WorldWideScience

Sample records for gravity float fraction

  1. Fractional Nottale's Scale Relativity and emergence of complexified gravity

    International Nuclear Information System (INIS)

    EL-Nabulsi, Ahmad Rami

    2009-01-01

    Fractional calculus of variations has recently gained significance in studying weak dissipative and nonconservative dynamical systems ranging from classical mechanics to quantum field theories. In this paper, fractional Nottale's Scale Relativity (NSR) for an arbitrary fractal dimension is introduced within the framework of fractional action-like variational approach recently introduced by the author. The formalism is based on fractional differential operators that generalize the differential operators of conventional NSR but that reduces to the standard formalism in the integer limit. Our main aim is to build the fractional setting for the NSR dynamical equations. Many interesting consequences arise, in particular the emergence of complexified gravity and complex time.

  2. The behaviour of a floating water bridge under reduced gravity conditions

    Science.gov (United States)

    Fuchs, Elmar C.; Agostinho, Luewton L. F.; Wexler, Adam; Wagterveld, R. Martijn; Tuinstra, Jan; Woisetschläger, Jakob

    2011-01-01

    When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge (Armstrong 1893 The Electrical Engineer pp 154-45, Uhlig W 2005 personal communication, Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4, Fuchs et al 2008 J. Phys. D: Appl. Phys. 41 185502, Fuchs et al 2009 J. Phys. D: Appl. Phys. 42 065502, Fuchs et al 2010 J. Phys. D: Appl. Phys. 43 105502, Woisetschläger et al 2010 Exp. Fluids 48 121-31, Nishiumi and Honda 2009 Res. Lett. Phys. Chem. 2009 371650). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the behaviour of this phenomenon under reduced gravity conditions during a parabolic flight is presented by the means of high speed imaging with fringe projection. An analysis of the behaviour is presented and compared with theoretical considerations.

  3. The behaviour of a floating water bridge under reduced gravity conditions

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Agostinho, Luewton L F; Wexler, Adam; Wagterveld, R Martijn; Tuinstra, Jan; Woisetschlaeger, Jakob

    2011-01-01

    When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge (Armstrong 1893 The Electrical Engineer pp 154-45, Uhlig W 2005 personal communication, Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4, Fuchs et al 2008 J. Phys. D: Appl. Phys. 41 185502, Fuchs et al 2009 J. Phys. D: Appl. Phys. 42 065502, Fuchs et al 2010 J. Phys. D: Appl. Phys. 43 105502, Woisetschlaeger et al 2010 Exp. Fluids 48 121-31, Nishiumi and Honda 2009 Res. Lett. Phys. Chem. 2009 371650). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the behaviour of this phenomenon under reduced gravity conditions during a parabolic flight is presented by the means of high speed imaging with fringe projection. An analysis of the behaviour is presented and compared with theoretical considerations.

  4. The behaviour of a floating water bridge under reduced gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Elmar C; Agostinho, Luewton L F; Wexler, Adam; Wagterveld, R Martijn; Tuinstra, Jan [Wetsus, Center of Excellence for Sustainable Water Technology, Agora 1, 8900 CC Leeuwarden (Netherlands); Woisetschlaeger, Jakob, E-mail: elmar.fuchs@wetsus.nl [Institute for Thermal Turbomachinery and Machine Dynamics, Graz University of Technology, Inffeldgasse 25A, Graz (Austria)

    2011-01-19

    When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge (Armstrong 1893 The Electrical Engineer pp 154-45, Uhlig W 2005 personal communication, Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4, Fuchs et al 2008 J. Phys. D: Appl. Phys. 41 185502, Fuchs et al 2009 J. Phys. D: Appl. Phys. 42 065502, Fuchs et al 2010 J. Phys. D: Appl. Phys. 43 105502, Woisetschlaeger et al 2010 Exp. Fluids 48 121-31, Nishiumi and Honda 2009 Res. Lett. Phys. Chem. 2009 371650). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the behaviour of this phenomenon under reduced gravity conditions during a parabolic flight is presented by the means of high speed imaging with fringe projection. An analysis of the behaviour is presented and compared with theoretical considerations.

  5. Processing yttrium-barium-copper oxide superconductor zero gravity using a double float zone surface

    International Nuclear Information System (INIS)

    Pettit, D.R.; Peterson, D.E.; Kubat-Martin, K.A.; Petrovic, J.J.; Sheinberg, H.; Coulter, Y.; Day, D.E.

    1997-04-01

    The effects of processing YBa 2 Cu 3 O x (Y123) superconductor in the near-zero gravity (0g) environment provided by the NASA KC-135 airplane flying on parabolic trajectories were studied. A new sheet float zone furnace, designed for this study, enabled fast temperature ramps. Up to an 18-gram sample was processed with each parabola. Samples of Y123 were processed as bulk sheets, composites containing Ag and Pd, and films deposited on single crystal Si and MgO substrates. The 0g-processed samples were multi-phase yet retained a localized Y123 stoichiometry where a single ground-based (1g) oxygen anneal at temperatures of 800 C recovered nearly 100-volume percent superconducting Y123. The 1g processed control samples remained multi-phase after the same ground-based anneal with less than 45 volume percent as superconducting Y123. The superconducting transition temperature was 91 K for both 0g and 1g processed samples. A 29 wt.% Ag/Y123 composite had a transition temperature of 93 K. Melt texturing of bulk Y123 in 0g produced aligned grains about a factor of three larger than in analogous 1g samples. Transport critical current densities were at or below 18 A/cm 2 , due to the formation of cracks caused by the rapid heating rates required by the short time at 0g. Y123 deposited on single crystal Si and MgO in 0g was 30 vol.% y123 without an anneal. A weak superconducting transition at 80 K on MgO showed that substrate interactions occurred

  6. Effect of small floating disks on the propagation of gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Santi, F De; Olla, P, E-mail: olla@dsf.unica.it [ISAC-CNR, Sez. Cagliari, I-09042 Monserrato (Italy)

    2017-04-15

    A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided. (paper)

  7. Fractional Nottale's Scale Relativity and emergence of complexified gravity

    Energy Technology Data Exchange (ETDEWEB)

    EL-Nabulsi, Ahmad Rami [Department of Nuclear and Energy Engineering, Cheju National University, Ara-dong 1, Jeju 690-756 (Korea, Republic of)], E-mail: nabulsiahmadrami@yahoo.fr

    2009-12-15

    Fractional calculus of variations has recently gained significance in studying weak dissipative and nonconservative dynamical systems ranging from classical mechanics to quantum field theories. In this paper, fractional Nottale's Scale Relativity (NSR) for an arbitrary fractal dimension is introduced within the framework of fractional action-like variational approach recently introduced by the author. The formalism is based on fractional differential operators that generalize the differential operators of conventional NSR but that reduces to the standard formalism in the integer limit. Our main aim is to build the fractional setting for the NSR dynamical equations. Many interesting consequences arise, in particular the emergence of complexified gravity and complex time.

  8. Gravity anomaly at a Pleistocene lake bed in NW Alaska interpreted by analogy with Greenland's Lake Taserssauq and its floating ice tongue

    Science.gov (United States)

    Barnes, D.F.

    1987-01-01

    A possible example of a very deep glacial excavation is provided by a distinctive gravity low located at the front of a valley glacier that once flowed into glacial Lake Aniuk (formerly Lake Noatak) in the western Brooks Range. Geologic and geophysical data suggest that sediments or ice filling a glacially excavated valley are the most probable cause of the 30-50 mGal anomaly. Reasonable choices of geometric models and density contrasts indicate that the former excavation is now filled with a buried-ice thickness of 700 m or sediment thicknesses greater than 1 km. No direct evidence of efficient excavation was observed in Greenland, but efficient glacial erosion behind a floating polar ice tongue could explain the excavation that caused the Alaskan gravity anomaly. -from Author

  9. Hořava-Lifshitz gravity and effective theory of the fractional quantum Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaolun [Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States); Wu, Shao-Feng [Department of Physics, Shanghai University,Shanghai 200444 (China); Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States)

    2015-01-22

    We show that Hořava-Lifshitz gravity theory can be employed as a covariant framework to build an effective field theory for the fractional quantum Hall effect that respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism is a set of correspondence relations that maps all the field degrees of freedom in the Hořava-Lifshitz gravity theory to external background (source) fields among others in the effective action of the quantum Hall effect, according to their symmetry transformation properties. We originally derive the map as a holographic dictionary, but its form is independent of the existence of holographic duality. This paves the way for the application of Hořava-Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic Chern-Simons model, we compute the low energy effective action at leading orders and show that it captures universal electromagnetic and geometric properties of quantum Hall states, including the Wen-Zee shift, Hall viscosity, angular momentum density and their relations. We identify the shift function in Hořava-Lifshitz gravity theory as minus of guiding center velocity and conjugate to guiding center momentum. This enables us to distinguish guiding center angular momentum density from the internal one, which is the sum of Landau orbit spin and intrinsic (topological) spin of the composite particles. Our effective action shows that Hall viscosity is minus half of the internal angular momentum density and proportional to Wen-Zee shift, and Hall bulk viscosity is half of the guiding center angular momentum density.

  10. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  11. gravity

    Indian Academy of Sciences (India)

    We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...

  12. FLOAT Project

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.; Aarup, Bendt

    The objective of the FLOAT project is to study the reliability of high-performance fibre-reinforced concrete, also known as Compact Reinforced Composite (CRC), for the floats of wave energy converters. In order to reach a commercial breakthrough, wave energy converters need to achieve a lower price...

  13. Floating barrier

    Energy Technology Data Exchange (ETDEWEB)

    1968-05-06

    This floating barrier consists of relatively long elements which can be connected to form a practically continuous assembly. Each element consists of an inflatable tube with an apron of certain height, made of impregnated fabric which is resistant to ocean water and also to hydrocarbons. Means for connecting one element to the following one, and means for attaching ballast to the apron are also provided.

  14. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  15. Can Heavier Liquid Float on Top of a Lighter One?

    International Nuclear Information System (INIS)

    Ayyad, A. H.; Takrori, F.

    2011-01-01

    We report on a first observation of a floating spherical Hg (density 13 g/cm 3 ) drop on top of a glycerin (density 1.26 g/cm 3 ) drop, the latter is hemispherical and about four times larger in volume. This observation is clearly against nature's gravity law and has never been reported before. Here we present spectacular high resolution photos that clearly demonstrate this remarkable floating phenomenon. Using milli-Q water, the Hg drop would stay down adhered at the triple line. Instead, the coincidental use of tap water displays the same phenomenon. Increasing the volume of the supporting liquid to a certain value causes the Hg drop to sink. A 5-M NaCl aqueous solution is found enough to show the same floating phenomenon. This floating mercury as a phenomenon is puzzling. On this length scale it seems that surface tension and curvature dominate over gravity. (fundamental areas of phenomenology (including applications))

  16. Floating offshore turbines

    DEFF Research Database (Denmark)

    Tande, John Olav Giæver; Merz, Karl; Schmidt Paulsen, Uwe

    2014-01-01

    metric of energy production per unit steel mass. Floating offshore wind turbines represent a promising technology. The successful operation of HyWind and WindFloat in full scale demonstrates a well advanced technology readiness level, where further development will go into refining the concepts, cost...

  17. Bilateral Floating Hip and Floating Knee: a Rare Complex Injury ...

    African Journals Online (AJOL)

    We report a rare complex injury of a 45-year-old man who sustained a bilateral floating hip and floating knee and hospitalised in our service six days after a traffic accident. The floating knees were open type III and II of Cauchoix score in phase of suppuration. He also presented with a floating ankle on the right side.

  18. FLOAT Project - Task 1

    DEFF Research Database (Denmark)

    Marchalot, Tanguy; Kofoed, Jens Peter; Sørensen, Eigil V.

    .com, 2011). CRC floats could be a very cost-effective technology with enhanced loading capacity and environmental resistance, and very low maintenance requirements, affecting directly the final energy price. The project involves DEXA Wave Energy Ltd, Wave Star A/S, Aalborg University and Hi-Con A......The objective of the FLOAT project is to study the reliability of high-performance fibre-reinforced concrete, also known as Compact Reinforced Composite (CRC), for the floats of wave energy converters. In order to reach commercial breakthrough, wave energy converters need to achieve a lower price...

  19. Micromechanisms with floating pivot

    Science.gov (United States)

    Garcia, Ernest J.

    2001-03-06

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.

  20. Floating polygon soup

    OpenAIRE

    Colleu , Thomas; Morin , Luce; Pateux , Stéphane; Labit , Claude

    2011-01-01

    International audience; This paper presents a new representation called floating polygon soup for applications like 3DTV and FTV (Free Viewpoint Television). This representation is based on 3D polygons and takes as input MVD data. It extends the previously proposed polygon soup representation which is appropriate for both compression, transmission and rendering stages. The floating polygon soup conserves these advantages while also taking into account misalignments at the view synthesis stage...

  1. Offshore floating windmills

    International Nuclear Information System (INIS)

    1993-10-01

    The aim was to produce a general survey of the profitability of establishing floating offshore wind turbine arrays and to compare this with the cost and profitability of constructing offshore arrays with fixed foundations and arrays located on land sites. Aspects of design in all cases are described, also into relation to the special demands placed on dimensioning in relation to the types of location and foundation. The costs of the offshore arrays are evaluated in relation to capacity under conditions in Danish waters. The advantage of floating arrays is that they can be placed far out to sea where they can not be seen from the coast and thus not be considered to spoil the marine view. But as the water gets deeper the cost of floating foundations rises. It was found that it would not be technologically profitable to establish floating arrays at a depth of less than 30 - 40 meters which means that only the outer Danish waters can be taken into consideration. For depths of up to 70 meters, individual floating bases are more expensive than fixed ones but would be cheaper if a number of windmills could share the same anchor. For depths of more than 70 meters floating foundations would be the cheapest. The cost is dependent on the depth and distance from the coast and also on wind conditions. The main conclusion is that currently the cost of establishing wind turbine arrays in deeper outer waters on floating foundations is comparable to that of arrays sited at inner waters on solid foundations placed on the sea bed. (AB) (20 refs.)

  2. Horizontal, floating, plastic hose oil skimmer

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    A horizontal, floating, plastic hose oil skimmer operates at -20/sup 0/ to +100/sup 0/C as a moving belt driven by a motor at 0.7 kw at 1400 rpm to pick up oil by adhesion from a surface such as that of used cooling water or cutting oil for subsequent stripping and collection by gravity flow. Two models provide collection rates of 10-45 l./hr for diesel oil, 35-115 l./hr for hydraulic oil, and 170-455 l./hr for gear oils and heavy heating oils.

  3. Granular flow through an aperture: Influence of the packing fraction

    Science.gov (United States)

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  4. Compound floating pivot micromechanisms

    Science.gov (United States)

    Garcia, Ernest J.

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  5. The floating water bridge

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Woisetschlaeger, Jakob; Gatterer, Karl; Maier, Eugen; Pecnik, Rene; Holler, Gert; Eisenkoelbl, Helmut

    2007-01-01

    When high voltage is applied to distilled water filled in two glass beakers which are in contact, a stable water connection forms spontaneously, giving the impression of a floating water bridge. A detailed experimental analysis reveals static and dynamic structures as well as heat and mass transfer through this bridge

  6. Float level indicator

    International Nuclear Information System (INIS)

    Grishchuk, M.Kh.; Laptev, A.G.; Pashkov, V.A.

    1980-01-01

    Specially developed level indicator is suggested with differential to-transformer converter of the float motion, operating in line with a movable electronic block, intended for indicating the level of the dissociating nitrogen tetroxide liquid phase. On the basis of the indicator elements the device is realized to measure the time of calibrated volume fillino. in by liquid nitrogen tetroxide in steady state operation of the experimental bench-marks [ru

  7. The floating knee

    DEFF Research Database (Denmark)

    Muñoz Vives, Josep; Bel, Jean-Christophe; Capel Agundez, Arantxa

    2016-01-01

    In 1975, Blake and McBryde established the concept of 'floating knee' to describe ipsilateral fractures of the femur and tibia.1This combination is much more than a bone lesion; the mechanism is usually a high-energy trauma in a patient with multiple injuries and a myriad of other lesions...... fixation when both fractures (femoral and tibial) are extra-articular.Plates are the 'standard of care' in cases with articular fractures.A combination of implants are required by 40% of floating knees.Associated ligamentous and meniscal lesions are common, but may be irrelevant in the case of an intra......-articular fracture which gives the worst prognosis for this type of lesion. Cite this article: Muñoz Vives K, Bel J-C, Capel Agundez A, Chana Rodríguez F, Palomo Traver J, Schultz-Larsen M, Tosounidis, T. The floating knee.EFORT Open Rev2016;1:375-382. DOI: 10.1302/2058-5241.1.000042....

  8. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  9. Ipsilateral Floating Hip and Floating Knee – A Rare Entity

    Directory of Open Access Journals (Sweden)

    Yashavantha Kumar

    2013-04-01

    Full Text Available Introduction: Ipsilateral floating hip and floating knee are very rare injuries. These injuries so uncommon that only three cases of similar kind have been reported. These injuries are due to high velocity injuries following motor vehicle accidents. Management of such complex injuries is a challenging task even in experienced hands as there are no standard treatment guidelines for such fractures. Case Report: We hereby report a 20 yr old male who sustained ipsilateral floating hip and ipsilateral floating knee injuries following motor vehicle accident. Patient was stabilized initially and later taken up for surgery. Patient was treated with interlocking nail for femur and tibia in the same sitting whereas acetabulam fracture was managed conservatively. At five months all the fractures united well with restoration of good range of motion in both hip and knee. Conclusion: Ipsilateral floating knee and floating hip are very rare injuries seen following high velocity motor vehicle accidents. There are no standard guidelines for treatment of those fractures as only a few cases of similar kind have been reported in literature. Early fixation and aggressive mobilization ensures fracture union and fewer complications. Keywords: Floating hip, Floating Knee, Ipsilateral.

  10. Floating Silicon Method

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  11. Gravity driven and in situ fractional crystallization processes in the Centre Hill complex, Abitibi Subprovince, Canada: Evidence from bilaterally-paired cyclic units

    Science.gov (United States)

    Thériault, R. D.; Fowler, A. D.

    1996-12-01

    The formation of layers in mafic intrusions has been explained by various processes, making it the subject of much controversy. The concept that layering originates from gravitational settling of crystals has been superseded in recent years by models involving in situ fractional crystallization. Here we present evidence from the Centre Hill complex that both processes may be operative simultaneously within the same intrusion. The Centre Hill complex is part of the Munro Lake sill, an Archean layered mafic intrusion emplaced in volcanic rocks of the Abitibi Subprovince. The Centre Hill complex comprises the following lithostratigraphic units: six lower cyclic units of peridotite and clinopyroxenite; a middle unit of leucogabbro; six upper cyclic units of branching-textured gabbro (BTG) and clotted-textured gabbro (CTG), the uppermost of these units being overlain by a marginal zone of fine-grained gabbro. The cyclic units of peridotite/clinopyroxenite and BTG/CTG are interpreted to have formed concurrently through fractional crystallization, associated with periodic replenishment of magma to the chamber. The units of peridotite and clinopyroxenite formed by gravitational accumulation of crystals that grew under the roof. The cyclic units of BTG and CTG formed along the upper margin of the sill by two different mechanisms: (1) layers of BTG crystallized in situ along an inward-growing roof and (2) layers of CTG formed by accumulation of buoyant plagioclase crystals. The layers of BTG are characterized by branching pseudomorphs after fayalite up to 50 cm in length that extend away from the upper margin. The original branching crystals are interpreted to have grown from stagnant intercumulus melt in a high thermal gradient resulting from the injection of new magma to the chamber.

  12. Control development for floating wind

    International Nuclear Information System (INIS)

    Savenije, Feike; Peeringa, Johan

    2014-01-01

    Control of a floating wind turbine has proven to be challenging, but essential for lowering the cost of floating wind energy. Topic of a recent joint R and D project by GustoMSC, MARIN and ECN, is the concept design and verification with coupled simulations and model tests of the GustoMSC Tri-Floater. Only using an integral design approach, including mooring and control design, a cost effective system can be obtained. In this project, ECN developed a general floating wind turbine control strategy and applied this in a case study to the GustoMSC Tri-Floater and the OC3Hywind spar, both equipped with the NREL 5MW RWT. The designed controller ensures stable operation, while maintaining proper speed and power regulation. The motions of the floating support are reduced and substantial load reduction has been achieved

  13. A Numerical Approach to Determine Attitude Dynamics of Floating Bodies with Irregular Configurations

    Directory of Open Access Journals (Sweden)

    Jiann-Lin Chen

    2014-07-01

    Full Text Available This study acquires the attitude dynamics of floating bodies with irregular configurations using an effective computational model, which has been validated theoretically and verified by experiments. By comparison a correlation formula was described to predict inclinations for the floating slender body imitating an excise torpedo. Thereafter a computational model was developed to account for bodies with attitudes in more general situations. For demonstration, a submersible was simulated to reveal that the inclinations vary abruptly around certain longitudinal locations of center of gravity. The property variations during water ingress assumption were presented. Similar to the virtue tank, an innovative concept of building the numerical data base for a specific floating body has been proposed, by which the position of its center of gravity can be obtained by interpolation from attitude data in tables as determined by the present computational model.

  14. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  15. Large floating structures technological advances

    CERN Document Server

    Wang, BT

    2015-01-01

    This book surveys key projects that have seen the construction of large floating structures or have attained detailed conceptual designs. This compilation of key floating structures in a single volume captures the innovative features that mark the technological advances made in this field of engineering, and will provide a useful reference for ideas, analysis, design, and construction of these unique and emerging urban projects to offshore and marine engineers, urban planners, architects and students.

  16. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  17. Wave attenuation charcteristics of tethered float system

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.

    incident wave height transmitted wave height G wave number float mass number of rows of floats drag power transmitted wave power incident wave power 111 112 P. Vethamony float radius wave period time velocity and acceleration of fluid... particles, respectively wave attenuation in percentage displacement, velocity and acceleration of float, respectively amplitude of float displacement added mass damping coefficient fluid particle displacement amplitude of fluid particle displacement...

  18. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  19. Venus gravity - Analysis of Beta Regio

    Science.gov (United States)

    Esposito, P. B.; Sjogren, W. L.; Mottinger, N. A.; Bills, B. G.; Abbott, E.

    1982-01-01

    Radio tracking data acquired over Beta Regio were analyzed to obtain a surface mass distribution from which a detailed vertical gravity field was derived. In addition, a corresponding vertical gravity field was evaluated solely from the topography of the Beta region. A comparison of these two maps confirms the strong correlation between gravity and topography which was previously seen in line-of-sight gravity maps. It also demonstrates that the observed gravity is a significant fraction of that predicted from the topography alone. The effective depth of complete isostatic compensation for the Beta region is estimated to be 330 km, which is somewhat deeper than that found for other areas of Venus.

  20. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  1. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Barceló Carlos

    2005-12-01

    Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  2. Fractional Dynamics and Control

    CERN Document Server

    Machado, José; Luo, Albert

    2012-01-01

    Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation  Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics  Develops new methods for control and synchronization of...

  3. Quantum Gravity

    OpenAIRE

    Alvarez, Enrique

    2004-01-01

    Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...

  4. Artisanal fishing net float loss and a proposal for a float design solution

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Chaves

    2016-03-01

    Full Text Available Abstract Plastic floats from fishing nets are commonly found washed up on beaches in southern Brazil. They are usually broken and show signs of having been repaired. Characteristics of floats and interviews with fishermen suggest two main causes of float loss. First, collisions between active gear, bottom trawl nets for shrimp, and passive gear, drift nets for fish, destroy nets and release fragments of them, including floats. Second, the difficulty with which floats are inserted on the float rope of the nets when they are used near the surface. Floats are inserted to replace damaged or lost floats, or they may be removed if it is desired that the nets be used in deeper waters. Floats may thus be poorly fixed to the cables and lost. Here a new float design that offers greater safety in use and for the replacement of floats is described and tested.

  5. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  6. Strength Tests on Hulls and Floats

    Science.gov (United States)

    Matthaes, K

    1942-01-01

    The present report deals with strength tests on hulls and floats intended in part for the collection of construction data for the design of these components and in part for the stress analysis of the finished hulls and floats.

  7. A new assessment of floating exchange rates

    OpenAIRE

    Waimann, D. R.

    1981-01-01

    The switch to floating exchange rates during the 1970s has given economists the first comprehensive opportunity to assess the arguments for and against floating. Much new work has been done on various aspects of floating exchange rate behaviour. This article attempts a limited survey of the evidence concerning two important issues—whether floating exchange rates are inherently unstable and whether they harm international trade.

  8. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Science.gov (United States)

    2010-07-01

    ... External floating roof converted into an internal floating roof. The owner or operator who elects to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION...

  9. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  10. Have Floating Rates Been a Success?

    Science.gov (United States)

    Higham, David

    1983-01-01

    Floating exchange rates have not lived up to all expectations, but neither have they performed as badly as some critics have suggested. Examined are the impact of floating rates on balance of payments adjustment, domestic economic policy, and inflation and the claim that floating rates have displayed excessive fluctuations. (Author/RM)

  11. Floating Microparticulate Oral Diltiazem Hydrochloride Delivery ...

    African Journals Online (AJOL)

    Purpose: To formulate and evaluate floating microparticulate oral diltiazem delivery system for possible delivery to the heart. Method: Floating microspheres were prepared using cellulose acetate and Eudragit RS100 polymers by emulsion solvent evaporation technique. The dried floating microspheres were evaluated for ...

  12. Hydroelasticity of a Floating Plate

    DEFF Research Database (Denmark)

    Chen, X.; Jensen, Jørgen Juncher; Cui, W.

    2003-01-01

    The membrane forces are included in the hydroelastic analysis of a floating plate undergoing large vertical deflections in regular monochromatic multidirectional waves. The first-order vertical displacements induced by the linear wave exciting forces are calculated by the mode expansion method in...

  13. Experimental investigation of the stability of the floating water bridge

    Science.gov (United States)

    Montazeri Namin, Reza; Azizpour Lindi, Shiva; Amjadi, Ahmad; Jafari, Nima; Irajizad, Peyman

    2013-09-01

    When a high voltage is applied between two beakers filled with deionized water, a floating bridge of water is formed in between exceeding the length of 2 cm when the beakers are pulled apart. Currently two theories regarding the stability of the floating water bridge exist, one suggesting that the tension caused by electric field in the dielectric medium is holding the bridge and the other suggesting surface tension to be responsible for the vertical equilibrium. We construct experiments in which the electric field and the geometry of the bridge are measured and compared with predictions of theories of the floating water bridge stability. We use a numerical simulation for estimation of the electric field. Our results indicate that the two forces of dielectric and surface tensions hold the bridge against gravity simultaneously and, having the same order of magnitude, neither of the two forces are negligible. In bridges with larger diameters, the effect of dielectric tension is slightly more in the vertical equilibrium than surface tension. Results show that the stability can be explained by macroscopic forces, regardless of the microscopic changes in the water structure.

  14. Providing floating capabilities in latest-generation sand screens

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, E.G.; Coronado, M.P. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Baker Hughes, Houston, TX (United States)

    2008-10-15

    Alternative production methods are needed for the massive reserves located in the bitumen region of Canada's tar sands. The area has over 100 installations of sand screens/slotted liners in both injection and production legs using steam-assisted gravity drainage (SAGD) technology. Multiple wells must be drilled from a single pad because of the sensitive nature of the environment. With significant depths of these wells, a floating sand screen provides assurance that the sand screen will reach the desired depth. Paraffin is generally used to plug the flow access of the screen during installation. This paper discussed a new technology that has been developed to allow for sand screen installations without relying on paraffin wax to withstand differential pressure. The new technology uses a hydro-mechanical valving system incorporated into the screen design to temporarily close off the screen while being run in the hole. The paper described how the technology could provide a reliable, time-saving solution for SAGD installations when floating sand control screens are needed. The paper discussed current technology and its limitations, sand screen installation, screen design for floating applications, and additional applications. It was concluded that this technology solution provides a unique alternative to the methods currently used to install sand screens with SAGD technology in the fast growing Canadian market for bitumen recovery. 2 refs., 5 figs.

  15. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    Science.gov (United States)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  16. Simulating Gravity

    Science.gov (United States)

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  17. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  18. Handbook of floating-point arithmetic

    CERN Document Server

    Muller, Jean-Michel; de Dinechin, Florent; Jeannerod, Claude-Pierre; Joldes, Mioara; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Torres, Serge

    2018-01-01

    This handbook is a definitive guide to the effective use of modern floating-point arithmetic, which has considerably evolved, from the frequently inconsistent floating-point number systems of early computing to the recent IEEE 754-2008 standard. Most of computational mathematics depends on floating-point numbers, and understanding their various implementations will allow readers to develop programs specifically tailored for the standard’s technical features. Algorithms for floating-point arithmetic are presented throughout the book and illustrated where possible by example programs which show how these techniques appear in actual coding and design. The volume itself breaks its core topic into four parts: the basic concepts and history of floating-point arithmetic; methods of analyzing floating-point algorithms and optimizing them; implementations of IEEE 754-2008 in hardware and software; and useful extensions to the standard floating-point system, such as interval arithmetic, double- and triple-word arithm...

  19. Floating on the margins [Environmental issues for floating production platforms

    International Nuclear Information System (INIS)

    Grimshaw, R.

    1997-01-01

    The main environmental issues challenging oilfield development using floating production platforms in harsh environments such as the Atlantic frontier are discussed. These fall into two broad categories -operating conditions and biological disturbance. Particular combinations of wind and currents can lead to extremely difficult operating conditions through which floating units are expected to maintain production for economic reasons. This imposes stringent conditions on the design and construction of tanker hulls and of risers to enable them to remain connected at all times. Prediction of wind and wave forces is a crucial element of operational and safety planning. Fauna in seabed sediments disturbed by pipeline laying often relocate but some seeding back of colonies may be required in hard rock areas. Migration routes for cetaceans and the feeding grounds of marine birds must be considered and the potential long and short term damage to commercial fisheries through discharges need to be assessed. A significant risk is the interaction of sub-sea facilities and fishing gear and oil spills. Operational and accidental discharges of production chemicals, produced water containing oil, deck drainage and treated sewage, and discharges to air from flaring and utility exhausts are of major environmental concern calling for mitigation and protection measures and contingency plans. Some of the environmental issues associated with decommissioning are reduced by the use of floating platforms but there are global and national regulations governing the process. (UK)

  20. Cooperative control system of the floating cranes for the dual lifting

    Directory of Open Access Journals (Sweden)

    Mihee Nam

    2018-01-01

    Full Text Available This paper proposes a dual lifting and its cooperative control system with two different kinds of floating cranes. The Mega-erection and Giga-erection in the ship building are used to handle heavier and wider blocks and modules as ships and off-shore platforms are enlarged. However, there is no equipment to handle such Tera-blocks. In order to overcome the limit on performance of existing floating cranes, the dual lifting is proposed in this research. In the dual lifting, two floating cranes are well-coordinated to add up the lift capabilities of both cranes without any loss such that virtually a single crane is lifting, maneuvering and unloading. Two main constraints for the dual lifting are as follows: First, two barges of floating cranes should be constrained as a rigid body not to cause a relative motion between two barges and main hooks of the two cranes should be controlled as main hooks of a single crane. In order words, it is necessary to develop the cooperative control of two floating cranes in order to sustain a center of gravity of the module and minimize the tilting angle during the lifting and unloading by the two floating cranes. Two floating cranes are handled as a master-slave system. The master crane is able to gather information about all working conditions and make a decision to control the individual hook speed, which communicates the slave crane by TCP/IP. The developed control system has been embedded in the real floating crane systems and the dual lifting has been demonstrated five times at SHI shipyard in 2015. The moving angles of the lifting module are analyzed and verified to be suitable for hoisting control. It is verified that the dual lifting can be applied for many heavier and wider blocks and modules to shorten the construction time of ships and off-shore platforms.

  1. Catamaran or semi-submersible for floating platform - selection of a better design

    Science.gov (United States)

    Qasim, Idrees; Gao, Liangtian; Peng, Duojin; Liu, Bo

    2018-02-01

    With nonstop advancement in marine engineering, more and more new structures are being designed and explored for tidal current energy. There are three different kinds of support structures for tidal current power station mostly in use, which are sea-bed mounted/gravity based system, pile mounted system and floating moored platform. Comparing all of them, the floating mooring system is most suitable for deep water systems and the application of this arrangement is widely usable. In this paper, a semi-submersible and a catamaran as floating platforms for tidal current power stations are studied are compared on the basis of its economics, efficiency of turbine and stability of the station. Based on basic ship theory and using software MAXSURF, the stability of Catamaran tidal current power station is also calculated. It is found that the catamaran design is optimal choice.

  2. A theory of managed floating

    OpenAIRE

    Wollmershäuser, Timo

    2004-01-01

    After the experience with the currency crises of the 1990s, a broad consensus has emerged among economists that such shocks can only be avoided if countries that decided to maintain unrestricted capital mobility adopt either independently floating exchange rates or very hard pegs (currency boards, dollarisation). As a consequence of this view which has been enshrined in the so-called impossible trinity all intermediate currency regimes are regarded as inherently unstable. As far as the econom...

  3. Quantum gravity

    International Nuclear Information System (INIS)

    Isham, C.

    1989-01-01

    Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)

  4. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  5. Hywind floating wind turbine project

    Energy Technology Data Exchange (ETDEWEB)

    Crome, Tim

    2010-07-01

    The Hywind floating wind turbine concept was developed by StatoilHydro. Technip was awarded the contract for engineering, fabrication and installation of a demonstration unit in May 2008 and the completed wind turbine was installed mid June 2009 at the west coast of Norway on 220 m water depth. The demonstration unit will generate 2,3 MW and is equipped with instrumentation for monitoring mooring forces, strains and motions. The fabrication of the SPAR type steel substructure was performed at Technip Offshore Finland facilities in Pori and was towed horizontally from Finland to Norway, where it was upended to a vertical position by water filling. The completed floating wind turbine was towed vertically to the final location west of Karmoey and connected to the pre-installed three legged anchor system using an Anchor Handling Tug type vessel. The wind turbine test period is scheduled to start in September 2009. Statoil will monitor the performance of the system for two years before decision will be taken for further development. The paper will present the main challenges and lessons learned through design, fabrication and installation of this first of its kind structure. Main emphasis will be on the special challenges experienced for this floating, catenary moored, slender unit which is highly exposed for wind induced forces in addition to current and waves in hostile North Sea environments. (Author)

  6. Can flexibility help you float?

    Science.gov (United States)

    Burton, L. J.; Bush, J. W. M.

    2012-10-01

    We consider the role of flexibility in the weight-bearing characteristics of bodies floating at an interface. Specifically, we develop a theoretical model for a two-dimensional thin floating plate that yields the maximum stable plate load and optimal stiffness for weight support. Plates small relative to the capillary length are primarily supported by surface tension, and their weight-bearing potential does not benefit from flexibility. Above a critical size comparable to the capillary length, flexibility assists interfacial flotation. For plates on the order of and larger than the capillary length, deflection from an initially flat shape increases the force resulting from hydrostatic pressure, allowing the plate to support a greater load. In this large plate limit, the shape that bears the most weight is a semicircle, which displaces the most fluid above the plate for a fixed plate length. Exact results for maximum weight-bearing plate shapes are compared to analytic approximations made in the limits of large and small plate sizes. The value of flexibility for floating to a number of biological organisms is discussed in light of our study.

  7. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  8. 14 CFR 27.753 - Main float design.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...

  9. 14 CFR 29.753 - Main float design.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...

  10. Noncommutative gravity

    International Nuclear Information System (INIS)

    Schupp, P.

    2007-01-01

    Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)

  11. Floating Microparticulate Oral Diltiazem Hydrochloride Delivery ...

    African Journals Online (AJOL)

    Delivery System for Improved Delivery to Heart ... Conclusion: Microparticulate floating (gastroretentive) oral drug delivery system of diltiazem prepared ..... treatment of cardiac disease. ... hydrochloride-loaded mucoadhesive microspheres.

  12. Rheological measurements in reduced gravity

    Science.gov (United States)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    1999-01-01

    Rheology of fluidized beds and settling suspensions were studied experimentally in a series of reduced gravity parabolic flights aboard NASA's KC-135 aircraft. Silica sands of two different size distributions were fluidized by air. The slurries were made using silica sand and Glycerol solution. The experimental set up incorporated instrumentation to measure the air flow rate, the pressure drop and the apparent viscosity of the fluidized sand and sand suspensions at a wide range of the shear rates. The fluidization chamber and container had transparent walls to allow visualization of the structure changes involved in fluidization and in Couette flow in reduced gravity. Experiments were performed over a broad range of gravitational accelerations including microgravity and double gravity conditions. The results of the flight and ground experiments reveal significant differences in overall void fraction and hence in the apparent viscosity of fluidized sand and sand suspensions under microgravity as compared to one-g conditions.

  13. Implementing floating-point DSP

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Jiří; Chappel, S.

    2006-01-01

    Roč. 2, č. 3 (2006), s. 12-14 R&D Projects: GA AV ČR 1ET400750406; GA MŠk 1M0567 EU Projects: European Commission(XE) 027611 - AETHER Program:FP6 Institutional research plan: CEZ:AV0Z10750506 Keywords : PicoBlaze * floating point * FPGA Subject RIV: JC - Computer Hardware ; Software http://www.xilinx.com/publications/ magazines /emb_03/xc_pdf/p12-14_3emb-point.pdf

  14. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  15. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  16. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  17. Floating liquid bridge charge dynamics

    Science.gov (United States)

    Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz

    2016-01-01

    The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.

  18. Nuclear floating power desalination complexes

    International Nuclear Information System (INIS)

    Panov, Y.K.; Polunichev, V.I.; Zverev, K.V.

    1998-01-01

    Russia is a single country in the world which possesses a powerful ice-breaker transport fleet that allows a solution of important social-economic tasks of the country's northern regions by maintaining a year-round navigation along the Arctic sea route. A total operating record of the marine nuclear reactors up until till now exceeds 150 reactor-years, with their main equipment operating life reacting 120 thousand hours. Design and constructional progresses have been made continuously during forty years of nuclear-powered ships construction in Russia. Well proven technology of all components experienced in the marine nuclear reactors give grounds to recommend marine NSSSs of KLT-40 type as energy sources for the heat and power co-generation plants and the sea water desalination complexes, particularly as a floating installation. Co-generation stations are considered for deployment in the extreme Northern Region of Russia. Nuclear floating desalination complexes can be used for drinkable water production in the coastal regions of Northern Africa, the Near East, India etc. (author)

  19. Vertical pump with free floating check valve

    International Nuclear Information System (INIS)

    Lindsay, M.

    1980-01-01

    A vertical pump is described which has a bottom discharge with a free floating check valve disposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions

  20. Raman scattering measurements on a floating water bridge

    Science.gov (United States)

    Ponterio, R. C.; Pochylski, M.; Aliotta, F.; Vasi, C.; Fontanella, M. E.; Saija, F.

    2010-05-01

    It was observed that when polarized by an intense electric field, water is able to self-arrange into macroscopic cylindrical wires that can hang up and remain floating against gravity. This phenomenon is now known as a 'water bridge'. Several attempts have been made to give an explanation of this apparently unusual behaviour of water. A number of experiments have been performed with the aim of probing any possible structural change of bulk water, after application of the electric field. None of the available findings appear conclusive at the moment. Here we report the results of the first Raman scattering experiment on floating water bridges. The inter-molecular OH-stretching band has been investigated and the results have been compared with those from bulk water. Some changes in the scattering profiles after application of the electric field are shown to have a structural origin. The bridges have been obtained, for the first time, in a vertical geometry and under application of an alternating field. The adopted geometry has allowed us to reveal a clear asymmetry between opposite direct current biasing, which can be related to the nature of the charge carriers.

  1. Raman scattering measurements on a floating water bridge

    Energy Technology Data Exchange (ETDEWEB)

    Ponterio, R C; Aliotta, F; Vasi, C; Fontanella, M E; Saija, F [CNR-Istituto per i Processi Chimico-Fisici, V.le F. D' Alcontres 37, 98158, Messina (Italy); Pochylski, M [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznan (Poland)

    2010-05-05

    It was observed that when polarized by an intense electric field, water is able to self-arrange into macroscopic cylindrical wires that can hang up and remain floating against gravity. This phenomenon is now known as a 'water bridge'. Several attempts have been made to give an explanation of this apparently unusual behaviour of water. A number of experiments have been performed with the aim of probing any possible structural change of bulk water, after application of the electric field. None of the available findings appear conclusive at the moment. Here we report the results of the first Raman scattering experiment on floating water bridges. The inter-molecular OH-stretching band has been investigated and the results have been compared with those from bulk water. Some changes in the scattering profiles after application of the electric field are shown to have a structural origin. The bridges have been obtained, for the first time, in a vertical geometry and under application of an alternating field. The adopted geometry has allowed us to reveal a clear asymmetry between opposite direct current biasing, which can be related to the nature of the charge carriers.

  2. Raman scattering measurements on a floating water bridge

    International Nuclear Information System (INIS)

    Ponterio, R C; Aliotta, F; Vasi, C; Fontanella, M E; Saija, F; Pochylski, M

    2010-01-01

    It was observed that when polarized by an intense electric field, water is able to self-arrange into macroscopic cylindrical wires that can hang up and remain floating against gravity. This phenomenon is now known as a 'water bridge'. Several attempts have been made to give an explanation of this apparently unusual behaviour of water. A number of experiments have been performed with the aim of probing any possible structural change of bulk water, after application of the electric field. None of the available findings appear conclusive at the moment. Here we report the results of the first Raman scattering experiment on floating water bridges. The inter-molecular OH-stretching band has been investigated and the results have been compared with those from bulk water. Some changes in the scattering profiles after application of the electric field are shown to have a structural origin. The bridges have been obtained, for the first time, in a vertical geometry and under application of an alternating field. The adopted geometry has allowed us to reveal a clear asymmetry between opposite direct current biasing, which can be related to the nature of the charge carriers.

  3. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  4. Growing halophytes floating at sea

    Directory of Open Access Journals (Sweden)

    Ricardo Radulovich

    2017-11-01

    Full Text Available Freshwater shortages are increasingly limiting both irrigated and rainfed agriculture. To expand possibilities for controlled plant production without using land nor freshwater, we cultivated potted halophytes floating at sea that were provided with rain- and seawater. Plantlets of two mangroves (Avicennia germinans and Rhizophora mangle and plants of two herbaceous species, sea purslane (Sesuvium portulacastrum and salt couch grass (Sporobolus virginicus were grown in near-coastal tropical Pacific waters of Costa Rica for 733 days. There were a total of 504 rainless days, including two dry periods of ca. 150 d long each, evidencing prolonged and exclusive reliance on seawater. Pots with a sandy soil mixture and the transplanted plants were placed on low-cost wooden floating rafts with their lower end perforated and immersed for capillary rise of water. Free seawater entry and exit through the bottom from bobbing with waves, which also occasionally added water from the top, effectively controlled soil salinity build-up even during the rainless seasons. Continuous leaching made necessary frequent fertilizer addition. No water deficit symptoms were observed and midday canopy temperature during rainless periods was not significantly different between species or from air temperature. With all-year-round growth, height increase of mangrove plantlets ranged from 208.1 to 401.5 mm yr−1. Fresh biomass production of sea purslane and the grass was 10.9 and 3.0 kg m−2 yr−1 respectively. High yield, edibility and protein content of 10.2% dry weight established sea purslane as a potential crop. While further research is needed, the method evidenced to be a viable plant production option of potentially far-reaching applications.

  5. Towards Interactive Steering of a Very Large Floating Structure Code by Using HPC Parallelisation Strategies

    KAUST Repository

    Frisch, Jerome; Gao, Ruiping; Mundani, Ralf-Peter; Wang, Chien Ming; Rank, Ernst

    2012-01-01

    Very large floating structures (VLFSs) have been used for broad applications such as floating storage facilities, floating piers, floating bridges, floating airports, entertainment facilities, even habitation, and other purposes. Owing to its small

  6. Micro-gravity Isolation using only Electro-magnetic Actuators

    DEFF Research Database (Denmark)

    Vinther, D.; Alminde, Lars; Bisgaard, Morten

    in the Sixth Student Parabolic Flight Campaign issued by the European Space Agency (ESA). The system consists of six custom made electro magnetic actuators which acts on the isolated platform based on the designed controller and their input from six accelerometers and six infrared position sensors. From......In this paper the design, construction and test of a free floating micro-gravity isolation platform to reduce the acceleration dose on zero gravity experiments on e.g. the International Space Station (ISS) is discussed. During the project a system is specified and constructed whereupon it is tested...

  7. Micro-gravity Isolation using only Electro-magnetic Actuators

    DEFF Research Database (Denmark)

    Vinther, D.; Alminde, Lars; Bisgaard, Morten

    2004-01-01

    in the Sixth Student Parabolic Flight Campaign issued by the European Space Agency (ESA). The system consists of six custom made electro magnetic actuators which acts on the isolated platform based on the designed controller and their input from six accelerometers and six infrared position sensors. >From......In this paper the design, construction and test of a free floating micro-gravity isolation platform to reduce the acceleration dose on zero gravity experiments on e.g. the International Space Station (ISS) is discussed. During the project a system is specified and constructed whereupon it is tested...

  8. The Cause of Gravity

    OpenAIRE

    Byrne, Michael

    1999-01-01

    Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...

  9. Free-floating planets from microlensing

    Science.gov (United States)

    Sumi, Takahiro

    2014-06-01

    Gravitational microlensing has an unique sensitivity to exoplanets at outside of the snow-line and even exoplanets unbound to any host stars because the technique does not rely on any light from the host but the gravity of the lens. MOA and OGLE collaborations reported the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8_{-0.8}^{+1.7}) as common as main-sequence stars, based on two years of gravitational microlensing survey observations toward the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. The such short-timescale unbound planetary candidates have been detected with the similar rate in on-going observations and these groups are working to update the analysis with larger statistics. Recently, there are also discoveries of free-floating planetary mass objects by the direct imaging in young star-forming regions and in the moving groups, but these objects are limited to massive objects of 3 to 15 Jupiter masses.They are more massive than the population found by microlensing. So they may be a different population with the different formation process, either similar with that of stars and brown dwarfs, or formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits. It is important to fill the gap of these mass ranges to fully understand these populations. The Wide Field Infrared Survey Telescope (WFIRST) is the highest ranked recommendation for a large space mission in the recent New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics 2010 Decadal Survey. Exoplanet microlensing program is one of the primary science of WFIRST. WFIRST will find about 3000 bound planets and 2000 unbound planets by the high precision continuous survey 15 min

  10. 14 CFR 23.753 - Main float design.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521. [Doc...

  11. 14 CFR 29.757 - Hull and auxiliary float strength.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand the...

  12. Gravity and positional homeostasis of the cell

    Science.gov (United States)

    Nace, G. W.

    1983-01-01

    The effect of gravity upon cytoplasmic aggregates of the size present in eggs and upon cells is investigated. An expression is developed to describe the tendency of torque to rotate the egg and reorganize its constituents. This expression provides the net torque resulting from buoyancy and gravity acting upon a dumbbell-shaped cell, with heavy and light masses at either end and floating in a medium. Torques of approximately 2.5 x 10 to the -13th to 0.85 dyne-cm are found to act upon cells ranging from 6.4 microns to 31 mm (chicken egg). It is noted that cells must expend energy to maintain positional homeostasis against gravity, as demonstrated by results from Skylab 3, where tissue cultures used 58 percent more glucose on earth than in space. The implications for developmental biology, physiology, genetics, and evolution are discussed. It is argued that at the cellular and tissue levels the concept of gravity receptors may be unnecessary.

  13. Genetics Home Reference: Floating-Harbor syndrome

    Science.gov (United States)

    ... Patton MA, Hurst J, Donnai D, McKeown CM, Cole T, Goodship J. Floating-Harbor syndrome. J Med ... medicine? What is newborn screening? New Pages Lyme disease Fibromyalgia White-Sutton syndrome All New & Updated Pages ...

  14. Cholecystosonographic findings of clonorchiasis: Floating echogenic foci

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Kyun [Choong Joo X-ray Clinic, Choongjoo (Korea, Republic of)

    1989-06-15

    Author analysed cholecystosonographic findings in 22 patients with clonorchiasis, suspected prospectively by ultrasound and proved subsequently by demonstration of eggs in the stools. Fifteen gallbladders had nonshadowing, fusiform, discrete echogenic foci measuring 3{approx}6 mm in the lumen. Among these, the echogenic foci floated spontaneously in three cases, while in twelve cases they floated by position change or a light blow by the transducer. In the rest of the seven gallbladders, the echogenic foci were at the dependent portion. In the in vitro study with a worm suspension in saline in a surgical glove, the same echogenic foci as those seen in the gallbladders were demonstrated. The echogenic foci were precipitated in the dependent portion but float with a light blow on the glove. Author conclude that the floating echogenic foci in the lumen of the gallbladder are due to adult worms of clonorchis sinensis.

  15. Cholecystosonographic findings of clonorchiasis: Floating echogenic foci

    International Nuclear Information System (INIS)

    Kim, Ho Kyun

    1989-01-01

    Author analysed cholecystosonographic findings in 22 patients with clonorchiasis, suspected prospectively by ultrasound and proved subsequently by demonstration of eggs in the stools. Fifteen gallbladders had nonshadowing, fusiform, discrete echogenic foci measuring 3∼6 mm in the lumen. Among these, the echogenic foci floated spontaneously in three cases, while in twelve cases they floated by position change or a light blow by the transducer. In the rest of the seven gallbladders, the echogenic foci were at the dependent portion. In the in vitro study with a worm suspension in saline in a surgical glove, the same echogenic foci as those seen in the gallbladders were demonstrated. The echogenic foci were precipitated in the dependent portion but float with a light blow on the glove. Author conclude that the floating echogenic foci in the lumen of the gallbladder are due to adult worms of clonorchis sinensis

  16. Design and preparation of controlled floating gastroretentive ...

    African Journals Online (AJOL)

    gastroretentive delivery systems for enhanced fexofenadine ... Abstract. Purpose: To design and prepare effervescent floating gastroretentive tablets for controlled fexofenadine ..... Complex of Carbopol with Polyvinylpyrrolidone as a. Matrix for ...

  17. Dynamic Response of a Floating Bridge Structure

    OpenAIRE

    Viuff, Thomas; Leira, Bernt Johan; Øiseth, Ole; Xiang, Xu

    2016-01-01

    A theoretical overview of the stochastic dynamic analysis of a floating bridge structure is presented. Emphasis is on the wave-induced response and the waves on the sea surface are idealized as a zero mean stationary Gaussian process. The first-order wave load processes are derived using linear potential theory and the structural idealization is based on the Finite Element Method. A frequency response calculation is presented for a simplified floating bridge structure example emphasising the ...

  18. Fear of Floating: Exchange Rate Flexibility Indices

    OpenAIRE

    Reinhart, Carmen

    2001-01-01

    Many emerging market countries have suffered financial crises. One view blames soft pegs for these crises. Adherents to that view suggest that countries move to corner solutions--hard pegs or floating exchange rates. We analyze the behavior of exchange rates, reserves, and interest rates to assess whether there is evidence that country practice is moving toward corner solutions. We focus on whether countries that claim they are floating are indeed doing so. We find that countries that say th...

  19. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  20. Sensitivity analysis of floating offshore wind farms

    International Nuclear Information System (INIS)

    Castro-Santos, Laura; Diaz-Casas, Vicente

    2015-01-01

    Highlights: • Develop a sensitivity analysis of a floating offshore wind farm. • Influence on the life-cycle costs involved in a floating offshore wind farm. • Influence on IRR, NPV, pay-back period, LCOE and cost of power. • Important variables: distance, wind resource, electric tariff, etc. • It helps to investors to take decisions in the future. - Abstract: The future of offshore wind energy will be in deep waters. In this context, the main objective of the present paper is to develop a sensitivity analysis of a floating offshore wind farm. It will show how much the output variables can vary when the input variables are changing. For this purpose two different scenarios will be taken into account: the life-cycle costs involved in a floating offshore wind farm (cost of conception and definition, cost of design and development, cost of manufacturing, cost of installation, cost of exploitation and cost of dismantling) and the most important economic indexes in terms of economic feasibility of a floating offshore wind farm (internal rate of return, net present value, discounted pay-back period, levelized cost of energy and cost of power). Results indicate that the most important variables in economic terms are the number of wind turbines and the distance from farm to shore in the costs’ scenario, and the wind scale parameter and the electric tariff for the economic indexes. This study will help investors to take into account these variables in the development of floating offshore wind farms in the future

  1. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  2. Quantum W3 gravity

    International Nuclear Information System (INIS)

    Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY

    1991-11-01

    We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity

  3. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  4. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  5. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  6. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  7. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  8. Northern Oklahoma Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...

  9. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  10. Fractional thermoelasticity

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research.  The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators.  This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...

  11. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  12. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  13. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  14. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  15. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  16. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  17. Floating seal system for rotary devices

    Science.gov (United States)

    Banasiuk, H.A.

    1983-08-23

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

  18. Dispersion measurements from Sofar floats on the Iberian Abyssal plain

    International Nuclear Information System (INIS)

    Rees, J.M.; Gmitrowicz, M.

    1989-01-01

    Tracks of SOFAR floats launched on the Iberian Abyssal Plain are presented. The floats were launched in two groups in early October 1984 and mid-February 1985 to a nominal depth of 2500 m. Of these floats, 4 from the first deployment and 2 from the second functioned properly. Float signals were recorded by four autonomous listening stations at a depth of 1900 m. These preliminary results show the tracks of floats up to July 1986 and represent 3600 float days of information. The main task of the experiment was to especially study the dispersion of radioactive substances

  19. Experiments with the Skylab fire detectors in zero gravity

    Science.gov (United States)

    Linford, R. M. F.

    1972-01-01

    The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.

  20. Scales of gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory

    2002-01-01

    We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework

  1. Economic Floating Waste Detectionfor Surface Cleaning Robots

    Directory of Open Access Journals (Sweden)

    Sumroengrit Jakkrit

    2017-01-01

    Full Text Available Removing waste out of water surface is a routine task and can be operated by using autonomous surface cleaning robots. This paper presents amethodoflaser-based floating waste detection for surface robot guidance when waste positions are unknown beforehand. Basing on concept of refraction and reflection of laser ray, the proposed laser-based technique is proven to be applicable on floating waste detection. The economic waste detector is constructed and mounted on the robot. Five DOF equations of motion are formulated for calculation of waste position incorporating distance measured by the laser and also the robot motion caused by external wind force as well as water surface tension. Experiments were conducted on a pond with calm water and results show that the presented economic waste detection successfully identify and locate position of plastic bottles floating on water surface within the range of 5 meters.

  2. FLOAT2 WP4: Development of Materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Aarup, Bendt

    This report refers to complementary material testing to support the design and production of UHPC floaters for installation in the Wave Star Machine under FLOAT2 project. The main objective of WP4 is the characterization of mechanical properties of fiber-reinforced UHPC.......This report refers to complementary material testing to support the design and production of UHPC floaters for installation in the Wave Star Machine under FLOAT2 project. The main objective of WP4 is the characterization of mechanical properties of fiber-reinforced UHPC....

  3. Effects of Electrolyte on Floating Water Bridge

    OpenAIRE

    Hideo Nishiumi; Fumitaka Honda

    2009-01-01

    Fuchs found phenomena that when high voltage is applied to deionized water filled in two contacted beakers, a floating water bridge forms spontaneously. In this paper, we examined flow direction of water bridge and what effects the addition of electrolytes such as NaCl, NaOH, and N H 4 C l to the floating water bridge would give. We found that ionization degree reduced the length of water bridge though insoluble electrolyte A l 2 O 3 had no effect on the length of water bridge.

  4. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  5. Argo Float Data from the APDRC DAPPER Server, 1995-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The floats are designed to drift at a fixed pressure (usually 1000 dbar) for 10 days. After this period, the floats move to a profiling pressure (usually between...

  6. Floating Inductance and FDNR Using Positive Polarity Current Conveyors

    Directory of Open Access Journals (Sweden)

    K. Pal

    2004-01-01

    Full Text Available A generalized circuit based on five positive polarity second-generation current conveyors is introduced. The circuit simulates a floating inductance, capacitor floatation circuit and floating fdnr. All these circuits use grounded capacitors.

  7. Granular flow through an aperture: influence of the packing fraction

    OpenAIRE

    Alejandra Aguirre , Maria; De Schant , Rosario; Géminard , Jean-Christophe

    2014-01-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g. silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains a...

  8. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  9. 14 CFR 25.753 - Main float design.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 25.753 Section 25.753 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.753 Main float design...

  10. Validation of salinity data from ARGO floats: Comparison between the older ARGO floats and that of later deployments

    Digital Repository Service at National Institute of Oceanography (India)

    Youn, Y.-H.; Lee, H.; Chang, Y.-S.; Pankajakshan, T.

    Continued observation of ARGO floats or years (about 4 years) makes the conductivity sensor more vulnerable to fouling by marine life and associated drift in salinity measurements. In this paper, we address this issue by making use of floats...

  11. Dealing with Human Death: The Floating Perspective.

    Science.gov (United States)

    Kenyon, Gary M.

    1991-01-01

    Explores approach to dealing with human death. Describes floating perspective, based on insights from Choron and Jaspers, as suggesting it is possible to deal with human death by refraining from taking ultimate position on the problem. Position encourages openness to death. Examines role of anxiety and describes possible meaningful outcomes of…

  12. Gastroretentive Floating Microspheres of Silymarin: Preparation and ...

    African Journals Online (AJOL)

    Erah

    simulated gastric fluid for at least 12 h, and, therefore, could potentially ... systems (GRFDDS) have a bulk density ... The objective of this work was to develop and characterise gastroretentive floating microspheres of silymarin which, following oral administration, would exhibit .... hydrochloric acid to maintain sink conditions.

  13. Reis kosmosesse : [Floating-kambrist] / Marika Makarova

    Index Scriptorium Estoniae

    Makarova, Marika

    2011-01-01

    Ameerika psühholoogi John C. Lilly poolt kasutusele võetud Floating-kambrist ehk hõljumisvannist, mis aeglustab ajulaineid ning seeläbi aitab vähendada lihaspinget, stressi, ärevust, peavalusid, vererõhku ning parandada und, selgroo- ja kaelavigastusi, suurendada loovust ja heaolu jne

  14. A novel floating offshore wind turbine concept

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Friis Pedersen, Troels

    2009-01-01

    This paper will present a novel concept of a floating offshore wind turbine. The new concept is intended for vertical-axis wind turbine technology. The main purpose is to increase simplicity and to reduce total costs of an installed offshore wind farm. The concept is intended for deep water...... and large size turbines....

  15. Effects of Electrolyte on Floating Water Bridge

    Directory of Open Access Journals (Sweden)

    Hideo Nishiumi

    2009-01-01

    spontaneously. In this paper, we examined flow direction of water bridge and what effects the addition of electrolytes such as NaCl, NaOH, and NH4Cl to the floating water bridge would give. We found that ionization degree reduced the length of water bridge though insoluble electrolyte Al2O3 had no effect on the length of water bridge.

  16. IEEE Standard for Floating Point Numbers

    Indian Academy of Sciences (India)

    IAS Admin

    Floating point numbers are an important data type in compu- tation which is used ... quite large! Integers are ... exp, the value of the exponent will be taken as (exp –127). The ..... bit which is truncated is 1, add 1 to the least significant bit, else.

  17. Floating car data for traffic monitoring

    DEFF Research Database (Denmark)

    Torp, Kristian; Lahrmann, Harry Spaabæk

    2005-01-01

    This paper describes a complete prototype system that uses Floating Car Data (FCD) for both automatic and manual detection of queues in traffic. The system is developed under EU’s Tempo program. The systems consists of small hardware units placed in mobile traffic report units (we use taxis...

  18. Two New Families of Floating FDNR Circuits

    Directory of Open Access Journals (Sweden)

    Ahmed M. Soliman

    2010-01-01

    Full Text Available Two new configurations for realizing ideal floating frequency-dependent negative resistor elements (FDNR are introduced. The proposed circuits are symmetrical and are realizable by four CCII or ICCII or a combination of both. Each configuration is realizable by eight different circuits. Simulation results are included to support the theory.

  19. Floating plant dominance as a stable state

    NARCIS (Netherlands)

    Scheffer, M.; Szabo, S.; Gragnani, A.; Nes, van E.H.; Rinaldi, S.; Kautsky, N.; Norberg, J.; Roijackers, R.M.M.; Franken, R.J.M.

    2003-01-01

    The authors demonstrate that floating-plant dominance can be a self-stabilizing ecosystem state, which may explain its notorious persistence in many situations. Their results, based on experiments, field data, and models (in Dutch ditches and Lake Kariba, Zimbabwe), represent evidence for

  20. Floating convection barrier for evaporation source

    International Nuclear Information System (INIS)

    1975-01-01

    A floating matrix of titanium in an uranium evaporation source, melted by an electron beam, serves as a barrier for preventing cooler material from reaching the evaporation area. This construction allows a big volume of melted uranium to be present and new uranium to be furnished in regulated intervals without manual intervention

  1. Gastroretentive Floating Microspheres of Silymarin: Preparation and ...

    African Journals Online (AJOL)

    Methods: Cellulose microspheres – formulated with hydroxylpropyl methylcellulose (HPMC) and ethyl cellulose (EC) – and Eudragit microspheres – formulated with Eudragit® S 100 (ES) and Eudragit® RL (ERL) - were prepared by an emulsion-solvent evaporation method. The floating microspheres were evaluated for flow ...

  2. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  3. Gravity interpretation via EULDPH

    International Nuclear Information System (INIS)

    Ebrahimzadeh Ardestani, V.

    2003-01-01

    Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented

  4. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    Science.gov (United States)

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Development of floating strip micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, Jonathan

    2014-04-28

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10{sup 34} cm{sup -2}s{sup -1} around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm{sup 2} floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm{sup 2} floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm{sup 2} floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the

  6. Development of floating strip micromegas detectors

    International Nuclear Information System (INIS)

    Bortfeldt, Jonathan

    2014-01-01

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10 34 cm -2 s -1 around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm 2 floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm 2 floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm 2 floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the track inclination in a single

  7. Anomalies and gravity

    International Nuclear Information System (INIS)

    Mielke, Eckehard W.

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed

  8. Fractional fermions

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    The theory of fermion fractionization due to topologically generated fermion ground states is presented. Applications to one-dimensional conductors, to the MIT bag, and to the Hall effect are reviewed. (author)

  9. influence of gravity

    Directory of Open Access Journals (Sweden)

    Animesh Mukherjee

    1991-01-01

    Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.

  10. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  11. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  12. Venus: radar determination of gravity potential.

    Science.gov (United States)

    Shapiro, I I; Pettengill, G H; Sherman, G N; Rogers, A E; Ingalls, R P

    1973-02-02

    We describe a method for the determination of the gravity potential of Venus from multiple-frequency radar measurements. The method is based on the strong frequency dependence of the absorption of radio waves in Venus' atmosphere. Comparison of the differing radar reflection intensities at several frequencies yields the height of the surface relative to a reference pressure contour; combination with measurements of round-trip echo delays allows the pressure, and hence the gravity potential contour, to be mapped relative to the mean planet radius. Since calibration data from other frequencies are unavailable, the absorption-sensitive Haystack Observatory data have been analyzed under the assumption of uniform surface reflectivity to yield a gravity equipotential contour for the equatorial region and a tentative upper bound of 6 x 10(-4) on the fractional difference of Venus' principal equatorial moments of inertia. The minima in the equipotential contours appear to be associated with topographic minima.

  13. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  14. Effect of contact angle on the orientation, stability, and assembly of dense floating cubes.

    Science.gov (United States)

    Daniello, Robert; Khan, Kashan; Donnell, Michael; Rothstein, Jonathan P

    2014-02-01

    In this paper, the effect of contact angle, density, and size on the orientation, stability, and assembly of floating cubes was investigated. All the cubes tested were more dense than water. Floatation occurred as a result of capillary stresses induced by deformation of the air-water interface. The advancing contact angle of the bare acrylic cubes was measured to be 85°. The contact angle of the cubes was increased by painting the cubes with a commercially available superhydrophobic paint to reach an advancing contact angle of 150°. Depending on their size, density, and contact angle, the cubes were observed to float in one of three primary orientations: edge up, vertex up, and face up. An experimental apparatus was built such that the sum of the gravitational force, buoyancy force, and capillary forces could be measured using a force transducer as a function of cube position as it was lowered through the air-water interface. Measurements showed that the maximum capillary forces were always experienced for the face up orientation. However, when floatation was possible in the vertex up orientation, it was found to be the most stable cube orientation because it had the lowest center of gravity. A series of theoretical predictions were performed for the cubes floating in each of the three primary orientations to calculate the net force on the cube. The theoretical predictions were found to match the experimental measurements well. A cube stability diagram of cube orientation as a function of cube contact angle and size was prepared from the predictions of theory and found to match the experimental observations quite well. The assembly of cubes floating face up and vertex up were also studied for assemblies of two, three, and many cubes. Cubes floating face up were found to assemble face-to-face and form regular square lattice patterns with no free interface between cubes. Cubes floating vertex up were found to assemble in a variety of different arrangements

  15. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  16. Generalized pure Lovelock gravity

    Science.gov (United States)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  17. Generalized pure Lovelock gravity

    Directory of Open Access Journals (Sweden)

    Patrick Concha

    2017-11-01

    Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  18. Propagation characteristics of dust–acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    International Nuclear Information System (INIS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-01-01

    The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  19. Propagation characteristics of dust–acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Mangilal, E-mail: mangilal@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mukherjee, S.; Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2016-08-15

    The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  20. Voltage-Controlled Floating Resistor Using DDCC

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2011-04-01

    Full Text Available This paper presents a new simple configuration to realize the voltage-controlled floating resistor, which is suitable for integrated circuit implementation. The proposed resistor is composed of three main components: MOS transistor operating in the non-saturation region, DDCC, and MOS voltage divider. The MOS transistor operating in the non-saturation region is used to configure a floating linear resistor. The DDCC and the MOS transistor voltage divider are used for canceling the nonlinear component term of MOS transistor in the non-saturation region to obtain a linear current/voltage relationship. The DDCC is employed to provide a simple summer of the circuit. This circuit offers an ease for realizing the voltage divider circuit and the temperature effect that includes in term of threshold voltage can be compensated. The proposed configuration employs only 16 MOS transistors. The performances of the proposed circuit are simulated with PSPICE to confirm the presented theory.

  1. Floating Gate CMOS Dosimeter With Frequency Output

    Science.gov (United States)

    Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.

    2012-04-01

    This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.

  2. Fresh water generators onboard a floating platform

    International Nuclear Information System (INIS)

    Tewari, P.K.; Verma, R.K.; Misra, B.M.; Sadhulkan, H.K.

    1997-01-01

    A dependable supply of fresh water is essential for any ocean going vessel. The operating and maintenance personnel on offshore platforms and marine structures also require a constant and regular supply of fresh water to meet their essential daily needs. A seawater thermal desalination unit onboard delivers good quality fresh water from seawater. The desalination units developed by Bhabha Atomic Research Centre (BARC) suitable for ocean going vessels and offshore platforms have been discussed. Design considerations of such units with reference to floating platforms and corrosive environments have been presented. The feasibility of coupling a low temperature vacuum evaporation (LTVE) desalination plant suitable for an onboard floating platform to a PHWR nuclear power plant has also been discussed. (author). 1 ref., 3 figs, 2 tabs

  3. Spectral analysis of Floating Car Data

    OpenAIRE

    Gössel, F.; Michler, E.; Wrase, B.

    2003-01-01

    Floating Car Data (FCD) are one important data source in traffic telematic systems. The original variable in these systems is the vehicle velocity. The paper analyses the measured value “vehicle velocity" by methods of information technology. Consequences for processing, transmission and storage of FCD under condition of limited resources are discussed. Starting point of the investigation is the analysis of spectral characteristics of velocity-time-profiles. The spectra are determined by...

  4. Ships as future floating farm systems?

    Science.gov (United States)

    Moustafa, Khaled

    2018-04-03

    Environmental and agriculture challenges such as severe drought, desertification, sprawling cities and shrinking arable lands in large regions in the world compel us to think about alternative and sustainable farming systems. Ongoing projects to build floating cities in the sea suggest that building specific ships for farming purposes (as farming ships or farming boats) would also be attainable to introduce new farming surfaces and boost food production worldwide to cope with food insecurity issues.

  5. Traumatic Floating Clavicle: A Case Report

    Directory of Open Access Journals (Sweden)

    Choo CY

    2012-07-01

    Full Text Available Shoulder girdle injuries after high energy traumatic impacts to the shoulder have been well documented. Based on the series of 1603 injuries of the shoulder girdle reported by Cave and colleagues, 85% of the dislocations were glenohumeral, 12% acromioclavicular and 3% sternoclavicular. Less frequently described are injuries involving both the sternoclavicular and acromioclavicular joints simultaneously in one extremity. The present case report discusses a case of traumatic floating clavicle associated with ipsilateral forearm and wrist injury which was treated surgically.

  6. Floating nuclear power plant safety assurance principles

    International Nuclear Information System (INIS)

    Zvonarev, B.M.; Kuchin, N.L.; Sergeev, I.V.

    1993-01-01

    In the north regions of the Russian federation and low density population areas, there is a real necessity for ecological clean energy small power sources. For this purpose, floating nuclear power plants, designed on the basis of atomic ship building engineering, are being conceptualized. It is possible to use the ship building plants for the reactor purposes. Issues such as radioactive waste management are described

  7. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  8. Predicting specific gravity and viscosity of biodiesel fuels

    OpenAIRE

    Tesfa, Belachew; Mishra, Rakesh; Gu, Fengshou; Ball, Andrew

    2009-01-01

    Biodiesel is a promising non-toxic and biodegradable alternative fuel in transport sector. Of all the biodiesel properties, specific gravity and viscosity are the most significant for the effects they have on the utilization of biodiesel fuels in unmodified engines. This paper presents models, which have been derived from experimental data, for predicting the specific gravity and dynamic viscosity of biodiesel at various temperatures and fractions. In addition a model has also been developed ...

  9. Collector floating potentials in a discharge plasma

    International Nuclear Information System (INIS)

    Cercek, M.; Gyergyek, T.

    1999-01-01

    We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)

  10. Turbomachinery systems for floating production applications

    Energy Technology Data Exchange (ETDEWEB)

    Windt, Jonathan P.; Kurz, Rainer [Solar Turbines Incorporated, San Diego, CA (United States)

    2008-07-01

    Since 1995 there has been a dramatic increase in oil and gas exploration and production using floating platforms in deeper waters located further offshore. This exploration started with tension leg platforms, progressed through SPARs and Semi-Submersibles, and later evolved into Floating Production Storage and Offloading (FPSO) vessels. Turbomachinery equipment installed on a floating platform or vessel will be expected to operate in the same manner as a land based machine, but in a variety of climate and environmental conditions that now includes motion. To operate successfully, specific design considerations for the turbo-machinery packages are required. It is critical to take into account the type of vessel, the expected list, trim and dynamic motion angles, the dynamic forces applied, the expected deck deflection as a result of those forces, understand the applicable class requirement, and where the equipment will be located on the vessel. This information is then translated into the design conditions to determine the type of mounting method to be used to attach the turbo-machinery package to the deck, the expected accelerations for structural analysis, and oil tank and system designs for fluid management. Furthermore, compressor designs need to allow utmost flexibility to adapt to changing operating conditions. (author)

  11. Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion

    Science.gov (United States)

    Zhang, Wei-Guo; Li, Zhe; Liu, Yong-Jun

    2018-01-01

    In this paper, we study the pricing problem of the continuously monitored fixed and floating strike geometric Asian power options in a mixed fractional Brownian motion environment. First, we derive both closed-form solutions and mixed fractional partial differential equations for fixed and floating strike geometric Asian power options based on delta-hedging strategy and partial differential equation method. Second, we present the lower and upper bounds of the prices of fixed and floating strike geometric Asian power options under the assumption that both risk-free interest rate and volatility are interval numbers. Finally, numerical studies are performed to illustrate the performance of our proposed pricing model.

  12. Nucleolar proteins change in altered gravity

    Science.gov (United States)

    Sobol, M. A.; Kordyum, E. L.; Gonzalez-Camacho, F.; Medina, F. J.

    Discovery of gravisensitivity of cells no specified to gravity perception focused continuous attention on an elucidation of mechanisms involved in altered gravity effects at the different levels of cellular organization A nucleolus is the nuclear domain in which the major portion of ribosome biogenesis takes place This is a basic process for cell vitality beginning with the transcription of rDNA followed by processing newly synthesized pre-rRNA molecules A wide range of nucleolar proteins plays a highly significant role in all stages of biosynthesis of ribosomes Different steps of ribosome biogenesis should respond to various external factors affecting generally the cell metabolism Nevertheless a nucleolus remains not enough studied under the influence of altered environmental conditions For this reason we studied root apices from 2-day old Lepidium sativum seedlings germinated and grown under slow horizontal clinorotation and stationary conditions in darkness The extraction of cell nuclei followed by sequential fractionation of nuclear proteins according to their solubility in buffers of increasing ionic strength was carried out This procedure gave rise to 5 distinct fractions We analyzed nuclear subproteomes of the most soluble fraction called S2 It is actually a functionally significant fraction consisting of ribonucleoproteins actively engaged in pre-rRNA synthesis and processing 2D-electrophoresis of S2 fraction proteins was carried out The gels were silver stained and stained gels were scanned and analyzed

  13. Floating Oil-Spill Containment Device

    Science.gov (United States)

    Jones, Jack A.

    2012-01-01

    Previous oil containment booms have an open top that allows natural gas to escape, and have significant oil leakage due to wave action. Also, a subsea pyramid oil trap exists, but cannot move relative to moving oil plumes from deepsea oil leaks. The solution is to have large, moveable oil traps. One version floats on the sea surface and has a flexible tarp cover and a lower weighted skirt to completely entrap the floating oil and natural gas. The device must have at least three sides with boats pulling at each apex, and sonar or other system to track the slowly moving oil plume, so that the boats can properly locate the booms. The oil trap device must also have a means for removal of the oil and the natural gas. A second design version has a flexible pyramid cover that is attached by lines to ballast on the ocean floor. This is similar to fixed, metal pyramid oil capture devices in the Santa Barbara Channel off the coast of California. The ballast lines for the improved design, however, would have winches that can move the pyramid to always be located above the oil and gas plume. A third design is a combination of the first two. It uses a submerged pyramid to trap oil, but has no anchor and uses boats to locate the trap. It has ballast weights located along the bottom of the tarp and/or at the corners of the trap. The improved floating oil-spill containment device has a large floating boom and weighted skirt surrounding the oil and gas entrapment area. The device is triangular (or more than three sides) and has a flexible tarp cover with a raised gas vent area. Boats pull on the apex of the triangles to maintain tension and to allow the device to move to optimum locations to trap oil and gas. The gas is retrieved from a higher buoyant part of the tarp, and oil is retrieved from the floating oil layer contained in the device. These devices can be operated in relatively severe weather, since waves will break over the devices without causing oil leaking. Also, natural

  14. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  15. The Future of Gravity

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.

  16. Scaling in quantum gravity

    Directory of Open Access Journals (Sweden)

    J. Ambjørn

    1995-07-01

    Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.

  17. GRAVITY ANOMALIES OF THE MOON

    Directory of Open Access Journals (Sweden)

    S. G. Pugacheva

    2015-01-01

    Full Text Available The source of gravity anomalies of the Moon are large mascons with a high mass concentration at a depth of volcanic plains and lunar Maria. New data on the gravitational field of the Moon were obtained from two Grail spacecrafts. The article presents the data of physical and mechanical properties of the surface soil layer of the lunar Maria and gives an assessment of the chemical composition of the soil. There have been calculated heterogeneity parameters of the surface macro-relief of the lunar Maria: albedo, soil density, average grain diameter of the particles forming the surface layer and the volume fraction occupied by particles. It can be assumed that mascons include rich KREEP rocks with a high content of thorium and iron oxide. Formation of mascons is connected with intensive development of basaltic volcanism on the Moon in the early periods of its existence.

  18. Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum

    International Nuclear Information System (INIS)

    Cui Weiguang; Zhang Pengjie; Yang Xiaohu

    2010-01-01

    A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter ζ, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution (ζ=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by ∼30% for 10% deviation from GR (|ζ-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.

  19. Fraction Reduction through Continued Fractions

    Science.gov (United States)

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  20. Investigation of Tank 241-AW-104 Composite Floating Layer

    Energy Technology Data Exchange (ETDEWEB)

    Meznarich, H. K. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Bolling, S. D. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Lachut, J. S. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Cooke, G. A. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States)

    2018-02-27

    Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lower than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.

  1. Gravity Data for Egypt

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (71 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received in...

  2. New massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.

    2012-01-01

    We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.

  3. DMA Antarctic Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (65,164 records) were gathered by various governmental organizations (and academia) using a variety of methods. The data base was received...

  4. Gravity Data for Minnesota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (55,907 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received...

  5. Stability in designer gravity

    International Nuclear Information System (INIS)

    Hertog, Thomas; Hollands, Stefan

    2005-01-01

    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed

  6. Carroll versus Galilei gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2017-03-30

    We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.

  7. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, Ruth M

    2006-01-01

    A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday

  8. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  9. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  10. On higher derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1987-01-01

    A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt

  11. What Is Gravity?

    Science.gov (United States)

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  12. The floating knee: epidemiology, prognostic indicators & outcome following surgical management

    OpenAIRE

    Yesupalan Rajam S; Rethnam Ulfin; Nair Rajagopalan

    2007-01-01

    Abstract Background Floating Knee injuries are complex injuries. The type of fractures, soft tissue and associated injuries make this a challenging problem to manage. We present the outcome of these injuries after surgical management. Methods 29 patients with floating knee injuries were managed over a 3 year period. This was a prospective study were both fractures of the floating knee injury were surgically fixed using different modalities. The associated injuries were managed appropriately. ...

  13. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  14. Gravity Before Einstein and Schwinger Before Gravity

    Science.gov (United States)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  15. Extended Theories of Gravity

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; De Laurentis, Mariafelicia

    2011-01-01

    Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.

  16. Stress analysis and mitigation measures for floating pipeline

    Science.gov (United States)

    Wenpeng, Guo; Yuqing, Liu; Chao, Li

    2017-03-01

    Pipeline-floating is a kind of accident with contingency and uncertainty associated to natural gas pipeline occurring during rainy season, which is significantly harmful to the safety of pipeline. Treatment measures against pipeline floating accident are summarized in this paper on the basis of practical project cases. Stress states of pipeline upon floating are analyzed by means of Finite Element Calculation method. The effectiveness of prevention ways and subsequent mitigation measures upon pipeline-floating are verified for giving guidance to the mitigation of such accidents.

  17. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    Science.gov (United States)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  18. Advantages of floating covers with LLDPE Liners

    International Nuclear Information System (INIS)

    Munoz Gomez, J. M.

    2014-01-01

    Using floating covers in irrigation pounds and waste dam gives many advantages. It is a very interesting investment for those place with a high evaporation ratio. this is an easy system which improves several aspects in irrigation or drinkable water reservoirs, mainly it saves water and it saves clean-works (time and cost). It is also used in waste dam to deodorization. Time ago this application was developed with PVC liners and TPO liners, now the innovation is LLDPE liners which improve mechanical properties, durability and an easier installation. This paper develops the state of art of this design technology, and the back ground of our experience. (Author)

  19. Experiments in a floating water bridge

    Science.gov (United States)

    Woisetschläger, Jakob; Gatterer, Karl; Fuchs, Elmar C.

    2010-01-01

    In a high-voltage direct-current experiment, a watery connection formed between two beakers filled with deionized water, giving the impression of a `floating water bridge'. Having a few millimeters diameter and up to 2.5 cm length, this watery connection reveals a number of interesting phenomena currently discussed in water science. Focusing on optical measurement techniques, the flow through the bridge was visualized and data were recorded such as flow velocity and directions, heat production, density fluctuations, pH values, drag force and mass transfer. To provide a better understanding of the basic phenomena involved the discussion references related literature.

  20. Dynamics of the floating water bridge

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Gatterer, Karl; Holler, Gert; Woisetschlaeger, Jakob

    2008-01-01

    When high voltage is applied to distilled water filled into two beakers close to each other, a water connection forms spontaneously, giving the impression of a floating water bridge (Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. The build-up mechanism, the chemical properties and the dynamics of this bridge as well as related additional phenomena are presented and discussed

  1. The floating desalination complex GEYSER-1

    International Nuclear Information System (INIS)

    Vorobyov, V.M.

    1997-01-01

    A conventional floating desalination complex, GEYSER-1, is presented which is capable of producing 40,000 cubic meters per day (m 3 /d) of fresh water from brackish water or seawater. The complex includes a water intake system, a preliminary water preparation system, a high-pressure pump house and a power installation based on diesel or a gas turbines with service equipment. GEYSER-1 can be transported to the place of operation either by a heavy lift ship or by towing. (author)

  2. Floating Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt

    The concept of harnessing the power of the wind dates all the way back to the first ships traversing the seas. Later, windmills enabled the use of wind power for industrial purposes. Since then, technology has allowed the production of clean renewable energy through the use of wind turbines....... These turbines have traditionally been placed on land, but several factors have urged a move to offshore locations. Now the boundaries are being pushed into deeper and deeper waters, where the idea of floating offshore wind turbines has emerged. In less than a decade, these have gone from scattered small...

  3. Floating retained root lesion mimicking apical periodontitis.

    Science.gov (United States)

    Chung, Ming-Pang; Chen, Chih-Ping; Shieh, Yi-Shing

    2009-10-01

    A case of a retained root tip simulating apical periodontitis on radiographic examination is described. The retained root tip, originating from the left lower first molar, floated under the left lower second premolar apical region mimicking apical periodontitis. It appeared as an ill-defined periapical radiolucency containing a smaller radiodense mass on radiograph. The differential diagnosis included focal sclerosing osteomyelitis (condensing osteitis) and ossifying fibroma. Upon exicisional biopsy, a retained root associated with granulation tissue was found. After 1-year follow-up, the patient was asymptomatic and the periradicular lesion was healing. Meanwhile, the associated tooth showed a normal response to stimulation testing.

  4. Near-Shore Floating Wave Energy Converters

    DEFF Research Database (Denmark)

    Ruol, Piero; Zanuttigh, Barbara; Martinelli, Luca

    2011-01-01

    and transmission characteristics are approximated to functions of wave height, period and obliquity. Their order of magnitude are 20% and 80%, respectively. It is imagined that an array of DEXA is deployed in front of Marina di Ravenna beach (IT), a highly touristic site of the Adriatic Coast. Based on the CERC......Aim of this note is to analyse the possible application of a Wave Energy Converter (WEC) as a combined tool to protect the coast and harvest energy. Physical model tests are used to evaluate wave transmission past a near-shore floating WEC of the wave activated body type, named DEXA. Efficiency...

  5. Animal Diet Formulation with Floating Price

    Directory of Open Access Journals (Sweden)

    S.H Nasseri

    2016-12-01

    Full Text Available In the process of milk production, the highest cost relates to animal feed. Based on reports provided by the experts, around seventy percent of dairy livestock costs included feed costs. In order to minimize the total price of livestock feed, according to the limits of feed sources in each region or season, and also the transportation and maintenance costs and ultimately milk price reduction, optimization of the livestock nutrition program is an essential issue. Because of the uncertainty and lack of precision in the optimal food ration done with existing methods based on linear programming, there is a need to use appropriate methods to meet this purpose. Therefore, in this study formulation of completely mixed nutrient diets of dairy cows is done by using a fuzzy linear programming in early lactation. Application of fuzzy optimization method and floating price make it possible to formulate and change the completely mixed diets with adequate safety margins. Therefore, applications of fuzzy methods in feed rations of dairy cattle are recommended to optimize the diets. Obviously, it would be useful to design suitable software, which provides the possibility of using floating prices to set feed rations by the use of fuzzy optimization method.

  6. Water-Pressure Distribution on Seaplane Float

    Science.gov (United States)

    Thompson, F L

    1929-01-01

    The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)

  7. Feasibility study on floating nuclear power station

    International Nuclear Information System (INIS)

    Kajima, Ryoichi

    1987-01-01

    It is stipulated that nuclear power plants are to be built on solid rock bases on land in Japan. However, there are a limited number of appropriate siting grounds. The Central Research Institute of Electric Power Industry has engaged since 1981 in the studies on the construction technology of power plants, aiming at establishing new siting technology to expand the possible siting areas for nuclear power plants. Underground siting is regarded as a proven technology due to the experience in underground hydroelectric power plants. The technology of siting on quaternary ground is now at the stage of verification. In this report, the outline of floating type offshore/inshore siting technology is introduced, which is considered to be feasible in view of the technical and economical aspects. Three fixed structure types were selected, of which the foundations are fixed to seabed, plant superstructures are above sea surface, and which are floating type. Aiming at ensuring the aseismatic stability of the plant foundations, the construction technology is studied, and the structural concept omitting buoyancy is possible. The most practical water depth is not more than 20 m. The overall plant design, earthquake isolation effect and breakwater are described. (Kako, I.)

  8. Floating / Travelling Gardens of (Postcolonial Time

    Directory of Open Access Journals (Sweden)

    Carmen Concilio

    2017-11-01

    Full Text Available This essay on travelling gardens of (postcolonial time opens with two iconic images of floating gardens in contemporary postcolonial literature: Will Phantom’s bio-garbage rafter, which saves him in the midst of a cyclone in Carpentaria (2008, by the Aboriginal author Alexis Wright, and Pi’s carnivore island-organism in Life of Pi (2001, which cannot save him from his shipwreck, by Canadian writer Yan Martel. These floating, hybrid gardens of the Anthropocene precede the real travelling gardens of both Michael Ondaatje’s The Cat’s Table (2011 and Amitav Ghosh’s Ibis Trilogy (2008-2015, two authors who both indirectly and directly tell the story of botanical gardens in Asia, and of plant and seed smuggling and transplantation (“displacement” also hinting at their historical and economic colonial implications. For, after all, botanical gardens imply a very specific version of care, Cura (Robert Pogue Harrison 2009, while embodying a precise, imperial scientific and economic project (Brockway 2002; Johnson 2011.

  9. Enhanced load-carrying capacity of hairy surfaces floating on water.

    Science.gov (United States)

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-05-08

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin.

  10. 14 CFR 136.11 - Helicopter floats for over water.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter floats for over water. 136.11... TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Air Tour Safety Standards § 136.11 Helicopter floats for over water. (a) A helicopter used in commercial air tours over water beyond the shoreline must...

  11. Production of floating pellets using appropriate methods | Suleiman ...

    African Journals Online (AJOL)

    The study investigated into the use of floating materials like candle wax, yeast and baking powder to achieve pellet buoyancy. Ten diets were formulated with incorporation of floating agents; Diet I-YBCT- (yeast-baking powder in cold water -toasted), Diet II-YBCU- (yeast-baking powder in cold water -untoasted) Diet III ...

  12. Design and Evaluation of an Oral Floating Matrix Tablet of ...

    African Journals Online (AJOL)

    Purpose: To develop floating matrix tablets of salbutamol sulphate using ethyl cellulose and acrycoat S-100 as polymers, and sodium bicarbonate, citric acid and tartaric acid as gas generating agents. Methods: Twenty four formulations were prepared and segregated into four major categories, A to D. The floating tablets ...

  13. Response estimation for a floating bridge using acceleration output only

    NARCIS (Netherlands)

    Petersen, Øyvind Wiig; Øiseth, Ole; Nord, Torodd Skjerve; Lourens, E.; Sas, P.; Moens, D.; van de Walle, A.

    2016-01-01

    The Norwegian Public Roads Administration is reviewing the possibility of using floating bridges as fjord crossings. The dynamic behaviour of very long floating bridges with novel designs are prone to uncertainties. Studying the dynamic behaviour of existing bridges is valuable for understanding

  14. Development and evaluation of floating microspheres of curcumin in ...

    African Journals Online (AJOL)

    Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence and to study their effect on alloxan-induced diabetic rats. Methods: Floating microsphere were prepared by emulsion-solvent diffusion method, using hydroxylpropyl methylcellulose, chitosan and Eudragit S 100 polymer in ...

  15. Development and Evaluation of Floating Microspheres of Curcumin ...

    African Journals Online (AJOL)

    Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence time and increased drug bioavailability. Methods: Floating microsphere were prepared by emulsion solvent diffusion method, using hydroxylpropyl methylcellulose (HPMC), ethyl cellulose (EC), Eudragit S 100 polymer in ...

  16. Herbal carrier-based floating microparticles of diltiazem ...

    African Journals Online (AJOL)

    Purpose: To formulate and characterize a gastroretentive floating drug delivery system for diltiazem hydrochloride using psyllium husk and sodium alginate as natural herbal carriers to improve the therapeutic effect of the drug in cardiac patients. Methods: Floating microparticles containing diltiazem hydrochloride were ...

  17. Floating Solar Photovoltaics Gaining Ground | State, Local, and Tribal

    Science.gov (United States)

    flotovoltaics (a trademarked term) or floating solar, represent an emerging application in which PV panels are , including efficiency gains (due to water cooling the panels), reductions in unwanted algae growth, slower 994 panels floating on 130 foam-filled pontoons atop the winery's irrigation pond and an additional

  18. Quantum Gravity Experiments

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2015-10-01

    Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.

  19. Gravity and strings

    CERN Document Server

    Ortín, Tomás

    2015-01-01

    Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

  20. Solitons in Newtonian gravity

    International Nuclear Information System (INIS)

    Goetz, G.

    1988-01-01

    It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)

  1. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  2. No slip gravity

    Science.gov (United States)

    Linder, Eric V.

    2018-03-01

    A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.

  3. The quantization of gravity

    CERN Document Server

    Gerhardt, Claus

    2018-01-01

    A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...

  4. Building water bridges in air: Electrohydrodynamics of the floating water bridge

    Science.gov (United States)

    Marín, Álvaro G.; Lohse, Detlef

    2010-12-01

    The interaction of electrical fields and liquids can lead to a phenomenon that defies intuition. Some famous examples can be found in electrohydrodynamics as Taylor cones, whipping jets, or noncoalescing drops. A less famous example is the floating water bridge: a slender thread of water held between two glass beakers in which a high voltage difference is applied. Surprisingly, the water bridge defies gravity even when the beakers are separated at distances up to 2 cm. In this paper, experimental measurements and simple models are proposed and discussed for the stability of the bridge and the source of the flow, revealing an important role of polarization forces on the stability of the water bridge. On the other hand, the observed flow can only be explained due to the non-negligible free charge present in the surface. In this sense, the floating water bridge can be considered as an extreme case of a leaky dielectric liquid [J. R. Melcher and G. I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)].

  5. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  6. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  7. Airborne Gravity: NGS' Gravity Data for AN08 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  8. Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  9. Airborne Gravity: NGS' Gravity Data for EN01 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  10. Airborne Gravity: NGS' Gravity Data for AN03 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  11. Airborne Gravity: NGS' Gravity Data for EN06 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...

  12. Airborne Gravity: NGS' Gravity Data for ES01 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...

  13. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  14. A novel grounded to floating admittance converter with electronic control

    Science.gov (United States)

    Prasad, Dinesh; Ahmad, Javed; Srivastava, Mayank

    2018-01-01

    This article suggests a new grounded to floating admittance convertor employing only two voltage differencing transconductance amplifiers (VDTAs). The proposed circuit can convert any arbitrary grounded admittance into floating admittance with electronically controllable scaling factor. The presented converter enjoys the following beneficial: (1) no requirement of any additional passive element (2) scaling factor can be tuned electronically through bias currents of VDTAs (3) no matching constraint required (4) low values of active/passive sensitivity indexes and (5) excellent non ideal behavior that indicates no deviation in circuit behavior even under non ideal environment. Application of the proposed configuration in realization of floating resistor and floating capacitor has been presented and the workability of these floating elements has been confirmed by active filter design examples. SPICE simulations have been performed to demonstrate the performance of the proposed circuits.

  15. Virial Theorem in Nonlocal Newtonian Gravity

    Directory of Open Access Journals (Sweden)

    Bahram Mashhoon

    2016-05-01

    Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.

  16. Miniaturised Gravity Sensors for Remote Gravity Surveys.

    Science.gov (United States)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.

    2016-12-01

    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  17. Surfing surface gravity waves

    Science.gov (United States)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  18. Towards a quantum gravity

    International Nuclear Information System (INIS)

    Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.

    2011-01-01

    The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)

  19. Terrestrial gravity data analysis for interim gravity model improvement

    Science.gov (United States)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  20. Gravity Data for South America

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...

  1. Interior Alaska Gravity Station Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...

  2. Gravity Station Data for Spain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  3. Gravity Station Data for Portugal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  4. Analysis of Switched-Rigid Floating Oscillator

    Directory of Open Access Journals (Sweden)

    Prabhakar R. Marur

    2009-01-01

    Full Text Available In explicit finite element simulations, a technique called deformable-to-rigid (D2R switching is used routinely to reduce the computation time. Using the D2R option, the deformable parts in the model can be switched to rigid and reverted back to deformable when needed during the analysis. The time of activation of D2R however influences the overall dynamics of the system being analyzed. In this paper, a theoretical basis for the selection of time of rigid switching based on system energy is established. A floating oscillator problem is investigated for this purpose and closed-form analytical expressions are derived for different phases in rigid switching. The analytical expressions are validated by comparing the theoretical results with numerical computations.

  5. Preliminary results from NOAMP deep drifting floats

    International Nuclear Information System (INIS)

    Ollitrault, M.

    1989-01-01

    This paper is a very brief and preliminary outline of first results obtained with deep SOFAR floats in the NOAMP area. The work is now going toward more precise statistical estimations of mean and variable currents, together with better tracking to resolve submesoscales and estimate diffusivities due to mesoscale and smaller scale motions. However the preliminary results confirm that the NOAMP region (and surroundings) has a deep mesoscale eddy field that is considerably more energetic that the mean field (r.m.s. velocities are of order 5 cm s -1 ), although both values are diminished compared to the western basin. A data report containing trajectories and statistics is scheduled to be published by IFREMER in the near future. The project main task is to especially study the dispersion of radioactive substances

  6. Ionizing radiation effects on floating gates

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Visconti, A.; Bonanomi, M.

    2004-01-01

    Floating gate (FG) memories, and in particular Flash, are the dominant among modern nonvolatile memory technologies. Their performance under ionizing radiation was traditionally studied for the use in space, but has become of general interest in recent years. We are showing results on the charge loss from programmed FG arrays after 10 keV x-rays exposure. Exposure to ionizing radiation results in progressive discharge of the FG. More advanced devices, featuring smaller FG, are less sensitive to ionizing radiation that older ones. The reason is identified in the photoemission of electrons from FG, since at high doses it dominates over charge loss deriving from electron/hole pairs generation in the oxides

  7. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  8. Sharing risk and reward - floating production contractorship

    International Nuclear Information System (INIS)

    Gisvold, K.M.

    1994-01-01

    The conference paper summarizes the contractual experience so far gained on Petrojarl 1 floating production system and the associated shuttling services on the Norwegian continental shelf. The paper attempts to draw some lines into the future with respect to development of the business format and the evolution of the relationship between the contractor and the various oil companies in question. Turnkey production services as well as transport and project services to the oil industry are provided. The scope of these services ranges from top of the sea bed wellhead to quayside at the refinery, and is based on ownership control of the employed vessels as well as complete manning of all services. 7 figs

  9. Present situation of floating nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, A [Central Research Inst. of Electric Power industry, Tokyo (Japan)

    1975-08-01

    The present situation of investigation and the future problems of floating nuclear power plants in Japan are examined, referring to those in USA. The committee report on a new power generation system in 1970 is quoted. In this report, the site conditions are supposed to be 5 km offshore, 100m water depth, 60 m/sec wind velocity, 10 m wave height, 200 m wave length, 12 seconds wave period 0.2 g earthquake acceleration, and 2.5 knots tide current. The semisubmersible hull of double construction 15 m under water is employed. A pair of 1,000,000 kW BWR reactors are utilized. A sea water desalting unit using bleed steam from turbines is installed. The solid radioactive wastes packed in drums are disposed in the sea. The design and cost estimation were made. The names of the organizations who have made investigation in this field, namely the Civil Engineering Society, the Sience and Technology Agency and other several centers, are reported. The Chubu Electric Power Company is forwarding its project. Referring to the investigations in USA, the project of Atlantic nuclear power station unit is described. A report of plant design has been submitted by O.P.S. to United States Atomic Energy Commission in 1973. The Coastal Area Facilities Act was instituted in New Jersey in 1973. Although the Atlantic nuclear power station has been postponed, it is the most feasible project. For the realization of a floating nuclear power plant in Japan, investigation must be started on the ground construction that can endure the construction of breakwater in water depth of 14 to 30 meter.

  10. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  11. Colossal creations of gravity

    DEFF Research Database (Denmark)

    Skielboe, Andreas

    Gravity governs the evolution of the universe on the largest scales, and powers some of the most extreme objects at the centers of galaxies. Determining the masses and kinematics of galaxy clusters provides essential constraints on the large-scale structure of the universe, and act as direct probes...

  12. A Trick of Gravity

    Science.gov (United States)

    Newburgh, Ronald

    2010-01-01

    It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.

  13. Discrete Lorentzian quantum gravity

    NARCIS (Netherlands)

    Loll, R.

    2000-01-01

    Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated

  14. Loop quantum gravity

    International Nuclear Information System (INIS)

    Pullin, J.

    2015-01-01

    Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)

  15. A finite quantum gravity

    International Nuclear Information System (INIS)

    Meszaros, A.

    1984-05-01

    In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)

  16. Venus - Ishtar gravity anomaly

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.

    1984-01-01

    The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.

  17. Torsion induces gravity

    International Nuclear Information System (INIS)

    Aros, Rodrigo; Contreras, Mauricio

    2006-01-01

    In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively

  18. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, J.W.

    1992-01-01

    After a brief introduction to Regge calculus, some examples of its application is quantum gravity are described in this paper. In particular, the earliest such application, by Ponzano and Regge, is discussed in some detail and it is shown how this leads naturally to current work on invariants of three-manifolds

  19. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  20. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  2. Even-dimensional topological gravity from Chern-Simons gravity

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.

    2009-01-01

    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  3. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2014-01-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  4. Fractional vector calculus for fractional advection dispersion

    Science.gov (United States)

    Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.

    2006-07-01

    We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.

  5. WindWaveFloat (WWF): Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Alla; Roddier, Dominique; Banister, Kevin

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  6. Floating arterial thrombus related stroke treated by intravenous thrombolysis.

    Science.gov (United States)

    Vanacker, P; Cordier, M; Janbieh, J; Federau, C; Michel, P

    2014-01-01

    The effects of intravenous thrombolysis on floating thrombi in cervical and intracranial arteries of acute ischemic stroke patients are unknown. Similarly, the best prevention methods of early recurrences remain controversial. This study aimed to describe the clinical and radiological outcome of thrombolyzed strokes with floating thrombi. We retrospectively analyzed all thrombolyzed stroke patients in our institution between 2003 and 2010 with floating thrombi on acute CT-angiography before the intravenous thrombolysis. The floating thrombus was diagnosed if an elongated thrombus of at least 5 mm length, completely surrounded by contrast on supra-aortic neck or intracerebral arteries, was present on CT-angiography. Demographics, vascular risk factors, and comorbidities were recorded and stroke etiology was determined after a standardized workup. Repeat arterial imaging was performed by CTA at 24 h or before if clinical worsening was noted and then by Doppler and MRA during the first week and at four months. Of 409 thrombolyzed stroke patients undergoing acute CT Angiography, seven (1.7%) had a floating thrombus; of these seven, six had it in the anterior circulation. Demographics, risk factors and stroke severity of these patients were comparable to the other thrombolyzed patients. After intravenous thrombolysis, the floating thrombi resolved completely at 24 h in four of the patients, whereas one had an early recurrent stroke and one developed progressive worsening. One patient developed early occlusion of the carotid artery with floating thrombus and subsequently a TIA. The two patients with a stable floating thrombus had no clinical recurrences. In the literature, only one of four reported cases were found to have a thrombolysis-related early recurrence. Long-term outcome seemed similar in thrombolyzed patients with floating thrombus, despite a possible increase of very early recurrence. It remains to be established whether acute mechanical thrombectomy could be

  7. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  8. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  9. Float level switch for a nuclear power plant containment vessel

    International Nuclear Information System (INIS)

    Powell, J.G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures

  10. Float level switch for a nuclear power plant containment vessel

    Science.gov (United States)

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  11. Floating cultivation of marine cyanobacteria using coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.; Yoshida, E.; Takeyama, H.; Matsunaga, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Dept. of Biotetechnology

    2000-07-01

    The aim was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. The viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine microalgae was investigated. The marine cyanobacterium Synechococcus sp. NKBC 040607 was found to adhere to floating CFA blocks in liquid culture medium. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  12. Meadow based Fraction Theory

    OpenAIRE

    Bergstra, Jan A.

    2015-01-01

    In the context of an involutive meadow a precise definition of fractions is formulated and on that basis formal definitions of various classes of fractions are given. The definitions follow the fractions as terms paradigm. That paradigm is compared with two competing paradigms for storytelling on fractions: fractions as values and fractions as pairs.

  13. Quantum gravity from noncommutative spacetime

    International Nuclear Information System (INIS)

    Lee, Jungjai; Yang, Hyunseok

    2014-01-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  14. Quantum gravity from noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2014-12-15

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  15. The gravity field and GGOS

    DEFF Research Database (Denmark)

    Forsberg, René; Sideris, M.G.; Shum, C.K.

    2005-01-01

    The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...

  16. Mutual interactions of phonons, rotons, and gravity

    Science.gov (United States)

    Nicolis, Alberto; Penco, Riccardo

    2018-04-01

    We introduce an effective point-particle action for generic particles living in a zero-temperature superfluid. This action describes the motion of the particles in the medium at equilibrium as well as their couplings to sound waves and generic fluid flows. While we place the emphasis on elementary excitations such as phonons and rotons, our formalism applies also to macroscopic objects such as vortex rings and rigid bodies interacting with long-wavelength fluid modes. Within our approach, we reproduce phonon decay and phonon-phonon scattering as predicted using a purely field-theoretic description of phonons. We also correct classic results by Landau and Khalatnikov on roton-phonon scattering. Finally, we discuss how phonons and rotons couple to gravity, and show that the former tend to float while the latter tend to sink but with rather peculiar trajectories. Our formalism can be easily extended to include (general) relativistic effects and couplings to additional matter fields. As such, it can be relevant in contexts as diverse as neutron star physics and light dark matter detection.

  17. New Metrics from a Fractional Gravitational Field

    International Nuclear Information System (INIS)

    El-Nabulsi, Rami Ahmad

    2017-01-01

    Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner–Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske–Kilbas–Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics. (paper)

  18. Cosmological Tests of Gravity

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.

  19. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  20. Antimatter gravity experiment

    International Nuclear Information System (INIS)

    Brown, R.E.; Camp, J.B.; Darling, T.W.

    1990-01-01

    An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development

  1. Lectures on Quantum Gravity

    CERN Document Server

    Gomberoff, Andres

    2006-01-01

    The 2002 Pan-American Advanced Studies Institute School on Quantum Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile, January 4-14, 2002. The school featured lectures by ten speakers, and was attended by nearly 70 students from over 14 countries. A primary goal was to foster interaction and communication between participants from different cultures, both in the layman’s sense of the term and in terms of approaches to quantum gravity. We hope that the links formed by students and the school will persist throughout their professional lives, continuing to promote interaction and the essential exchange of ideas that drives research forward. This volume contains improved and updated versions of the lectures given at the School. It has been prepared both as a reminder for the participants, and so that these pedagogical introductions can be made available to others who were unable to attend. We expect them to serve students of all ages well.

  2. Topics in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lamon, Raphael

    2010-06-29

    Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem

  3. Tensor Galileons and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)

    2017-03-13

    The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.

  4. Topics in quantum gravity

    International Nuclear Information System (INIS)

    Lamon, Raphael

    2010-01-01

    Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem. Furthermore, we

  5. Simplicial quantum gravity

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1985-01-01

    Simplicial approximation and the ideas associated with the Regge calculus provide a concrete way of implementing a sum over histories formulation of quantum gravity. A simplicial geometry is made up of flat simplices joined together in a prescribed way together with an assignment of lengths to their edges. A sum over simplicial geometries is a sum over the different ways the simplices can be joined together with an integral over their edge lengths. The construction of the simplicial Euclidean action for this approach to quantum general relativity is illustrated. The recovery of the diffeomorphism group in the continuum limit is discussed. Some possible classes of simplicial complexes with which to define a sum over topologies are described. In two dimensional quantum gravity it is argued that a reasonable class is the class of pseudomanifolds

  6. TeV gravity at neutrino telescopes

    International Nuclear Information System (INIS)

    Illana, J.I.; Masip, M.; Meloni, D.

    2005-01-01

    Cosmogenic neutrinos reach the Earth with energies around 10 9 GeV, and their interactions with matter will be measured in upcoming experiments (Auger, IceCube). Models with extra dimensions and the fundamental scale at the TeV could imply signals in these experiments. In particular, the production of microscopic black holes by cosmogenic neutrinos has been extensively studied in the literature. Here we make a complete analysis of gravity-mediated interactions at larger distances, where they can be calculated in the eikonal approximation. In these processes a neutrino of energy E ν interacts elastically with a parton inside a nucleon, loses a small fraction y of its energy, and starts a hadronic shower of energy yE ν ν . We analyze the ultraviolet dependence and the relevance of graviton emission in these processes, and show that they are negligible. We also study the energy distribution of cosmogenic events in AMANDA and IceCube and the possibility of multiple-bang events. For any neutrino flux, the observation of an enhanced rate of neutral current events above 100 TeV in neutrino telescopes could be explained by TeV-gravity interactions. The values of the fundamental scale of gravity that IceCube could reach are comparable to those to be explored at the LHC

  7. Instantons and gravity

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1996-01-01

    The problems of application of nonperturbative quantization methods in the theories of the gauge fields and gravity are discussed. Unification of interactions is considered in the framework of the geometrical gauge fields theory. Vacuum conception in the unified theory of interactions and instantons role in the vacuum structure are analyzed. The role of vacuum solutions of Einstein equations in definition of the gauge field vacuum is demonstrated

  8. Gravity, Time, and Lagrangians

    Science.gov (United States)

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  9. Spontaneously generated gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1981-01-01

    We show, following a recent suggestion of Adler, that gravity may arise as a consequence of dynamical symmetry breaking in a scale- and gauge-invariant world. Our calculation is not tied to any specific scheme of dynamical symmetry breaking. A representation for Newton's coupling constant in terms of flat-space quantities is derived. The sign of Newton's coupling constant appears to depend on infrared details of the symmetry-breaking mechanism

  10. Loop Quantum Gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  11. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  12. Semiclassical unimodular gravity

    International Nuclear Information System (INIS)

    Fiol, Bartomeu; Garriga, Jaume

    2010-01-01

    Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately

  13. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  14. Venus gravity fields

    Science.gov (United States)

    Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.

    1981-01-01

    Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.

  15. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine....... This integrated dynamic model takes into account the wind inflow, aerodynamics, hydrodynamics, structural dynamics (wind turbine, floating platform and the mooring lines) and a generator control. This approach calculates dynamic equilibrium at each time step and takes account of the interaction between the rotor...

  16. Wave transmission prediction of multilayer floating breakwater using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Patil, S.G.; Hegde, A.V.

    In the present study, an artificial neural network method has been applied for wave transmission prediction of multilayer floating breakwater. Two neural network models are constructed based on the parameters which influence the wave transmission...

  17. Multifractal analysis of managed and independent float exchange rates

    Science.gov (United States)

    Stošić, Darko; Stošić, Dusan; Stošić, Tatijana; Stanley, H. Eugene

    2015-06-01

    We investigate multifractal properties of daily price changes in currency rates using the multifractal detrended fluctuation analysis (MF-DFA). We analyze managed and independent floating currency rates in eight countries, and determine the changes in multifractal spectrum when transitioning between the two regimes. We find that after the transition from managed to independent float regime the changes in multifractal spectrum (position of maximum and width) indicate an increase in market efficiency. The observed changes are more pronounced for developed countries that have a well established trading market. After shuffling the series, we find that the multifractality is due to both probability density function and long term correlations for managed float regime, while for independent float regime multifractality is in most cases caused by broad probability density function.

  18. High voltage switches having one or more floating conductor layers

    Science.gov (United States)

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  19. WindFloat Pacific Project, Final Scientific and Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Banister, Kevin [Principle Power, Inc., Emeryville, CA (United States)

    2017-01-17

    PPI’s WindFloat Pacific project (WFP) was an up to 30 MW floating offshore wind demonstration project proposed off the Coast of Oregon. The project was to be sited approximately 18 miles due west of Coos Bay, in over 1000 ft. of water, and is the first floating offshore wind array proposed in the United States, and the first offshore wind project of any kind proposed off the West Coast. PPI’s WindFloat, a semi-submersible foundation designed for high-capacity (6MW+) offshore wind turbines, is at the heart of the proposed project, and enables access to the world class wind resource at the project site and, equally, to other deep water, high wind resource areas around the country.

  20. Review of radiological problems of floating nuclear power plants

    International Nuclear Information System (INIS)

    Rodd, T.

    1982-01-01

    Radiological problems associated with floating nuclear power plants under both normal operation and accident conditions are discussed. In the latter case, aspects of both the airborne and liquid pathways are reviewed

  1. Multi-span Suspension Bridge with Floating Towers

    OpenAIRE

    Brunstad, Orjan

    2013-01-01

    The Norwegian Public Roads Administration (NPRA) is currently conducting a feasible study of crossing 8 fjords on the west coast of Norway. The most challenging crossing is the 3700 m wide Sognefjord. Three main concepts are under development, and one of the concepts of this crossing is a three span suspension bridge on floating towers. The floating foundation suggested is a multi-column pontoon with mooring lines to seabed. The object of this thesis was to study this bridge concept with resp...

  2. Sustainability and the future of managed floating in China

    OpenAIRE

    Švarc, Jiří

    2009-01-01

    The purpose of this thesis is to study the Balance of Payments and the Exchange Rate of the People's Republic of China, and it aims to assess whether the current performance of their Managed Floating Exchange Rate is sustainable in the future (given the equilibrium of China's Balance of Payments) and examine what effect would a Free Floating Renminbi Exchange Rate have on the Chinese economy. The work uses the method of compilation - gathering and organizing information on the development of ...

  3. Polar gravity fields from GOCE and airborne gravity

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan

    2011-01-01

    Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...

  4. Entropie analysis of floating car data systems

    Directory of Open Access Journals (Sweden)

    F. Gössel

    2004-01-01

    Full Text Available The knowledge of the actual traffic state is a basic prerequisite of modern traffic telematic systems. Floating Car Data (FCD systems are becoming more and more important for the provision of actual and reliable traffic data. In these systems the vehicle velocity is the original variable for the evaluation of the current traffic condition. As real FCDsystems are operating under conditions of limited transmission and processing capacity the analysis of the original variable vehicle speed is of special interest. Entropy considerations are especially useful for the deduction of fundamental restrictions and limitations. The paper analyses velocity-time profiles by means of information entropy. It emphasises in quantification of the information content of velocity-time profiles and the discussion of entropy dynamic in velocity-time profiles. Investigations are based on empirical data derived during field trials. The analysis of entropy dynamic is carried out in two different ways. On one hand velocity differences within a certain interval of time are used, on the other hand the transinformation between velocities in certain time distances was evaluated. One important result is an optimal sample-rate for the detection of velocity data in FCD-systems. The influence of spatial segmentation and of different states of traffic was discussed.

  5. Enhancing Water Evaporation with Floating Synthetic Leaves

    Science.gov (United States)

    Boreyko, Jonathan; Vieitez, Joshua; Berrier, Austin; Roseveare, Matthew; Shi, Weiwei

    2017-11-01

    When a wetted nanoporous medium is exposed to a subsaturated ambient environment, the water menisci assume a concave curvature to achieve a negative pressure. This negative water pressure is required to balance the mismatch in water activity across the water-air interface to achieve local equilibrium. Here, we show that the diffusive evaporation rate of water can be greatly modulated by floating a nanoporous synthetic leaf at the water's free interface. For high ambient humidities, adding the leaf serves to enhance the evaporation rate, presumably by virtue of the menisci enhancing the effective liquid-vapor surface area. For low humidities, the menisci cannot achieve a local equilibrium and retreat partway into the leaf, which increases the local humidity directly above the menisci. In light of these two effects, we find the surprising result that leaves exposed to an ambient humidity of 90 percent can evaporate water at the same rate as leaves exposed to only 50 percent humidity. These findings have implications for using synthetic trees to enhance steam generation or water harvesting. This work was supported by the National Science Foundation (CBET-1653631).

  6. Pc-Based Floating Point Imaging Workstation

    Science.gov (United States)

    Guzak, Chris J.; Pier, Richard M.; Chinn, Patty; Kim, Yongmin

    1989-07-01

    The medical, military, scientific and industrial communities have come to rely on imaging and computer graphics for solutions to many types of problems. Systems based on imaging technology are used to acquire and process images, and analyze and extract data from images that would otherwise be of little use. Images can be transformed and enhanced to reveal detail and meaning that would go undetected without imaging techniques. The success of imaging has increased the demand for faster and less expensive imaging systems and as these systems become available, more and more applications are discovered and more demands are made. From the designer's perspective the challenge to meet these demands forces him to attack the problem of imaging from a different perspective. The computing demands of imaging algorithms must be balanced against the desire for affordability and flexibility. Systems must be flexible and easy to use, ready for current applications but at the same time anticipating new, unthought of uses. Here at the University of Washington Image Processing Systems Lab (IPSL) we are focusing our attention on imaging and graphics systems that implement imaging algorithms for use in an interactive environment. We have developed a PC-based imaging workstation with the goal to provide powerful and flexible, floating point processing capabilities, along with graphics functions in an affordable package suitable for diverse environments and many applications.

  7. Gravity signatures of terrane accretion

    Science.gov (United States)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  8. Fractional Vector Calculus and Fractional Special Function

    OpenAIRE

    Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao

    2010-01-01

    Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.

  9. An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine

    Directory of Open Access Journals (Sweden)

    Sinpyo Hong

    2015-05-01

    Full Text Available An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG, mooring line spring constant, and fair-lead location on the turbine’s motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT, the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.

  10. Influence of different types of low substituted hydroxypropyl cellulose on tableting, disintegration, and floating behaviour of floating drug delivery systems.

    Science.gov (United States)

    Diós, Péter; Pernecker, Tivadar; Nagy, Sándor; Pál, Szilárd; Dévay, Attila

    2015-11-01

    The object of the present study is to evaluate the effect of application of low-substituted hydroxypropyl cellulose (L-HPC) 11 and B1 as excipients promoting floating in gastroretentive tablets. Directly compressed tablets were formed based on experimental design. Face-centred central composite design was applied with two factors and 3 levels, where amount of sodium alginate (X 1) and L-HPC (X2 ) were the numerical factors. Applied types of L-HPCs and their 1:1 mixture were included in a categorical factor (X 3). Studied parameters were floating lag time, floating time, floating force, swelling behaviour of tablets and dissolution of paracetamol, which was used as a model active substance. Due to their physical character, L-HPCs had different water uptake and flowability. Lower flowability and lower water uptake was observed after 60 min at L-HPC 11 compared to L-HPC B1. Shorter floating times were detected at L-HPC 11 and L-HPC mixtures with 0.5% content of sodium alginate, whereas alginate was the only significant factor. Evaluating results of drug release and swelling studies on floating tablets revealed correlation, which can serve to help to understand the mechanism of action of L-HPCs in the field development of gastroretentive dosage forms.

  11. Position control of a floating nuclear power plant

    International Nuclear Information System (INIS)

    Motohashi, K.; Hamamoto, T.; Sasaki, R.; Kojima, M.

    1993-01-01

    In spite of the increasing demand of electricity in Japan, the sites of nuclear power plants suitable for conventional seismic regulations become severely limited. Under these circumstances, several types of advanced siting technology have been developed. Among them, floating power plants have a great advantage of seismic isolation that leads to the seismic design standardization and factory fabrication. The feasibility studies or preliminary designs of floating power plants enclosed by breakwaters in the shallow sea have been carried out last two decades in U.S. and Japan. On the other hand, there are few investigations on the dynamic behavior of floating power plants in the deep sea. The offshore floating nuclear power plants have an additional advantage in that large breakwaters are not required, although the safety checking is inevitable against wind-induced waves. The tension-leg platforms which have been constructed for oil drilling in the deep sea seem to be a promising offshore siting technology of nuclear power plants. The tension-leg mooring system can considerably restrain the heave and pitch of a floating power plant because of significant stiffness in the vertical direction. Different from seismic effects, wind-induced waves may be predicted in advance by making use of ocean weather forecasts using artificial satellites. According to the wave prediction, the position of the floating plant may be controlled by adjusting the water content in ballast tanks and the length of tension-legs before the expected load arrives. The position control system can reduce the wave force acting on the plant and to avoid the unfavorable response behavior of the plant. In this study a semi-submerged circular cylinder with tension-legs is considered as a mathematical model. The configuration of circular cylinder is effective because the dynamic behavior does not depend on incident wave directions. It is also unique in that it can obtain the closed-form solution of

  12. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  13. Evaporation suppression from water reservoirs using floating covers: Lab scale observations and model predictions

    Science.gov (United States)

    Or, D.; Lehmann, P.; Aminzadeh, M.; Sommer, M.; Wey, H.; Wunderli, H.; Breitenstein, D.

    2016-12-01

    The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design, and implementation remain largely empirical. Studies have shown that evaporation suppression is highly nonlinear, as also known from a century of research on gas exchange from plant leaves (that often evaporate as free water surfaces through stomata that are only 1% of leaf area). We report a systematic evaluation of different cover types and external drivers (radiation, wind, wind+radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.

  14. Bringing Gravity to Space

    Science.gov (United States)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  15. Is Gravity an Entropic Force?

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2011-04-01

    Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

  16. Active Response Gravity Offload System

    Science.gov (United States)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  17. Teleparallel equivalent of Lovelock gravity

    Science.gov (United States)

    González, P. A.; Vásquez, Yerko

    2015-12-01

    There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.

  18. The gravity apple tree

    International Nuclear Information System (INIS)

    Aldama, Mariana Espinosa

    2015-01-01

    The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion. (paper)

  19. Pengaruh Frekuensi Melihat Iklan Floating terhadap Tingkat Kesadaran Merek

    Directory of Open Access Journals (Sweden)

    Forddhanto Bimantoro

    2013-11-01

    Full Text Available Abstract: Floating ad  is online advertisement aiming to stimulate brand awareness by increasing familiarity through reexposing advertisement. This research examines the influence of ARCO Depok members’ exposure of floating ad at www.detik.com to their brand awareness about Samsung LED TV. The frequency of consuming the advertisement is differentiated into three categories, namely three times, five times and never. The result shows that the respondents’ exposure of floating ad could influence the level of brand awareness as much as 40.7%. However, this tendency was not represented in the category of five times. The result also shows that the only control variable which was able to significantly influence the level of brand awareness was the variable of respondents’ visitation to the site of detik.com. Abstrak: Iklan floating merupakan iklan di media internet yang bertujuan mencapai kesadaran merek dengan cara meningkatkan familiarity melalui frekuensi pengulangan iklan. Frekuensi melihat iklan floating dibedakan  dengan memilah kelompok responden yang dikenai frekuensi melihat iklan 3 kali, 5 kali dan tidak melihat iklan. Penelitian ini menguji pengaruh frekuensi melihat iklan floating di www.detik.com terhadap tingkat kesadaran merek Samsung LED TV pada warga ARCO Depok, Jawa Barat. Hasil penelitian menunjukkan bahwa frekuensi melihat iklan floating dapat mempengaruhi tingkat kesadaran merek sebesar 40,7%; namun tidak terbukti pada kelompok yang melihat iklan sebanyak lima kali. Variabel kontrol yang mampu mempengaruhi tingkat kesadaran merek secara signifikan hanya variabel kunjungan responden ke detik.com.Â

  20. The study to estimate the floating population in Seoul, Korea.

    Science.gov (United States)

    Lee, Geon Woo; Lee, Yong Jin; Kim, Youngeun; Hong, Seung-Han; Kim, Soohwaun; Kim, Jeong Soo; Lee, Jong Tae; Shin, Dong Chun; Lim, Youngwook

    2017-01-01

    Traffic-related pollutants have been reported to increase the morbidity of respiratory diseases. In order to apply management policies related to motor vehicles, studies of the floating population living in cities are important. The rate of metro rail transit system use by passengers residing in Seoul is about 54% of total public transportation use. Through the rate of metro use, the people-flow ratios in each administrative area were calculated. By applying a people-flow ratio based on the official census count, the floating population in 25 regions was calculated. The reduced level of deaths among the floating population in 14 regions having the roadside monitoring station was calculated as assuming a 20% reduction of mobile emission based on the policy. The hourly floating population size was calculated by applying the hourly population ratio to the regional population size as specified in the official census count. The number of people moving from 5 a.m. to next day 1 a.m. could not be precisely calculated when the population size was applied, but no issue was observed that would trigger a sizable shift in the rate of population change. The three patterns of increase, decrease, and no change of population in work hours were analyzed. When the concentration of particulate matter less than 10 μm in aerodynamic diameter was reduced by 20%, the number of excess deaths varied according to the difference of the floating population. The effective establishment of directions to manage the pollutants in cities should be carried out by considering the floating population. Although the number of people using the metro system is only an estimate, this disadvantage was supplemented by calculating inflow and outflow ratio of metro users per time in the total floating population in each region. Especially, 54% of metro usage in public transport causes high reliability in application.

  1. The study to estimate the floating population in Seoul, Korea

    Directory of Open Access Journals (Sweden)

    Geon Woo Lee

    2017-05-01

    Full Text Available Traffic-related pollutants have been reported to increase the morbidity of respiratory diseases. In order to apply management policies related to motor vehicles, studies of the floating population living in cities are important. The rate of metro rail transit system use by passengers residing in Seoul is about 54% of total public transportation use. Through the rate of metro use, the people-flow ratios in each administrative area were calculated. By applying a people-flow ratio based on the official census count, the floating population in 25 regions was calculated. The reduced level of deaths among the floating population in 14 regions having the roadside monitoring station was calculated as assuming a 20% reduction of mobile emission based on the policy. The hourly floating population size was calculated by applying the hourly population ratio to the regional population size as specified in the official census count. The number of people moving from 5 a.m. to next day 1 a.m. could not be precisely calculated when the population size was applied, but no issue was observed that would trigger a sizable shift in the rate of population change. The three patterns of increase, decrease, and no change of population in work hours were analyzed. When the concentration of particulate matter less than 10 μm in aerodynamic diameter was reduced by 20%, the number of excess deaths varied according to the difference of the floating population. The effective establishment of directions to manage the pollutants in cities should be carried out by considering the floating population. Although the number of people using the metro system is only an estimate, this disadvantage was supplemented by calculating inflow and outflow ratio of metro users per time in the total floating population in each region. Especially, 54% of metro usage in public transport causes high reliability in application.

  2. Airborne Gravity: NGS' Gravity Data for AN05 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  3. Airborne Gravity: NGS' Gravity Data for AN06 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  4. Airborne Gravity: NGS' Gravity Data for CS08 (2015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for CS08 collected in 2006 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  5. Airborne Gravity: NGS' Gravity Data for AS02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  6. Airborne Gravity: NGS' Gravity Data for ES02 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Gulf of Mexico collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...

  7. Airborne Gravity: NGS' Gravity Data for AN04 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  8. Airborne Gravity: NGS' Gravity Data for CS05 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  9. Airborne Gravity: NGS' Gravity Data for CS07 (2014 & 2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 & 2016 over 3 surveys,TX14-2, TX16-1 and TX16-2. This data set is part of the Gravity for the Re-definition of...

  10. Airborne Gravity: NGS' Gravity Data for AS01 (2008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  11. Airborne Gravity: NGS' Gravity Data for CS04 (2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  12. Airborne Gravity: NGS' Gravity Data for AN02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  13. Lovelock gravities from Born–Infeld gravity theory

    Directory of Open Access Journals (Sweden)

    P.K. Concha

    2017-02-01

    Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  14. Lovelock gravities from Born-Infeld gravity theory

    Science.gov (United States)

    Concha, P. K.; Merino, N.; Rodríguez, E. K.

    2017-02-01

    We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  15. Recent advances in lossy compression of scientific floating-point data

    Science.gov (United States)

    Lindstrom, P.

    2017-12-01

    With a continuing exponential trend in supercomputer performance, ever larger data sets are being generated through numerical simulation. Bandwidth and storage capacity are, however, not keeping pace with this increase in data size, causing significant data movement bottlenecks in simulation codes and substantial monetary costs associated with archiving vast volumes of data. Worse yet, ever smaller fractions of data generated can be stored for further analysis, where scientists frequently rely on decimating or averaging large data sets in time and/or space. One way to mitigate these problems is to employ data compression to reduce data volumes. However, lossless compression of floating-point data can achieve only very modest size reductions on the order of 10-50%. We present ZFP and FPZIP, two state-of-the-art lossy compressors for structured floating-point data that routinely achieve one to two orders of magnitude reduction with little to no impact on the accuracy of visualization and quantitative data analysis. We provide examples of the use of such lossy compressors in climate and seismic modeling applications to effectively accelerate I/O and reduce storage requirements. We further discuss how the design decisions behind these and other compressors impact error distributions and other statistical and differential properties, including derived quantities of interest relevant to each science application.

  16. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  17. Aspects of Quadratic Gravity

    CERN Document Server

    Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio

    2016-01-01

    We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...

  18. Newtonian quantum gravity

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1995-01-01

    We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs

  19. Gravity and antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1988-01-01

    No one has ever dropped a single particle of antimatter. Yet physicists assume that it would fall to the ground just like ordinary matter. Their arguments are based on two well established ideas: the equivalence principle of gravitation and the quantum-mechanical symmetry between matter and antimatter. Today this line of reasoning is being undermined by the possibility that the first of these ideas, the principle of equivalence, may not be true. Indeed all modern attempts to include gravity with the other forces of nature in a consistent, unified quantum theory predict the existence of new gravitational-strength forces, that among other things, will violate the principle. Such effects have been seen already in recent experiments. Hence, an experiment to measure the gravitational acceleration of antimatter could be of great importance to the understanding of quantum gravity. An international team has been formed to measure the graviational acceleration of antiprotons. Such an experiment would provide an unambiquous test, if new gravitational interactions do exist. 10 figs

  20. Fractional quantum mechanics

    CERN Document Server

    Laskin, Nick

    2018-01-01

    Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...

  1. Floating venous thrombi: diagnosis with spiral-CT-venography

    International Nuclear Information System (INIS)

    Gartenschlaeger, M.; Schmidt, J.A.

    1996-01-01

    Local application of contrast agent into an ipsilateral dorsal foot vein and spiral CT were used to examine 16 consecutive cases with deep venous thrombosis proven at conventional venography; in addition, colour Doppler flow imaging was performed. At conventional venography, 8/16 thrombi appeared to be floating and the remaining 8/16 were adherent to the vessel wall. Spiral-CT showed 15/16 thrombi to be adherent to the vessel wall; the floating thrombus correlated with findings in conventional venography. At colour Doppler flow imaging 3/16 thrombi were considered floating, one of them was discordant to conventional venography. The comparison of conventional venography to spiral-CT demonstrates complete agreement for adherence to vessel wall seen in conventional venography (p=1,0) and significant discordance in cases with free-floating appearance in conventional venography. Adherence of thrombi to the wall of the vessel at conventional venography is in agreement with computed tomography. Conventional venography probably overestimates the prevalence of free floating thrombi. (orig./MG) [de

  2. Is there a quantum theory of gravity

    International Nuclear Information System (INIS)

    Strominger, A.

    1984-01-01

    The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)

  3. Fractional vector calculus and fractional Maxwell's equations

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2008-01-01

    The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered

  4. Quantum Gravity in Two Dimensions

    DEFF Research Database (Denmark)

    Ipsen, Asger Cronberg

    The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...

  5. Topological strings from Liouville gravity

    International Nuclear Information System (INIS)

    Ishibashi, N.; Li, M.

    1991-01-01

    We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)

  6. Newton-Cartan gravity revisited

    NARCIS (Netherlands)

    Andringa, Roel

    2016-01-01

    In this research Newton's old theory of gravity is rederived using an algebraic approach known as the gauging procedure. The resulting theory is Newton's theory in the mathematical language of Einstein's General Relativity theory, in which gravity is spacetime curvature. The gauging procedure sheds

  7. Fixed points of quantum gravity

    OpenAIRE

    Litim, D F

    2003-01-01

    Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.

  8. Neutron Stars : Magnetism vs Gravity

    Indian Academy of Sciences (India)

    however, in the magnetosphere, electromagnetic forces dominate over gravity : Fgr = mg ~ 10-18 Newton ; Fem = e V B ~ 10-5 Newton; (for a single electron of mass m and charge e ) ; Hence, the electromagnetic force is 1013 times stronger than gravity !!

  9. Measuring wood specific gravity, correctly

    Science.gov (United States)

    G. Bruce Williamson; Michael C. Wiemann

    2010-01-01

    The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a forester’s variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these...

  10. Fractional statistics and fractional quantized Hall effect

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1985-01-01

    The authors suggest that the origin of the odd-denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which govern quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics do not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus, no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references

  11. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  12. Initialized Fractional Calculus

    Science.gov (United States)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  13. Tempered fractional calculus

    Energy Technology Data Exchange (ETDEWEB)

    Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Chen, Jinghua, E-mail: cjhdzdz@163.com [School of Sciences, Jimei University, Xiamen, Fujian, 361021 (China)

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  14. Tempered fractional calculus

    Science.gov (United States)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  15. Tempered fractional calculus

    International Nuclear Information System (INIS)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series

  16. Some aspects of arctic offshore floating structures

    Energy Technology Data Exchange (ETDEWEB)

    Lubbad, Raed Khalil

    2011-01-15

    The present work highlights some aspects related to the analyses of Arctic offshore floating structures. This thesis consists of five papers, which can be divided into two main categories. One category deals with the dynamics of slender structures with an emphasis on the prediction and suppression of vortex induced vibrations (VIV), and the other category examines the process of interaction between sloping structures and sea ice with focus on developing a numerical model to simulate this process in real time. Slender structures, such as mooring lines and marine risers, are very important for the offshore petroleum industry, which is currently approaching deeper waters. Increasingly, attention has been focused on predicting the susceptibility of these structures to VIV. In this thesis, two asymptotic techniques namely, the local analysis and the WKB methods, were used to derive closed-form solutions for the natural frequencies and mode shapes of slender line-like structures. Both the top-tensioned nearly-vertical configuration and the catenary configuration were considered. The accuracy of the solutions derived was established through comparison with other analytic solution techniques and with results of numerical finite element solutions. The effects of the bending stiffness and the effects of approximating the tension variation as a linear function were discussed. Experimental data on the multi-modal in-line and cross-flow response behaviour of a towed catenary model were analysed to examine the usefulness of the solutions for predicting the response frequencies and envelopes due to VIV. Helical strakes are often used as a mitigating measure to suppress the VIV of slender structures. This thesis presented an innovative method to fit ropes helically to a riser in the installation phase. Such a procedure will help to overcome the handling problem associated with the use of conventional sharp-edged strakes. Experimental investigations were then performed to verify

  17. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    International Nuclear Information System (INIS)

    Chan, H.A.; Paik, H.J.

    1987-01-01

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges

  18. Research of design challenges and new technologies for floating LNG

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Lee

    2014-06-01

    Full Text Available With the rate of worldwide LNG demand expected to grow faster than that of gas demand, most major oil companies are currently investing their resources to develop floating LNG-FLNG (i.e. LNG FSRU and LNG FPSO. The global Floating LNG (FLNG market trend will be reviewed based on demand and supply chain relationships. Typical technical issues associated with FLNG design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this study, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU will be reviewed together with their investigated solution. At the same time, research of new LNG-related technologies such as combined containment system will be presented.

  19. Floating cultivation of marine cyanobacteria using coal fly ash.

    Science.gov (United States)

    Matsumoto, M; Yoshida, E; Takeyama, H; Matsunaga, T

    2000-01-01

    The aim of this study was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. We have investigated the viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine micro-algae. The marine cyanobacterium Synechococcus sp. NKBG 040607 was found to adhere to floating CFA blocks in liquid culture medium. Maximum density of attached cells of 2.0 x 10(8) cells/cm2 was achieved using seawater. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  20. Mathematical modeling of large floating roof reservoir temperature arena

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2018-03-01

    Full Text Available The current study is a simplification of related components of large floating roof tank and modeling for three dimensional temperature field of large floating roof tank. The heat transfer involves its transfer between the hot fluid in the oil tank, between the hot fluid and the tank wall and between the tank wall and the external environment. The mathematical model of heat transfer and flow of oil in the tank simulates the temperature field of oil in tank. Oil temperature field of large floating roof tank is obtained by numerical simulation, map the curve of central temperature dynamics with time and analyze axial and radial temperature of storage tank. It determines the distribution of low temperature storage tank location based on the thickness of the reservoir temperature. Finally, it compared the calculated results and the field test data; eventually validated the calculated results based on the experimental results.

  1. Numerical modelling of floating debris in the world's oceans.

    Science.gov (United States)

    Lebreton, L C-M; Greer, S D; Borrero, J C

    2012-03-01

    A global ocean circulation model is coupled to a Lagrangian particle tracking model to simulate 30 years of input, transport and accumulation of floating debris in the world ocean. Using both terrestrial and maritime inputs, the modelling results clearly show the formation of five accumulation zones in the subtropical latitudes of the major ocean basins. The relative size and concentration of each clearly illustrate the dominance of the accumulation zones in the northern hemisphere, while smaller seas surrounded by densely populated areas are also shown to have a high concentration of floating debris. We also determine the relative contribution of different source regions to the total amount of material in a particular accumulation zone. This study provides a framework for describing the transport, distribution and accumulation of floating marine debris and can be continuously updated and adapted to assess scenarios reflecting changes in the production and disposal of plastic worldwide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Formulation and evaluation of glipizide floating-bioadhesive tablets

    Directory of Open Access Journals (Sweden)

    Jayvadan K. Patel

    2010-10-01

    Full Text Available The purpose of this study was formulation and in vitro evaluation of floating-bioadhesive tablets to lengthen the stay of glipizide in its absorption area. Effervescent tablets were made using chitosan (CH, hydroxypropyl methylcellulose (HPMC, carbopolP934 (CP, polymethacrylic acid (PMA, citric acid, and sodium bicarbonate. Tablets with 5% effervescent base had longer lag time than 10%. The type of polymer had no significant effect on the floating lag time. All tablets floated atop the medium for 23-24 hr. Increasing carbopolP934 caused higher bioadhesion than chitosan (p < 0.05. All formulations showed a Higuchi, non-Fickian release mechanism. Tablets with 10% effervescent base, 80% CH/20% HPMC, or 80% CP/20% PMA seemed desirable.

  3. Investigation of Tank 241-AN-101 Floating Solids

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Douglas P. [Washington River Protection Solutions, LLC, Richland, VA (United States); Meznarich, H. K. [Washington River Protection Solutions, LLC, Richland, VA (United States)

    2017-10-30

    Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floating and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.

  4. Optimal Control of a Ballast-Stabilized Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Knudsen, Torben; Bak, Thomas

    2011-01-01

    Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. The use of floating structures for deeper waters is being explored. The control objective is a tradeoff between power capture and fatigue, especially that produced by the oscillations caused by the reduced...... structural stiffness of a floating installation in combination with a coupling between the fore–aft motion of the tower and the blade pitch. To address this problem, the present paper models a ballast-stabilized floating wind turbine, and suggests a linear quadratic regulator (LQR) in combination with a wind...... estimator and a state observer. The results are simulated using aero elastic code and analysed in terms of damage equivalent loads. When compared to a baseline controller, this controller clearly demonstrates better generator speed and power tracking while reducing fatigue loads....

  5. DBI from gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Travis; Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)

    2017-02-22

    We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.

  6. Alternative gravity theories

    International Nuclear Information System (INIS)

    Francaviglia, M.

    1990-01-01

    Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)

  7. Is quantum gravity unpredictable

    International Nuclear Information System (INIS)

    Gross, D.J.

    1984-01-01

    An investigation of Hawking's proposal that the inclusion of topologically non-trivial manifolds in the functional integral of quantum gravity leads to the loss of quantum coherence is carried out. We discuss some of the problems associated with Hawking's Dollar-matrix theory, including the breakdown of the connection between symmetry principles and conservation laws. It is proposed to use Kaluza-Klein theories to study this issue, since these theories contain well-defined euclidean instantons. These can be used to perform explicit semiclassical calculations of the effects of space-time foam. A general method is presented for constructing Kaluza-Klein instantons based on solutions of ordinary Yang-Mills theory. It is argued that none of these will lead to a breakdown of quantum mechanics. The physical effects of space-time foam are discussed in some detail using explicit instantons of a four-dimensional Kaluza-Klein theory. (orig.)

  8. Brane-Localized Gravity

    International Nuclear Information System (INIS)

    Gregory, Ruth

    2007-01-01

    The study of braneworlds has been an area of intense activity over the past decade, with thousands of papers being written, and many important technical advances being made. This book focuses on a particular aspect of braneworlds, namely perturbative gravity in one specific model: the Randall-Sundrum model. The book starts with an overview of the Randall-Sundrum model, discussing anti-de Sitter (AdS) space and the Israel equations in some detail. It then moves on to discuss cosmological branes, focusing on branes with constant curvature. The book then turns to brane gravity, i.e. what do we, as brane observers, perceive the gravitational interaction to be on the brane as derived from the actual five-dimensional gravitational physics? After a derivation of the general brane equations from the Israel equations, the remainder of the book deals with perturbative gravity. This part of the book is extremely detailed, with calculations given explicitly. Overall, the book is quite pedagogical in style, with the aim being to explain in detail the topics it chooses to cover. While it is not unusual to have books written on current and extremely popular research areas, it is unusual to have calculations written so explicitly. This is both a strength and a weakness of this book. It is a strength because the calculations are presented in a detail that students learning the topic will definitely appreciate; however, the narrow focus of the book also means that it lacks perspective and fails to present the broader context. In choosing to focus on one particular aspect of Randall-Sundrum branes, the book has not managed to communicate why a large number of theorists have worked so intensively on this model. In its early stages, the explicit detail of the Randall-Sundrum model would be extremely useful for a student starting out in this research area. In addition, the calculational detail later in the computation of the graviton propagator on the brane would also be welcome not

  9. Duality in linearized gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Teitelboim, Claudio

    2005-01-01

    We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case

  10. Stochastic quantization and gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

  11. Gravity mediated preheating

    International Nuclear Information System (INIS)

    Maity, Debaprasad

    2015-01-01

    In this work we propose a mechanism of natural preheating of our universe induced by the inflation field dependent effective mass term for the gravitational wave. For any single field inflationary model, the inflation must go through the oscillatory phase after the end of inflation. As has recently been shown, if the gravitational fluctuation has inflation dependent mass term, there will be a resonant amplification of the amplitude of the gravitational wave during the oscillatory phase of inflation though parametric resonance. Because of this large enhancement of the amplitude of the gravitational wave, we show that universe can be naturally pre-heated through a minimally coupled matter field with gravity. Therefore, during the pre-heating phase, there is no need to introduce any arbitrary coupling between the matter field and the inflation. (author)

  12. Teleparallel Gravity An Introduction

    CERN Document Server

    Aldrovandi, Ruben

    2013-01-01

    Teleparallel Gravity (TG) is an alternative theory for gravitation, which is equivalent to General Relativity (GR). However, it is conceptually different. For example in GR geometry replaces the concept of force, and the trajectories are determined by geodesics. TG attributes gravitation to torsion, which accounts for gravitation by acting as a force. TG has already solved some old problems of gravitation (like the energy-momentum density of the gravitational field). The interest in TG has grown in the last few years. The book here proposed will be the first one dedicated exclusively to TG, and will include the foundations of the theory, as well as applications to specific problems to illustrate how the theory works.

  13. Gravity, a geometrical course

    CERN Document Server

    Frè, Pietro Giuseppe

    2013-01-01

    Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications,  updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes.   Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed  account  of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations.  Differe...

  14. Brane-Localized Gravity

    CERN Document Server

    Mannheim, Philip D

    2005-01-01

    This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.

  15. Aerodynamics and Motion Performance of the H-Type Floating Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ying Guo

    2018-02-01

    Full Text Available Aerodynamics and motion performance of the floating vertical wind turbine (VAWT were studied in this paper, where the wind turbine was H-type and the floating foundation was truss spar type. Based on the double-multiple-stream-tube theory, the formulae were deduced to calculate the aerodynamic loads acting on the wind turbine considering the motions of the floating foundation. The surge-heave-pitch nonlinear coupling equations of the H-type floating VAWT were established. Aerodynamics and motion performance of a 5 MW H-type floating VAWT was studied, and the effect of the floating foundation motions on the aerodynamic loads was analyzed. It is shown that the motions of the floating foundation on the aerodynamics cannot be ignored. The motion of the H-type floating VAWT was also compared with that of the Φ-type floating VAWT: they have the same floating foundation, rated output power, mooring system and total displacement. The results show that the H-type floating VAWT has better motion performance, and the mean values of surge, heave and pitch of the H-type floating VAWT are much smaller comparing with the Φ-type floating VAWT.

  16. Instantons in quantum gravity

    International Nuclear Information System (INIS)

    Pope, C.N.

    1980-02-01

    The material contained in this thesis is concerned with the functional integral approach to the quantum theory of gravity. It seems to be necessary to work with metrics of positive definite signature (Euclidean metrics) and then analytically continue the result back to the Lorentzian regime. The dominant contributions to the functional integral come from metrics which are stationary points of the action, i.e. classical solutions of the Euclideanized Einstein equations. These are known as Gravitational Instantons. Boundary conditions have to be placed upon the metrics included in the functional integral, and these are determined by the physical problem being considered. Three types of boundary condition have arisen in this context, corresponding to (i) zero temperature physics, and the calculation of particle scattering amplitudes, (ii) finite temperature effects, such as black hole radiance, and (iii) the study of the structure of the gravitational vacuum on Planck length scales. Instantons in the first category are asymptotically flat in all four directions, those in the second are asymptotically flat in three directions and periodic in the fourth, and those which arise in studying the gravitational vacuum are compact without boundaries. Much of the thesis is concerned with considering these various kinds of instanton, and particularly with the effects of their non-trivial topology. One way in which this can be investigated is by means of the various topological index theorems, and these are applied to a variety of situations. Self-dual metrics seem to have particular significance in quantum gravity, and they are discussed in detail. Finally, some recent work on the calculation of the propagation of particles in the gravitational vacuum is described. (author)

  17. Tests of chameleon gravity

    Science.gov (United States)

    Burrage, Clare; Sakstein, Jeremy

    2018-03-01

    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.

  18. Gravity Probe B Inspection

    Science.gov (United States)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  19. Capture of free-floating planets by planetary systems

    Science.gov (United States)

    Goulinski, Nadav; Ribak, Erez N.

    2018-01-01

    Evidence of exoplanets with orbits that are misaligned with the spin of the host star may suggest that not all bound planets were born in the protoplanetary disc of their current planetary system. Observations have shown that free-floating Jupiter-mass objects can exceed the number of stars in our Galaxy, implying that capture scenarios may not be so rare. To address this issue, we construct a three-dimensional simulation of a three-body scattering between a free-floating planet and a star accompanied by a Jupiter-mass bound planet. We distinguish between three different possible scattering outcomes, where the free-floating planet may get weakly captured after the brief interaction with the binary, remain unbound or 'kick out' the bound planet and replace it. The simulation was performed for different masses of the free-floating planets and stars, as well as different impact parameters, inclination angles and approach velocities. The outcome statistics are used to construct an analytical approximation of the cross-section for capturing a free-floating planet by fitting their dependence on the tested variables. The analytically approximated cross-section is used to predict the capture rate for these kinds of objects, and to estimate that about 1 per cent of all stars are expected to experience a temporary capture of a free-floating planet during their lifetime. Finally, we propose additional physical processes that may increase the capture statistics and whose contribution should be considered in future simulations in order to determine the fate of the temporarily captured planets.

  20. Discovery of a Free-Floating Double Planet?

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    An object previously identified as a free-floating, large Jupiter analogturns out to be two objects each with the mass of a few Jupiters. This system is the lowest-mass binary weve ever discovered.Tracking Down Ages2MASS J111932541137466 is thought to be a member of the TW Hydrae Association, a group of roughly two dozen young stars moving together in the solar neighborhood. [University of Western Ontario/Carnegie Institution of Washington DTM/David Rodriguez]Brown dwarfs represent the bottom end of the stellar mass spectrum, with masses too low to fuse hydrogen (typically below 75-80 Jupiter masses). Observing these objects provides us a unique opportunity to learn about stellar evolution and atmospheric models but to properly understand these observations, we need to determine the dwarfs masses and ages.This is surprisingly difficult, however. Brown dwarfs cool continuously as they age, which creates an observational degeneracy: dwarfs of different masses and ages can have the same luminosity, making it difficult to infer their physical properties from observations.We can solve this problem with an independent measurement of the dwarfs masses. One approach is to find brown dwarfs that are members of nearby stellar associations called moving groups. The stars within the association share the same approximate age, so a brown dwarfs age can be estimated based on the easier-to-identify ages of other stars in the group.An Unusual BinaryRecently, a team of scientists led by William Best (Institute for Astronomy, University of Hawaii) were following up on such an object: the extremely red, low-gravity L7 dwarf 2MASS J111932541137466, possibly a member of the TW Hydrae Association. With the help of the powerful adaptive optics on the Keck II telescope in Hawaii, however, the team discovered that this Jupiter-like objectwas hiding something: its actually two objects of equal flux orbiting each other.Keck images of 2MASS J111932541137466 reveal that this object is actually

  1. Gravity-matter entanglement in Regge quantum gravity

    International Nuclear Information System (INIS)

    Paunković, Nikola; Vojinović, Marko

    2016-01-01

    We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle. (paper)

  2. Artificial gravity - The evolution of variable gravity research

    Science.gov (United States)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  3. Higher fractions theory of fractional hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.; Popov, V.N.

    1985-07-01

    A theory of fractional quantum Hall effect is generalized to higher fractions. N-particle model interaction is used and the gap is expressed through n-particles wave function. The excitation spectrum in general and the mean field critical behaviour are determined. The Hall conductivity is calculated from first principles. (author)

  4. Floating electrode microelectromechanical system capacitive switches: A different actuation mechanism

    Science.gov (United States)

    Papaioannou, G.; Giacomozzi, F.; Papandreou, E.; Margesin, B.

    2011-08-01

    The paper investigates the actuation mechanism in floating electrode microelectromechanical system capacitive switches. It is demonstrated that in the pull-in state, the device operation turns from voltage to current controlled actuation. The current arises from Poole-Frenkel mechanism in the dielectric film and Fowler-Nordheim in the bridge-floating electrode air gap. The pull-out voltage seems to arise from the abrupt decrease of Fowler-Nordheim electric field intensity. This mechanism seems to be responsible for the very small difference with respect to the pull-in voltage.

  5. Floating natural gas processing plants. Technical ideal or feasible technology

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, H

    1977-04-01

    Realizability of floating natural gas processing plants is decisively influenced by the economy of the system. Illustrated by the example of the natural gas product LPG (liquefied petroleum gas), a model cost calculation is carried out. It is demonstrated that the increase in the price level during the 1973/1974 energy crisis is an important factor for the realiability in terms of economy of such complicated technical systems. Another aspect which the model calculation revealed is that the economy of floating natural gas processing plants and storage systems can only be estimated in connection with other system components.

  6. Development of floating production systems for the new era

    International Nuclear Information System (INIS)

    Wennesland, J.M.

    1995-01-01

    Maritime Group will give a presentation of present and future trends within the floating production area. Based on the successful operation of Petrojarl 1 (Tentech 885) and now lately the Gryphon A (Tentech 850 C) operated by Kerr McGee a number of floating production systems are now under construction/design for North Sea applications. A status of three developments will be given with emphasize on field development scenarios and market opportunities for the vessels. Based on these on-going projects a discussion of future development trends and possibilities will be presented with special attention to making smaller North-Sea oil fields economically profitable

  7. Development of new experimental platform 'MARS'-Multiple Artificial-gravity Research System-to elucidate the impacts of micro/partial gravity on mice.

    Science.gov (United States)

    Shiba, Dai; Mizuno, Hiroyasu; Yumoto, Akane; Shimomura, Michihiko; Kobayashi, Hiroe; Morita, Hironobu; Shimbo, Miki; Hamada, Michito; Kudo, Takashi; Shinohara, Masahiro; Asahara, Hiroshi; Shirakawa, Masaki; Takahashi, Satoru

    2017-09-07

    This Japan Aerospace Exploration Agency project focused on elucidating the impacts of partial gravity (partial g) and microgravity (μg) on mice using newly developed mouse habitat cage units (HCU) that can be installed in the Centrifuge-equipped Biological Experiment Facility in the International Space Station. In the first mission, 12 C57BL/6 J male mice were housed under μg or artificial earth-gravity (1 g). Mouse activity was monitored daily via downlinked videos; μg mice floated inside the HCU, whereas artificial 1 g mice were on their feet on the floor. After 35 days of habitation, all mice were returned to the Earth and processed. Significant decreases were evident in femur bone density and the soleus/gastrocnemius muscle weights of μg mice, whereas artificial 1 g mice maintained the same bone density and muscle weight as mice in the ground control experiment, in which housing conditions in the flight experiment were replicated. These data indicate that these changes were particularly because of gravity. They also present the first evidence that the addition of gravity can prevent decreases in bone density and muscle mass, and that the new platform 'MARS' may provide novel insights on the molecular-mechanisms regulating biological processes controlled by partial g/μg.

  8. Recent advancements in conformal gravity

    International Nuclear Information System (INIS)

    O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian

    2017-01-01

    In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)

  9. The response of pile-guided floats subjected to dynamic loading : volume I final report.

    Science.gov (United States)

    2014-08-01

    Pile : - : Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis fo...

  10. Combustion of Methanol Droplets in Air-Diluent Environments with Reduced and Normal Gravity

    Directory of Open Access Journals (Sweden)

    Benjamin Shaw

    2012-01-01

    Full Text Available Reduced and normal gravity combustion experiments were performed with fiber-supported methanol droplets with initial diameters in the 1 mm size range. Experiments were performed with air-diluent mixtures at about 0.101 MPa and 298 K, where carbon dioxide, helium, or xenon was separately used as the diluent gas. Results indicate that ambient gas transport properties play an important role in determining flammability and combustion behaviors including burning rates and radiant heat output histories of the droplets. Droplets would burn with significantly higher mole fractions of xenon than helium or carbon dioxide. In reduced gravity, droplets would burn steadily with a xenon mole fraction of 0.50 but would not burn steadily if helium or carbon dioxide mole fractions were 0.50. Comparison with previous experimental data shows that ignitability and combustion characteristics of droplets are influenced by the fuel type and also the gravitational level. Burning rates were about 40% to 70% higher in normal gravity than in reduced gravity. Methanol droplets also had burning rates that were typically larger than 1-propanol burning rates by about 20% in reduced gravity. In normal gravity, however, burning rate differences between the two fuels were significantly smaller.

  11. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2008-05-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out

  12. Airborne Gravity: NGS' Gravity Data for ES03 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...

  13. Airborne Gravity: NGS' Gravity Data for EN10 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...

  14. Airborne Gravity: NGS' Gravity Data for EN09 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set is...

  15. Singularity resolution in quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity

  16. Natural inflation and quantum gravity.

    Science.gov (United States)

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.

  17. Why is gravity so weak?

    International Nuclear Information System (INIS)

    Goradia, S.G.

    2006-01-01

    Why is gravity weak? Gravity is plagued with this and many other questions. After decades of exhausting work we do not have a clear answer. In view of this fact it will be shown in the following pages that there are reasons for thinking that gravity is just a composite force consisting of the long-range manifestations of short range nuclear forces that are too tiny to be measured at illuminated or long ranges by particle colliders. This is consistent with Einstein's proposal in 1919

  18. Mars - Hellas Planitia gravity analysis

    Science.gov (United States)

    Sjogren, W. L.; Wimberley, R. N.

    1981-01-01

    Doppler radio tracking data from Viking Orbiter 1 has provided new detailed observations of gravity variations over Hellas Planitia. Line-of-sight Bouguer gravity definitely indicates that isostatic adjustment has occurred. Two theoretical models were tested to obtain fits to the gravity data. Results for a surface deficit model, and a model with a surface deficit and a mass excess at depth are displayed. The mass-at-depth model produced very marked improvement in the data fit as compared to the surface deficit model. The optimum depth for the mass excess is 130 km.

  19. Cutoff for extensions of massive gravity and bi-gravity

    International Nuclear Information System (INIS)

    Matas, Andrew

    2016-01-01

    Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware–Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity. (paper)

  20. Gauge theories of gravity

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1998-01-01

    The relatively simple Fibre-Bundle geometry of a Yang-Mills gauge theory - mainly the clear distinction between base and fibre - made it possible, between 1953 and 1971, to construct a fully quantized version and prove that theory's renormalizability; moreover, nonperturbative (topological) solutions were subsequently found in both the fully symmetric and the spontaneously broken modes (instantons, monopoles). Though originally constructed as a model formalism, it became in 1974 the mathematical mold holding the entire Standard Model (i.e. QCD and the Electroweak theory). On the other hand, between 1974 and 1984, Einstein's theory was shown to be perturbatively nonrenormalizable. Since 1974, the search for Quantum Gravity has therefore provided the main motivation for the construction of Gauge Theories of Gravity. Earlier, however, in 1958-76 several such attempts were initiated, for aesthetic or heuristic reasons, to provide a better understanding of the algebraic structure of GR. A third motivation has come from the interest in Unification, making it necessary to bring GR into a form compatible with an enlargement of the Standard Model. Models can be classified according to the relevant structure group in the fibre. Within the Poincare group, this has been either the R 4 translations, or the Lorentz group SL(2, C) - or the entire Poincare SL(2, C) x R 4 . Enlarging the group has involved the use of the Conformal SU(2, 2), the special Affine SA(4, R) = SL(4, R) x R 4 or Affine A(4, R) groups. Supergroups have included supersymmetry, i.e. the graded-Poincare group (n =1...8 m its extensions) or the superconformal SU(2, 2/n). These supergravity theories have exploited the lessons of the aesthetic-heuristic models - Einstein-Cartan etc. - and also achieved the Unification target. Although perturbative renormalizability has been achieved in some models, whether they satisfy unitarity is not known. The nonperturbative Ashtekar program has exploited the understanding of

  1. 14 CFR 23.533 - Hull and main float bottom pressures.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float bottom pressures. 23... Water Loads § 23.533 Hull and main float bottom pressures. (a) General. The hull and main float....00213; K2=hull station weighing factor, in accordance with figure 2 of appendix I of this part; VS1...

  2. 14 CFR 25.533 - Hull and main float bottom pressures.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float bottom pressures. 25... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.533 Hull and main float bottom pressures. (a) General. The hull and main float structure, including frames and bulkheads...

  3. 14 CFR 23.529 - Hull and main float landing conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float landing conditions. 23... Water Loads § 23.529 Hull and main float landing conditions. (a) Symmetrical step, bow, and stern... directed perpendicularly to the keel line. (b) Unsymmetrical landing for hull and single float seaplanes...

  4. Floating Collection in an Academic Library: An Audacious Experiment That Succeeded

    Science.gov (United States)

    Coopey, Barbara; Eshbach, Barbara; Notartomas, Trish

    2016-01-01

    Can a floating collection thrive in a large multicampus academic research library? Floating collections have been successful in public libraries for some time, but it is uncommon for academic libraries and unheard of for a large academic library system. This article will discuss the investigation into the feasibility of a floating collection at…

  5. Sabrewing: A lightweight architecture for combined floating-point and integer arithmetic

    NARCIS (Netherlands)

    Bruintjes, Tom; Walters, K.H.G.; Gerez, Sabih H.; Molenkamp, Egbert; Smit, Gerardus Johannes Maria

    In spite of the fact that floating-point arithmetic is costly in terms of silicon area, the joint design of hardware for floating-point and integer arithmetic is seldom considered. While components like multipliers and adders can potentially be shared, floating-point and integer units in

  6. Recent Developments in the Construction of Floating Structures ...

    African Journals Online (AJOL)

    This paper presents the applications of floating structures in (a) creating land from the ocean for airports, container ports, cruise terminals, oil storage, power plants, fish farms, recreation facilities, aquatic observatories, residential facilities, marinas and even relay bases for receiving micro waves from outer space, etc, ...

  7. A global inventory of small floating plastic debris

    NARCIS (Netherlands)

    Sebille, van Erik; Wilcox, Chris; Lebreton, Laurent; Maximenko, Nikolai; Hardesty, Britta Denise; Franeker, van J.A.; Eriksen, Marcus; Siegel, David; Galgani, F.; Law, Kara Lavender

    2015-01-01

    Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on

  8. A global inventory of small floating plastic debris

    NARCIS (Netherlands)

    Van Sebille, Erik; Wilcox, Chris; Lebreton, Laurent; Maximenko, Nikolai; Hardesty, Britta Denise; Van Franeker, Jan A.; Eriksen, Marcus; Siegel, David; Galgani, Francois; Law, Kara Lavender

    2015-01-01

    Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North

  9. Wave energy absorption by a floating air bag

    DEFF Research Database (Denmark)

    Kurniawan, Adi; Chaplin, John; Greaves, Deborah

    2017-01-01

    A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting...

  10. associated injuries and complications in floating knee management

    African Journals Online (AJOL)

    Materials and Methods: The investigation lasted ten years from 1st January, 2000 to ... hemarthrosis, 2 paralysis of fibular nerve associated to a displaced fracture of neck of ... Keywords: Associated injuries, complications, Floating knee, Management ... Road traffic accidents were responsible for 51 cases ... cerebral injuries.

  11. Development of the floating sulphur biofilm reactor for sulphide ...

    African Journals Online (AJOL)

    Development of the floating sulphur biofilm reactor for sulphide oxidation in biological water treatment systems. ... The effect of influent sulphide concentrations, flow rate and reactor dimensions on the sulphur biofilm formation were investigated for the optimisation of elemental sulphur recovery and sulphide removal ...

  12. On Hydroelastic Body-Boundary Condition of Floating Structures

    DEFF Research Database (Denmark)

    Xia, Jinzhu

    1996-01-01

    A general linear body boundary condition of hydroelastic analysis of arbitrary shaped floating structures generalizes the classic kinematic rigid-body (Timman-Newman) boundary condition for seakeeping problems. The new boundary condition is consistent with the existing theories under certain...

  13. Experimental testing of moorings for large floating wave energy converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2016-01-01

    This paper presents the outcome of a test campaign, which investigates the behaviour of a synthetic mooring system applied to the Floating Power Plant wave energy converter. The study investigates the motion and tension response under operational and extreme sea states expected at the deployment ...

  14. An Asynchronous IEEE Floating-Point Arithmetic Unit

    Directory of Open Access Journals (Sweden)

    Joel R. Noche

    2007-12-01

    Full Text Available An asynchronous floating-point arithmetic unit is designed and tested at the transistor level usingCadence software. It uses CMOS (complementary metal oxide semiconductor and DCVS (differentialcascode voltage switch logic in a 0.35 µm process using a 3.3 V supply voltage, with dual-rail data andsingle-rail control signals using four-phase handshaking.Using 17,085 transistors, the unit handles single-precision (32-bit addition/subtraction, multiplication,division, and remainder using the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic, withrounding and other operations to be handled by separate hardware or software. Division and remainderare done using a restoring subtractive algorithm; multiplication uses an additive algorithm. Exceptionsare noted by flags (and not trap handlers and the output is in single-precision.Previous work on asynchronous floating-point arithmetic units have mostly focused on single operationssuch as division. This is the first work to the authors' knowledge that can perform floating-point addition,multiplication, division, and remainder using a common datapath.

  15. Efficiency of a variable displacement open circuit floating cup pump

    NARCIS (Netherlands)

    Vael, G.E.M.; Achten, P.A.J.; Brink, van den T.L.

    2009-01-01

    The Floating Cup Displacement principle is a relatively new axial piston displacement principle for hydrostatic pumps, motors and transformers. Since its origin in 2001, it has been mainly applied in fixed displacement pump prototypes. At the SICFP’05, a design for a variable displacement open

  16. Fuzzy diagnosis of float-glass production furnace

    NARCIS (Netherlands)

    Spaanenburg, L; TerHaseborg, H; Nijhuis, JAG; Reusch, B

    1997-01-01

    The industrial production of high-quality float-glass is usually supervised by the single human expert. It is of interest to formalize his empirical knowledge to support the furnace operator at all times during the day. The paper describes the systematic development of a fuzzy expert with 6 blocks

  17. Development of the floating sulphur biofilm reactor for sulphide ...

    African Journals Online (AJOL)

    driniev

    The formation of floating sulphur biofilm was observed in the microbial ecology studies of tannery ponds undertaken by the. Environmental Biotechnology Group at Rhodes University. This was related to the steep Redox gradients established at the air/ water interface of anaerobic, organically loaded and actively sulphate ...

  18. Resident perceptions of the educational value of night float rotations.

    Science.gov (United States)

    Luks, Andrew M; Smith, C Scott; Robins, Lynne; Wipf, Joyce E

    2010-07-01

    Night float rotations are being increasingly used in the era of resident physician work-hour regulations, but their impact on resident education is not clear. Our objective was to clarify resident perceptions of the educational aspects of night float rotations. An anonymous survey of internal medicine residents at a university-based residency program was completed. Responses were received from 116 of 163 surveyed residents (71%). Residents attended less residents' report (0.10 +/- .43 vs. 2.70 + 0.93 sessions/week, peducational value of night float, sleep cycle adjustment issues, and impact on their personal lives, which correlated with resident evaluations from the regular program evaluation process. In free responses, residents commented that they liked the autonomy and opportunity to improve triage skills on these rotations and confirmed their negative opinions about the sleep-wake cycle and interference with personal lives. Internal medicine residents at a university-based program have negative opinions regarding the educational value of night float rotations. Further work is necessary to determine whether problems exist across programs and specialties.

  19. Power Dissipation Challenges in Multicore Floating-Point Units

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2010-01-01

    , we analyze the impact of power dissipation in floating-point (FP) units and we consider different alternatives in the implementation of FP-division that lead to substantial energy savings. We compare the implementation of division in a Fused Multiply-Add (FMA) unit based on the Newton-Raphson...

  20. Life cycle assessment of a floating offshore wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Weinzettel, Jan [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Praha 166 27 (Czech Republic); Charles University in Prague Environment Center, U Krize 8, Prague 158 00 (Czech Republic); Reenaas, Marte; Solli, Christian [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Hertwich, Edgar G. [Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)

    2009-03-15

    A development in wind energy technology towards higher nominal power of the wind turbines is related to the shift of the turbines to better wind conditions. After the shift from onshore to offshore areas, there has been an effort to move further from the sea coast to the deep water areas, which requires floating windmills. Such a concept brings additional environmental impact through higher material demand. To evaluate additional environmental burdens and to find out whether they can be rebalanced or even offset by better wind conditions, a prospective life cycle assessment (LCA) study of one floating concept has been performed and the results are presented in this paper. A comparison with existing LCA studies of conventional offshore wind power and electricity from a natural gas combined cycle is presented. The results indicate similar environmental impacts of electricity production using floating wind power plants as using non-floating offshore wind power plants. The most important stage in the life cycle of the wind power plants is the production of materials. Credits that are connected to recycling these materials at the end-of-life of the power plant are substantial. (author)

  1. Design Optimization and Evaluation of Gastric Floating Matrix Tablet ...

    African Journals Online (AJOL)

    HP

    Abstract. Purpose: To formulate an optimized gastric floating drug delivery system (GFDDS) containing glipizide ... Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals ... Sodium bicarbonate by geometric mixing then .... order polynomial equation (Eq 4) with added.

  2. Observation of floating potential asymmetry in the edge plasma of ...

    Indian Academy of Sciences (India)

    Floating potential; vertical magnetic field; vertical electric field reversal; vertical electric field reversal ... Similar exchange of behavior for bottom probe of figure 1 with top probe of ... In our case rate of rise of plasma currents and also the total ...

  3. Udpegning af potentielle sorte pletter via floating car data

    DEFF Research Database (Denmark)

    Splid Svendsen, Martin; Tradisauskas, Nerius; Lahrmann, Harry

    2008-01-01

    Formålet med dette paper er at undersøge, om det er muligt at udpege potentielle sorte pletter via floating car data. Der er i projektet udført teoretiske litteraturstudier for at skabe et grundlag for det senere analysearbejde, som danner baggrund for analysearbejdet. Dataene stammer fra Aalborg...

  4. Page | 155 FLOATING CHARGE: A CHILD OF EQUITABLE ...

    African Journals Online (AJOL)

    Fr. Ikenga

    a floating charge is a security (that is mortgage, lien etc) that has an underlying ..... former were entitled to intervene and enforce their rights under the charge. .... Bridgend County Borough Council (2002) 1 AC 336; 352; and Tompkins J in ...

  5. A floating trap for sampling downstream migrant fishes.

    Science.gov (United States)

    Carl E. McLemore; Fred H. Everest; William R. Humphreys; Mario F. Solazzi

    1989-01-01

    Fishery scientists and managers are interested in obtaining information about downstream movements of fish species for biological and economic reasons. Different types of nets and traps have been used for this purpose with only partial success. The floating, self-cleaning downstream migrant trap described here proved successful for sampling several salmoniform and...

  6. Ranitidine Loaded Biopolymer Floats: Designing, Characterization, and Evaluation

    Directory of Open Access Journals (Sweden)

    Abdul Karim

    2017-01-01

    Full Text Available The float formulation is a strategy to improve the bioavailability of drugs by gastroretentive drug delivery system (GRDDS. A drug delivery model based on swellable and reswellable low density biopolymers has been designed to evaluate its drug release profile using ranitidine (RNT as a model drug and formulations have been prepared utilizing 32 factorial designs. The drug release (DR data has been subjected to various kinetic models to investigate the DR mechanism. A reduction in rate has been observed by expanding the amounts of PSG and LSG parts, while an expansion has been noted by increasing the concentration of tragacanth (TG and citric acid (CA with an increment in floating time. The stearic acid (SA has been used to decrease the lag time because a decrease in density of system was observed. The kinetic analysis showed that the optimized formulation (S4F3 followed zero-order kinetics and power law was found to be best fitted due to its minimum lag time and maximum floating ability. The resemblance of observed and predicted values indicated the validity of derived equations for evaluating the effect of independent variables while kinetic study demonstrated that the applied models are feasible for evaluating and developing float for RNT.

  7. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    Science.gov (United States)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  8. Formulation and Evaluation of Gastro-retentive Floating Multi ...

    African Journals Online (AJOL)

    Purpose: To develop a floating multiparticulate unit system for metoprolol tartarate, using a porous carrier, with an outcome for delayed gastric emptying. Methods: Dried microparticles of metoprolol tartarate were prepared by solvent evaporation using Eudragit® RS-PO, polypropylene foam powder, and dichloromethane as ...

  9. The floating knee: epidemiology, prognostic indicators & outcome following surgical management.

    Science.gov (United States)

    Rethnam, Ulfin; Yesupalan, Rajam S; Nair, Rajagopalan

    2007-11-26

    Floating Knee injuries are complex injuries. The type of fractures, soft tissue and associated injuries make this a challenging problem to manage. We present the outcome of these injuries after surgical management. 29 patients with floating knee injuries were managed over a 3 year period. This was a prospective study were both fractures of the floating knee injury were surgically fixed using different modalities. The associated injuries were managed appropriately. Assessment of the end result was done by the Karlstrom criteria after bony union. The mechanism of injury was road traffic accident in 27/29 patients. There were 38 associated injuries. 20/29 patients had intramedullary nailing for both fractures. The complications were knee stiffness, foot drop, delayed union of tibia and superficial infection. The bony union time ranged from 15 - 22.5 weeks for femur fractures and 17 - 28 weeks for the tibia. According to the Karlstrom criteria the end results were Excellent - 15, Good - 11, Acceptable - 1 and Poor - 3. The associated injuries and the type of fracture (open, intra-articular, comminution) are prognostic indicators in the Floating knee. Appropriate management of the associated injuries, intramedullary nailing of both the fractures and post operative rehabilitation are necessary for good final outcome.

  10. Charging free floating shared cars in metropolitan areas

    NARCIS (Netherlands)

    van der Poel, Gijs; Tensen, Tim; van Goeverden, Tom; van den Hoed, Robert

    2017-01-01

    This paper analyses the effect of two new developments: electrification and ‘free floating’ car sharing and their impact on public space. Contrary to station based shared cars, free floating cars do not have dedicated parking or charging stations. They therefore park at public parking spots and

  11. Renormalization and asymptotic freedom in quantum gravity

    International Nuclear Information System (INIS)

    Tomboulis, E.T.

    1984-01-01

    The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)

  12. Quantum gravity and quantum cosmology

    CERN Document Server

    Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos

    2013-01-01

    Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe.   While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.   ...

  13. Topological gravity with minimal matter

    International Nuclear Information System (INIS)

    Li Keke

    1991-01-01

    Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)

  14. Alternative Hamiltonian representation for gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)

    2007-11-15

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.

  15. Alternative Hamiltonian representation for gravity

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2007-01-01

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity

  16. Random manifolds and quantum gravity

    International Nuclear Information System (INIS)

    Krzywicki, A.

    2000-01-01

    The non-perturbative, lattice field theory approach towards the quantization of Euclidean gravity is reviewed. Included is a tentative summary of the most significant results and a presentation of the current state of art

  17. Gravity Data For Colombia 1997

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (9,050 records), were observed and processed by the Instituto Geografico Agustin Codazzi(IGAC), in Colombia from 1958 to 1996. This data...

  18. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  19. Unifying Einstein and Palatini gravities

    International Nuclear Information System (INIS)

    Amendola, Luca; Enqvist, Kari; Koivisto, Tomi

    2011-01-01

    We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g μν =C(R)g μν with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.

  20. Defying gravity using Jenga™ blocks

    Science.gov (United States)

    Tan, Yin-Soo; Yap, Kueh-Chin

    2007-11-01

    This paper describes how Jenga™ blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum.

  1. Zero-gravity movement studies

    Science.gov (United States)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  2. Biogeochemical sensor performance in the SOCCOM profiling float array

    Science.gov (United States)

    Johnson, Kenneth S.; Plant, Joshua N.; Coletti, Luke J.; Jannasch, Hans W.; Sakamoto, Carole M.; Riser, Stephen C.; Swift, Dana D.; Williams, Nancy L.; Boss, Emmanuel; Haëntjens, Nils; Talley, Lynne D.; Sarmiento, Jorge L.

    2017-08-01

    The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inaccurate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The initial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory measurements made on samples collected by a hydrographic cast with a rosette sampler at the float deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet average oxygen data are accurate to 1 ± 1%, nitrate to within 0.5 ± 0.5 µmol kg-1, and pH to 0.005 ± 0.007, where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon concentration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate to with 35 mg C m-3 or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll a concentrations are evaluated.Plain Language SummaryThe ocean science community must move toward greater use of autonomous platforms and sensors if we are to extend our knowledge of the effects of climate driven change within the ocean. Essential to this shift in observing strategies is an understanding of the performance that can be obtained from biogeochemical sensors on platforms deployed for years and the

  3. Indenting a Thin Floating Film: Force and First-fold Formation

    Science.gov (United States)

    Ripp, Monica; Paulsen, Joseph

    2017-11-01

    When a thin elastic sheet is gently pushed into a liquid bath, a pattern of radial wrinkles is generated where the film is locally compressed. Despite the simplicity of this setting, basic questions remain about the mechanics and morphology of indented thin films. Recent work shows that traditional post-buckling analysis must be supplanted with an analysis where wrinkles completely relax compressive stresses. Support for this ``far-from-threshold'' theory has been built on measurements of wrinkle extent and wavelength, but direct force measurements have been absent. Here we measure the force response of floating ultrathin ( 100 nm) polystyrene films in indentation experiments. Our measurements are in good agreement with recent predictions for two regimes of poking: Early on force depends on film properties (thickness and Young's modulus) and later is independent of film properties, simply transferring forces from the substrate (gravity and surface tension) to the poker. At larger indentations compression localizes into a single fold. We present scaling arguments and experiments that show the existing model of this transition must be modified. NSF IGERT, NSF CAREER.

  4. Asphalt chemical fractionation

    International Nuclear Information System (INIS)

    Obando P, Klever N.

    1998-01-01

    Asphalt fractionation were carried out in the Esmeraldas Oil Refinery using n-pentane, SiO 2 and different mixture of benzene- methane. The fractions obtained were analyzed by Fourier's Transformed Infrared Spectrophotometry (FTIR)

  5. Distinguishing modified gravity models

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine

    2015-01-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations

  6. Gravity from strings

    International Nuclear Information System (INIS)

    Deser, S.

    1987-01-01

    We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)

  7. Gravity Probe B Encapsulated

    Science.gov (United States)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  8. Phases of massive gravity

    CERN Document Server

    Dubovsky, S L

    2004-01-01

    We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group using the explicitly covariant language. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity can be described by a consistent low-energy effective theory with cutoff $\\sim\\sqrt{mM_{Pl}}$ free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz--Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of ...

  9. Distinguishing modified gravity models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif/Yvette Cedex (France); Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)

    2015-10-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.

  10. Nonperturbative quantum gravity

    International Nuclear Information System (INIS)

    Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.

    2012-01-01

    Asymptotic safety describes a scenario in which general relativity can be quantized as a conventional field theory, despite being nonrenormalizable when expanding it around a fixed background geometry. It is formulated in the framework of the Wilsonian renormalization group and relies crucially on the existence of an ultraviolet fixed point, for which evidence has been found using renormalization group equations in the continuum. “Causal Dynamical Triangulations” (CDT) is a concrete research program to obtain a nonperturbative quantum field theory of gravity via a lattice regularization, and represented as a sum over spacetime histories. In the Wilsonian spirit one can use this formulation to try to locate fixed points of the lattice theory and thereby provide independent, nonperturbative evidence for the existence of a UV fixed point. We describe the formalism of CDT, its phase diagram, possible fixed points and the “quantum geometries” which emerge in the different phases. We also argue that the formalism may be able to describe a more general class of Hořava–Lifshitz gravitational models.

  11. Entropy and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Bernard S. Kay

    2015-12-01

    Full Text Available We give a review, in the style of an essay, of the author’s 1998 matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. It also involves a radically different from usual description of black hole equilibrium states in which the total state of a black hole in a box together with its atmosphere is a pure state—entangled in just such a way that the reduced state of the black hole and of its atmosphere are each separately approximately thermal. We also briefly recall some recent work of the author which involves a reworking of the string-theory understanding of black hole entropy consistent with this alternative description of black hole equilibrium states and point out that this is free from some unsatisfactory features of the usual string theory understanding. We also recall the author’s recent arguments based on this alternative description which suggest that the Anti de Sitter space (AdS/conformal field theory (CFT correspondence is a bijection between the boundary CFT and just the matter degrees of freedom of the bulk theory.

  12. Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow

    Science.gov (United States)

    Alam, Meheboob; Arakeri, V. H.; Nott, P. R.; Goddard, J. D.; Herrmann, H. J.

    2005-01-01

    Linear stability theory and bifurcation analysis are used to investigate the role of gravity in shear-band formation in granular Couette flow, considering a kinetic-theory rheological model. We show that the only possible state, at low shear rates, corresponds to a "plug" near the bottom wall, in which the particles are densely packed and the shear rate is close to zero, and a uniformly sheared dilute region above it. The origin of such plugged states is shown to be tied to the spontaneous symmetry-breaking instabilities of the gravity-free uniform shear flow, leading to the formation of ordered bands of alternating dilute and dense regions in the transverse direction, via an infinite hierarchy of pitchfork bifurcations. Gravity plays the role of an "imperfection", thus destroying the "perfect" bifurcation structure of uniform shear. The present bifurcation problem admits universal unfolding of pitchfork bifurcations which subsequently leads to the formation of a sequence of a countably infinite number of "isolas", with the solution structures being a modulated version of their gravity-free counterpart. While the solution with a plug near the bottom wall looks remarkably similar to the shear-banding phenomenon in dense slow granular Couette flows, a "floating" plug near the top wall is also a solution of these equations at high shear rates. A two-dimensional linear stability analysis suggests that these floating plugged states are unstable to long-wave travelling disturbances.The unique solution having a bottom plug can also be unstable to long waves, but remains stable at sufficiently low shear rates. The implications and realizability of the present results are discussed in the light of shear-cell experiments under "microgravity" conditions.

  13. PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity

    OpenAIRE

    Capozziello, S.; Troisi, A.

    2005-01-01

    Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.

  14. Radion and holographic brane gravity

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Soda, Jiro

    2002-01-01

    The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function ω(Ψ)=3Ψ/2(1-Ψ) on the positive tension brane and ω(Φ)=-3Φ/2(1+Φ) on the negative tension brane, where Ψ and Φ are nonlinear realizations of the radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Ψ and Φ couples with the sum of the traces of the energy-momentum tensor on both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk geometry can be reconstructed from the solution of quasi-scalar-tensor gravity

  15. Curved backgrounds in emergent gravity

    Science.gov (United States)

    Chaurasia, Shikha; Erlich, Joshua; Zhou, Yiyu

    2018-06-01

    Field theories that are generally covariant but nongravitational at tree level typically give rise to an emergent gravitational interaction whose strength depends on a physical regulator. We consider emergent gravity models in which scalar fields assume the role of clock and rulers, addressing the problem of time in quantum gravity. We discuss the possibility of nontrivial dynamics for clock and ruler fields, and describe some of the consequences of those dynamics for the emergent gravitational theory.

  16. Minimal Length, Measurability and Gravity

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2016-03-01

    Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.

  17. Scattering of internal gravity waves

    OpenAIRE

    Leaman Nye, Abigail

    2011-01-01

    Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...

  18. Absolute gravity measurements in California

    Science.gov (United States)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  19. Dark Matter in Quantum Gravity

    OpenAIRE

    Calmet, Xavier; Latosh, Boris

    2018-01-01

    We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.

  20. The quest for quantum gravity

    International Nuclear Information System (INIS)

    Au, G.

    1995-03-01

    One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity

  1. Gravity as Quantum Entanglement Force

    OpenAIRE

    Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai

    2010-01-01

    We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...

  2. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  3. The quest for quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Au, G

    1995-03-01

    One of the greatest challenges facing theoretical physics lies in reconciling Einstein`s classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity.

  4. Gravity a very short introduction

    CERN Document Server

    Clifton, Timothy

    2017-01-01

    Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...

  5. Smarandache Continued Fractions

    OpenAIRE

    Ibstedt, H.

    2001-01-01

    The theory of general continued fractions is developed to the extent required in order to calculate Smarandache continued fractions to a given number of decimal places. Proof is given for the fact that Smarandache general continued fractions built with positive integer Smarandache sequences baving only a finite number of terms equal to 1 is convergent. A few numerical results are given.

  6. Fragmented Canopies Control the Regimes of Gravity Current Development

    Science.gov (United States)

    Barcelona, Aina; Serra, Teresa; Colomer, Jordi

    2018-03-01

    Coastal ecosystems (marine littoral regions, wetlands, and deltas) are regions of high biological productivity. However, they are also one of the world's most threatened ecosystems. Wetlands are characterized by aquatic vegetation adapted to high salinity levels and climatic variations. Wetland canopies buffer these hydrodynamic and atmospheric variations and help retain sediment by reducing current velocity during sea storms or runoff after periods of rain. This work focuses on the effect of the presence of a gap (i.e., nonvegetated zone) parallel to the direction of the main current has on the sedimentation and hydrodynamics of a gravity current. The study aims to (1) address the behavior of a gravity current in a vegetated region compared to one without vegetation (i.e., the gap), (2) determine the effect gap size has on how a gravity current evolves, and 3) determine the effect gap sizes have on the sedimentary rates from a gravity current. Laboratory experiments were carried out in a flume using four different sediment concentrations, four different canopy densities (884, 354, 177, and 0 plants·m-2) and three different gap widths (H/2, H, and 1.5H, where H is the height of the water). This work shows that a gravity current's evolution and its sedimentary rates depend on the fractional volume occupied by the vegetation. While current dynamics in experiments with wider gaps are similar to the nonvegetated case, for smaller gaps the dynamics are closer to the fully vegetated case. Nonetheless, the gravity current exhibits the same behavior in both the vegetated region and the gap.

  7. Fractional smith chart theory

    KAUST Repository

    Shamim, Atif

    2011-03-01

    For the first time, a generalized Smith chart is introduced here to represent fractional order circuit elements. It is shown that the standard Smith chart is a special case of the generalized fractional order Smith chart. With illustrations drawn for both the conventional integer based lumped elements and the fractional elements, a graphical technique supported by the analytical method is presented to plot impedances on the fractional Smith chart. The concept is then applied towards impedance matching networks, where the fractional approach proves to be much more versatile and results in a single element matching network for a complex load as compared to the two elements in the conventional approach. © 2010 IEEE.

  8. Gravity Probe B Assembled

    Science.gov (United States)

    2000-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  9. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  10. Gravity-induced dynamics of a squirmer microswimmer in wall proximity

    Science.gov (United States)

    Rühle, Felix; Blaschke, Johannes; Kuhr, Jan-Timm; Stark, Holger

    2018-02-01

    We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value {α }th} and are pinned to the wall below {α }th}. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.

  11. Formulation, release characteristics, and bioavailability study of gastroretentive floating matrix tablet and floating raft system of Mebeverine HCl.

    Science.gov (United States)

    El Nabarawi, Mohamed A; Teaima, Mahmoud H; Abd El-Monem, Rehab A; El Nabarawy, Nagla A; Gaber, Dalia A

    2017-01-01

    To prolong the residence time of dosage forms within the gastrointestinal tract until all drug is released at the desired rate is one of the real challenges for oral controlled-release drug delivery systems. This study was designed to develop a controlled-release floating matrix tablet and floating raft system of Mebeverine HCl (MbH) and evaluate different excipients for their floating behavior and in vitro controlled-release profiles. Oral pharmacokinetics of the optimum matrix tablet, raft system formula, and marketed Duspatalin ® 200 mg retard as reference were studied in beagle dogs. The optimized tablet formula (FT-10) and raft system formula (FRS-11) were found to float within 34±5 sec and 15±7 sec, respectively, and both remain buoyant over a period of 12 h in simulated gastric fluid. FT-10 (Compritol/HPMC K100M 1:1) showed the slowest drug release among all prepared tablet formulations, releasing about 80.2% of MbH over 8 h. In contrast, FRS-11 (Sodium alginate 3%/HPMC K100M 1%/Precirol 2%) had the greatest retardation, providing sustained release of 82.1% within 8 h. Compared with the marketed MbH product, the C max of FT-10 was almost the same, while FRS-11 maximum concentration was higher. The t max was 3.33, 2.167, and 3.0 h for marketed MbH product, FT-10, and FRS-11, respectively. In addition, the oral bioavailability experiment showed that the relative bioavailability of the MbH was 104.76 and 116.01% after oral administration of FT-10 and FRS-11, respectively, compared to marketed product. These results demonstrated that both controlled-released floating matrix tablet and raft system would be promising gastroretentive delivery systems for prolonging drug action.

  12. Fractional factorial plans

    CERN Document Server

    Dey, Aloke

    2009-01-01

    A one-stop reference to fractional factorials and related orthogonal arrays.Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature--expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans...

  13. Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment

    International Nuclear Information System (INIS)

    Chan, H.A.; Moody, M.V.; Paik, H.J.

    1987-01-01

    A sensitive superconducting gravity gradiometer has been constructed and tested. Coupling to gravity signals is obtained by having two superconducting proof masses modulate magnetic fields produced by persistent currents. The induced electrical currents are differenced by a passive superconducting circuit coupled to a superconducting quantum interference device. The experimental behavior of this device has been shown to follow the theoretical model closely in both signal transfer and noise characteristics. While its intrinsic noise level is shown to be 0.07 E Hz/sup -1/2/ (1 Eequivalent10/sup -9/ sec/sup -2/), the actual performance of the gravity gradiometer on a passive platform has been limited to 0.3--0.7 E Hz/sup -1/2/ due to its coupling to the environmental noise. The detailed structure of this excess noise is understood in terms of an analytical error model of the instrument. The calibration of the gradiometer has been obtained by two independent methods: by applying a linear acceleration and a gravity signal in two different operational modes of the instrument. This device has been successfully operated as a detector in a new null experiment for the gravitational inverse-square law. In this paper we report the design, fabrication, and detailed test results of the superconducting gravity gradiometer. We also present additional theoretical analyses which predict the specific dynamic behavior of the gradiometer and of the test

  14. On the Dynamics and Control of Free-floating Space Manipulator Systems in the Presence of Angular Momentum

    Directory of Open Access Journals (Sweden)

    Kostas Nanos

    2017-06-01

    Full Text Available In this paper, the control of free-floating space manipulator systems with non-zero angular momentum (NZAM, for both motions in the joint and Cartesian space, is studied. Considering NZAM, dynamic models in the joint and Cartesian space are derived. It is shown that the NZAM has a similar result to the effect of gravity in terrestrial fixed base manipulators. Based on these similarities, the application of controllers similar to the ones used for the compensation of gravity in terrestrial fixed base manipulators is proposed here to compensate the effect of angular momentum. To confirm the asymptotic stability of the closed-loop systems, some structural properties of the dynamic models must be satisfied. It is shown that despite the presence of angular momentum, these structural properties still apply. Thus, the proposed controllers can drive the system in the desired position despite the presence of angular momentum. However, the NZAM imposes constraints on the system workspace, where the end-effector can be driven in the Cartesian space. Limitations are discussed and the application of the proposed controllers is illustrated by examples.

  15. Extreme neutron stars from Extended Theories of Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I-80126 Italy (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  16. Dividing Fractions: A Pedagogical Technique

    Science.gov (United States)

    Lewis, Robert

    2016-01-01

    When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…

  17. Are the older ARGO-Floats more vulnerable to Fouling and Associated Salinity drift compared to that of later deployments?

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Youn, Y.H.; Lee, H.

    in different years Floats deployed in the East/Japan Sea and in the Indian Ocean are examined to find out float-to-float match-ups in such a way that an older float pops up simultaneously with a newer deployment (with tolerable space-time difference) A time...

  18. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

    Science.gov (United States)

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2017-11-01

    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  19. Modelling global distribution, risk and mitigation strategies of floating plastic pollution

    Science.gov (United States)

    van Sebille, Erik; Wilcox, Chris; Sherman, Peter; Hardesty, Britta Denise; Lavender Law, Kara

    2016-04-01

    Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardise a global dataset of plastic marine debris measured using surface-trawling plankton nets and couple this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons. A large fraction of the uncertainty in these estimates comes from sparse sampling in coastal and Southern Hemisphere regions. We then use this global distribution of small floating plastic debris to map out where in the ocean the risk to marine life (in particular seabirds and plankton growth) is greatest, using a quantitative risk framework. We show that the largest risk occurs not necessarily in regions of high plastic concentration, but rather in regions of extensive foraging with medium-high plastic concentrations such as coastal upwelling regions and the Southern Ocean. Finally, we use the estimates of distribution to investigate where in the ocean plastic can most optimally be removed, assuming hypothetical clean-up booms following the ideas from The Ocean Cleanup project. We show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres. Based on these results, we propose more focus on the coastal zones when

  20. Light fermions in quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Gies, Holger

    2011-01-01

    We study the impact of quantum gravity, formulated as a quantum field theory of the metric, on chiral symmetry in a fermionic matter sector. Specifically we address the question of whether metric fluctuations can induce chiral symmetry breaking and bound state formation. Our results based on the functional renormalization group indicate that chiral symmetry is left intact even at strong gravitational coupling. In particular, we found that asymptotically safe quantum gravity where the gravitational couplings approach a non-Gaußian fixed point generically admits universes with light fermions. Our results thus further support quantum gravity theories built on fluctuations of the metric field such as the asymptotic-safety scenario. A study of chiral symmetry breaking through gravitational quantum effects may also serve as a significant benchmark test for other quantum gravity scenarios, since a completely broken chiral symmetry at the Planck scale would not be in accordance with the observation of light fermions in our universe. We demonstrate that this elementary observation already imposes constraints on a generic UV completion of gravity. (paper)

  1. Quantum gravity as Escher's dragon

    International Nuclear Information System (INIS)

    Smilga, A.V.

    2003-01-01

    The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D = 4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N = 4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N= 1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N = 4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives

  2. The Juno Gravity Science Instrument

    Science.gov (United States)

    Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo

    2017-11-01

    The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

  3. Self Completeness of Einstein Gravity

    CERN Document Server

    Dvali, Gia

    2010-01-01

    We argue, that in Einsteinian gravity the Planck length is the shortest length of nature, and any attempt of resolving trans-Planckian physics bounces back to macroscopic distances due to black hole formation. In Einstein gravity trans-Planckian propagating quantum degrees of freedom cannot exist, instead they are equivalent to the classical black holes that are fully described by lighter infra-red degrees of freedom and give exponentially-soft contribution into the virtual processes. Based on this property we argue that pure-Einstein (super)gravity and its high-dimensional generalizations are self-complete in deep-UV, but not in standard Wilsonian sense. We suggest that certain strong-coupling limit of string theory is built-in in pure Einstein gravity, whereas the role of weakly-coupled string theory limit is to consistently couple gravity to other particle species, with their number being set by the inverse string coupling. We also discuss some speculative ideas generalizing the notion of non-Wilsonian sel...

  4. Scale-invariant gravity: geometrodynamics

    International Nuclear Information System (INIS)

    Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O

    2003-01-01

    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different

  5. Gravity gradient preprocessing at the GOCE HPF

    Science.gov (United States)

    Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.

    2009-04-01

    One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  6. Generalized uncertainty principle, quantum gravity and Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2009-01-01

    We investigate a close connection between generalized uncertainty principle (GUP) and deformed Horava-Lifshitz (HL) gravity. The GUP commutation relations correspond to the UV-quantum theory, while the canonical commutation relations represent the IR-quantum theory. Inspired by this UV/IR quantum mechanics, we obtain the GUP-corrected graviton propagator by introducing UV-momentum p i =p 0i (1+βp 0 2 ) and compare this with tensor propagators in the HL gravity. Two are the same up to p 0 4 -order.

  7. Dilaton gravity, Poisson sigma models and loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Reyes, Juan D

    2009-01-01

    Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.

  8. Dualities and emergent gravity: Gauge/gravity duality

    Science.gov (United States)

    de Haro, Sebastian

    2017-08-01

    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on

  9. The Gravity of Regenerative Medicine; Physics, Chemistry & Biology behind it

    Directory of Open Access Journals (Sweden)

    Dedeepiya V

    2008-01-01

    Full Text Available The in-vitro expansion of cells of the organs/tissues and their re-implantation into the affected region/ tissue for treating cell/organ failure have been in practice for long, but in limited specialties. The in-vitro cell culture protocols use variety of biological reagents derived from animal sources and recombinant technologies. However, the optimal quantity of such biological components such as growth factors, cytokines etc.,needed for such cells to be grown in a non-physiological environment is still unknown. The use of such biological components have started to stir a controversy of late, due to the recognition of its potential hazards such as spread of prion diseases and contamination with non-human sialic acid proteins. Therefore synthetic reproducible biomaterials are gaining popularity in cell culture and tissue engineering. The biomaterials made of several chemical components based on physical parameters are starting to change certain concepts about the niche of cell culture and that of stem cell expansion and differentiation to specific lineages. Engler et al have already proven that a simple change in the matrix elasticity alone could change the lineage of the cells. Spencer et al have reported that a change in bioelectricity could change the morphogenesis during development. NCRM has been involved in cell culture and tissue engineering using approximately 240 different materials ranging from polymer hydrogel, gel with adherent inserts, nano composite materials, nano-coating technologies, nano-sheets and nano-films. These materials are used in cell culture in different hybrid combinations such as Floating 3D cell culture without adherent components in a homogenous hydrogel. Floating 3D cell culture with anchorage inserts. Flat surface- 2D adherent cell culture. Combined flat surface 2D cell culture (for differentiating cells and floating 3D culture (for undifferentiated cells. These combinations have started yielding several

  10. Free-floating magnetic microstructures by mask photolithography

    Science.gov (United States)

    Huong Au, Thi; Thien Trinh, Duc; Bich Do, Danh; Phu Nguyen, Dang; Cong Tong, Quang; Diep Lai, Ngoc

    2018-03-01

    This work explores the fabrication of free-floating magnetic structures on a photocurable nanocomposite consisting of superparamagnetic magnetite nanoparticles (Fe3O4) and a commercial SU-8 negative tone photoresist. The nanocomposite was synthesized by mixing magnetic nanoparticles with different kinds of SU-8 resin. We demonstrated that the dispersion of Fe3O4 nanoparticles in nanocomposite solution strongly depended on the particles concentration, the viscosity of SU-8 polymer, and the mixing time. The influence of these factors was demonstrated by examining the structures fabricated by mask photolithography technique. We obtained the best quality of structures at a low concentration, below 5 wt%, of Fe3O4 nanoparticles in SU-8 2005 photoresist for a mixing time of about 20 days. The manipulation of free-floating magnetic microstructures by an external magnetic field was also demonstrated showing promising applications of this magnetic nanocomposite.

  11. Predicting vehicle fuel consumption patterns using floating vehicle data.

    Science.gov (United States)

    Du, Yiman; Wu, Jianping; Yang, Senyan; Zhou, Liutong

    2017-09-01

    The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers' information and vehicles' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model. Copyright © 2017. Published by Elsevier B.V.

  12. What is the size of a floating sheath? An answer

    Science.gov (United States)

    Voigt, Farina; Naggary, Schabnam; Brinkmann, Ralf Peter

    2016-09-01

    The formation of a non-neutral boundary sheath in front of material surfaces is universal plasma phenomenon. Despite several decades of research, however, not all related issues are fully clarified. In a recent paper, Chabert pointed out that this lack of clarity applies even to the seemingly innocuous question ``What the size of a floating sheath?'' This contribution attempts to provide an answer that is not arbitrary: The size of a floating sheath is defined as the plate separation of an equivalent parallel plate capacitor. The consequences of the definition are explored with the help of a self-consistent sheath model, and a comparison is made with other sheath size definitions. Deutsche Forschungsgemeinschaft within SFB TR 87.

  13. A flexible capacitive tactile sensing array with floating electrodes

    International Nuclear Information System (INIS)

    Cheng, M-Y; Huang, X-H; Ma, C-W; Yang, Y-J

    2009-01-01

    In this work, we present the development of a capacitive tactile sensing array realized by using MEMS fabrication techniques and flexible printed circuit board (FPCB) technologies. The sensing array, which consists of two micromachined polydimethlysiloxane (PDMS) structures and a FPCB, will be used as the artificial skin for robot applications. Each capacitive sensing element comprises two sensing electrodes and a common floating electrode. The sensing electrodes and the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrode is patterned on one of the PDMS structures. This special design can effectively reduce the complexity of the device structure and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions are measured and discussed. The corresponding scanning circuits are also designed and implemented. The tactile images induced by the PMMA stamps of different shapes are also successfully captured by a fabricated 8 × 8 array

  14. Proton production, neutralisation and reduction in a floating water bridge

    Science.gov (United States)

    Sammer, Martina; Wexler, Adam D.; Kuntke, Philipp; Wiltsche, Helmar; Stanulewicz, Natalia; Lankmayr, Ernst; Woisetschläger, Jakob; Fuchs, Elmar C.

    2015-10-01

    This work reports on proton production, transport, reduction and neutralization in floating aqueous bridges under the application of a high dc voltage (‘floating water bridge’). Recently possible mechanisms for proton transfer through the bridge were suggested. In this work we visualize and describe the production of protons in the anolyte and their neutralization in the catholyte. Apart from that, protons are reduced to hydrogen due to electrolysis. Microbubbles are detached instantly, due to the electrohydrodynamic flow at the electrode surface. No larger, visible bubbles are formed and the system degasses through the bridge due to its higher local temperature. A detailed analysis of trace elements originating from beaker material, anode or the atmosphere is presented, showing that their influence on the overall conduction compared to the contribution of protons is negligible. Finally, an electrochemical rationale of high voltage electrolysis of low ionic strength solutions is presented.

  15. Neutron scattering of a floating heavy water bridge

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Bitschnau, Brigitte; Woisetschlaeger, Jakob; Maier, Eugen; Beuneu, Brigitte; Teixeira, Jose

    2009-01-01

    When high voltage is applied to distilled water filled into two beakers close to each other, a water connection forms spontaneously, giving the impression of a floating water bridge (Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4, 2008 J. Phys. D: Appl. Phys. 41 185502). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the first data on neutron scattering of a floating heavy water bridge are presented and possible interpretations are discussed. D 2 O was measured instead of H 2 O because of the very strong incoherent scattering of H. The obtained data support the 'bubble hypothesis' suggested earlier (Fuchs et al 2008).

  16. A floating water bridge produces water with excess charge

    Science.gov (United States)

    Fuchs, Elmar C.; Sammer, Martina; Wexler, Adam D.; Kuntke, Philipp; Woisetschläger, Jakob

    2016-03-01

    Excess positive and negative Bjerrum-defect like charge (protonic and ‘aterprotonic’, from ancient Greek ἄ'τɛρ, ‘without’) in anolyte and catholyte of high voltage electrolysis of highly pure water was found during the so-called ‘floating water bridge’ experiment. The floating water bridge is a special case of an electrohydrodynamic liquid bridge and constitutes an intriguing phenomenon that occurs when a high potential difference (~kV cm-1) is applied between two beakers of water. To obtain such results impedance spectroscopy was used. This measurement technique allows the depiction and simulation of complex aqueous systems as simple electric circuits. In the present work we show that there is an additional small contribution from the difference in conductivity between anolyte and catholyte which cannot be measured with a conductivity meter, but is clearly visible in an impedance spectrum.

  17. Floating and flying ferrofluid bridges induced by external magnetic fields

    Science.gov (United States)

    Ma, Rongchao; Zhou, Yixin; Liu, Jing

    2015-04-01

    A ferrofluid is a mixture that exhibits both magnetism and fluidity. This merit enables the ferrofluid to be used in a wide variety of areas. Here we show that a floating ferrofluid bridge can be induced between two separated boards under a balanced external magnetic field generated by two magnets, while a flying ferrofluid bridge can be induced under an unbalanced external magnetic field generated by only one magnet. The mechanisms of the ferrofluid bridges were discussed and the corresponding mathematical equations were also established to describe the interacting magnetic force between the ferro particles inside the ferrofluid. This work answered a basic question that, except for the well-known floating water bridges that are related to electricity, one can also build up a liquid bridge that is related to magnetism.

  18. Floating Marine Debris in waters of the Mexican Central Pacific.

    Science.gov (United States)

    Díaz-Torres, Evelyn R; Ortega-Ortiz, Christian D; Silva-Iñiguez, Lidia; Nene-Preciado, Alejandro; Orozco, Ernesto Torres

    2017-02-15

    The presence of marine debris has been reported recently in several oceans basins; there is very little information available for Mexican Pacific coasts, however. This research examined the composition, possible sources, distribution, and density of Floating Marine Debris (FMD) during nine research surveys conducted during 2010-2012 in the Mexican Central Pacific (MCP). Of 1820 floating objects recorded, 80% were plastic items. Sources of FMD were determined using key objects, which indicated that the most were related to the presence of the industrial harbor and of a growing fishing industry in the study area. Densities were relatively high, ranging from 40 to 2440objects/km 2 ; the highest densities were recorded in autumn. FMD were distributed near coastal regions, mainly in Jalisco, influenced by river outflow and surface currents. Our results seem to follow worldwide trends and highlight the need for further studies on potential ecological impacts within coastal waters of the MCP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A floating water bridge produces water with excess charge

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Sammer, Martina; Wexler, Adam D; Kuntke, Philipp; Woisetschläger, Jakob

    2016-01-01

    Excess positive and negative Bjerrum-defect like charge (protonic and ‘aterprotonic’, from ancient Greek ατερ, ‘without’) in anolyte and catholyte of high voltage electrolysis of highly pure water was found during the so-called ‘floating water bridge’ experiment. The floating water bridge is a special case of an electrohydrodynamic liquid bridge and constitutes an intriguing phenomenon that occurs when a high potential difference (∼kV cm −1 ) is applied between two beakers of water. To obtain such results impedance spectroscopy was used. This measurement technique allows the depiction and simulation of complex aqueous systems as simple electric circuits. In the present work we show that there is an additional small contribution from the difference in conductivity between anolyte and catholyte which cannot be measured with a conductivity meter, but is clearly visible in an impedance spectrum. (paper)

  20. Proton production, neutralisation and reduction in a floating water bridge

    International Nuclear Information System (INIS)

    Sammer, Martina; Wexler, Adam D; Kuntke, Philipp; Stanulewicz, Natalia; Lankmayr, Ernst; Woisetschläger, Jakob; Fuchs, Elmar C; Wiltsche, Helmar

    2015-01-01

    This work reports on proton production, transport, reduction and neutralization in floating aqueous bridges under the application of a high dc voltage (‘floating water bridge’). Recently possible mechanisms for proton transfer through the bridge were suggested. In this work we visualize and describe the production of protons in the anolyte and their neutralization in the catholyte. Apart from that, protons are reduced to hydrogen due to electrolysis. Microbubbles are detached instantly, due to the electrohydrodynamic flow at the electrode surface. No larger, visible bubbles are formed and the system degasses through the bridge due to its higher local temperature. A detailed analysis of trace elements originating from beaker material, anode or the atmosphere is presented, showing that their influence on the overall conduction compared to the contribution of protons is negligible. Finally, an electrochemical rationale of high voltage electrolysis of low ionic strength solutions is presented. (paper)