WorldWideScience

Sample records for gravity fluid dynamics

  1. MarsSedEx III: linking Computational Fluid Dynamics (CFD) and reduced gravity experiments

    Science.gov (United States)

    Kuhn, N. J.; Kuhn, B.; Gartmann, A.

    2015-12-01

    Nikolaus J. Kuhn (1), Brigitte Kuhn (1), and Andres Gartmann (2) (1) University of Basel, Physical Geography, Environmental Sciences, Basel, Switzerland (nikolaus.kuhn@unibas.ch), (2) Meteorology, Climatology, Remote Sensing, Environmental Sciences, University of Basel, Switzerland Experiments conducted during the MarsSedEx I and II reduced gravity experiments showed that using empirical models for sediment transport on Mars developed for Earth violates fluid dynamics. The error is caused by the interaction between runing water and sediment particles, which affect each other in a positive feedback loop. As a consequence, the actual flow conditions around a particle cannot be represented by drag coefficients derived on Earth. This study exmines the implications of such gravity effects on sediment movement on Mars, with special emphasis on the limits of sandstones and conglomerates formed on Earth as analogues for sedimentation on Mars. Furthermore, options for correctiong the errors using a combination of CFD and recent experiments conducted during the MarsSedEx III campaign are presented.

  2. Convection measurement package for space processing sounding rocket flights. [low gravity manufacturing - fluid dynamics

    Science.gov (United States)

    Spradley, L. W.

    1975-01-01

    The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.

  3. Effect of surface tension on the dynamical behavior of bubble in rotating fluids under low gravity environment

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).

  4. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  5. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  6. Modern fluid dynamics

    CERN Document Server

    Kleinstreuer, Clement

    2018-01-01

    Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.

  7. The Imperfect Fluid behind Kinetic Gravity Braiding

    CERN Document Server

    Pujolas, Oriol; Vikman, Alexander

    2011-01-01

    We present a standard hydrodynamical description for non-canonical scalar field theories with kinetic gravity braiding. In particular, this picture applies to the simplest galileons and k-essence. The fluid variables not only have a clear physical meaning but also drastically simplify the analysis of the system. The fluid carries charges corresponding to shifts in field space. This shift-charge current contains a spatial part responsible for diffusion of the charges. Moreover, in the incompressible limit, the equation of motion becomes the standard diffusion equation. The fluid is indeed imperfect because the energy flows neither along the field gradient nor along the shift current. The fluid has zero vorticity and is not dissipative: there is no entropy production, the energy-momentum is exactly conserved, the temperature vanishes and there is no shear viscosity. Still, in an expansion around a perfect fluid one can identify terms which correct the pressure in the manner of bulk viscosity. We close by formul...

  8. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  9. Fluid Interfaces of Triangular Containers in Reduced Gravity Environments

    Science.gov (United States)

    Guttromson, Jayleen; Manning, Robert; Collicott, Steven H.

    2002-01-01

    Capillary dominated fluid dynamics will be examined in a reduced-gravity environment onboard the KC-135; in particular, the behavior of the lower portion of the meniscus in triangular tank geometries. Seven clear acrylic tanks were constructed to view seven angles of the four geometries. Silicon oil with two different viscosities, 2cs and 5cs silicon oil, were used on different days of the flight. Six tanks and one control tank are filled with a certain viscosity fluid for each flight day. During each parabola, three tanks are tested at time. The experimental tanks are exchanged between parabola sets on the KC-135. The 60deg -60deg -60deg control tank is viewed throughout the flight. To gather data, two digital video cameras and one digital still camera are placed perpendicular the viewing surface. To provide a greater contrast in the meniscus, an EL backlighting sheet was used to backlight the tanks. These images and video are then digitized, passed through NASA's mini-tracker software, and compared to a theory published my M. M. Weislogel, "Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation." By focusing on a lower portion of the meniscus and using longer periods of reduced gravity, this experiment may confirm that a stationary point exists on the fluid surface. This information will enable better designing of propellant management devices, especially satellite propellant refilling and gas venting. Also, biological and material processing systems in reduced gravity environments will benefit from this data.

  10. gravity

    Indian Academy of Sciences (India)

    We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...

  11. Influence of gravity on flutter of cantilevered pipes conveying fluid

    Science.gov (United States)

    Rivero, Javier; Perez-Saborid, Miguel

    2012-11-01

    We have considered the dynamics of the nonlinear interaction between a flexible pipe and the conveyed fluid in the presence of gravity. The stability of the system (fllutter and buckling) depends on parameters such as the dimensionless fluid flow rate, the gravity to bending stiffness ratio and the fluid to pipe mass ratio and it has been studied in detail both numerically and experimentally. It has also been found that the stabilizing or destabilizing effects of fluid flow depends crucially on the direction of gravity respect to the undeformed midline of the pipe. We have also computed the post-critical behavior of the system by solving the full nonlinear equations of the problem and analyzed the transfer of energy within the system in the nonlinear regime. We have formulated the problem in terms of the angles of the midline of the pipe instead of its transverse displacements, so that we can deal with large deflections without recurring to the quasi-linear approximations concerning the pipe curvature usually made in the literature. Supported by the Ministerio de Educación, Cultura y Deportes of Spain under grant DPI 2010-20450 C03-02.

  12. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  13. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K

    1998-01-01

    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  14. Fluid Dynamics for Physicists

    Science.gov (United States)

    Faber, T. E.

    1995-08-01

    This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.

  15. Cosmological dynamics of mimetic gravity

    Science.gov (United States)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Saridakis, Emmanuel N.; Tamanini, Nicola; Vagnozzi, Sunny

    2018-02-01

    We present a detailed investigation of the dynamical behavior of mimetic gravity with a general potential for the mimetic scalar field. Performing a phase-space and stability analysis, we show that the scenario at hand can successfully describe the thermal history of the universe, namely the successive sequence of radiation, matter, and dark-energy eras. Additionally, at late times the universe can either approach a de Sitter solution, or a scaling accelerated attractor where the dark-matter and dark-energy density parameters are of the same order, thus offering an alleviation of the cosmic coincidence problem. Applying our general analysis to various specific potential choices, including the power-law and the exponential ones, we show that mimetic gravity can be brought into good agreement with the observed behavior of the universe. Moreover, with an inverse square potential we find that mimetic gravity offers an appealing unified cosmological scenario where both dark energy and dark matter are characterized by a single scalar field, and where the cosmic coincidence problem is alleviated.

  16. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    Science.gov (United States)

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  17. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...

  18. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  19. Fluid dynamics an introduction

    CERN Document Server

    Rieutord, Michel

    2015-01-01

    This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist’s perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained.

  20. Perspectives in Fluid Dynamics

    Science.gov (United States)

    Batchelor, G. K.; Moffatt, H. K.; Worster, M. G.

    2002-12-01

    With applications ranging from modelling the environment to automotive design and physiology to astrophysics, conventional textbooks cannot hope to give students much information on what topics in fluid dynamics are currently being researched, or how to choose between them. This book rectifies matters. It consists of eleven chapters that introduce and review different branches of the subject for graduate-level courses, or for specialists seeking introductions to other areas. Hb ISBN (2001): 0-521-78061-6

  1. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  2. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  3. Gravity/Fluid Correspondence and Its Application on Bulk Gravity with U(1) Gauge Field

    International Nuclear Information System (INIS)

    Hu, Ya-Peng; Zhang, Jian-Hui

    2014-01-01

    As the long wavelength limit of the AdS/CFT correspondence, the gravity/fluid correspondence has been shown to be a useful tool for extracting properties of the fluid on the boundary dual to the gravity in the bulk. In this paper, after briefly reviewing the algorithm of gravity/fluid correspondence, we discuss the results of its application on bulk gravity with a U(1) gauge field. In the presence of a U(1) gauge field, the dual fluid possesses more interesting properties such as its charge current. Furthermore, an external field A_μ"e"x"t could affect the charge current, and the U(1) Chern-Simons term also induces extra structures to the dual current giving anomalous transport coefficients.

  4. Essential Computational Fluid Dynamics

    CERN Document Server

    Zikanov, Oleg

    2011-01-01

    This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and

  5. Dynamics of radiating fluids

    International Nuclear Information System (INIS)

    Mihalas, D.; Weaver, R.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is essential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations, and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved is presented

  6. Dynamics of Superfluid Helium in Low-Gravity

    Science.gov (United States)

    Frank, David J.

    1997-01-01

    This report summarizes the work performed under a contract entitled 'Dynamics of Superfluid Helium in Low Gravity'. This project performed verification tests, over a wide range of accelerations of two Computational Fluid Dynamics (CFD) codes of which one incorporates the two-fluid model of superfluid helium (SFHe). Helium was first liquefied in 1908 and not until the 1930s were the properties of helium below 2.2 K observed sufficiently to realize that it did not obey the ordinary physical laws of physics as applied to ordinary liquids. The term superfluidity became associated with these unique observations. The low temperature of SFHe and it's temperature unifonrmity have made it a significant cryogenic coolant for use in space applications in astronomical observations with infrared sensors and in low temperature physics. Superfluid helium has been used in instruments such as the Shuttle Infrared Astronomy Telescope (IRT), the Infrared Astronomy Satellite (IRAS), the Cosmic Background Observatory (COBE), and the Infrared Satellite Observatory (ISO). It is also used in the Space Infrared Telescope (SIRTF), Relativity Mission Satellite formally called Gravity Probe-B (GP-B), and the Test of the Equivalence Principle (STEP) presently under development. For GP-B and STEP, the use of SFHE is used to cool Superconducting Quantum Interference Detectors (SQUIDS) among other parts of the instruments. The Superfluid Helium On-Orbit Transfer (SHOOT) experiment flown in the Shuttle studied the behavior of SFHE. This experiment attempted to get low-gravity slosh data, however, the main emphasis was to study the low-gravity transfer of SFHE from tank to tank. These instruments carried tanks of SFHE of a few hundred liters to 2500 liters. The capability of modeling the behavior of SFHE is important to spacecraft control engineers who must design systems that can overcome disturbances created by the movement of the fluid. In addition instruments such as GP-B and STEP are very

  7. Vertebrate gravity sensors as dynamic systems

    Science.gov (United States)

    Ross, M. D.

    1985-01-01

    This paper considers verterbrate gravity receptors as dynamic sensors. That is, it is hypothesized that gravity is a constant force to which an acceleration-sensing system would readily adapt. Premises are considered in light of the presence of kinocilia on hair cells of vertebrate gravity sensors; differences in loading of the sensors among species; and of possible reduction in loading by inclusion of much organic material in otoconia. Moreover, organic-inorganic interfaces may confer a piezoelectric property upon otoconia, which increase the sensitivity of the sensory system to small accelerations. Comparisons with man-made accelerometers are briefly taken up.

  8. Low gravity fluid-thermal experiments

    International Nuclear Information System (INIS)

    Krotiuk, W.J.; Cuta, J.M.

    1987-06-01

    Pacific Northwest Laboratory (PNL) is the lead laboratory for the thermal-hydraulic research in the US Department of Energy Multimegawatt Space Nuclear Power Program. PNL must provide the tools necessary to analyze proposed space reactor concepts, which include single- and two-phase alkali metal and gas-cooled designs. PNL has divided its activities for this task into three basic areas: computer code development, thermal-hydraulic modeling, and experimentation. The subject of this paper is the low-gravity experimental program currently underway at PNL in support of the MMW Program

  9. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly*,**

    Directory of Open Access Journals (Sweden)

    Megías Eugenio

    2014-03-01

    Full Text Available We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.

  10. Fluid/gravity correspondence and the CFM black brane solutions

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, R. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, Bologna (Italy); Cavalcanti, R.T. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Universidade Federal do ABC-UFABC, Centro de Ciencias Naturais e Humanas, Santo Andre (Brazil); Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)

    2016-10-15

    We consider the lower bound for the shear viscosity-to-entropy density ratio, obtained from the fluid/gravity correspondence, in order to constrain the post-Newtonian parameter of brane-world metrics. In particular, we analyse the Casadio-Fabbri-Mazzacurati (CFM) effective solutions for the gravity side of the correspondence and argue that including higher-order terms in the hydrodynamic expansion can lead to a full agreement with the experimental bounds, for the Eddington-Robertson-Schiff post-Newtonian parameter in the CFM metrics. This lends further support to the physical relevance of the viscosity-to-entropy ratio lower bound and fluid/gravity correspondence. Hence we show that CFM black branes are, effectively, Schwarzschild black branes. (orig.)

  11. Approaches to Validation of Models for Low Gravity Fluid Behavior

    Science.gov (United States)

    Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad

    2005-01-01

    This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.

  12. On the Hydrogranular Dynamics of Magmatic Gravity Currents

    Science.gov (United States)

    McIntire, M. Z.; Bergantz, G. W.; Schleicher, J.; Burgisser, A.

    2016-12-01

    Magmatic processes are generally governed by multi-phase interactions of silicate liquid, crystals, and bubbles. However, the modes of dissipation and the manner that stress is transmitted are poorly understood. We use a model of a simple but widely applicable gravity current as a means to exemplify the hydrogranular dynamics in crystal-rich magmas. Viscous and lubrication forces are of special interest because they have a dual role in dispersal and mixing in a crystal-rich gravity current. For example, lubrication forces provide an initial apparent yield strength by inducing a negative pore pressure as crystals move apart. However, once the gravity current is underway, lubrication forces reduce the dissipation due to collision and frictional contact.The gravity current is initiated by a combination of toppling and sliding along a well-defined granular fault. This produces three distinct regimes: a quasi-static base, an overlying particle hump that translates in a quasi-plastic fashion by grain-passing and rolling until the angle of repose is reached, and a viscous particle current. The current initially forms a leading vortex at the head, but the loss of crystals by sedimentation-assisted granular capture by an upward growing particle front drains energy from the flow. The vortex is soon abandoned, but persists in the reservoir as a fossil feature of orphaned crystals in a smear of previous intercumulate fluid. The kinetic energy of the most active crystals decays in a dual fashion, initially linearly, then parabolically with a near symmetrical increase and loss of kinetic energy.There is very little entrainment and mixing between intercumulate and reservoir fluids from magmatic gravity currents. Only a thin seam of reservoir melt is captured by the base of the flow as it descends across the floor. Hence magmatic gravity currents, while producing modest amounts of crystal sorting, are not effective agents of mixing as lubrication and viscous forces inhibit

  13. Dynamical Regge calculus as lattice gravity

    International Nuclear Information System (INIS)

    Hagura, Hiroyuki

    2001-01-01

    We propose a hybrid approach to lattice quantum gravity by combining simultaneously the dynamical triangulation with the Regge calculus, called the dynamical Regge calculus (DRC). In this approach lattice diffeomorphism is realized as an exact symmetry by some hybrid (k, l) moves on the simplicial lattice. Numerical study of 3D pure gravity shows that an entropy of the DRC is not exponetially bounded if we adopt the uniform measure Π i dl i . On the other hand, using the scale-invariant measure Π i dl i /l i , we can calculate observables and observe a large hysteresis between two phases that indicates the first-order nature of the phase transition

  14. Computational fluid dynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  15. The fluid dynamics of climate

    CERN Document Server

    Palazzi, Elisa; Fraedrich, Klaus

    2016-01-01

    This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.

  16. Gravitational perfect fluid collapse in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, G.; Tahir, M. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-08-15

    The Einstein Gauss-Bonnet theory of gravity is the low-energy limit of heterotic super-symmetric string theory. This paper deals with gravitational collapse of a perfect fluid in Einstein-Gauss-Bonnet gravity by considering the Lemaitre-Tolman-Bondi metric. For this purpose, the closed form of the exact solution of the equations of motion has been determined by using the conservation of the stress-energy tensor and the condition of marginally bound shells. It has been investigated that the presence of a Gauss-Bonnet coupling term α > 0 and the pressure of the fluid modifies the structure and time formation of singularity. In this analysis a singularity forms earlier than a horizon, so the end state of the collapse is a naked singularity depending on the initial data. But this singularity is weak and timelike, which goes against the investigation of general relativity. (orig.)

  17. The Variety of Fluid Dynamics.

    Science.gov (United States)

    Barnes, Francis; And Others

    1980-01-01

    Discusses three research topics which are concerned with eminently practical problems and deal at the same time with fundamental fluid dynamical problems. These research topics come from the general areas of chemical and biological engineering, geophysics, and pure mathematics. (HM)

  18. Noncommutative geometry and fluid dynamics

    International Nuclear Information System (INIS)

    Das, Praloy; Ghosh, Subir

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  19. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)

    2016-11-15

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  20. Dynamical structure of linearized GL(4) gravities

    International Nuclear Information System (INIS)

    Aragone, C.; Restuccia, A.

    1978-01-01

    The physical content of the three more natural models of GL(4) gravity is analyzed, for the case of weak fields. It is shown that the first model is the linearized version of Yang's one-tensor-field gravity and is a scalar-tensor theory, with its scalar part contained in a symmetric tensor. The second and the third linearized models, which can both be derived from the fourth-order action postulated by Yang, are two-tensor decoupled systems. In both cases one of the tensors is the symmetric weak metric gravity tensor field. the second tensor appearing in these two models, representing the GL(4)-gauge field, is either a linearized symmetric affinity (in the second model) or a linearized but nonsymmetric affinity (for the third model). It is shown that in these last two cases the affinity contains a helicity-3 propagating field. Owing to the presence of helicity-3 fields it is shown that it is better to regard Yang's action as an action for a two-tensor system instead of trying to recover from a pure gravity (one-tensor-field) action. Finally, it is shown what is the dynamical structure of the second and third linearized two-tensor models which can be derived from Yang's action. (author)

  1. Analog model for quantum gravity effects: phonons in random fluids.

    Science.gov (United States)

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  2. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...

  3. The dynamics of metric-affine gravity

    International Nuclear Information System (INIS)

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-01-01

    Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy

  4. Dynamical structure of pure Lovelock gravity

    Science.gov (United States)

    Dadhich, Naresh; Durka, Remigiusz; Merino, Nelson; Miskovic, Olivera

    2016-03-01

    We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.

  5. The fluid dynamics of the chocolate fountain

    International Nuclear Information System (INIS)

    Townsend, Adam K; Wilson, Helen J

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work. (paper)

  6. The fluid dynamics of the chocolate fountain

    Science.gov (United States)

    Townsend, Adam K.; Wilson, Helen J.

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.

  7. Fundamentals of Geophysical Fluid Dynamics

    Science.gov (United States)

    McWilliams, James C.

    2006-07-01

    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org

  8. Universality of isothermal fluid spheres in Lovelock gravity

    Science.gov (United States)

    Dadhich, Naresh; Hansraj, Sudan; Maharaj, Sunil D.

    2016-02-01

    We show universality of isothermal fluid spheres in pure Lovelock gravity where the equation of motion has only one N th order term coming from the corresponding Lovelock polynomial action of degree N . Isothermality is characterized by the equation of state, p =α ρ and the property, ρ ˜1 /r2 N . Then the solution describing isothermal spheres, which exist only for the pure Lovelock equation, is of the same form for the general Lovelock degree N in all dimensions d ≥2 N +2 . We further prove that the necessary and sufficient condition for the isothermal sphere is that its metric is conformal to the massless global monopole or the solid angle deficit metric, and this feature is also universal.

  9. Gravity current into an ambient fluid with an open surface

    Science.gov (United States)

    Ungarish, Marius

    2017-11-01

    Consider the steady-state gravity current of height h and density ρ1 that propagates into an ambient motionless fluid of height H and density ρ2 with an upper surface open to the atmosphere (open channel) at high Reynolds number. The current propagates with speed U and causes a depth decrease χ of the top surface. This is a significant extension of Benjamin's (1968) seminal solution for the fixed-top channel χ = 0 . Here the determination of χ is a part of the problem. The dimensionless parameters of the problem are a = h / H and r =ρ2 /ρ1 . We show that a control-volume analysis determines χ = χ / H and Fr = U / (g ' h)1/2 as functions of a , r , where g ' = (r-1 - 1) g is the reduced gravity. The system satisfies balance of volume and momentum (explicitly), and vorticity (implicitly). We present solutions. The predicted flows are in general dissipative, and thus physically valid only for a Frb (a) , but the reduction is not dramatic, typically a few percent. In the Boussinesq r 1 case, χ << 1 while Fr and dissipation are close to Benjamin's values.

  10. BMS3 invariant fluid dynamics at null infinity

    Science.gov (United States)

    Penna, Robert F.

    2018-02-01

    We revisit the boundary dynamics of asymptotically flat, three dimensional gravity. The boundary is governed by a momentum conservation equation and an energy conservation equation, which we interpret as fluid equations, following the membrane paradigm. We reformulate the boundary’s equations of motion as Hamiltonian flow on the dual of an infinite-dimensional, semi-direct product Lie algebra equipped with a Lie–Poisson bracket. This gives the analogue for boundary fluid dynamics of the Marsden–Ratiu–Weinstein formulation of the compressible Euler equations on a manifold, M, as Hamiltonian flow on the dual of the Lie algebra of \

  11. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***

    Science.gov (United States)

    Megías, Eugenio; Pena-Benitez, Francisco

    2014-03-01

    We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.

  12. Towards cosmological dynamics from loop quantum gravity

    Science.gov (United States)

    Li, Bao-Fei; Singh, Parampreet; Wang, Anzhong

    2018-04-01

    We present a systematic study of the cosmological dynamics resulting from an effective Hamiltonian, recently derived in loop quantum gravity using Thiemann's regularization and earlier obtained in loop quantum cosmology (LQC) by keeping the Lorentzian term explicit in the Hamiltonian constraint. We show that quantum geometric effects result in higher than quadratic corrections in energy density in comparison to LQC, causing a nonsingular bounce. Dynamics can be described by the Hamilton or Friedmann-Raychaudhuri equations, but the map between the two descriptions is not one to one. A careful analysis resolves the tension on symmetric versus asymmetric bounce in this model, showing that the bounce must be asymmetric and symmetric bounce is physically inconsistent, in contrast to the standard LQC. In addition, the current observations only allow a scenario where the prebounce branch is asymptotically de Sitter, similar to a quantization of the Schwarzschild interior in LQC, and the postbounce branch yields the classical general relativity. For a quadratic potential, we find that a slow-roll inflation generically happens after the bounce, which is quite similar to what happens in LQC.

  13. Holographic dark energy from fluid/gravity duality constraint by cosmological observations

    Science.gov (United States)

    Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.

    2018-06-01

    In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.

  14. Quantum gravity from simplices: analytical investigations of causal dynamical triangulations

    NARCIS (Netherlands)

    Benedetti, D.

    2007-01-01

    A potentially powerful approach to quantum gravity has been developed over the last few years under the name of Causal Dynamical Triangulations. Although these models can be solved exactly in a variety of ways in the case of pure gravity in (1+1) dimensions,it is difficult to extend any of the

  15. A dynamic model of Venus's gravity field

    Science.gov (United States)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  16. Computational methods for fluid dynamics

    CERN Document Server

    Ferziger, Joel H

    2002-01-01

    In its 3rd revised and extended edition the book offers an overview of the techniques used to solve problems in fluid mechanics on computers and describes in detail those most often used in practice. Included are advanced methods in computational fluid dynamics, like direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, free surface flows. The 3rd edition contains a new section dealing with grid quality and an extended description of discretization methods. The book shows common roots and basic principles for many different methods. The book also contains a great deal of practical advice for code developers and users, it is designed to be equally useful to beginners and experts. The issues of numerical accuracy, estimation and reduction of numerical errors are dealt with in detail, with many examples. A full-feature user-friendly demo-version of a commercial CFD software has been added, which ca...

  17. Principles of computational fluid dynamics

    CERN Document Server

    Wesseling, Pieter

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state-of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and ho...

  18. Patterns of gravity induced aggregate migration during casting of fluid concretes

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Roussel, N.; Hattel, Jesper Henri

    2012-01-01

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in...

  19. Radiation from quantum weakly dynamical horizons in loop quantum gravity.

    Science.gov (United States)

    Pranzetti, Daniele

    2012-07-06

    We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable.

  20. Radar time delays in the dynamic theory of gravity

    Directory of Open Access Journals (Sweden)

    Haranas I.I.

    2004-01-01

    Full Text Available There is a new theory gravity called the dynamic theory, which is derived from thermodynamic principles in a five dimensional space, radar signals traveling times and delays are calculated for the major planets in the solar system, and compared to those of general relativity. This is done by using the usual four dimensional spherically symmetric space-time element of classical general relativistic gravity which has now been slightly modified by a negative inverse radial exponential term due to the dynamic theory of gravity potential.

  1. Gravity current down a steeply inclined slope in a rotating fluid

    Directory of Open Access Journals (Sweden)

    G. I. Shapiro

    Full Text Available The sinking of dense water down a steep continental slope is studied using laboratory experiments, theoretical analysis and numerical simulation. The experiments were made in a rotating tank containing a solid cone mounted on the tank floor and originally filled with water of constant density. A bottom gravity current was produced by injecting more dense coloured water at the top of the cone. The dense water plume propagated from the source down the inclined cone wall and formed a bottom front separating the dense and light fluids. The location of the bottom front was measured as a function of time for various experimental parameters. In the majority of runs a stable axisymmetric flow was observed. In certain experiments, the bottom layer became unstable and was broken into a system of frontal waves which propagated down the slope. The fluid dynamics theory was developed for a strongly non-linear gravity current forming a near-bottom density front. The theory takes into account both bottom and interfacial friction as well as deviation of pressure from the hydrostatic formula in the case of noticeable vertical velocities. Analytical and numerical solutions were found for the initial (t < 1/ƒ, intermediate (t1/ƒ, and main (t » 1/ƒ stages, where ƒ is the Coriolis parameter. The model results show that during the initial stage non-linear inertial oscillations are developed. During the main stage, the gravity current is concentrated in the bottom layer which has a thickness of the order of the Ekman scale. The numerical solutions are close to the same analytical one. Stability analysis shows that the instability threshold depends mainly on the Froude number and does not depend on the Ekman number. The results of laboratory experiments confirm the similarity properties of the bottom front propagation and agree well with the theoretical predictions.

  2. Gravity current down a steeply inclined slope in a rotating fluid

    Directory of Open Access Journals (Sweden)

    G. I. Shapiro

    1997-03-01

    Full Text Available The sinking of dense water down a steep continental slope is studied using laboratory experiments, theoretical analysis and numerical simulation. The experiments were made in a rotating tank containing a solid cone mounted on the tank floor and originally filled with water of constant density. A bottom gravity current was produced by injecting more dense coloured water at the top of the cone. The dense water plume propagated from the source down the inclined cone wall and formed a bottom front separating the dense and light fluids. The location of the bottom front was measured as a function of time for various experimental parameters. In the majority of runs a stable axisymmetric flow was observed. In certain experiments, the bottom layer became unstable and was broken into a system of frontal waves which propagated down the slope. The fluid dynamics theory was developed for a strongly non-linear gravity current forming a near-bottom density front. The theory takes into account both bottom and interfacial friction as well as deviation of pressure from the hydrostatic formula in the case of noticeable vertical velocities. Analytical and numerical solutions were found for the initial (t 1/ƒ, intermediate (t ≈ 1/ƒ, and main (t » 1/ƒ stages, where ƒ is the Coriolis parameter. The model results show that during the initial stage non-linear inertial oscillations are developed. During the main stage, the gravity current is concentrated in the bottom layer which has a thickness of the order of the Ekman scale. The numerical solutions are close to the same analytical one. Stability analysis shows that the instability threshold depends mainly on the Froude number and does not depend on the Ekman number. The results of laboratory experiments confirm the similarity properties of the bottom front propagation and agree well with the theoretical predictions.

  3. Gravity modulation of thermal instability in a viscoelastic fluid saturated anisotropic porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhadauria, Beer S. [Babasaheb Bhimrao Ambedkar Univ., Lucknow (India). Dept. of Applied Mathematics and Statistics; Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Srivastava, Atul K. [Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Sacheti, Nirmal C.; Chandran, Pallath [Sultan Qaboos Univ., Muscat (Oman). Dept. of Mathematics

    2012-01-15

    The present paper deals with a thermal instability problem in a viscoelastic fluid saturating an anisotropic porous medium under gravity modulation. To find the gravity modulation effect, the gravity field is considered in two parts: a constant part and an externally imposed time-dependent periodic part. The time-dependent part of the gravity field, which can be realized by shaking the fluid, has been represented by a sinusoidal function. Using Hill's equation and the Floquet theory, the convective threshold has been obtained. It is found that gravity modulation can significantly affect the stability limits of the system. Further, we find that there is a competition between the synchronous and subharmonic modes of convection at the onset of instability. Effects of various parameters on the onset of instability have also been discussed. (orig.)

  4. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  5. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  6. The behavior of surface tension on steady-state rotating fluids in the low gravity environments

    Science.gov (United States)

    Hung, R. J.; Leslie, Fred W.

    1987-01-01

    The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.

  7. General proof of the entropy principle for self-gravitating fluid in f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiongjun [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures andQuantum Control of Ministry of Education, Hunan Normal University,Changsha, Hunan 410081 (China); Guo, Minyong [Department of Physics, Beijing Normal University,Beijing 100875 (China); Jing, Jiliang [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures andQuantum Control of Ministry of Education, Hunan Normal University,Changsha, Hunan 410081 (China)

    2016-08-29

    The discussions on the connection between gravity and thermodynamics attract much attention recently. We consider a static self-gravitating perfect fluid system in f(R) gravity, which is an important theory could explain the accelerated expansion of the universe. We first show that the Tolman-Oppenheimer-Volkoff equation of f(R) theories can be obtained by thermodynamical method in spherical symmetric spacetime. Then we prove that the maximum entropy principle is also valid for f(R) gravity in general static spacetimes beyond spherical symmetry. The result shows that if the constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if f(R) gravitational equation hold, the total entropy of the fluid should be extremum. Our work suggests a general and solid connection between f(R) gravity and thermodynamics.

  8. Principles of computational fluid dynamics

    International Nuclear Information System (INIS)

    Wesseling, P.

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state- of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and how to overcome it by means of slope-limited schemes is discussed. An introduction is given to efficient iterative solution methods, using Krylov subspace and multigrid acceleration. Many pointers are given to recent literature, to help the reader to quickly reach the current research frontier. (orig.)

  9. Fluid dynamics of Ribbed Annuli

    International Nuclear Information System (INIS)

    McCreery, G. E.; Pink, R. J.; Condie, K. G.; McEligot, D. M.

    2003-01-01

    Typical advanced gas-cooled reactor designs use periodic spacer ribs to center rods in circular cooling channels, e.g., as for control rods (General Atomics and others) and fuel rods (HTTR). In contrast to classical studies of axisymmetric annuli, the flow becomes three-dimensional but is typically periodic in the circumferential direction and - in some cases - in the streamwise direction. Fundamental measurements have been obtained for two idealizations of these complex geometries: an annulus with three ribs circumferentially and one with four. Laser Doppler Velocimetry (LDV) was employed with INEEL's unique Matched-Index-of-Refraction (MIR) flow facility to determine the velocity and turbulence fields. The initial experiment was aimed at obtaining benchmark data to test the capabilities of CFD (Computational Fluid Dynamics) codes to handle ribbed annular geometries without the complications of turbulent transport. The Reynolds number was about 1120. These conditions correspond to some stages during a pressurized cooldown (LOFA) event. Power spectral densities were obtained to determine the eddy shedding frequency downstream of the ribs. For the second experiment LDV measurements were obtained in another ribbed-annular model at a higher flow rate. For this nominally turbulent flow, evidence of laminarization appears in the flow converging to pass between ribs. The measurements indicated flow details which could be useful for assessment of CFD codes

  10. Analytical Solution of Unsteady Gravity Flows of A Power-Law Fluid ...

    African Journals Online (AJOL)

    We present an analytical study of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The governing equations are derived and similarity solutions are determined. The results show the existence of traveling waves. It is assumed that the viscosity is temperature ...

  11. Asymptotic expansion of unsteady gravity flow of a power-law fluid ...

    African Journals Online (AJOL)

    We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...

  12. Phase space density representations in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1989-01-01

    Phase space density representations of inviscid fluid dynamics were recently discussed by Abarbanel and Rouhi. Here it is shown that such representations may be simply derived and interpreted by means of the Liouville equation corresponding to the dynamical system of ordinary differential equations that describes fluid particle trajectories. The Hamiltonian and Poisson bracket for the phase space density then emerge as immediate consequences of the corresponding structure of the dynamics. For barotropic fluids, this approach leads by direct construction to the formulation presented by Abarbanel and Rouhi. Extensions of this formulation to inhomogeneous incompressible fluids and to fluids in which the state equation involves an additional transported scalar variable are constructed by augmenting the single-particle dynamics and phase space to include the relevant additional variable

  13. Torsion as a dynamic degree of freedom of quantum gravity

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Pak, D G

    2008-01-01

    The gauge approach to gravity based on the local Lorentz group with a general independent affine connection A μcd is developed. We consider SO(1, 3) gauge theory with a Lagrangian quadratic in curvature as a simple model of quantum gravity. The torsion is proposed to represent a dynamic degree of freedom of quantum gravity at scales above the Planckian energy. The Einstein-Hilbert theory is induced as an effective theory due to quantum corrections of torsion via generating a stable gravito-magnetic condensate. We conjecture that torsion possesses an intrinsic quantum nature and can be confined

  14. An introduction to Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    1999-01-01

    CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building.......CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building....

  15. Introduction to mathematical fluid dynamics

    CERN Document Server

    Meyer, Richard E

    2010-01-01

    An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.

  16. Experimental and theoretical advances in fluid dynamics

    CERN Document Server

    Klapp, Jaime; Fuentes, Oscar Velasco

    2011-01-01

    The book is comprised of lectures and selected contributions presented at the Enzo Levi and XVI Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2010. It is aimed at fourth year undergraduate and graduate students, as well as scientists in the fields of physics, engineering and chemistry with an interest in fluid dynamics from the experimental and theoretical point of view. The lectures are introductory and avoid the use of complicated mathematics. The other selected contributions are also geared to fourth year undergraduate and graduate students. The fluid dynam

  17. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  18. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    Science.gov (United States)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  19. The Propagation of the Gravity Current of Viscoplastic Fluid

    Science.gov (United States)

    Liu, Ye

    2014-11-01

    We are studying the spreading of the viscoplastic fluid of Bingham type over a horizontal plane, using both mathematical derivation and numerical experiments. We are interested in its final shape and whether theory and numerics correspond well. There are two theories for comparison: lubrication theory from asymptotics, and slipline theory from plasticity. The numerical method we are using is based on the volume-of-fluid method, with both regularization and Augmented Lagrangian for the constitutive law of Bingham type fluid. UBC IRSN.

  20. Fluid dynamics computer programs for NERVA turbopump

    Science.gov (United States)

    Brunner, J. J.

    1972-01-01

    During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.

  1. Parallel processing for fluid dynamics applications

    International Nuclear Information System (INIS)

    Johnson, G.M.

    1989-01-01

    The impact of parallel processing on computational science and, in particular, on computational fluid dynamics is growing rapidly. In this paper, particular emphasis is given to developments which have occurred within the past two years. Parallel processing is defined and the reasons for its importance in high-performance computing are reviewed. Parallel computer architectures are classified according to the number and power of their processing units, their memory, and the nature of their connection scheme. Architectures which show promise for fluid dynamics applications are emphasized. Fluid dynamics problems are examined for parallelism inherent at the physical level. CFD algorithms and their mappings onto parallel architectures are discussed. Several example are presented to document the performance of fluid dynamics applications on present-generation parallel processing devices

  2. Relativistic Fluid Dynamics Far From Local Equilibrium

    Science.gov (United States)

    Romatschke, Paul

    2018-01-01

    Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  3. Technical Competencies Applied in Experimental Fluid Dynamics

    Science.gov (United States)

    Tagg, Randall

    2017-11-01

    The practical design, construction, and operation of fluid dynamics experiments require a broad range of competencies. Three types are instrumental, procedural, and design. Respective examples would be operation of a spectrum analyzer, soft-soldering or brazing flow plumbing, and design of a small wind tunnel. Some competencies, such as the selection and installation of pumping systems, are unique to fluid dynamics and fluids engineering. Others, such as the design and construction of electronic amplifiers or optical imaging systems, overlap with other fields. Thus the identification and development of learning materials and methods for instruction are part of a larger effort to identify competencies needed in active research and technical innovation.

  4. A Possible Universe in Pulsation by Using a Hydro-Dynamical Model for Gravity

    Directory of Open Access Journals (Sweden)

    Corneliu BERBENTE

    2016-12-01

    Full Text Available By using a hydro-dynamical model for gravity previously given by the author, a pulsating universe is possible to describe. This is possible because two hydro-dynamical sources are in attraction both when they are emitting and absorbing fluid. In our model, bodies (matter and energy are interacting via an incompressible fluid made of gravitons (photon-like particles having a wave length of the order of magnitude of the radius of universe. One considers the universe uniform at large scale, the effects of general relativity type being local and negligible at global scale. An “elastic sphere” model for the universe is suggested to describe the possible inversion. The expansion of the universe stops when the “elastic energy” overcomes the kinetic one; this takes place near the point of maximal emission speed of the fluid of gravitons. The differential equation for the universe in expansion is adapted to contraction. Analytical solutions are given.

  5. Modern fluid dynamics for physics and astrophysics

    CERN Document Server

    Regev, Oded; Yecko, Philip A

    2016-01-01

    This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...

  6. International Conference on Mathematical Fluid Dynamics

    CERN Document Server

    Suzuki, Yukihito

    2016-01-01

    This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.

  7. Essential Fluid Dynamics for Scientists

    Science.gov (United States)

    Braithwaite, Jonathan

    2017-12-01

    The book is an introduction to the subject of fluid mechanics, essential for students and researchers in many branches of science. It illustrates its fundamental principles with a variety of examples drawn mainly from astrophysics and geophysics as well as from everyday experience. Prior familiarity with basic thermodynamics and vector calculus is assumed.

  8. The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko

    2014-01-01

    When people are asked to indicate the vanishing location of a moving target, errors in the direction of motion (representational momentum) and in the direction of gravity (representational gravity) are usually found. These errors possess a temporal course wherein the memory for the location of the target drifts downwards with increasing temporal intervals between target's disappearance and participant's responses (representational trajectory). To assess if representational trajectory is a body-referenced or a world-referenced phenomenon. A behavioral localization method was employed with retention times between 0 and 1400 ms systematically imposed after the target's disappearance. The target could move horizontally (rightwards or leftwards) or vertically (upwards or downwards). Body posture was varied in a counterbalanced order between sitting upright and lying on the side (left lateral decubitus position). In the upright task, the memory for target location drifted downwards with time in the direction of gravity. This time course did not emerge for the decubitus task, where idiotropic dominance was found. The dynamic visual representation of gravity is neither purely body-referenced nor world-referenced. It seems to be modulated instead by the relationship between the idiotropic vector and physical gravity.

  9. Vortex dynamics in plasmas and fluids

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Lynov, Jens-Peter; Hesthaven, J.S.

    1994-01-01

    The existence and dynamics of vortical structures in both homogeneous and inhomogeneous systems will be discussed. In particular the dynamics of monopolar and dipolar vortices in a plasma with nonuniform density and in a rotating fluid with varying Coriolis force is described. The role of vortica...

  10. Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity

    Science.gov (United States)

    Wilkinson, R. Allen

    2000-01-01

    This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.

  11. Relativistic fluid dynamics with spin

    Science.gov (United States)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  12. A dynamic ventilation model for gravity sewer networks.

    Science.gov (United States)

    Wang, Y C; Nobi, N; Nguyen, T; Vorreiter, L

    2012-01-01

    To implement any effective odour and corrosion control technology in the sewer network, it is imperative that the airflow through gravity sewer airspaces be quantified. This paper presents a full dynamic airflow model for gravity sewer systems. The model, which is developed using the finite element method, is a compressible air transport model. The model has been applied to the North Head Sewerage Ocean Outfall System (NSOOS) and calibrated using the air pressure and airflow data collected during October 2008. Although the calibration is focused on forced ventilation, the model can be applied to natural ventilation as well.

  13. Chaotic Darcy-Brinkman convection in a fluid saturated porous layer subjected to gravity modulation

    Directory of Open Access Journals (Sweden)

    Moli Zhao

    2018-06-01

    Full Text Available On the basis of Darcy-Brinkman model, the chaotic convection in a couple stress fluid saturated porous media under gravity modulation is investigated using the nonlinear stability analyses. The transition from steady convection to chaos is analysed with the effect of Darcy-Brinkman couple stress parameter and the gravity modulation. The results show that the chaotic behavior is connected with the critical value of Rayleigh number which is dependent upon the oscillation frequency and the Darcy-Brinkman couple stress parameter. If the oscillation frequency Ω is not zero, the Rayleigh number value R of the chaotic behavior increases with the increase of the Darcy-Brinkman couple stress parameter. The Darcy-Brinkman couple stress parameter and the gravity modulation decrease the rate of heat transfer. Keywords: Darcy-Brinkman model, Gravity modulation, Nonlinear stability, Chaotic convection

  14. Colour in visualisation for computational fluid dynamics

    OpenAIRE

    Kinnear, D; Atherton, MA; Collins, MW; Dokhan, J; Karayiannis, TG

    2006-01-01

    Colour is used in computational fluid dynamic (CFD) simulations in two key ways. First it is used to visualise the geometry and allow the engineers to be confident that the model constructed is a good representation of the engineering situation. Once an analysis has been completed, colour is used in post-processing the data from the simulations to illustrate the complex fluid mechanic phenomena under investigation. This paper describes these two uses of colour and provides some examples to il...

  15. Chaotic dynamics in dense fluids

    International Nuclear Information System (INIS)

    Posch, H.A.; Hoover, W.G.

    1987-09-01

    We present calculations of the full spectra of Lyapunov exponents for 8- and 32-particle systems with periodic boundary conditions and interacting with the repulsive part of a Lennard-Jones potential both in equilibrium and nonequilibrium steady states. Lyapunov characteristic exponents λ/sub n/ describe the mean exponential rates of divergence and convergence of neighbouring trajectories in phase-space. They are useful in characterizing the stochastic properties of a dynamical system. A new algorithm for their calculation is presented which incorporates ideas from control theory and constraint nonequilibrium molecular dynamics. 4 refs., 1 fig

  16. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2017-01-01

    This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...

  17. Computational Fluid Dynamics and Room Air Movement

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2004-01-01

    on the mass fraction transport equation. The importance of ?false? or numerical diffusion is also addressed in connection with the simple description of a supply opening. The different aspects of boundary conditions in the indoor environment as e.g. the simulation of Air Terminal Devices and the simulation......Nielsen, P.V. Computational Fluid Dynamics and Room Air Movement. Indoor Air, International Journal of Indoor Environment and Health, Vol. 14, Supplement 7, pp. 134-143, 2004. ABSTRACT Computational Fluid Dynamics (CFD) and new developments of CFD in the indoor environment as well as quality...... considerations are important elements in the study of energy consumption, thermal comfort and indoor air quality in buildings. The paper discusses the quality level of Computational Fluid Dynamics and the involved schemes (first, second and third order schemes) by the use of the Smith and Hutton problem...

  18. Fluid mechanics of directional solidification at reduced gravity

    Science.gov (United States)

    Chen, C. F.

    1992-01-01

    The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.

  19. Dynamical Symmetry Breaking in RN Quantum Gravity

    Directory of Open Access Journals (Sweden)

    A. T. Kotvytskiy

    2011-01-01

    Full Text Available We show that in the RN gravitation model, there is no dynamical symmetry breaking effect in the formalism of the Schwinger-Dyson equation (in flat background space-time. A general formula for the second variation of the gravitational action is obtained from the quantum corrections hμν (in arbitrary background metrics.

  20. Parallel Multiscale Algorithms for Astrophysical Fluid Dynamics Simulations

    Science.gov (United States)

    Norman, Michael L.

    1997-01-01

    Our goal is to develop software libraries and applications for astrophysical fluid dynamics simulations in multidimensions that will enable us to resolve the large spatial and temporal variations that inevitably arise due to gravity, fronts and microphysical phenomena. The software must run efficiently on parallel computers and be general enough to allow the incorporation of a wide variety of physics. Cosmological structure formation with realistic gas physics is the primary application driver in this work. Accurate simulations of e.g. galaxy formation require a spatial dynamic range (i.e., ratio of system scale to smallest resolved feature) of 104 or more in three dimensions in arbitrary topologies. We take this as our technical requirement. We have achieved, and in fact, surpassed these goals.

  1. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  2. Challenges in fluid dynamics a new approach

    CERN Document Server

    Zeytounian, R Kh

    2017-01-01

    This monograph presents a synopsis of fluid dynamics based on the personal scientific experience of the author who has contributed immensely to the field. The interested reader will also benefit from the general historical context in which the material is presented in the book. The book covers a wide range of relevant topics of the field, and the main tool being rational asymptotic modelling (RAM) approach. The target audience primarily comprises experts in the field of fluid dynamics, but the book may also be beneficial for graduate students.

  3. Models for the dynamics of dust-like matter in the self-gravity field: The method of hydrodynamic substitutions

    Science.gov (United States)

    Zhuravlev, V. M.

    2017-09-01

    Models for the dynamics of a dust-like medium in the self-gravity field are investigated. Solutions of the corresponding problems are constructed by the method of hydrodynamic substitutions generalizing the Cole-Hopf substitutions. The method is extended to multidimensional ideal and viscous fluid flows with cylindrical and spherical symmetries for which exact solutions are constructed. Solutions for the dynamics of self-gravitating dust with arbitrary initial distributions of both fluid density and velocity are constructed using special coordinate transformations. In particular, the problem of cosmological expansion is considered in terms of Newton's gravity theory. Models of a one-dimensional viscous dust fluid flow and some problems of gas hydrodynamics are considered. Examples of exact solutions and their brief analysis are provided.

  4. Fluid dynamics of bubbly flows

    International Nuclear Information System (INIS)

    Ziegenhein, Thomas

    2016-01-01

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  5. Fluid dynamics of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhein, Thomas

    2016-07-08

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  6. Mesoscale Models of Fluid Dynamics

    Science.gov (United States)

    Boghosian, Bruce M.; Hadjiconstantinou, Nicolas G.

    During the last half century, enormous progress has been made in the field of computational materials modeling, to the extent that in many cases computational approaches are used in a predictive fashion. Despite this progress, modeling of general hydrodynamic behavior remains a challenging task. One of the main challenges stems from the fact that hydrodynamics manifests itself over a very wide range of length and time scales. On one end of the spectrum, one finds the fluid's "internal" scale characteristic of its molecular structure (in the absence of quantum effects, which we omit in this chapter). On the other end, the "outer" scale is set by the characteristic sizes of the problem's domain. The resulting scale separation or lack thereof as well as the existence of intermediate scales are key to determining the optimal approach. Successful treatments require a judicious choice of the level of description which is a delicate balancing act between the conflicting requirements of fidelity and manageable computational cost: a coarse description typically requires models for underlying processes occuring at smaller length and time scales; on the other hand, a fine-scale model will incur a significantly larger computational cost.

  7. Equilibrium configuration of perfect fluid orbiting around black holes in some classes of alternative gravity theories

    International Nuclear Information System (INIS)

    Chakraborty, Sumanta

    2015-01-01

    The hydrodynamic behavior of perfect fluid orbiting around black holes in spherically symmetric spacetime for various alternative gravity theories has been investigated. For this purpose we have assumed a uniform distribution for the angular momentum density of the rotating perfect fluid. The contours of equipotential surfaces are illustrated in order to obtain the nature of inflow and outflow of matter. It has been noticed that the marginally stable circular orbits originating from decreasing angular momentum density lead to closed equipotential surfaces along with cusps, allowing the existence of accretion disks. On the other hand, the growing part of the angular momentum density exhibits central rings for which stable configurations are possible. However, inflow of matter is prohibited. Among the solutions discussed in this work, the charged F(R) gravity and Einstein–Maxwell–Gauss–Bonnet solutions exhibit inflow and outflow of matter with central rings present. These varied accretion disk structures of perfect fluid attribute astrophysical importance to these spacetimes. The effect of higher curvature terms predominantly arises from the region near the black hole horizon. Hence the structural difference of the accretion disk in modified gravity theories in comparison to general relativity may act as an experimental probe for these alternative gravity theories. (paper)

  8. Dynamics of the conformal factor in 4D gravity

    International Nuclear Information System (INIS)

    Antoniadis, I.

    1993-01-01

    We argue that 4D gravity is drastically modified at distances larger than the horizon scale, due to the large infrared quantum fluctuations of the conformal part of the metric. The infrared dynamics of the conformal factor is generated by an effective action, induced by the trace anomaly of matter in curved space, analogous to the Polyakov action in two dimensions. The resulting effective scalar theory is renormalizable, and possesses a non-trivial, infrared stable fixed point, characterized by an anomalous scaling dimension of the conformal factor. We argue that this theory describes a large distance scale invariant phase of 4D gravity and provides a framework for a dynamical solution of the cosmological constant problem (author). 12 refs

  9. Canonical and symplectic analysis for three dimensional gravity without dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)

    2017-03-15

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  10. Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models

    Directory of Open Access Journals (Sweden)

    May R. D.

    2011-01-01

    Full Text Available Numerous experiments and observations have confirmed the existence of a dynamical 3-space, detectable directly by light-speed anisotropy experiments, and indirectly by means of novel gravitational effects, such as bore hole g anomalies, predictable black hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all without dark matter and dark energy. The dynamics for this 3-space follows from a unique generalisation of Newtonian gravity, once that is cast into a velocity formalism. This new theory of gravity is applied to the solar model of the sun to compute new density, pressure and temperature profiles, using polytrope modelling of the equation of state for the matter. These results should be applied to a re-analysis of solar neutrino production, and to stellar evolution in general.

  11. The Fluid Dynamics of Competitive Swimming

    Science.gov (United States)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  12. Fluid dynamics in porous media with Sailfish

    International Nuclear Information System (INIS)

    Coelho, Rodrigo C V; Neumann, Rodrigo F

    2016-01-01

    In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny–Carman equation, which is a well-known permeability–porosity relation, to our artificial samples. (paper)

  13. Fluid dynamics in porous media with Sailfish

    Science.gov (United States)

    Coelho, Rodrigo C. V.; Neumann, Rodrigo F.

    2016-09-01

    In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny-Carman equation, which is a well-known permeability-porosity relation, to our artificial samples.

  14. Fluid dynamics via examples and solutions

    CERN Document Server

    Nazarenko, Sergey

    2014-01-01

    "This is an excellent book for fluid dynamics students. It gives a good overview of the theory through a large set of worthy example problems. After many classical textbooks on the subject, there is finally one with solved exercises. I fully appreciate the selection of topics."-Professor Miguel Onorato, Physics Department, University of Torino.

  15. Modern Fluid Dynamics Intermediate Theory and Applications

    CERN Document Server

    Kleinstreuer, Clement

    2010-01-01

    Features pedagogical elements that include consistent 50/50 physics-mathematics approach when introducing material, illustrating concepts, showing flow visualizations, and solving problems. This title intends to help serious undergraduate student solve basic fluid dynamics problems independently, and suggest system design improvements

  16. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, C.; van der Sluis, L.W.M.; Basrani, B.

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  17. Engineering applications of computational fluid dynamics

    CERN Document Server

    Awang, Mokhtar

    2015-01-01

    This volume presents the results of Computational Fluid Dynamics (CFD) analysis that can be used for conceptual studies of product design, detail product development, process troubleshooting. It demonstrates the benefit of CFD modeling as a cost saving, timely, safe and easy to scale-up methodology.

  18. Interpretation of f(R,T) gravity in terms of a conserved effective fluid

    Science.gov (United States)

    Shabani, Hamid; Ziaie, Amir Hadi

    2018-03-01

    In the present work, we introduce a novel approach to study f(R,T) gravity theory from a different perspective. Here, T denotes the trace of energy-momentum tensor (EMT) of matter fluids. The usual method (as discussed in the literature) is to choose an h(T) function and then solve for the resulted Friedman equations. Nevertheless, our aim here is, without loss of generality, to reformulate a particular class of f(R,T) gravity models in which the Einstein-Hilbert action is promoted by an arbitrary function of the trace of EMT. The strategy is the redefinition of the equation of motion in terms of the components of an effective fluid. We show that in this case the EMT is automatically conserved. As we shall see, adopting such a point of view (at least) in f(R,T) gravity is accompanied by two significant points. On one hand, h(T) function is chosen based upon a physical concept and on the other, we clearly understand the overall or effective behavior of matter in terms of a conserved effective fluid. To illustrate the idea, we study some models in which different physical properties for the effective fluid is attributed to each model. Particularly, we discuss models with constant effective density, constant effective pressure and constant effective equation of state (EoS) parameter. Moreover, two models with a relation between the effective density and the effective pressure will be considered. An elegant result is that in f(R,T) gravity, there is a possibility that a perfect fluid could effectively behave as a modified Chaplygin gas with four free parameters.

  19. Magnetic Field and Gravity Effects on Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2014-01-01

    Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.

  20. Behaviour of charged collapsing fluids after hydrostatic equilibrium in R^n gravity

    Science.gov (United States)

    Kausar, Hafiza Rizwana

    2017-06-01

    The purpose of this paper is to study the transport equation and its coupling with the Maxwell equation in the framework of R^n gravity. Using Müller-Israel-Stewart theory for the conduction of dissipative fluids, we analyze the temperature, heat flux, viscosity and thermal conductivity in the scenario of relaxation time. All these thermodynamical variables appear in the form of a single factor whose influence is discussed on the evolution of relativistic model for the heat conducting collapsing star.

  1. Static and radiating solutions of Lovelock gravity in the presence of a perfect fluid

    International Nuclear Information System (INIS)

    Dehghani, M.H.; Farhangkhah, N.

    2009-01-01

    We present a general solution of third order Lovelock gravity in the presence of a specific type II perfect fluid. This solution for linear equation of state, p=w(ρ-4B) contains all the known solutions of third order Lovelock gravity in the literature and some new static and radiating solutions for different values of w and B. Specially, we consider the properties of static and radiating solutions for w=0 and w=(n-2) -1 with B=0 and B≠0. These solutions are asymptotically flat for B=0, while they are asymptotically (anti-)de Sitter for B≠0. The new static solutions for these choices of B and w present black holes with one or two horizons, extreme black holes or naked singularities provided the parameters of the solutions are chosen suitable. The static solution with w=0 and vanishing geometrical mass (m=0) may present a black hole with two inner and outer horizons. This is a peculiar feature of the third order Lovelock gravity, which does not occur in lower order Lovelock gravity. We also, investigate the properties of radiating solutions for these values of B and w, and compare the singularity strengths of them with the known radiating solutions of third order Lovelock gravity.

  2. Dynamical behavior of surface tension on rotating fluids in low and microgravity environments

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1989-01-01

    Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.

  3. Cardiac fluid dynamics meets deformation imaging.

    Science.gov (United States)

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  4. Computational fluid dynamics in ventilation design

    CERN Document Server

    Allard, Francis; Awbi, Hazim B; Davidson, Lars; Schälin, Alois

    2007-01-01

    CFD-calculations have been rapidly developed to a powerful tool for the analysis of air pollution distribution in various spaces. However, the user of CFD-calculation should be aware of the basic principles of calculations and specifically the boundary conditions. Computational Fluid Dynamics (CFD) – in Ventilation Design models is written by a working group of highly qualified international experts representing research, consulting and design.

  5. Domain decomposition methods for fluid dynamics

    International Nuclear Information System (INIS)

    Clerc, S.

    1995-01-01

    A domain decomposition method for steady-state, subsonic fluid dynamics calculations, is proposed. The method is derived from the Schwarz alternating method used for elliptic problems, extended to non-linear hyperbolic problems. Particular emphasis is given on the treatment of boundary conditions. Numerical results are shown for a realistic three-dimensional two-phase flow problem with the FLICA-4 code for PWR cores. (from author). 4 figs., 8 refs

  6. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    Science.gov (United States)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  7. Fluid Dynamics of Pressurized, Entrained Coal Gasifiers

    International Nuclear Information System (INIS)

    1997-01-01

    Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena like erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle--rather than discard--gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-upon the fluid dynamics of PECGs. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements

  8. Unimodular Einstein-Cartan gravity: Dynamics and conservation laws

    Science.gov (United States)

    Bonder, Yuri; Corral, Cristóbal

    2018-04-01

    Unimodular gravity is an interesting approach to address the cosmological constant problem, since the vacuum energy density of quantum fields does not gravitate in this framework, and the cosmological constant appears as an integration constant. These features arise as a consequence of considering a constrained volume element 4-form that breaks the diffeomorphisms invariance down to volume preserving diffeomorphisms. In this work, the first-order formulation of unimodular gravity is presented by considering the spin density of matter fields as a source of spacetime torsion. Even though the most general matter Lagrangian allowed by the symmetries is considered, dynamical restrictions arise on their functional dependence. The field equations are obtained and the conservation laws associated with the symmetries are derived. It is found that, analogous to torsion-free unimodular gravity, the field equation for the vierbein is traceless; nevertheless, torsion is algebraically related to the spin density as in standard Einstein-Cartan theory. The particular example of massless Dirac spinors is studied, and comparisons with standard Einstein-Cartan theory are shown.

  9. Time-dependent dynamical behavior of surface tension on rotating fluids under microgravity environment

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.

  10. Fluid/gravity correspondence: second order transport coefficients in compactified D4-branes

    International Nuclear Information System (INIS)

    Wu, Chao; Chen, Yidian; Huang, Mei

    2017-01-01

    We develop the boundary derivative expansion (BDE) formalism of fluid/gravity correspondence to nonconformal version through the compactified, near-extremal black D4-brane. We offer an explicit calculation of 9 second order transport coefficients, i.e., the τ π , τ π ∗ , τ Π , λ 1,2,3 and ξ 1,2,3 for the strongly coupled, uncharged and nonconformal relativistic fluid which is the holographic dual of compactified, near extremal black D4-brane. We also show that the nonconformal fluid considered in this work is free of causal problem and admits the Haack-Yarom relation 4λ 1 −λ 2 =2ητ π .

  11. The dynamical simulation of transient three-dimensional cryogenic liquid sloshing oscillations under low-gravity and microgravity

    Science.gov (United States)

    Chi, Yong Mann

    A numerical simulation model has been developed for the dynamical behavior of spacecraft propellant, both during the draining and the closing of the tank outlet at the onset of suction dip affected by the asymmetric combined gravity gradient and gravity jitter accelerations. In particular the effect of the surface tension of the fluids in the partially filled dewar (applicable to the Gravity Probe-B spacecraft dewar tank and fuel tanks for a liquid rocket) with rotation has been simulated and investigated. Two different cases of accelerations, one with gravity jitter dominated and the other equally weighted between gravity gradient and gravity jitter accelerations, are studied. In the development of this numerical simulation model, the NASA-VOF3D has been used as a supplement to the numerical program of this dissertation. The NASA-VOF3D code has been used for performing the three-dimensional incompressible flows with free surface. This is also used for controlling liquid sloshing inside the tank when the spacecraft is orbiting. To keep track of the location of the liquid, the fractional volume of fluid (VOF) technique was used. The VOF is based on the indicator function of the region occupied by the liquid with an Eulerian approach to solve the free surface phenomena between liquid and gas phases. For the calculation of surface tension force, the VOF model is also used. The newly developed simulation model is used to investigate the characteristics of liquid hydrogen draining in terms of the residual amount of trapped liquid at the onset of the suction dip and residual liquid volume at the time the dip of the liquid-vapor interface formed. This investigation simulates the characteristics of liquid oscillations due to liquid container outlet shut-off at the onset of suction dip. These phenomena checked how these mechanisms affected the excitation of slosh waves during the course of liquid draining and after shut-off tank outlet. In the present study, the dynamical

  12. Extremal black holes in dynamical Chern–Simons gravity

    International Nuclear Information System (INIS)

    McNees, Robert; Stein, Leo C; Yunes, Nicolás

    2016-01-01

    Rapidly rotating black hole (BH) solutions in theories beyond general relativity (GR) play a key role in experimental gravity, as they allow us to compute observables in extreme spacetimes that deviate from the predictions of GR. Such solutions are often difficult to find in beyond-general-relativity theories due to the inclusion of additional fields that couple to the metric nonlinearly and non-minimally. In this paper, we consider rotating BH solutions in one such theory, dynamical Chern–Simons (dCS) gravity, where the Einstein–Hilbert action is modified by the introduction of a dynamical scalar field that couples to the metric through the Pontryagin density. We treat dCS gravity as an effective field theory and work in the decoupling limit, where corrections are treated as small perturbations from GR. We perturb about the maximally rotating Kerr solution, the so-called extremal limit, and develop mathematical insight into the analysis techniques needed to construct solutions for generic spin. First we find closed-form, analytic expressions for the extremal scalar field, and then determine the trace of the metric perturbation, giving both in terms of Legendre decompositions. Retaining only the first three and four modes in the Legendre representation of the scalar field and the trace, respectively, suffices to ensure a fidelity of over 99% relative to full numerical solutions. The leading-order mode in the Legendre expansion of the trace of the metric perturbation contains a logarithmic divergence at the extremal Kerr horizon, which is likely to be unimportant as it occurs inside the perturbed dCS horizon. The techniques employed here should enable the construction of analytic, closed-form expressions for the scalar field and metric perturbations on a background with arbitrary rotation. (paper)

  13. Topological fluid dynamics of interfacial flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1994-01-01

    The topological description of flows in the vicinity of a solid boundary, that is familiar from the aerodynamics literature, has recently been extended to the case of flow at a liquid–gas interface or a free surface by Lugt [Phys. Fluids 30, 3647 (1987)]. Lugt's work is revisited in a more general...... setting, including nonconstant curvature of the interface and gradients of surface tension, using tools of modern nonlinear dynamics. Bifurcations of the flow pattern occur at degenerate configurations. Using the theory of unfolding, this paper gives a complete description of the bifurcations that depend...... on terms up to the second order. The general theory of this paper is applied to the topology of streamlines during the breaking of a wave and to the flow below a stagnant surface film. Physics of Fluids is copyrighted by The American Institute of Physics....

  14. Dynamical analysis of cylindrically symmetric anisotropic sources in f(R, T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, M.; Azmat, Hina [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Noureen, Ifra [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)

    2017-03-15

    In this paper, we have analyzed the stability of cylindrically symmetric collapsing object filled with locally anisotropic fluid in f(R, T) theory, where R is the scalar curvature and T is the trace of stress-energy tensor of matter. Modified field equations and dynamical equations are constructed in f(R, T) gravity. The evolution or collapse equation is derived from dynamical equations by performing a linear perturbation on them. The instability range is explored in both the Newtonian and the post-Newtonian regimes with the help of an adiabatic index, which defines the impact of the physical parameters on the instability range. Some conditions are imposed on the physical quantities to secure the stability of the gravitating sources. (orig.)

  15. Dynamical behavior of granular matter in low gravity (diamagnetic levitation)

    International Nuclear Information System (INIS)

    Brooks, J.S.; Cothern, J.A.

    2001-01-01

    We report studies on the dynamics of macroscopic particles in a low-gravity 'magnetic levitation' environment. In a real sense, this allows the investigation of new states of granular matter. Particle ensembles (rods, spheres, or grains) can be held in a weak confining potential due to diamagnetic forces in a high-field-resistive magnet. In such a case 'kT' is not zero, and assemblies of particles undergo ergodic processes to find the lowest configurational ground state. This new area presents unique problems for video data acquisition and mathematical descriptions of the complex dynamic motions, interactions, and configurations of single and multiple particle assemblies. Three examples of such processes are presented

  16. Dynamical behavior of granular matter in low gravity (diamagnetic levitation)

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.S. E-mail: brooks@magnet.fsu.edu; Cothern, J.A

    2001-05-01

    We report studies on the dynamics of macroscopic particles in a low-gravity 'magnetic levitation' environment. In a real sense, this allows the investigation of new states of granular matter. Particle ensembles (rods, spheres, or grains) can be held in a weak confining potential due to diamagnetic forces in a high-field-resistive magnet. In such a case 'kT' is not zero, and assemblies of particles undergo ergodic processes to find the lowest configurational ground state. This new area presents unique problems for video data acquisition and mathematical descriptions of the complex dynamic motions, interactions, and configurations of single and multiple particle assemblies. Three examples of such processes are presented.

  17. Isotropic background for interacting two fluid scenario coupled with zero mass scalar field in modified gravity

    International Nuclear Information System (INIS)

    Chirde, V.R.; Shekh, S.H.

    2016-01-01

    The modified theories of gravity have engrossed much attention in the last decade, especially f(R) gravity. In this contextual exploration, we investigate interaction between barotropic fluid and dark energy with zero-mass scalar field for the spatially homogeneous and isotropic flat FRW universe. In this universe, the field equations correspond to the particular choice of f(R) = R+bR m . The exact solutions of the field equations are obtained by applying volumetric power law and exponential law of expansion. In power and exponential law of expansion, the universe shows both matter dominated and DE era for b ≤ 0 and b ≥ 0 and remain present in dark era respectively, but power law model is fully occupying with real matter for b > 0 and for b < 0 exponential model expands with negative pressure and remain present in matter dominated phase respectively. The physical behavior of the universe has been discussed by using some physical quantities

  18. Patterns of gravity induced aggregate migration during casting of fluid concretes

    Energy Technology Data Exchange (ETDEWEB)

    Spangenberg, J. [Department of Mechanical Engineering, Technical University of Denmark (DTU) (Denmark); Roussel, N., E-mail: Nicolas.roussel@lcpc.fr [Universite Paris Est, Laboratoire Central des Ponts et Chaussees (LCPC) (France); Hattel, J.H. [Department of Mechanical Engineering, Technical University of Denmark (DTU) (Denmark); Sarmiento, E.V.; Zirgulis, G. [Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) (Norway); Geiker, M.R. [Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) (Norway); Department of Civil Engineering, Technical University of Denmark (DTU) (Denmark)

    2012-12-15

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.

  19. Patterns of gravity induced aggregate migration during casting of fluid concretes

    International Nuclear Information System (INIS)

    Spangenberg, J.; Roussel, N.; Hattel, J.H.; Sarmiento, E.V.; Zirgulis, G.; Geiker, M.R.

    2012-01-01

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.

  20. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  1. Perfect fluid of p-branes, 2D dilaton gravity and the big-bang

    International Nuclear Information System (INIS)

    Borlaf, J.

    2001-01-01

    This paper starts by building the energy-momentum tensor of a perfect fluid of p-branes coupled to (p+4)-dimensional general relativity. Having three homogeneous and isotropic macroscopical spatial dimensions, the system gravity/fluid can be reduced to an effective theory over the branes. For the string fluid (p=1) the effective theory is nothing but the 2D dilaton gravity where the potential for the scalar field, which is the scale factor of the macroscopical space, is fixed by the state equation and the three-dimensional geometry. This theory can be solved allowing us to compare some relevant aspects in our homogeneous and isotropic string cosmologies with those of the Robertson-Walker ones. In particular, unlike the point-particle models, the existence of an initial singularity is strongly sensitive to the state equation, and it is remarkable that this model picks out the radiation state equation as the canonical case where the big-bang is kinematically forbidden. Moreover, we cannot reduce the Robertson-Walker cosmologies to the limit when the string size approaches to zero, because the existence of an upper bound on the string size is not compatible with the big-bang. Some examples are presented

  2. Perfect fluid of p-branes, 2D dilaton gravity and the big-bang

    Energy Technology Data Exchange (ETDEWEB)

    Borlaf, J. E-mail: jborlaf@redestb.es

    2001-01-15

    This paper starts by building the energy-momentum tensor of a perfect fluid of p-branes coupled to (p+4)-dimensional general relativity. Having three homogeneous and isotropic macroscopical spatial dimensions, the system gravity/fluid can be reduced to an effective theory over the branes. For the string fluid (p=1) the effective theory is nothing but the 2D dilaton gravity where the potential for the scalar field, which is the scale factor of the macroscopical space, is fixed by the state equation and the three-dimensional geometry. This theory can be solved allowing us to compare some relevant aspects in our homogeneous and isotropic string cosmologies with those of the Robertson-Walker ones. In particular, unlike the point-particle models, the existence of an initial singularity is strongly sensitive to the state equation, and it is remarkable that this model picks out the radiation state equation as the canonical case where the big-bang is kinematically forbidden. Moreover, we cannot reduce the Robertson-Walker cosmologies to the limit when the string size approaches to zero, because the existence of an upper bound on the string size is not compatible with the big-bang. Some examples are presented.

  3. Direct modeling for computational fluid dynamics

    Science.gov (United States)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  4. Three-Dimensional Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, D.C.; O' Rourke, P.J.; Ranganathan, R.

    1998-09-01

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  5. Computational fluid dynamics a practical approach

    CERN Document Server

    Tu, Jiyuan; Liu, Chaoqun

    2018-01-01

    Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems.

  6. Optics and Fluid Dynamics Department annual progress report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S.G.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.

    1996-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following two programme areas: (1) optical diagnostics and information processing and (2) plasma and fluid dynamics. The optical activities are concentrated on optical materials, diagnostics and sensors. The plasma and fluid dynamics activities are concentrated on nonlinear dynamics in fluids, plasmas and optics as well as on plasma and fluid diagnostics. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1995 is presented. (au) 36 ills., 166 refs.

  7. Optics and Fluid Dynamics Department annual progress report for 1995

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Lynov, J.P.; Skaarup, B.

    1996-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following two programme areas: (1) optical diagnostics and information processing and (2) plasma and fluid dynamics. The optical activities are concentrated on optical materials, diagnostics and sensors. The plasma and fluid dynamics activities are concentrated on nonlinear dynamics in fluids, plasmas and optics as well as on plasma and fluid diagnostics. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1995 is presented. (au) 36 ills., 166 refs

  8. Dynamics of the Gay-Berne fluid

    International Nuclear Information System (INIS)

    de Miguel, E.; Rull, L.F.; Gubbins, K.E.

    1992-01-01

    Using molecular-dynamics computer simulation, we study the dynamical behavior of the isotropic and nematic phases of highly anisotropic molecular fluids. The interactions are modeled by means of the Gay-Berne potential with anisotropy parameters κ=3 and κ'=5. The linear-velocity autocorrelation function shows no evidence of a negative region in the isotropic phase, even at the higher densities considered. The self-diffusion coefficient parallel to the molecular axis shows an anomalous increase with density as the system enters the nematic region. This enhancement in parallel diffusion is also observed in the isotropic side of the transition as a precursor effect. The molecular reorientation is discussed in the light of different theoretical models. The Debye diffusion model appears to explain the reorientational mechanism in the nematic phase. None of the models gives a satisfactory account of the reorientation process in the isotropic phase

  9. Behaviour of charged collapsing fluids after hydrostatic equilibrium in R{sup n} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kausar, Hafiza Rizwana [University of Central Punjab, Faculty of Management Studies, Centre for Applicable Mathematics and Statistics, UCP Business School, Lahore (Pakistan)

    2017-06-15

    The purpose of this paper is to study the transport equation and its coupling with the Maxwell equation in the framework of R{sup n} gravity. Using Mueller-Israel-Stewart theory for the conduction of dissipative fluids, we analyze the temperature, heat flux, viscosity and thermal conductivity in the scenario of relaxation time. All these thermodynamical variables appear in the form of a single factor whose influence is discussed on the evolution of relativistic model for the heat conducting collapsing star. (orig.)

  10. Fluid dynamic effects on precision cleaning with supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.

  11. Zonal methods and computational fluid dynamics

    International Nuclear Information System (INIS)

    Atta, E.H.

    1985-01-01

    Recent advances in developing numerical algorithms for solving fluid flow problems, and the continuing improvement in the speed and storage of large scale computers have made it feasible to compute the flow field about complex and realistic configurations. Current solution methods involve the use of a hierarchy of mathematical models ranging from the linearized potential equation to the Navier Stokes equations. Because of the increasing complexity of both the geometries and flowfields encountered in practical fluid flow simulation, there is a growing emphasis in computational fluid dynamics on the use of zonal methods. A zonal method is one that subdivides the total flow region into interconnected smaller regions or zones. The flow solutions in these zones are then patched together to establish the global flow field solution. Zonal methods are primarily used either to limit the complexity of the governing flow equations to a localized region or to alleviate the grid generation problems about geometrically complex and multicomponent configurations. This paper surveys the application of zonal methods for solving the flow field about two and three-dimensional configurations. Various factors affecting their accuracy and ease of implementation are also discussed. From the presented review it is concluded that zonal methods promise to be very effective for computing complex flowfields and configurations. Currently there are increasing efforts to improve their efficiency, versatility, and accuracy

  12. AFDM: An Advanced Fluid-Dynamics Model

    International Nuclear Information System (INIS)

    Wilhelm, D.

    1990-09-01

    This volume describes the Advanced Fluid-Dynamics Model (AFDM) for topologies, flow regimes, and interfacial areas. The objective of these models is to provide values for the interfacial areas between all components existing in a computational cell. The interfacial areas are then used to evaluate the mass, energy, and momentum transfer between the components. A new approach has been undertaken in the development of a model to convect the interfacial areas of the discontinuous velocity fields in the three-velocity-field environment of AFDM. These interfacial areas are called convectible surface areas. The continuous and discontinuous components are chosen using volume fraction and levitation criteria. This establishes so-called topologies for which the convectible surface areas can be determined. These areas are functions of space and time. Solid particulates that are limited to being discontinuous within the bulk fluid are assumed to have a constant size. The convectible surface areas are subdivided to model contacts between two discontinuous components or discontinuous components and the structure. The models have been written for the flow inside of large pools. Therefore, the structure is tracked only as a boundary to the fluid volume without having a direct influence on velocity or volume fraction distribution by means of flow regimes or boundary layer models. 17 refs., 7 tabs., 18 figs

  13. Dynamic simulation of an electrorheological fluid

    International Nuclear Information System (INIS)

    Bonnecaze, R.T.; Brady, J.F.

    1992-01-01

    A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10 -4 to ∞. The effective viscosity of the suspension increases as Ma -1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma -1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected ''snapshots'' of the suspension microstructure

  14. The Future with Cryogenic Fluid Dynamics

    Science.gov (United States)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  15. An experimental and theoretical investigation of the liquefaction dynamics of a phase change material in a normal gravity environment

    Science.gov (United States)

    Bain, R. L.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Experimental and theoretical investigations were undertaken to determine the role of gravity-induced free convection upon the liquefaction dynamics of a cylindrical paraffin slab under normal gravity conditions. The experimental equipment consisted of a test cell, a fluid-loop heating system, and a multipoint recorder. The test chamber was annular in shape with an effective radius of 1.585 cm and a length of 5.08 cm. The heating chamber was a 1.906 cm diameter tube going through the center of the test chamber, and connected to the fluid loop heating system. All experimental runs were made with the longitudinal axis of the test cell in the vertical direction to insure that convection was not a function of the angular axis of the cell. Ten melting runs were made at various hot wall temperatures. Also, two pure conduction solidification runs were made to determine an experimental latent heat of fusion.

  16. Computational Fluid Dynamics in Ventilation Design

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2008-01-01

    This paper is based on the new REHVA Guidebook Computational Fluid  Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people....... The guidebook introduces rules for good quality prediction work, and it is the purpose of the guidebook to improve the technical level of CFD work in ventilation.......This paper is based on the new REHVA Guidebook Computational Fluid  Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people...... who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD. The guidebook is also written for people working with CFD who have to be more aware of how this numerical method is applied in the area of ventilation...

  17. Modeling quantum fluid dynamics at nonzero temperatures

    Science.gov (United States)

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  18. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  19. Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity

    Science.gov (United States)

    Shaikh, A. Y.

    2016-07-01

    A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.

  20. AFDM: An Advanced Fluid-Dynamics Model

    International Nuclear Information System (INIS)

    Bohl, W.R.; Parker, F.R.; Wilhelm, D.; Goutagny, L.; Ninokata, H.

    1990-09-01

    AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs

  1. Initial value formulation of dynamical Chern-Simons gravity

    Science.gov (United States)

    Delsate, Térence; Hilditch, David; Witek, Helvi

    2015-01-01

    We derive an initial value formulation for dynamical Chern-Simons gravity, a modification of general relativity involving parity-violating higher derivative terms. We investigate the structure of the resulting system of partial differential equations thinking about linearization around arbitrary backgrounds. This type of consideration is necessary if we are to establish well-posedness of the Cauchy problem. Treating the field equations as an effective field theory we find that weak necessary conditions for hyperbolicity are satisfied. For the full field equations we find that there are states from which subsequent evolution is not determined. Generically the evolution system closes, but is not hyperbolic in any sense that requires a first order pseudodifferential reduction. In a cursory mode analysis we find that the equations of motion contain terms that may cause ill-posedness of the initial value problem.

  2. On a numerical strategy to compute gravity currents of non-Newtonian fluids

    International Nuclear Information System (INIS)

    Vola, D.; Babik, F.; Latche, J.-C.

    2004-01-01

    This paper is devoted to the presentation of a numerical scheme for the simulation of gravity currents of non-Newtonian fluids. The two dimensional computational grid is fixed and the free-surface is described as a polygonal interface independent from the grid and advanced in time by a Lagrangian technique. Navier-Stokes equations are semi-discretized in time by the Characteristic-Galerkin method, which finally leads to solve a generalized Stokes problem posed on a physical domain limited by the free surface to only a part of the computational grid. To this purpose, we implement a Galerkin technique with a particular approximation space, defined as the restriction to the fluid domain of functions of a finite element space. The decomposition-coordination method allows to deal without any regularization with a variety of non-linear and possibly non-differentiable constitutive laws. Beside more analytical tests, we revisit with this numerical method some simulations of gravity currents of the literature, up to now investigated within the simplified thin-flow approximation framework

  3. Spreading dynamics of power-law fluid droplets

    International Nuclear Information System (INIS)

    Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay

    2009-01-01

    This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.

  4. Collective dynamics in dense fluid mixtures

    International Nuclear Information System (INIS)

    Sinha, S.

    1992-01-01

    This thesis deals with the short wavelength collective dynamics of dense binary fluid mixtures. The analysis shows that at the level of linearized generalized hydrodynamics, the longitudinal modes of the system separates essentially into two parts - one involves the coupling of partial density fluctuations of the two species and the other involves coupling of longitudinal momentum and temperature fluctuations. The authors have shown that the coupling of longitudinal momentum and temperature fluctuations leads to an adequate description of sound propagation in such systems. In particular, they show that structural disorder controls the trapping of sound waves in dense mixtures. The coupling of the partial density fluctuations of the two species leads to a simple description of the partial dynamic structure factors. The results are in agreement with the molecular dynamics simulations of soft sphere mixtures. The partial density fluctuations are the slowest decaying fluctuations on molecular length scales and it turns out that nonlinear coupling of these slow modes leads to important corrections to the long time behavior of the time correlation functions determining the shear viscosity in dense mixtures

  5. The use of computers for instruction in fluid dynamics

    Science.gov (United States)

    Watson, Val

    1987-01-01

    Applications for computers which improve instruction in fluid dynamics are examined. Computers can be used to illustrate three-dimensional flow fields and simple fluid dynamics mechanisms, to solve fluid dynamics problems, and for electronic sketching. The usefulness of computer applications is limited by computer speed, memory, and software and the clarity and field of view of the projected display. Proposed advances in personal computers which will address these limitations are discussed. Long range applications for computers in education are considered.

  6. Fluid flow dynamics in MAS systems

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  7. Dynamics of axial symmetric system in self-interacting Brans-Dicke gravity

    International Nuclear Information System (INIS)

    Sharif, M.; Manzoor, Rubab

    2016-01-01

    This paper investigates the dynamics of an axial reflection symmetric model in self-interacting Brans-Dicke gravity for anisotropic fluid. We formulate hydrodynamical equations and discuss oscillations using a time-dependent perturbation for both spin-dependent and spin-independent cases. The expressions of the frequency, the total energy density, and the equation of motion of the oscillating model are obtained. We study the instability of the oscillating models in weak approximations. It is found that the oscillations and stability of the model depend upon the dark energy source along with anisotropy and reflection effects. We conclude that the axial reflection system remains stable for stiffness parameter Γ = 1, collapses for Γ > 1, and becomes unstable for 0 < Γ < 1. (orig.)

  8. Dynamics of axial symmetric system in self-interacting Brans-Dicke gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Manzoor, Rubab [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)

    2016-06-15

    This paper investigates the dynamics of an axial reflection symmetric model in self-interacting Brans-Dicke gravity for anisotropic fluid. We formulate hydrodynamical equations and discuss oscillations using a time-dependent perturbation for both spin-dependent and spin-independent cases. The expressions of the frequency, the total energy density, and the equation of motion of the oscillating model are obtained. We study the instability of the oscillating models in weak approximations. It is found that the oscillations and stability of the model depend upon the dark energy source along with anisotropy and reflection effects. We conclude that the axial reflection system remains stable for stiffness parameter Γ = 1, collapses for Γ > 1, and becomes unstable for 0 < Γ < 1. (orig.)

  9. CFDLIB05, Computational Fluid Dynamics Library

    International Nuclear Information System (INIS)

    Kashiwa, B.A.; Padial, N.T.; Rauenzahn, R.M.; VanderHeyden, W.B.

    2007-01-01

    1 - Description of program or function: CFDLib05 is the Los Alamos Computational Fluid Dynamics Library. This is a collection of hydro-codes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conversation laws is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary. 2 - Methods: Cells-centered Implicit Continuous-fluid Eulerian (ICE) method

  10. Variational approach to nuclear fluid dynamics

    International Nuclear Information System (INIS)

    Da Providencia, J.P.; Holzwarth, G.

    1983-01-01

    A variational derivation of a fluid-dynamical formalism for finite Fermi systems is presented which is based on a single determinant as variational function and does not exclude the possibility of transverse flow. Therefore the explicit specification of the time-odd part has to go beyond the local chi-approximation, while the time-even part is taken in the generalized scaling form. The necessary boundary conditions are derived from the variation of the lagrangian. The results confirm previous simplified approaches to a remarkable degree for quadrupole modes; for other multipolarities the deviations are much less than might be expected according to a sizeable change in the transverse sound speed. (orig.)

  11. Graphics supercomputer for computational fluid dynamics research

    Science.gov (United States)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  12. Artificial Intelligence In Computational Fluid Dynamics

    Science.gov (United States)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  13. Visualization of unsteady computational fluid dynamics

    Science.gov (United States)

    Haimes, Robert

    1994-11-01

    A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.

  14. Fluid-to-fluid scaling for a gravity- and flashing-driven natural circulation loop

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Zeller, M.

    1994-01-01

    In certain natural-circulation reactor systems proposed recently, vapor generation takes place by flashing in an adiabatic riser above the core. A step-by-step facility design procedure was used to define suitable scaling criteria for a refrigerant-113 (R-113) experiment simulating the dynamics and stability of such a loop. The fact that vapor generation does not normally take place in the core allows additional flexibility in designing the model; almost perfect simulation can be achieved, mainly by reducing the height of the facility according to the liquid density ratio and scaling for similar void fraction distributions in the prototype and the model. ((orig.))

  15. Eddington-inspired Born-Infeld gravity: nuclear physics constraints and the validity of the continuous fluid approximation

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-11-01

    In this paper we investigate the classical non-relativistic limit of the Eddington-inspired Born-Infeld theory of gravity. We show that strong bounds on the value of the only additional parameter of the theory κ, with respect to general relativity, may be obtained by requiring that gravity plays a subdominant role compared to electromagnetic interactions inside atomic nuclei. We also discuss the validity of the continuous fluid approximation used in this and other astrophysical and cosmological studies. We argue that although the continuous fluid approximation is expected to be valid in the case of sufficiently smooth density distributions, its use should eventually be validated at a quantum level.

  16. Eddington-inspired Born-Infeld gravity: nuclear physics constraints and the validity of the continuous fluid approximation

    International Nuclear Information System (INIS)

    Avelino, P.P.

    2012-01-01

    In this paper we investigate the classical non-relativistic limit of the Eddington-inspired Born-Infeld theory of gravity. We show that strong bounds on the value of the only additional parameter of the theory κ, with respect to general relativity, may be obtained by requiring that gravity plays a subdominant role compared to electromagnetic interactions inside atomic nuclei. We also discuss the validity of the continuous fluid approximation used in this and other astrophysical and cosmological studies. We argue that although the continuous fluid approximation is expected to be valid in the case of sufficiently smooth density distributions, its use should eventually be validated at a quantum level

  17. Dynamics of vortex structures in a stratified rotating fluid

    CERN Document Server

    Sokolovskiy, Mikhail A

    2013-01-01

    This book presents an extensive analysis of the dynamics of discrete and distributed baroclinic vortices in a multi-layer fluid that characterizes the main features of the large and mesoscales dynamics of the atmosphere and the ocean.

  18. Axisymmetric capillary-gravity waves at the interface of two viscous, immiscible fluids - Initial value problem

    Science.gov (United States)

    Farsoiya, Palas Kumar; Dasgupta, Ratul

    2017-11-01

    When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.

  19. Near-surface gravity actuated pipe (GAP{sup TM}) system for Brazilian deepwater fluid transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fromage, Lionel; Brown, Paul A. [SBM Offshore (Monaco)

    2009-12-19

    The recent discovery of new deep water and ultra-deep water oil and gas fields offshore Brazil, including pre-salt reservoirs, has become a focal point for field development Operators and Contractors. The aggressive nature of fluids (sour, high density) in combination with deeper waters implies potential flow assurance issues. These issues challenge riser and pipeline technology to find cost effective solutions for hydrocarbon fluid transfer in field development scenarios involving phased tied-back. The near-surface GAP{sup TM}, system (Gravity Actuated Pipe{sup TM}), which has been in operation for more than two years on the Kikeh field offshore Malaysia in 1325 m of water between a Dry Tree Unit (SPAR) and a turret-moored FPSO, is considered to meet these challenges since such a product is quasi independent of water depth and takes advantage of being near surface to optimize flow assurance. Furthermore the GAP{sup TM} has undergone technical upgrades when compared to the Kikeh project in order to make it suitable for the more hostile met ocean conditions offshore Brazil. This paper presents the design features, the construction and assembly plans in Brazil and the offshore installation of a GAP fluid transfer system for operation in Brazilian deep waters. (author)

  20. Dynamics and entanglement in spherically symmetric quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Terno, Daniel R.

    2010-01-01

    The gravity-scalar field system in spherical symmetry provides a natural setting for exploring gravitational collapse and its aftermath in quantum gravity. In a canonical approach, we give constructions of the Hamiltonian operator, and of semiclassical states peaked on constraint-free data. Such states provide explicit examples of physical states. We also show that matter-gravity entanglement is an inherent feature of physical states, whether or not there is a black hole.

  1. Computational fluid dynamics modelling in cardiovascular medicine.

    Science.gov (United States)

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission

  2. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  3. Optics and Fluid Dynamics Department annual progress report for 1999

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter

    2000-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within the three programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competences in:optical sensors, optical materials, biooptics...

  4. Computational Fluid Dynamics Methods and Their Applications in Medical Science

    Directory of Open Access Journals (Sweden)

    Kowalewski Wojciech

    2016-12-01

    Full Text Available As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.

  5. EDITORIAL: Changes to Fluid Dynamics Research in 2009 Changes to Fluid Dynamics Research in 2009

    Science.gov (United States)

    Funakoshi, Mitsuaki

    2009-02-01

    Welcome to the first issue of the modified Fluid Dynamics Research (FDR) journal, which is now being published by IOP Publishing on behalf of the Japan Society of Fluid Mechanics. Since its launch in 1986, FDR has become a well-established international journal that publishes theoretical, numerical and experimental studies contributing to the fundamental understanding and application of fluid phenomena. It has also been an invaluable resource for physicists and researchers in engineering interested in problems relevant to the motion of fluids. From 2009, FDR will be edited by a new international Editorial Board, with the strong intention of establishing the journal further and bringing it to a wider audience. In this new-look FDR, which will be published six times per year, readers will find several special sections containing high quality invited reviews and papers written by leading researchers who have been selected by the international Editorial Board. This is in addition to the regular papers on a variety of topical subjects by active researchers in the field. As before, there are no publication charges for standard articles, and now article numbering has been adopted, enabling accepted papers to be published online more quickly, ahead of print publication. In order to maintain a balanced and up-to-date perspective, we welcome feedback from our readers regarding the content of the journal, as well as suggestions for topics to cover and areas to highlight. Finally, I would like to thank our authors, members of the international Editorial Board, and the staff at IOP Publishing for producing this first issue. We hope you will enjoy reading this renewed and exciting journal for the international fluid dynamics community.

  6. Skylab fluid mechanics simulations: Oscillation, rotation, collision and coalescence of water droplets under low-gravity environment

    Science.gov (United States)

    Vaughan, O. H., Jr.; Hung, R. J.

    1975-01-01

    Skylab 4 crew members performed a series of demonstrations showing the oscillations, rotations, as well as collision coalescence of water droplets which simulate various physical models of fluids under low gravity environment. The results from Skylab demonstrations provide information and illustrate the potential of an orbiting space-oriented research laboratory for the study of more sophisticated fluid mechanic experiments. Experiments and results are discussed.

  7. Fluid dynamics theoretical and computational approaches

    CERN Document Server

    Warsi, ZUA

    2005-01-01

    Important Nomenclature Kinematics of Fluid Motion Introduction to Continuum Motion Fluid Particles Inertial Coordinate Frames Motion of a Continuum The Time Derivatives Velocity and Acceleration Steady and Nonsteady Flow Trajectories of Fluid Particles and Streamlines Material Volume and Surface Relation between Elemental Volumes Kinematic Formulas of Euler and Reynolds Control Volume and Surface Kinematics of Deformation Kinematics of Vorticity and Circulation References Problems The Conservation Laws and the Kinetics of Flow Fluid Density and the Conservation of Mass Prin

  8. Computational fluid dynamics principles and applications

    CERN Document Server

    Blazek, J

    2005-01-01

    Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies. The accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) as well as of grid generators. Provided are also tools for Von Neumann stability analysis of 1-D model equations. Finally, the companion website includes the source code of a dedicated visualisation so...

  9. AFDM: An advanced fluid-dynamics model

    International Nuclear Information System (INIS)

    Henneges, G.; Kleinheins, S.

    1994-01-01

    This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices

  10. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    Science.gov (United States)

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  11. The Fluid Dynamics of Nascent Biofilms

    Science.gov (United States)

    Farthing, Nicola; Snow, Ben; Wilson, Laurence; Bees, Martin

    2017-11-01

    Many anti-biofilm approaches target mature biofilms with biochemical or physio-chemical interventions. We investigate the mechanics of interventions at an early stage that aim to inhibit biofilm maturation, focusing on hydrodynamics as cells transition from planktonic to surface-attached. Surface-attached cells generate flow fields that are relatively long-range compared with cells that are freely-swimming. We look at the effect of these flows on the biofilm formation. In particular, we use digital inline holographic microscopy to determine the three-dimensional flow due to a surface-attached cell and the effect this flow has on both tracers and other cells in the fluid. We compare experimental data with two models of cells on boundaries. The first approach utilizes slender body theory and captures many of the features of the experimental field. The second model develops a simple description in terms of singularity solutions of Stokes' flow, which produces qualitatively similar dynamics to both the experiments and more complex model but with significant computational savings. The range of validity of multiple cell arrangements is investigated. These two descriptions can be used to investigate the efficacy of actives developed by Unilever on nascent biofilms.

  12. Computational fluid dynamics in ventilation: Practical approach

    Science.gov (United States)

    Fontaine, J. R.

    The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.

  13. The Fluid Dynamics Demo Kit: Part I

    Science.gov (United States)

    Flack, Karen; Underhill, Patrick; Prestridge, Kathy

    2012-11-01

    The goal of this project is to develop a fluid dynamics demonstration/experiment kit that can be used by professors and graduate students at high school outreach events. The demonstrations in the kit will be easy to use and true crowd pleasers in order to inspire understanding and pique curiosity about the physics of flow. The kits will be inexpensive, containing readily available materials so that teachers can duplicate the demonstrations and experiments. The kits will be left with the teachers as a gift from the American Physics Society. The experiments and demonstrations cover the concepts of conservation of mass, momentum, and energy, Bernoulli's equation, frictional losses and the ideal gas law. For each experiment, the teachers will receive presentation material, access to instructional videos, plus a worksheet that can be used in a high school physics classroom. This kit has been developed through the efforts of the APS-DFD Mentoring and Outreach Committee and has received funding from the APS-DFD. Work funded by the APS-DFD.

  14. Renormalization group flows in σ-models coupled to two-dimensional dynamical gravity

    International Nuclear Information System (INIS)

    Penati, S.; Santambrogio, A.; Zanon, D.

    1997-01-01

    We consider a bosonic σ-model coupled to two-dimensional gravity. In the semiclassical limit, c→-∞, we compute the gravity dressing of the β-functions at two-loop order in the matter fields. We find that the corrections due to the presence of dynamical gravity are not expressible simply in terms of a multiplicative factor as previously obtained at the one-loop level. Our result indicates that the critical points of the theory are non-trivially influenced and modified by the induced gravity. (orig.)

  15. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    Science.gov (United States)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2013-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the NASA Game Changing Development Program (GCD) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1). The tank geometry

  16. Acquisition of Long-Duration, Low-Gravity Slosh Data Utilizing Existing ISS Equipment (SPHERES) for Calibration of CFD Models of Coupled Fluid-Vehicle Behavior

    Science.gov (United States)

    Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey

    2012-01-01

    Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the Office of the Chief Technologist (OCT) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1 ). The tank geometry simulates

  17. Dynamics and phenomenology of higher order gravity cosmological models

    Science.gov (United States)

    Moldenhauer, Jacob Andrew

    2010-10-01

    I present here some new results about a systematic approach to higher-order gravity (HOG) cosmological models. The HOG models are derived from curvature invariants that are more general than the Einstein-Hilbert action. Some of the models exhibit late-time cosmic acceleration without the need for dark energy and fit some current observations. The open question is that there are an infinite number of invariants that one could select, and many of the published papers have stressed the need to find a systematic approach that will allow one to study methodically the various possibilities. We explore a new connection that we made between theorems from the theory of invariants in general relativity and these cosmological models. In summary, the theorems demonstrate that curvature invariants are not all independent from each other and that for a given Ricci Segre type and Petrov type (symmetry classification) of the space-time, there exists a complete minimal set of independent invariants (a basis) in terms of which all the other invariants can be expressed. As an immediate consequence of the proposed approach, the number of invariants to consider is dramatically reduced from infinity to four invariants in the worst case and to only two invariants in the cases of interest, including all Friedmann-Lemaitre-Robertson-Walker metrics. We derive models that pass stability and physical acceptability conditions. We derive dynamical equations and phase portrait analyses that show the promise of the systematic approach. We consider observational constraints from magnitude-redshift Supernovae Type Ia data, distance to the last scattering surface of the Cosmic Microwave Background radiation, and Baryon Acoustic Oscillations. We put observational constraints on general HOG models. We constrain different forms of the Gauss-Bonnet, f(G), modified gravity models with these observations. We show some of these models pass solar system tests. We seek to find models that pass physical and

  18. Radiation fluid stars in the non-minimally coupled Y(R)F{sup 2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sert, Oezcan [Pamukkale University, Department of Mathematics, Faculty of Arts and Sciences, Denizli (Turkey)

    2017-02-15

    We propose a non-minimally coupled gravity model in Y(R)F{sup 2} form to describe the radiation fluid stars which have the radiative equation of state between the energy density ρ and the pressure p given by ρ = 3p. Here F{sup 2} is the Maxwell invariant and Y(R) is a function of the Ricci scalar R. We give the gravitational and electromagnetic field equations in differential form notation taking the infinitesimal variations of the model. We look for electrically charged star solutions to the field equations under the constraint eliminating complexity of the higher order terms in the field equations. We determine the non-minimally coupled function Y(R) and the corresponding model which admits new exact solutions in the interior of the star and the Reissner-Nordstrom solution at the exterior region. Using the vanishing pressure condition at the boundary together with the continuity conditions of the metric functions and the electric charge, we find the mass-radius ratio, charge-radius ratio, and the gravitational surface redshift depending on the parameter of the model for the radiation fluid star. We derive general restrictions for the ratios and redshift of the charged compact stars. We obtain a slightly smaller upper mass-radius ratio limit than the Buchdahl bound 4/9 and a smaller upper redshift limit than the bound of the standard general relativistic stars. (orig.)

  19. Optics and Fluid Dynamics Department annual progress report for 2003

    OpenAIRE

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter; Petersen, Paul Michael; Skaarup, Bitten

    2004-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several ...

  20. Optics and Fluid Dynamics Department annual progress report for 2000

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter

    2001-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has corecompetences in: optical sensors, optical materials......, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danishresearch councils and by industry. A summary of the activities in 2000 is presented....

  1. Optics and Fluid Dynamics Department annual progress report for 2003

    DEFF Research Database (Denmark)

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter

    2004-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EUprogrammes, including EURATOM, by Danish research councils and by industry. A summary of the activities...

  2. Optics and Fluid Dynamics Department annual progress report for 2002

    DEFF Research Database (Denmark)

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter

    2003-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, includingEURATOM, by Danish research councils and by industry. A summary of the activities in 2002...

  3. Technical fluid dynamics. 7. rev. ed.

    International Nuclear Information System (INIS)

    Becker, E.; Piltz, E.

    1993-01-01

    An introductory textbook for students of engineering containing the following subjects: Definition and properties of fluids, hydrostatics, Bernoulli's equation, theorem of momentum for steadystate flows, wing lattice and single wing, plane parallel flow of a viscous fluid, pipe flow, boundary layers, gas flows. (orig.) [de

  4. Analysis of Cell Biomechanics Response to Gravity:A Fluids for Biology Study Utilizing NASA Glenns Zero Gravity Research Facility

    Science.gov (United States)

    Bomani, Bilal M. M.; Kassemi, Mohammad; Neumann, Eric S.

    2016-01-01

    It remains unclear how biological cells sense and respond to gravitational forces. Leading scientists state that a large gap exists in the understanding of physiological and molecular adaptation that occurs as biology enters the spaceflight realm. We are seeking a method to fully understand how cells sense microgravity/gravity and what triggers their response.

  5. Dynamic Characteristics of Magneto-Fluid Supports

    Directory of Open Access Journals (Sweden)

    V. A. Chernobai

    2008-01-01

    Full Text Available The paper considers a vibro-protective magneto-fluid support that uses elastic properties of magnetic fluid with a free surface in magnetic field.The paper has experimentally revealed that the analyzed structure is characterized by better noise absorbing characteristics.The conducted experiments have made it possible to conclude that there is a possibility to use vibro-protective magneto-fluid supports within the frequency range from 0 to 300 Hz, amplitudes up to 2 mm and unit load up to 2,5 · 10 4 Н/м².

  6. CONSIDERATIONS ON FLUID DYNAMICS INSIDE A HYDRAULIC SEISMIC ENERGY ABSORBER

    Directory of Open Access Journals (Sweden)

    ȘCHEAUA Fănel

    2013-06-01

    Full Text Available This study presents a method for obtaining a simplified model of a seismic energy dissipation device whose operating principle is based on viscous fluid as a solution for structural isolation against seismic actions. The device operation is based on the resistance force developed by the working fluid when the piston tends to move due to occurrence of a seismic motion. A 3D model achieved is introduced in CFD analysis for emphasize dynamic fluid flow inside the device dissipation cylinder.

  7. Computational fluid dynamics incompressible turbulent flows

    CERN Document Server

    Kajishima, Takeo

    2017-01-01

    This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...

  8. PREFACE: Fourth Meeting on Constrained Dynamics and Quantum Gravity

    Science.gov (United States)

    Cadoni, Mariano; Cavaglia, Marco; Nelson, Jeanette E.

    2006-04-01

    The formulation of a quantum theory of gravity seems to be the unavoidable endpoint of modern theoretical physics. Yet the quantum description of the gravitational field remains elusive. The year 2005 marks the tenth anniversary of the First Meeting on Constrained Dynamics and Quantum Gravity, held in Dubna (Russia) due to the efforts of Alexandre T. Filippov (JINR, Dubna) and Vittorio de Alfaro (University of Torino, Italy). At the heart of this initiative was the desire for an international forum where the status and perspectives of research in quantum gravity could be discussed from the broader viewpoint of modern gauge field theories. Since the Dubna meeting, an increasing number of scientists has joined this quest. Progress was reported in two other conferences in this series: in Santa Margherita Ligure (Italy) in 1996 and in Villasimius (Sardinia, Italy) in 1999. After a few years of ``working silence'' the time was now mature for a new gathering. The Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05) was held in Cala Gonone (Sardinia, Italy) from Monday 12th to Friday 16th September 2005. Surrounded by beautiful scenery, 100 scientists from 23 countries working in field theory, general relativity and related areas discussed the latest developments in the quantum treatment of gravitational systems. The QG05 edition covered many of the issues that had been addressed in the previous meetings and new interesting developments in the field, such as brane world models, large extra dimensions, analogue models of gravity, non-commutative techniques etc. The format of the meeting was similar to the previous ones. The programme consisted of invited plenary talks and parallel sessions on cosmology, quantum gravity, strings and phenomenology, gauge theories and quantisation and black holes. A major goal was to bring together senior scientists and younger people at the beginning of their scientific career. We were able to give financial support to both

  9. Verification and validation in computational fluid dynamics

    Science.gov (United States)

    Oberkampf, William L.; Trucano, Timothy G.

    2002-04-01

    Verification and validation (V&V) are the primary means to assess accuracy and reliability in computational simulations. This paper presents an extensive review of the literature in V&V in computational fluid dynamics (CFD), discusses methods and procedures for assessing V&V, and develops a number of extensions to existing ideas. The review of the development of V&V terminology and methodology points out the contributions from members of the operations research, statistics, and CFD communities. Fundamental issues in V&V are addressed, such as code verification versus solution verification, model validation versus solution validation, the distinction between error and uncertainty, conceptual sources of error and uncertainty, and the relationship between validation and prediction. The fundamental strategy of verification is the identification and quantification of errors in the computational model and its solution. In verification activities, the accuracy of a computational solution is primarily measured relative to two types of highly accurate solutions: analytical solutions and highly accurate numerical solutions. Methods for determining the accuracy of numerical solutions are presented and the importance of software testing during verification activities is emphasized. The fundamental strategy of validation is to assess how accurately the computational results compare with the experimental data, with quantified error and uncertainty estimates for both. This strategy employs a hierarchical methodology that segregates and simplifies the physical and coupling phenomena involved in the complex engineering system of interest. A hypersonic cruise missile is used as an example of how this hierarchical structure is formulated. The discussion of validation assessment also encompasses a number of other important topics. A set of guidelines is proposed for designing and conducting validation experiments, supported by an explanation of how validation experiments are different

  10. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    DEFF Research Database (Denmark)

    Cohen, Benjamin; Voorhees, Abram; Vedel, Søren

    2009-01-01

    Background: To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservat...

  11. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen

    2015-01-01

    Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...

  12. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    DEFF Research Database (Denmark)

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....

  13. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  14. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.

    Science.gov (United States)

    Das, S; Sahoo, T; Meylan, M H

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  15. Fermionic corrections to fluid dynamics from BTZ black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, L.G.C. [DISIT, Università del Piemonte Orientale,via T. Michel, 11, Alessandria, 15120 (Italy); Dipartimento di Fisica “Galileo Galilei”,Università di Padova, via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova,via Marzolo 8, 35131, Padova (Italy); Grassi, P.A. [DISIT, Università del Piemonte Orientale,via T. Michel, 11, Alessandria, 15120 (Italy); INFN - Gruppo Collegato di Alessandria, Sezione di Torino,Alessandria (Italy); PH-TH Department, CERN,CH-1211 Geneva 23 (Switzerland); Mezzalira, A. [Dipartimento di Fisica Teorica, Università di Torino,via P. Giuria, 1, Torino, 10125 (Italy); INFN - Gruppo Collegato di Alessandria, Sezione di Torino,Alessandria (Italy)

    2015-11-23

    We reconstruct the complete fermionic orbit of the non-extremal BTZ black hole by acting with finite supersymmetry transformations. The solution satisfies the exact supergravity equations of motion to all orders in the fermonic expansion and the final result is given in terms of fermionic bilinears. By fluid/gravity correspondence, we derive linearized Navier-Stokes equations and a set of new differential equations from Rarita-Schwinger equation. We compute the boundary energy-momentum tensor and we interpret the result as a perfect fluid with a modified definition of fluid velocity. Finally, we derive the modified expression for the entropy of the black hole in terms of the fermionic bilinears.

  16. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    Science.gov (United States)

    Bhadauria, B. S.; Singh, M. K.; Singh, A.; Singh, B. K.; Kiran, P.

    2016-12-01

    In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  17. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    Directory of Open Access Journals (Sweden)

    Bhadauria B.S.

    2016-12-01

    Full Text Available In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  18. Inviscid linear stability analysis of two fluid columns of different densities subject to gravity

    Science.gov (United States)

    Prathama, Aditya; Pantano, Carlos

    2017-11-01

    We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.

  19. Quantum Gravity, Dynamical Triangulation and Higer Derivative Regularization

    DEFF Research Database (Denmark)

    Ambjorn, J.; Jurkiewicz, J.; Kristjansen, C. F.

    1992-01-01

    We consider a discrete model of euclidean quantum gravity in four dimensions based on a summation over random simplicial manifolds. The action used is the Einstein-Hilbert action plus an $R^2$-term. The phase diagram as a function of the bare coupling constants is studied in the search for a sens......We consider a discrete model of euclidean quantum gravity in four dimensions based on a summation over random simplicial manifolds. The action used is the Einstein-Hilbert action plus an $R^2$-term. The phase diagram as a function of the bare coupling constants is studied in the search...

  20. Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry

    International Nuclear Information System (INIS)

    Hartong, Jelle; Obers, Niels A.

    2015-01-01

    Recently it has been established that torsional Newton-Cartan (TNC) geometry is the appropriate geometrical framework to which non-relativistic field theories couple. We show that when these geometries are made dynamical they give rise to Hořava-Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan (NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise dictionary relating all fields (including the scalar khronon), their transformations and other properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to construct the effective action for dynamical twistless torsional Newton-Cartan geometries in 2+1 dimensions for dynamical exponent 1gravity and discuss some of its implications.

  1. Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2015-07-29

    Recently it has been established that torsional Newton-Cartan (TNC) geometry is the appropriate geometrical framework to which non-relativistic field theories couple. We show that when these geometries are made dynamical they give rise to Hořava-Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan (NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise dictionary relating all fields (including the scalar khronon), their transformations and other properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to construct the effective action for dynamical twistless torsional Newton-Cartan geometries in 2+1 dimensions for dynamical exponent 1gravity and discuss some of its implications.

  2. Meta fluid dynamic as a gauge field theory

    International Nuclear Information System (INIS)

    Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.

    2003-01-01

    In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)

  3. Dynamics of a discrete geotropic sensor subject to rotation-induced gravity compensation

    Energy Technology Data Exchange (ETDEWEB)

    Silver, I.L.

    1976-01-01

    A clinostat achieves gravity compensation by providing circular rotation with uniform speed, about a horizontal axis. The dynamics of an assumed, discrete and free-moving subcellular gravity receptor, subject to clinostat rotation, is analyzed. The results imply that there is an optimum rotation rate; higher speeds result in circular motions with diameters more comparable to thermal noise fluctuations, but with greater linear velocities due to increasing centrifugal forces. An optimizing function is proposed. The nucleolus and mitochondrion is chosen as a gravity receptor for illustrating the use of this theory. The characteristics of their clinostat-induced motions are incorporated with experimental results on Avena plant shoots in an illustrative example.

  4. Constrained dynamics of universally coupled massive spin 2-spin 0 gravities

    International Nuclear Information System (INIS)

    Pitts, J Brian

    2006-01-01

    The 2-parameter family of massive variants of Einsteins gravity (on a Minkowski background) found by Ogievetsky and Polubarinov by excluding lower spins can also be derived using universal coupling. A Dirac-Bergmann constrained dynamics analysis seems not to have been presented for these theories, the Freund-Maheshwari-Schonberg special case, or any other massive gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here the Dirac-Bergmann apparatus is applied to these theories. A few remarks are made on the question of positive energy. Being bimetric, massive gravities have a causality puzzle, but it appears soluble by the introduction and judicious use of gauge freedom

  5. Induced gravity and the attractor dynamics of dark energy/dark matter

    International Nuclear Information System (INIS)

    Cervantes-Cota, Jorge L.; Putter, Roland de; Linder, Eric V.

    2010-01-01

    Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity

  6. Dynamical affine symmetry and covariant perturbation theory for gravity

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1975-01-01

    The covariant perturbation theory for gravity with the simplest reduction properties is formulated. The main points are as follows: fundamental fields are the normal coordinates of ten-dimensional space of the gravitational field, and the fields are separated into the classical (background) and quantum ones in the generating functional along geodesics of this space

  7. Methods of fluid dynamics in nuclear physics

    International Nuclear Information System (INIS)

    Zweifel, P.F.

    1984-01-01

    The author summaries the contributions to an interdisciplinary workshop attended by physicist and mathematicians at the University of Catania in Italy. The purpose of the workshop was to bring together physicists and mathematicians with an interest in fluid mechanical calculations. Several applications to nuclear structure and heavy ion collisions are outlined

  8. Cerebral venous outflow and cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Clive B. Beggs

    2014-12-01

    Full Text Available In this review, the impact of restricted cerebral venous outflow on the biomechanics of the intracranial fluid system is investigated. The cerebral venous drainage system is often viewed simply as a series of collecting vessels channeling blood back to the heart. However there is growing evidence that it plays an important role in regulating the intracranial fluid system. In particular, there appears to be a link between increased cerebrospinal fluid (CSF pulsatility in the Aqueduct of Sylvius and constricted venous outflow. Constricted venous outflow also appears to inhibit absorption of CSF into the superior sagittal sinus. The compliance of the cortical bridging veins appears to be critical to the behaviour of the intracranial fluid system, with abnormalities at this location implicated in normal pressure hydrocephalus. The compliance associated with these vessels appears to be functional in nature and dependent on the free egress of blood out of the cranium via the extracranial venous drainage pathways. Because constricted venous outflow appears to be linked with increased aqueductal CSF pulsatility, it suggests that inhibited venous blood outflow may be altering the compliance of the cortical bridging veins.

  9. Generalised fluid dynamics and quantum mechanics

    NARCIS (Netherlands)

    Broer, L.J.F.

    1974-01-01

    A generalised theory of irrotational fluid flow is developed in hamiltonian form. This allows a systematic derivation of equations for momentum, energy and the rate of work. It is shown that a nonlinear field equation for weakly interacting condensed bosons as given by Gross1) and the one-electron

  10. From Classical to Quantum: New Canonical Tools for the Dynamics of Gravity

    NARCIS (Netherlands)

    Höhn, P.A.

    2012-01-01

    In a gravitational context, canonical methods offer an intuitive picture of the dynamics and simplify an identification of the degrees of freedom. Nevertheless, extracting dynamical information from background independent approaches to quantum gravity is a highly non-trivial challenge. In this

  11. Energetics and dynamics of excess electrons in simple fluids

    International Nuclear Information System (INIS)

    Space, B.

    1992-01-01

    Excess electronic dynamical and equilibrium properties are modeled in both polarizable and nonpolarizable noble gas fluids. Explicit dynamical calculations are carried out for excess electrons in fluid helium, where excess electronic eigenstates are localized. Energetics and dynamics are considered for fluids which span the entire range of polarizability present in the rare gases. Excess electronic eigenstates and eigenvalues are calculated for fluids of helium, argon and xenon. Both equilibrium and dynamical information is obtained from the calculation of these wavefunctions. A surface hopping trajectory method for studying nonadiabatic excess electronic relaxation in condensed systems is used to explore the nonadiabatic relaxation after photoexciting an equilibrated excess electron in dense fluid helium. The different types on nonadiabatic phenomena which are important in excess electronic relaxation are surveyed. The same surface hopping trajectory method is also used to study the rapid nonadiabatic relaxation after an excess electron is injected into unperturbed fluid helium. Several distinctively different relaxation processes, characterized by their relative importance at different times during the relaxation to a localized equilibrium state, are detailed. Though the dynamical properties of excess electrons under the conditions considered here have never been studied before, the behavior is remarkably similar to that observed in both experimental and theoretical studies of electron hydration dynamics, indicating that the processes described may be very general relaxation mechanisms for localization and trapping in fluids. Additionally, ground state energies of an excess electron, e 0 , are computed as a function of solvent density using model electron-atom pseudopotentials in fluid helium, argon, and xenon. The nonuniqueness of the pseudopotential description of electron-molecule interactions is demonstrated

  12. 2-D Eulerian hydrodynamics with fluid interfaces, self-gravity and rotation

    International Nuclear Information System (INIS)

    Norman, M.L.; Winkler, K.H.A.

    1982-01-01

    The purpose of this paper is to describe in detail the numerical approach we have developed over the past five years for solving 2-dimensional gas-dynamical problems in astrophysics involving inviscid compressible flow, self-gravitation, rotation, and fluid instabilities of the Rayleigh-Taylor and Kelvin-Helmholtz types. The computer code to be described has been applied most recently to modeling jets in radio galaxies (Norman et al. 1981, 1982) and is an outgrowth of a code developed for studying rotating protostellar collapse (Norman, Wilson and Barton 1980; Norman 1980). This basic methodology draws heavily on the techniques and experience of James R. Wilson and James M. LeBlanc of the Lawrence Livermore National Laboratory, and thus the code is designed to be a general purpose 2-D Eulerian hydrocode, and is characterized by a high degree of simplicity, robustness, modularity and speed. Particular emphases of this article are: (1) the recent improvements to the code's accuracy through the use of vanLeer's (1977) monotonic advection algorithm, (2) a discussion of the importance of what we term consistent advection, and (3) a description of a numerical techique for modeling dynamic fluid interfaces in multidimensional Eulerian calculations developed by LeBlanc. 23 refs., 14 figs

  13. Thin accretion disk signatures in dynamical Chern-Simons-modified gravity

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S N

    2010-01-01

    A promising extension of general relativity is Chern-Simons (CS)-modified gravity, in which the Einstein-Hilbert action is modified by adding a parity-violating CS term, which couples to gravity via a scalar field. In this work, we consider the interesting, yet relatively unexplored, dynamical formulation of CS-modified gravity, where the CS coupling field is treated as a dynamical field, endowed with its own stress-energy tensor and evolution equation. We consider the possibility of observationally testing dynamical CS-modified gravity by using the accretion disk properties around slowly rotating black holes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard general relativistic Kerr solution. It is shown that the Kerr black hole provides a more efficient engine for the transformation of the energy of the accreting mass into radiation than their slowly rotating counterparts in CS-modified gravity. Specific signatures appear in the electromagnetic spectrum, thus leading to the possibility of directly testing CS-modified gravity by using astrophysical observations of the emission spectra from accretion disks.

  14. Optics and Fluid Dynamics Department. Annual progress report for 2003

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2004-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 laser systems and optical materials, (2 optical diagnostics and information processing and (3 plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2003 is presented. (au)

  15. Optics and Fluid Dynamics Department annual progress report for 2001

    DEFF Research Database (Denmark)

    Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter

    2002-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM,by Danish research councils and by industry. A summary of the activities in 2001 is presented....

  16. Optics and Fluid Dynamics Department annual progress report for 2000

    International Nuclear Information System (INIS)

    Hanson, S.G.; Johansen, P.M.; Lynov, J.P.; Skaarup, B.

    2001-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2000 is presented. (au)

  17. TDHF and fluid dynamics of nuclear collective motions

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    The nuclear fluid dynamical equations are derived from a mean field description of the nuclear dynamics. Simple approximate solutions, corresponding to generalized scaling modes, are worked out for rotations and vibrations, with the evaluation of inertial parameters and flow patterns. Giant resonances are shown to be quite well described within an irrotational ansatz, which is equivalent to a lowest multipoles (up to lsub(max)=2) distortion of the momentum distribution. The physical meaning of a higher order truncation of the TDHF-Fluid-Dynamics chain is finally discussed with its implication on low lying states and on some description of the Landau damping. (author)

  18. Optics and Fluid Dynamics Department. Annual Progress Report for 2002

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2003-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 Laser systems and optical materials (2 Optical diagnostics and information processing and (3 Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)

  19. Optics and Fluid Dynamics Department. Annual progress report for 2001

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2002-03-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: 1) laser systems and optical materials, 2) optical diagnostics and information processing and 3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2001 is presented. (au)

  20. Optics and Fluid Dynamics Department. Annual Progress Report for 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H; Hanson, S G; Lynov, J P; Petersen, P M; Skaarup, B

    2003-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) Laser systems and optical materials (2) Optical diagnostics and information processing and (3) Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)

  1. Gravity-induced dynamics of a squirmer microswimmer in wall proximity

    Science.gov (United States)

    Rühle, Felix; Blaschke, Johannes; Kuhr, Jan-Timm; Stark, Holger

    2018-02-01

    We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value {α }th} and are pinned to the wall below {α }th}. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.

  2. Some fluid dynamical problems in astrophysics

    International Nuclear Information System (INIS)

    Drury, L.O.

    1979-06-01

    Certain aspects of the cosmic turbulence theory of galaxy formation are considered. Using a generalized form of a transformation due to Kurskov and Ozernoi I exhibit a formal equivalence between the problem of turbulence in an expanding universe containing a coupled matter-radiation fluid and in a non-expanding fluid with a time-dependent viscosity. This enables me to extend the Olson-Sachs formula for vorticity generation in cosmic turbulence to a matter-radiation fluid and to show that, the turbulence can not have an inertial subrange at the epoch of recombination. The linear inviscid stability of axisymmetric flows is considered. Using the projective form of the perturbation equations I obtain a simple proof of a generalised Richardson criterion which holds for all boundary conditions which do not actively feed energy to the perturbation. Further analysis shows the uniform density and pressure discs with self-similar rotation laws, are stable to perturbations which are incompressible in character, but that instability is a generic feature of differentially rotating compressible systems. The problem of numerically solving boundary value problems of the Orr-Sommerfeld type by shooting methods is considered, and a unifying geometrical interpretation of the principal methods is described. (author)

  3. Essentials of fluid dynamics with applications to hydraulics, aeronautics, meteorology and other subjets

    CERN Document Server

    Prandtl, Ludwig

    1953-01-01

    Equilibrium of liquids and gases ; kinematics : dynamics of frictionless fluids ; motion of viscous fluids : turbulence : fluid resistance : practical applications ; flow with appreciable volume changes (dynamics of gases) ; miscellaneous topics.

  4. Non-perturbative particle dynamics in (2+1)-gravity

    CERN Document Server

    Bellini, A; Valtancoli, P

    1995-01-01

    We construct a non-perturbative, single-valued solution for the metric and the motion of two interacting particles in (2+1)-Gravity, by using a Coulomb gauge of conformal type. The method provides the mapping from multivalued ( minkowskian ) coordinates to single-valued ones, which solves the non-abelian monodromies due to particles's momenta and can be applied also to the general N-body case.

  5. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    International Nuclear Information System (INIS)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-01-01

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  6. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnikov, Alexander, E-mail: pshenichnikov@icmm.ru; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-15

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  7. Vestibular stimulation interferes with the dynamics of an internal representation of gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Diaz Artiles, Ana; Seyedmadani, Kimia; Sherwood, David P; Young, Laurence R

    2017-11-01

    The remembered vanishing location of a moving target has been found to be displaced downward in the direction of gravity (representational gravity) and more so with increasing retention intervals, suggesting that the visual spatial updating recruits an internal model of gravity. Despite being consistently linked with gravity, few inquiries have been made about the role of vestibular information in these trends. Previous experiments with static tilting of observers' bodies suggest that under conflicting cues between the idiotropic vector and vestibular signals, the dynamic drift in memory is reduced to a constant displacement along the body's main axis. The present experiment aims to replicate and extend these outcomes while keeping the observers' bodies unchanged in relation to physical gravity by varying the gravito-inertial acceleration using a short-radius centrifuge. Observers were shown, while accelerated to varying degrees, targets moving along several directions and were required to indicate the perceived vanishing location after a variable interval. Increases of the gravito-inertial force (up to 1.4G), orthogonal to the idiotropic vector, did not affect the direction of representational gravity, but significantly disrupted its time course. The role and functioning of an internal model of gravity for spatial perception and orientation are discussed in light of the results.

  8. On the track of gravity modes: study of the dynamics of the solar core

    International Nuclear Information System (INIS)

    Mathur, Savita

    2007-01-01

    This thesis is dedicated to the study of the dynamics of the solar radiative zone through gravity modes. Though the core represents more than 50% of the solar mass, we still do not have an accurate vision of the rotation profile in the very inner part of the Sun. To understand the evolution of stars, we try to put constraints on dynamic processes. Several paths have been followed in this thesis to tackle this issue: solar modeling, the study of a new instrument, observations and inversions of the rotation. The necessity of the detection of gravity modes is driven by the will for a better comprehension of the solar dynamics. With a technological prototype built at the CEA (GOLF-NG), we want to validate a few technical points and prepare the scientific mission which aim will be to detect these gravity modes. We studied first the photodetector and then the whole instrument response. We show the feasibility of the instrument. The observation of the resonance in all the channels proves that it works the way we expected. However, before this mission takes place, the analysis of GOLF data enabled us to detect one gravity-mode candidate as well as the signature of dipole gravity modes. This work benefited from a more theoretical approach on the prediction of gravity-mode frequencies. We show the influence of several physical processes and quantities. Finally, as the dynamical processes in the Sun are not well constrained, we tried to understand the impact of the introduction of one and several gravity modes on the inferred rotation profiles. We also tried to give constraints on the observations so that we could obtain some information on the rotation profile in the core. (author) [fr

  9. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    NARCIS (Netherlands)

    Reid, Daniel A. P.; Hildenbrandt, H.; Hemelrijk, C. K.; Padding, J.T.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  10. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  11. Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver

    KAUST Repository

    Frisch, Jerome

    2012-06-01

    Computational Fluid Dynamics simulations require an enormous computational effort if a physically reasonable accuracy should be reached. Therefore, a parallel implementation is inevitable. This paper describes the basics of our implemented fluid solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while minimising data transfer between the nodes. © 2012 IEEE.

  12. Self-study manual for introduction to computational fluid dynamics

    OpenAIRE

    Nabatov, Andrey

    2017-01-01

    Computational Fluid Dynamics (CFD) is the branch of Fluid Mechanics and Computational Physics that plays a decent role in modern Mechanical Engineering Design process due to such advantages as relatively low cost of simulation comparing with conduction of real experiment, an opportunity to easily correct the design of a prototype prior to manufacturing of the final product and a wide range of application: mixing, acoustics, cooling and aerodynamics. This makes CFD particularly and Computation...

  13. Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary

    Directory of Open Access Journals (Sweden)

    Fitkevich Maxim

    2016-01-01

    Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.

  14. Computational fluid dynamic modelling of cavitation

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  15. Lagrangian particle method for compressible fluid dynamics

    Science.gov (United States)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  16. Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids

    International Nuclear Information System (INIS)

    Khayat, R.E.; Eu, B.C.

    1988-01-01

    In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into consideration. We apply the generalized fluid dynamic equations which are provided by the modified moment method for the Boltzmann equation reported previously. The results of calculations are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys. Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available

  17. A dynamic neutral fluid model for the PIC scheme

    Science.gov (United States)

    Wu, Alan; Lieberman, Michael; Verboncoeur, John

    2010-11-01

    Fluid diffusion is an important aspect of plasma simulation. A new dynamic model is implemented using the continuity and boundary equations in OOPD1, an object oriented one-dimensional particle-in-cell code developed at UC Berkeley. The model is described and compared with analytical methods given in [1]. A boundary absorption parameter can be adjusted from ideal absorption to ideal reflection. Simulations exhibit good agreement with analytic time dependent solutions for the two ideal cases, as well as steady state solutions for mixed cases. For the next step, fluid sources and sinks due to particle-particle or particle-fluid collisions within the simulation volume and to surface reactions resulting in emission or absorption of fluid species will be implemented. The resulting dynamic interaction between particle and fluid species will be an improvement to the static fluid in the existing code. As the final step in the development, diffusion for multiple fluid species will be implemented. [4pt] [1] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd Ed, Wiley, 2005.

  18. Onset of Soret-driven convection of binary fluid in square cavity heated from above at different gravity levels

    Science.gov (United States)

    Lyubimova, Tatyana; Zubova, Nadezhda

    The instability of incompressible viscous binary fluid with the Soret effect in square cavity heated from above is studied for different gravity levels. The no slip and zero mass flux conditions are imposed on all the boundaries. The horizontal boundaries are perfectly conductive, they are maintained at constant different temperatures and vertical boundaries are adiabatic. The calculations are performed for water - isopropanol mixture 90:10. Initial conditions correspond to the motionless state with uniform distribution of components and uniform temperature gradient directed upward. For binary fluid under consideration the separation parameter is negative therefore the Soret effect leads to the accumulation of heavy component in the upper part of cavity, moreover, the rate of accumulation is independent of the gravity level. The linear stability of the unsteady motionless state is studied numerically by solving linearized equations for small perturbations. To determine the time t* for the onset of instability, the criterion suggested in [1] is used. The dependence of t* on the gravity level is obtained. The work was done under financial support of Government of Perm Region, Russia (Contract C-26/212). 1. Shliomis M.I., Souhar M. Europhysics Letters. 2000. Vol. 49 (1), pp. 55-61.

  19. Forced fluid dynamics from blackfolds in general supergravity backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Gath, Jakob [Centre de Physique Théorique, École Polytechnique,CNRS UMR 7644, Université Paris-Saclay,F-91128 Palaiseau (France); Niarchos, Vasilis [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete,Heraklion, 71303 (Greece); Obers, Niels A.; Pedersen, Andreas Vigand [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2016-10-27

    We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic p-brane solutions of (super)gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings our analysis reveals additional couplings to the background, including terms that arise from Chern-Simons interactions. We also present a general overview of the blackfold approach and some of the key conceptual issues that arise when applied to arbitrary backgrounds.

  20. Optics and fluid dynamics department annual progress report for 1992

    International Nuclear Information System (INIS)

    Lading, L.; Lynov, J.P.; Skaarup, B.

    1993-01-01

    Research in the Optics and FLuid Dynamics Department is performed within two sections. The Optics Section has activities within (a) optical materials, (b) quasielastic light scattering and diagnostics in solids, fluids and plasmas, and (c) optical and electronic information processing. The Continuum Physics Section performs (a) studies of nonlinear dynamical processes in continuum systems, (b) investigations of other problems in fusion plasma physics, and (c) develops pellet injectors for fusion experiments. Most of these activities are done in connection with the Euratom Association. A summary of activities in 1992 is presented. (au) (25 ills., 36 refs.)

  1. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  2. Equilibrium and nonequilibrium dynamics of soft sphere fluids.

    Science.gov (United States)

    Ding, Yajun; Mittal, Jeetain

    2015-07-14

    We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively, we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with shear. Our results provide a systematic evaluation

  3. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    Science.gov (United States)

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391

  4. Green Algae as Model Organisms for Biological Fluid Dynamics

    Science.gov (United States)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  5. Fluid Dynamics in Rotary Piston Blood Pumps.

    Science.gov (United States)

    Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas

    2017-03-01

    Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.

  6. Partial chemical equilibrium in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1980-01-01

    An analysis is given for the flow of a multicomponent fluid in which an arbitrary number of chemical reactions may occur, some of which are in equilibrium while the others proceed kinetically. The primitive equations describing this situation are inconvenient to use because the progress rates omega-dot/sub s/ for the equilibrium reactions are determined implicitly by the associated equilibrium constraint conditions. Two alternative equivalent equation systems that are more pleasant to deal with are derived. In the first system, the omega-dot/sub s/ are eliminated by replacing the transport equations for the chemical species involved in the equilibrium reactions with transport equations for the basic components of which these species are composed. The second system retains the usual species transport equations, but eliminates the nonlinear algebraic equilibrium constraint conditions by deriving an explicit expression for the omega-dot/sub s/. Both systems are specialized to the case of an ideal gas mixture. Considerations involved in solving these equation systems numerically are discussed briefly

  7. Dynamic Modeling of ThermoFluid Systems

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch

    2003-01-01

    The objective of the present study has been to developed dynamic models for two-phase flow in pipes (evaporation and condensation). Special attention has been given to modeling evaporators for refrigeration plant particular dry-expansion evaporators. Models of different complexity have been...... formulated. The different models deviate with respect to the detail¿s included and calculation time in connection with simulation. The models have been implemented in a new library named ThermoTwoPhase to the programming language Modelica. A test rig has been built with an evaporator instrumented in a way...

  8. Dynamical stability in fluid-structure interaction

    International Nuclear Information System (INIS)

    Planchard, J.; Thomas, B.

    1991-01-01

    The aim of the paper is to investigate the dynamical stability of a group of elastic tubes placed in a cross-flow which obeys to the Navier-Stokes equations. The stability of this coupled system is deduced from the study of a quadratic eigenvalue problem arising in the linearized equations. The instability occurs when the real part of one of the eigenvalues becomes positive; the steady state is then replaced by a time-periodic state which is stable (Hopf bifurcation phenomenon). Some numerical methods for solving the quadratic eigenvalue problem are described [fr

  9. Dynamics of polymeric liquids. Vol. 1, 2nd Ed.: Fluid mechanics

    International Nuclear Information System (INIS)

    Bird, R.B.; Armstrong, R.C.; Hassager, O.

    1987-01-01

    This book examines Newtonian liquids and polymer fluid mechanics. It begins with a review of the main ideas of fluid dynamics as well as key points of Newtonian fluids. Major revisions include extensive updating of all material and a greater emphasis on fluid dynamics problem solving. It presents summaries of experiments describing the difference between polymeric and simple fluids. In addition, it traces, roughly in historical order, various methods for solving polymer fluid dynamics problems

  10. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    International Nuclear Information System (INIS)

    Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.

    2011-01-01

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12σ, 14σ and 16σ and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  11. Dynamic analysis of multibody system immersed in a fluid medium

    International Nuclear Information System (INIS)

    Wu, R.W.; Liu, L.K.; Levy, S.

    1977-01-01

    This paper is concerned primarily with the development and evaluation of an analysis method for the reponse prediction of immersed systems to seismic and other dynamic excitations. For immersed multibody systems, the hydrodynamic interaction causes coupled motion among the solid bodies. Also, under intense external excitations, impact between bodies may occur. The complex character of such systems inhibit the use of conventional analytical solutions in closed form. Therefore, approximate numerical schemes have been devised. For an incompressible, inviscid fluid, the hydrodynamic forces exerted by the fluid on solid bodies are determined to be linearly proportional to the acceleration of the vibrating solid bodies; i.e., the presence of the fluid only affects the inertia of the solid body system. A finite element computer program has been developed for computing this hydrodynamic (or added) mass effect. This program can be used to determine the hydrodynamic mass of a two-dimensional fluid field with solid bodies of arbitrary geometry. Triangular elements and linear pressure interpolation function are used to discretize the fluid region. The component element method is used to determine the dynamic response of the multibody system to externally applied mechanical loading or support excitation. The present analysis method for predicting the dynamic response of submerged multibody system is quite general and pertains to any number of solid bodies. However in this paper, its application is demonstrated only for 4 and 25 body systems. (Auth.)

  12. FLOWPLOT2, 2-D, 3-D Fluid Dynamic Plots

    International Nuclear Information System (INIS)

    Cobb, C.K.; Tunstall, J.N.

    1989-01-01

    1 - Description of program or function: FLOWPLOT2 is a plotting program used with numerical or analytical fluid dynamics codes to create velocity vector plots, contour plots of up to three fluid parameters (e.g. pressure, density, and temperature), two-dimensional profile plots, three-dimensional curve plots, and/or three-dimensional surface plots for either the u or v velocity components. If the fluid dynamics code computes a transient or simulated time related solution, FLOWPLOT2 can also be used to generate these plots for any specified time interval. Multiple cases generating different plots for different time intervals may be run in one execution of the program. In addition, plots can be created for selected two- dimensional planes of three-dimensional steady-state problems. The user has the option of producing plots on CalComp or Versatec plotters or microfiche and of creating a compressed dataset before plotting. 2 - Method of solution: FLOWPLOT2 reads a dataset written by the fluid dynamics code. This dataset must be written in a specified format and must contain parametric data at the nodal points of a uniform or non-uniform rectangular grid formed by the intersection of the grid lines of the model. 3 - Restrictions on the complexity of the problem - Maxima of: 2500 nodes, 40 y-values for 2-D profile plots and 3-D curve plots, 20 contour values, 3 fluid parameters

  13. Cellular-automata supercomputers for fluid-dynamics modeling

    International Nuclear Information System (INIS)

    Margolus, N.; Toffoli, T.; Vichniac, G.

    1986-01-01

    We report recent developments in the modeling of fluid dynamics, and give experimental results (including dynamical exponents) obtained using cellular automata machines. Because of their locality and uniformity, cellular automata lend themselves to an extremely efficient physical realization; with a suitable architecture, an amount of hardware resources comparable to that of a home computer can achieve (in the simulation of cellular automata) the performance of a conventional supercomputer

  14. Dynamics of linear perturbations in f(R) gravity

    International Nuclear Information System (INIS)

    Bean, Rachel; Bernat, David; Pogosian, Levon; Silvestri, Alessandra; Trodden, Mark

    2007-01-01

    We consider predictions for structure formation from modifications to general relativity in which the Einstein-Hilbert action is replaced by a general function of the Ricci scalar. We work without fixing a gauge, as well as in explicit popular coordinate choices, appropriate for the modification of existing cosmological code. We present the framework in a comprehensive and practical form that can be directly compared to standard perturbation analyses. By considering the full evolution equations, we resolve perceived instabilities previously suggested, and instead find a suppression of perturbations. This result presents significant challenges for agreement with current cosmological structure formation observations. The findings apply to a broad range of forms of f(R) for which the modification becomes important at low curvatures, disfavoring them in comparison with the ΛCDM scenario. As such, these results provide a powerful method to rule out a wide class of modified gravity models aimed at providing an alternative explanation to the dark energy problem

  15. Thick brane in f(R) gravity with Palatini dynamics

    International Nuclear Information System (INIS)

    Bazeia, D.; Losano, L.; Menezes, R.; Olmo, Gonzalo J.; Rubiera-Garcia, D.

    2015-01-01

    This work deals with modified gravity in five-dimensional space-time. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by a real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R)=R+ϵR n , where the small parameter ϵ controls the deviation from the standard thick brane case. In both cases it is found that the warp factor tends to localize the extra dimension due to the nonlinear corrections

  16. Asymptotic dynamics in perturbative quantum gravity and BMS supertranslations

    Science.gov (United States)

    Choi, Sangmin; Kol, Uri; Akhoury, Ratindranath

    2018-01-01

    Recently it has been shown that infrared divergences in the conventional S-matrix elements of gauge and gravitational theories arise from a violation of the conservation laws associated with large gauge symmetries. These infrared divergences can be cured by using the Faddeev-Kulish (FK) asymptotic states as the basis for S-matrix elements. Motivated by this connection, we study the action of BMS supertranslations on the FK asymptotic states of perturbative quantum gravity. We compute the BMS charge of the FK states and show that it characterizes the superselection sector to which the state belongs. Conservation of the BMS charge then implies that there is no transition between different superselection sectors, hence showing that the FK graviton clouds implement the necessary transition induced by the scattering process.

  17. Thick brane in f(R) gravity with Palatini dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br; Losano, L., E-mail: losano@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB (Brazil); Menezes, R., E-mail: rmenezes@dce.ufpb.br [Departamento de Ciências Exatas, Universidade Federal da Paraíba, 58297-000, Rio Tinto, PB (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970, Campina Grande, PB (Brazil); Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB (Brazil); Departamento de Física Teórica, IFIC, Centro Mixto Universidad de Valencia-CSIC, Universidad de Valencia, 46100, Burjassot, Valencia (Spain); Rubiera-Garcia, D., E-mail: drgarcia@fc.ul.pt [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB (Brazil); Faculdade de Ciências, Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon (Portugal); Department of Physics, Center for Field Theory and Particle Physics, Fudan University, 220 Handan Road, 200433, Shanghai (China)

    2015-11-30

    This work deals with modified gravity in five-dimensional space-time. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by a real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R)=R+ϵR{sup n}, where the small parameter ϵ controls the deviation from the standard thick brane case. In both cases it is found that the warp factor tends to localize the extra dimension due to the nonlinear corrections.

  18. Thick brane in f(R) gravity with Palatini dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil); Olmo, Gonzalo J. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Universidad de Valencia, Departamento de Fisica Teorica, IFIC, Centro Mixto Universidad de Valencia-CSIC, Burjassot, Valencia (Spain); Rubiera-Garcia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Universidade de Lisboa, Faculdade de Ciencias, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)

    2015-12-15

    This work deals with modified gravity in five-dimensional space-time. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by a real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R) = R + εR{sup n}, where the small parameter ε controls the deviation from the standard thick brane case. In both cases it is found that the warp factor tends to localize the extra dimension due to the nonlinear corrections. (orig.)

  19. Dynamic posturography using a new movable multidirectional platform driven by gravity.

    NARCIS (Netherlands)

    Commissaris, D.A.C.M.; Nieuwenhuijzen, P.H.J.A.; Overeem, S.; Vos, A. de; Duysens, J.E.J.; Bloem, B.R.

    2002-01-01

    Human upright balance control can be quantified using movable platforms driven by servo-controlled torque motors (dynamic posturography). We introduce a new movable platform driven by the force of gravity acting upon the platform and the subject standing on it. The platform consists of a 1 m2 metal

  20. Dynamic posturography using a new movable multidirectional platform driven by gravity

    NARCIS (Netherlands)

    Commissaris, D.A.C.M.; Nieuwenhuijzen, P.H.J.A.; Overeem, S.; Vos, A. de; Duysens, J.E.J.; Bloem, B.R.

    2002-01-01

    Human upright balance control can be quantified using movable platforms driven by servo-controlled torque motors (dynamic posturography). We introduce a new movable platform driven by the force of gravity acting upon the platform and the subject standing on it. The platform consists of a 1 m(2)

  1. Gravity Wave Dynamics in a Mesospheric Inversion Layer: 1. Reflection, Trapping, and Instability Dynamics

    Science.gov (United States)

    Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.

    2018-01-01

    Abstract An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large‐amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller‐amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying. PMID:29576994

  2. Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel

    Science.gov (United States)

    Dewangan, Satish Kumar

    2018-05-01

    Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.

  3. Magnetohydrodynamics and fluid dynamics action principles and conservation laws

    CERN Document Server

    Webb, Gary

    2018-01-01

    This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helici...

  4. Four-fluid description of turbulent plasma focus dynamics

    International Nuclear Information System (INIS)

    Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.

    1984-06-01

    The dynamic phenomena in the compression, pinch and late phases of the plasma focus experiment POSEIDON in its operational mode at 60 kV, 280 kJ, were previously calculated from a two-fluid theory using the new hybrid code REDUCE/FORTRAN. Two important results were found: the neutron production already in the pinch phase for currents larger than 500 kA and filamentary structures on and around the pinch axis. In a continuation of this work, a four-fluid system of dynamical equations was formulated and programmed with the REDUCE/FORTRAN code. Besides macro-turbulence, the new four-fluid theory includes micro-instabilities and anomalous transport properties, as well as the runaway effect for electrons and ions. First results from calculations with this new theory are presented and are compared with previous calculations and with recent experimental observations. (orig.)

  5. A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer

    Science.gov (United States)

    Jespersen, Dennis C.; Levit, Creon

    1989-01-01

    The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.

  6. Nonequilibrium chiral fluid dynamics including dissipation and noise

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Herold, Christoph; Bleicher, Marcus; Leupold, Stefan

    2011-01-01

    We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear σ model with constituent quarks. Treating the quarks as an equilibrated heat bath, we use the influence functional formalism to obtain a Langevin equation for the σ field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a self-consistent derivation of both the dynamics of the σ field and the quark fluid, we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.

  7. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  8. Blending and nudging in fluid dynamics: some simple observations

    Energy Technology Data Exchange (ETDEWEB)

    Germano, M, E-mail: mg234@duke.edu [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States of America (United States)

    2017-10-15

    Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed. (paper)

  9. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  10. Modelling Emission from Building Materials with Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    This paper presents a numerical model that by means of computational fluid dynamics (CFD) is capable of dealing with both pollutant transport across the boundary layer and internal diffusion in the source without prior knowledge of which is the limiting process. The model provides the concentration...

  11. On Computational Fluid Dynamics Tools in Architectural Design

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hougaard, Mads; Stærdahl, Jesper Winther

    engineering computational fluid dynamics (CFD) simulation program ANSYS CFX and a CFD based representative program RealFlow are investigated. These two programs represent two types of CFD based tools available for use during phases of an architectural design process. However, as outlined in two case studies...

  12. Lagrangian fluid dynamics using the Voronoi-Delauanay mesh

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1981-01-01

    A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed

  13. What Does Dynamical Systems Theory Teach Us about Fluids?

    International Nuclear Information System (INIS)

    Bosetti, Hadrien; Posch, Harald A.

    2014-01-01

    We use molecular dynamics simulations to compute the Lyapunov spectra of many-particle systems resembling simple fluids in thermal equilibrium and in non-equilibrium stationary states. Here we review some of the most interesting results and point to open questions. (general)

  14. Spinodal decomposition in multicomponent fluid mixtures: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.; Toxvaerd, Søren

    1996-01-01

    parameter, leading to large growth-exponent values, the dynamics in multicomponent fluids (p = 3, 4) is found to follow a t(1/3) growth law, where t is time, which we relate to a long-wavelength evaporation-condensation process. These findings, which are proposed to be consequences of the compact domain...

  15. Prospects for Computational Fluid Dynamics in Room Air Contaminant Control

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The fluid dynamics research is strongly influenced by the increasing computer power which has been available for the last decades. This development is obvious from the curve in figure 1 which shows the computation cost as a function of years. It is obvious that the cost for a given job will decre...

  16. Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations

    Science.gov (United States)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.

  17. Blending and nudging in fluid dynamics: some simple observations

    International Nuclear Information System (INIS)

    Germano, M

    2017-01-01

    Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed. (paper)

  18. Blending and nudging in fluid dynamics: some simple observations

    Science.gov (United States)

    Germano, M.

    2017-10-01

    Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed.

  19. Vortex dynamics in the two-fluid model

    International Nuclear Information System (INIS)

    Thouless, D. J.; Geller, M. R.; Vinen, W. F.; Fortin, J.-Y.; Rhee, S. W.

    2001-01-01

    We have used two-fluid dynamics to study the discrepancy between the work of Thouless, Ao, and Niu (TAN) and that of Iordanskii. In TAN no transverse force on a vortex due to normal fluid flow was found, whereas the earlier work found a transverse force proportional to normal fluid velocity u n and normal fluid density ρ n . We have linearized the time-independent two-fluid equations about the exact solution for a vortex, and find three solutions that are important in the region far from the vortex. Uniform superfluid flow gives rise to the usual superfluid Magnus force. Uniform normal fluid flow gives rise to no forces in the linear region, but does not satisfy reasonable boundary conditions at short distances. A logarithmically increasing normal fluid flow gives a viscous force. As in classical hydrodynamics, and as in the early work of Hall and Vinen, this logarithmic increase must be cut off by nonlinear effects at large distances; this gives a viscous force proportional to u n /lnu n , and a transverse contribution that goes like u n /(lnu n ) 2 , even in the absence of an explicit Iordanskii force. In the limit u n ->0 the TAN result is obtained, but at nonzero u n there are important corrections that were not found in TAN. We argue that the Magnus force in a superfluid at nonzero temperature is an example of a topological relation for which finite-size corrections may be large

  20. Dynamic stress of impeller blade of shaft extension tubular pump device based on bidirectional fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Kan; Liu, Huiwen; Yang, Chunxia [Hohai University, Nanjing (China); Zheng, Yuan [National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing (China); Fu, Shifeng; Zhang, Xin [Power China Huadong Engineering Corporation, Hangzhou (China)

    2017-04-15

    Current research on the stability of tubular pumps is mainly concerned with the transient hydrodynamic characteristics. However, the structural response under the influence of fluid-structure interaction hasn't been taken fully into consideration. The instability of the structure can cause vibration and cracks, which may threaten the safety of the unit. We used bidirectional fluid-structure interaction to comprehensively analyze the dynamic stress characteristics of the impeller blades of the shaft extension tubular pump device. Furthermore, dynamic stress of impeller blade of shaft extension tubular pump device was solved under different lift conditions of 0° blade angle. Based on Reynolds-average N-S equation and SST k-ω turbulence model, numerical simulation was carried out for three-dimensional unsteady incompressible turbulent flow field of the pump device whole flow passage. Meanwhile, the finite element method was used to calculate dynamic characteristics of the blade structure. The blade dynamic stress distribution was obtained on the basis of fourth strength theory. The research results indicate that the maximum blade dynamic stress appears at the joint between root of inlet side of the blade suction surface and the axis. Considering the influence of gravity, the fluctuation of the blade dynamic stress increases initially and decreases afterwards within a rotation period. In the meantime, the dynamic stress in the middle part of inlet edge presents larger relative fluctuation amplitude. Finally, a prediction method for dynamic stress distribution of tubular pump considering fluid-structure interaction and gravity effect was proposed. This method can be used in the design stage of tubular pump to predict dynamic stress distribution of the structure under different operating conditions, improve the reliability of pump impeller and analyze the impeller fatigue life.

  1. Gravity modulation effect on the onset of thermal buoyancy convection in a horizontal layer of the Oldroyd fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimova, Tatyana; Kovalevskaya, Kseniya, E-mail: lyubimovat@mail.ru [Institute of Continuous Media Mechanics UB RAS, Perm (Russian Federation)

    2016-12-15

    The effect of gravity modulation on the onset of convection in a horizontal layer of viscoelastic Oldroyd fluid heated from below is considered. The analytical solution of the problem has been obtained for the case of stress-free boundaries and rectangular modulation. It has been shown that depending on the parameter values, the modulation can produce either stabilizing or destabilizing effects. The deformation retardation always exerts a stabilizing effect, which is most pronounced in the shortwave range. The numerical results obtained by the solution of full nonlinear problems agree well with the results of linear stability analysis. (paper)

  2. Gravity-gradient dynamics experiments performed in orbit utilizing the Radio Astronomy Explorer (RAE-1) spacecraft

    Science.gov (United States)

    Walden, H.

    1973-01-01

    Six dynamic experiments were performed in earth orbit utilizing the RAE spacecraft in order to test the accuracy of the mathematical model of RAE dynamics. The spacecraft consisted of four flexible antenna booms, mounted on a rigid cylindrical spacecraft hub at center, for measuring radio emissions from extraterrestrial sources. Attitude control of the gravity stabilized spacecraft was tested by using damper clamping, single lower leading boom operations, and double lower boom operations. Results and conclusions of the in-orbit dynamic experiments proved the accuracy of the analytic techniques used to model RAE dynamical behavior.

  3. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  4. On the characteristics of a numerical fluid dynamics simulator

    International Nuclear Information System (INIS)

    Winkler, K.H.A.; Norman, M.L.; Norton, J.L.

    1986-01-01

    John von Neumann envisioned scientists and mathematicians analyzing and controlling their numerical experiments on nonlinear dynamic systems interactively. The authors describe their concept of a real-time Numerical Fluid Dynamics Simulator NFDS. The authors envision the NFDS to be composed of simulation processors, data storage devices, and image processing devices of extremely high power and capacity, interconnected by very high throughput communication channels. They present individual component performance requirements for both real-time and playback operating modes of the NFDS, using problems of current interest in fluid dynamics as examples. Scaling relations are derived showing the dependence of system requirements on the dimensionality and complexity of the numerical model. The authors conclude by extending their analysis to the system requirements posed in modeling the more involved physics of radiation hydrodynamics

  5. Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Richard A. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Grozdanov, Sašo [Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Janiszewski, Stefan [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Kaminski, Matthias [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-11-28

    We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z=1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.

  6. Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time.

    Science.gov (United States)

    Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin

    2017-11-01

    Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.

  7. Connection Between Thermodynamics and Dynamics of Simple Fluids in Pores: Impact of Fluid-Fluid Interaction Range and Fluid-Solid Interaction Strength.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-08-03

    Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct self-diffusivity regimes reported in [Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Langmuir 2013 , 29 , 14527-14535]. Although increasing the fluid-fluid interaction range changes both the thermodynamics and the dynamic properties of adsorbed fluids, the previously reported connection between adsorptive filling regimes and self-diffusivity regimes remains. Increasing the fluid-fluid interaction range leads to enhanced layering and decreased self-diffusivity in the multilayer-formation regime but has little effect on the properties within film-formation and pore-filling regimes. We also find that weakly attractive adsorbents, which do not display distinct multilayer formation, are hard-sphere-like at super- and subcritical temperatures. In this case, the self-diffusivity of the confined and bulk fluid has a nearly identical scaling-relationship with effective density.

  8. Fluid dynamics of the shock wave reactor

    Science.gov (United States)

    Masse, Robert Kenneth

    2000-10-01

    High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter

  9. Unsteady bio-fluid dynamics in flying and swimming

    Science.gov (United States)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  10. I-Love-Q relations for neutron stars in dynamical Chern Simons gravity

    Science.gov (United States)

    Gupta, Toral; Majumder, Barun; Yagi, Kent; Yunes, Nicolás

    2018-01-01

    Neutron stars are ideal to probe, not only nuclear physics, but also strong-field gravity. Approximate universal relations insensitive to the star’s internal structure exist among certain observables and are useful in testing general relativity, as they project out the uncertainties in the equation of state. One such set of universal relations between the moment of inertia (I), the tidal Love number and the quadrupole moment (Q) has been studied both in general relativity and in modified theories. In this paper, we study the relations in dynamical Chern–Simons gravity, a well-motivated, parity-violating effective field theory, extending previous work in various ways. First, we study how projected constraints on the theory using the I-Love relation depend on the measurement accuracy of I with radio observations and that of the Love number with gravitational-wave observations. Provided these quantities can be measured with future observations, we find that the latter could place bounds on dynamical Chern–Simons gravity that are six orders of magnitude stronger than current bounds. Second, we study the I–Q and Q-Love relations in this theory by constructing slowly-rotating neutron star solutions to quadratic order in spin. We find that the approximate universality continues to hold in dynamical Chern–Simons gravity, and in fact, it becomes stronger than in general relativity, although its existence depends on the normalization of the dimensional coupling constant of the theory. Finally, we study the variation of the eccentricity of isodensity contours inside a star and its relation to the degree of universality. We find that, in most cases, the eccentricity variation is smaller in dynamical Chern–Simons gravity than in general relativity, providing further support to the idea that the approximate self-similarity of isodensity contours is responsible for universality.

  11. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  12. Non-intuitive fluid dynamics from reactor and containment technology

    International Nuclear Information System (INIS)

    Moody, F.J.

    1986-01-01

    One exciting aspect of fluid dynamics is that the subject has many surprises. The surprises can be good, but if not anticipated, they sometimes can be costly and embarrassing. Several non-intuitive fluid responses have emerged from studies in nuclear reactor and containment design. These responses include bubble behavior, blowdown, and waterhammer phenomena. Apologies are extended to those who are not surprised by the results. However, many will find the examples interesting; some have been amazed; a few have declared a personal crisis in their engineering perception

  13. Symposium on computational fluid dynamics: technology and applications

    International Nuclear Information System (INIS)

    1988-01-01

    A symposium on the technology and applications of computational fluid dynamics (CFD) was held in Pretoria from 21-23 Nov 1988. The following aspects were covered: multilevel adaptive methods and multigrid solvers in CFD, a symbolic processing approach to CFD, interplay between CFD and analytical approximations, CFD on a transfer array, the application of CFD in high speed aerodynamics, numerical simulation of laminar blood flow, two-phase flow modelling in nuclear accident analysis, and the finite difference scheme for the numerical solution of fluid flow

  14. Cellular Biotechnology Operations Support System Fluid Dynamics Investigation

    Science.gov (United States)

    2003-01-01

    Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.

  15. From Classical to Quantum: New Canonical Tools for the Dynamics of Gravity

    Science.gov (United States)

    Höhn, P. A.

    2012-05-01

    In a gravitational context, canonical methods offer an intuitive picture of the dynamics and simplify an identification of the degrees of freedom. Nevertheless, extracting dynamical information from background independent approaches to quantum gravity is a highly non-trivial challenge. In this thesis, the conundrum of (quantum) gravitational dynamics is approached from two different directions by means of new canonical tools. This thesis is accordingly divided into two parts: In the first part, a general canonical formalism for discrete systems featuring a variational action principle is developed which is equivalent to the covariant formulation following directly from the action. This formalism can handle evolving phase spaces and is thus appropriate for describing evolving lattices. Attention will be devoted to a characterization of the constraints, symmetries and degrees of freedom appearing in such discrete systems which, in the case of evolving phase spaces, is time step dependent. The advantage of this formalism is that it does not depend on the particular discretization and, hence, is suitable for coarse graining procedures. This formalism is applicable to discrete mechanics, lattice field theories and discrete gravity models---underlying some approaches to quantum gravity---and, furthermore, may prove useful for numerical imple mentations. For concreteness, these new tools are employed to formulate Regge Calculus canonically as a theory of the dynamics of discrete hypersurfaces in discrete spacetimes, thereby removing a longstanding obstacle to connecting covariant simplicial gravity models with canonical frameworks. This result is interesting in view of several background independent approaches to quantum gravity. In addition, perturbative expansions around symmetric background solutions of Regge Calculus are studied up to second order. Background gauge modes generically become propagating at second order as a consequence of a symmetry breaking. In the

  16. Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View

    Science.gov (United States)

    Bouchette, F.; Mohammadi, B.

    2016-12-01

    It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given

  17. Dynamic gene expression response to altered gravity in human T cells.

    Science.gov (United States)

    Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver

    2017-07-12

    We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.

  18. A general framework to test gravity using galaxy clusters - I. Modelling the dynamical mass of haloes in f(R) gravity

    Science.gov (United States)

    Mitchell, Myles A.; He, Jian-hua; Arnold, Christian; Li, Baojiu

    2018-06-01

    We propose a new framework for testing gravity using cluster observations, which aims to provide an unbiased constraint on modified gravity models from Sunyaev-Zel'dovich (SZ) and X-ray cluster counts and the cluster gas fraction, among other possible observables. Focusing on a popular f(R) model of gravity, we propose a novel procedure to recalibrate mass scaling relations from Λ cold dark matter (ΛCDM) to f(R) gravity for SZ and X-ray cluster observables. We find that the complicated modified gravity effects can be simply modelled as a dependence on a combination of the background scalar field and redshift, fR(z)/(1 + z), regardless of the f(R) model parameter. By employing a large suite of N-body simulations, we demonstrate that a theoretically derived tanh fitting formula is in excellent agreement with the dynamical mass enhancement of dark matter haloes for a large range of background field parameters and redshifts. Our framework is sufficiently flexible to allow for tests of other models and inclusion of further observables, and the one-parameter description of the dynamical mass enhancement can have important implications on the theoretical modelling of observables and on practical tests of gravity.

  19. Dynamic analysis of structures with solid-fluid interaction

    International Nuclear Information System (INIS)

    Nahavandi, A.N.; Pedrido, R.R.; Cloud, R.L.

    1977-01-01

    This study develops a finite element model for interaction between an elastic solid and fluid medium (flow-induced vibrations in nuclear reactor components). Plane triangular finite elements have been used separately for fluid, solid, and solid-fluid continuua and the equivalent mass, damping, and stiffness matrices and interaction load arrays for all elements are derived and assembled into global matrices. The global matrix differential equation of motion developed is solved in time to obtain the pressure and velocity distributions in the fluid, as well as the displacements in the solid. Two independent computer programs are used to obtain the dynamic solution. The first program is a finite element program developed for solid-fluid interaction studies. This program uses the modal superposition technique in which the eigenvalues and eigenvectors for the system are found and used to uncouple the equations. This approach allows an analytic solution in each integration time step. The second program is WECAN finite element program in which a new element library subroutine for solid-fluid interaction was incorporated. This program can employ a NASTRAN direct integration scheme based on a central difference formula for the acceleration and velocity terms and an implicit representation of the displacement term. This reduces the problem to a matrix equation whose right hand side is updated in every time step and is solved by a variation of the Gaussian elimination method known as the wave front technique. Results have been obtained for the case of water, between two flat elastic parallel plates, initially at rest and accelerated suddenly by applying a step pressure. The results obtained from the above-mentioned two independent finite element programs are in full agreement. This verification provides the confidence needed to initiate parametric studies. Both rigid wall (no solid-fluid interaction) and flexible wall (including solid-fluid interaction) cases were examined

  20. Dynamic wormhole solutions in Einstein-Cartan gravity

    Science.gov (United States)

    Mehdizadeh, Mohammad Reza; Ziaie, Amir Hadi

    2017-12-01

    In the present work, we investigate evolving wormhole configurations described by a constant redshift function in Einstein-Cartan theory. The matter content consists of a Weyssenhoff fluid along with an anisotropic matter which together generalize the anisotropic energy momentum tensor in general relativity in order to include the effects of intrinsic angular momentum (spin) of particles. Using a generalized Friedmann-Robertson-Walker spacetime, we derive analytical evolving wormhole geometries by assuming a particular equation of state for energy density and pressure profiles. We introduce exact asymptotically flat and anti-de Sitter spacetimes that admit traversable wormholes and respect energy conditions throughout the spacetime. The rate of expansion of these evolving wormholes is determined only by the Friedmann equation in the presence of spin effects.

  1. Particle hopping vs. fluid-dynamical models for traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  2. Centre of Gravity Plethysmography--A Means of Detecting Mass Transfer of Fluid within the Body.

    Science.gov (United States)

    Buck, Michael

    1988-01-01

    Describes the monitoring of the redistribution of blood by using a technique which detects changes in the center of gravity of the body. Provides information about the principles and application, construction of apparatus, operating routines, and use of the computer as a recorder. Includes suggested investigations, demonstrations, and diagrams.…

  3. A future for computational fluid dynamics at CERN

    CERN Document Server

    Battistin, M

    2005-01-01

    Computational Fluid Dynamics (CFD) is an analysis of fluid flow, heat transfer and associated phenomena in physical systems using computers. CFD has been used at CERN since 1993 by the TS-CV group, to solve thermo-fluid related problems, particularly during the development, design and construction phases of the LHC experiments. Computer models based on CFD techniques can be employed to reduce the effort required for prototype testing, saving not only time and money but offering possibilities of additional investigations and design optimisation. The development of a more efficient support team at CERN depends on to two important factors: available computing power and experienced engineers. Available computer power IS the limiting resource of CFD. Only the recent increase of computer power had allowed important high tech and industrial applications. Computer Grid is already now (OpenLab at CERN) and will be more so in the future natural environment for CFD science. At CERN, CFD activities have been developed by...

  4. Coupling of linearized gravity to nonrelativistic test particles: Dynamics in the general laboratory frame

    International Nuclear Information System (INIS)

    Speliotopoulos, A.D.; Chiao, Raymond Y.

    2004-01-01

    The coupling of gravity to matter is explored in the linearized gravity limit. The usual derivation of gravity-matter couplings within the quantum-field-theoretic framework is reviewed. A number of inconsistencies between this derivation of the couplings and the known results of tidal effects on test particles according to classical general relativity are pointed out. As a step towards resolving these inconsistencies, a general laboratory frame fixed on the worldline of an observer is constructed. In this frame, the dynamics of nonrelativistic test particles in the linearized gravity limit is studied, and their Hamiltonian dynamics is derived. It is shown that for stationary metrics this Hamiltonian reduces to the usual Hamiltonian for nonrelativistic particles undergoing geodesic motion. For nonstationary metrics with long-wavelength gravitational waves present (GWs), it reduces to the Hamiltonian for a nonrelativistic particle undergoing geodesic deviation motion. Arbitrary-wavelength GWs couple to the test particle through a vector-potential-like field N a , the net result of the tidal forces that the GW induces in the system, namely, a local velocity field on the system induced by tidal effects, as seen by an observer in the general laboratory frame. Effective electric and magnetic fields, which are related to the electric and magnetic parts of the Weyl tensor, are constructed from N a that obey equations of the same form as Maxwell's equations. A gedankin gravitational Aharonov-Bohm-type experiment using N a to measure the interference of quantum test particles is presented

  5. Optics and Fluid Dynamics Department annual progress report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.

    1998-04-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing and storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena for optical components and systems. Scientific computing is an integral part of the work. Biomedical optics is a new activity and the work on polymer optics is enhanced considerably. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1997 is presented. (au) 1 tab., 63 ills., 249 refs.

  6. Optics and Fluid Dynamics Department annual progress report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.

    1997-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing an storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1996 is presented. (au) 53 ills., 232 refs.

  7. Moving interface problems and applications in fluid dynamics

    CERN Document Server

    Khoo, Boo Cheong; Lin, Ping

    2008-01-01

    This volume is a collection of research papers presented at the program on Moving Interface Problems and Applications in Fluid Dynamics, which was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences (IMS) of the National University of Singapore. The topics discussed include modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications including biological treatments with experimental verification, multi-medium flow or multi-phase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas. Readers can benefit from some recent research results in these areas.

  8. Fluid dynamics applications of the Illiac IV computer

    Science.gov (United States)

    Maccormack, R. W.; Stevens, K. G., Jr.

    1976-01-01

    The Illiac IV is a parallel-structure computer with computing power an order of magnitude greater than that of conventional computers. It can be used for experimental tasks in fluid dynamics which can be simulated more economically, for simulating flows that cannot be studied by experiment, and for combining computer and experimental simulations. The architecture of Illiac IV is described, and the use of its parallel operation is demonstrated on the example of its solution of the one-dimensional wave equation. For fluid dynamics problems, a special FORTRAN-like vector programming language was devised, called CFD language. Two applications are described in detail: (1) the determination of the flowfield around the space shuttle, and (2) the computation of transonic turbulent separated flow past a thick biconvex airfoil.

  9. Optics and Fluid Dynamics Department annual progress report for 1996

    International Nuclear Information System (INIS)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B.

    1997-01-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing an storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1996 is presented. (au) 53 ills., 232 refs

  10. Activities and interconnections of thermal-fluid dynamics

    International Nuclear Information System (INIS)

    Celata, G.P.

    1999-01-01

    Thermal-fluid dynamics is a field of fundamental interest for a wide spectrum of past and present advanced 'applications': in nature, in the 'machines' of our everyday life and in industry. In particular, in today industry, its knowledge and the developments are of fundamental importance in understanding, modelling and in the advance design of heat and mass transfer process in energy conversion and transformation plants. Various examples of the role of the thermal-fluid dynamics to increase efficiency in energy utilization and in the design and in the development of new components and high performance system are exposed. New thermodynamic models and advanced analysis techniques together with necessary balance between theoretical advances codes for modelling and their experimental specific verifications are throughout discussed and illustrated

  11. Optics and Fluid Dynamics Department annual progress report for 1997

    International Nuclear Information System (INIS)

    Hanson, S.G.; Johansen, P.M.; Lading, L.; Lynov, J.P.; Skaarup, B.

    1998-04-01

    Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The work is concentrated on combinations of systems, structures and materials. The systems work is focused on sensors, information processing and storage; the structures work is concentrated on pattern formation and diffractive elements; the materials work is centred on the understanding and utilisation of nonlinear phenomena for optical components and systems. Scientific computing is an integral part of the work. Biomedical optics is a new activity and the work on polymer optics is enhanced considerably. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1997 is presented. (au)

  12. Basic Coandă MAV Fluid Dynamics and Flight Mechanics

    Science.gov (United States)

    Djojodihardjo, H.; Ahmed, RI

    2017-04-01

    Capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of a semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. A mathematical model for a spherical Coandă MAV in hover and translatory motion is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulations for a Coandă MAV generic model are elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.

  13. Computational Fluid and Particle Dynamics in the Human Respiratory System

    CERN Document Server

    Tu, Jiyuan; Ahmadi, Goodarz

    2013-01-01

    Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...

  14. Contributions to thermal and fluid dynamic problems in nuclear technology

    International Nuclear Information System (INIS)

    Mueller, U.; Krebs, L.; Rust, K.

    1984-02-01

    The majority of contributions compiled in this report deals with thermal and fluid dynamic problems in nuclear engineering. Especially problems of heat transfer and cooling are represented which may arise during and afer a loss-of-coolant accident both in light water reactors and in liquid metal cooled fast breeder reactors. Papers on the mass transfer in pressurized water, tribological problems in sodium cooled reactors, the fluid dynamics of pulsed column, and fundamental investigations of convective flows supplement these contributions on problems connected with accidents. Furthermore, a keynote paper presents the individual activities relating to the reliability of reactor components, a field recently included in our research program. Technical solutions to special problems are closely connected to the investigations based on experiments. Therefore, several contributions deal with new developments in technology and measuring techniques. (orig.) [de

  15. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  16. Optics and Fluid Dynamics Department annual progress report for 1993

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Michelsen, P.; Skaarup, B.

    1994-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials, (b) quasi-elastic light scattering and diagnostics in solids, fluids, and plasmas, and (c) optical and electronic information processing. Within continuum physics the activities are within (a) studies of non-linear dynamical processes in continuum systems, (b) investigations of problems with relevance to fusion plasma physics. The injection of pellets in fusion experiments has been investigated and pellet injectors to European fusion experiments are manufactured. The department is also responsible for the EURATOM collaboration within fusion plasma physics. A summary of activities in 1993 is presented. (au) (27 ills., 24 refs.)

  17. Dissolution Dynamic Nuclear Polarization capability study with fluid path

    DEFF Research Database (Denmark)

    Malinowski, Ronja Maja; Lipsø, Hans Kasper Wigh; Lerche, Mathilde Hauge

    2016-01-01

    Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperp......Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden...... of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling...

  18. Fluid dynamics following flow shut-off in bottle filling

    Science.gov (United States)

    Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman

    2012-11-01

    Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.

  19. Computational fluid dynamics modelling of displacement natural ventilation.

    OpenAIRE

    Ji, Yingchun

    2005-01-01

    Natural ventilation is widely recognised as contributing towards low-energy building design. The requirement to reduce energy usage in new buildings has rejuvenated interest in natural ventilation. This thesis deals with computer modelling of natural displacement ventilation driven either by buoyancy or buoyancy combined with wind forces. Two benchmarks have been developed using computational fluid dynamics (CFD) in order to evaluate the accuracy with which CFD is able to mo...

  20. Quantum molecular dynamics simulations of thermophysical properties of fluid ethane

    OpenAIRE

    Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping

    2012-01-01

    We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present new results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition...

  1. On the Schrodinger equation in fluid-dynamical form

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1976-01-01

    The fluid-dynamical form of the Schrodinger equations is studied to examine the nature of the quantum forces arising from the quantum potential of Madelung and Bohm. It is found that they are in the form of a stress tensor having diagonal and nondiagonal components. Future studies of these quantum stress tensors in a many-body system may shed some light on the mechanism of spontaneous symmetry breaking and the generation of vorticity in many nuclear systems

  2. Attractors of equations of non-Newtonian fluid dynamics

    International Nuclear Information System (INIS)

    Zvyagin, V G; Kondrat'ev, S K

    2014-01-01

    This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles

  3. Quality control of computational fluid dynamics in indoor environments

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Nielsen, P. V.

    2003-01-01

    Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling as...... the quality of CFD calculations, as well as guidelines for the minimum information that should accompany all CFD-related publications to enable a scientific judgment of the quality of the study....

  4. Optics and fluid dynamics department annual progress report for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S G; Lading, L; Lynov, J P; Michelsen, P

    1995-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials and electromagnetic propagation, (b) diagnostics and sensors, and (c) information processing. In continuum physics the activities are (a) nonlinear dynamics and (b) computer physics. The activities are supported by several EU programmes, including EURATOM, by research councils, and by industry. A special activity is the implementation of pellet injectors for fusion research. A summary of activities in 1994 is presented. (au) (27 ills., 44 refs.).

  5. Techniques for animation of CFD results. [computational fluid dynamics

    Science.gov (United States)

    Horowitz, Jay; Hanson, Jeffery C.

    1992-01-01

    Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.

  6. Optics and fluid dynamics department annual progress report for 1994

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Lynov, J.P.; Michelsen, P.

    1995-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials and electromagnetic propagation, (b) diagnostics and sensors, and (c) information processing. In continuum physics the activities are (a) nonlinear dynamics and (b) computer physics. The activities are supported by several EU programmes, including EURATOM, by research councils, and by industry. A special activity is the implementation of pellet injectors for fusion research. A summary of activities in 1994 is presented. (au) (27 ills., 44 refs.)

  7. Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.

    Science.gov (United States)

    Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind

    2018-01-26

    Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. A numerical model for dynamic crustal-scale fluid flow

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  9. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-01

    The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1-10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  10. Connection dynamics of a gauge theory of gravity coupled with matter

    International Nuclear Information System (INIS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-01-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert–Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero–Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert–Palatini term and the quadratic torsion term in this gauge theory of gravity. (paper)

  11. Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft

    Science.gov (United States)

    Blanchard, D. L.; Walden, H.

    1973-01-01

    A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.

  12. Constraints on Cosmology and Gravity from the Dynamics of Voids.

    Science.gov (United States)

    Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen

    2016-08-26

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.

  13. Nonperturbative Dynamics of Strong Interactions from Gauge/Gravity Duality

    Energy Technology Data Exchange (ETDEWEB)

    Grigoryan, Hovhannes [Louisiana State Univ., Baton Rouge, LA (United States)

    2008-08-01

    This thesis studies important dynamical observables of strong interactions such as form factors. It is known that Quantum Chromodynamics (QCD) is a theory which describes strong interactions. For large energies, one can apply perturbative techniques to solve some of the QCD problems. However, for low energies QCD enters into the nonperturbative regime, where di erent analytical or numerical tools have to be applied to solve problems of strong interactions. The holographic dual model of QCD is such an analytical tool that allows one to solve some nonperturbative QCD problems by translating them into a dual ve-dimensional theory de ned on some warped Anti de Sitter (AdS) background. Working within the framework of the holographic dual model of QCD, we develop a formalism to calculate form factors and wave functions of vector mesons and pions. As a result, we provide predictions of the electric radius, the magnetic and quadrupole moments which can be directly veri ed in lattice calculations or even experimentally. To nd the anomalous pion form factor, we propose an extension of the holographic model by including the Chern-Simons term required to reproduce the chiral anomaly of QCD. This allows us to nd the slope of the form factor with one real and one slightly o -shell photon which appeared to be close to the experimental ndings. We also analyze the limit of large virtualities (when the photon is far o -shell) and establish that predictions of the holographic model analytically coincide with those of perturbative QCD with asymptotic pion distribution amplitude. We also study the e ects of higher dimensional terms in the AdS/QCD model and show that these terms improve the holographic description towards a more realistic scenario. We show this by calculating corrections to the vector meson form factors and corrections to the observables such as electric radii, magnetic and quadrupole moments.

  14. Gravitational waves from quasicircular black-hole binaries in dynamical Chern-Simons gravity.

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolás; Tanaka, Takahiro

    2012-12-21

    Dynamical Chern-Simons gravity cannot be strongly constrained with current experiments because it reduces to general relativity in the weak-field limit. This theory, however, introduces modifications in the nonlinear, dynamical regime, and thus it could be greatly constrained with gravitational waves from the late inspiral of black-hole binaries. We complete the first self-consistent calculation of such gravitational waves in this theory. For favorable spin orientations, advanced ground-based detectors may improve existing solar system constraints by 6 orders of magnitude.

  15. Plane Symmetric Dark Energy Models in the Form of Wet Dark Fluid in f ( R, T) Gravity

    Science.gov (United States)

    Chirde, V. R.; Shekh, S. H.

    2016-06-01

    In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f ( R, T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy-momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω( ρ - ρ ∗). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.

  16. Dynamics of solutions and fluid mixtures by NMR

    International Nuclear Information System (INIS)

    Delpuech, J.J.

    1994-01-01

    After a short introduction to NMR spectroscopy, with a special emphasis on dynamical aspects, an overview on two fundamental aspects of molecular dynamics, NMR relaxation and its relationship with molecular reorientation, and magnetization transfer phenomena induced by molecular rate processes (dynamic NMR) is presented, followed by specific mechanisms of relaxation encountered in paramagnetic systems or with quadrupolar nuclei. Application fields are then reviewed: solvent exchange on metal ions with a variable pressure NMR approach, applications of field gradients in NMR, aggregation phenomena and micro-heterogeneity in surfactant solutions, polymers and biopolymers in the liquid state, liquid-like molecules in rigid matrices and in soft matter (swollen polymers and gels, fluids in and on inorganic materials, food)

  17. Issues in computational fluid dynamics code verification and validation

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W.L.; Blottner, F.G.

    1997-09-01

    A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.

  18. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Vedel Søren

    2009-09-01

    Full Text Available Abstract Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis.

  19. Second generation diffusion model of interacting gravity waves on the surface of deep fluid

    Directory of Open Access Journals (Sweden)

    A. Pushkarev

    2004-01-01

    Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.

  20. Bouncing dynamics of Bose–Einstein condensates under the effects of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sekh, Golam Ali, E-mail: golamali.sekh@ba.infn.it [Department of Physics, University of Kashmir, Hazratbal, Srinagar-190006, J & K (India); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, I-70126 Bari (Italy)

    2017-03-03

    Bouncing dynamics of quasi-one dimensional Bose–Einstein condensates (BECs) falling under gravity on delta-function potentials is investigated. First, we consider a single component BEC in the presence of cubic-quintic nonlinearity and study dynamical behavior of different parameters of the system using variational and numerical approaches. We see that the quintic nonlinearity plays a dominant role over cubic nonlinear interaction to extend the bouncing dynamics in the non-linear regime. We find that a matter-wave performs bouncing motion only for certain discrete values of initial position above the reflecting potential. We then consider bouncing dynamics of binary BECs. It is shown that the pair of matter-waves bounces together if inter-species interaction is attractive. However, their pairing breaks down if the inter-species interaction is made repulsive. - Highlights: • Single and coupled BECs • Effects of inter-component interaction and gravity • Periodic and quasi-periodic dynamics • Fermi-type acceleration.

  1. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  2. Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube

    Science.gov (United States)

    Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake

    2017-11-01

    A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.

  3. Fluid dynamics parallel computer development at NASA Langley Research Center

    Science.gov (United States)

    Townsend, James C.; Zang, Thomas A.; Dwoyer, Douglas L.

    1987-01-01

    To accomplish more detailed simulations of highly complex flows, such as the transition to turbulence, fluid dynamics research requires computers much more powerful than any available today. Only parallel processing on multiple-processor computers offers hope for achieving the required effective speeds. Looking ahead to the use of these machines, the fluid dynamicist faces three issues: algorithm development for near-term parallel computers, architecture development for future computer power increases, and assessment of possible advantages of special purpose designs. Two projects at NASA Langley address these issues. Software development and algorithm exploration is being done on the FLEX/32 Parallel Processing Research Computer. New architecture features are being explored in the special purpose hardware design of the Navier-Stokes Computer. These projects are complementary and are producing promising results.

  4. Data Point Averaging for Computational Fluid Dynamics Data

    Science.gov (United States)

    Norman, Jr., David (Inventor)

    2016-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  5. Distributed interactive graphics applications in computational fluid dynamics

    International Nuclear Information System (INIS)

    Rogers, S.E.; Buning, P.G.; Merritt, F.J.

    1987-01-01

    Implementation of two distributed graphics programs used in computational fluid dynamics is discussed. Both programs are interactive in nature. They run on a CRAY-2 supercomputer and use a Silicon Graphics Iris workstation as the front-end machine. The hardware and supporting software are from the Numerical Aerodynamic Simulation project. The supercomputer does all numerically intensive work and the workstation, as the front-end machine, allows the user to perform real-time interactive transformations on the displayed data. The first program was written as a distributed program that computes particle traces for fluid flow solutions existing on the supercomputer. The second is an older post-processing and plotting program modified to run in a distributed mode. Both programs have realized a large increase in speed over that obtained using a single machine. By using these programs, one can learn quickly about complex features of a three-dimensional flow field. Some color results are presented

  6. Fast reactor safety and computational thermo-fluid dynamics approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Shimizu, Takeshi

    1993-01-01

    This article provides a brief description of the safety principle on which liquid metal cooled fast breeder reactors (LMFBRs) is based and the roles of computations in the safety practices. A number of thermohydraulics models have been developed to date that successfully describe several of the important types of fluids and materials motion encountered in the analysis of postulated accidents in LMFBRs. Most of these models use a mixture of implicit and explicit numerical solution techniques in solving a set of conservation equations formulated in Eulerian coordinates, with special techniques included to specific situations. Typical computational thermo-fluid dynamics approaches are discussed in particular areas of analyses of the physical phenomena relevant to the fuel subassembly thermohydraulics design and that involve describing the motion of molten materials in the core over a large scale. (orig.)

  7. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  8. Fluid mechanics and heat transfer advances in nonlinear dynamics modeling

    CERN Document Server

    Asli, Kaveh Hariri

    2015-01-01

    This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.

  9. [Fluid dynamics of supercritical helium within internally cooled cabled superconductors

    International Nuclear Information System (INIS)

    Van Sciver, S.W.

    1995-01-01

    The Applied Superconductivity Center of the University of Wisconsin-Madison proposes to conduct research on low temperature helium fluid dynamics as it applies to the cooling of internally cooled cabled superconductors (ICCS). Such conductors are used in fusion reactor designs including most of the coils in ITER. The proposed work is primarily experimental involving measurements of transient and steady state pressure drop in a variety of conductor configurations. Both model and prototype conductors for actual magnet designs will be investigated. The primary goal will be to measure and model the friction factor for these complex geometries. In addition, an effort will be made to study transient processes such as heat transfer and fluid expulsion associated with quench conditions

  10. Fluid phonons, protoinflationary dynamics and large-scale gravitational fluctuations

    CERN Document Server

    Giovannini, Massimo

    2013-01-01

    We explore what can be said on the effective temperature and sound speed of a statistical ensemble of fluid phonons present at the onset of a conventional inflationary phase. The phonons are the actual normal modes of the gravitating and irrotational fluid that dominates the protoinflationary dynamics. The bounds on the tensor to scalar ratio result in a class of novel constraints involving the slow roll parameter, the sound speed of the phonons and the temperature of the plasma prior to the onset of inflation. If the current size of the Hubble radius coincides with the inflationary event horizon redshifted down to the present epoch, the sound speed of the phonons can be assessed from independent measurements of the tensor to scalar ratio and of the tensor spectral index.

  11. Fluid-solid boundary conditions for multiparticle collision dynamics

    International Nuclear Information System (INIS)

    Whitmer, Jonathan K; Luijten, Erik

    2010-01-01

    The simulation of colloidal particles suspended in solvent requires an accurate representation of the interactions between the colloids and the solvent molecules. Using the multiparticle collision dynamics method, we examine several proposals for stick boundary conditions, studying their properties in both plane Poiseuille flow (where fluid interacts with the boundary of a stationary macroscopic solid) and particle-based colloid simulations (where the boundaries are thermally affected and in motion). In addition, our simulations compare various collision rules designed to remove spurious slip near solid surfaces, and the effects of these rules on the thermal motion of colloidal particles. Furthermore, we demonstrate that stochastic reflection of the fluid at solid boundaries fails to faithfully represent stick boundary conditions, and conclude that bounce-back conditions should be applied at both mobile and stationary surfaces. Finally, we generalize these ideas to create partial slip boundary conditions at both stationary and mobile surfaces.

  12. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    International Nuclear Information System (INIS)

    Bancroft, G.V.; Merritt, F.J.; Plessel, T.C.; Kelaita, P.G.; Mccabe, R.K.

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed. 20 refs

  13. Applied Computational Fluid Dynamics at NASA Ames Research Center

    Science.gov (United States)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  14. Quantum molecular dynamics simulations of thermophysical properties of fluid ethane.

    Science.gov (United States)

    Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping

    2012-12-01

    We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition, that ethane dissociates significantly into molecular and/or atomic hydrogen and some long alkane chains, has been systematically studied by analyzing the optical conductivity spectra, pair correlation functions, electronic density of states, and charge density distribution of fluid ethane.

  15. NASA-VOF3D, 3-D Transient, Free Surface, Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1992-01-01

    1 - Description of program or function: NASA-VOF3D is a three- dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slip, wall, continuative, periodic, and specified pressure outflow boundary. 2 - Method of solution: NASA-VOF3D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The free surfaces are treated by introducing a function defined to be unity at any point occupied by the fluid and zero elsewhere. The complete Navier- Stokes equations for an incompressible fluid are solved by finite differences with surface tension effects included. Wall adhesion may be included or neglected as a user option. The pressures (and velocities) are advanced in time throughout the computing mesh by either a conjugate residual method or the successive over-relaxation (SOR) method. The conjugate residual method is vectorized for the Cray and uses a scaled coefficient matrix. 3 - Restrictions on the complexity of the problem: NASA-VOF3D is restricted to cylindrical coordinate representation of the geometry. A three-dimensional wall-adhesion procedure is available only for straight-walled containers

  16. The stochastic dynamics of tethered microcantilevers in a viscous fluid

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Brian A.; Paul, Mark R. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Radiom, Milad; Ducker, William A. [Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Walz, John Y. [Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-10-28

    We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever.

  17. Small Displacement Coupled Analysis of Concrete Gravity Dam Foundations: Static and Dynamic Conditions

    Science.gov (United States)

    Farinha, Maria Luísa Braga; Azevedo, Nuno Monteiro; Candeias, Mariline

    2017-02-01

    The explicit formulation of a small displacement model for the coupled hydro-mechanical analysis of concrete gravity dam foundations based on joint finite elements is presented. The proposed coupled model requires a thorough pre-processing stage in order to ensure that the interaction between the various blocks which represent both the rock mass foundation and the dam is always edge to edge. The mechanical part of the model, though limited to small displacements, has the advantage of allowing an accurate representation of the stress distribution along the interfaces, such as rock mass joints. The hydraulic part and the mechanical part of the model are fully compatible. The coupled model is validated using a real case of a dam in operation, by comparison of the results with those obtained with a large displacement discrete model. It is shown that it is possible to assess the sliding stability of concrete gravity dams using small displacement models under both static and dynamic conditions.

  18. Liquid metal batteries - materials selection and fluid dynamics

    Science.gov (United States)

    Weier, T.; Bund, A.; El-Mofid, W.; Horstmann, G. M.; Lalau, C.-C.; Landgraf, S.; Nimtz, M.; Starace, M.; Stefani, F.; Weber, N.

    2017-07-01

    Liquid metal batteries are possible candidates for massive and economically feasible large-scale stationary storage and as such could be key components of future energy systems based mainly or exclusively on intermittent renewable electricity sources. The completely liquid interior of liquid metal batteries and the high current densities give rise to a multitude of fluid flow phenomena that will primarily influence the operation of future large cells, but might be important for today’s smaller cells as well. The paper at hand starts with a discussion of the relative merits of using molten salts or ionic liquids as electrolytes for liquid metal cells and touches the choice of electrode materials. This excursus into electrochemistry is followed by an overview of investigations on magnetohydrodynamic instabilities in liquid metal batteries, namely the Tayler instability and electromagnetically excited gravity waves. A section on electro-vortex flows complements the discussion of flow phenomena. Focus of the flow related investigations lies on the integrity of the electrolyte layer and related critical parameters.

  19. PREFACE: Complex dynamics of fluids in disordered and crowded environments Complex dynamics of fluids in disordered and crowded environments

    Science.gov (United States)

    Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent

    2011-06-01

    Over the past two decades, the dynamics of fluids under nanoscale confinement has attracted much attention. Motivation for this rapidly increasing interest is based on both practical and fundamental reasons. On the practical and rather applied side, problems in a wide range of scientific topics, such as polymer and colloidal sciences, rheology, geology, or biophysics, benefit from a profound understanding of the dynamical behaviour of confined fluids. Further, effects similar to those observed in confinement are expected in fluids whose constituents have strong size or mass asymmetry, and in biological systems where crowding and obstruction phenomena in the cytosol are responsible for clear separations of time scales for macromolecular transport in the cell. In fundamental research, on the other hand, the interest focuses on the complex interplay between confinement and structural relaxation, which is responsible for the emergence of new phenomena in the dynamics of the system: in confinement, geometric constraints associated with the pore shape are imposed to the adsorbed fluids and an additional characteristic length scale, i.e. the pore size, comes into play. For many years, the topic has been mostly experimentally driven. Indeed, a broad spectrum of systems has been investigated by sophisticated experimental techniques, while theoretical and simulation studies were rather scarce due to conceptual and computational issues. In the past few years, however, theory and simulations could largely catch up with experiments. On one side, new theories have been put forward that duly take into account the porosity, the connectivity, and the randomness of the confinement. On the other side, the ever increasing available computational power now allows investigations that were far out of reach a few years ago. Nowadays, instead of isolated state points, systematic investigations on the dynamics of confined fluids, covering a wide range of system parameters, can be realized

  20. Bouguer gravity anomalies for terrain modeling | Orupabo | Journal ...

    African Journals Online (AJOL)

    Gravity anomalies have been applied in geodesy to determine the geoid, and the associated composition and crustal properties of the earth. Applications of solution of the gravity inversion problems include the study of crustal dynamics as a result of the extraction of fluids in the form of oil, gas and water from ...

  1. Dynamical Heterogeneity in Granular Fluids and Structural Glasses

    Science.gov (United States)

    Avila, Karina E.

    Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than

  2. Fluid dynamic interaction between water hammer and centrifugal pumps

    International Nuclear Information System (INIS)

    Ismaier, A.; Schluecker, E.

    2009-01-01

    Centrifugal pumps generate in piping systems noticeable pressure pulsations. In this paper the dynamic interaction between water hammer and pressure pulsations is presented. The experimental investigations were performed at a piping system with nominal diameter DN 100 (respectively NPS 4) and 75 m total length, built at the Institute for Process Technology and Machinery. Different measurements at this testing facility show that pulsating centrifugal pumps can damp pressure surges generated by fast valve closing. It is also shown that 1-dimensional fluid codes can be used to calculate this phenomenon. Furthermore it is presented that pressure surges pass centrifugal pumps almost unhindered, because they are hydraulic open.

  3. Modeling fires in adjacent ship compartments with computational fluid dynamics

    International Nuclear Information System (INIS)

    Wix, S.D.; Cole, J.K.; Koski, J.A.

    1998-01-01

    This paper presents an analysis of the thermal effects on radioactive (RAM) transportation pack ages with a fire in an adjacent compartment. An assumption for this analysis is that the adjacent hold fire is some sort of engine room fire. Computational fluid dynamics (CFD) analysis tools were used to perform the analysis in order to include convective heat transfer effects. The analysis results were compared to experimental data gathered in a series of tests on the United States Coast Guard ship Mayo Lykes located at Mobile, Alabama. (authors)

  4. Computational fluid dynamics in fire engineering theory, modelling and practice

    CERN Document Server

    Yuen, Kwok Kit

    2009-01-01

    Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the f

  5. Application of coarse-mesh methods to fluid dynamics equations

    International Nuclear Information System (INIS)

    Romstedt, P.; Werner, W.

    1977-01-01

    An Asymmetric Weighted Residual (ASWR) method for fluid dynamics equations is described. It leads to local operators with a 7-point Finite Difference (FD) structure, which is independent of the degree of the approximating polynomials. An 1-dimensional problem was solved by both this ASWR-method and a commonly used FD-method. The numerical results demonstrate that the ASWR-method combines high accuracy on a coarse computational mesh with short computing time per space point. The posibility of using fewer space points consequently brings about a considerable reduction in total running time for the ASWR-method as compared with conventional FD-methods. (orig.) [de

  6. Relativistic nuclear fluid dynamics and VUU kinetic theory

    International Nuclear Information System (INIS)

    Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.

    1987-01-01

    Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs

  7. Tensor viscosity method for convection in numerical fluid dynamics

    International Nuclear Information System (INIS)

    Dukowicz, J.K.; Ramshaw, J.D.

    1979-01-01

    A new method, called the tensor viscosity method, is described for differencing the convective terms in multidimensional numerical fluid dynamics. The method is the proper generalization to two or three dimensions of interpolated donor cell differencing in one dimension, and is designed to achieve numerical stability with minimal numerical damping. It is a single-step method that is distinguished by simplicity and case of implementation, even in the case of an arbitrary non-rectangular mesh. It should therefore be useful in finite-element as well as finite-difference formulations

  8. Torque converter transient characteristics prediction using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaguchi, T; Tanaka, K

    2012-01-01

    The objective of this research is to investigate the transient torque converter performance used in an automobile. A new technique in computational fluid dynamics is introduced, which includes the inertia of the turbine in a three dimensional simulation of the torque converter during a launch condition. The simulation results are compared to experimental test data with good agreement across the range of data. In addition, the simulated flow structure inside the torque converter is visualized and compared to results from a steady-state calculation.

  9. Approaching multiphase flows from the perspective of computational fluid dynamics

    International Nuclear Information System (INIS)

    Banas, A.O.

    1992-01-01

    Thermalhydraulic simulation methodologies based on subchannel and porous-medium concepts are briefly reviewed and contrasted with the general approach of Computational Fluid Dynamics (CFD). An outline of the advanced CFD methods for single-phase turbulent flows is followed by a short discussion of the unified formulation of averaged equations for turbulent and multiphase flows. Some of the recent applications of CFD at Chalk River Laboratories are discussed, and the complementary role of CFD with regard to the established thermalhydraulic methods of analysis is indicated. (author). 8 refs

  10. Morphing-Based Shape Optimization in Computational Fluid Dynamics

    Science.gov (United States)

    Rousseau, Yannick; Men'Shov, Igor; Nakamura, Yoshiaki

    In this paper, a Morphing-based Shape Optimization (MbSO) technique is presented for solving Optimum-Shape Design (OSD) problems in Computational Fluid Dynamics (CFD). The proposed method couples Free-Form Deformation (FFD) and Evolutionary Computation, and, as its name suggests, relies on the morphing of shape and computational domain, rather than direct shape parameterization. Advantages of the FFD approach compared to traditional parameterization are first discussed. Then, examples of shape and grid deformations by FFD are presented. Finally, the MbSO approach is illustrated and applied through an example: the design of an airfoil for a future Mars exploration airplane.

  11. Multitasking the code ARC3D. [for computational fluid dynamics

    Science.gov (United States)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  12. A fluid dynamic approach to the dust-acoustic soliton

    International Nuclear Information System (INIS)

    McKenzie, J.F.; Doyle, T.B.

    2002-01-01

    The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave

  13. A Fluid Dynamic Approach to the Dust-Acoustic Soliton

    Science.gov (United States)

    McKenzie, J. F.; Doyle, T. B.

    2002-12-01

    The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave.

  14. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  15. Classical and quantum dynamics of a perfect fluid scalar-metric cosmology

    International Nuclear Information System (INIS)

    Vakili, Babak

    2010-01-01

    We study the classical and quantum models of a Friedmann-Robertson-Walker (FRW) cosmology, coupled to a perfect fluid, in the context of the scalar-metric gravity. Using the Schutz' representation for the perfect fluid, we show that, under a particular gauge choice, it may lead to the identification of a time parameter for the corresponding dynamical system. It is shown that the evolution of the universe based on the classical cosmology represents a late time power law expansion coming from a big-bang singularity in which the scale factor goes to zero while the scalar field blows up. Moreover, this formalism gives rise to a Schroedinger-Wheeler-DeWitt (SWD) equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave function in order to investigate the possibility of the avoidance of classical singularities due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.

  16. Dynamic modeling and experiment of a new type of parallel servo press considering gravity counterbalance

    Science.gov (United States)

    He, Jun; Gao, Feng; Bai, Yongjun; Wu, Shengfu

    2013-11-01

    The large capacity servo press is traditionally realized by means of redundant actuation, however there exist the over-constraint problem and interference among actuators, which increases the control difficulty and the product cost. A new type of press mechanism with parallel topology is presented to develop the mechanical servo press with high stamping capacity. The dynamic model considering gravity counterbalance is proposed based on the virtual work principle, and then the effect of counterbalance cylinder on the dynamic performance of the servo press is studied. It is found that the motor torque required to operate the press is a lot less than the others when the ratio of the counterbalance force to the gravity of ram is in the vicinity of 1.0. The stamping force of the real press prototype can reach up to 25 MN on the position of 13 mm away from the bottom dead center. The typical deep-drawing process with 1 200 mm stroke at 8 strokes per minute is proposed by means of five order polynomial. On this process condition, the driving torques are calculated based on the above dynamic model and the torque measuring test is also carried out on the prototype. It is shown that the curve trend of calculation torque is consistent to the measured result and that the average error is less than 15%. The parallel mechanism is introduced into the development of large capacity servo press to avoid the over-constraint and interference of traditional redundant actuation, and its dynamic characteristics with gravity counterbalance are presented.

  17. Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow

    International Nuclear Information System (INIS)

    Baier, G.; Graham, M.D.

    1998-01-01

    The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations

  18. Phase portrait methods for verifying fluid dynamic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, H.B.

    1989-01-01

    As computing resources become more powerful and accessible, engineers more frequently face the difficult and challenging engineering problem of accurately simulating nonlinear dynamic phenomena. Although mathematical models are usually available, in the form of initial value problems for differential equations, the behavior of the solutions of nonlinear models is often poorly understood. A notable example is fluid dynamics: while the Navier-Stokes equations are believed to correctly describe turbulent flow, no exact mathematical solution of these equations in the turbulent regime is known. Differential equations can of course be solved numerically, but how are we to assess numerical solutions of complex phenomena without some understanding of the mathematical problem and its solutions to guide us

  19. A scanning fluid dynamic gauging technique for probing surface layers

    International Nuclear Information System (INIS)

    Gordon, Patrick W; Chew, Y M John; Wilson, D Ian; Brooker, Anju D M; York, David W

    2010-01-01

    Fluid dynamic gauging (FDG) is a technique for measuring the thickness of soft solid deposit layers immersed in a liquid environment, in situ and in real time. This paper details the performance of a novel automated, scanning FDG probe (sFDG) which allows the thickness of a sample layer to be monitored at several points during an experiment, with a resolution of ±5 µm. Its application is demonstrated using layers of gelatine, polyvinyl alcohol (PVA) and baked tomato purée deposits. Swelling kinetics, as well as deformation behaviour—based on knowledge of the stresses imposed on the surface by the gauging flow—can be determined at several points, affording improved experimental data. The use of FDG as a surface scanning technique, operating as a fluid mechanical analogue of atomic force microscopy on a millimetre length scale, is also demonstrated. The measurement relies only on the flow behaviour, and is thus suitable for use in opaque fluids, does not contact the surface itself and does not rely on any specific physical properties of the surface, provided it is locally stiff

  20. Dynamics of fluid lines, sheets, filaments and membranes

    International Nuclear Information System (INIS)

    Coutris, N.

    1988-01-01

    We establish the dynamic equations of two types of fluid structures: 1) lines-filaments and 2) sheets-membranes. In the first part, we consider one-dimensional (line) and two-dimensional (sheet) fluid structures. The second part concerns the associated three- dimensional structures: filaments and membranes. In the third part, we establish the equations for thickened lines and thickened sheets. For that purpose, we introduce a thickness in the models of the first part. The fourth part concerns the thinning of the filament and the membrane. Then, by an asymptotic process, we deduce the corresponding equations from the equations of the second part in order to show the purely formal equivalence of the equations of the third and fourth parts. To obtain the equations, we make use of theorems whose proofs can be found in the appendices. The equations can be applied to many areas of interest: instabilities of liquid jets and liquid films, modelisation of interfaces between two different fluids as sheets or membranes, modelisation with the averaged equations over a cross section of single phase flows and two-phase flows in channels with a nonrectilinear axis such as bends or pump casings [fr

  1. A global mean ocean circulation estimation using goce gravity models - the DTU12MDT mean dynamic topography model

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar

    2012-01-01

    The Gravity and Ocean Circulation Experiment - GOCE satellite mission measure the Earth gravity field with unprecedented accuracy leading to substantial improvements in the modelling of the ocean circulation and transport. In this study of the performance of GOCE, a newer gravity model have been...... combined with the DTU10MSS mean sea surface model to construct a global mean dynamic topography model named DTU10MDT. The results of preliminary analyses using preliminary GOCE gravity models clearly demonstrated the potential of GOCE mission. Both the resolution and the estimation of the surface currents...... have been improved significantly compared to results obtained using pre-GOCE gravity field models. The results of this study show that geostrophic surface currents associated with the mean circulation have been further improved and that currents having speeds down to 5 cm/s have been recovered....

  2. Dynamics of viscoelastic fluid filaments in microfluidic devices

    Science.gov (United States)

    Steinhaus, Benjamin; Shen, Amy Q.; Sureshkumar, Radhakrishna

    2007-07-01

    The effects of fluid elasticity and channel dimension on polymeric droplet formation in the presence of a flowing continuous Newtonian phase are investigated systematically by using different molecular weight (MW) poly(ethylene oxide) (PEO) solutions and varying microchannel dimensions with constant orifice width (w) to depth (h) ratio (w/h=1/2) and w =25μm, 50μm, 100μm, and 1mm. The flow rate is varied so that the mean shear rate is practically identical for all cases considered. Relevant times scales include inertia-capillary Rayleigh time τR=(Rmax3ρ/σ)1/2, viscocapillary Tomotika time τT=η0Rmax/σ, and the polymer relaxation time λ, where ρ is the fluid density of the dispersed phase, σ is the interfacial tension, η0 is the zero shear viscosity of the dispersed polymer phase, and Rmax is the maximum filament radius. Dimensionless numbers include the elasticity number E =λν/Rmax2, elastocapillary number Ec=λ/τT, and Deborah number, De =λ/τR, where ν =η0/ρ is the kinematic shear viscosity of the fluids. Experiments show that higher MW Boger fluids possessing longer relaxation times and larger extensional viscosities exhibit longer thread lengths and longer pinch-off times (tp). The polymer filament dynamics are controlled primarily by an elastocapillary mechanism with increasing elasticity effect at smaller length scales (larger E and Ec). However, with weaker elastic effects (i.e., larger w and lower MW), pinch-off is initiated by inertia-capillary mechanisms, followed by an elastocapillary regime. A high degree of correlation exists between the dimensionless pinch-off times and the elasticity numbers. We also observe that higher elasticity number E yields smaller effective λ. Based on the estimates of polymer scission probabilities predicted by Brownian dynamics simulations for uniaxial extensional flows, polymer chain scission is likely to occur for ultrasmall orifices and high MW fluids, yielding smaller λ. Finally, the inhibition of

  3. Validation of two-phase CFD models for propellant tank self-pressurization: Crossing fluid types, scales, and gravity levels

    Science.gov (United States)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2018-01-01

    This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number - high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number - high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number - low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.

  4. The effects of gravity on human walking: a new test of the dynamic similarity hypothesis using a predictive model.

    Science.gov (United States)

    Raichlen, David A

    2008-09-01

    The dynamic similarity hypothesis (DSH) suggests that differences in animal locomotor biomechanics are due mostly to differences in size. According to the DSH, when the ratios of inertial to gravitational forces are equal between two animals that differ in size [e.g. at equal Froude numbers, where Froude = velocity2/(gravity x hip height)], their movements can be made similar by multiplying all time durations by one constant, all forces by a second constant and all linear distances by a third constant. The DSH has been generally supported by numerous comparative studies showing that as inertial forces differ (i.e. differences in the centripetal force acting on the animal due to variation in hip heights), animals walk with dynamic similarity. However, humans walking in simulated reduced gravity do not walk with dynamically similar kinematics. The simulated gravity experiments did not completely account for the effects of gravity on all body segments, and the importance of gravity in the DSH requires further examination. This study uses a kinematic model to predict the effects of gravity on human locomotion, taking into account both the effects of gravitational forces on the upper body and on the limbs. Results show that dynamic similarity is maintained in altered gravitational environments. Thus, the DSH does account for differences in the inertial forces governing locomotion (e.g. differences in hip height) as well as differences in the gravitational forces governing locomotion.

  5. Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanic

    NARCIS (Netherlands)

    Blocken, B.J.E.; Gualtieri, C.

    2012-01-01

    Computational Fluid Dynamics (CFD) is increasingly used to study a wide variety of complex Environmental Fluid Mechanics (EFM) processes, such as water flow and turbulent mixing of contaminants in rivers and estuaries and wind flow and air pollution dispersion in urban areas. However, the accuracy

  6. Some anticipated contributions to core fluid dynamics from the GRM

    Science.gov (United States)

    Vanvorhies, C.

    1985-01-01

    It is broadly maintained that the secular variation (SV) of the large scale geomagnetic field contains information on the fluid dynamics of Earth's electrically conducting outer core. The electromagnetic theory appropriate to a simple Earth model has recently been combined with reduced geomagnetic data in order to extract some of this information and ascertain its significance. The simple Earth model consists of a rigid, electrically insulating mantle surrounding a spherical, inviscid, and perfectly conducting liquid outer core. This model was tested against seismology by using truncated spherical harmonic models of the observed geomagnetic field to locate Earth's core-mantle boundary, CMB. Further electromagnetic theory has been developed and applied to the problem of estimating the horizontal fluid motion just beneath CMB. Of particular geophysical interest are the hypotheses that these motions: (1) include appreciable surface divergence indicative of vertical motion at depth, and (2) are steady for time intervals of a decade or more. In addition to the extended testing of the basic Earth model, the proposed GRM provides a unique opportunity to test these dynamical hypotheses.

  7. Dynamic analysis on magnetic fluid interface validated by physical laws

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, Yo, E-mail: yomizuta@eng.hokudai.ac.jp

    2017-06-01

    Numerical analyses of magnetic fluid especially for fast phenomena such as the transition among interface profiles require rigorous as well as efficient method under arbitrary interface profiles and applied magnetic field distributions. Preceded by the magnetic analysis for this purpose, the present research has attempted to investigate interface dynamic phenomena. As an example of these phenomena, this paper shows the wavenumber spectrum of the interface profile and the sum of interface stresses changing in time, since the change of the balance among the interface stresses causing the transition can be observed conveniently. As time advances, wavenumber components increase due to the nonlinear interaction of waves. It is further argued that such analyses should be validated by the law of conservation of energy, the relation between the interface energy density and the interface stress, and the magnetic laws. - Highlights: • Numerical analysis for dynamic interface phenomena of magnetic fluid is attempted. • This analysis intends fast processes during transition of interface profile. • Wavenumber spectra of interface elevation and sum of stresses are shown. • Under magnetic field close to transition, components increase drastically in time. • Validation rules by physical laws of energy and magnetic field are shown.

  8. Meniscal Tear Film Fluid Dynamics Near Marx’s Line

    KAUST Repository

    Zubkov, V. S.

    2013-07-03

    Extensive studies have explored the dynamics of the ocular surface fluid, though theoretical investigations are typically limited to the use of the lubrication approximation, which is not guaranteed to be uniformly valid a-priori throughout the tear meniscus. However, resolving tear film behaviour within the meniscus and especially its apices is required to characterise the flow dynamics where the tear film is especially thin, and thus most susceptible to evaporatively induced hyperosmolarity and subsequent epithelial damage. Hence, we have explored the accuracy of the standard lubrication approximation for the tear film by explicit comparisons with the 2D Navier-Stokes model, considering both stationary and moving eyelids. Our results demonstrate that the lubrication model is qualitatively accurate except in the vicinity of the eyelids. In particular, and in contrast to lubrication theory, the solution of the full Navier-Stokes equations predict a distinct absence of fluid flow, and thus convective mixing in the region adjacent to the tear film contact line. These observations not only support emergent hypotheses concerning the formation of Marx\\'s line, a region of epithelial cell staining adjacent to the contact line on the eyelid, but also enhance our understanding of the pathophysiological consequences of the flow profile near the tear film contact line. © 2013 Society for Mathematical Biology.

  9. Respiratory mechanics and fluid dynamics after lung resection surgery.

    Science.gov (United States)

    Miserocchi, Giuseppe; Beretta, Egidio; Rivolta, Ilaria

    2010-08-01

    Thoracic surgery that requires resection of a portion of lung or of a whole lung profoundly alters the mechanical and fluid dynamic setting of the lung-chest wall coupling, as well as the water balance in the pleural space and in the remaining lung. The most frequent postoperative complications are of a respiratory nature, and their incidence increases the more the preoperative respiratory condition seems compromised. There is an obvious need to identify risk factors concerning mainly the respiratory function, without neglecting the importance of other comorbidities, such as coronary disease. At present, however, a satisfactory predictor of postoperative cardiopulmonary complications is lacking; postoperative morbidity and mortality have remained unchanged in the last 10 years. The aim of this review is to provide a pathophysiologic interpretation of the main respiratory complications of a respiratory nature by relying on new concepts relating to lung fluid dynamics and mechanics. New parameters are proposed to improve evaluation of respiratory function from pre- to the early postoperative period when most of the complications occur. Published by Elsevier Inc.

  10. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  11. Computational Fluid Dynamics (CFD) Technology Programme 1995- 1999

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, R.J.; Hirsch, C.; Krause, E.; Kytoemaa, H.K. [eds.

    1997-12-31

    The report is a mid-term evaluation of the Computational Fluid Dynamics (CFD) Technology Programme started by Technology Development Centre Finland (TEKES) in 1995 as a five-year initiative to be concluded in 1999. The main goal of the programme is to increase the know-how and application of CFD in Finnish industry, to coordinate and thus provide a better basis for co-operation between national CFD activities and encouraging research laboratories and industry to establish co-operation with the international CFD community. The projects of the programme focus on the following areas: (1) studies of modeling the physics and dynamics of the behaviour of fluid material, (2) expressing the physical models in a numerical mode and developing a computer codes, (3) evaluating and testing current physical models and developing new ones, (4) developing new numerical algorithms, solvers, and pre- and post-processing software, and (5) applying the new computational tools to problems relevant to their ultimate industrial use. The report consists of two sections. The first considers issues concerning the whole programme and the second reviews each project

  12. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-01

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 μm), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm

  13. Simple estimating method of damages of concrete gravity dam based on linear dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.; Kanenawa, K.; Yamaguchi, Y. [Public Works Research Institute, Tsukuba, Ibaraki (Japan). Hydraulic Engineering Research Group

    2004-07-01

    Due to the occurrence of large earthquakes like the Kobe Earthquake in 1995, there is a strong need to verify seismic resistance of dams against much larger earthquake motions than those considered in the present design standard in Japan. Problems exist in using nonlinear analysis to evaluate the safety of dams including: that the influence which the set material properties have on the results of nonlinear analysis is large, and that the results of nonlinear analysis differ greatly according to the damage estimation models or analysis programs. This paper reports the evaluation indices based on a linear dynamic analysis method and the characteristics of the progress of cracks in concrete gravity dams with different shapes using a nonlinear dynamic analysis method. The study concludes that if simple linear dynamic analysis is appropriately conducted to estimate tensile stress at potential locations of initiating cracks, the damage due to cracks would be predicted roughly. 4 refs., 1 tab., 13 figs.

  14. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  15. GRACE, time-varying gravity, Earth system dynamics and climate change

    Science.gov (United States)

    Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.

    2014-11-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

  16. Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation

    International Nuclear Information System (INIS)

    Agishtein, M.E.; Migdal, A.A.

    1992-01-01

    In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 x 10 4 simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths

  17. GRACE, time-varying gravity, Earth system dynamics and climate change

    International Nuclear Information System (INIS)

    Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J

    2014-01-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography. (review article)

  18. A review on rising bubble dynamics in viscosity-stratified fluids

    Indian Academy of Sciences (India)

    Kirti Chandra Sahu

    Multiphase flow; non-Newtonian; immiscible fluids; bubbles; numerical simulations. 1. Introduction. The fluid dynamics of a gas bubble rising due to buoyancy in a surrounding .... Figure 2. Behaviour of a single bubble rising in quiescent liquid.

  19. Video of Miscible Fluid Experiment Conducted on NASA Low Gravity Airplane

    Science.gov (United States)

    2003-01-01

    This is a video of dyed water being injected into glycerin in a 2.2 centimeter (cm) diameter test tube. The experiment was conducted on the KC-135 aircraft, a NASA plane that creates microgravity and 2g conditions as it maneuvers through multiple parabolas. The water is less dense and so it rises to the top of the glycerin. The goal of the experiment was to determine if a blob of a miscible fluid would spontaneously become spherical in a microgravity environment.

  20. Coupled problems in transient fluid and structural dynamics in nuclear engineering

    International Nuclear Information System (INIS)

    Krieg, R.

    1978-01-01

    Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR). light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problems to a two-dimensional formulation. In this way the three-dynamics fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to to the equations of motion of the structural dynamics alone. (author)

  1. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio Enrique [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Injection of carbon dioxide (CO2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO2 and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO2-H2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO2) the viscosity of carbon

  2. Fluid management technology: Liquid slosh dynamics and control

    Science.gov (United States)

    Dodge, Franklin T.; Green, Steven T.; Kana, Daniel D.

    1991-11-01

    Flight experiments were defined for the Cryogenic On-Orbit Liquid Depot Storage, Acquisition and Transfer Satellite (COLD-SAT) test bed satellite and the Shuttle middeck to help establish the influence of the gravitational environment on liquid slosh dynamics and control. Several analytical and experimental studies were also conducted to support the experiments and to help understand the anticipated results. Both FLOW-3D and NASA-VOF3D computer codes were utilized to simulate low Bond number, small amplitude sloshing, for which the motions are dominated by surface forces; it was found that neither code provided a satisfactory simulation. Thus, a new analysis of low Bond number sloshing was formulated, using an integral minimization technique that will allow the assumptions made about surface physics phenomena to be modified easily when better knowledge becomes available from flight experiments. Several examples were computed by the innovative use of a finite-element structural code. An existing spherical-pendulum analogy of nonlinear, rotary sloshing was also modified for easier use and extended to low-gravity conditions. Laboratory experiments were conducted to determine the requirements for liquid-vapor interface sensors as a method of resolving liquid surface motions in flight experiments. The feasibility of measuring the small slosh forces anticipated in flight experiments was also investigated.

  3. Coalescence dynamics of mobile and immobile fluid interfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2018-01-12

    Coalescence dynamics between deformable bubbles and droplets can be dramatically affected by the mobility of the interfaces with fully tangentially mobile bubble-liquid or droplet-liquid interfaces expected to accelerate the coalescence by orders of magnitudes. However, there is a lack of systematic experimental investigations that quantify this effect. By using high speed camera imaging we examine the free rise and coalescence of small air-bubbles (100 to 1300 μm in diameter) with a liquid interface. A perfluorocarbon liquid, PP11 is used as a model liquid to investigate coalescence dynamics between fully-mobile and immobile deformable interfaces. The mobility of the bubble surface was determined by measuring the terminal rise velocity of small bubbles rising at Reynolds numbers, Re less than 0.1 and the mobility of free PP11 surface by measuring the deceleration kinetics of the small bubble toward the interface. Induction or film drainage times of a bubble at the mobile PP11-air surface were found to be more than two orders of magnitude shorter compared to the case of bubble and an immobile PP11-water interface. A theoretical model is used to illustrate the effect of hydrodynamics and interfacial mobility on the induction time or film drainage time. The results of this study are expected to stimulate the development of a comprehensive theoretical model for coalescence dynamics between two fully or partially mobile fluid interfaces.

  4. Self-similar dynamic converging shocks - I. An isothermal gas sphere with self-gravity

    Science.gov (United States)

    Lou, Yu-Qing; Shi, Chun-Hui

    2014-07-01

    We explore novel self-similar dynamic evolution of converging spherical shocks in a self-gravitating isothermal gas under conceivable astrophysical situations. The construction of such converging shocks involves a time-reversal operation on feasible flow profiles in self-similar expansion with a proper care for the increasing direction of the specific entropy. Pioneered by Guderley since 1942 but without self-gravity so far, self-similar converging shocks are important for implosion processes in aerodynamics, combustion, and inertial fusion. Self-gravity necessarily plays a key role for grossly spherical structures in very broad contexts of astrophysics and cosmology, such as planets, stars, molecular clouds (cores), compact objects, planetary nebulae, supernovae, gamma-ray bursts, supernova remnants, globular clusters, galactic bulges, elliptical galaxies, clusters of galaxies as well as relatively hollow cavity or bubble structures on diverse spatial and temporal scales. Large-scale dynamic flows associated with such quasi-spherical systems (including collapses, accretions, fall-backs, winds and outflows, explosions, etc.) in their initiation, formation, and evolution are likely encounter converging spherical shocks at times. Our formalism lays an important theoretical basis for pertinent astrophysical and cosmological applications of various converging shock solutions and for developing and calibrating numerical codes. As examples, we describe converging shock triggered star formation, supernova explosions, and void collapses.

  5. Predicting the Noise of High Power Fluid Targets Using Computational Fluid Dynamics

    Science.gov (United States)

    Moore, Michael; Covrig Dusa, Silviu

    The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target satisfied the design goals of bench-marked with the Qweak target data. This work is an essential component in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).

  6. High-Performance Java Codes for Computational Fluid Dynamics

    Science.gov (United States)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  7. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Directory of Open Access Journals (Sweden)

    Ying Yan

    Full Text Available Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  8. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Science.gov (United States)

    Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu

    2015-01-01

    Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  9. Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.

    Science.gov (United States)

    Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H

    2017-04-15

    Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Review of computational fluid dynamics applications in biotechnology processes.

    Science.gov (United States)

    Sharma, C; Malhotra, D; Rathore, A S

    2011-01-01

    Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers

  11. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... zones connected by open areas with pressure and buoyancy driven air flow. The two programs are interconnected in an iterative procedure. The paper shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is shown that an interconnection between a CFD...

  12. Modeling centrifugal cell washers using computational fluid dynamics.

    Science.gov (United States)

    Kellet, Beth E; Han, Binbing; Dandy, David S; Wickramasinghe, S Ranil

    2004-11-01

    Reinfusion of shed blood during surgery could avoid the need for blood transfusions. Prior to reinfusion of the red blood cells, the shed blood must be washed in order to remove leukocytes, platelets, and other contaminants. Further, the hematocrit of the washed blood must be increased. The feasibility of using computational fluid dynamics (CFD) to guide the design of better centrifuges for processing shed blood is explored here. The velocity field within a centrifuge bowl and the rate of protein removal from the shed blood has been studied. The results obtained indicate that CFD could help screen preliminary centrifuge bowl designs, thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Although the focus of this work is on washing shed blood, the methods developed here are applicable to the design of centrifuge bowls for other blood-processing applications.

  13. Improving coal flotation recovery using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Peter Koh [CSIRO Minerals (Australia)

    2009-06-15

    This work involves using the latest advances in computational fluid dynamics (CFD) to increase understanding of the hydrodynamics in coal flotation and to identify any opportunities to improve design and operation of both the Microcel column and Jameson cell. The CSIRO CFD model incorporates micro-processes from cell hydrodynamics that affect particle-bubble attachments and detachments. CFD simulation results include the liquid velocities, turbulent dissipation rates, gas hold-up, particle-bubble attachment rates and detachment rates. This work has demonstrated that CFD modelling is a cost effective means of developing an understanding of particle-bubble attachments and detachments, and can be used to identify and test potential cell or process modifications.

  14. Fluid Dynamics of Magnetic Nanoparticles in Simulated Blood Vessels

    Science.gov (United States)

    Blue, Lauren; Sewell, Mary Kathryn; Brazel, Christopher S.

    2008-11-01

    Magnetic nanoparticles (MNPs) can be used to locally target therapies and offer the benefit of using an AC magnetic field to combine hyperthermia treatment with the triggered release of therapeutic agents. Here, we investigate localization of MNPs in a simulated environment to understand the relationship between magnetic field intensity and bulk fluid dynamics to determine MNP retention in a simulated blood vessel. As MNPs travel through blood vessels, they can be slowed or trapped in a specific area by applying a magnetic field. Magnetic cobalt ferrite nanoparticles were synthesized and labeled with a fluorescent rhodamine tag to visualize patterns in a flow cell, as monitored by a fluorescence microscope. Particle retention was determined as a function of flow rate, concentration, and magnetic field strength. Understanding the relationship between magnetic field intensity, flow behavior and nanoparticle characteristics will aid in the development of therapeutic systems specifically targeted to diseased tissue.

  15. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  16. Qweak Data Analysis for Target Modeling Using Computational Fluid Dynamics

    Science.gov (United States)

    Moore, Michael; Covrig, Silviu

    2015-04-01

    The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target met the design goals of bench-marked with the Qweak target data. This work is an essential ingredient in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).

  17. Application of a distributed network in computational fluid dynamic simulations

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.; Deshpande, Ashish

    1994-01-01

    A general-purpose 3-D, incompressible Navier-Stokes algorithm is implemented on a network of concurrently operating workstations using parallel virtual machine (PVM) and compared with its performance on a CRAY Y-MP and on an Intel iPSC/860. The problem is relatively computationally intensive, and has a communication structure based primarily on nearest-neighbor communication, making it ideally suited to message passing. Such problems are frequently encountered in computational fluid dynamics (CDF), and their solution is increasingly in demand. The communication structure is explicitly coded in the implementation to fully exploit the regularity in message passing in order to produce a near-optimal solution. Results are presented for various grid sizes using up to eight processors.

  18. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  19. Uncertainty quantification in computational fluid dynamics and aircraft engines

    CERN Document Server

    Montomoli, Francesco; D'Ammaro, Antonio; Massini, Michela; Salvadori, Simone

    2015-01-01

    This book introduces novel design techniques developed to increase the safety of aircraft engines. The authors demonstrate how the application of uncertainty methods can overcome problems in the accurate prediction of engine lift, caused by manufacturing error. This in turn ameliorates the difficulty of achieving required safety margins imposed by limits in current design and manufacturing methods. This text shows that even state-of-the-art computational fluid dynamics (CFD) are not able to predict the same performance measured in experiments; CFD methods assume idealised geometries but ideal geometries do not exist, cannot be manufactured and their performance differs from real-world ones. By applying geometrical variations of a few microns, the agreement with experiments improves dramatically, but unfortunately the manufacturing errors in engines or in experiments are unknown. In order to overcome this limitation, uncertainty quantification considers the probability density functions of manufacturing errors...

  20. Simulating Smoke Filling in Big Halls by Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    W. K. Chow

    2011-01-01

    Full Text Available Many tall halls of big space volume were built and, to be built in many construction projects in the Far East, particularly Mainland China, Hong Kong, and Taiwan. Smoke is identified to be the key hazard to handle. Consequently, smoke exhaust systems are specified in the fire code in those areas. An update on applying Computational Fluid Dynamics (CFD in smoke exhaust design will be presented in this paper. Key points to note in CFD simulations on smoke filling due to a fire in a big hall will be discussed. Mathematical aspects concerning of discretization of partial differential equations and algorithms for solving the velocity-pressure linked equations are briefly outlined. Results predicted by CFD with different free boundary conditions are compared with those on room fire tests. Standards on grid size, relaxation factors, convergence criteria, and false diffusion should be set up for numerical experiments with CFD.

  1. Computational Fluid Dynamics of Choanoflagellate Filter-Feeding

    Science.gov (United States)

    Asadzadeh, Seyed Saeed; Walther, Jens; Nielsen, Lasse Tore; Kiorboe, Thomas; Dolger, Julia; Andersen, Anders

    2017-11-01

    Choanoflagellates are unicellular aquatic organisms with a single flagellum that drives a feeding current through a funnel-shaped collar filter on which bacteria-sized prey are caught. Using computational fluid dynamics (CFD) we model the beating flagellum and the complex filter flow of the choanoflagellate Diaphanoeca grandis. Our CFD simulations based on the current understanding of the morphology underestimate the experimentally observed clearance rate by more than an order of magnitude: The beating flagellum is simply unable to draw enough water through the fine filter. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), and addition of a wide vane in our CFD model allows us to correctly predict the observed clearance rate.

  2. Study of blast wave overpressures using the computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    M. L. COSTA NETO

    Full Text Available ABSTRACT The threats of bomb attacks by criminal organizations and accidental events involving chemical explosives are a danger to the people and buildings. Due the severity of these issues and the need of data required for a safety design, more research is required about explosions and shock waves. This paper presents an assessment of blast wave overpressures using a computational fluid dynamics software. Analyses of phenomena as reflection of shock waves and channeling effects were done and a comparison between numerical results and analytical predictions has been executed, based on the simulation on several models. The results suggest that the common analytical predictions aren’t accurate enough for an overpressure analysis in small stand-off distances and that poorly designed buildings may increase the shock wave overpressures due multiple blast wave reflections, increasing the destructive potential of the explosions.

  3. Fluid dynamics of airlift reactors; Two-phase friction factors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Calvo, E. (Ingenieria Quimica, Facultad de Ciencias, Univ. de Alcala, 28871 Alcala de Henares (Spain))

    1992-10-01

    Airlift loop reactors (ALR) are useful equipment in biotechnology in a wide range of uses, however their design is not a simple task since prediction of fluid dynamics in these reactors is difficult. Most of the different strategies found in the literature in order to predict two main parameters, namely, gas holdup and liquid velocity, are based on energy or momentum balances. The balances include frictional effects, and it is not yet clear how to predict these effects. The objective of this article is to show how criteria corresponding to one-phase flow may be used in order to predict the frictional effects in ALRs. Based on a model proposed by Garcia-Calvo (1989, 1991), we simulated experimental data of liquid velocity profiles and gas holdup obtained by Young et al. in an ALR with two different configurations. Experimental data obtained in other three external ALRs with different shapes and sizes are also simulated.

  4. Mapping flow distortion on oceanographic platforms using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    N. O'Sullivan

    2013-10-01

    Full Text Available Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.

  5. Helicopter fuselage drag - combined computational fluid dynamics and experimental studies

    Science.gov (United States)

    Batrakov, A.; Kusyumov, A.; Mikhailov, S.; Pakhov, V.; Sungatullin, A.; Valeev, M.; Zherekhov, V.; Barakos, G.

    2015-06-01

    In this paper, wind tunnel experiments are combined with Computational Fluid Dynamics (CFD) aiming to analyze the aerodynamics of realistic fuselage configurations. A development model of the ANSAT aircraft and an early model of the AKTAI light helicopter were employed. Both models were tested at the subsonic wind tunnel of KNRTU-KAI for a range of Reynolds numbers and pitch and yaw angles. The force balance measurements were complemented by particle image velocimetry (PIV) investigations for the cases where the experimental force measurements showed substantial unsteadiness. The CFD results were found to be in fair agreement with the test data and revealed some flow separation at the rear of the fuselages. Once confidence on the CFD method was established, further modifications were introduced to the ANSAT-like fuselage model to demonstrate drag reduction via small shape changes.

  6. An Automated High Aspect Ratio Mesher for Computational Fluid Dynamics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used while designing, analyzing, and optimizing air- and spacecraft. An important component of CFD...

  7. Probabilistic Methods for the Quantification of Uncertainty and Error in Computational Fluid Dynamic Simulations

    National Research Council Canada - National Science Library

    Faragher, John

    2004-01-01

    ... conservatism to allow for them. This report examines the feasibility of using a probabilistic approach for modelling the component temperatures in an engine using CFD (Computational Fluid Dynamics).

  8. Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines

    National Research Council Canada - National Science Library

    Nusca, Michael J; Chen, Chiung-Chu; McQuaid, Michael J

    2007-01-01

    .... Computational fluid dynamics is employed to model the chemically reacting flow within a system's combustion chamber, and computational chemistry is employed to characterize propellant physical and reactive properties...

  9. A fully dynamic magneto-rheological fluid damper model

    International Nuclear Information System (INIS)

    Jiang, Z; Christenson, R E

    2012-01-01

    Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper. (paper)

  10. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model in 2D

    NARCIS (Netherlands)

    Reid, D.A.P.; Hildenbrandt, H.; Padding, J.T.; Hemelrijk, C.K.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  11. Turbulent Dynamics of Partially-Ionized Fluids in 2D

    Science.gov (United States)

    Benavides, S.; Flierl, G.

    2017-12-01

    Ionization occurs in the upper atmospheres of Hot Jupiters, as well asthe interiors of Gas Giants, leading to Magnetohydrodynamic (MHD) effectswhich can significantly alter the flow. The interactions of these MHDregions with the non-ionized atmosphere will occur in transitionregions where only a fraction of the fluid is ionized. We areexploring the dynamics of Partially-Ionized MHD (PIMHD) using a twofluid model - one neutral and one ionized and subject to MHD -coupled by a collision, or Joule heating, term proportional to thedifference in velocities. By varying both the ionization fraction aswell as the collision frequency (coupling), we examine the parameterspace of 2D PIMHD turbulence in hopes of better understanding itscharacteristics in certain, possibly realistic, regimes. We payparticular attention to the Joule heating term and its role indissipation and energy exchange between the two species. Thisknowledge will serve as the basis to further studies in which we lookat, in a more realistic setting, the PIMHD dynamics in Gas Giant orHot Jupiter atmospheres.

  12. APS presents prizes in fluid dynamics and plasma physics

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article reviews the presentation of the American Physical Society awards in fluid dynamics and plasma physics. The recipient of the plasma physics James Clerk Maxwell Prize was John M. Green for contributions to the theory of magnetohydrodynamics equilibria and ideal and resistive instabilities, for discovering the inverse scattering transform leading to soliton solutions of many nonlinear partial differential equations and for inventing the residue method of determining the transition to global chaos. The excellence in Plasma Physics Research Award was presented to Nathaniel A. Fisch for theoretical investigations of noninductive current generation in toroidally confined plasma. Wim Pieter Leemans received the Simon Ramo Award for experimental and simulational contributions to laser-plasma physics. William R. Sears was given the 1992 Fuid Dynamics Prize for contributions to the study of steady and unsteady aerodynamics, aeroacoustics, magnetoaerodynamics,and wind tunnel design. William C. Reynolds received the Otto Laporte Award for experimental, theoretical, and computational work in turbulence modeling and control and leadership in direct numerical simulation and large eddy simulation

  13. Unsteady computational fluid dynamics in front crawl swimming.

    Science.gov (United States)

    Samson, Mathias; Bernard, Anthony; Monnet, Tony; Lacouture, Patrick; David, Laurent

    2017-05-01

    The development of codes and power calculations currently allows the simulation of increasingly complex flows, especially in the turbulent regime. Swimming research should benefit from these technological advances to try to better understand the dynamic mechanisms involved in swimming. An unsteady Computational Fluid Dynamics (CFD) study is conducted in crawl, in order to analyse the propulsive forces generated by the hand and forearm. The k-ω SST turbulence model and an overset grid method have been used. The main objectives are to analyse the evolution of the hand-forearm propulsive forces and to explain this relative to the arm kinematics parameters. In order to validate our simulation model, the calculated forces and pressures were compared with several other experimental and numerical studies. A good agreement is found between our results and those of other studies. The hand is the segment that generates the most propulsive forces during the aquatic stroke. As the pressure component is the main source of force, the orientation of the hand-forearm in the absolute coordinate system is an important kinematic parameter in the swimming performance. The propulsive forces are biggest when the angles of attack are high. CFD appears as a very valuable tool to better analyze the mechanisms of swimming performance and offers some promising developments, especially for optimizing the performance from a parametric study.

  14. The fluid dynamics of deep-sea mining

    Science.gov (United States)

    Peacock, Thomas; Rzeznik, Andrew

    2017-11-01

    With vast mineral deposits on the ocean floor, deep-sea nodule mining operations are expected to commence in the next decade. Among several fundamental fluid dynamics problems, this could involve plans for dewatering plumes to be released into the water column by surface processing vessels. To study this scenario, we consider the effects of non-uniform, realistic stratifications on forced compressible plumes with finite initial size. The classical plume model is developed to take into account the influence of thermal conduction through the dewatering pipe and also compressibility effects, for which a dimensionless number is introduced to determine their importance compared to the background stratification. Among other things, our results show that small-scale features of a realistic stratification can have a large effect on plume dynamics compared to smoothed profiles and that for any given set of environmental parameters there is a discharge flow rate that minimizes the plume vertical extent. Our findings are put in the context of nodule mining plumes for which the rapid and efficient re-sedimentation of waste material has important environmental consequences.

  15. Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars

    Science.gov (United States)

    2009-11-13

    This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...

  16. Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell

    Science.gov (United States)

    Okumura, Ko; Yahashi, Misato; Kimoto, Natsuki

    2016-11-01

    We study both experimentally and theoretically the descending motion due to gravity of a fluid drop surrounded by another immiscible fluid in a confined space between two parallel plates, i.e., in the Hele-Shaw cell. As a result, we show a new scaling regime of a nonlinear drag friction in viscous liquid that replaces the well-known Stokes' drag friction through a clear collapse of experimental data thanks to the scaling law. In the novel regime, the dissipation in the liquid thin film formed between the drop and cell walls governs the dynamics. The crossover of this scaling regime to another scaling regime in which the dissipation inside the droplet is dominant is clearly demonstrated and a phase diagram separating these scaling regimes is presented. To be published as, Y. Yahashi, N. Kimoto and K. Okumura, Scaling crossover in thin-film drag dynamics of fluid drops in the Hele-Shaw cell, Sci. Rep.(CC BY 4.0). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

  17. Computational and Experimental Investigations of the Molecular Scale Structure and Dynamics of Gologically Important Fluids and Mineral-Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Geoffrey [Alfred Univ., NY (United States)

    2017-04-05

    United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).

  18. Gauge fixing and classical dynamical r-matrices in (2+1)-gravity

    International Nuclear Information System (INIS)

    Schoenfeld, Torsten

    2012-01-01

    We apply the Dirac gauge fixing procedure to the combinatorial description of the moduli space of flat ISO(2,1)-connections. This is motivated by two goals: one originates from physics while the other is of a mathematical nature. The first goal is to investigate the application of gauge fixing in Lorentzian (2+1)-gravity with vanishing cosmological constant, whose phase space is closely related to the moduli space of flat ISO(2,1)-connections. To this end, we first show that specifying gauge fixing conditions amounts to introducing an observer into the theory. Then we determine explicit expressions for the Dirac brackets of specific sets of gauge fixing conditions and give a physical interpretation of the results in terms of the geometry of spacetimes and their effective symmetries. To investigate the mathematical structures underlying the Dirac gauge fixing procedure we then consider general gauge fixing conditions. We first show that the resulting Dirac brackets are in one-to-one correspondence with solutions of the classical dynamical Yang-Baxter equation. We then analyze the relation between the Dirac brackets associated with two different sets of gauge fixing conditions. We find that this relation is given by the action of certain dynamical Poincare transformations which generalize the gauge transformations of classical dynamical r-matrices. Using these transformations, we give a classification of all resulting Dirac brackets and the associated solutions of the classical dynamical Yang-Baxter equation.

  19. Gauge fixing and classical dynamical r-matrices in (2+1)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfeld, Torsten

    2012-11-20

    We apply the Dirac gauge fixing procedure to the combinatorial description of the moduli space of flat ISO(2,1)-connections. This is motivated by two goals: one originates from physics while the other is of a mathematical nature. The first goal is to investigate the application of gauge fixing in Lorentzian (2+1)-gravity with vanishing cosmological constant, whose phase space is closely related to the moduli space of flat ISO(2,1)-connections. To this end, we first show that specifying gauge fixing conditions amounts to introducing an observer into the theory. Then we determine explicit expressions for the Dirac brackets of specific sets of gauge fixing conditions and give a physical interpretation of the results in terms of the geometry of spacetimes and their effective symmetries. To investigate the mathematical structures underlying the Dirac gauge fixing procedure we then consider general gauge fixing conditions. We first show that the resulting Dirac brackets are in one-to-one correspondence with solutions of the classical dynamical Yang-Baxter equation. We then analyze the relation between the Dirac brackets associated with two different sets of gauge fixing conditions. We find that this relation is given by the action of certain dynamical Poincare transformations which generalize the gauge transformations of classical dynamical r-matrices. Using these transformations, we give a classification of all resulting Dirac brackets and the associated solutions of the classical dynamical Yang-Baxter equation.

  20. Computer modeling of the dynamics of surface tension on rotating fluids in low and microgravity environments

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, Fred W.

    1989-01-01

    Time-dependent evolutions of the profile of the free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low- and microgravity environments, (2) linear functions of increasing and decreasing gravity environments at high- and low-rotating cylinder speeds, and (3) step functions of spin-up and spin-down in a low-gravity environment.

  1. Thermophysical properties of fluids: dynamic viscosity and thermal conductivity

    Science.gov (United States)

    Latini, G.

    2017-11-01

    Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected

  2. Dynamics of a fluid flow on Mars: Lava or mud?

    Science.gov (United States)

    Wilson, Lionel; Mouginis-Mark, Peter J.

    2014-05-01

    A distinctive flow deposit southwest of Cerberus Fossae on Mars is analyzed. The flow source is a ∼20 m deep, ∼12 × 1.5 km wide depression within a yardang associated with the Medusae Fossae Formation. The flow traveled for ∼40 km following topographic lows to leave a deposit on average 3-4 km wide. The surface morphology of the deposit suggests that it was produced by the emplacement of a fluid flowing in a laminar fashion and possessing a finite yield strength. We use topographic data from a digital elevation model (DEM) to model the dynamics of the motion and infer that the fluid had a Bingham rheology with a plastic viscosity of ∼1 Pa s and a yield strength of ∼185 Pa. Although the low viscosity is consistent with the properties of komatiite-like lava, the combination of values of viscosity and yield strength, as well as the surface morphology of the flow, suggests that this was a mud flow. Comparison with published experimental data implies a solids content close to 60% by volume and a grain size dominated by silt-size particles. Comparison of the ∼1.5 km3 deposit volume with the ∼0.03 km3 volume of the source depression implies that ∼98% of the flow material was derived from depth in the crust. There are similarities between the deposit studied here, which we infer to be mud, and other flow deposits on Mars currently widely held to be lavas. This suggests that a re-appraisal of many of these deposits is now in order.

  3. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  4. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  5. (2+1)-dimensional quantum gravity as the continuum limit of causal dynamical triangulations

    International Nuclear Information System (INIS)

    Benedetti, D.; Loll, R.; Zamponi, F.

    2007-01-01

    We perform a nonperturbative sum over geometries in a (2+1)-dimensional quantum gravity model given in terms of causal dynamical triangulations. Inspired by the concept of triangulations of product type introduced previously, we impose an additional notion of order on the discrete, causal geometries. This simplifies the combinatorial problem of counting geometries just enough to enable us to calculate the transfer matrix between boundary states labeled by the area of the spatial universe, as well as the corresponding quantum Hamiltonian of the continuum theory. This is the first time in dimension larger than 2 that a Hamiltonian has been derived from such a model by mainly analytical means, and it opens the way for a better understanding of scaling and renormalization issues

  6. Model building with a dynamical volume element in gravity, particle theory and theories of extended object

    International Nuclear Information System (INIS)

    Guendelman, E.

    2004-01-01

    Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat

  7. Fluid Analysis and Improved Structure of an ATEG Heat Exchanger Based on Computational Fluid Dynamics

    Science.gov (United States)

    Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.

    2015-06-01

    In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.

  8. The effect of breaking gravity waves on the dynamics and chemistry of the mesosphere and lower thermosphere (invited review)

    Science.gov (United States)

    Garcia, R. R.

    1986-01-01

    The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.

  9. GRACE, time-varying gravity, Earth system dynamics and climate change

    NARCIS (Netherlands)

    Wouters, B.; Bonin, J.A.; Chambers, D.P.; Riva, R.E.M.; Sasgen, I.; Wahr, J.

    2014-01-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity

  10. Cepstrum analysis and applications to computational fluid dynamic solutions

    Science.gov (United States)

    Meadows, Kristine R.

    1990-04-01

    A novel approach to the problem of spurious reflections introduced by artificial boundary conditions in computational fluid dynamic (CFD) solutions is proposed. Instead of attempting to derive non-reflecting boundary conditions, the approach is to accept the fact that spurious reflections occur, but to remove these reflections with cepstrum analysis, a signal processing technique which has been successfully used to remove echoes from experimental data. First, the theory of the cepstrum method is presented. This includes presentation of two types of cepstra: The Power Cepstrum and the Complex Cepstrum. The definitions of the cepstrum methods are applied theoretically and numerically to the analytical solution of sinusoidal plane wave propagation in a duct. One-D and 3-D time dependent solutions to the Euler equations are computed, and hard-wall conditions are prescribed at the numerical boundaries. The cepstrum method is applied, and the reflections from the boundaries are removed from the solutions. One-D and 3-D solutions are computed with so called nonreflecting boundary conditions, and these solutions are compared to those obtained by prescribing hard wall conditions and processing with the cepstrum.

  11. Design of airborne wind turbine and computational fluid dynamics analysis

    Science.gov (United States)

    Anbreen, Faiqa

    Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.

  12. Improving flow distribution in influent channels using computational fluid dynamics.

    Science.gov (United States)

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  13. Introducing Computational Fluid Dynamics Simulation into Olfactory Display

    Science.gov (United States)

    Ishida, Hiroshi; Yoshida, Hitoshi; Nakamoto, Takamichi

    An olfactory display is a device that delivers various odors to the user's nose. It can be used to add special effects to movies and games by releasing odors relevant to the scenes shown on the screen. In order to provide high-presence olfactory stimuli to the users, the display must be able to generate realistic odors with appropriate concentrations in a timely manner together with visual and audio playbacks. In this paper, we propose to use computational fluid dynamics (CFD) simulations in conjunction with the olfactory display. Odor molecules released from their source are transported mainly by turbulent flow, and their behavior can be extremely complicated even in a simple indoor environment. In the proposed system, a CFD solver is employed to calculate the airflow field and the odor dispersal in the given environment. An odor blender is used to generate the odor with the concentration determined based on the calculated odor distribution. Experimental results on presenting odor stimuli synchronously with movie clips show the effectiveness of the proposed system.

  14. Class of reconstructed discontinuous Galerkin methods in computational fluid dynamics

    International Nuclear Information System (INIS)

    Luo, Hong; Xia, Yidong; Nourgaliev, Robert

    2011-01-01

    A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness. (author)

  15. Algorithms for computational fluid dynamics n parallel processors

    International Nuclear Information System (INIS)

    Van de Velde, E.F.

    1986-01-01

    A study of parallel algorithms for the numerical solution of partial differential equations arising in computational fluid dynamics is presented. The actual implementation on parallel processors of shared and nonshared memory design is discussed. The performance of these algorithms is analyzed in terms of machine efficiency, communication time, bottlenecks and software development costs. For elliptic equations, a parallel preconditioned conjugate gradient method is described, which has been used to solve pressure equations discretized with high order finite elements on irregular grids. A parallel full multigrid method and a parallel fast Poisson solver are also presented. Hyperbolic conservation laws were discretized with parallel versions of finite difference methods like the Lax-Wendroff scheme and with the Random Choice method. Techniques are developed for comparing the behavior of an algorithm on different architectures as a function of problem size and local computational effort. Effective use of these advanced architecture machines requires the use of machine dependent programming. It is shown that the portability problems can be minimized by introducing high level operations on vectors and matrices structured into program libraries

  16. Benchmarking Computational Fluid Dynamics for Application to PWR Fuel

    International Nuclear Information System (INIS)

    Smith, L.D. III; Conner, M.E.; Liu, B.; Dzodzo, B.; Paramonov, D.V.; Beasley, D.E.; Langford, H.M.; Holloway, M.V.

    2002-01-01

    The present study demonstrates a process used to develop confidence in Computational Fluid Dynamics (CFD) as a tool to investigate flow and temperature distributions in a PWR fuel bundle. The velocity and temperature fields produced by a mixing spacer grid of a PWR fuel assembly are quite complex. Before using CFD to evaluate these flow fields, a rigorous benchmarking effort should be performed to ensure that reasonable results are obtained. Westinghouse has developed a method to quantitatively benchmark CFD tools against data at conditions representative of the PWR. Several measurements in a 5 x 5 rod bundle were performed. Lateral flow-field testing employed visualization techniques and Particle Image Velocimetry (PIV). Heat transfer testing involved measurements of the single-phase heat transfer coefficient downstream of the spacer grid. These test results were used to compare with CFD predictions. Among the parameters optimized in the CFD models based on this comparison with data include computational mesh, turbulence model, and boundary conditions. As an outcome of this effort, a methodology was developed for CFD modeling that provides confidence in the numerical results. (authors)

  17. Dynamic oxygen-enhanced MRI of cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Taha M Mehemed

    Full Text Available Oxygen causes an increase in the longitudinal relaxation rate of tissues through its T1-shortening effect owing to its paramagnetic properties. Due to such effects, MRI has been used to study oxygen-related signal intensity changes in various body parts including cerebrospinal fluid (CSF space. Oxygen enhancement of CSF has been mainly studied using MRI sequences with relatively longer time resolution such as FLAIR, and T1 value calculation. In this study, fifteen healthy volunteers were scanned using fast advanced spin echo MRI sequence with and without inversion recovery pulse in order to dynamically track oxygen enhancement of CSF. We also focused on the differences of oxygen enhancement at sulcal and ventricular CSF. Our results revealed that CSF signal after administration of oxygen shows rapid signal increase in both sulcal CSF and ventricular CSF on both sequences, with statistically significant predominant increase in sulcal CSF compared with ventricular CSF. CSF is traditionally thought to mainly form from the choroid plexus in the ventricles and is absorbed at the arachnoid villi, however, it is also believed that cerebral arterioles contribute to the production and absorption of CSF, and controversy remains in terms of the precise mechanism. Our results demonstrated rapid oxygen enhancement in sulcal CSF, which may suggest inhaled oxygen may diffuse into sulcal CSF space rapidly probably due to the abundance of pial arterioles on the brain sulci.

  18. Computational fluid dynamics for turbomachinery internal air systems.

    Science.gov (United States)

    Chew, John W; Hills, Nicholas J

    2007-10-15

    Considerable progress in development and application of computational fluid dynamics (CFD) for aeroengine internal flow systems has been made in recent years. CFD is regularly used in industry for assessment of air systems, and the performance of CFD for basic axisymmetric rotor/rotor and stator/rotor disc cavities with radial throughflow is largely understood and documented. Incorporation of three-dimensional geometrical features and calculation of unsteady flows are becoming commonplace. Automation of CFD, coupling with thermal models of the solid components, and extension of CFD models to include both air system and main gas path flows are current areas of development. CFD is also being used as a research tool to investigate a number of flow phenomena that are not yet fully understood. These include buoyancy-affected flows in rotating cavities, rim seal flows and mixed air/oil flows. Large eddy simulation has shown considerable promise for the buoyancy-driven flows and its use for air system flows is expected to expand in the future.

  19. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert [IBACOS Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS Inc., Pittsburgh, PA (United States); Lange, Rich [IBACOS Inc., Pittsburgh, PA (United States)

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  20. Study of the pathway and the dynamics of cerebrospinal fluid by the administration of metrizamide

    International Nuclear Information System (INIS)

    Ueda, Yasuichi; Nagai, Masakatsu

    1979-01-01

    50 patients were submitted to the computerized tomographic study after the intrathecal administration of Metrizamide (Amipaque), those diagnoses were cerebrovascular disease, brain tumors, head injury, hydrocephalus, subdural hygroma, arachnoid cyst, and miscellaneous. The main purpose of the study was the examination of circulatory dynamics of the cerebrospinal fluid (Metrizamide CT cisternography). CT assisted ventriculography and CT assisted myelography were also performed in 5 cases. 6 ml of isotonic (170 mgI/ml) Metrizamide were administered through lumbar tap for adult cases and 3 ml for children. In the method of high cervical route, the large cistern and the basal cistern were enhanced a few minutes after injection. The dynamics of CSF then after revealed the same manner as the lumbar route. The advantages of the high cervical route were the fewer volume of the drug and the shorter period of the examination. In 22 cases, the findings of ventricular reflux were noted, 6 cases of which showed persistent ventricular filling. In 9 cases of ventricular reflux, the ''niveau formation'' was seen, which might be caused by the higher gravity of Metrizamide and it should be regarded as one of the important diagnostic evidences of normal pressure hydrocephalus. Metrizamide CT cisternography could be applied to the examination of communicability of the CSF in the arachnoid cyst or the subdural hygroma with subarachnoid space. For the diagnosis of the extension of juxtabasal tumors, Metrizamide CT cisternography was useful also. CT assisted ventriculography was also useful for the diagnosis of the shift of IVth ventricle compressed by the large cerebellar tumor. CT assisted myelography revealed diagnostic value for the spinal lesions. The side effects of Metrizamide such as headache, nausea and vomiting were minimal and temporary. (author)

  1. Thermophysical Fluid Dynamics: the Key to the Structures of Fluid Objects

    Science.gov (United States)

    Houben, H.

    2013-12-01

    It has become customary to model the hydrodynamics of fluid planets like Jupiter and Saturn by spinning up general circulation models until they reach a statistical steady state. This approach is physically sound, based on the thermodynamic expectation that the system will eventually achieve a state of maximum entropy, but the models have not been specifically designed for this purpose. Over the course of long integrations, numerical artifacts can drive the system to a state that does not correspond to the physically realistic end state. A different formulation of the governing equations promises better results. The equations of motion are recast as scalar conservation laws in which the diabatic and irreversible terms (both entropy-changing) are clearly identified. The balance between these terms defines the steady state of the system analytically, without the need for any temporal integrations. The conservation of mass in this system is trivial. Conservation of angular momentum replaces the zonal momentum equation and determines the zonal wind from a balance between the tidal torque and frictional dissipation. The principle of wave-mean flow non-interaction is preserved. Bernoulli's Theorem replaces the energy equation. The potential temperature structure is determined by the balance between work done against friction and heat transfer by convection and radiation. An equation of state and the traditional momentum equations in the meridional plane are sufficient to complete the model. Based on the assumption that the final state vertical and meridional winds are small compared to the zonal wind (in any case they are impossible to predict ab initio as they are driven by wave flux convergences), these last equations determine the pressure and density (and hence gravity) fields of the basic state. The thermal wind relation (in its most general form with the axial derivative of the zonal wind balancing the baroclinicity) is preserved. The model is not hydrostatic (in

  2. Experimental investigation of unsteady fluid dynamic forces acting on tube array

    International Nuclear Information System (INIS)

    Tanaka, Hiroki; Takahara, Shigeru; Tanaka, Mitsutoshi

    1981-01-01

    It is well-known that the cylinder bundle vibrates in cross flow. Many studies of the vibration have been made, and it has been clarified that the vibration is caused by fluid-elastic vibration coupling to neighboring cylinders. The theory given in this paper considers unsteady fluid dynamic forces to be composed of inertia forces due to added mass of fluid, damping forces of fluid which are in phase to cylinder vibrating velocity, and stiffness forces which are proportional to cylinder displacements. Furthermore, taking account of the influences of neighboring cylinder vibrations, ten kinds of unsteady fluid dynamic forces are considered to act on a cylinder in cylinder bundles. Equations of motion of cylinders were deduced and the critical velocities were calculated with the measured unsteady fluid dynamic forces. Critical velocity tests were also conducted with cylinders which were supported with elastic spars. The calculated critical velocities coincided well with the test results. (author)

  3. Efficient Parallel Kernel Solvers for Computational Fluid Dynamics Applications

    Science.gov (United States)

    Sun, Xian-He

    1997-01-01

    Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be partitioned and distributed appropriately among processors to reduce communication cost and to attain load balance. More importantly, even with careful partitioning and mapping, the performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms may be serial in nature and may not be implemented efficiently on parallel machines. In many cases, new algorithms have to be introduced to increase parallel performance. In order to achieve optimal performance, in addition to partitioning and mapping, a careful performance study should be conducted for a given application to find a good algorithm-machine combination. This process, however, is usually painful and elusive. The goal of this project is to design and develop efficient parallel algorithms for highly accurate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed algorithms into actual simulation packages. The work plan has well achieved. Two highly accurate, efficient Poisson solvers have been developed and tested based on two different approaches: (1) Adopting a mathematical geometry which has a better capacity to describe the fluid, (2) Using compact scheme to gain high order accuracy in numerical discretization. The previously developed Parallel Diagonal Dominant (PDD) algorithm

  4. On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current

    Directory of Open Access Journals (Sweden)

    Dali Guo

    2014-01-01

    Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.

  5. Dynamic Analysis procedure for fluid kicks in hydrocarbon wells

    Energy Technology Data Exchange (ETDEWEB)

    Gavignet, A

    1989-02-10

    A method for analyzing fluid kicks in wells during drilling, in order to assess the risk of a blowout, is presented. An automatic data acquisition and processing system is used to analyze pressure data from transient flow regimes of the drill slurries to determine the nature of the fluid in the borehole (gas, liquid, mixture). The method can be used even if the fluid flowing into the borehole is in an horizontal section of the well.

  6. Computational fluid dynamics model of the spinning pipe gas lens

    CSIR Research Space (South Africa)

    Mafusire, C

    2010-08-01

    Full Text Available has a vertical symmetry due to gravity but becomes rotationally symmetric with a higher value of density at the core as rotation speed increases. The longitudinal density distribution is shown to be parabolic towards the ends but is fairly uniform...

  7. Dynamic characteristics of Non Newtonian fluid Squeeze film damper

    Science.gov (United States)

    Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.

    2016-09-01

    The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.

  8. The dynamics of the Local Group as a probe of dark energy and modified gravity

    Science.gov (United States)

    Carlesi, Edoardo; Mota, David F.; Winther, Hans A.

    2017-04-01

    In this work, we study the dynamics of the Local Group (LG) within the context of cosmological models beyond General Relativity (GR). Using observable kinematic quantities to identify candidate pairs, we build up samples of simulated LG-like objects drawing from f(R), symmetron, Dvali, Gabadadze & Porrati and quintessence N-body simulations together with their Λ cold dark matter (ΛCDM) counterparts featuring the same initial random phase realizations. The variables and intervals used to define LG-like objects are referred to as LG model; different models are used throughout this work and adapted to study their dynamical and kinematic properties. The aim is to determine how well the observed LG dynamics can be reproduced within cosmological theories beyond GR, We compute kinematic properties of samples drawn from alternative theories and ΛCDM and compare them to actual observations of the LG mass, velocity and position. As a consequence of the additional pull, pairwise tangential and radial velocities are enhanced in modified gravity and coupled dark energy with respect to ΛCDM inducing significant changes to the total angular momentum and energy of the LG. For example, in models such as f(R) and the symmetron this increase can be as large as 60 per cent, peaking well outside of the 95 per cent confidence region allowed by the data. This shows how simple considerations about the LG dynamics can lead to clear small-scale observational signatures for alternative scenarios, without the need of expensive high-resolution simulations.

  9. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    Science.gov (United States)

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.

  10. Computational Fluid Dynamics Model for Saltstone Vault 4 Vapor Space

    International Nuclear Information System (INIS)

    Lee, Si Young

    2005-01-01

    Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns for vapor space inside the Saltstone Vault No.4 under different operating scenarios. The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations. A CFD model took three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the boundary conditions as provided by the customer. The present model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference baseline case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information

  11. Cerebrospinal Fluid Clearance in Alzheimer Disease Measured with Dynamic PET.

    Science.gov (United States)

    de Leon, Mony J; Li, Yi; Okamura, Nobuyuki; Tsui, Wai H; Saint-Louis, Les A; Glodzik, Lidia; Osorio, Ricardo S; Fortea, Juan; Butler, Tracy; Pirraglia, Elizabeth; Fossati, Silvia; Kim, Hee-Jin; Carare, Roxana O; Nedergaard, Maiken; Benveniste, Helene; Rusinek, Henry

    2017-09-01

    Evidence supporting the hypothesis that reduced cerebrospinal fluid (CSF) clearance is involved in the pathophysiology of Alzheimer disease (AD) comes primarily from rodent models. However, unlike rodents, in which predominant extracranial CSF egress is via olfactory nerves traversing the cribriform plate, human CSF clearance pathways are not well characterized. Dynamic PET with 18 F-THK5117, a tracer for tau pathology, was used to estimate the ventricular CSF time-activity as a biomarker for CSF clearance. We tested 3 hypotheses: extracranial CSF is detected at the superior turbinates; CSF clearance is reduced in AD; and CSF clearance is inversely associated with amyloid deposition. Methods: Fifteen subjects, 8 with AD and 7 normal control volunteers, were examined with 18 F-THK5117. Ten subjects additionally underwent 11 C-Pittsburgh compound B ( 11 C-PiB) PET scanning, and 8 were 11 C-PiB-positive. Ventricular time-activity curves of 18 F-THK5117 were used to identify highly correlated time-activity curves from extracranial voxels. Results: For all subjects, the greatest density of CSF-positive extracranial voxels was in the nasal turbinates. Tracer concentration analyses validated the superior nasal turbinate CSF signal intensity. AD patients showed ventricular tracer clearance reduced by 23% and 66% fewer superior turbinate CSF egress sites. Ventricular CSF clearance was inversely associated with amyloid deposition. Conclusion: The human nasal turbinate is part of the CSF clearance system. Lateral ventricle and superior nasal turbinate CSF clearance abnormalities are found in AD. Ventricular CSF clearance reductions are associated with increased brain amyloid depositions. These data suggest that PET-measured CSF clearance is a biomarker of potential interest in AD and other neurodegenerative diseases. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  12. Some Fluid Dynamic Effects in Large-Scale MHD Generators

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J. C.R. [University of Warwick, Coventry (United Kingdom)

    1966-10-15

    At the present time we are unable to carry out a complete analysis of the fluid dynamics and electrodynamics of an MHD generator. However, various aspects of the behaviour of an MHD generator may be examined by the use of simplified models, for example: (1) one-dimensional gas dynamics (Louis et al. 1964); (2) the current distribution can be found if the velocity is assumed constant across the duct (Witalis, 1965); (3) the skin friction and heat transfer to the walls can be calculated by boundary layer analysis if the flow is assumed to be laminar (Kerrebrock, 1961), and (4) a complete description of the velocity and current distribution across the duct can be given if the flow is assumed to be uniform, laminar, incompressible and not varying in the flow direction (Hunt and Stewartson, 1965). Taken together, these and other models will enable us to describe most of the effects in an MHD generator. In this paper another simplification is considered in which the electromagnetic forces are assumed to be much larger than the inertial forces. The ratio of these two forces is measured by the parameter, S = aB{sup 2}{sub 0}d/pU, where o is the conductivity, B{sub 0} the magnetic field, d the width of the duct, p the density and U the mean velocity. Thus S >> 1. We also assume that the magnetic Reynolds number is very much less than one. In the largest experimental generators now being built S {approx} 2 . Thus, though the results of this model are not immediately applicable, they should indicate the effects of increasing the magnetic field strength and the size of MHD generators. When S >> 1, one can can consider the duct to be divided into 2 regions: (1) a core region where electromagnetic forces are balanced by the pressure gradient and where inertial as well as viscous forces are negligible, and (2) boundary layers on the walls where again inertial forces are negligible but where the viscous, electromagnetic and pressure forces are of the same order. We show how it is

  13. Quinoa - Adaptive Computational Fluid Dynamics, 0.2

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-22

    Quinoa is a set of computational tools that enables research and numerical analysis in fluid dynamics. At this time it remains a test-bed to experiment with various algorithms using fully asynchronous runtime systems. Currently, Quinoa consists of the following tools: (1) Walker, a numerical integrator for systems of stochastic differential equations in time. It is a mathematical tool to analyze and design the behavior of stochastic differential equations. It allows the estimation of arbitrary coupled statistics and probability density functions and is currently used for the design of statistical moment approximations for multiple mixing materials in variable-density turbulence. (2) Inciter, an overdecomposition-aware finite element field solver for partial differential equations using 3D unstructured grids. Inciter is used to research asynchronous mesh-based algorithms and to experiment with coupling asynchronous to bulk-synchronous parallel code. Two planned new features of Inciter, compared to the previous release (LA-CC-16-015), to be implemented in 2017, are (a) a simple Navier-Stokes solver for ideal single-material compressible gases, and (b) solution-adaptive mesh refinement (AMR), which enables dynamically concentrating compute resources to regions with interesting physics. Using the NS-AMR problem we plan to explore how to scale such high-load-imbalance simulations, representative of large production multiphysics codes, to very large problems on very large computers using an asynchronous runtime system. (3) RNGTest, a test harness to subject random number generators to stringent statistical tests enabling quantitative ranking with respect to their quality and computational cost. (4) UnitTest, a unit test harness, running hundreds of tests per second, capable of testing serial, synchronous, and asynchronous functions. (5) MeshConv, a mesh file converter that can be used to convert 3D tetrahedron meshes from and to either of the following formats: Gmsh

  14. Structure, biomimetics, and fluid dynamics of fish skin surfaces*

    Science.gov (United States)

    Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia

    2016-10-01

    The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer

  15. Mathematical modeling of the dynamic stability of fluid conveying pipe based on integral equation formulations

    International Nuclear Information System (INIS)

    Elfelsoufi, Z.; Azrar, L.

    2016-01-01

    In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations. - Highlights: • Modeling the flutter and divergence of fluid conveying pipes based on RBF. • Dynamic analysis of a fluid conveying pipe with generalized boundary conditions. • Considered parameters fluid are the pressure, tension, slopes topography, velocity. • Internal support increase the critical velocity value. • This methodologies determine the fluid parameters effects.

  16. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  17. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  18. Optics and Fluid Dynamics Department. Annual progress report 1 January - 31 December 1990

    International Nuclear Information System (INIS)

    Juul Rasmussen, J.; Hanson, S.G.

    1991-02-01

    Research in the Optics and Fluid Dynamics Department covers plasma physics, fluid dynamics, optics, and neural networks. Plasma physics is concentrated on basic investigations with relevance to fusion plasmas. Both theoretical and experimental work has been performed. Pellet injection systems have been developed. Within the area of fluid dynamics spectral models for studying the dynamcis of coherent structures have been developed. Optical diagnostic methods based on quasi-elastic light scattering have been developed. Beam propagation in random and nonlinear media has been investigated. Spatial and temporal processing schemes, especially for pattern recognition, have been investigated. (author)

  19. Consequences of energy conservation violation: late time solutions of Λ(T)CDM subclass of f(R,T) gravity using dynamical system approach

    Energy Technology Data Exchange (ETDEWEB)

    Shabani, Hamid [University of Sistan and Baluchestan, Physics Department, Faculty of Sciences, Zahedan (Iran, Islamic Republic of); Ziaie, Amir Hadi [Islamic Azad University, Department of Physics, Kahnooj Branch, Kerman (Iran, Islamic Republic of)

    2017-05-15

    Very recently, Josset and Perez (Phys. Rev. Lett. 118:021102, 2017) have shown that a violation of the energy-momentum tensor (EMT) could result in an accelerated expansion state via the appearance of an effective cosmological constant, in the context of unimodular gravity. Inspired by this outcome, in this paper we investigate cosmological consequences of a violation of the EMT conservation in a particular class of f(R,T) gravity when only the pressure-less fluid is present. In this respect, we focus on the late time solutions of models of the type f(R,T) = R + βΛ(-T). As the first task, we study the solutions when the conservation of EMT is respected, and then we proceed with those in which violation occurs. We have found, provided that the EMT conservation is violated, that there generally exist two accelerated expansion solutions of which the stability properties depend on the underlying model. More exactly, we obtain a dark energy solution for which the effective equation of state depends on the model parameters and a de Sitter solution. We present a method to parametrize the Λ(-T) function, which is useful in a dynamical system approach and has been employed in the model. Also, we discuss the cosmological solutions for models with Λ(-T) = 8πG(-T){sup α} in the presence of ultra-relativistic matter. (orig.)

  20. Analytical, Computational Fluid Dynamics and Flight Dynamics of Coandă MAV

    Science.gov (United States)

    Djojodihardjo, H.; Ahmed, RI

    2016-11-01

    The paper establishes the basic working relationships among various relevant variables and parameters governing the aerodynamics forces and performance measures of Coandă MAV in hover and translatory motion. With such motivation, capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. To gain better understanding on the principle of Coandă MAV lift generation, a mathematical model for a spherical Coandă MAV is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulation for a Coandă MAV generic model are elaborated using commercial software FLUENT®. In addition, the equation of motion for translatory motion of Coandă MAV is elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.