on github. CIG has now developed abc - attribution builder for citation to enable software users to give credit to software developers. abc uses zenodo as an archive and as the mechanism to obtain a unique identifier (DOI) for scientific software. To assemble the metadata, we searched the software's documentation and research publications and then requested the primary developers to verify. In this process, we have learned that each development community approaches software attribution differently. The metadata gathered is based on guidelines established by groups such as FORCE11 and OntoSoft. The rollout of abc is gradual as developers are forward-looking, rarely willing to go back and archive prior releases in zenodo. Going forward all actively developed packages will utilize the zenodo and github integration to automate the archival process when a new release is issued. How to handle legacy software, multi-authored libraries, and assigning roles to software remain open issues.

  16. Oceanic geoid and tides derived from GEOS 3 satellite data in the Northwestern Atlantic Ocean

    Science.gov (United States)

    Won, I. J.; Miller, L. S.

    1979-01-01

    Two sets of GEOS 3 altimeter data which fall within about a 2.5-deg width are analyzed for ocean geoid and tides. One set covers a path from Newfoundland to Cuba, and the other a path from Puerto Rico to the North Carolina coast. Forty different analyses using various parameters are performed in order to investigate convergence. Profiles of the geoid and four tides, M2, O1, S2, and K1, are derived along the two strips. While the analyses produced convergent solutions for all 40 cases, the uncertainty caused by the linear orbital bias error of the satellite is too large to claim that the solutions represent the true ocean tides in the area. A spot check of the result with the Mode deep-sea tide gauge data shows poor agreement. A positive conclusion of this study is that despite the uncertain orbital error the oceanic geoid obtained through this analysis can improve significantly the short-wavelength structure over existing spherical harmonic geoid models.

  17. ON THE COMPUTATION OF A PRECISE GEOID – TO – QUASIGEOID SEPARATION

    Directory of Open Access Journals (Sweden)

    S. Hejrati

    2017-09-01

    Full Text Available In geodesy, orthometric and normal heights are considered as basic height systems on the earth. The reference surfaces for these heights are the geoid and quasigeoid respectively. Taking advantage of GNSS measurements, one can achieve a precise solution for the geoid and for the quasigeoid. Two methods, called direct and indirect, are worked out in this research for the computation of separation between geoid and quasigeoid in a mountainous region in the USA. The area selected for this purpose is mountainous and rough enough in order to be able to show the effect of roughness of topography in the sought quantity. The results of the two methods and testing them against GNSS-Levelling on 445 known points indicates an accuracy of 1.3 cm in RMS scale with the direct method, where there is 7 cm as an average difference between the observed geoid and quasigeoid separation and the same quantity derived from the direct method. Using Chi-squared goodness of fit test showed that the distribution of the residual quantities are normally distributed in the test area.

  18. A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth's gravitational field recovery

    International Nuclear Information System (INIS)

    Zheng Wei; Hsu Hou-Tse; Zhong Min; Yun Mei-Juan

    2012-01-01

    The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 ½ times higher than that measured by the three-dimensional gravity gradient V ij . Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10 −12 /s 2 , the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%–40% on average compared with that using the radial gravity gradient V zz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 −13 /s 2 −10 −15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field

  19. Utilization of high resolution satellite geoid data for estimation of lithospheric thickness in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Majumdar, T.J.; Bhattacharyya, R.; Chatterjee, S.; Krishna, K.S.

    been estimated using residual geoid data. In a similar fashion, the age offset from the age contours have been observed. (Figs. 5 a and b). Geoid models for ocean ridges and fracture zones If h(t) is the blope is the geoid as a function of seafloor... age, resulting from changes in seafloor depth and plate thickness due to cooling, then the quantity (∆h/age offset) estimated above is simply the derivative of h(t) with respect to age, where t is the mean age between two sides of a fracture8. From...

  20. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  1. A petrological view of early Earth geodynamics

    Science.gov (United States)

    Herzberg, C.

    2003-04-01

    Xenoliths of low T Archean cratonic mantle consist mostly of harzburgite and lherzolite with geochemical depletions that are characterisitc of igneous residues. Many authors have identified the complementary magmas as komatiites. This model is re-examined in light of work presented in Herzberg & O'Hara (2002) and found to be problematic. Munro-type alumina-undepleted komatiites from Alexo, Pyke Hill, and other locations often contain olivine phenocrysts with maximum Mg# \\cong 94. Residues of fractional melting would consist of pure dunite having Mg# = 97-98, but these are not observed. Residues of equilibrium melting would also be pure dunite with Mg# = 94, but these are also not observed. Olivines with Mg# = 94 are found in rare harzburgites, indicating that residues of alumina-undepleted komatiite have either been overprinted by subsequent magmatism or they have been geodynamically eroded. Alumina-undepleted komatiites can be successfully modeled with a primary magma containing 30% MgO produced by 0.5 mass fractions of equilibrium melting of depleted peridotite. A hot plume interpretation is consistent with both the petrology and helium isotopic compositions of alumina-undepleted komatiites. But what about cratonic mantle? The FeO and MgO contents of residues of fertile mantle peridotite formed by both equilibrium and fractional melting can be predicted and applied to xenoliths of cratonic mantle in most cases. Application to xenoliths from the Kaapvaal and Slave cratons is not possible owing to a second stage of Opx enrichment, but results can be applied to most xenoliths from Siberia, Tanzania, Somerset Island, and east Greenland as they contain less than 45% SiO_2. These xenoliths are very similar to residues produced by fractional melting. Pressures of initial melting were mostly 3 to 5 GPa, but can be as high 7 GPa. Pressures of final melting were highly variable and can be as low as 1 GPa. Potential temperatures (T_P) were typically 1450 to 1600oC and

  2. The Overshoot Phenomenon in Geodynamics Codes

    Science.gov (United States)

    Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.

    2013-12-01

    The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection

  3. Origin and Evolution of the Yellowstone Hotspot from Seismic-GPS Imaging and Geodynamic Modeling

    Science.gov (United States)

    Smith, R. B.; Jordan, M.; Puskas, C. M.; Farrell, J.; Waite, G. P.

    2006-12-01

    The Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have influenced a large part of the western U.S., producing the 16 Ma Yellowstone-Snake River Plain-Newberry silicic-basalt volcanic field (YSRPN). We integrate results from a multi-institution experiment that deployed 80 seismic stations and 160 campaign and 21 permanent GPS stations for 1999-2003. Crust and mantle velocity models were derived from inversion of teleseismic and local earthquake data. Kinematic and dynamic models were derived from inversion of GPS velocities constrained by stresses associated the topography and the +15 m geoid anomaly. Tomography revealed a P- and S-wave low-velocity body at depths of 8-16 km beneath the caldera that is interpreted as partial melt of 8-15% that feeds the youthful Yellowstone volcanic field. Volume changes in the magma chamber are responsible for GPS-measured episodes of uplift and subsidence of the caldera at decadal scales with average rates of ~20 mm/yr but much higher short-term rates of up to 80 mm/yr. An upper-mantle low-velocity body was imaged by inverting teleseismic data constrained by the geoid structure, crustal structure, and the upper mantle discontinuities. This low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected tilt to the west at ~60°. The tilt is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. We estimate this body has an excess temperature from 85K to 120K, depending on the water content and with up to 1.5% melt. Using the inclined plume-geometry and plate motion history, we extrapolate the Yellowstone mantle source southwestward ~800 km as a plume-head in oceanic lithosphere centered beneath the Columbia Plateau basalt field at 16 Ma. Magma ascent was truncated there by the passage of thicker continental lithosphere over

  4. Recent developments in high-resolution global altimetric gravity field modeling

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Berry, P. A .M.

    2010-01-01

    older gravity fields show accuracy improvement of the order of 20-40% due to a combination of retracking, enhanced processing, and the use of the new EGM2008 geoid model. In coastal and polar regions, accuracy improved in many places by 40-50% (or more) compared with older global marine gravity fields.......In recent years, dedicated effort has been made to improve high-resolution global marine gravity fields. One new global field is the Danish National Space Center (DNSC) 1-minute grid called DNSC08GRA, released in 2008. DNSC08GRA was derived from double-retracked satellite altimetry, mainly from...... the ERS-1 geodetic mission data, augmented with new retracked GEOSAT data which have significantly enhanced the range and hence the gravity field accuracy. DNSC08GRA is the first high-resolution global gravity field to cover the entire Arctic Ocean all the way to the North Pole. Comparisons with other...

  5. Drag-Free Motion Control of Satellite for High-Precision Gravity Field Mapping

    DEFF Research Database (Denmark)

    Ziegler, Bent Lindvig; Blanke, Mogens

    2002-01-01

    High precision mapping of the geoid and the Earth's gravity field are of importance to a wide range of ongoing studies in areas like ocean circulation, solid Earth physics and ice sheet dynamics. Using a satellite in orbit around the Earth gives the opportunity to map the Earth's gravity field in 3...... will compromise measurement accuracy, unless they are accurately compensated by on-board thrusters. The paper concerns the design of a control system to performing such delicate drag compensation. A six degrees-of-freedom model for the satellite is developed with the model including dynamics of the satellite...

  6. Monitoring of global geodynamic processes using satellite observations

    Directory of Open Access Journals (Sweden)

    S.K. Tatevian

    2014-06-01

    One of the active tectonic zones of Egypt located in Aswan, is characterized by regional basement rock uplift and regional faulting. In 1997, the African Regional Geodynamic Network was developed around the northern part of Lake Nasser, consists of 11 points, on both sides of the Lake. Its main goal is to study the geodynamical behavior around the northern part of the lake. The collected data were processed using the Bernese software version 5.0. From the velocity results, including also the African plate motion, it can be noticed that all stations of this network are moved to the northeast direction and it is typically the direction of the African plate motion.

  7. Geodynamic and metabolic cycles in the Hadean

    Directory of Open Access Journals (Sweden)

    M. J. Russell

    2005-01-01

    Full Text Available High-degree melting of hot dry Hadean mantle at ocean ridges and plumes resulted in a crust about 30km thick, overlain in places by extensive and thick mafic volcanic plateaus. Continental crust, by contrast, was relatively thin and mostly submarine. At constructive and destructive plate boundaries, and above the many mantle plumes, acidic hydrothermal springs at ~400°C contributed Fe and other transition elements as well as P and H2 to the deep ocean made acidulous by dissolved CO2 and minor HCl derived from volcanoes. Away from ocean ridges, submarine hydrothermal fluids were cool (≤100°C, alkaline (pH ~10, highly reduced and also H2-rich. Reaction of solvents in this fluid with those in ocean water was catalyzed in a hydrothermal mound, a natural self-restoring flow reactor and fractionation column developed above the alkaline spring. The mound consisted of brucite, Mg-rich clays, ephemeral carbonates, Fe-Ni sulfide and green rust. Acetate and glycine were the main products, some of which were eluted to the ocean. The rest, along with other organic byproducts were retained and concentrated within Fe-Ni sulfide compartments. These compartments, comprising the natural hydrothermal reactor, consisted partly of greigite (Fe5NiS8. It was from reactions between organic modules confined within these inorganic compartments that the first prokaryotic organism evolved. These acetogenic precursors to the bacteria diversified and migrated down the mound and into the ocean floor to inaugurate the 'deep biosphere'. Once there they were protected from cataclysmic heating events caused by large meteoritic impacts. Geodynamic forces led to the eventual obduction of the deep biosphere into the photic zone where, initially protected by a thin veneer of sediment, the use of solar energy was mastered and photosynthesis emerged. The further evolution to oxygenic photosynthesis was effected as catalytic [Mn,Ca]-bearing molecules that otherwise would have been

  8. Altimetry, bathymetry and geoid variations at the Gavdos permanent Cal/Val facility

    DEFF Research Database (Denmark)

    Mertikas, Stelios P.; Daskalakis, Antonis; Tziavos, Ilias N.

    2013-01-01

    The aim of this work has been to examine the relationship of steep bathymetry in the coastal areas around the permanent Cal/Val facility of Gavdos, and their influence on the produced calibration values for the Jason-2 satellite altimeter. The paper describes how changes in seafloor topography...... (from 200 to 3500m depth over a distance of 10km) are reflected on the determined altimeter parameters using different reference surfaces for satellite calibration. Finally, it describes the relation between these parameter trends and the region’s local characteristics.Using 3.5years of Jason-2...... to be related to the general oceanographic circulation, but others of short wavelength (in the order of 1km) are because of the insufficient geoid model resolution. Along Pass No. 109, the concealed effect of bathymetry on the geoid has produced a slope of 3.1cm over 14–21km from Gavdos. Along the other Pass No...

  9. Global and regional seasonal variations of the geoid detected by GRACE

    Czech Academy of Sciences Publication Activity Database

    Kostelecký, J.; Bezděk, Aleš; Klokočník, Jaroslav

    2013-01-01

    Roč. 10, č. 3 (2013), s. 285-291 ISSN 1214-9705 R&D Projects: GA ČR GA13-36843S Grant - others:EU(XE) NTIS CZ1.05/1.1.00/02.0090 Institutional support: RVO:67985815 Keywords : GRACE mission * seasonal variations * geoid Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.667, year: 2013

  10. GRACE gravity model: assssment in terms of deep ocean currents from hydrography and from the ECCO ocean model

    Science.gov (United States)

    Zlotnicki, V.; Stammer, D.; Fukumori, I.

    2003-01-01

    Here we assess the new generation of gravity models, derived from GRACE data. The differences between a global geoid model (one from GRACE data and one the well-known EGM-96), minus a Mean Sea Surface derived from over a decade of altimetric data are compared to hydrographic data from the Levitus compilation and to the ECCO numerical ocean model, which assimilates altimetry and other data.

  11. Free-Air Gravity Map of Taiwan and Its Applications

    Directory of Open Access Journals (Sweden)

    Horng-Yuan Yen

    1990-01-01

    Full Text Available An island-wide gravity in Taiwan was conducted by the Institute of Earth Sciences, Academia Sinica, between 1980 and 1987. The 603 stations at which the gravity values were determined included 308 points in the 500 m or higher mountain range where few readings were available previously. The average spacing of the stations in the present survey is about 7 km apart. A new Free-air gravity anomaly map has been constructed based on these values. The map is dominated by a NNE-SSW gravity high trend with a maximum value of 300 mgal, that follows closely the Central Range, a folded and faulted mountain belt with many peaks 3000 m or higher. The magnitude of the Free-air anomaly in the Taiwan area is quite large compared to that elsewhere in the world. The good correlation between the Free-air anomaly and elevation suggests that the Taiwan area is not in isostatic equilibrium. An average surface rock density of 2.57 g cm-3 is estimated from the Free-air gravity data by using the least-squares method. This value can be used for both terrain and Bouguer corrections. The undulation of the geoid and the deflections of the vertical in the Taiwan area are also calculated by using the Free-air anomaly data. The geoid undulation is not rugged over the Taiwan area. The maximum difference is about 5 m. And the deflection of the vertical seems mainly to be affected by both land and submarine topographies.

  12. Processing Marine Gravity Data Around Korea

    Science.gov (United States)

    Lee, Y.; Choi, K.; Kim, Y.; Ahn, Y.; Chang, M.

    2008-12-01

    In Korea currently 4 research ships are under operating in Korea, after the first research vessel equipped shipborne gravity meter was introduced in 1990s. These are Onnuri(launch 1991) of KORDI(Korea Ocean Research & Development Institute), Haeyang2000(launch 1996), Badaro1(launch 2002) of NORI(National Oceanographic Research Institute) and Tamhae2(launch 1997) of KIGAM(Korea Institute of Geoscience and Mineral Resources). Those of research vessel, Haeyang2000 have observed marine gravity data over 150,000 points each year from year 1996 to year 2003. Haeyang2000, about 2,500 tons, is unable to operate onshore so NORI has constructed another 600 tons research ship Badaro1 that has observed marine gravity data onshore since year 2002. Haeyang2000 finished observing marine gravity data offshore within Korean territorial waters until year 2003. Currently Badaro1 is observing marine gravity data onshore. These shipborne gravity data will be very useful and important on geodesy and geophysics research also those data can make a contribution to developing these studies. In this study NORI's shipbrne gravity data from 1996 to 2007 has been processed for fundamental data to compute Korean precise geoid. Marine gravity processing steps as followed. 1. Check the time sequence, latitude and longitude position, etc. of shipborne gravity data 2. Arrangement of the tide level below the pier and meter drift correction of each cruise. 3. Elimination of turning points. 4. The time lag correction. 5. Computation of RV's velocities, Heading angles and the Eötvös correction. 6. Kalman filtering of GPS navigation data using cross-over points. 7. Cross-over correction using least square adjustment. About 2,058,000 points have been processed with NORI's marine gravity data from 1996 to 2007 in this study. The distribution of free-air anomalies was -41.0 mgal to 136.0 mgal(mean 8.90mgal) within Korean territorial waters. The free-air anomalies processed with the marine gravity data are

  13. Overview of adaptive finite element analysis in computational geodynamics

    NARCIS (Netherlands)

    May, D. A.; Schellart, W. P.; Moresi, L.

    2013-01-01

    The use of numerical models to develop insight and intuition into the dynamics of the Earth over geological time scales is a firmly established practice in the geodynamics community. As our depth of understanding grows, and hand-in-hand with improvements in analytical techniques and higher

  14. Geodynamic Evolution of the Banda Sea Region

    Science.gov (United States)

    Kaymakci, N.; Decker, J.; Orange, D.; Teas, P.; Van Heiningen, P.

    2013-12-01

    We've carried out a large on- and offshore study in Eastern Indonesia to characterize the major structures and to provide constraints on the Neogene geodynamic evolution of the Banda Sea region. The onshore portion utilized remote sensing data and published geology. We tied the onshore to the offshore using recently acquired high resolution bathymetric data (16m and 25m bin size) and 2D seismic profiles that extend from Sulawesi in the west to Irian Jaya in the east across the northern part of the Banda Arc. We interpret the northern boundary of the 'Birds Head' (BH) of Papua, the Sorong Fault, to be a sinistral strike-slip fault zone with a minimum of 48 km displacement over the last few million years. The western boundary fault of Cendrawasih Basin defines the eastern boundary of BH and corresponds to the Wandamen Peninsula which comprises high pressure metamorphic rocks, including eclogite and granulite facies rocks, with exhumation ages from 4 to 1 Ma. Earthquake focal mechanism solutions indicate that the eastern boundary of BH is linked with a large scale offshore normal fault which we suggest may be related to the exhumation of the Wandamen Peninsula. The eastern boundary of Cendrawasih Basin is defined by a large transpressive belt along which BH is decoupled from the rest of Papua / Irian Jaya. This interpretation is supported by recent GPS studies. We propose that the BH and the Pacific plate are coupled, and therefore the Birds Head is therefore completely detached from Irian Jaya. Furthermore, Aru Basin, located at the NE corner of Banda Arc, is a Fault-Fault-Transform (FFT) type triple junction. According to available literature information the Banda Sea includes three distinct basins with different geologic histories; the North Banda Sea Basin (NBSB) was opened during 12-7 Ma, Wetar-Damar Basin (WDB) during 7-3.5 Ma and Weber Basin (WB) 3-0 Ma. Our bathymetric and seismic data indicated that the NBSB and Weber Basin lack normal oceanic crust and are

  15. Thermal structure and geodynamics of subduction zones

    Science.gov (United States)

    Wada, Ikuko

    for mantle wedge serpentinization in the forearc but little fluid for melt generation beneath the arc. In contrast, models for colder-slab subduction zones such as NE Japan and Kamchatka predict deeper dehydration, which provides greater fluid supply for melt generation beneath the arc and allows deeper occurrence of intraslab earthquakes but less fluid for forearc mantle wedge serpentinization. The common MDD also explains the intriguing uniform configuration of subduction zones, that is, the volcanic arc always tends to be situated where the slab is at about 100 km depth. The sudden onset of mantle wedge flow downdip of the common MDD overshadows the thermal effect of the slab, and the resultant thermal field and slab dehydration control the location of the volcanic arc. The recognition of the fundamental importance of the MDD has important implications to the study of geodynamics and earthquake hazard in subduction zones.

  16. Overview of adaptive finite element analysis in computational geodynamics

    Science.gov (United States)

    May, D. A.; Schellart, W. P.; Moresi, L.

    2013-10-01

    The use of numerical models to develop insight and intuition into the dynamics of the Earth over geological time scales is a firmly established practice in the geodynamics community. As our depth of understanding grows, and hand-in-hand with improvements in analytical techniques and higher resolution remote sensing of the physical structure and state of the Earth, there is a continual need to develop more efficient, accurate and reliable numerical techniques. This is necessary to ensure that we can meet the challenge of generating robust conclusions, interpretations and predictions from improved observations. In adaptive numerical methods, the desire is generally to maximise the quality of the numerical solution for a given amount of computational effort. Neither of these terms has a unique, universal definition, but typically there is a trade off between the number of unknowns we can calculate to obtain a more accurate representation of the Earth, and the resources (time and computational memory) required to compute them. In the engineering community, this topic has been extensively examined using the adaptive finite element (AFE) method. Recently, the applicability of this technique to geodynamic processes has started to be explored. In this review we report on the current status and usage of spatially adaptive finite element analysis in the field of geodynamics. The objective of this review is to provide a brief introduction to the area of spatially adaptive finite analysis, including a summary of different techniques to define spatial adaptation and of different approaches to guide the adaptive process in order to control the discretisation error inherent within the numerical solution. An overview of the current state of the art in adaptive modelling in geodynamics is provided, together with a discussion pertaining to the issues related to using adaptive analysis techniques and perspectives for future research in this area. Additionally, we also provide a

  17. CRYOGENESIS AND GEODYNAMICS OF ICING VALLEYS

    Directory of Open Access Journals (Sweden)

    V. R. Alekseyev

    2015-01-01

    Full Text Available Due to local groundwater seeping and freezing in layers that accumulate over each other and create large ice clusters on the ground surface, specific conditions of energy and mass transfer are created in the atmosphere–soil–lithosphere system. In winter, the vertical temperature distribution curve is significantly deformed due to heat emission from the water layer above the ice cover during its freezing, and a thermocline is thus formed. Deformation of the temperature curve is gradually decreasing in size downward the profile and decays at the interface of frozen and thaw rocks. Values and numbers of temperature deviations from a 'normal' value depend on heat reserves of aufeis water and the number of water seeps/discharges at a given location. The production of the thermocline alters freezing conditions for underlying ground layers and changes the mechanism of ice saturation, thus leading to formation of two-layer ice-ground complexes (IGC. IGCs are drastically different from cryogenic formations in the neighbouring sections of the river valley. Based on genetic characteristics and the ratios of components in the surface and subsurface layers, seven types of aufeis IGCs are distinguished: massive-segregation, cement-basal, layered-segregation, basal-segregation, vacuum-filtration, pressure-injection, and fissure-vein. Annual processes of surface and subsurface icing and ice ablation are accompanied by highly hazardous geodynamic phenomena, such as winter flooding, layered water freezing, soil heaving/pingo, thermokarst and thermal erosion. Combined, these processes lead to rapid and often incidental reconfigurations of the surface and subsurface runoff channels, abrupt uplifting and subsiding of the ground surface, decompaction and 'shaking-up' of seasonally freezing/thawing rocks, thereby producing exceptionally unfavourable conditions for construction and operation of engineering structures.Formation and development of river networks are

  18. Recovery of the Earth's Gravity Field Based on Spaceborne Atom-interferometry and Its Accuracy Estimation

    Directory of Open Access Journals (Sweden)

    ZHU Zhu

    2017-09-01

    Full Text Available The electrostatic gravity gradiometer has been successfully applied as a core sensor in satellite gravity gradiometric mission GOCE, and its observations are used to recover the Earth's static gravity field with a degree and order above 200. The lifetime of GOCE has been over, and the next generation satellite gravity gradiometry with higher resolution is urgently required in order to recover the global steady-state gravity field with a degree and order of 200~360. High potential precision can be obtained in space by atom-interferometry gravity gradiometer due to its long interference time, and thus the atom-interferometry-based satellite gravity gradiometry has been proposed as one of the candidate techniques for the next satellite gravity gradiometric mission. In order to achieve the science goal for high resolution gravity field measurement in the future, a feasible scheme of atom-interferometry gravity gradiometry in micro-gravity environment is given in this paper, and the gravity gradient measurement can be achieved with a noise of 0.85mE/Hz1/2. Comparison and estimation of the Earth's gravity field recovery precision for different types of satellite gravity gradiometry is discussed, and the results show that the satellite gravity gradiometry based on atom-interferometry is expected to provide the global gravity field model with an improved accuracy of 7~8cm in terms of geoid height and 3×10-5 m/s2 in terms of gravity anomaly respectively at a degree and order of 252~290.

  19. Understanding the Yellowstone magmatic system using 3D geodynamic inverse models

    Science.gov (United States)

    Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.

    2017-12-01

    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.

  20. The Lanzarote Geodynamic Laboratory: new capabilities for monitoring of volcanic activity at Canary Islands

    Science.gov (United States)

    Arnoso, J.; Vélez, E. J.; Soler, V.; Montesinos, F. G.; Benavent, M.

    2012-04-01

    The volcanic island of Lanzarote is located at the northeastern end of the Canary Islands. Together with Fuerteventura Island, Lanzarote constitutes the emergent part of the East Canary Ridge, which presents a NNE-SSW volcanic alignment. Last eruptive events took place in 1824 and during the period 1730-1736, which is the largest to occur in the archipelago and throw out about 1.3 km3 of volcanic materials. The Lanzarote Geodynamic Laboratory (LGL) was created in 1986 with the idea of making Lanzarote as a natural laboratory to carry out studies in order to acquire more knowledge about its origin, present status and evolution (Vieira et al., 1991; 2006). The LGL has a multidisciplinary scientific purpose and, among others, various objectives are devoted to investigate mass distribution in the Earth system and surface displacements associated to volcanic and/or seismic activity in the island. The influence of LGL is extended throughout the whole geographical area of Lanzarote, including small islands located at the north. The laboratory has 3 observing modules distributed along the island according to its infrastructure and scientific objectives, where more than 70 sensors are recording continuously gravity variations, ground deformations, sea level, seismic activity, meteorological parameters, etc. All these observations are supplemented by periodic measurement of geodetic and geophysical networks that allow us to make studies at local, insular and regional scales. The application of geodetic and geophysical techniques to identify geodynamic signals related to volcanic processes is then a permanent research activity of the laboratory. Nowadays, this fact becomes more interesting due to the ongoing volcanic eruption that is taking place in other island of the Canary Archipelago, El Hierro, since past July 2011. That is, the multidisciplinary research carry on up to now at the LGL allow us to apply multiparameter observations of different kinds of volcanic

  1. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  2. An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval

    Science.gov (United States)

    Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan; Ricker, Robert; Armitage, Thomas W. K.; Ridout, Andy; Andersen, Ole Baltazar; Haas, Christian; Baker, Steven

    2017-11-01

    State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors in a given model in the high-frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multisensor oceanographic time series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04 and DTU15/13/10) and a commonly used GGM (EGM2008). We describe errors due to unresolved gravity features, intersatellite biases, and remaining satellite orbit errors, and their impact on the derivation of sea ice freeboard. The latest MSS models, incorporating CryoSat-2 sea surface height measurements, show improved definition of gravity features, such as the Gakkel Ridge. The standard deviation between models ranges 0.03-0.25 m. The impact of remaining MSS/GGM errors on freeboard retrieval can reach several decimeters in parts of the Arctic. While the maximum observed freeboard difference found in the central Arctic was 0.59 m (UCL13 MSS minus EGM2008 GGM), the standard deviation in freeboard differences is 0.03-0.06 m.

  3. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  4. Global height datum unification: a new approach in gravity potential space

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  5. Titan's geoid and hydrology: implications for Titan's geological evolution

    Science.gov (United States)

    Sotin, Christophe; Seignovert, Benoit; Lawrence, Kenneth; MacKenzie, Shannon; Barnes, Jason; Brown, Robert

    2014-05-01

    A 1x1 degree altitude map of Titan is constructed from the degree 4 gravity potential [1] and Titan's shape [2] determined by the Radio Science measurements and RADAR observations of the Cassini mission. The amplitude of the latitudinal altitude variations is equal to 300 m compared to 600 m for the amplitude of the latitudinal shape variations. The two polar caps form marked depressions with an abrupt change in topography at exactly 60 degrees at both caps. Three models are envisaged to explain the low altitude of the polar caps: (i) thinner ice crust due to higher heat flux at the poles, (ii) fossil shape acquired if Titan had higher spin rate in the past, and (iii) subsidence of the crust following the formation of a denser layer of clathrates as ethane rain reacts with the H2O ice crust [3]. The later model is favored because of the strong correlation between the location of the cloud system during the winter season and the latitude of the abrupt change in altitude. Low altitude polar caps would be the place where liquids would run to and eventually form large seas. Indeed, the large seas of Titan are found at the deepest locations at the North Pole. However, the lakes and terrains considered to be evaporite candidates due to their spectral characteristics in the infrared [4,5] seem to be perched. Lakes may have been filled during Titan's winter and then slowly evaporated leaving material on the surface. Interestingly, the largest evaporite deposits are located at the equator in a deep depression 150 m below the altitude of the northern seas. This observation seems to rule out the presence of a global subsurface hydrocarbon reservoir unless the evaporation rate at the equator is faster than the transport of fluids from the North Pole to the equator. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2012) Science, doi 10.1126/science.1219631. [2] Lorenz R.D. (2013

  6. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  7. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Barceló Carlos

    2005-12-01

    Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  8. [Preclinical study of immunocorrection action of the sum of active substances of Coluria geoides (Pall.) Ledeb. (Rosaceae)].

    Science.gov (United States)

    Dutova, S V; Karpova, M R; Myadelets, M A; Myasnaya, N V; Sherstoboev, E Yu

    2015-01-01

    A preclinical study of the immunocorrection action of the sum of active substances isolated from ethereal-oil plants Coluria geoides (Pall.) Ledeb. (Rosaceae family) with respect to experimental immunodeficiency showed that preparations relieve symptoms of immunodeficiency caused by the administration of cyclophosphan: suppressed synthesis of anti-erythrocyte antibodies (agglutinine) and proliferative processes in the spleen. Under the influence of C. geoides preparations, the absolute numbers of cariocytes and antibody forming cells in spleen significantly increased (compared to the group of animals with experimental immunodeficiency) and in some cases reached the background level. The drugs studied produced a more pronounced stimulating effect on the synthesis of specific immunoglobulins and proliferation of antibody forming cells of spleen as compared to the effect of Echinacea tincture. Preparation C-2 (extract from underground organs and grass of C. geoides obtained by percolation method with 70% ethanol) is most promising for in-depth research and the development of new effective drugs with immunocorrecting properties.

  9. Quantum Gravity

    OpenAIRE

    Alvarez, Enrique

    2004-01-01

    Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...

  10. Geodynamic Zoning For Underground Isolation Of Radioctive Waste

    OpenAIRE

    Morozov, Vladislav; Kagan, Alexander

    2015-01-01

    The problem of area selection for underground isolation of radioactive waste is important for all countries using nuclear power. The paper presents the results of modeling the stress-deformed state of Nizhnekanskiy granitoid massif and shows the possibility of using such simulations for the geodynamic zoning of areas. The calculation is given to the most probable directions of groundwater filtration, which is one of the main threats for the nuclear waste repository.

  11. The Computational Infrastructure for Geodynamics as a Community of Practice

    Science.gov (United States)

    Hwang, L.; Kellogg, L. H.

    2016-12-01

    Computational Infrastructure for Geodynamics (CIG), geodynamics.org, originated in 2005 out of community recognition that the efforts of individual or small groups of researchers to develop scientifically-sound software is impossible to sustain, duplicates effort, and makes it difficult for scientists to adopt state-of-the art computational methods that promote new discovery. As a community of practice, participants in CIG share an interest in computational modeling in geodynamics and work together on open source software to build the capacity to support complex, extensible, scalable, interoperable, reliable, and reusable software in an effort to increase the return on investment in scientific software development and increase the quality of the resulting software. The group interacts regularly to learn from each other and better their practices formally through webinar series, workshops, and tutorials and informally through listservs and hackathons. Over the past decade, we have learned that successful scientific software development requires at a minimum: collaboration between domain-expert researchers, software developers and computational scientists; clearly identified and committed lead developer(s); well-defined scientific and computational goals that are regularly evaluated and updated; well-defined benchmarks and testing throughout development; attention throughout development to usability and extensibility; understanding and evaluation of the complexity of dependent libraries; and managed user expectations through education, training, and support. CIG's code donation standards provide the basis for recently formalized best practices in software development (geodynamics.org/cig/dev/best-practices/). Best practices include use of version control; widely used, open source software libraries; extensive test suites; portable configuration and build systems; extensive documentation internal and external to the code; and structured, human readable input formats.

  12. Software and the Scientist: Coding and Citation Practices in Geodynamics

    Science.gov (United States)

    Hwang, Lorraine; Fish, Allison; Soito, Laura; Smith, MacKenzie; Kellogg, Louise H.

    2017-11-01

    In geodynamics as in other scientific areas, computation has become a core component of research, complementing field observation, laboratory analysis, experiment, and theory. Computational tools for data analysis, mapping, visualization, modeling, and simulation are essential for all aspects of the scientific workflow. Specialized scientific software is often developed by geodynamicists for their own use, and this effort represents a distinctive intellectual contribution. Drawing on a geodynamics community that focuses on developing and disseminating scientific software, we assess the current practices of software development and attribution, as well as attitudes about the need and best practices for software citation. We analyzed publications by participants in the Computational Infrastructure for Geodynamics and conducted mixed method surveys of the solid earth geophysics community. From this we learned that coding skills are typically learned informally. Participants considered good code as trusted, reusable, readable, and not overly complex and considered a good coder as one that participates in the community in an open and reasonable manor contributing to both long- and short-term community projects. Participants strongly supported citing software reflected by the high rate a software package was named in the literature and the high rate of citations in the references. However, lacking are clear instructions from developers on how to cite and education of users on what to cite. In addition, citations did not always lead to discoverability of the resource. A unique identifier to the software package itself, community education, and citation tools would contribute to better attribution practices.

  13. Automated Testing Infrastructure and Result Comparison for Geodynamics Codes

    Science.gov (United States)

    Heien, E. M.; Kellogg, L. H.

    2013-12-01

    The geodynamics community uses a wide variety of codes on a wide variety of both software and hardware platforms to simulate geophysical phenomenon. These codes are generally variants of finite difference or finite element calculations involving Stokes flow or wave propagation. A significant problem is that codes of even low complexity will return different results depending on the platform due to slight differences in hardware, software, compiler, and libraries. Furthermore, changes to the codes during development may affect solutions in unexpected ways such that previously validated results are altered. The Computational Infrastructure for Geodynamics (CIG) is funded by the NSF to enhance the capabilities of the geodynamics community through software development. CIG has recently done extensive work in setting up an automated testing and result validation system based on the BaTLab system developed at the University of Wisconsin, Madison. This system uses 16 variants of Linux and Mac platforms on both 32 and 64-bit processors to test several CIG codes, and has also recently been extended to support testing on the XSEDE TACC (Texas Advanced Computing Center) Stampede cluster. In this work we overview the system design and demonstrate how automated testing and validation occurs and results are reported. We also examine several results from the system from different codes and discuss how changes in compilers and libraries affect the results. Finally we detail some result comparison tools for different types of output (scalar fields, velocity fields, seismogram data), and discuss within what margins different results can be considered equivalent.

  14. A method for separating Antarctic postglacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment, and GPS satellite data

    OpenAIRE

    Velicogna, Isabella; Wahr, John

    2002-01-01

    Measurements of ice elevation from the Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud, and Land Elevation Satellite can be combined with time-variable geoid measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to learn about ongoing changes in polar ice mass and viscoelastic rebound of the lithosphere under the ice sheet. We estimate the accuracy in recovering the spatially varying ice mass trend and postglacial rebound signals for Antarctica...

  15. Studying the Representation Accuracy of the Earth's Gravity Field in the Polar Regions Based on the Global Geopotential Models

    Science.gov (United States)

    Koneshov, V. N.; Nepoklonov, V. B.

    2018-05-01

    The development of studies on estimating the accuracy of the Earth's modern global gravity models in terms of the spherical harmonics of the geopotential in the problematic regions of the world is discussed. The comparative analysis of the results of reconstructing quasi-geoid heights and gravity anomalies from the different models is carried out for two polar regions selected within a radius of 1000 km from the North and South poles. The analysis covers nine recently developed models, including six high-resolution models and three lower order models, including the Russian GAOP2012 model. It is shown that the modern models determine the quasi-geoid heights and gravity anomalies in the polar regions with errors of 5 to 10 to a few dozen cm and from 3 to 5 to a few dozen mGal, respectively, depending on the resolution. The accuracy of the models in the Arctic is several times higher than in the Antarctic. This is associated with the peculiarities of gravity anomalies in every particular region and with the fact that the polar part of the Antarctic has been comparatively less explored by the gravity methods than the polar Arctic.

  16. Europe's Preparation For GOCE Gravity Field Recovery

    Science.gov (United States)

    Suenkel, H.; Suenkel, H.

    2001-12-01

    repeat mission such a time series can be very efficiently transformed into lumped coefficients using fast Fourier techniques. For a realistic mission scenario this transformation has to be extended by an iteration process. 3. The space-wise approach which, after having transformed the original observations onto a spatial geographical grid, transforms the pseudo-observations into harmonic coefficients using a fast collocation technique. A successful mission presupposed, GOCE will finally deliver the Earth's gravity field with a resolution of about 70 km half wavelength and a global geoid with an accuracy of about 1 cm.

  17. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  18. Petrologically-constrained thermo-chemical modelling of cratonic upper mantle consistent with elevation, geoid, surface heat flow, seismic surface waves and MT data

    Science.gov (United States)

    Jones, A. G.; Afonso, J. C.

    2015-12-01

    The Earth comprises a single physio-chemical system that we interrogate from its surface and/or from space making observations related to various physical and chemical parameters. A change in one of those parameters affects many of the others; for example a change in velocity is almost always indicative of a concomitant change in density, which results in changes to elevation, gravity and geoid observations. Similarly, a change in oxide chemistry affects almost all physical parameters to a greater or lesser extent. We have now developed sophisticated tools to model/invert data in our individual disciplines to such an extent that we are obtaining high resolution, robust models from our datasets. However, in the vast majority of cases the different datasets are modelled/inverted independently of each other, and often even without considering other data in a qualitative sense. The LitMod framework of Afonso and colleagues presents integrated inversion of geoscientific data to yield thermo-chemical models that are petrologically consistent and constrained. Input data can comprise any combination of elevation, geoid, surface heat flow, seismic surface wave (Rayleigh and Love) data and receiver function data, and MT data. The basis of LitMod is characterization of the upper mantle in terms of five oxides in the CFMAS system and a thermal structure that is conductive to the LAB and convective along the adiabat below the LAB to the 410 km discontinuity. Candidate solutions are chosen from prior distributions of the oxides. For the crust, candidate solutions are chosen from distributions of crustal layering, velocity and density parameters. Those candidate solutions that fit the data within prescribed error limits are kept, and are used to establish broad posterior distributions from which new candidate solutions are chosen. Examples will be shown of application of this approach fitting data from the Kaapvaal Craton in South Africa and the Rae Craton in northern Canada. I

  19. Crustal tomographic imaging and geodynamic implications toward south of Southern Granulite Terrain (SGT), India

    Science.gov (United States)

    Behera, Laxmidhar

    2011-09-01

    The crustal structure toward southern part of SGT is poorly defined leaving an opportunity to understand the tectonic and geodynamic evolution of this high-grade granulite terrain surrounded by major shear and tectonically disturbed zones like Achankovil Shear Zone (AKSZ) and Palghat Cauvery Shear Zone (PCSZ). To develop a geologically plausible crustal tectonic model depicting major structural elements, a comprehensive tomographic image was derived using deep-seismic-sounding data corroborated by Bouguer gravity modeling, coincident-reflection-seismic, heat-flow and available geological/geochronological informations along the N-S trending Vattalkundu-Kanyakumari geotransect. The final tectonic model represents large compositional changes of subsurface rocks accompanied by velocity heterogeneities with crustal thinning (44-36 km) and Moho upwarping from north to south. This study also reveals and successfully imaged anomalous zone of exhumation near AKSZ having transpression of exhumed rocks at mid-to-lower crustal level (20-30 km) with significant underplating and mantle upwelling forming a complex metamorphic province. The presence of shear zones with high-grade charnockite massifs in the upper-crust exposed in several places reveal large scale exhumation of granulites during the Pan-African rifting (~ 550 Ma) and provide important insights of plume-continental lithosphere interaction with reconstruction of the Gondwanaland.

  20. Recent crustal movements and geophysical interpretation of geodynamic processes in the Alpine mountain belt

    Science.gov (United States)

    Gubler, E.; Kahle, H. G.

    It is a well-known fact that the surface phenomena of global plate tectonics are most convincingly seen and felt along the boundaries of the moving lithospheric plates. These boundaries are morphologically expressed as mild-ocean ridges or as subduction zones such as deep sea trenches or Himalayan/Alpine fold belts, the latter of which are the subject of this paper. On a global scale, there are kinematic models giving an idea of what kind of rates can be expected. This is due to the fact that magnetic sea floor spreading anomalies are missing in the Alpine environment. On the other hand, the structure and kinematics of the Apulian microplate are of major interest to Switzerland because its northern boundary seems to be formed by the Alpine chain. In Switzerland there are some 14 special study groups actively working in this field of geodynamics. This paper is restricted to the geodetic and gravity studies. With emphasis on the assumed northern boundary of the Apulian microplate, the kinematics of relative plate movements in the Alpine area were investigated. A simplified tectonic map of this region is shown.

  1. Comparisons of geoid models over Alaska computed with different Stokes' kernel modifications

    Science.gov (United States)

    Li, X.; Wang, Y.

    2011-01-01

    Various Stokes kernel modification methods have been developed over the years. The goal of this paper is to test the most commonly used Stokes kernel modifications numerically by using Alaska as a test area and EGM08 as a reference model. The tests show that some methods are more sensitive than others to the integration cap sizes. For instance, using the methods of Vaníček and Kleusberg or Featherstone et al. with kernel modification at degree 60, the geoid decreases by 30 cm (on average) when the cap size increases from 1° to 25°. The corresponding changes in the methods of Wong and Gore and Heck and Grüninger are only at the 1 cm level. At high modification degrees, above 360, the methods of Vaníček and Kleusberg and Featherstone et al become unstable because of numerical problems in the modification coefficients; similar conclusions have been reported by Featherstone (2003). In contrast, the methods of Wong and Gore, Heck and Grüninger and the least-squares spectral combination are stable at any modification degree, though they do not provide as good fit as the best case of the Molodenskii-type methods at the GPS/Leveling benchmarks. However, certain tests for choosing the cap size and modification degree have to be performed in advance to avoid abrupt mean geoid changes if the latter methods are applied.

  2. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  3. Well known outstanding geoid and relief depressions as regular wave woven features on Eartg (Indian geoid minimum), Moon (SPA basin), Phobos (Stickney crater), and Miranda (an ovoid).

    Science.gov (United States)

    Kochemasov, Gennady G.

    2010-05-01

    A very unreliable interpretation of the deepest and large depressions on the Moon and Phobos as the impact features is not synonymous and causes many questions. A real scientific understanding of their origin should take into consideration a fact of their similar tectonic position with that of a comparable depression on so different by size, composition, and density heavenly body as Earth. On Earth as on other celestial bodies there is a fundamental division on two segments - hemispheres produced by an interference of standing warping wave 1 (long 2πR) of four directions [1]. One hemisphere is uplifted (continental, highlands) and the opposite subsided (oceanic, lowlands). Tectonic features made by wave 2 (sectors) adorn this fundamental structure. Thus, on the continental risen segment appear regularly disposed sectors, also uplifted and subsided. On the Earth's eastern continental hemisphere they are grouped around the Pamirs-Hindukush vertex of the structural octahedron made by interfering waves2. Two risen sectors (highly uplifted African and the opposite uplifted Asian) are separated by two fallen sectors (subsided Eurasian and the opposite deeply subsided Indoceanic). The Indoceanic sector with superposed on it subsided Indian tectonic granule (πR/4-structure) produce the deepest geoid minimum of Earth (-112 m). The Moon demonstrates its own geoid minimum of the same relative size and in the similar sectoral tectonic position - the SPA basin [2, 3]. This basin represents a deeply subsided sector of the sectoral structure around the Mare Orientale (one of vertices of the lunar structural octahedron). To this Mare converge four sectors: two subsided - SPA basin and the opposite Procellarum Ocean, and two uplifted - we call them the "Africanda sector" and the opposite "Antiafricanda one" to stress structural similarity with Earth [2]. The highest "Africanda sector" is built with light anorthosites; enrichment with Na makes them even less dense that is required

  4. Radial profiles of temperature and viscosity in the Earth's mantle inferred from the geoid and lateral seismic structure

    NARCIS (Netherlands)

    Cadek, O.; Berg, A.P. van den

    1998-01-01

    In the framework of dynamical modelling of the geoid, we have estimated basic features of the radial profile of temperature in the mantle. The applied parameterization of the geotherm directly characterizes thermal boundary layers and values of the thermal gradient in the upper and lower mantle.

  5. Simulating Gravity

    Science.gov (United States)

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  6. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  7. Gravimetric geoid of a part of south India and its comparison with ...

    Indian Academy of Sciences (India)

    Indian region from terrestrial gravity and elevation data using remove–restore technique that involves ... the development models; it is necessary to com- ... Spirit levelling network in the area ... requires integration of the gravity field over whole.

  8. Quantum gravity

    International Nuclear Information System (INIS)

    Isham, C.

    1989-01-01

    Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)

  9. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  10. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    Science.gov (United States)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  11. Risk and Geodynamically active areas of Carpathian lithosphere

    Directory of Open Access Journals (Sweden)

    Lubomil Pospíšil

    2007-01-01

    Full Text Available This paper illustrates an application of multidisciplinary data analysis to the Carpathian–Pannonian region and presents a verification of a Complex model of the Carpathian - Pannonian lithosphere by recent data sets and geophysical data analyses and its utilization for the determination of risk and active geodynamic and tectonic zones of Ist order . This model can be used for the analysing any Carpathian area from the point of view of the seismic risk, hazards and geodynamic activity, which is important to know for the building of a repository for the radioactive wasted material. Besides the traditionally used geological (sedimentological and volcanological data and geomorphological data (Remote Sensing, an emphasis was laid on geodetic, grav/mag data, seismic, seismological and other geophysical data (magnetotelluric, heat flow, paleomagnetic etc.. All available geonomic (geologic, geodetic, geophysical, geomorphological data were verified and unified on the basis of the same scale and in the Western Carpathians on the Remote Sensing data. The paper concentrates on two problematic areas – the so call “rebounding area” in the Eastern Carpathians and the Raba – Muran - Malcov tectonic systems.

  12. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  13. Analysis of Geodynamical Conditions of Region of Burning Coal Dumps Location

    Science.gov (United States)

    Batugin, Andrian; Musina, Valeria; Golovko, Irina

    2017-12-01

    Spontaneous combustion of coal dumps and their impact on the environment of mining regions remain important environmental problem, in spite of the measures that are being taken. The paper presents the hypothesis, which states that the location of coal dumps at the boundaries of geodynamically active crust blocks promotes the appearance of conditions for their combustion. At present geodynamically active crust faults that affect the operating conditions of engineering facilities are observed not only in the areas of tectonic activity, but also on platforms. According to the concept of geodynamical zoning, geodynamically dangerous zones for engineering structures can be not only large, well-developed crust faults, but also just formed fractures that appear as boundaries of geodynamically impacting and hierarchically ordered crust blocks. The purpose of the study is to estimate the linkage of burning dumps to boundaries of geodynamically active crust blocks (geodynamically dangerous zones) for subsequent development of recommendations for reducing environmental hazard. The analysis of 27 coal dumps location was made for one of the Eastern Donbass regions (Russia). Nine of sixteen burning dumps are located in geodynamically dangerous zones, which, taking into account relatively small area occupied by all geodynamically dangerous zones, results that there is a concentration (pcs/km2) of burning dumps, which is 14 times higher than the baseline value. While the probability of accidental obtaining of such a result is extremely low, this can be considered as the evidence of the linkage of burning dumps to geodynamically dangerous zones. Taking into account the stressed state of the rock massif in this region, all geodynamically dangerous zones can be divided into compression and tension zones. The statistic is limited, but nevertheless in tension zones the concentration of burning dumps is 2 times higher than in compression zones. Available results of thermal monitoring of

  14. Evaluation of gravity field model EIGEN-6C4 by means of various functions of gravity potential, and by GNSS/levelling

    Directory of Open Access Journals (Sweden)

    Jan Kostelecký

    2015-06-01

    Full Text Available The combined gravity field model EIGEN-6C4 (Förste et al., 2014 is the latest combined global gravity field model of GFZ Potsdam and GRGS Toulouse. EIGEN-6C4 has been generated including the satellite gravity gradiometry data of the entire GOCE mission (November 2009 till October 2013 and is of maximum spherical degree and order 2190. In this study EIGEN-6C4 has been compared with EGM2008 to its maximum degree and order via gravity disturbances and Tzz part of the Marussi tensor of the second derivatives of the disturbing potential. The emphasis is put on such areas where GOCE data (complete set of gradiometry measurements after reductions in EIGEN-6C4 obviously contributes to an improvement of the gravity field description. GNSS/levelling geoid heights are independent data source for the evaluation of gravity field models. Therefore, we use the GNSS/levelling data sets over the territories of Europe, Czech Republic and Slovakia for the evaluation of EIGEN-6C4 w.r.t. EGM2008.

  15. Assessing performance of gravity models in the Arctic and the implications for polar oceanography

    Science.gov (United States)

    Thomas, S. F.; McAdoo, D. C.; Farrell, S. L.; Brozena, J. M.; Childers, V. A.; Ziebart, M. K.; Shepherd, A.

    2014-12-01

    The circulation of the Arctic Ocean is of great interest to both the oceanographic and cryospheric communities. Understanding both the steady state and variations of this circulation is essential to building our knowledge of Arctic climate. With the advent of high inclination altimeter missions such as CryoSat and ICESat, it is now feasible to produce Mean Dynamic Topography (MDT) products for the region, which allow a comprehensive investigation of geostrophic currents. However, the accuracy of these products is largely limited by our knowledge of the marine geoid in the Arctic. There are a number of publicly available gravity models commonly used to derive the geoid. These use different combinations of available data (satellite gravimetry, altimetry, laser ranging, and in-situ) and are calculated using different mathematical techniques. However, the effect of these differences on the real world performance of these models when used for oceanographic studies in the Arctic is not well known. Given the unique problems for gravimetry in the region (especially data gaps) and their potential impact on MDT products, it is especially important that the relative performance of these models be assessed We consider the needs of the "end user" satellite oceanographer in the Arctic with respect to gravimetry, and the relationship between the precision of gravity data and the accuracy of a final MDT/current velocity product. Using high-precision aerogravity data collected over 3 years of campaigns by NASA's Operation IceBridge we inter-compare 10 of the leading gravity models and assess their performance in the Arctic. We also use historical data from campaigns flown by the US Naval Research Laboratory (NRL) to demonstrate the impact of gravity errors on MDT products. We describe how gravity models for the region might be improved in the future, in an effort to maximize the level at which Arctic currents may be resolved.

  16. Noncommutative gravity

    International Nuclear Information System (INIS)

    Schupp, P.

    2007-01-01

    Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)

  17. Geodynamic and petrophysical modelling in the Kraka area

    International Nuclear Information System (INIS)

    Frykman, P.

    2001-01-01

    The present report has been prepared with the aim of presenting a model for the burial history of the chalk section in the Kraka field based on seismic mapping, data from wells, backstripping and decompaction. The parameters and models for the petrophysical properties are also presented in the perspective of being usable in dynamic modelling. The present geological model is based on data originating from an existing study, and does therefore not include more recent well data or additional seismic data. The model is intended to be used for initialising the development of geodynamic flow modelling, and the model will therefore be updated and refined as the project processes. The burial history of the Kraka area will be used to guide the development of reservoir parameters in the chalk section through time. (BA)

  18. Linking plate reconstructions with deforming lithosphere to geodynamic models

    Science.gov (United States)

    Müller, R. D.; Gurnis, M.; Flament, N.; Seton, M.; Spasojevic, S.; Williams, S.; Zahirovic, S.

    2011-12-01

    While global computational models are rapidly advancing in terms of their capabilities, there is an increasing need for assimilating observations into these models and/or ground-truthing model outputs. The open-source and platform independent GPlates software fills this gap. It was originally conceived as a tool to interactively visualize and manipulate classical rigid plate reconstructions and represent them as time-dependent topological networks of editable plate boundaries. The user can export time-dependent plate velocity meshes that can be used either to define initial surface boundary conditions for geodynamic models or alternatively impose plate motions throughout a geodynamic model run. However, tectonic plates are not rigid, and neglecting plate deformation, especially that of the edges of overriding plates, can result in significant misplacing of plate boundaries through time. A new, substantially re-engineered version of GPlates is now being developed that allows an embedding of deforming plates into topological plate boundary networks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions can then be used as a time-dependent surface boundary condition in regional or global 3-D geodynamic models, or alternatively as an initial boundary condition for a particular plate configuration at a given time. For time-dependent models with imposed plate motions (e.g. using CitcomS) we incorporate the continental lithosphere by embedding compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using a half-space cooling model. We also

  19. Geomorphology and Geodynamics at Crustal Boundaries within Asia and Africa

    Science.gov (United States)

    2004-01-01

    The release of SRTM images by NASA over the past two years year has been greeted by foreign Earth scientist's as "NASA's gift to the World". The goodwill that this has engendered in parts of Africa. India, Pakistan and Bangladesh, as scientists in those countries contemplated what many of them considered an unprovoked and unjustifiable US invasion of Iraq, cannot be underestimated. We have used SRTM images from Africa and India and elsewhere to examine aspects of tectonism, geodynamics and tsunami and earthquake hazards. Highlights of this research are itemized in this final report. One difficulty that has arisen is , of course, that the funding for the science lead the availability of the data by more than a year. and as a result many of the findings are as yet unpublished.

  20. Geodynamics branch data base for main magnetic field analysis

    Science.gov (United States)

    Langel, Robert A.; Baldwin, R. T.

    1991-01-01

    The data sets used in geomagnetic field modeling at GSFC are described. Data are measured and obtained from a variety of information and sources. For clarity, data sets from different sources are categorized and processed separately. The data base is composed of magnetic observatory data, surface data, high quality aeromagnetic, high quality total intensity marine data, satellite data, and repeat data. These individual data categories are described in detail in a series of notebooks in the Geodynamics Branch, GSFC. This catalog reviews the original data sets, the processing history, and the final data sets available for each individual category of the data base and is to be used as a reference manual for the notebooks. Each data type used in geomagnetic field modeling has varying levels of complexity requiring specialized processing routines for satellite and observatory data and two general routines for processing aeromagnetic, marine, land survey, and repeat data.

  1. RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE

    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin

    2014-01-01

    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A

  2. The Earth's heterogeneous mantle a geophysical, geodynamical, and geochemical perspective

    CERN Document Server

    Khan, Amir

    2015-01-01

    This book highlights and discusses recent developments that have contributed to an improved understanding of observed mantle heterogeneities and their relation to the thermo-chemical state of Earth's mantle, which ultimately holds the key to unlocking the secrets of the evolution of our planet. This series of topical reviews and original contributions address 4 themes. Theme 1 covers topics in geophysics, including global and regional seismic tomography, electrical conductivity and seismic imaging of mantle discontinuities and heterogeneities in the upper mantle, transition zone and lower mantle. Theme 2 addresses geochemical views of the mantle including lithospheric evolution from analysis of mantle xenoliths, composition of the deep Earth and the effect of water on subduction-zone processes. Theme 3 discusses geodynamical perspectives on the global thermo-chemical structure of the deep mantle. Theme 4 covers application of mineral physics data and phase equilibrium computations to infer the regional-scale ...

  3. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  4. A Tractable Disequilbrium Framework for Integrating Computational Thermodynamics and Geodynamics

    Science.gov (United States)

    Spiegelman, M. W.; Tweed, L. E. L.; Evans, O.; Kelemen, P. B.; Wilson, C. R.

    2017-12-01

    The consistent integration of computational thermodynamics and geodynamics is essential for exploring and understanding a wide range of processes from high-PT magma dynamics in the convecting mantle to low-PT reactive alteration of the brittle crust. Nevertheless, considerable challenges remain for coupling thermodynamics and fluid-solid mechanics within computationally tractable and insightful models. Here we report on a new effort, part of the ENKI project, that provides a roadmap for developing flexible geodynamic models of varying complexity that are thermodynamically consistent with established thermodynamic models. The basic theory is derived from the disequilibrium thermodynamics of De Groot and Mazur (1984), similar to Rudge et. al (2011, GJI), but extends that theory to include more general rheologies, multiple solid (and liquid) phases and explicit chemical reactions to describe interphase exchange. Specifying stoichiometric reactions clearly defines the compositions of reactants and products and allows the affinity of each reaction (A = -Δ/Gr) to be used as a scalar measure of disequilibrium. This approach only requires thermodynamic models to return chemical potentials of all components and phases (as well as thermodynamic quantities for each phase e.g. densities, heat capacity, entropies), but is not constrained to be in thermodynamic equilibrium. Allowing meta-stable phases mitigates some of the computational issues involved with the introduction and exhaustion of phases. Nevertheless, for closed systems, these problems are guaranteed to evolve to the same equilibria predicted by equilibrium thermodynamics. Here we illustrate the behavior of this theory for a range of simple problems (constructed with our open-source model builder TerraFERMA) that model poro-viscous behavior in the well understood Fo-Fa binary phase loop. Other contributions in this session will explore a range of models with more petrologically interesting phase diagrams as well as

  5. Applying multi-resolution numerical methods to geodynamics

    Science.gov (United States)

    Davies, David Rhodri

    Computational models yield inaccurate results if the underlying numerical grid fails to provide the necessary resolution to capture a simulation's important features. For the large-scale problems regularly encountered in geodynamics, inadequate grid resolution is a major concern. The majority of models involve multi-scale dynamics, being characterized by fine-scale upwelling and downwelling activity in a more passive, large-scale background flow. Such configurations, when coupled to the complex geometries involved, present a serious challenge for computational methods. Current techniques are unable to resolve localized features and, hence, such models cannot be solved efficiently. This thesis demonstrates, through a series of papers and closely-coupled appendices, how multi-resolution finite-element methods from the forefront of computational engineering can provide a means to address these issues. The problems examined achieve multi-resolution through one of two methods. In two-dimensions (2-D), automatic, unstructured mesh refinement procedures are utilized. Such methods improve the solution quality of convection dominated problems by adapting the grid automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. Thermal and thermo-chemical validation tests illustrate that the technique is robust and highly successful, improving solution accuracy whilst increasing computational efficiency. These points are reinforced when the technique is applied to geophysical simulations of mid-ocean ridge and subduction zone magmatism. To date, successful goal-orientated/error-guided grid adaptation techniques have not been utilized within the field of geodynamics. The work included herein is therefore the first geodynamical application of such methods. In view of the existing three-dimensional (3-D) spherical mantle dynamics codes, which are built upon a quasi-uniform discretization of the sphere and closely coupled

  6. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  7. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  8. A dynamic model of Venus's gravity field

    Science.gov (United States)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  9. Normal gravity field in relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao

    2018-02-01

    Modern geodesy is subject to a dramatic change from the Newtonian paradigm to Einstein's theory of general relativity. This is motivated by the ongoing advance in development of quantum sensors for applications in geodesy including quantum gravimeters and gradientometers, atomic clocks and fiber optics for making ultra-precise measurements of the geoid and multipolar structure of the Earth's gravitational field. At the same time, very long baseline interferometry, satellite laser ranging, and global navigation satellite systems have achieved an unprecedented level of accuracy in measuring 3-d coordinates of the reference points of the International Terrestrial Reference Frame and the world height system. The main geodetic reference standard to which gravimetric measurements of the of Earth's gravitational field are referred is a normal gravity field represented in the Newtonian gravity by the field of a uniformly rotating, homogeneous Maclaurin ellipsoid of which mass and quadrupole momentum are equal to the total mass and (tide-free) quadrupole moment of Earth's gravitational field. The present paper extends the concept of the normal gravity field from the Newtonian theory to the realm of general relativity. We focus our attention on the calculation of the post-Newtonian approximation of the normal field that is sufficient for current and near-future practical applications. We show that in general relativity the level surface of homogeneous and uniformly rotating fluid is no longer described by the Maclaurin ellipsoid in the most general case but represents an axisymmetric spheroid of the fourth order with respect to the geodetic Cartesian coordinates. At the same time, admitting a post-Newtonian inhomogeneity of the mass density in the form of concentric elliptical shells allows one to preserve the level surface of the fluid as an exact ellipsoid of rotation. We parametrize the mass density distribution and the level surface with two parameters which are

  10. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  11. The Geopotential Research Mission - Mapping the near earth gravity and magnetic fields

    Science.gov (United States)

    Taylor, P. T.; Keating, T.; Smith, D. E.; Langel, R. A.; Schnetzler, C. C.; Kahn, W. D.

    1983-01-01

    The Geopotential Research Mission (GRM), NASA's low-level satellite system designed to measure the gravity and magnetic fields of the earth, and its objectives are described. The GRM will consist of two, Shuttle launched, satellite systems (300 km apart) that will operate simultaneously at a 160 km circular-polar orbit for six months. Current mission goals include mapping the global geoid to 10 cm, measuring gravity-field anomalies to 2 mgal with a spatial resolution of 100 km, detecting crustal magnetic anomalies of 100 km wavelength with 1 nT accuracy, measuring the vectors components to + or - 5 arc sec and 5 nT, and computing the main dipole or core field to 5 nT with a 2 nT/year secular variation detection. Resource analysis and exploration geology are additional applications considered.

  12. Seasonal changes in the European gravity field from GRACE: A comparison with superconducting gravimeters and hydrology model predictions

    DEFF Research Database (Denmark)

    Hinderer, J.; Andersen, Ole Baltazar; Lemoine, F.

    2006-01-01

    This paper is devoted to the investigation of seasonal changes of the Earth's gravity field from GRACE satellites and the comparison with surface gravity measurements in Europe from the Global Geodynamics Project (GGP) sub-network, as well as with recent hydrology models for continental soil...... moisture and snow. We used gravity maps in Europe retrieved from the initial GRACE monthly solutions spanning a 21 -month duration from April 2002 to December 2003 for various truncation levels of the initial spherical harmonic decomposition of the field. The transfer function between satellite......-derived and ground gravity changes due to continental hydrology is studied and we also compute the theoretical ratio of gravity versus radial displacement (in mu Gal/mm) involved in the hydrological loading process. The 'mean' value (averaged in time and in space over Europe) from hydrologic forward modeling...

  13. The Cause of Gravity

    OpenAIRE

    Byrne, Michael

    1999-01-01

    Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...

  14. Geodynamic risk magnitude as an objective indicator of rockburst prevention effectiveness (in terms of apatite mines in Khibiny)

    Science.gov (United States)

    Fedotova Panin, YuV, VI

    2018-03-01

    The results of the statistical retrospective analysis of the officially recorded geodynamic events in mines of Apatit Company within the Khibiny Massif are presented. The risks and aftereffects of geodynamic events have been calculated. Under discussion are the results of three calculation variants taking into account the scale of human impact on rock mass. The analysis shows that the main damage due to geodynamic events is different-degree destruction of mine workings while the remaining aftereffects account for less than ten percent. That is, the geodynamic risk in apatite mines can be identified as technological.

  15. Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity

    Science.gov (United States)

    Panet, I.; Mikhailov, V.; Diament, M.; Pollitz, F.; King, G.; de Viron, O.; Holschneider, M.; Biancale, R.; Lemoine, J.-M.

    2007-01-01

    The GRACE satellite mission has been measuring the Earth's gravity field and its temporal variations since 2002 April. Although these variations are mainly due to mass transfer within the geofluid envelops, they also result from mass displacements associated with phenomena including glacial isostatic adjustment and earthquakes. However, these last contributions are difficult to isolate because of the presence of noise and of geofluid signals, and because of GRACE's coarse spatial resolution (>400 km half-wavelength). In this paper, we show that a wavelet analysis on the sphere helps to retrieve earthquake signatures from GRACE geoid products. Using a wavelet analysis of GRACE geoids products, we show that the geoid variations caused by the 2004 December (Mw = 9.2) and 2005 March (Mw = 8.7) Sumatra earthquakes can be detected. At GRACE resolution, the 2004 December earthquake produced a strong coseismic decrease of the gravity field in the Andaman Sea, followed by relaxation in the area affected by both the Andaman 2004 and the Nias 2005 earthquakes. We find two characteristic timescales for the relaxation, with a fast variation occurring in the vicinity of the Central Andaman ridge. We discuss our coseismic observations in terms of density changes of crustal and upper-mantle rocks, and of the vertical displacements in the Andaman Sea. We interpret the post-seismic signal in terms of the viscoelastic response of the Earth's mantle. The transient component of the relaxation may indicate the presence of hot, viscous material beneath the active Central Andaman Basin. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  16. Study on relationship between evolution of regional gravity field and seismic hazard

    Science.gov (United States)

    Li, W.; Xu, C.; Shen, C.

    2017-12-01

    The lack of anomalous signal is a big issue for the study of geophysics using historical geodesy observations, which is a relatively new area of earth gravimetry application in seismology. Hence the use of the gravity anomaly (GA) derived from either a global geopotential model (GGM) or a regional gravity reanalysis (Ground Gravity Survey, GGS) becomes an important alternative solution. In this study, the GGS at 186 points for the period of 2010 2014 in the Sichuan-Yunnan region (SYR) stations are analyzed. To study the temporal and spatial distribution characteristics of regional gravity filed (RGF) and its evolution mechanism. Taking the geological and geophysical data as constraints. From the GGM expanded up to degree 360, GA were obtained after gravity reduction, especially removing the reference field. The dynamically evolutional characteristics of gravity field are closely relative to fault activity. The gravity changes with time about 5 years at LongMenShan fault (LMSF) have a slop of -12.83±2.9 μGal/a, indicating that LMSF has an uplift. To test the signal extraction algorithm in some geodynamic processes, GA from the SYR were inverted and it was also imposed as a priori information. Fortunately, some significant gravity variation have been detected at some stations in the thrust fault before and after four earthquakes, in which typical anomalies (earthquake precursor, EP) were positive GA variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the Lushan earthquake (Ms 7.0). The repeated observation results during about 5 years indicate that no significant gravity changes related to other geodynamical events were observed in most observation epochs. In addition, the mechanism of gravity changes at Lushan was also explored. We calculated the gravity change rates based on the model of Songpan-Ganze block (SGB) to Sichuan basin (SCB). And the changes is in good agreement with observed one, indicating

  17. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  18. Aspects of Remote Sensing in the GEOid and Sea level Of the North Atlantic Region (GEOSONAR) Project

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Nielsen, Allan Aasbjerg; Knudsen, Per

    1999-01-01

    The general objectives of the GEOid and Sea level Of the North Atlantic Region (GEOSONAR) project are presented. These include analyses of the dynamics of the ocean and its characteristics. The analyses are mainly based on remote sensing. As an example a data set obtained by the multi-channel Sea-viewing...... Wide Field-of-view Sensor (SeaWiFs) is analysed. The presentation results include the computed principal components (PC) and the maximum autocorrelation factors (MAF). Both methods are expected to be incorporated into future analyses of the state of the ocean....

  19. Geodynamic Constraints on the Sources of Seismic Anisotropy Beneath Madagascar

    Science.gov (United States)

    Rajaonarison, T. A.; Stamps, D. S.; Fishwick, S.

    2017-12-01

    The rheological structure of the lithosphere-asthenosphere system controls the degree in which the mantle drives surface motions. Seismic anisotropy is a proxy to infer information about previous tectonic events imprinted in lithospheric structures and/or asthenospheric flow pattern in regions absent of active volcanism, however, distinguishing between the shallow and deeper sources, respectively, remains ambiguous. Madagascar is an ideal natural laboratory to study the sources of anisotropy and the rheological implications for lithosphere-asthenosphere system because 1) active volcanism is minimal or absent, 2) there are well-exposed tectonic fabrics for comparison, and 3) numerous geological and geophysical observations provides evidence of present-day tectonic activities. Recent studies suggest new seismic anisotropy observations in southern Madagascar are sourced from both fossilized lithospheric structure and asthenospheric flow driven by rigid lithospheric plate motion. In this work we compare geodynamic simulations of the lithosphere-asthenosphere system with seismic anisotropy data set that includes all of Madagascar. We use the numerical code Advanced Solver for Problems in Earth's ConvecTion (ASPECT) to calculate instantaneous deformation in the lithosphere and edge-driven convective flow in the asthenosphere accounting for variations in buoyancy forces and temperature dependent viscosity. The initial temperature conditions are based on interpretations from high resolution regional surface wave tomography. We assume visco-plastic rheology for a uniform crust, dislocation creep for a laterally varying mantle lithospheric structure, and diffusion creep for the asthenosphere. To test for the source of anisotropy we compare our velocity solution azimuths with azimuths of anisotropy at 25 km depth intervals. Calculated asthenospheric flow aligns with measured seismic anisotropy with a 15° WRMS at 175 km depth and possibly down to 250 km suggesting the

  20. Water in geodynamical models of mantle convection and plate tectonics

    Science.gov (United States)

    Rodríguez-González, J.; Van Hunen, J.; Chotalia, K.; Lithgow-Bertelloni, C. R.; Rozel, A.; Tackley, P. J.; Nakagawa, T.

    2017-12-01

    The presence of water in the the mantle has a significant effect in the dynamical and thermal evolution of Earth, which partially explains the differences with other planets and is a key factor for the presence of life on Earth. First, a small amount of water can decrease the mantle viscosity by a several orders of magnitude, thereby changing the convection regime and affecting the thermal evolution. Second, the presence of water significantly changes the solidus curve, with crucial implications for melting. Third, water in the mantle can change the Clapeyron slope of mantle materials, which changes the depth at which phase transitions take place. The thermal and dynamical evolution of Earth under the presence of water in the mantle has been the focus of recent studies, but many questions remain unanswered. In this project we intend to investigate how the maximum water capacity of different mantle regions affects water transport and Earth's convective regime. We will study the effect phase transitions under the presence of water, which can change the buoyancy of slabs in the transition zone. We present preliminary results numerical models of global mantle convection for the whole history of earth using the numerical geodynamics software tool StagYY. We will use a new parametrisation of dehydration processes, obtained from high-resolution numerical simulations, to implement a more accurate description of the water released from the slab as it travels through the mantle. We have integrated recent experimental results of the water capacity of deep mantle minerals to study the water circulation and the total water budget. We use data from the most recent experiments and ab-inito calculations to implement a realistic rheology.

  1. The Numidian of northern Tunisia: stratigraphic data and geodynamic interpretation

    Directory of Open Access Journals (Sweden)

    Talbi, F.

    2008-06-01

    Full Text Available The Numidian flysch consists of a thick turbiditic sandy and clayey formation of Oligocene-Lower Miocene age which outcrops largely in northern Tunisia. Concerning the relationship between the Numidian formation and its «substratum», two hypothesis are discussed : i allochtonous Numidian units (tangential abnormal contact ; ii autochtonous Numidian units (sedimentary contact : locally downlap. Detailed investigation undertaken in the study area, based on the survey and the dating of lithological logs, coupled with geodynamic and petrogenetic events, lead to the following results : i absence of tangential tectonic contact in the base of Numidian series ; ii a significant Tertiary tectonics attested by several phases. Moreover, the Numidian siliciclastic series are affected, like the other Tertiary formations in the North of Tunisia, by south-east ward deep-seated thrusts, oriented N50-60.El flysch Numidiense es una formación arenisco-arcillosa de gran espesor y de edad Oligoceno-Mioceno inferior, que aflora en el norte de Túnez. La naturaleza del contacto basal de esta formación ha suscitado numerosas discusiones. De ellas destacan dos hipótesis: 1 las unidades numidienses alóctonas se apoyan en forma de contacto anormal tangencial, y 2 se trata de unidades autóctonas (contacto sedimentario normal, a veces de tipo "downlap".El levantamiento de cortes litológicos detallados y su datación, combinado con datos de tipo geodinámico y petrogenético, ha permitido confirmar la ausencia de un contacto tectónico tangencial en la base del Numidiense y por el contrario, establecer la existencia de una significativa tectónica terciaria desarrollada en varias fases. Asi, las series siliciclásticas Numidienses se ven afectadas, como otras formaciones terciarias del norte de Túnez, por cabalgamientos de vergencia SE.

  2. Constraints on Moho Depth and Crustal Thickness in the Liguro-Provençal Basin from a 3d Gravity Inversion : Geodynamic Implications Contraintes sur la profondeur du moho et l'épaisseur crustale dans le bassin liguro-provençal à partir de l'inversion 3D de données gravimétriques : implications géodynamiques

    Directory of Open Access Journals (Sweden)

    Gaulier J. M.

    2006-12-01

    Full Text Available 3D gravity modelling is combined with seismic refraction and reflection data to constrain a new Moho depth map in the Liguro-Provençal Basin (Western Mediterranean Sea. At seismically controlled points, the misfit between the gravimetric solution and the seismic data is about 2 km for a range of Moho depth between 12 km (deep basin and 30 km (mainlands. The oceanic crust thickness in the deep basin (5 km is smaller than the average oceanic crust thickness reported in open oceans (7 km, pointing to a potential mantle temperature 30°C to 50°C below normal and/or very slow oceanic spreading rate. Oceanic crust thickness is decreasing towards the Ligurian Sea and towards the continent-ocean boundary to values as small as 2 km. Poor magma supply is a result of low potential mantle temperature at depth, lateral thermal conduction towards unextended continental margin, and decrease of the oceanic spreading rate close to the pole of opening in the Ligurian Sea. Re-examination of magnetic data (paleomagnetic data and magnetic lineations indicates that opening of the Liguro-Provençal Basin may have ceased as late as Late Burdigalian (16. 5 Ma or even later. The absence of significant time gap between cessation of opening in the Liguro-Provençal Basin and rifting of the Tyrrhenian domain favours a continuous extension mechanism since Upper Oligocene driven by the African trench retreat. Ce rapport présente un travail commun avec le Laboratoire de géodynamique de l'École normale supérieure (ENS. Ce travail doit être resitué dans son contexte : l'étude régionale du golfe du Lion a été possible dans le cadre du projet européen Integrated Basin Studies. Le développement du code d'inversion 3D avait fait l'objet de conventions avec l'ENS pendant les années précédentes. La mise en Suvre d'une telle inversion est désormais possible à l'IFP. Il n'y a pas d'interface pour ce calculateur. L'aide des collègues de l'ENS est souhaitable pour la

  3. Quantum W3 gravity

    International Nuclear Information System (INIS)

    Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY

    1991-11-01

    We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity

  4. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  5. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  6. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  7. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  8. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  9. Northern Oklahoma Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...

  10. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  11. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  12. On the equivalence of spherical splines with least-squares collocation and Stokes's formula for regional geoid computation

    Science.gov (United States)

    Ophaug, Vegard; Gerlach, Christian

    2017-11-01

    This work is an investigation of three methods for regional geoid computation: Stokes's formula, least-squares collocation (LSC), and spherical radial base functions (RBFs) using the spline kernel (SK). It is a first attempt to compare the three methods theoretically and numerically in a unified framework. While Stokes integration and LSC may be regarded as classic methods for regional geoid computation, RBFs may still be regarded as a modern approach. All methods are theoretically equal when applied globally, and we therefore expect them to give comparable results in regional applications. However, it has been shown by de Min (Bull Géod 69:223-232, 1995. doi: 10.1007/BF00806734) that the equivalence of Stokes's formula and LSC does not hold in regional applications without modifying the cross-covariance function. In order to make all methods comparable in regional applications, the corresponding modification has been introduced also in the SK. Ultimately, we present numerical examples comparing Stokes's formula, LSC, and SKs in a closed-loop environment using synthetic noise-free data, to verify their equivalence. All agree on the millimeter level.

  13. Modelación del geoide en presas de colas de la región minera de Moa

    Directory of Open Access Journals (Sweden)

    Yordanis Esteban Batista-Legrá

    2014-12-01

    Full Text Available El presente trabajo tuvo el propósito de determinar el modelo del geoide en las presas de colas de la región minera de Moa, con el fin de obtener las alturas de puntos sobre la superficie del terreno con la exactitud que requiere el movimiento de tierras, para lo cual fueron empleados los Sistemas de Posicionamiento Global (GPS. Se aplicaron métodos de Topografía Minera, Geodesia Física, Hidrografía, Oceanografía, Cartografía Digital y Modelación y se integraron diferentes softwares para procesar la información obtenida en los experimentos. Como resultado se ofrece un nuevo método para determinar el modelo del geoide, la implementación de un Sistema de Información Geográfica (SIG para la modelación y un estudio del nivel medio del mar en la costa de Moa

  14. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  15. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  16. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  17. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  18. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  19. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    Science.gov (United States)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels. Artemieva, I.M., Thybo, H., and Shulgin, A., 2015. Geophysical constraints on geodynamic processes at convergent margins: A global perspective. Gondwana Research, http://dx.doi.org/10.1016/j.gr.2015.06.010

  20. Geodynamic inversion to constrain the non-linear rheology of the lithosphere

    Science.gov (United States)

    Baumann, T. S.; Kaus, Boris J. P.

    2015-08-01

    One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology

  1. Scales of gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory

    2002-01-01

    We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework

  2. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  3. Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides

    NARCIS (Netherlands)

    de Leeuw, Arjan; Mandic, Oleg; Krijgsman, Wout; Kuiper, Klaudia; Hrvatović, Hazim

    2012-01-01

    The geodynamic evolution of the Dinaride Mountains of southeastern Europe is relatively poorly understood, especially in comparison with the neighboring Alps and Carpathians. Here, we construct a new chronostratigraphy for the post-orogenic intra-montane basins of the Central Dinarides based on

  4. Neogene stratigraphy and Andean geodynamics of southern Ecuador

    Science.gov (United States)

    Hungerbühler, Dominik; Steinmann, Michael; Winkler, Wilfried; Seward, Diane; Egüez, Arturo; Peterson, Dawn E.; Helg, Urs; Hammer, Cliff

    2002-01-01

    The present paper reviews Tertiary volcanic and sedimentary formations in the Inter-Andean region of southern Ecuador (between 2°S and 4°20'S) in order to develop a geodynamic model of the region. The formations occur in the southern shallow prolongation of the Inter-Andean Valley between the Cordillera Real to the east, and the Cordillera Occidental and Amotape-Tahuín Provinces to the west. One hundred fifty zircon fission-track analyses has established a detailed chronostratigraphy for the sedimentary and volcanic formations and several small intrusions. The Paleogene to early Miocene formations are dominated by intermediate and acidic volcanic and pyroclastic rocks. In addition, relics of Eocene continental sedimentary series have been identified. The Neogene sedimentary series lie unconformably on deformed and eroded metamorphic, sedimentary and volcanic formations. They were deposited in two stages, which are separated by a major unconformity dated at ≈10-9 Ma. (1) During the middle and early late Miocene (≈15-10 Ma) marginal marine deltaic, lagoonal, lacustrine and fluvial environments prevailed, which we group under the heading "Pacific Coastal sequences". They presumably covered a greater surface area in southern Ecuador than their present occurrence in small topographic depressions. We suggest that they were deposited in the shallow marine Cuenca and Loja Embayments. Deposition in a marginal marine environment is also supported by the occurrence of brackish water ostracods and other fauna. (2) Above the regional (angular) unconformity, the coastal facies are overlain by late Miocene (≈9-5 Ma) continental alluvial fan and fluvial facies which are in turn covered by mainly airborne volcanic material. They represent the "Intermontane sequences" of the basins of Cuenca, Girón-Santa Isabel, Nabón, Loja and Malacatos-Vilcabamba. Sedimentologic and stratigraphic results are used to discuss the tectonic setting of Neogene sedimentation in the forearc

  5. Three-Gorge Reservoir: A 'Controlled Experiment' for Calibration/Validation of Time-Variable Gravity Signals Detected from Space

    Science.gov (United States)

    Chao, Benjamin F.; Boy, J. P.

    2003-01-01

    With the advances of measurements, modern space geodesy has become a new type of remote sensing for the Earth dynamics, especially for mass transports in the geophysical fluids on large spatial scales. A case in point is the space gravity mission GRACE (Gravity Recovery And Climate Experiment) which has been in orbit collecting gravity data since early 2002. The data promise to be able to detect changes of water mass equivalent to sub-cm thickness on spatial scale of several hundred km every month or so. China s Three-Gorge Reservoir has already started the process of water impoundment in phases. By 2009,40 km3 of water will be stored behind one of the world s highest dams and spanning a section of middle Yangtze River about 600 km in length. For the GRACE observations, the Three-Gorge Reservoir would represent a geophysical controlled experiment , one that offers a unique opportunity to do detailed geophysical studies. -- Assuming a complete documentation of the water level and history of the water impoundment process and aided with a continual monitoring of the lithospheric loading response (such as in area gravity and deformation), one has at hand basically a classical forwardinverse modeling problem of surface loading, where the input and certain output are known. The invisible portion of the impounded water, i.e. underground storage, poses either added values as an observable or a complication as an unknown to be modeled. Wang (2000) has studied the possible loading effects on a local scale; we here aim for larger spatial scales upwards from several hundred km, with emphasis on the time-variable gravity signals that can be detected by GRACE and follow-on missions. Results using the Green s function approach on the PREM elastic Earth model indicate the geoid height variations reaching several millimeters on wavelengths of about a thousand kilometers. The corresponding vertical deformations have amplitude of a few centimeters. In terms of long

  6. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  7. Gravity interpretation via EULDPH

    International Nuclear Information System (INIS)

    Ebrahimzadeh Ardestani, V.

    2003-01-01

    Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented

  8. A review of the gravity and magnetic studies in the Tyrrhenian Basin and its volcanic districts

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    2008-06-01

    Full Text Available Since the Sixties, the turning point marked by the Plate Tectonics global theory has provided new ideas for the interpretation of the complex geodynamic evolution of the Mediterranean area. The renewed interest that followed gave a strong impulse to the geological and geophysical investigations of the Mediterranean area and, more specifically, of the Tyrrhenian Basin. Therefore, large scale geophysical surveys and oceanographic cruises were carried out until the end of the Eighties to fill the gap of geophysical information existing in the area until then. Afterwards, short scale surveys were prevalent to improve the detail of the information in areas of geodynamic interest. The gathered data sets allowed new models to be formulated, improving the knowledge of the crustal and lithospheric structure of the Tyrrhenian Basin (and surrounding areas and the reconstruction of its complex geodynamic evolution. In this frame, the contribution of gravity and magnetic investigations has been unquestionable and deserves a wide-ranging review both on large and small scale. The main features of the potential fields resulting from these surveys will be described and the interpretative models suggested by several authors will be summarized.

  9. Use of recent geoid models to estimate mean dynamic topography and geostrophic currents in South Atlantic and Brazil Malvinas confluence

    Directory of Open Access Journals (Sweden)

    Alexandre Bernardino Lopes

    2012-03-01

    Full Text Available The use of geoid models to estimate the Mean Dynamic Topography was stimulated with the launching of the GRACE satellite system, since its models present unprecedented precision and space-time resolution. In the present study, besides the DNSC08 mean sea level model, the following geoid models were used with the objective of computing the MDTs: EGM96, EIGEN-5C and EGM2008. In the method adopted, geostrophic currents for the South Atlantic were computed based on the MDTs. In this study it was found that the degree and order of the geoid models affect the determination of TDM and currents directly. The presence of noise in the MDT requires the use of efficient filtering techniques, such as the filter based on Singular Spectrum Analysis, which presents significant advantages in relation to conventional filters. Geostrophic currents resulting from geoid models were compared with the HYCOM hydrodynamic numerical model. In conclusion, results show that MDTs and respective geostrophic currents calculated with EIGEN-5C and EGM2008 models are similar to the results of the numerical model, especially regarding the main large scale features such as boundary currents and the retroflection at the Brazil-Malvinas Confluence.A utilização de modelos geoidais na determinação da Topografia Dinâmica Média foi impulsionada com o lançamento dos satélites do sistema GRACE, já que seus modelos apresentam precisão e resolução espacial e temporal sem precedentes. No presente trabalho, além do modelo de nível médio do mar DNSC08, foram utilizados os seguintes modelos geoidais com o objetivo de calcular as TDMs: EGM96, EIGEN-5C e EGM2008. No método adotado, foram calculadas as respectivas correntes geostróficas para o Atlântico Sul a partir das TDMs. O grau e ordem dos modelos geoidais influenciam diretamente na determinação da TDM e correntes. Neste trabalho verificou-se que presença de ruídos da TDM requer a utilização de técnicas de filtragem

  10. Anomalies and gravity

    International Nuclear Information System (INIS)

    Mielke, Eckehard W.

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed

  11. The delineation and interpretation of the earth's gravity field. Annual progress report, 1 June 1988-31 May 1989

    International Nuclear Information System (INIS)

    Marsh, B.D.

    1989-05-01

    In an attempt to understand the mechanical interaction of a growing lithosphere containing fracture zones with small and large scale mantle convection, which gives rise to geoid anomalies in oceanic regions, a series of fluid dynamical experiments is in progress to investigate: (1) the influence of lithosphere structure, fluid depth and viscosity field on the onset, scale, and evolution of sublithospheric convection; (2) the role of this convection in determining the rate of growth of lithosphere, especially in light of the flattening of the lithosphere bathymetry and heat flow at late times; and (3) combining the results of both numerical and laboratory experiments to decide the dominate factors in producing geoid anomalies in oceanic regions through the thermo-mechanical interaction of the lithosphere and subjacent mantle. The clear existence of small scale convection associated with a downward propagating solidification front (i.e., the lithosphere) and a larger scale flow associated with a discontinuous upward heat flux (i.e., a fracture zone) has been shown. The flows exist simultaneously and each may have a significant role in deciding the thermal evolution of the lithosphere and in understanding the relation of shallow mantle convection to deep mantle convection. This overall process is reflected in the geoid, gravity, and topographic anomalies in the north-central Pacific. These highly correlated fields of intermediate wavelength (approx. 200 to 2000 km) show isostatic compensation by a thin lithosphere for shorter (less than or equal to approx. 500 km), but not the longer, wavelengths. The ultimate, dynamic origin of this class of anomalies is being investigated

  12. influence of gravity

    Directory of Open Access Journals (Sweden)

    Animesh Mukherjee

    1991-01-01

    Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.

  13. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  14. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  15. The potential of ground gravity measurements to validate GRACE data

    Directory of Open Access Journals (Sweden)

    D. Crossley

    2003-01-01

    Full Text Available New satellite missions are returning high precision, time-varying, satellite measurements of the Earth’s gravity field. The GRACE mission is now in its calibration/- validation phase and first results of the gravity field solutions are imminent. We consider here the possibility of external validation using data from the superconducting gravimeters in the European sub-array of the Global Geodynamics Project (GGP as ‘ground truth’ for comparison with GRACE. This is a pilot study in which we use 14 months of 1-hour data from the beginning of GGP (1 July 1997 to 30 August 1998, when the Potsdam instrument was relocated to South Africa. There are 7 stations clustered in west central Europe, and one station, Metsahovi in Finland. We remove local tides, polar motion, local and global air pressure, and instrument drift and then decimate to 6-hour samples. We see large variations in the time series of 5–10µgal between even some neighboring stations, but there are also common features that correlate well over the 427-day period. The 8 stations are used to interpolate a minimum curvature (gridded surface that extends over the geographical region. This surface shows time and spatial coherency at the level of 2– 4µgal over the first half of the data and 1–2µgal over the latter half. The mean value of the surface clearly shows a rise in European gravity of about 3µgal over the first 150 days and a fairly constant value for the rest of the data. The accuracy of this mean is estimated at 1µgal, which compares favorably with GRACE predictions for wavelengths of 500 km or less. Preliminary studies of hydrology loading over Western Europe shows the difficulty of correlating the local hydrology, which can be highly variable, with large-scale gravity variations.Key words. GRACE, satellite gravity, superconducting gravimeter, GGP, ground truth

  16. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  17. Subduction to the lower mantle – a comparison between geodynamic and tomographic models

    Directory of Open Access Journals (Sweden)

    T. W. Becker

    2012-11-01

    Full Text Available It is generally believed that subduction of lithospheric slabs is a major contribution to thermal heterogeneity in Earth's entire mantle and provides a main driving force for mantle flow. Mantle structure can, on the one hand, be inferred from plate tectonic models of subduction history and geodynamic models of mantle flow. On the other hand, seismic tomography models provide important information on mantle heterogeneity. Yet, the two kinds of models are only similar on the largest (1000 s of km scales and are quite different in their detailed structure. Here, we provide a quantitative assessment how good a fit can be currently achieved with a simple viscous flow geodynamic model. The discrepancy between geodynamic and tomography models can indicate where further model refinement could possibly yield an improved fit. Our geodynamical model is based on 300 Myr of subduction history inferred from a global plate reconstruction. Density anomalies are inserted into the upper mantle beneath subduction zones, and flow and advection of these anomalies is calculated with a spherical harmonic code for a radial viscosity structure constrained by mineral physics and surface observations. Model viscosities in the upper mantle beneath the lithosphere are ~1020 Pas, and viscosity increases to ~1023 Pas in the lower mantle above D". Comparison with tomography models is assessed in terms of correlation, both overall and as a function of depth and spherical harmonic degree. We find that, compared to previous geodynamic and tomography models, correlation is improved, presumably because of advances in both plate reconstructions and mantle flow computations. However, high correlation is still limited to lowest spherical harmonic degrees. An important ingredient to achieve high correlation – in particular at spherical harmonic degree two – is a basal chemical layer. Subduction shapes this layer into two rather stable hot but chemically dense "piles

  18. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  19. Generalized pure Lovelock gravity

    Science.gov (United States)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  20. Generalized pure Lovelock gravity

    Directory of Open Access Journals (Sweden)

    Patrick Concha

    2017-11-01

    Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  1. Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy

    Science.gov (United States)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.

  2. Unigrace - A Project For The Unification of Gravity Systems In Central Europe

    Science.gov (United States)

    Richter, B.; Falk, R.; Erker, E.; Ruess, D.; Mäkinen, J.; Hinderer, J.; Marson, I.; Sledzinski, J.

    Because of the present trends of political and economical unification in Europe for- merly classified gravimetric data in Central Europe are becoming available. The dif- ferences, however, between gravity systems in this area are so large that they strongly affect the geoid, vertical datum definitions and height systems. It is therefore manda- tory to study system differences and to unify them. The project UNIGRACE aims at solving this problem by carrying out absolute grav- ity measurements with the most advanced technology at 17 selected sites in the coun- tries concerned. In a joint effort five European groups from Austria, Finland, France, Germany, Italy and Poland using their absolute gravimeters and partners from Bul- garia, Croatia, Czech Republic, Hungary, Romania, Slovakia and Slovenia cooperate in selecting and/or establishing the sites and performing the measurements as well as in connecting the absolute sites to the national gravimetric networks. As a result, a unique gravity system in Central Europe will be available. The project started on Jan. 1, 1998 and till the end of 2000 all selected gravity sites have been observed twice by absolute gravimeters. From these repeated measurements the final results for this project will be presented which was granted by the European Commission.

  3. A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models

    Directory of Open Access Journals (Sweden)

    Xinyu Xu

    2017-07-01

    Full Text Available We compile the GOCE-only satellite model GOSG01S complete to spherical harmonic degree of 220 using Satellite Gravity Gradiometry (SGG data and the Satellite-to-Satellite Tracking (SST observations along the GOCE orbit based on applying a least-squares analysis. The diagonal components (Vxx, Vyy, Vzz of the gravitational gradient tensor are used to form the system of observation equations with the band-pass ARMA filter. The point-wise acceleration observations (ax, ay, az along the orbit are used to form the system of observation equations up to the maximum spherical harmonic degree/order 130. The analysis of spectral accuracy characteristics of the newly derived gravitational model GOSG01S and the existing models GOTIM04S, GODIR04S, GOSPW04S and JYY_GOCE02S based on their comparison with the ultra-high degree model EIGEN-6C2 reveals a significant consistency at the spectral window approximately between 80 and 190 due to the same period SGG data used to compile these models. The GOCE related satellite gravity models GOSG01S, GOTIM05S, GODIR05S, GOTIM04S, GODIR04S, GOSPW04S, JYY_GOCE02S, EIGEN-6C2 and EGM2008 are also validated by using GPS-leveling data in China and USA. According to the truncation at degree 200, the statistic results show that all GGMs have very similar differences at GPS-leveling points in USA, and all GOCE related gravity models have better performance than EGM2008 in China. This suggests that all these models provide much more information on the gravity field than EGM2008 in areas with low terrestrial gravity coverage. And STDs of height anomaly differences in China for the selected truncation degrees show that GOCE has improved the accuracy of the global models beyond degree 90 and the accuracies of the models improve from 24 cm to 16 cm. STDs of geoid height differences in USA show that GOSG01S model has best consistency comparing with GPS-leveling data for the frequency band of the degree between 20 and 160.

  4. Planetary Sciences, Geodynamics, Impacts, Mass Extinctions, and Evolution: Developments and Interconnections

    Directory of Open Access Journals (Sweden)

    Jaime Urrutia-Fucugauchi

    2016-01-01

    Full Text Available Research frontiers in geophysics are being expanded, with development of new fields resulting from technological advances such as the Earth observation satellite network, global positioning system, high pressure-temperature physics, tomographic methods, and big data computing. Planetary missions and enhanced exoplanets detection capabilities, with discovery of a wide range of exoplanets and multiple systems, have renewed attention to models of planetary system formation and planet’s characteristics, Earth’s interior, and geodynamics, highlighting the need to better understand the Earth system, processes, and spatio-temporal scales. Here we review the emerging interconnections resulting from advances in planetary sciences, geodynamics, high pressure-temperature physics, meteorite impacts, and mass extinctions.

  5. An estimation of the height system bias parameter N (0) using least squares collocation from observed gravity and GPS-levelling data

    DEFF Research Database (Denmark)

    Sadiq, Muhammad; Tscherning, Carl C.; Ahmad, Zulfiqar

    2009-01-01

    This paper deals with the analysis of gravity anomaly and precise levelling in conjunction with GPS-Levelling data for the computation of a gravimetric geoid and an estimate of the height system bias parameter N-o for the vertical datum in Pakistan by means of least squares collocation technique...... covariance parameters has facilitated to achieve gravimetric height anomalies in a global geocentric datum. Residual terrain modeling (RTM) technique has been used in combination with the EGM96 for the reduction and smoothing of the gravity data. A value for the bias parameter N-o has been estimated...... with reference to the local GPS-Levelling datum that appears to be 0.705 m with 0.07 m mean square error. The gravimetric height anomalies were compared with height anomalies obtained from GPS-Levelling stations using least square collocation with and without bias adjustment. The bias adjustment minimizes...

  6. Early signs of geodynamic activity before the 2011–2012 El Hierro eruption

    OpenAIRE

    López, Carmen; García-Cañada, Laura; Martí Molist, Joan; Domínguez Cerdeña, I.

    2016-01-01

    The potential relation between mantle plume dynamics, regional tectonics and eruptive activity in the Canary Islands has not been studied yet through the analysis of long-time series of geophysical observational data. The existence of highly reliable seismic and geodetic data has enabled us to study from 1996 to 2014 the geodynamic evolution of the North Atlantic Azores-Gibraltar region (including the NW African margin) and its relationship with recent volcanic activity in El Hierro (Canary I...

  7. Seismological and Geodynamic Monitoring Network in the "javakheti" Test Zone in the Southern Caucasus

    Science.gov (United States)

    Arakelyan, A.; Babayan, H.; Karakhanyan, A.; Durgaryan, R.; Basilaia, G.; Sokhadze, G.; Bidzinashvili, G.

    2012-12-01

    The Javakheti Highland located in the border region between Armenia and Georgia (sharing a border with Turkey) is an area in the Southern Caucasus of young Holocene-Quaternary volcanism and a region with convergence of a number of active faults. Issues related to the geometry, kinematics and slip-rate of these faults and assessment of their seismic hazard remain unclear in part due to the fragmentary nature of the studies carried out soley within the borders of each of the countries as opposed to region wide. In the frame of the ISTC A-1418 Project "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" the Javakheti Highland was selected as a trans-border test-zone. This designation allowed for the expansion and upgrading of the seismological and geodynamic monitoring networks under the auspices of several international projects (ISTC CSP-053 Project "Development of Communication System for seismic hazard situations in the Southern Caucasus and Central Asia", NATO SfP- 983284 Project "Caucasus Seismic Emergency Response") as well as through joint research programs with the National Taiwan University and Institute of Earth Sciences (IES, Taiwan), Universite Montpellier II (France) and Ecole et Observatoire des Sciences de la Terre-Université de Strasbourg (France). Studies of geodynamic processes, and seismicity of the region and their interaction have been carried out utilizing the newly established seismological and geodynamic monitoring networks and have served as a basis for the study of the geologic and tectonic structure . Upgrading and expansion of seismological and geodynamic networks required urgent solutions to the following tasks: Introduction of efficient online systems for information acquisition, accumulation and transmission (including sattelite systems) from permanent and temporary installed stations, Adoption of international standards for organization and management of databases in GIS

  8. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  9. The Future of Gravity

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.

  10. Scaling in quantum gravity

    Directory of Open Access Journals (Sweden)

    J. Ambjørn

    1995-07-01

    Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.

  11. Field lines of gravity, their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline

    Directory of Open Access Journals (Sweden)

    E. W. Grafarend

    1997-06-01

    Full Text Available The length of the gravitational field lines/of the orthogonal trajectories of a family of gravity equipotential surfaces/of the plumbline between a terrestrial topographic point and a point on a reference equipotential surface like the geoid í also known as the orthometric height í plays a central role in Satellite Geodesy as well as in Physical Geodesy. As soon as we determine the geometry of the Earth pointwise by means of a satellite GPS (Global Positioning System: «global problem solver» we are left with the problem of converting ellipsoidal heights (geometric heights into orthometric heights (physical heights. For the computation of the plumbline we derive its three differential equations of first order as well as the three geodesic equations of second order. The three differential equations of second order take the form of a Newton differential equation when we introduce the parameter time via the Marussi gauge on a conformally flat three-dimensional Riemann manifold and the generalized force field, the gradient of the superpotential, namely the modulus of gravity squared and taken half. In particular, we compute curvature and torsion of the plumbline and prove their functional relationship to the second and third derivatives of the gravity potential. For a spherically symmetric gravity field, curvature and torsion of the plumbline are zero, the plumbline is straight. Finally we derive the three Lagrangean as well as the six Hamiltonian differential equations of the plumbline, in particular in their star form with respect to Marussi gauge.

  12. Modelling airborne gravity data by means of adapted Space-Wise approach

    Science.gov (United States)

    Sampietro, Daniele; Capponi, Martina; Hamdi Mansi, Ahmed; Gatti, Andrea

    2017-04-01

    Regional gravity field modelling by means of remove - restore procedure is nowadays widely applied to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.) in gravimetric geoid determination as well as in exploration geophysics. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are generally adopted. However due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc. airborne data are contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations both in the low and high frequency should be applied to recover valuable information. In this work, a procedure to predict a grid or a set of filtered along track gravity anomalies, by merging GGM and airborne dataset, is presented. The proposed algorithm, like the Space-Wise approach developed by Politecnico di Milano in the framework of GOCE data analysis, is based on a combination of along track Wiener filter and Least Squares Collocation adjustment and properly considers the different altitudes of the gravity observations. Among the main differences with respect to the satellite application of the Space-Wise approach there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too. In the end, the goodness of the procedure is evaluated by means of a test on real data recovering the gravitational signal with a predicted accuracy of about 0.25 mGal.

  13. Gravity Data for Egypt

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (71 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received in...

  14. New massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.

    2012-01-01

    We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.

  15. DMA Antarctic Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (65,164 records) were gathered by various governmental organizations (and academia) using a variety of methods. The data base was received...

  16. Gravity Data for Minnesota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (55,907 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received...

  17. Stability in designer gravity

    International Nuclear Information System (INIS)

    Hertog, Thomas; Hollands, Stefan

    2005-01-01

    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed

  18. Carroll versus Galilei gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2017-03-30

    We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.

  19. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, Ruth M

    2006-01-01

    A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday

  20. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  1. Space-Wise approach for airborne gravity data modelling

    Science.gov (United States)

    Sampietro, D.; Capponi, M.; Mansi, A. H.; Gatti, A.; Marchetti, P.; Sansò, F.

    2017-05-01

    Regional gravity field modelling by means of remove-compute-restore procedure is nowadays widely applied in different contexts: it is the most used technique for regional gravimetric geoid determination, and it is also used in exploration geophysics to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.), which are useful to understand and map geological structures in a specific region. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are usually adopted. However, due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc., airborne data are usually contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations in both the low and high frequencies should be applied to recover valuable information. In this work, a software to filter and grid raw airborne observations is presented: the proposed solution consists in a combination of an along-track Wiener filter and a classical Least Squares Collocation technique. Basically, the proposed procedure is an adaptation to airborne gravimetry of the Space-Wise approach, developed by Politecnico di Milano to process data coming from the ESA satellite mission GOCE. Among the main differences with respect to the satellite application of this approach, there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. The presented solution is suited for airborne data analysis in order to be able to quickly filter and grid gravity observations in an easy way. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too

  2. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  3. On higher derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1987-01-01

    A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt

  4. What Is Gravity?

    Science.gov (United States)

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  5. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  6. Gravity Before Einstein and Schwinger Before Gravity

    Science.gov (United States)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  7. Extended Theories of Gravity

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; De Laurentis, Mariafelicia

    2011-01-01

    Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.

  8. Separation of GRACE geoid time-variations using Independent Component Analysis

    Science.gov (United States)

    Frappart, F.; Ramillien, G.; Maisongrande, P.; Bonnet, M.

    2009-12-01

    Independent Component Analysis (ICA) is a blind separation method based on the simple assumptions of the independence of the sources and the non-Gaussianity of the observations. An approach based on this numerical method is used here to extract hydrological signals over land and oceans from the polluting striping noise due to orbit repetitiveness and present in the GRACE global mass anomalies. We took advantage of the availability of monthly Level-2 solutions from three official providers (i.e., CSR, JPL and GFZ) that can be considered as different observations of the same phenomenon. The efficiency of the methodology is first demonstrated on a synthetic case. Applied to one month of GRACE solutions, it allows to clearly separate the total water storage change from the meridional-oriented spurious gravity signals on the continents but not on the oceans. This technique gives results equivalent as the destriping method for continental water storage for the hydrological patterns with less smoothing. This methodology is then used to filter the complete series of the 2002-2009 GRACE solutions.

  9. Airborne gravity field Measurements - status and developments

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Forsberg, René

    2016-01-01

    English Abstract:DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM or inertial navigation systems) ...

  10. Using borehole measurements with the object of improving the knowledge of upper crust-geodynamic processes

    International Nuclear Information System (INIS)

    Zugravescu, D.; Polonic, G.; Negoita, V.

    2002-01-01

    Nowadays, the Vrancea region is considered a well defined seismo-active area of Europe and by its unaccustomed seismicity represents a serious construction risk over a high-density populated part of the Romanian territory. That is why in the last years the research programs of the Geodynamic Institute were directed on topics related to a better understanding of various geodynamics processes taking place in this zone and a well defined area for study and experimental works - the so called 'Caldarusani-Tulnici Polygon' - was set up. On the other hand, Romania is known as an oil producer since the middle of the 19th century. During about 150 years of certified activity by official documents an important bulk of geophysical works and drillings were achieved. More than 450 wells have been drilled in the depth interval 4000-7025 m, but the borehole inferred geodynamic information was not entirely used till now. With this aim in view, the available borehole data and measurements carried out in the above mentioned geodynamic polygon have been collected and processed. Accurately, a number of 40 wells in the depth interval 5-7 km and 12 wells in the depth interval 6-7 km were selected for our studies. The analyzed documents included customary well logging operations (electric, radioactive, acoustic, thermal etc) recorded by Schlumberger, Dresser and Western Atlas equipment as well as borehole specific data acquired during the drilling and completion-borehole activities. These borehole data and measurements provided the input data to evaluate the following geodynamic parameters: 1. Pressure (overburden pressure at specific depths, pressure of the fluid filling the rock pore volume as well as rock skeleton-fracture gradient); 2. Stress (the ellipsoid of stresses was defined by giving the directions of its three orthogonal axes and the corresponding stress magnitudes values S1, S2, S3, known as principal stresses); 3. Temperature (the temperature and geothermal gradients at 5

  11. NEW TYPE OF ELASTIC ROTATIONAL WAVES IN GEO-MEDIUM AND VORTEX GEODYNAMICS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2010-01-01

    Full Text Available Natural-science concepts of rotational movements and the ‘lumpy’ structure of medium are reviewed with a focus on key aspects. Through using torsional traps for hunting and «implementing» mechanical torque for ignition, Homo sapiens developed to man. Vortex movements «impregnated» in spiral structures of shells and torsional movements of toothy whales and fish were intuitively perceived by man as major stable movements of the environment. Based on the above, the ancient philosophy established the concept of the uniform world represented by atomic («noncuttable» structure of medium and vortex movements of ether. Based on conclusive arguments stated by R. Dekart, H. Helmgolz, Lord Kelvin and others within the framework of classical physics and in the first half of the 20th century by scientists in quantum physics and cosmogony, both «quantum structure» («lumpiness» and rotation («vorticity» are integral features of matter – space – time throughout the whole range from elementary particles to galaxies and galactic clusters.Nowadays researchers in natural sciences, particularly in the Earth sciences, call attention again to the problem of structure of matter and its movements. In the 1920s, Chinese geologist Li Siguang established fundamentals of vortex geodynamics. In the second half of the 20th century, Li Siguan’s concepts were developed by geologists O.I. Slenzak and I.V. Melekestsev. Geologist A.V. Peive, mechanic L.I. Sedov and physicist M.A. Sadovsky put forward a concept of block structure of the geo-medium (geological and geophysical medium and proposed a justified assumption that such blocks can move by own torque. This method of movement is confirmed by results of geological and tectonophysical studies, as well as instrumental geophysical measurements obtained from a variety of stations and focal zones of strong earthquakes. Many researchers, including W. Elsasser and V.N. Nikolaevsky, develop fundamentals of

  12. Quantum Gravity Experiments

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2015-10-01

    Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.

  13. Gravity and strings

    CERN Document Server

    Ortín, Tomás

    2015-01-01

    Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

  14. Solitons in Newtonian gravity

    International Nuclear Information System (INIS)

    Goetz, G.

    1988-01-01

    It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)

  15. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  16. No slip gravity

    Science.gov (United States)

    Linder, Eric V.

    2018-03-01

    A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.

  17. The quantization of gravity

    CERN Document Server

    Gerhardt, Claus

    2018-01-01

    A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...

  18. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  19. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  20. Airborne Gravity: NGS' Gravity Data for AN08 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  1. Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  2. Airborne Gravity: NGS' Gravity Data for EN01 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  3. Airborne Gravity: NGS' Gravity Data for AN03 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  4. Airborne Gravity: NGS' Gravity Data for EN06 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...

  5. Airborne Gravity: NGS' Gravity Data for ES01 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...

  6. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  7. Principles of the applied geodynamics of explosions. Osnovy prikladnoi geodinamiki vzryva

    Energy Technology Data Exchange (ETDEWEB)

    Vovk, A A

    1976-01-01

    The basic theoretical aspects are presented on the dynamics of cohesive water-saturated and rocky soil as well as experimental results on studies of shock wave parameters in various media during the detonation of concentrated and extended exhaust and underground charges. Particular attention is given to the practical application of various geodynamic problems to the needs of mining operations, hydro-reclamation, industrial and road construction. The book is designed for scientific and engineering-technical personnel at various design and production enterprises. It can also be used as an aid to graduate students and students in appropriate fields of specialization at higher institutions of learning.

  8. Geodynamic reactions to recent tectonic events observed on selected sites monitored in Slovakia

    Czech Academy of Sciences Publication Activity Database

    Petro, L.; Košťák, Blahoslav; Stemberk, Josef; Vlčko, J.

    2011-01-01

    Roč. 8, č. 4 (2011), s. 453-467 ISSN 1214-9705 R&D Projects: GA MŠk OC 625.10; GA ČR GA205/06/1828; GA ČR GA205/09/2024; GA AV ČR IAA300120905 Institutional research plan: CEZ:AV0Z30460519 Keywords : finite pressure pulse * geodynamic monitoring * tectonic process Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/04_11/7_Petro.pdf

  9. The tholeiitic dolerites from Gaujacq and St-Pandelon (Landes, France). Petrology, geochemistry and geodynamic framework

    International Nuclear Information System (INIS)

    Demant, A.; Morata, D.

    1996-01-01

    Sills of basalts, with ophitic textures, are present in the Triassic diapirs of Gaujacq and St-Pandelon (Landes). These lavas were not affected by the Pyrenean metamorphic event; their primary mineralogy is therefore well preserved and comprises olivine, clinopyroxene, plagioclase and oxides. The geochemical signature of these basalts is typical of continental tholeiites. Parental magmas are likely to be issued from an enriched sub-continental lithospheric mantle source. Such characteristics are in accordance with the geodynamic framework which corresponds to the first stages of the North Atlantic rifting. (authors). 47 refs., 9 figs., 13 tabs., 1 photo

  10. Variations of the Earth's rotation rate and cyclic processes in geodynamics

    Directory of Open Access Journals (Sweden)

    B.W. Levin

    2017-05-01

    Full Text Available The authors analyzed the relationship between variations of the Earth's rotation rate and the geodynamic processes within the Earth's body, including seismic activity. The rotation rate of a planet determines its uniaxial compression along the axis of rotation and the areas of various surface elements of the body. The Earth's ellipticity variations, caused naturally by the rotation rate variations, are manifested in vertical components of precise GPS measurements. Comparative analysis of these variations is considered in view of modern theoretical ideas concerning the Earth's figure. The results justify further research that is of interest for improvement of space systems and technologies.

  11. Magmatic Complexes of the Vetlovaya Marginal Sea Paleobasin (Kamchatka): Composition and Geodynamic Setting

    Science.gov (United States)

    Tsukanov, N. V.; Saveliev, D. P.; Kovalenko, D. V.

    2018-01-01

    This study presents new geochemical and isotope data on igneous rocks of the Vetlovaya marginal sea paleobasin (part of the Late Mesozoic-Cenozoic margin of the northwestern Pacific). The results show that the rock complexes of this marginal sea basin comprise igneous rocks with geochemical compositions similar to those of normal oceanic tholeiites, enriched transitional tholeiites, and ocean island and back-arc basin basalts. Island-arc tholeiitic basalts are present only rarely. The specific geochemical signatures of these rocks are interpreted as being related to mantle heterogeneity and the geodynamic conditions in the basin.

  12. New Mars free-air and Bouguer gravity: Correlation with topography, geology and large impact basins

    Science.gov (United States)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field (MGM635), derived at the Goddard Space Flight Center, with global topography, geology, and the distribution of large impact basins was compared. The free-air gravity anomalies were derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and have a spatial resolution of 250-300 km. Bouguer anomalies were calculated using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface. Rotational flattening was removed using a moment of inertia of 0.365 and the corrections from Table B2 of Sleep and Phillips. Crustal density and mean density were assumed to be 2.9 and 3.93 gm/cm(sup 3). The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. Comparisons with global geology use a simplified map with about 1/3 the number of units on the current maps. For correlation with impact basins, the recent compilation by Schultz and Frey was used.

  13. Low-degree gravity change from GPS data of COSMIC and GRACE satellite missions

    Science.gov (United States)

    Lin, Tingjung; Hwang, Cheinway; Tseng, Tzu-Pang; Chao, B. F.

    2012-01-01

    This paper demonstrates estimation of time-varying gravity harmonic coefficients from GPS data of COSMIC and GRACE satellite missions. The kinematic orbits of COSMIC and GRACE are determined to the cm-level accuracy. The NASA Goddard's GEODYN II software is used to model the orbit dynamics of COSMIC and GRACE, including the effect of a static gravity field. The surface forces are estimated per one orbital period. Residual orbits generated from kinematic and reference orbits serve as observables to determine the harmonic coefficients in the weighted-constraint least-squares. The monthly COSMIC and GRACE GPS data from September 2006 to December 2007 (16 months) are processed to estimate harmonic coefficients to degree 5. The geoid variations from the GPS and CSR RL04 (GRACE) solutions show consistent patterns over space and time, especially in regions of active hydrological changes. The monthly GPS-derived second zonal coefficient closely resembles the SLR-derived and CSR RL04 values, and third and fourth zonal coefficients resemble the CSR RL04 values.

  14. Impact of combining GRACE and GOCE gravity data on ocean circulation estimates

    Directory of Open Access Journals (Sweden)

    T. Janjić

    2012-02-01

    Full Text Available With the focus on the Southern Ocean circulation, results of assimilation of multi-mission-altimeter data and the GRACE/GOCE gravity data into the finite element ocean model (FEOM are investigated. We use the geodetic method to obtain the dynamical ocean topography (DOT. This method combines the multi-mission-altimeter sea surface height and the GRACE/GOCE gravity field. Using the profile approach, the spectral consistency of both fields is achieved by filtering the sea surface height and the geoid. By combining the GRACE and GOCE data, a considerably shorter filter length can be used, which results in more DOT details. We show that this increase in resolution of measured DOT carries onto the results of data assimilation for the surface data. By assimilating only absolute dynamical topography data using the ensemble Kalman filter, we were able to improve modeled fields. Results are closer to observations which were not used for assimilation and lie outside the area covered by altimetry in the Southern Ocean (e.g. temperature of surface drifters or deep temperatures in the Weddell Sea area at 800 m depth derived from Argo composite.

  15. Miniaturised Gravity Sensors for Remote Gravity Surveys.

    Science.gov (United States)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.

    2016-12-01

    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  16. Surfing surface gravity waves

    Science.gov (United States)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  17. Towards a quantum gravity

    International Nuclear Information System (INIS)

    Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.

    2011-01-01

    The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)

  18. Terrestrial gravity data analysis for interim gravity model improvement

    Science.gov (United States)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  19. The temporal subsoil radon variation as indicator and forerunner of the geodynamical catastrophes: Experience of long period experimental investigations

    International Nuclear Information System (INIS)

    Rudakov, V.P.

    1996-01-01

    The emanation (radon) method was one of the non-traditional methods, which being used for the radiometric prospecting, have been used as for the investigations of the geodynamical processes, (earthquakes, volcano eruption e.a.), so for investigations of the local geodynamical processes such as landslips, rock burstings and gas in the mines, provoked seismicity and so on. Now this method very effectively is used for the investigation of the different processes in civil and industrial building, structure-geodynamical mapping on the prognostic grounds and of the oil-gas deposits, in prediction of the earthquakes and in the control of the radioecological situation of the atomic stations environments. (author). 10 refs, 7 figs

  20. A Study on Earthquake-Related Geoid Deformation at Beijing-Tangshan and West Yunnan During 1985-1998

    Science.gov (United States)

    Li, Z.

    2006-05-01

    Based on the determination of the non-tidal variations in the deflection of the vertical (or PlumbLine Variations, PLVs) at Beijing astronomical observatory, the work has been extended into a determination of the PLV array within a 4 x 1 (degree) area at Beijing-Tangshan. By repeated observations of the gravimetric network, 46 batches of this PLV array, and consequently the relative geoid deformation (RGD), of the area during 1987- 1998 have been determined. Together with the 23 earthquakes (Mb > 4.0) in the area during the same period, a comparison is done between an earthquake event and the related RGD. Similar study has also been carried out for the case in West Yunnan, where 32 batches of repeated gravimetric observations of the network there during 1985-1998 have been performed from which the 32 PLV array, as well as the corresponding RGD, of a 2 x 2 (dergee) area has been calculated. A comparison is also done at West Yunnan between an earthquake event and its related RGD. It is interesting to see that the earthquake and the RGD measured are related. It appears that there is usually a detectable RGD nearby well before an earthquake, but a contrary RGD afterwards. The study provides us a new approach in geodesy on the RGD determination, as well as a new measurable phenomenon in an earthquake event at Beijing-Tangshan and West Yunnan. The study also provides us evidence in which the existence of the PLVs, as well as the corresponding RGD, at Beijing- Tangshan and West Yunnan becomes more conclusive. Their potential usage in geodesy and seismology, as well as in other related sciences, is now expected.

  1. Gravity Data for South America

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...

  2. Interior Alaska Gravity Station Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...

  3. Gravity Station Data for Spain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  4. Gravity Station Data for Portugal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  5. Comparison of remove-compute-restore and least squares modification of Stokes' formula techniques to quasi-geoid determination over the Auvergne test area

    DEFF Research Database (Denmark)

    Yildiz, H.; Forsberg, René; Ågren, J.

    2012-01-01

    The remove-compute-restore (RCR) technique for regional geoid determination implies that both topography and low-degree global geopotential model signals are removed before computation and restored after Stokes' integration or Least Squares Collocation (LSC) solution. The Least Squares Modification...... area. All methods showed a reasonable agreement with GPS-levelling data, in the order of a 3-3.5 cm in the central region having relatively smooth topography, which is consistent with the accuracies of GPS and levelling. When a 1-parameter fit is used, the FFT method using kernel modification performs...

  6. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  7. Colossal creations of gravity

    DEFF Research Database (Denmark)

    Skielboe, Andreas

    Gravity governs the evolution of the universe on the largest scales, and powers some of the most extreme objects at the centers of galaxies. Determining the masses and kinematics of galaxy clusters provides essential constraints on the large-scale structure of the universe, and act as direct probes...

  8. A Trick of Gravity

    Science.gov (United States)

    Newburgh, Ronald

    2010-01-01

    It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.

  9. Discrete Lorentzian quantum gravity

    NARCIS (Netherlands)

    Loll, R.

    2000-01-01

    Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated

  10. Loop quantum gravity

    International Nuclear Information System (INIS)

    Pullin, J.

    2015-01-01

    Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)

  11. A finite quantum gravity

    International Nuclear Information System (INIS)

    Meszaros, A.

    1984-05-01

    In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)

  12. Venus - Ishtar gravity anomaly

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.

    1984-01-01

    The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.

  13. Torsion induces gravity

    International Nuclear Information System (INIS)

    Aros, Rodrigo; Contreras, Mauricio

    2006-01-01

    In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively

  14. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, J.W.

    1992-01-01

    After a brief introduction to Regge calculus, some examples of its application is quantum gravity are described in this paper. In particular, the earliest such application, by Ponzano and Regge, is discussed in some detail and it is shown how this leads naturally to current work on invariants of three-manifolds

  15. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  16. Seismically imaged shallow and deep crustal structure and potential field anomalies across the Eastern Dharwar Craton, south Indian shield: Possible geodynamical implications

    Science.gov (United States)

    Pandey, O. P.; Chandrakala, K.; Vasanthi, A.; Kumar, K. Satish

    2018-05-01

    The time-bound crustal evolution and subsequent deformation of the Cuddapah basin, Nellore Schist Belt and Eastern Ghats terrain of Eastern Dharwar Craton, which have undergone sustained geodynamic upheavals since almost 2.0 billion years, remain enigmatic. An attempt is made here to integrate newly available potential field data and other geophysical anomalies with deep seismic structure, to examine the generative mechanism of major crustal features, associated with this sector. Our study indicates that the initial extent of the Cuddapah basin sedimentation may have been much larger, extending by almost 50-60 km west of Tadipatri during Paleoproterozoic period, which subsequently shrank due to massive erosion following thermal uplift, caused by SW Cuddapah mantle plume. Below this region, crust is still quite warm with Moho temperatures exceeding 500 °C. Similarly, Nallamalai Fold Belt rocks, bounded by two major faults and extremely low gravity, may have occupied a large terrain in western Cuddapah basin also, before their abrasion. No geophysical signatures of thrusting are presently seen below this region, and thus it could not be an alien terrain either. In contrast, Nellore Schist Belt is associated with strikingly high positive gravity, possibly caused by a conspicuous horst structure and up dipping mafic crustal layers underneath, that resulted due to India-east Antarctica collision after the cessation of prolonged subduction (1.6-0.95 Ga). Further, the crustal seismic and gravity signatures would confirm presence of a totally distinct geological terrain east of the Cuddapah basin, but the trace of Eastern Ghats Belt is all together missing. Instead, all the geophysical signatures, point out to presence of a Proterozoic sedimentary terrain, east of Nellore Schist Belt. It is likely that the extent of Prorerozoic sedimentation was much larger than thought today. In addition, presence of a seismically detected Gondwana basin over Nellore Schist Belt, apart

  17. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  18. Early signs of geodynamic activity before the 2011-2012 El Hierro eruption

    Science.gov (United States)

    López, Carmen; García-Cañada, Laura; Martí, Joan; Domínguez Cerdeña, Itahiza

    2017-04-01

    The potential relation between mantle plume dynamics, regional tectonics and eruptive activity in the Canary Islands has not been studied yet through the analysis of long-time series of geophysical observational data. The existence of highly reliable seismic and GNSS data has enabled us to study from 1996 to 2014 the geodynamic evolution of the North Atlantic Azores-Gibraltar region and its relationship with recent volcanic activity in El Hierro (Canary Islands, Spain). We compiled a new and unified regional seismic catalog and used long time-series of surface displacements recorded by permanent GNSS stations in the region. A regional- and local-scale analysis based on these data enabled us to identify signs of anomalous tectonic activity from 2003 onwards, whose intensity increased in 2007 and finally accelerated three months before the onset of the volcanic eruption on El Hierro in October 2011. This activity includes a regional extension and an uplift process that affects the southern Iberian Peninsula, NW Africa, and the Canary Islands. We interpret these observations as early signs of the geodynamic activity, which led to El Hierro eruption and the subsequent episodes of magma intrusion. Results point to the significant contribution of the mantle plume dynamics (i.e. external forces) in this renewed volcanic activity in the Canary Islands and emphasize the role of mantle dynamics in controlling regional tectonics.

  19. Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides

    Science.gov (United States)

    de Leeuw, Arjan; Mandic, Oleg; Krijgsman, Wout; Kuiper, Klaudia; Hrvatović, Hazim

    2013-04-01

    The geodynamic evolution of the Dinaride Mountains of southeastern Europe is relatively poorly understood, especially in comparison with the neighbouring Alps and Carpathians. We have constructed a new chronostratigraphy for the post-orogenic intra-montane basins of the Central Dinarides based on paleomagnetic and 40Ar/39Ar age data. Our results provide time constraints on the formation of these basins and elucidate their subsequent evolution. This is a fundamental step towards a better understanding of the late stage geodynamic evolution of the Central Dinarides. Our paleomagnetic results moreover indicate that the Dinarides have not experienced significant tectonic rotation since the late Oligocene. This implies that the Dinarides were decoupled from the adjacent Adria and the Tisza-Dacia Mega-Units that both underwent major rotation. We provide a reference frame for our rotation results through a review of Late Jurassic to Miocene paleomagnetic data, which elucidates spatial and tectonic rotation patterns in the Adria-Dinarides collision zone. The obtained results significantly improve our insight in the evolution of the Central Dinarides and help reconcile structural geological and paleomagnetic rotation estimates.

  20. Geodynamic evolution of the Taiwan-Luzon-Mindoro belt since the late eocene

    Science.gov (United States)

    Stephan, Jean François; Blanchet, René; Rangin, Claude; Pelletier, Bernard; Letouzey, Jean; Muller, Carla

    1986-05-01

    The structural framework of the Taiwan-Luzon-Mindoro belt (or festoon) is described, following three major transects: the Luzon transect with active subduction and active island arc; the Taiwan transect with active collision; the Mindoro transect with active subduction and inactive collision. Based on this geological study and on available geophysical data, a model for the geodynamic evolution of this portion of the Philippine Sea and Eurasia Plates boundary is proposed in a succession of reconstructions between the Late Eocene and the Present. The major geodynamic events are: (1) beginning of the opening of the South China Sea (S.C.S.) in Lower Oligocene times, contemporaneous with obduction of the Zambales and Angat ophiolites on Luzon. (2) subduction of a Mesozoic (?) oceanic basin along the proto-Manila trench from the Upper Oligocene to the Lower Miocene. (3) obduction of the South China Sea oceanic crust onto the Chinese and Reed Bank—Calamian passive margins in Middle Miocene time (14-15 Ma) related to a major kinematic reorganization (end of opening of the S.C.S.). (4) beginning of collision between the Luzon microblock and the two margins of the S.C.S. in the Upper Miocene (~ 7 Ma); collision is still active in Taiwan whereas it stopped in Mindoro during the Pliocene.

  1. Even-dimensional topological gravity from Chern-Simons gravity

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.

    2009-01-01

    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  2. Using an Optionally Piloted Aircraft for Airborne Gravity Observations with the NOAA GRAV-D Project

    Science.gov (United States)

    Youngman, M.; Johnson, J. A.; van Westrum, D.; Damiani, T.

    2017-12-01

    The U.S. National Geodetic Survey's (NGS) Gravity for the Redefintion of the American Vertical Datum (GRAV-D) project is collecting airborne gravity data to support a 1 cm geoid. Started in 2008, this project will collect airborne gravity data over the entire U.S. and territories by 2022. As of June 30, 2017, the project was almost 62% complete. With recent technological developments, NGS has been exploring using unmanned aircraft for airborne gravity measurements. This presentation will focus on results from two surveys over the U.S. Appalachian and Rocky Mountains using the Aurora Centaur Optionally Piloted Aircraft and the Micro-g Lacoste Turnkey Airborne Gravimeter System 7 (TAGS7). Collecting high quality data as well as dealing with remote locations has been a challenge for the GRAV-D project and the field of airborne gravity in general. Unmanned aircraft could potentially improve data quality, handle hard to reach locations, and reduce pilot fatigue. The optionally piloted Centaur aircraft is an attractive option because it is not restricted in U.S. airspace and delivers high quality gravity data. Specifically, the Centaur meets U.S. Federal Aviation Administration regulations for Unmanned Aircraft Systems (UAS) by using a safety pilot on board to maintain line of sight and the ability to take control in the event of an emergency. Even though this is a sizeable UAS, most traditional gravimeters are too large and heavy for the platform. With a smaller and lighter design, the TAGS7 was used for its ability to conform to the aircraft's size restrictions, with the added benefit of upgraded performance capabilities. Two surveys were performed with this aircraft and gravimeter, one in April and one in August to September of 2017. Initial results indicate that the high-gain, fast response of the Centaur autopilot (optimized for flights without passengers), coupled with the full-force feedback sensor of the TAGS7, provides superior performance in all conditions, and

  3. New design and facilities for the International Database for Absolute Gravity Measurements (AGrav): A support for the Establishment of a new Global Absolute Gravity Reference System

    Science.gov (United States)

    Wziontek, Hartmut; Falk, Reinhard; Bonvalot, Sylvain; Rülke, Axel

    2017-04-01

    ://agrav.bkg.bund.de/agrav-meta/ Wilmes, H., H. Wziontek, R. Falk, S. Bonvalot (2009). AGrav - the New Absolute Gravity Database and a Proposed Cooperation with the GGP Project. J. of Geodynamics, 48, pp. 305-309. doi:10.1016/j.jog.2009.09.035. Wziontek, H., H. Wilmes, S. Bonvalot (2011). AGrav: An international database for absolute gravity measurements. In Geodesy for Planet Earth (S. Kenyon at al. eds). IAG Symposia, 136, 1035-1040, Springer, Berlin. 2011. doi:10.1007/978-3-642-20338-1_130.

  4. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  5. Noise Reduction, Atmospheric Pressure Admittance Estimation and Long-Period Component Extraction in Time-Varying Gravity Signals Using Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Linsong Wang

    2015-01-01

    Full Text Available Time-varying gravity signals, with their nonlinear, non-stationary and multi-scale characteristics, record the physical responses of various geodynamic processes and consist of a blend of signals with various periods and amplitudes, corresponding to numerous phenomena. Superconducting gravimeter (SG records are processed in this study using a multi-scale analytical method and corrected for known effects to reduce noise, to study geodynamic phenomena using their gravimetric signatures. Continuous SG (GWR-C032 gravity and barometric data are decomposed into a series of intrinsic mode functions (IMFs using the ensemble empirical mode decomposition (EEMD method, which is proposed to alleviate some unresolved issues (the mode mixing problem and the end effect of the empirical mode decomposition (EMD. Further analysis of the variously scaled signals is based on a dyadic filter bank of the IMFs. The results indicate that removing the high-frequency IMFs can reduce the natural and man-made noise in the data, which are caused by electronic device noise, Earth background noise and the residual effects of pre-processing. The atmospheric admittances based on frequency changes are estimated from the gravity and the atmospheric pressure IMFs in various frequency bands. These time- and frequency-dependent admittance values can be used effectively to improve the atmospheric correction. Using the EEMD method as a filter, the long-period IMFs are extracted from the SG time-varying gravity signals spanning 7 years. The resulting gravity residuals are well correlated with the gravity effect caused by the _ polar motion after correcting for atmospheric effects.

  6. Quantum gravity from noncommutative spacetime

    International Nuclear Information System (INIS)

    Lee, Jungjai; Yang, Hyunseok

    2014-01-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  7. Quantum gravity from noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2014-12-15

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  8. The Crustal Structure of the North-South Earthquake Belt in China Revealed from Deep Seismic Soundings and Gravity Data

    Science.gov (United States)

    Zhao, Yang; Guo, Lianghui; Shi, Lei; Li, Yonghua

    2018-01-01

    The North-South earthquake belt (NSEB) is one of the major earthquake regions in China. The studies of crustal structure play a great role in understanding tectonic evolution and in evaluating earthquake hazards in this region. However, some fundamental crustal parameters, especially crustal interface structure, are not clear in this region. In this paper, we reconstructed the crustal interface structure around the NSEB based on both the deep seismic sounding (DSS) data and the gravity data. We firstly reconstructed the crustal structure of crystalline basement (interface G), interface between upper and lower crusts (interface C) and Moho in the study area by compiling the results of 38 DSS profiles published previously. Then, we forwardly calculated the gravity anomalies caused by the interfaces G and C, and then subtracted them from the complete Bouguer gravity anomalies, yielding the regional gravity anomalies mainly due to the Moho interface. We then utilized a lateral-variable density interface inversion technique with constraints of the DSS data to invert the regional anomalies for the Moho depth model in the study area. The reliability of our Moho depth model was evaluated by comparing with other Moho depth models derived from other gravity inversion technique and receiver function analysis. Based on our Moho depth model, we mapped the crustal apparent density distribution in the study area for better understanding the geodynamics around the NSEB.

  9. Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. Ph.D. Thesis

    Science.gov (United States)

    Sheehan, Anne Francis

    1991-01-01

    Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.

  10. The geodynamic evolution of the eastern Sierras Pampeanas based on geochemical, Sm-Nd, Pb-Pb and SHRIMP data

    DEFF Research Database (Denmark)

    Drobe, M; Lopez de Luchi, M; Steenken, A

    2011-01-01

    , have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm–Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Co´rdoba when compared...

  11. A review of analogue modelling of geodynamic processes: Approaches, scaling, materials and quantification, with an application to subduction experiments

    NARCIS (Netherlands)

    Schellart, Wouter P.; Strak, Vincent

    2016-01-01

    We present a review of the analogue modelling method, which has been used for 200 years, and continues to be used, to investigate geological phenomena and geodynamic processes. We particularly focus on the following four components: (1) the different fundamental modelling approaches that exist in

  12. Cosmological Tests of Gravity

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.

  13. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  14. Antimatter gravity experiment

    International Nuclear Information System (INIS)

    Brown, R.E.; Camp, J.B.; Darling, T.W.

    1990-01-01

    An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development

  15. Lectures on Quantum Gravity

    CERN Document Server

    Gomberoff, Andres

    2006-01-01

    The 2002 Pan-American Advanced Studies Institute School on Quantum Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile, January 4-14, 2002. The school featured lectures by ten speakers, and was attended by nearly 70 students from over 14 countries. A primary goal was to foster interaction and communication between participants from different cultures, both in the layman’s sense of the term and in terms of approaches to quantum gravity. We hope that the links formed by students and the school will persist throughout their professional lives, continuing to promote interaction and the essential exchange of ideas that drives research forward. This volume contains improved and updated versions of the lectures given at the School. It has been prepared both as a reminder for the participants, and so that these pedagogical introductions can be made available to others who were unable to attend. We expect them to serve students of all ages well.

  16. Topics in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lamon, Raphael

    2010-06-29

    Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem

  17. Tensor Galileons and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)

    2017-03-13

    The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.

  18. Topics in quantum gravity

    International Nuclear Information System (INIS)

    Lamon, Raphael

    2010-01-01

    Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem. Furthermore, we

  19. Simplicial quantum gravity

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1985-01-01

    Simplicial approximation and the ideas associated with the Regge calculus provide a concrete way of implementing a sum over histories formulation of quantum gravity. A simplicial geometry is made up of flat simplices joined together in a prescribed way together with an assignment of lengths to their edges. A sum over simplicial geometries is a sum over the different ways the simplices can be joined together with an integral over their edge lengths. The construction of the simplicial Euclidean action for this approach to quantum general relativity is illustrated. The recovery of the diffeomorphism group in the continuum limit is discussed. Some possible classes of simplicial complexes with which to define a sum over topologies are described. In two dimensional quantum gravity it is argued that a reasonable class is the class of pseudomanifolds

  20. Instantons and gravity

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1996-01-01

    The problems of application of nonperturbative quantization methods in the theories of the gauge fields and gravity are discussed. Unification of interactions is considered in the framework of the geometrical gauge fields theory. Vacuum conception in the unified theory of interactions and instantons role in the vacuum structure are analyzed. The role of vacuum solutions of Einstein equations in definition of the gauge field vacuum is demonstrated

  1. Gravity, Time, and Lagrangians

    Science.gov (United States)

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  2. Spontaneously generated gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1981-01-01

    We show, following a recent suggestion of Adler, that gravity may arise as a consequence of dynamical symmetry breaking in a scale- and gauge-invariant world. Our calculation is not tied to any specific scheme of dynamical symmetry breaking. A representation for Newton's coupling constant in terms of flat-space quantities is derived. The sign of Newton's coupling constant appears to depend on infrared details of the symmetry-breaking mechanism

  3. Loop Quantum Gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  4. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  5. Semiclassical unimodular gravity

    International Nuclear Information System (INIS)

    Fiol, Bartomeu; Garriga, Jaume

    2010-01-01

    Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately

  6. Gnss Geodetic Monitoring as Support of Geodynamics Research in Colombia, South America

    Science.gov (United States)

    Mora-Paez, H.; Acero-Patino, N.; Rodriguez-Zuluaga, J. S.; Diederix, H.; Bohorquez-Orozco, O. P.; Martinez-Diaz, G. P.; Diaz-Mila, F.; Giraldo-Londono, L. S.; Cardozo-Giraldo, S.; Vasquez-Ospina, A. F.; Lizarazo, S. C.

    2013-05-01

    To support the geodynamics research at the northwestern corner of South America, GEORED, the acronym for "Geodesia: Red de Estudios de Deformación" has been adopted for the Project "Implementation of the National GNSS Network for Geodynamics" carried out by the Colombian Geological Survey, (SGC), formerly INGEOMINAS. Beginning in 2007, discussions within the GEORED group led to a master plan for the distribution of the base permanent GPS/GNSS station array and specific areas of interest for campaign site construction. The use of previously identified active faults as preferred structures along which stresses are transferred through the deformational area led to the idea of segmentation of the North Andes within Colombia into 20 tectonic sub-blocks. Each of the 20 sub-blocks is expected to have, at least, three-four permanent GPS/GNSS stations within the block along with construction of campaign sites along the boundaries. Currently, the GEORED Network is managing 46 continuously including: 40 GEORED GPS/GNSS continuously operating stations; 4 GNSS continuously operating stations provided by the COCONet (Continuously Operating Caribbean GPS Observational Network) Project; the Bogotá IGS GPS station (BOGT), installed in 1994 under the agreement between JPL-NASA and the SGC; and the San Andres Island station, installed in 2007 under the MOU between UCAR and the SGC. In addition to the permanent installations, more than 230 GPS campaign sites have been constructed and are being occupied one time per year. The Authority of the Panama Canal and the Escuela Politecnica de Quito have also provided data of 4 and 5 GPS/GNSS stations respectively. The GPS data are processed using the GIPSY-OASIS II software, and the GPS time series of daily station positions give fundamental information for both regional and local geodynamics studies. Until now, we have obtained 100 quality vector velocities for Colombia, 23 of them as part of the permanent network. The GPS/GNSS stations

  7. Autonomous geodynamics of the Pamir-Tien Shan junction zone from seismology data

    Science.gov (United States)

    Lukk, A. A.; Shevchenko, V. I.; Leonova, V. G.

    2015-11-01

    The geodynamics of the Tajik Depression, the junction zone of the Pamirs and Tien Shan, is typically considered in the context of plate tectonic concept, which implies intense subhorizontal compression of the zone resulting from the subduction of the Indian and Eurasian lithospheric plates. This convergence has been reliably confirmed by the GPS measurements. However, the joint analysis of the geological structure, seismicity, and geodimeter measurements conducted during a few years at the Garm geodynamical testing site of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, demonstrates a widening of the Tajik Depression instead of its shortening, as should be expected from the subhorizontal compression predominant in the present-day stress-state of this region. This conclusion, together with the data from the other regions, suggests that, along with the plate tectonic mechanisms, there are also other, local, autonomous drivers that contribute to the tectogenesis of this region. Besides, the probable existence of these autonomous sources within the Tajik Depression directly follows from the seismology data. Among them is the crustal spreading within the depression suggested by the seismotectonic displacements in the focal mechanisms of the earthquakes. These displacements are directed in different azimuths off the axial's most subsided part of the depression at a depth of 20-30 km. Above this region the distribution of seismotectonic deformations (STD) is chaotic. This pattern of deformation is barely accounted for by a simple model of subhorizontal compression of the Earth's crust in the region. In our opinion, these features of the seismotectonic deformation in the crust within the studied part of the Tajik Depression is probably associated with the gain in the volume of the rocks due to the inflow of the additional material, which is supplied from the bottom crust or upper mantle by the deep fluids. This increase in the rock volume

  8. MIGRATION OF SEISMIC AND VOLCANIC ACTIVITY AS DISPLAY OF WAVE GEODYNAMIC PROCESS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2012-01-01

    Full Text Available Publications about the earthquake foci migration have been reviewed. An important result of such studies is establishment of wave nature of seismic activity migration that is manifested by two types of rotational waves; such waves are responsible for interaction between earthquakes foci and propagate with different velocities. Waves determining long-range interaction of earthquake foci are classified as Type 1; their limiting velocities range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks and aftershocks of individual earthquakes are classified as Type 2; their velocities range from 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two types of migration waves correspond to slow and fast tectonic waves. The most complete data on earthquakes (for a period over 4.1 million of years and volcanic eruptions (for 12 thousand years of the planet are consolidated in a unified systematic format and analyzed by methods developed by the authors. For the Pacific margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three most active zones of the Earth, new patterns of spatial and temporal distribution of seismic and volcanic activity are revealed; they correspond to Type 1 of rotational waves. The wave nature of the migration of seismic and volcanic activity is confirmed. A new approach to solving problems of geodynamics is proposed with application of the data on migration of seismic and volcanic activity, which are consolidated in this study, in combination with data on velocities of movement of tectonic plate boundaries. This approach is based on the concept of integration of seismic, volcanic and tectonic processes that develop in the block geomedium and interact with each other through rotating waves with a symmetric stress tensor. The data obtained in this study give grounds to suggest that a geodynamic value, that is mechanically analogous to an impulse

  9. StagBL : A Scalable, Portable, High-Performance Discretization and Solver Layer for Geodynamic Simulation

    Science.gov (United States)

    Sanan, P.; Tackley, P. J.; Gerya, T.; Kaus, B. J. P.; May, D.

    2017-12-01

    StagBL is an open-source parallel solver and discretization library for geodynamic simulation,encapsulating and optimizing operations essential to staggered-grid finite volume Stokes flow solvers.It provides a parallel staggered-grid abstraction with a high-level interface in C and Fortran.On top of this abstraction, tools are available to define boundary conditions and interact with particle systems.Tools and examples to efficiently solve Stokes systems defined on the grid are provided in small (direct solver), medium (simple preconditioners), and large (block factorization and multigrid) model regimes.By working directly with leading application codes (StagYY, I3ELVIS, and LaMEM) and providing an API and examples to integrate with others, StagBL aims to become a community tool supplying scalable, portable, reproducible performance toward novel science in regional- and planet-scale geodynamics and planetary science.By implementing kernels used by many research groups beneath a uniform abstraction layer, the library will enable optimization for modern hardware, thus reducing community barriers to large- or extreme-scale parallel simulation on modern architectures. In particular, the library will include CPU-, Manycore-, and GPU-optimized variants of matrix-free operators and multigrid components.The common layer provides a framework upon which to introduce innovative new tools.StagBL will leverage p4est to provide distributed adaptive meshes, and incorporate a multigrid convergence analysis tool.These options, in addition to a wealth of solver options provided by an interface to PETSc, will make the most modern solution techniques available from a common interface. StagBL in turn provides a PETSc interface, DMStag, to its central staggered grid abstraction.We present public version 0.5 of StagBL, including preliminary integration with application codes and demonstrations with its own demonstration application, StagBLDemo. Central to StagBL is the notion of an

  10. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  11. Venus gravity fields

    Science.gov (United States)

    Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.

    1981-01-01

    Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.

  12. Polar gravity fields from GOCE and airborne gravity

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan

    2011-01-01

    Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...

  13. Gravity signatures of terrane accretion

    Science.gov (United States)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  14. Geodynamic pattern of the West Bohemia region based on permanent GPS measurements

    Czech Academy of Sciences Publication Activity Database

    Schenk, Vladimír; Schenková, Zdeňka; Jechumtálová, Zuzana

    2009-01-01

    Roč. 53, č. 3 (2009), s. 329-341 ISSN 0039-3169. [West-Bohemia/Vogtland international workshop "Geodynamics of Earthquake Swarm Areas" /8./. Františkovy Lázně, 16.10.2007-19.10.2007] R&D Projects: GA MŠk(CZ) LC506; GA MŠk 1P05ME781; GA AV ČR IAA300460507; GA AV ČR 1QS300460551 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30120515 Keywords : GPS data * horizontal and vertical velocities * West Bohemia Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.000, year: 2009

  15. Pre-collisional geodynamics of the Mediterranean Sea: the Mediterranean Ridge and the Tyrrhenian Sea

    Directory of Open Access Journals (Sweden)

    E. Chaumillon

    1997-06-01

    Full Text Available Today the Mediterranean Sea consists of a series of small-sized and almost geographically disconnected oceanic or continental crust rooted marine basins. It is also an area almost totally surrounded by mountain ranges, which chiefly belong to the alpine realm. This overall geodynamic setting results from a long term convergence between the two major, African and European, plates. Previous collisions have led to the edification of surrounding chains, while subduction and new-collisional processes tend to create new extensional back-arc basins and wide tectonized accretionary prisms. In this paper we briefly outline the most recent and almost land-locked back-arc basin that has developed in the Mediterranean,i.e., the Tyrrhenian Sea, and the Mediterranean Ridge, which may be regarded as a collisional sedimentary wedge predating a future mountain chain.

  16. GEODYNAMIC ACTIVITY OF MODERN STRUCTURES AND TECTONIC STRESS FIELDS IN NORTHEAST ASIA

    Directory of Open Access Journals (Sweden)

    L. P. Imaeva

    2017-01-01

    Full Text Available Based on the analysis of changes in the stress-strain state of the crust at the boundary of the Eurasian and North American tectonic plates, we develop a dynamic model of the main seismogenerating structures inNortheast Asia. We have established a regularity in changes of geodynamic regimes within the interplate boundary between the Kolyma-Chukotka crustal plate and the Eurasian, North American and Pacific tectonic plates: spreading in the Gakkel Ridge area; rifting in the Laptev Sea shelf; a mixture of tectonic stress types in the Kharaulakh segment; transpression in the Chersky seismotectonic zone, in the segment from the Komandor to the Aleutian Islands, and in the Koryak segment; and crustal stretching in the Chukotka segment.

  17. Basin geodynamics and sequence stratigraphy of Upper Triassic to Lower Jurassic deposits of Southern Tunisia

    Science.gov (United States)

    Carpentier, Cédric; Hadouth, Suhail; Bouaziz, Samir; Lathuilière, Bernard; Rubino, Jean-Loup

    2016-05-01

    Aims of this paper are to propose a geodynamic and sequential framework for the late Triassic and early Jurassic of and south Tunisia and to evidence the impact of local tectonics on the stratigraphic architecture. Facies of the Upper Triassic to Lower Jurassic of Southern Tunisia have been interpreted in terms of depositional environments. A sequential framework and correlation schemes are proposed for outcrops and subsurface transects. Nineteen middle frequency sequences inserted in three and a half low frequency transgression/regression cycles were evidenced. Despite some datation uncertainties and the unknown durations of Lower Jurassic cycles, middle frequency sequences appear to be controlled by eustasy. In contrast the tectonics acted as an important control on low frequency cycles. The Carnian flooding was certainly favored by the last stages of a rifting episode which started during the Permian. The regression accompanied by the formation of stacked angular unconformities and the deposition of lowstand deposits during the late Carnian and Norian occured during the uplift and tilting of the northern basin margins. The transpressional activity of the Jeffara fault system generated the uplift of the Tebaga of Medenine high from the late Carnian and led to the Rhaetian regional angular Sidi Stout Unconformity. Facies analysis and well-log correlations permitted to evidence that Rhaetian to Lower Jurassic Messaoudi dolomites correspond to brecciated dolomites present on the Sidi Stout unconformity in the North Dahar area. The Early-cimmerian compressional event is a possible origin for the global uplift of the northern African margin and Western Europe during the late Carnian and the Norian. During the Rhaetian and the early Jurassic a new episode of normal faulting occured during the third low frequency flooding. This tectonosedimentary evolution ranges within the general geodynamic framework of the north Gondwana margin controlled by the opening of both

  18. Reconstructing the paleogeography and subduction geodynamics of Greater India: how to apply Ockham's Razor?

    Science.gov (United States)

    Van Hinsbergen, D. J. J.; Li, S.; Lippert, P. C.; Huang, W.; Advokaat, E. L.; Spakman, W.

    2017-12-01

    Key in understanding the geodynamics governing subduction and orogeny is reconstructing the paleogeography of `Greater India', the Indian plate lithosphere that subducted since Tibetan Himalayan continental crustal collision with Asia. Here, we discuss how the principle of Ockham's Razor, favoring the simplest scenario as the most likely, may apply to three perspectives on Greater India's paleogeography. We follow recent constraints suggesting a 58 Ma initial collision and update the kinematic restoration of intra-Asian shortening with a recently proposed Indochina extrusion model that reconciles long-debated large and small estimates of Indochina extrusion. The reconstruction is tested against Tibetan paleomagnetic rotation data, and against seismic tomographic constraints on paleo-subduction zone locations. The resulting restoration shows 1000-1200 km of post-collisional intra-Asian shortening, leaving a 2600-3400 km wide Greater India. Ockham's Razor from a paleogeographic, sediment provenance perspective would prefer a fully continental Greater India, although these sediments may also source from the Paleocene-Eocene west Indian orogen unrelated to the India-Asia collision. Ockham's Razor applied from a kinematic, paleomagnetic perspective, prefers major Cretaceous extension and `Greater India Basin' opening within Greater India, but data uncertainty may speculatively allow for minimal extension. Finally, from a geodynamic perspective, assuming a fully continental Greater India would require that the highest subduction rates recorded in the Phanerozoic would have been driven by a subduction of a lithosphere-crust assemblage more buoyant than the mantle, which seems physically improbable. Ockhams Razor thereby isolates the Greater India Basin hypothesis as the only scenario sustainable from all perspectives. Finally, we infer that the old pre-collisional lithosphere rapidly entered the lower mantle sustaining high subduction rates, whilst post

  19. Neogene volcanism and extension in Western Anatolian-Aegean area: A new geodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, S; Tonarini, S [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, 56124 Pisa (Italy); Doglioni, C [Dipartimento di Scienze della Terra, Universita La Sapienza, Roma (Italy); Innocenti, F [Dipartimento di Scienze della Terra, Universita di Pisa, Pisa (Italy); Manetti, P [Dipartimento di Scienze della Terra, Universita di Firenze, Firenze (Italy)], E-mail: s.agostini@igg.cnr.it

    2008-07-01

    The widespread Western Anatolian-Aegean Neogene volcanism presents a complex geochemical evolution reflecting the uncommon space-time variability of the geodynamic setting of the region. In the Western Anatolian and Central Aegean, a widespread supra-subduction magmatism, with calc-alkaline to shoshonitic affinity, took place from Early to Middle Miocene; this phase of activity ends with spots of ultra-K lavas and dykes. From Late Miocene onwards scattered alkali basaltic lavas with intraplate affinity were emitted, while calc-alkaline activity occurred in the South Aegean arc. Since Late Oligocene-Early Miocene, the region was, and still is, affected by extensional tectonics generally ascribed to a backarc rift. However the Aegean region should rather be considered as an unconventional backarc since its characteristics rather differ from 'typical' backarcs. In fact, in spite of a long lasting(>40Ma) active NE-directed subduction of Africa, the backarc area still maintains a relatively thick continental crust (>20-25 km). Moreover, the upper Eurasian plate is overriding the lower Africa plate with separate segments, with Greece moving faster, and Turkey moving slower. The differential velocity between Greece and Turkey determines extension in the upper plate, unrelated to the loss of subducted retreating lithosphere, which is the usual setting for the origin of 'classic' backarc settings. The geodynamic framework is supported by the geochemical and isotopic features of the supra-subduction magmas revealing the occurrence of a trapped, drying slab, with progressive decreasing of Fluid Mobile Elements/Fluid Immobile Elements ratios, {delta}{sup 11}B and {delta}{sup 7}Li, coupled with scarce variations of Sr and Nd isotopes. Moreover, the differential motion between the Greek and Anatolian micro-plates creates tear zones with the formation of slab ruptures or vertical slab windows. The occurrence of such windows is, in fact, outlined by the

  20. Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume

    Science.gov (United States)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.

    2018-01-01

    Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method

  1. Software Attribution for Geoscience Applications in the Computational Infrastructure for Geodynamics

    Science.gov (United States)

    Hwang, L.; Dumit, J.; Fish, A.; Soito, L.; Kellogg, L. H.; Smith, M.

    2015-12-01

    Scientific software is largely developed by individual scientists and represents a significant intellectual contribution to the field. As the scientific culture and funding agencies move towards an expectation that software be open-source, there is a corresponding need for mechanisms to cite software, both to provide credit and recognition to developers, and to aid in discoverability of software and scientific reproducibility. We assess the geodynamic modeling community's current citation practices by examining more than 300 predominantly self-reported publications utilizing scientific software in the past 5 years that is available through the Computational Infrastructure for Geodynamics (CIG). Preliminary results indicate that authors cite and attribute software either through citing (in rank order) peer-reviewed scientific publications, a user's manual, and/or a paper describing the software code. Attributions maybe found directly in the text, in acknowledgements, in figure captions, or in footnotes. What is considered citable varies widely. Citations predominantly lack software version numbers or persistent identifiers to find the software package. Versioning may be implied through reference to a versioned user manual. Authors sometimes report code features used and whether they have modified the code. As an open-source community, CIG requests that researchers contribute their modifications to the repository. However, such modifications may not be contributed back to a repository code branch, decreasing the chances of discoverability and reproducibility. Survey results through CIG's Software Attribution for Geoscience Applications (SAGA) project suggest that lack of knowledge, tools, and workflows to cite codes are barriers to effectively implement the emerging citation norms. Generated on-demand attributions on software landing pages and a prototype extensible plug-in to automatically generate attributions in codes are the first steps towards reproducibility.

  2. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.

    2013-04-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  3. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.; Gerya, T. V.; Dalguer, L. A.; Corbi, F.; Funiciello, F.; Mai, Paul Martin

    2013-01-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  4. Lithospheric Strength and Stress State: Persistent Challenges and New Directions in Geodynamics

    Science.gov (United States)

    Hirth, G.

    2017-12-01

    The strength of the lithosphere controls a broad array of geodynamic processes ranging from earthquakes, the formation and evolution of plate boundaries and the thermal evolution of the planet. A combination of laboratory, geologic and geophysical observations provides several independent constraints on the rheological properties of the lithosphere. However, several persistent challenges remain in the interpretation of these data. Problems related to extrapolation in both scale and time (rate) need to be addressed to apply laboratory data. Nonetheless, good agreement between extrapolation of flow laws and the interpretation of microstructures in viscously deformed lithospheric mantle rocks demonstrates a strong foundation to build on to explore the role of scale. Furthermore, agreement between the depth distribution of earthquakes and predictions based on extrapolation of high temperature friction relationships provides a basis to understand links between brittle deformation and stress state. In contrast, problems remain for rationalizing larger scale geodynamic processes with these same rheological constraints. For example, at face value the lab derived values for the activation energy for creep are too large to explain convective instabilities at the base of the lithosphere, but too low to explain the persistence of dangling slabs in the upper mantle. In this presentation, I will outline these problems (and successes) and provide thoughts on where new progress can be made to resolve remaining inconsistencies, including discussion of the role of the distribution of volatiles and alteration on the strength of the lithosphere, new data on the influence of pressure on friction and fracture strength, and links between the location of earthquakes, thermal structure, and stress state.

  5. Probing the earth's gravity field using Satellite-to-Satellite Tracking (SST)

    Science.gov (United States)

    Vonbun, F. O.

    1976-01-01

    Satellite-to-Satellite (SST) tests, namely: (a) the ATS-6/GEOS-3 and (b) the ATS-6/Apollo-Soyuz experiment and some of the results obtained are described. The main purpose of these two experiments was first to track via ATS-6 the GEOS-3 as well as the Apollo-Soyuz and to use these tracking data to determine (a) both orbits, that is, ATS-6, GEOS-3 and/or the Apollo-Soyuz orbits at the same time; (b) each of these orbits alone; and (c) test the ATS-6/GEOS-3 and/or Apollo-Soyuz SST link to study local gravity anomalies; and, second, to test communications, command, and data transmission from the ground via ATS-6 to these spacecraft and back again to the ground. The Apollo-Soyuz Geodynamics Experiment is discussed in some detail.

  6. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  7. Optimally combined regional geoid models for the realization of height systems in developing countries - ORG4heights

    Science.gov (United States)

    Lieb, Verena; Schmidt, Michael; Willberg, Martin; Pail, Roland

    2017-04-01

    Precise height systems require high-resolution and high-quality gravity data. However, such data sets are sparse especially in developing or newly industrializing countries. Thus, we initiated the DFG-project "ORG4heights" for the formulation of a general scientific concept how to (1) optimally combine all available data sets and (2) estimate realistic errors. The resulting regional gravity field models then deliver the fundamental basis for (3) establishing physical national height systems. The innovative key aspects of the project incorporate the development of a method which links (low- up to mid-resolution) gravity satellite mission data and (high- down to low-quality) terrestrial data. Hereby, an optimal combination of the data utilizing their highest measure of information including uncertainty quantification and analyzing systematic omission errors is pursued. Regional gravity field modeling via Multi-Resolution Representation (MRR) and Least Squares Collocation (LSC) are studied in detail and compared based on their theoretical fundamentals. From the findings, MRR shall be further developed towards implementing a pyramid algorithm. Within the project, we investigate comprehensive case studies in Saudi Arabia and South America, i. e. regions with varying topography, by means of simulated data with heterogeneous distribution, resolution, quality and altitude. GPS and tide gauge records serve as complementary input or validation data. The resulting products include error propagation, internal and external validation. A generalized concept then is derived in order to establish physical height systems in developing countries. The recommendations may serve as guidelines for sciences and administration. We present the ideas and strategies of the project, which combines methodical development and practical applications with high socio-economic impact.

  8. Bringing Gravity to Space

    Science.gov (United States)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  9. Is Gravity an Entropic Force?

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2011-04-01

    Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

  10. Active Response Gravity Offload System

    Science.gov (United States)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  11. Teleparallel equivalent of Lovelock gravity

    Science.gov (United States)

    González, P. A.; Vásquez, Yerko

    2015-12-01

    There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.

  12. 3D depth-to-basement and density contrast estimates using gravity and borehole data

    Science.gov (United States)

    Barbosa, V. C.; Martins, C. M.; Silva, J. B.

    2009-05-01

    We present a gravity inversion method for simultaneously estimating the 3D basement relief of a sedimentary basin and the parameters defining the parabolic decay of the density contrast with depth in a sedimentary pack assuming the prior knowledge about the basement depth at a few points. The sedimentary pack is approximated by a grid of 3D vertical prisms juxtaposed in both horizontal directions, x and y, of a right-handed coordinate system. The prisms' thicknesses represent the depths to the basement and are the parameters to be estimated from the gravity data. To produce stable depth-to-basement estimates we impose smoothness on the basement depths through minimization of the spatial derivatives of the parameters in the x and y directions. To estimate the parameters defining the parabolic decay of the density contrast with depth we mapped a functional containing prior information about the basement depths at a few points. We apply our method to synthetic data from a simulated complex 3D basement relief with two sedimentary sections having distinct parabolic laws describing the density contrast variation with depth. Our method retrieves the true parameters of the parabolic law of density contrast decay with depth and produces good estimates of the basement relief if the number and the distribution of boreholes are sufficient. We also applied our method to real gravity data from the onshore and part of the shallow offshore Almada Basin, on Brazil's northeastern coast. The estimated 3D Almada's basement shows geologic structures that cannot be easily inferred just from the inspection of the gravity anomaly. The estimated Almada relief presents steep borders evidencing the presence of gravity faults. Also, we note the existence of three terraces separating two local subbasins. These geologic features are consistent with Almada's geodynamic origin (the Mesozoic breakup of Gondwana and the opening of the South Atlantic Ocean) and they are important in understanding

  13. The gravity apple tree

    International Nuclear Information System (INIS)

    Aldama, Mariana Espinosa

    2015-01-01

    The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion. (paper)

  14. Airborne Gravity: NGS' Gravity Data for AN05 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  15. Airborne Gravity: NGS' Gravity Data for AN06 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  16. Airborne Gravity: NGS' Gravity Data for CS08 (2015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for CS08 collected in 2006 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  17. Airborne Gravity: NGS' Gravity Data for AS02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  18. Airborne Gravity: NGS' Gravity Data for ES02 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Gulf of Mexico collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...

  19. Airborne Gravity: NGS' Gravity Data for AN04 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  20. Airborne Gravity: NGS' Gravity Data for CS05 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  1. Airborne Gravity: NGS' Gravity Data for CS07 (2014 & 2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 & 2016 over 3 surveys,TX14-2, TX16-1 and TX16-2. This data set is part of the Gravity for the Re-definition of...

  2. Airborne Gravity: NGS' Gravity Data for AS01 (2008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  3. Airborne Gravity: NGS' Gravity Data for CS04 (2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  4. Airborne Gravity: NGS' Gravity Data for AN02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  5. Lovelock gravities from Born–Infeld gravity theory

    Directory of Open Access Journals (Sweden)

    P.K. Concha

    2017-02-01

    Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  6. Lovelock gravities from Born-Infeld gravity theory

    Science.gov (United States)

    Concha, P. K.; Merino, N.; Rodríguez, E. K.

    2017-02-01

    We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  7. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  8. Aspects of Quadratic Gravity

    CERN Document Server

    Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio

    2016-01-01

    We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...

  9. Newtonian quantum gravity

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1995-01-01

    We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs

  10. Gravity and antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1988-01-01

    No one has ever dropped a single particle of antimatter. Yet physicists assume that it would fall to the ground just like ordinary matter. Their arguments are based on two well established ideas: the equivalence principle of gravitation and the quantum-mechanical symmetry between matter and antimatter. Today this line of reasoning is being undermined by the possibility that the first of these ideas, the principle of equivalence, may not be true. Indeed all modern attempts to include gravity with the other forces of nature in a consistent, unified quantum theory predict the existence of new gravitational-strength forces, that among other things, will violate the principle. Such effects have been seen already in recent experiments. Hence, an experiment to measure the gravitational acceleration of antimatter could be of great importance to the understanding of quantum gravity. An international team has been formed to measure the graviational acceleration of antiprotons. Such an experiment would provide an unambiquous test, if new gravitational interactions do exist. 10 figs

  11. Physical mineralogy of (Ca,Al)-rich silicate phases of the Earth's mantle. Geodynamic implications

    International Nuclear Information System (INIS)

    Gautron, Laurent

    2008-01-01

    Mineral physics could provide answers to many questions we asked about mineral phases present in the Earth's mantle, their characteristics, their crystal structure, their phase transitions. In the second part of the twentieth century, high pressure and high temperature experiments could give essential data about materials from the deep Earth: these data could then be combined to those obtained by seismology measurements, geochemistry analyses, experimental and theoretical geodynamics, for a better understanding of the deep parts of our planet. Many former studies revealed that silicate phases bearing calcium and/or aluminium could display very interesting characteristics and properties, with important geodynamics implications. The combination of calcium and aluminium is know to be very useful for mineral phases: indeed, calcium is able to be substituted by atoms which display large cations, while aluminium when replacing silicon atoms could allow the eventual charge compensation required by the substitution of calcium. Moreover, there is an increasing amount of data which reveal the existence of many new (Ca,Al)-rich silicate phases at (P,T) conditions of the Earth's mantle: these phase are found to display very original structure and properties. In this thesis manuscript, we report the main results obtained about the aluminous calcium perovskite, Al-CaSiO 3 , which is one of the three main mineral phases present in the lower mantle. We show that this phase is able to incorporate huge amount of natural actinides uranium and thorium which provide the main part of the heat produced in our planet, by radioactive decay. Then the Al-rich Ca-perovskite bearing U and Th could be the thermal engine of the Earth's lower mantle. These results obtained by mineral physics experiments and methodology are presented with the objective to better constrain the recent geodynamics models. Here, we propose that the (U,Th)-Al-CaSiO 3 perovskite alone is able to provide the entire

  12. Czech permanent GPS observatories for geodynamic investigations of the Bohemian Massif operated by the Institute of Rock Structure and Mechanics, Prague

    Czech Academy of Sciences Publication Activity Database

    Schenk, Vladimír; Kottnauer, Pavel; Schenková, Zdeňka; Hájek, Pavel

    2004-01-01

    Roč. 1, č. 3 (2004), s. 111-114 ISSN 1211-1910. [Czech-Polish-Slovak Conference on Recent Geodynamics of the Sudety Mts and Adjacent Areas /5./. Ramzová, 23.10.2003-25.10.2003] R&D Projects: GA MŠk LN00A005 Institutional research plan: CEZ:AV0Z3046908 Keywords : geodynamics * GPS * permanent observatories Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  13. Is there a quantum theory of gravity

    International Nuclear Information System (INIS)

    Strominger, A.

    1984-01-01

    The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)

  14. Quantum Gravity in Two Dimensions

    DEFF Research Database (Denmark)

    Ipsen, Asger Cronberg

    The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...

  15. Topological strings from Liouville gravity

    International Nuclear Information System (INIS)

    Ishibashi, N.; Li, M.

    1991-01-01

    We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)

  16. Newton-Cartan gravity revisited

    NARCIS (Netherlands)

    Andringa, Roel

    2016-01-01

    In this research Newton's old theory of gravity is rederived using an algebraic approach known as the gauging procedure. The resulting theory is Newton's theory in the mathematical language of Einstein's General Relativity theory, in which gravity is spacetime curvature. The gauging procedure sheds

  17. Fixed points of quantum gravity

    OpenAIRE

    Litim, D F

    2003-01-01

    Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.

  18. Neutron Stars : Magnetism vs Gravity

    Indian Academy of Sciences (India)

    however, in the magnetosphere, electromagnetic forces dominate over gravity : Fgr = mg ~ 10-18 Newton ; Fem = e V B ~ 10-5 Newton; (for a single electron of mass m and charge e ) ; Hence, the electromagnetic force is 1013 times stronger than gravity !!

  19. Measuring wood specific gravity, correctly

    Science.gov (United States)

    G. Bruce Williamson; Michael C. Wiemann

    2010-01-01

    The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a forester’s variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these...

  20. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  1. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere-application to basin evolution

    DEFF Research Database (Denmark)

    Elesin, Y; Gerya, T; Artemieva, Irina

    2010-01-01

    We present a new 2D finite difference code, Samovar, for high-resolution numerical modeling of complex geodynamic processes. Examples are collision of lithospheric plates (including mountain building and subduction) and lithosphere extension (including formation of sedimentary basins, regions...... of extended crust, and rift zones). The code models deformation of the lithosphere with viscoelastoplastic rheology, including erosion/sedimentation processes and formation of shear zones in areas of high stresses. It also models steady-state and transient conductive and advective thermal processes including...... partial melting and magma transport in the lithosphere. The thermal and mechanical parts of the code are tested for a series of physical problems with analytical solutions. We apply the code to geodynamic modeling by examining numerically the processes of lithosphere extension and basin formation...

  2. Implications of the Utopia Gravity Anomaly for the Resurfacing of the Northern Plains of Mars

    Science.gov (United States)

    Banerdt, W. B.

    2004-01-01

    Whereas the surface units of the northern plain of Mars generally exhibit ages ranging from late Hesperian to Amazonian, interpretation of precise topographic measurements indicate that the age of the underlying "basement" is early Noachian, or almost as old as the southern highlands. This suggests that widespread but relatively superficial resurfacing has occurred throughout the northern plains since the end of early heavy bombardment. In this abstract I examine some of the possible implications of the subsurface structure inferred for the Utopia basin from gravity data on the nature of this resurfacing. The large, shallow, circular depression in Utopia Planitia has been identified as a huge impact basin, based on both geological evidence and detailed analysis of MOLA topography. Its diameter (approx. 3000 km) is equivalent to that of the Hellas basin, as is its inferred age (early Noachian). However, whereas Hellas is extremely deep with rough terrain and large slopes, the Utopia basin is a smooth, shallow, almost imperceptible bowl. Conversely, Utopia displays one of the largest (non-Tharsis-related) positive geoid anomalies on Mars, in contrast to a much more subdued negative anomaly over Hellas.

  3. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    Science.gov (United States)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality

  4. RECENT GEODYNAMICS OF INTRACONTINENTAL AREAS: INSTRUMENTAL AND GEOMORPHOLOGICAL ASSESSMENT OF CRUSTAL MOVEMENTS AND DEFORMATION IN CENTRAL ASIA

    Directory of Open Access Journals (Sweden)

    V. А. Sankov

    2014-01-01

    Full Text Available Studies of recent geodynamics have been conducted by the Institute of the Earth’s Crust, SB RAS since 1998. Present-day crustal deformations are monitored at the geodynamic GPS polygon established by the Laboratory of Recent Geodynamics in the Mongol-Baikal region. Original methods and techniques using specialized equipment are applied to research intra-continental tectonic deformation and have already provided original scientific results. Independent data are received concerning the onset and character of processes of neotectonic activation and the state of stresses and deformation of the crust in the southern part of Siberia and in Mongolia. A model of the Late Cenozoic and contemporary geodynamics of the Mongol-Siberian mobile area is proposed. With application of GPS geodesy methods, quantitative parameters of present-day horizontal movements and deformations are determined for Central Asia and a part of the Far East at different scale levels. Present-day velocities of extension of the Baikal rift are estimated, and parameters of rotation of the Amur plate relative to Eurasia are calculated. Data on long-term and contemporary deformation are subject to comparative analyses. The Laboratory develops studies of present-day and historical seismicity in relation to processes of contemporary faulting in active tectonic zones of inter-plate boundaries and diffusive activation of subactive intraplate territories. The first results are obtained in studies of local crustal deformation by methods of satellite radar interferometry and ground polygonometry. Jointly with other institutes of SB RAS, the Laboratory conducts instrumental studies of interaction between the lithosphere and the ionosphere. Looking further ahead, the main scientific fields and prospects of the Laboratory are highlighted.  

  5. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    International Nuclear Information System (INIS)

    Chan, H.A.; Paik, H.J.

    1987-01-01

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges

  6. Geodynamic models for the post-orogenic exhumation of the lower crust

    Science.gov (United States)

    Bodur, O. F.; Gogus, O.; Karabulut, H.; Pysklywec, R. N.; Okay, A. I.

    2015-12-01

    Recent geodynamic modeling studies suggest that the exhumation of the high pressure and the very/ultra high-pressure crustal rocks may occur due to the slab detachment (break-off), slab roll-back (retreat) and the buoyancy-flow controlled subduction channel. We use convective removal (Rayleigh-Taylor, 'dripping' instability) mechanism to quantitatively investigate the burial and the exhumation pattern of the lower/middle crustal rocks from ocean subduction to post-collisional geodynamic configuration. In order to address the model evolution and track crustal particles for deciphering P-T-t variation, we conduct a series of thermo-mechanical numerical experiments with arbitrary Eularian-Lagrangian finite element code (SOPALE). We show how additional model parameters (e.g moho temperature, upper-middle crustal activation energy, density contrast between the lithosphere and the underlying mantle) can effectively influence the burial and exhumation depths, rate and the styles (e.g clockwise or counterclockwise). First series of experiments are designed to investigate the exhumation of crustal rocks at 32 km depth for only post-collisional tectonic setting -where pre-existing ocean subduction has not been implemented-. Model predictions show that a max. 8 km lower crustal burial occurs concurrent with the lower crustal convergence as a response to the mantle lithosphere dripping instability. The subsequent exhumation of these rocks up to -25 km- is predicted at an exhumation rate of 1.24 cm/year controlled by the removal of the underlying mantle lithosphere instability with crustal extension. At the second series of experiments, we tracked the burial and exhumation history of crustal particles at 22 and 31 km depths while pre-existing ocean subduction has been included before the continental collision. Model results show that burial depths down to 62 km occurs and nearly the 32 km of exhumation is predicted again by the removal of the mantle lithosphere after the

  7. Anisotropy tomography beneath east-central China and its geodynamic implications

    Science.gov (United States)

    Jiang, G.; Zhang, G.

    2017-12-01

    The east-central China primary consists of the southeastern part of the North China Block (NCB), the Middle-Lower Yangtze Block (MLYB), the northern part of Cathaysia Block (CB) and the Qinling-Dabie-Sulu Orogen (QDSO) (Fig. 1). Previous studies have suggested that both the rich mineralization in MLYB and the ultra-high pressure metamorphic belts in QDSO are closely to the Cretaceous magmatism in the east-central China. For discussing the geodynamic process, we have used the teleseismic tomography to study the 3D P-wave velocity structure down to 800 km deep and proposed a double-slab subduction model. In the present study, we introduce another two parameters representing the azimuthal anisotropy based on the isotropy tomography. Compared with the SKS method, the anisotropy tomography can provide the velocity anisotropy structure in different depths. The new anisotropy results show that (1) high-velocity (high-V) anomalies exist beneath the Middle Yangtze Block (MYB) from 200 km to 700 km depths and beneath the Lower Yangtze Block from 500 km to 700 km depths, and (2) low-velocity (low-V) anomalies exist beneath the Lower Yangtze Block from 50 km to 200 km depths and beneath the CB from 300 km to 700 km depths, respectively, and (3) the fast directions of P-wave velocity at 50-100 km depths are chaotic, however they show some regular changes from 200 km to 600 km depths. At 200-km deep, the fast direction of the low-V beneath the LYB is nearly E-W-trending. With the depth increasing, the fast directions of the low-V beneath the CB from 300 km to 600 km depths change to NEE-trending. In other side, the fast directions of eastern part of the high-V beneath the MYB, close to the low-V beneath the CB, denote NW-trending from 300 km to 600 depths. Combing with previous studies, we explain the high-V and the low-V, mentioned above, as the ancient Yangtze Craton and the upwelling asthenospheric materials, respectively. In addition, the NE-trending fast directions in the

  8. DBI from gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Travis; Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)

    2017-02-22

    We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.

  9. Alternative gravity theories

    International Nuclear Information System (INIS)

    Francaviglia, M.

    1990-01-01

    Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)

  10. Is quantum gravity unpredictable

    International Nuclear Information System (INIS)

    Gross, D.J.

    1984-01-01

    An investigation of Hawking's proposal that the inclusion of topologically non-trivial manifolds in the functional integral of quantum gravity leads to the loss of quantum coherence is carried out. We discuss some of the problems associated with Hawking's Dollar-matrix theory, including the breakdown of the connection between symmetry principles and conservation laws. It is proposed to use Kaluza-Klein theories to study this issue, since these theories contain well-defined euclidean instantons. These can be used to perform explicit semiclassical calculations of the effects of space-time foam. A general method is presented for constructing Kaluza-Klein instantons based on solutions of ordinary Yang-Mills theory. It is argued that none of these will lead to a breakdown of quantum mechanics. The physical effects of space-time foam are discussed in some detail using explicit instantons of a four-dimensional Kaluza-Klein theory. (orig.)

  11. Brane-Localized Gravity

    International Nuclear Information System (INIS)

    Gregory, Ruth

    2007-01-01

    The study of braneworlds has been an area of intense activity over the past decade, with thousands of papers being written, and many important technical advances being made. This book focuses on a particular aspect of braneworlds, namely perturbative gravity in one specific model: the Randall-Sundrum model. The book starts with an overview of the Randall-Sundrum model, discussing anti-de Sitter (AdS) space and the Israel equations in some detail. It then moves on to discuss cosmological branes, focusing on branes with constant curvature. The book then turns to brane gravity, i.e. what do we, as brane observers, perceive the gravitational interaction to be on the brane as derived from the actual five-dimensional gravitational physics? After a derivation of the general brane equations from the Israel equations, the remainder of the book deals with perturbative gravity. This part of the book is extremely detailed, with calculations given explicitly. Overall, the book is quite pedagogical in style, with the aim being to explain in detail the topics it chooses to cover. While it is not unusual to have books written on current and extremely popular research areas, it is unusual to have calculations written so explicitly. This is both a strength and a weakness of this book. It is a strength because the calculations are presented in a detail that students learning the topic will definitely appreciate; however, the narrow focus of the book also means that it lacks perspective and fails to present the broader context. In choosing to focus on one particular aspect of Randall-Sundrum branes, the book has not managed to communicate why a large number of theorists have worked so intensively on this model. In its early stages, the explicit detail of the Randall-Sundrum model would be extremely useful for a student starting out in this research area. In addition, the calculational detail later in the computation of the graviton propagator on the brane would also be welcome not

  12. Duality in linearized gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Teitelboim, Claudio

    2005-01-01

    We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case

  13. Stochastic quantization and gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

  14. Gravity mediated preheating

    International Nuclear Information System (INIS)

    Maity, Debaprasad

    2015-01-01

    In this work we propose a mechanism of natural preheating of our universe induced by the inflation field dependent effective mass term for the gravitational wave. For any single field inflationary model, the inflation must go through the oscillatory phase after the end of inflation. As has recently been shown, if the gravitational fluctuation has inflation dependent mass term, there will be a resonant amplification of the amplitude of the gravitational wave during the oscillatory phase of inflation though parametric resonance. Because of this large enhancement of the amplitude of the gravitational wave, we show that universe can be naturally pre-heated through a minimally coupled matter field with gravity. Therefore, during the pre-heating phase, there is no need to introduce any arbitrary coupling between the matter field and the inflation. (author)

  15. Teleparallel Gravity An Introduction

    CERN Document Server

    Aldrovandi, Ruben

    2013-01-01

    Teleparallel Gravity (TG) is an alternative theory for gravitation, which is equivalent to General Relativity (GR). However, it is conceptually different. For example in GR geometry replaces the concept of force, and the trajectories are determined by geodesics. TG attributes gravitation to torsion, which accounts for gravitation by acting as a force. TG has already solved some old problems of gravitation (like the energy-momentum density of the gravitational field). The interest in TG has grown in the last few years. The book here proposed will be the first one dedicated exclusively to TG, and will include the foundations of the theory, as well as applications to specific problems to illustrate how the theory works.

  16. Gravity, a geometrical course

    CERN Document Server

    Frè, Pietro Giuseppe

    2013-01-01

    Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications,  updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes.   Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed  account  of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations.  Differe...

  17. Brane-Localized Gravity

    CERN Document Server

    Mannheim, Philip D

    2005-01-01

    This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.

  18. Instantons in quantum gravity

    International Nuclear Information System (INIS)

    Pope, C.N.

    1980-02-01

    The material contained in this thesis is concerned with the functional integral approach to the quantum theory of gravity. It seems to be necessary to work with metrics of positive definite signature (Euclidean metrics) and then analytically continue the result back to the Lorentzian regime. The dominant contributions to the functional integral come from metrics which are stationary points of the action, i.e. classical solutions of the Euclideanized Einstein equations. These are known as Gravitational Instantons. Boundary conditions have to be placed upon the metrics included in the functional integral, and these are determined by the physical problem being considered. Three types of boundary condition have arisen in this context, corresponding to (i) zero temperature physics, and the calculation of particle scattering amplitudes, (ii) finite temperature effects, such as black hole radiance, and (iii) the study of the structure of the gravitational vacuum on Planck length scales. Instantons in the first category are asymptotically flat in all four directions, those in the second are asymptotically flat in three directions and periodic in the fourth, and those which arise in studying the gravitational vacuum are compact without boundaries. Much of the thesis is concerned with considering these various kinds of instanton, and particularly with the effects of their non-trivial topology. One way in which this can be investigated is by means of the various topological index theorems, and these are applied to a variety of situations. Self-dual metrics seem to have particular significance in quantum gravity, and they are discussed in detail. Finally, some recent work on the calculation of the propagation of particles in the gravitational vacuum is described. (author)

  19. Tests of chameleon gravity

    Science.gov (United States)

    Burrage, Clare; Sakstein, Jeremy

    2018-03-01

    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.

  20. Gravity Probe B Inspection

    Science.gov (United States)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  1. Gravity-matter entanglement in Regge quantum gravity

    International Nuclear Information System (INIS)

    Paunković, Nikola; Vojinović, Marko

    2016-01-01

    We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle. (paper)

  2. Artificial gravity - The evolution of variable gravity research

    Science.gov (United States)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  3. Recent advancements in conformal gravity

    International Nuclear Information System (INIS)

    O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian

    2017-01-01

    In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)

  4. Modern Geodynamics of South Yenisei Ridge to Result of the GPS/GLONASS Observations

    Science.gov (United States)

    Tatarinov, Viktor; Kaftan, Vladimir; Tatarinova, Tatiana; Manevich, Alexander

    2017-12-01

    Yenisei Ridge is located at the junction of major tectonic structures - Siberian Platform and West Siberian Plate. Its southern part is characterized by stable tectonic regime, the average speed of uplift according to geological data is 0.2-0.3 mm per year with the total amplitude of 400-500 m. However, the speed of modern movements of the Earth’s crust is by more than an order of magnitude higher due to the temporary effect of large-scale geodynamic movements. The Yenisei river divides the area into two parts. The left bank is characterized by predominantly negative vertical movements and the right bank by positive ones. The major tectonic disturbances occur in the areas of the Muratovsky, Atamanovsky, Pravoberezhny and Bolshetelsky submeridional faults. It was investigated the dynamics of changes in the lengths of ΔL baselines for separate epochs of observations. In 2010-2013 the absolute values of ΔL were significantly lower than for the periods 2013-2014 and 2014-2015. For the entire observation period the average value of the differences of the line lengths is 3.8 mm. This suggests that in general the area experienced strain during the period 2010-2015. Maps of the Earth’s surface dilatation zones (deformation rate) showed that the maximum deformations were recorded in the area of Muratovsky and Atamanovsky faults located at the junction of Siberian Platform and West Siberian plate.

  5. Geodynamic movements and deformations of the Sudetic structural unit of the Bohemian Massif

    Science.gov (United States)

    Schenk, V.; Jechumtálová, Z.; Schenková, Z.; Kottnauer, P.

    2003-04-01

    The African plate pushes to European orogenic Alpine structures that transfer the compression further to Variscan structural units, including the Bohemian Massif. Central parts of the Bohemian Massif are relatively deep-seated and, therefore, some of marginal parts of the Massif and its border geological structures should be affected intensively and moved distinctly with respect to the central parts. The geodynamical GPS network EAST SUDETEN is located just over the area mentioned above, i.e. it covers both kinetically quasi-effected and quasi-non-effected structural blocks. GPS data observed already for six annual campaigns (1997-2002) were processed and movement vectors of individual network sites were assessed. Applied data processing did not allow errors in the horizontal direction 2 mm and in the vertical direction 5-6 mm to be exceeded. Since time series of coordinate changes for several network sites gave rather pronounce movement trends, preliminary deformations among individual structural blocks were evaluated and compared to other geological, geophysical and geodetic materials. The investigation has been supported by the Grant Agency of the Czech Republic, projects 205/97/0679 and 205/01/0480, and by the research programme of the Ministry of Education, Youth and Sport of the Czech Republic, project LN00A005 "Dynamics of the Earth".

  6. Integrated Remote Sensing and Geophysical Investigations of the Geodynamic Activities at Lake Magadi, Southern Kenyan Rift

    Directory of Open Access Journals (Sweden)

    Akinola Adesuji Komolafe

    2012-01-01

    Full Text Available The tectonic lineaments and thermal structure of Lake Magadi, southern Kenyan rift system, were investigated using ASTER data and geophysical methods. Five N-S faults close to known hot springs were identified for geoelectric ground investigation. Aeromagnetic data were employed to further probe faults at greater depths and determine the Curie-point depth. Results indicate a funnel-shaped fluid-filled (mostly saline hydrothermal zone with relatively low resistivity values of less than 1 Ω-m, separated by resistive structures to the west and east, to a depth of 75 m along the resistivity profiles. There was evidence of saline hydrothermal fluid flow toward the surface through the fault splays. The observed faults extend from the surface to a depth of 7.5 km and are probably the ones that bound the graben laterally. They serve as major conduits for the upward heat flux in the study area. The aeromagnetics spectral analysis also revealed heat source emplacement at a depth of about 12 km. The relative shallowness implies a high geothermal gradient evidenced in the surface manifestations of hot springs along the lake margins. Correlation of the heat source with the hypocenters showed that the seismogenetic zone exists directly above the magmatic intrusion, forming the commencement of geodynamic activities.

  7. Some consequences of the geodynamics of sea level on the biosphere. The SE Asian example

    Science.gov (United States)

    Husson, Laurent; Sarr, Anta-Clarisse; Pastier, Anne-Morwenn; Sepulchre, Pierre; Pedoja, Kevin; Elliot, Mary; Hantoro, Wahyoe; Jaramillo, Carlos

    2017-04-01

    Mantle flow and subducting slabs dynamically deflect the surface of the Earth. These deflections occasionally suffice to alternatively inundate or emerge vast expanses of landmasses. This is the case in SE Asia, where geomorphological indicators attest for widespread uplift in the East, in "Wallacea" and subsidence in the West, in the very shallow Sunda platform. These movements attest for transient subduction dynamics of the Indo-Australian subduction zone. We conducted fieldwork in key areas : Sulawesi in the East, Belitung in the West. Geomorphological observations and modeling, geophysical measurements and age determinations have enable us to determine Quaternary rates of subsidence (Sunda shelf) and uplift (in Wallacea), of a few tenths of millimeters per year, faster than over longer time scales. We hypothesize that such rates of vertical ground motion triggered by the subducting slabs, though modest, are sufficient to very efficiently impact the external spheres of the Earth. More specifically, because it is associated with modifications of the relative sea level, we propose that they critically altered diverse aspects of the biosphere. We propose that such geodynamics ultimately modulate the dynamics of the biosphere in ways as diverse as boosting reef productivity by an order of magnitude, fostering the development of the "Coral Triangle" center of biodiversity and, in a rather provocative way, even helping Homo erectus reach Java and large faunas cross Sundaland even during interglacial periods.

  8. A deformable particle-in-cell method for advective transport in geodynamic modeling

    Science.gov (United States)

    Samuel, Henri

    2018-06-01

    This paper presents an improvement of the particle-in-cell method commonly used in geodynamic modeling for solving pure advection of sharply varying fields. Standard particle-in-cell approaches use particle kernels to transfer the information carried by the Lagrangian particles to/from the Eulerian grid. These kernels are generally one-dimensional and non-evolutive, which leads to the development of under- and over-sampling of the spatial domain by the particles. This reduces the accuracy of the solution, and may require the use of a prohibitive amount of particles in order to maintain the solution accuracy to an acceptable level. The new proposed approach relies on the use of deformable kernels that account for the strain history in the vicinity of particles. It results in a significant improvement of the spatial sampling by the particles, leading to a much higher accuracy of the numerical solution, for a reasonable computational extra cost. Various 2D tests were conducted to compare the performances of the deformable particle-in-cell method with the particle-in-cell approach. These consistently show that at comparable accuracy, the deformable particle-in-cell method was found to be four to six times more efficient than standard particle-in-cell approaches. The method could be adapted to 3D space and generalized to cases including motionless transport.

  9. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran

    Directory of Open Access Journals (Sweden)

    M. Nasrabady

    2011-11-01

    Full Text Available The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry, and the pressure-temperature path of the Early Cretaceous mafic granulites that occur within the Tertiary Sabzevar ophiolitic suture zone of NE Iran. Whole rock geochemistry indicates that the Sabzevar granulites are likely derived from a MORB-type precursor. They are thus considered as remnants of a dismembered dynamo-thermal sole formed during subduction of a back-arc basin (proto-Sabzevar Ocean formed in the upper-plate of the Neotethyan slab. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop compatible with burial in a hot subduction zone, followed by cooling during exhumation. Transition from a nascent to a mature stage of oceanic subduction is the geodynamic scenario proposed to accomplish for the reconstructed thermobaric evolution. When framed with the regional scenario, results of this study point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing disparity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected to emerge with further investigations.

  10. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2008-05-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out

  11. Gravity Spectra from the Density Distribution of Earth's Uppermost 435 km

    Science.gov (United States)

    Sebera, Josef; Haagmans, Roger; Floberghagen, Rune; Ebbing, Jörg

    2018-03-01

    The Earth masses reside in a near-hydrostatic equilibrium, while the deviations are, for example, manifested in the geoid, which is nowadays well determined by satellite gravimetry. Recent progress in estimating the density distribution of the Earth allows us to examine individual Earth layers and to directly see how the sum approaches the observed anomalous gravitational field. This study evaluates contributions from the crust and the upper mantle taken from the LITHO1.0 model and quantifies the gravitational spectra of the density structure to the depth of 435 km. This is done without isostatic adjustments to see what can be revealed with models like LITHO1.0 alone. At the resolution of 290 km (spherical harmonic degree 70), the crustal contribution starts to dominate over the upper mantle and at about 150 km (degree 130) the upper mantle contribution is nearly negligible. At the spatial resolution behavior is driven by the crust, the mantle lid and the asthenosphere. The LITHO1.0 model was furthermore referenced by adding deeper Earth layers from ak135, and the gravity signal of the merged model was then compared with the observed satellite-only model GOCO05s. The largest differences are found over the tectonothermal cold and old (such as cratonic), and over warm and young areas (such as oceanic ridges). The misfit encountered comes from the mantle lid where a velocity-density relation helped to reduce the RMS error by 40%. Global residuals are also provided in terms of the gravitational gradients as they provide better spatial localization than gravity, and there is strong observational support from ESA's satellite gradiometry mission GOCE down to the spatial resolution of 80-90 km.

  12. Airborne Gravity: NGS' Gravity Data for ES03 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...

  13. Airborne Gravity: NGS' Gravity Data for EN10 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...

  14. Airborne Gravity: NGS' Gravity Data for EN09 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set is...

  15. Singularity resolution in quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity

  16. Natural inflation and quantum gravity.

    Science.gov (United States)

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.

  17. Why is gravity so weak?

    International Nuclear Information System (INIS)

    Goradia, S.G.

    2006-01-01

    Why is gravity weak? Gravity is plagued with this and many other questions. After decades of exhausting work we do not have a clear answer. In view of this fact it will be shown in the following pages that there are reasons for thinking that gravity is just a composite force consisting of the long-range manifestations of short range nuclear forces that are too tiny to be measured at illuminated or long ranges by particle colliders. This is consistent with Einstein's proposal in 1919

  18. Mars - Hellas Planitia gravity analysis

    Science.gov (United States)

    Sjogren, W. L.; Wimberley, R. N.

    1981-01-01

    Doppler radio tracking data from Viking Orbiter 1 has provided new detailed observations of gravity variations over Hellas Planitia. Line-of-sight Bouguer gravity definitely indicates that isostatic adjustment has occurred. Two theoretical models were tested to obtain fits to the gravity data. Results for a surface deficit model, and a model with a surface deficit and a mass excess at depth are displayed. The mass-at-depth model produced very marked improvement in the data fit as compared to the surface deficit model. The optimum depth for the mass excess is 130 km.

  19. Three years of high precision gravity measurements at the gravimetric station of Brasimone - Italy

    Directory of Open Access Journals (Sweden)

    G. Casula

    1998-06-01

    Full Text Available From August 1995 up to now, at the Enea Research Center of Brasimone, in the Italian Apennines between Bologna and Florence (Italy: 44º07'N, 11º.07'E, 890 m height, the superconducting gravimeter GWR model TT70 number T015 has been continuously recording the variation of the local gravity field, in the frame of the Global Geodynamics Project. The gravimetric laboratory, being a room of the disused nuclear power plant of Brasimone, is a very stable site, free from noise due to human activities. Data blocks of several months of continuous gravity records have been collected over a time span of three years, together with the meteorological data. The gravimeter has been calibrated at relative accuracy better than 0.3% with the aid of a mobile mass system, by imposed perturbations of the local gravity field and recording the gravimeter response. The results of this calibration technique were checked by two comparison experiments with absolute gravimeters performed during this period: the first, in May 1994 with the aid of the symmetrical rise and fall gravimeter of the Institute of Metrology Colonnetti of Turin, and the second in October 1997 involving an FG5 absolute gravimeter of the Institute de Physique du Globe of Strasbourg. The gravimeter signal was analysed to compute a high precision tidal model for Brasimone site. Starting from a set of gravimetric and atmospheric pressure data of high quality, relative to 46 months of observation, we performed the tidal analysis using Eterna 3.2 software to compute amplitudes, gravimetric factors and phases of the main waves of the Tamura catalogue. Finally a comparison experiment between two of the STS-1/VBB broadband seismometers of the MedNet project network and the gravity records relative to the Balleny Islands earthquake (March 25, 1998 were analysed to look for evidence of normal modes due to the free oscillations of the Earth.

  20. Kampanje mjerenja apsolutnog i relativnog ubrzanja sile teže u „Osnovnoj gravimetrijskoj mreži Bosne i Hercegovine“ : Measurement campaign of absolute and relative gravity in "Basic gravimetric network of Bosnia and Herzegovina"

    Directory of Open Access Journals (Sweden)

    Hasumana Abaza

    2014-12-01

    Full Text Available Mjerenje apsolutnog ubrzanja sile Zemljine teže u Bosni i Hercegovini izvršeno je na četiri stanice, a u okviru projekta “Izgradnja kapaciteta za unapređenje zemljišne administracije i procedura u Bosni i Hercegovini“. Mjerenje relativnog ubrzanja sile Zemljine teže također je završeno u Osnovnoj gravimetrijskoj mreži BiH na 60 tačaka, te je izvršeno povezivanje sa stanicama na kojim je mjereno apsolutno ubrzanje sile teže. Do sada urađen posao je odlična osnova za nastavak radova na regionalnom gravimetrijskom premjeru na putu ka konačnom cilju određivanja geoida za teritoriju BiH. : Absolute gravity measurements in Bosnia and Herzegovina were carried out at four stations within the project "Capacity building for improving land administration and procedures in Bosnia and Herzegovina“ - CILAP. Relative gravity measurements were also completed in the primary gravimetric network of Bosnia and Herzegovina at 60 points, followed by connecting points with absolute gravity data. So far, completed work is an excellent basis for continuing on regional gravity measurements and determining the geoid for the territory of Bosnia and Herzegovina.

  1. Cutoff for extensions of massive gravity and bi-gravity

    International Nuclear Information System (INIS)

    Matas, Andrew

    2016-01-01

    Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware–Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity. (paper)

  2. Gauge theories of gravity

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1998-01-01

    The relatively simple Fibre-Bundle geometry of a Yang-Mills gauge theory - mainly the clear distinction between base and fibre - made it possible, between 1953 and 1971, to construct a fully quantized version and prove that theory's renormalizability; moreover, nonperturbative (topological) solutions were subsequently found in both the fully symmetric and the spontaneously broken modes (instantons, monopoles). Though originally constructed as a model formalism, it became in 1974 the mathematical mold holding the entire Standard Model (i.e. QCD and the Electroweak theory). On the other hand, between 1974 and 1984, Einstein's theory was shown to be perturbatively nonrenormalizable. Since 1974, the search for Quantum Gravity has therefore provided the main motivation for the construction of Gauge Theories of Gravity. Earlier, however, in 1958-76 several such attempts were initiated, for aesthetic or heuristic reasons, to provide a better understanding of the algebraic structure of GR. A third motivation has come from the interest in Unification, making it necessary to bring GR into a form compatible with an enlargement of the Standard Model. Models can be classified according to the relevant structure group in the fibre. Within the Poincare group, this has been either the R 4 translations, or the Lorentz group SL(2, C) - or the entire Poincare SL(2, C) x R 4 . Enlarging the group has involved the use of the Conformal SU(2, 2), the special Affine SA(4, R) = SL(4, R) x R 4 or Affine A(4, R) groups. Supergroups have included supersymmetry, i.e. the graded-Poincare group (n =1...8 m its extensions) or the superconformal SU(2, 2/n). These supergravity theories have exploited the lessons of the aesthetic-heuristic models - Einstein-Cartan etc. - and also achieved the Unification target. Although perturbative renormalizability has been achieved in some models, whether they satisfy unitarity is not known. The nonperturbative Ashtekar program has exploited the understanding of

  3. Renormalization and asymptotic freedom in quantum gravity

    International Nuclear Information System (INIS)

    Tomboulis, E.T.

    1984-01-01

    The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)

  4. Quantum gravity and quantum cosmology

    CERN Document Server

    Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos

    2013-01-01

    Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe.   While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.   ...

  5. Topological gravity with minimal matter

    International Nuclear Information System (INIS)

    Li Keke

    1991-01-01

    Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)

  6. Alternative Hamiltonian representation for gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)

    2007-11-15

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.

  7. Alternative Hamiltonian representation for gravity

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2007-01-01

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity

  8. Random manifolds and quantum gravity

    International Nuclear Information System (INIS)

    Krzywicki, A.

    2000-01-01

    The non-perturbative, lattice field theory approach towards the quantization of Euclidean gravity is reviewed. Included is a tentative summary of the most significant results and a presentation of the current state of art

  9. Gravity Data For Colombia 1997

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (9,050 records), were observed and processed by the Instituto Geografico Agustin Codazzi(IGAC), in Colombia from 1958 to 1996. This data...

  10. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  11. Unifying Einstein and Palatini gravities

    International Nuclear Information System (INIS)

    Amendola, Luca; Enqvist, Kari; Koivisto, Tomi

    2011-01-01

    We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g μν =C(R)g μν with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.

  12. Defying gravity using Jenga™ blocks

    Science.gov (United States)

    Tan, Yin-Soo; Yap, Kueh-Chin

    2007-11-01

    This paper describes how Jenga™ blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum.

  13. Zero-gravity movement studies

    Science.gov (United States)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  14. Distinguishing modified gravity models

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine

    2015-01-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations

  15. Gravity from strings

    International Nuclear Information System (INIS)

    Deser, S.

    1987-01-01

    We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)

  16. Gravity Probe B Encapsulated

    Science.gov (United States)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  17. Phases of massive gravity

    CERN Document Server

    Dubovsky, S L

    2004-01-01

    We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group using the explicitly covariant language. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity can be described by a consistent low-energy effective theory with cutoff $\\sim\\sqrt{mM_{Pl}}$ free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz--Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of ...

  18. Distinguishing modified gravity models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif/Yvette Cedex (France); Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)

    2015-10-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.

  19. Nonperturbative quantum gravity

    International Nuclear Information System (INIS)

    Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.

    2012-01-01

    Asymptotic safety describes a scenario in which general relativity can be quantized as a conventional field theory, despite being nonrenormalizable when expanding it around a fixed background geometry. It is formulated in the framework of the Wilsonian renormalization group and relies crucially on the existence of an ultraviolet fixed point, for which evidence has been found using renormalization group equations in the continuum. “Causal Dynamical Triangulations” (CDT) is a concrete research program to obtain a nonperturbative quantum field theory of gravity via a lattice regularization, and represented as a sum over spacetime histories. In the Wilsonian spirit one can use this formulation to try to locate fixed points of the lattice theory and thereby provide independent, nonperturbative evidence for the existence of a UV fixed point. We describe the formalism of CDT, its phase diagram, possible fixed points and the “quantum geometries” which emerge in the different phases. We also argue that the formalism may be able to describe a more general class of Hořava–Lifshitz gravitational models.

  20. Entropy and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Bernard S. Kay

    2015-12-01

    Full Text Available We give a review, in the style of an essay, of the author’s 1998 matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. It also involves a radically different from usual description of black hole equilibrium states in which the total state of a black hole in a box together with its atmosphere is a pure state—entangled in just such a way that the reduced state of the black hole and of its atmosphere are each separately approximately thermal. We also briefly recall some recent work of the author which involves a reworking of the string-theory understanding of black hole entropy consistent with this alternative description of black hole equilibrium states and point out that this is free from some unsatisfactory features of the usual string theory understanding. We also recall the author’s recent arguments based on this alternative description which suggest that the Anti de Sitter space (AdS/conformal field theory (CFT correspondence is a bijection between the boundary CFT and just the matter degrees of freedom of the bulk theory.

  1. PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity

    OpenAIRE

    Capozziello, S.; Troisi, A.

    2005-01-01

    Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.

  2. Radion and holographic brane gravity

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Soda, Jiro

    2002-01-01

    The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function ω(Ψ)=3Ψ/2(1-Ψ) on the positive tension brane and ω(Φ)=-3Φ/2(1+Φ) on the negative tension brane, where Ψ and Φ are nonlinear realizations of the radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Ψ and Φ couples with the sum of the traces of the energy-momentum tensor on both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk geometry can be reconstructed from the solution of quasi-scalar-tensor gravity

  3. Curved backgrounds in emergent gravity

    Science.gov (United States)

    Chaurasia, Shikha; Erlich, Joshua; Zhou, Yiyu

    2018-06-01

    Field theories that are generally covariant but nongravitational at tree level typically give rise to an emergent gravitational interaction whose strength depends on a physical regulator. We consider emergent gravity models in which scalar fields assume the role of clock and rulers, addressing the problem of time in quantum gravity. We discuss the possibility of nontrivial dynamics for clock and ruler fields, and describe some of the consequences of those dynamics for the emergent gravitational theory.

  4. Minimal Length, Measurability and Gravity

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2016-03-01

    Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.

  5. Scattering of internal gravity waves

    OpenAIRE

    Leaman Nye, Abigail

    2011-01-01

    Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...

  6. Absolute gravity measurements in California

    Science.gov (United States)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  7. Dark Matter in Quantum Gravity

    OpenAIRE

    Calmet, Xavier; Latosh, Boris

    2018-01-01

    We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.

  8. The quest for quantum gravity

    International Nuclear Information System (INIS)

    Au, G.

    1995-03-01

    One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity

  9. Gravity as Quantum Entanglement Force

    OpenAIRE

    Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai

    2010-01-01

    We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...

  10. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  11. The quest for quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Au, G

    1995-03-01

    One of the greatest challenges facing theoretical physics lies in reconciling Einstein`s classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity.

  12. Gravity a very short introduction

    CERN Document Server

    Clifton, Timothy

    2017-01-01

    Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...

  13. A sapphire monolithic differential accelerometer as core sensor for gravity gradiometric geophysical instrumentation

    Directory of Open Access Journals (Sweden)

    F. Mango

    2006-06-01

    Full Text Available Gradiometric gravimetry is a survey technique widely used in geological structure investigation. This work demonstrates the feasibility of a new class of low frequency accelerometers for geodynamics studies and space applications. We present the design features of a new low noise single-axis differential accelerometer; the sensor is suitable to be used in a Gravity Gradiometer (GG system for land geophysical survey and gravity gradient measurements. A resolution of 1 Eötvös (1 Eö=10?9s?2 at one sample per second is achievable in a compact, lightweight (less than 2 kg portable instrument, operating at room temperature. The basic components of the sensor are two identical rigidly connected accelerometers separated by a 15-cm baseline vector and the useful signal is extracted as the subtraction of the two outputs, by means of an interferometric microwave readout system. The structure will be engraved in a monocrystal of sapphire by means of Computer-Numerically-Controlled (CNC ultrasonic machining: the material was chosen because of its unique mix of outstanding mechanical and dielectric properties.

  14. GIS-project: geodynamic globe for global monitoring of geological processes

    Science.gov (United States)

    Ryakhovsky, V.; Rundquist, D.; Gatinsky, Yu.; Chesalova, E.

    2003-04-01

    A multilayer geodynamic globe at the scale 1:10,000,000 was created at the end of the nineties in the GIS Center of the Vernadsky Museum. A special soft-and-hardware complex was elaborated for its visualization with a set of multitarget object directed databases. The globe includes separate thematic covers represented by digital sets of spatial geological, geochemical, and geophysical information (maps, schemes, profiles, stratigraphic columns, arranged databases etc.). At present the largest databases included in the globe program are connected with petrochemical and isotopic data on magmatic rocks of the World Ocean and with the large and supperlarge mineral deposits. Software by the Environmental Scientific Research Institute (ESRI), USA as well as ArcScan vectrorizator were used for covers digitizing and database adaptation (ARC/INFO 7.0, 8.0). All layers of the geoinformational project were obtained by scanning of separate objects and their transfer to the real geographic co-ordinates of an equiintermediate conic projection. Then the covers were projected on plane degree-system geographic co-ordinates. Some attributive databases were formed for each thematic layer, and in the last stage all covers were combined into the single information system. Separate digital covers represent mathematical descriptions of geological objects and relations between them, such as Earth's altimetry, active fault systems, seismicity etc. Some grounds of the cartographic generalization were taken into consideration in time of covers compilation with projection and co-ordinate systems precisely answered a given scale. The globe allows us to carry out in the interactive regime the formation of coordinated with each other object-oriented databases and thematic covers directly connected with them. They can be spread for all the Earth and the near-Earth space, and for the most well known parts of divergent and convergent boundaries of the lithosphere plates. Such covers and time series

  15. Electrical structures in the northwest margin of the Junggar basin: Implications for its late Paleozoic geodynamics

    Science.gov (United States)

    Zhang, Sheng; Xu, Yixian; Jiang, Li; Yang, Bo; Liu, Ying; Griffin, W. L.; Luo, Yong; Huang, Rong; Zhou, Yong; Zhang, Liangliang

    2017-10-01

    Recent geological, geochemical and geophysical data have inclined to support the presence of a remnant Paleozoic oceanic lithosphere beneath the Western Junggar, southwestern Chinese Altaids. However, regional high-resolution geophysical data have been rarely deployed to image its geometry, making it difficult to trace its evolution and final geodynamic setting. Presently, two magnetotelluric (MT) profiles are deployed across the northwest margin of the Junggar basin and the southern Darbut belt to image the electrical structure of the crust and lithospheric mantle. High-quality data at 102 sites and the quasi-2D indications of phase tensor skew angles and impedance phase ellipses for relatively short periods (up to 500 s) allow us to invert the two profile data by a 2-D scheme. The resistivity cross-section of a NW-SE striking LINE2 sheds light on a fossil intraoceanic subduction system, and reveals the Miaoergou intrusions as a bowl-like pluton, indicating that the multi-phase intrusions primarily formed in a post-collisional setting. The resistivity cross-section of striking NE-SW LINE1 reveals a possible oceanic slab with relatively lower resistivity underlying the low-resistivity sedimentary strata and high-resistivity mélange. Given that the profile of LINE1 cuts the out-rise zone of a subducted slab developed during the late Paleozoic, the 2-D resistivity model may thus represent the zone that have experienced heterogeneous deformation, reflecting subduction with barrier variation parallel to the ancient trench. Moreover, as shown in previous results, the new MT data also illustrate that the Darbut Fault is a thin-skinned structure, which has been erased at depths during the subsequent magmatism.

  16. Geodynamics of the East African Rift System ∼30 Ma ago: A stress field model

    Science.gov (United States)

    Min, Ge; Hou, Guiting

    2018-06-01

    The East African Rift System (EARS) is thought to be an intra-continental ridge that meets the Red Sea and the Gulf of Aden at the Ethiopian Afar as the failed arm of the Afar triple junction. The geodynamics of EARS is still unclear even though several models have been proposed. One model proposes that the EARS developed in a local tensile stress field derived from far-field loads because of the pushing of oceanic ridges. Alternatively, some scientists suggest that the formation of the EARS can be explained by upwelling mantle plumes beneath the lithospheric weak zone (e.g., the Pan-African suture zone). In our study, a shell model is established to consider the Earth's spherical curvature, the lithospheric heterogeneity of the African continent, and the coupling between the mantle plumes and the mid-ocean ridge. The results are calculated via the finite element method using ANSYS software and fit the geological evidence well. To discuss the effects of the different rock mechanical parameters and the boundary conditions, four comparative models are established with different parameters or boundary conditions. Model I ignores the heterogeneity of the African continent, Model II ignores mid-ocean spreading, Model III ignores the upwelling mantle plumes, and Model IV ignores both the heterogeneity of the African continent and the upwelling mantle plumes. Compared to these models is the original model that shows the best-fit results; this model indicates that the coupling of the upwelling mantle plumes and the mid-ocean ridge spreading causes the initial lithospheric breakup in Afar and East Africa. The extension direction and the separation of the EARS around the Tanzanian craton are attributed to the heterogeneity of the East African basement.

  17. Mineralization mechanism and geodynamic setting of No. 337 deposit in Xiazhuang uranium orefield

    International Nuclear Information System (INIS)

    Zhang Zhanshi; Wu Jianhua; Liu Shuai; Hua Renmin

    2009-01-01

    Uranium deposit No.337 in Xiazhuang uranium orefield has been regarden as a representative of the earliest forming, relatively high temperature and short time gap between the formation of pluton and the mineralization. But the latest study revealed that the formation age of the Maofeng pluton, which is the most important uranium host granite in Xiazhuang uranium orefield, is 206-238.2 Ma by LA-ICP-MS zircon dating, while the secondary origin muscovite in Maofeng pluton has the age of 131-136 Ma by 40 Ar/ 39 Ar dating which correspond to the main mineralization age of 130.3-138 Ma in uranium deposit No.337. In Guidong granitic complex, Maofeng pluton shown some unique characteristics. It has the Al 2 O 3 /TiO 2 ratio that infers the lowest forming temperature, the lowest ΣREE and it is the only pluton which presents typical tetrad effects of REE, it is also shown a varying δ 18 O values and the lowest( 87 Sr/ 86 Sr) i values. According to the above findings, a concept model of uranium mineralization and geodynamic setting for No.337 uranium deposit might be presented: in late or post-collision stage of Indosinian orogeny, strongly peraluminous granite of Maofeng pluton formed from partial melting of uranium rich formations. Intrusion of maficdyke in late Yanshanian Period(<140 Ma), caused large fluid movement. Uranium was reactivated and extracted from the altered granite,and precipitated in some favorite places to form uranium ore bodies. Uranium deposit No.337 is the typical representative of the first stage uranium mineralization in Xiazhuang uranium orefield. (authors)

  18. A Geodynamic Study of Active Crustal Deformation and Earthquakes in North China

    Science.gov (United States)

    Yang, Y.; Liu, M.

    2005-12-01

    North China is part of the Archaean Sino-Korean craton, yet today it is a region of intense crustal deformation and earthquakes, including 21 M >=7.0 events since 512 AD. More than half of the large events occurred within the Fen-Wei rift system surrounding the stable Ordos plateau; the largest events (M >=7.3) show a sequential southward migration along the rift. However, since 1695 the Fen-Wei rift has became seismically dormant, while seismicity seems having shifted eastward to the North China plain, marked by the 1996 Tangshan earthquake (M=7.8). We have developed a 3D viscoelastic geodynamic model to study the cause of seismicity and its spatial-temporal pattern in North China. Constrained by crustal kinematics from GPS and neotectonic data, the model shows high deviatoric stress in the North China crust, resulting mainly from compression of the expanding Tibetan Plateau and resistance from the stable Siberian block. Within North China seismicity is largely controlled by lateral heterogeneity of lithospheric structures, which explains the concentration of seismicity in the Fen-Wei rift. Our results show that stress triggering may have contributed to the sequential migration of large events along the rift, and the release and migration of stress and strain energy from these large events may partially explain the intense seismicity in the North China plain in the past 300 years. Comparing the predicted long-term spatial pattern of strain energy with seismic energy release provides some insights of potential earthquake risks in North China.

  19. GEODYNAMICS AS WAVE DYNAMICS OF THE MEDIUM COMPOSED OF ROTATING BLOCKS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2015-01-01

    Full Text Available The geomedium block concept envisages that stresses in the medium composed of rotating blocks have torque and thus predetermine the medium's energy capacity (in terms of [Ponomarev, 2008]. The present paper describes the wave nature of the global geodynamic process taking place in the medium characterized by the existence of slow and fast rotation strain waves that are classified as a new type of waves. Movements may also occur as rheid, superplastic and/or superfluid motions and facilitate the formation of vortex geological structures in the geomedium.Our analysis of data on almost 800 strong volcanic eruptions shows that the magma chamber’s thickness is generally small, about 0.5 km, and this value is constant, independent of the volcanic process and predetermined by properties of the crust. A new magma chamber model is based on the idea of 'thermal explosion’/‘self-acceleration' manifested by intensive plastic movements along boundaries between the blocks in conditions of the low thermal conductivity of the geomedium. It is shown that if the solid rock in the magma chamber is overheated above its melting point, high stresses may occur in the surrounding area, and their elastic energy may amount to 1015 joules per 1 km3 of the overheated solid rock. In view of such stresses, it is possible to consider the interaction between volcano’s magma chambers as the migration of volcanic activity along the volcanic arc and provide an explanation of the interaction between volcanic activity and seismicity within the adjacent parallel arcs.The thin overheated interlayer/magma chamber concept may be valid for the entire Earth's crust. In our hypothesis, properties of the Moho are determined by the phase transition from the block structure of the crust to the nonblock structure of the upper mantle.

  20. Gravity Probe B Assembled

    Science.gov (United States)

    2000-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).