WorldWideScience

Sample records for gravity field derived

  1. Scalar fields and higher-derivative gravity in brane worlds

    International Nuclear Information System (INIS)

    Pichler, S.

    2004-01-01

    We consider the brane world picture in the context of higher-derivative theories of gravity and tackle the problematic issues fine-tuning and brane-embedding. First, we give an overview of extra-dimensional physics, from the Kaluza-Klein picture up to modern brane worlds with large extra dimensions. We describe the different models and their physical impact on future experiments. We work within the framework of Randall-Sundrum models in which the brane is a gravitating object, which warps the background metric. We add scalar fields to the original model and find new and self-consistent solutions for quadratic potentials of the fields. This gives us the tools to investigate higher-derivative gravity theories in brane world models. Specifically, we take gravitational Lagrangians that depend on an arbitrary function of the Ricci scalar only, so-called f(R)-gravity. We make use of the conformal equivalence between f(R)-gravity and Einstein-Hilbert gravity with an auxiliary scalar field. We find that the solutions in the higher-derivative gravity framework behave very differently from the original Randall-Sundrum model: the metric functions do not have the typical kink across the brane. Furthermore, we present solutions that do not rely on a cosmological constant in the bulk and so avoid the fine-tuning problem. We address the issue of brane-embedding, which is important in perturbative analyses. We consider the embedding of codimension one hypersurfaces in general and derive a new equation of motion with which the choice for the embedding has to comply. In particular, this allows for a consistent consideration of brane world perturbations in the case of higher-derivative gravity. We use the newly found background solutions for quadratic potentials and find that gravity is still effectively localized on the brane, i.e that the Newtonian limit holds

  2. Invariant models in the inversion of gravity and magnetic fields and their derivatives

    Science.gov (United States)

    Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni

    2014-11-01

    In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.

  3. Nonlinear massive spin-2 field generated by higher derivative gravity

    International Nuclear Information System (INIS)

    Magnano, Guido; Sokolowski, Leszek M.

    2003-01-01

    We present a systematic exposition of the Lagrangian field theory for the massive spin-2 field generated in higher-derivative gravity upon reduction to a second-order theory by means of the appropriate Legendre transformation. It has been noticed by various authors that this nonlinear field overcomes the well-known inconsistency of the theory for a linear massive spin-2 field interacting with Einstein's gravity. Starting from a Lagrangian quadratically depending on the Ricci tensor of the metric, we explore the two possible second-order pictures usually called '(Helmholtz-)Jordan frame' and 'Einstein frame'. In spite of their mathematical equivalence, the two frames have different structural properties: in Einstein frame, the spin-2 field is minimally coupled to gravity, while in the other frame it is necessarily coupled to the curvature, without a separate kinetic term. We prove that the theory admits a unique and linearly stable ground state solution, and that the equations of motion are consistent, showing that these results can be obtained independently in either frame (each frame therefore provides a self-contained theory). The full equations of motion and the (variational) energy-momentum tensor for the spin-2 field in Einstein frame are given, and a simple but non-trivial exact solution to these equations is found. The comparison of the energy-momentum tensors for the spin-2 field in the two frames suggests that the Einstein frame is physically more acceptable. We point out that the energy-momentum tensor generated by the Lagrangian of the linearized theory is unrelated to the corresponding tensor of the full theory. It is then argued that the ghost-like nature of the nonlinear spin-2 field, found long ago in the linear approximation, may not be so harmful to classical stability issues, as has been expected

  4. Allowance for influence of gravity field nonuniformity

    Science.gov (United States)

    Tsysar, A. P.

    1987-03-01

    The constants of a quartz-metal pendulum used in higher-order gravimetric networks have been determined and a formula has been derived for the total correction for gravity field nonuniformity measurements made with the pendulum. Nomograms were constructed on the basis of these formulas and are used in introducing corrections into pendulum measurements. A table was prepared giving the components of the correction for some values of the derivatives of gravity potential from surrounding masses. Errors can be caused by building walls, the pedestal on which the instrument sits and other factors, and these must be taken into account since they increase the normal gravity gradient. After introducing these correction components for the nonuniform gravity field, the gravity field at the measurement point is related to the instrument point coinciding with the middle of the pendulum knife blade.

  5. Field Equations for Lovelock Gravity: An Alternative Route

    Directory of Open Access Journals (Sweden)

    Sumanta Chakraborty

    2018-01-01

    Full Text Available We present an alternative derivation of the gravitational field equations for Lovelock gravity starting from Newton’s law, which is closer in spirit to the thermodynamic description of gravity. As a warm up exercise, we have explicitly demonstrated that, projecting the Riemann curvature tensor appropriately and taking a cue from Poisson’s equation, Einstein’s equations immediately follow. The above derivation naturally generalizes to Lovelock gravity theories where an appropriate curvature tensor satisfying the symmetries as well as the Bianchi derivative properties of the Riemann tensor has to be used. Interestingly, in the above derivation, the thermodynamic route to gravitational field equations, suited for null hypersurfaces, emerges quiet naturally.

  6. Venus gravity fields

    Science.gov (United States)

    Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.

    1981-01-01

    Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.

  7. Normal gravity field in relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao

    2018-02-01

    intrinsically connected to the existence of the residual gauge freedom, and derive the post-Newtonian normal gravity field of the rotating spheroid both inside and outside of the rotating fluid body. The normal gravity field is given, similarly to the Newtonian gravity, in a closed form by a finite number of the ellipsoidal harmonics. We employ transformation from the ellipsoidal to spherical coordinates to deduce a more conventional post-Newtonian multipolar expansion of scalar and vector gravitational potentials of the rotating spheroid. We compare these expansions with that of the normal gravity field generated by the Kerr metric and demonstrate that the Kerr metric has a fairly limited application in relativistic geodesy as it does not match the normal gravity field of the Maclaurin ellipsoid already in the Newtonian limit. We derive the post-Newtonian generalization of the Somigliana formula for the normal gravity field measured on the surface of the rotating spheroid and employed in practical work for measuring Earth's gravitational field anomalies. Finally, we discuss the possible choice of the gauge-dependent parameters of the normal gravity field model for practical applications and compare it with the existing EGM2008 model of a gravitational field.

  8. Gravity- and non-gravity-mediated couplings in multiple-field inflation

    International Nuclear Information System (INIS)

    Bernardeau, Francis

    2010-01-01

    Mechanisms for the generation of primordial non-Gaussian metric fluctuations in the context of multiple-field inflation are reviewed. As long as kinetic terms remain canonical, it appears that nonlinear couplings inducing non-Gaussianities can be split into two types. The extension of the one-field results to multiple degrees of freedom leads to gravity-mediated couplings that are ubiquitous but generally modest. Multiple-field inflation offers however the possibility of generating non-gravity-mediated coupling in isocurvature directions that can eventually induce large non-Gaussianities in the metric fluctuations. The robustness of the predictions of such models is eventually examined in view of a case study derived from a high-energy physics construction.

  9. The role of satellite altimetry in gravity field modelling in coastal areas

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    2000-01-01

    global uniform gravity information with very high resolution, and these global marine gravity fields are registered on a two by two minute grid corresponding to 4 by 4 kilometres at the equator. In this presentation several coastal complications in deriving the marine gravity field from satellite...... altimetry will be investigated using the KMS98 gravity field. Comparison with other sources of gravity field information like airborne and marine gravity observations will be carried out and two fundamentally different test areas (Azores and Skagerak) will be studied to investigated the different role...

  10. Beyond Lovelock gravity: Higher derivative metric theories

    Science.gov (United States)

    Crisostomi, M.; Noui, K.; Charmousis, C.; Langlois, D.

    2018-02-01

    We consider theories describing the dynamics of a four-dimensional metric, whose Lagrangian is diffeomorphism invariant and depends at most on second derivatives of the metric. Imposing degeneracy conditions we find a set of Lagrangians that, apart form the Einstein-Hilbert one, are either trivial or contain more than 2 degrees of freedom. Among the partially degenerate theories, we recover Chern-Simons gravity, endowed with constraints whose structure suggests the presence of instabilities. Then, we enlarge the class of parity violating theories of gravity by introducing new "chiral scalar-tensor theories." Although they all raise the same concern as Chern-Simons gravity, they can nevertheless make sense as low energy effective field theories or, by restricting them to the unitary gauge (where the scalar field is uniform), as Lorentz breaking theories with a parity violating sector.

  11. Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions

    Science.gov (United States)

    McCullough, Christopher; Bettadpur, Srinivas

    2015-04-01

    In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.

  12. A classical approach to higher-derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1988-01-01

    Two classical routes towards higher-derivative gravity theory are described. The first one is a geometrical route, starting from first principles. The second route is a formal one, and is based on a recent theorem by Castagnino et.al. [J. Math. Phys. 28 (1987) 1854]. A cosmological solution of the higher-derivative field equations is exhibited which in a classical framework singles out this gravitation theory. (author) [pt

  13. Global gravity field from recent satellites (DTU15) - Arctic improvements

    DEFF Research Database (Denmark)

    Andersen, O. B.; Knudsen, P.; Kenyon, S.

    2017-01-01

    Global marine gravity field modelling using satellite altimetry is currently undergoing huge improvement with the completion of the Jason-1 end-of-life geodetic mission, but particularly with the continuing Cryosat-2 mission. These new satellites provide three times as many geodetic mission...... altimetric sea surface height observations as ever before. The impact of these new geodetic mission data is a dramatic improvement of particularly the shorter wavelength of the gravity field (10-20 km) which is now being mapped at significantly higher accuracy. The quality of the altimetric gravity field...... is in many places surpassing the quality of gravity fields derived using non-commercial marine gravity observations. Cryosat-2 provides for the first time altimetry throughout the Arctic Ocean up to 88°N. Here, the huge improvement in marine gravity mapping is shown through comparison with high quality...

  14. On higher derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1987-01-01

    A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt

  15. Recent developments in high-resolution global altimetric gravity field modeling

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Berry, P. A .M.

    2010-01-01

    older gravity fields show accuracy improvement of the order of 20-40% due to a combination of retracking, enhanced processing, and the use of the new EGM2008 geoid model. In coastal and polar regions, accuracy improved in many places by 40-50% (or more) compared with older global marine gravity fields.......In recent years, dedicated effort has been made to improve high-resolution global marine gravity fields. One new global field is the Danish National Space Center (DNSC) 1-minute grid called DNSC08GRA, released in 2008. DNSC08GRA was derived from double-retracked satellite altimetry, mainly from...... the ERS-1 geodetic mission data, augmented with new retracked GEOSAT data which have significantly enhanced the range and hence the gravity field accuracy. DNSC08GRA is the first high-resolution global gravity field to cover the entire Arctic Ocean all the way to the North Pole. Comparisons with other...

  16. The gravity field and GGOS

    DEFF Research Database (Denmark)

    Forsberg, René; Sideris, M.G.; Shum, C.K.

    2005-01-01

    The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...

  17. Killing vector fields in three dimensions: a method to solve massive gravity field equations

    Energy Technology Data Exchange (ETDEWEB)

    Guerses, Metin, E-mail: gurses@fen.bilkent.edu.t [Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara (Turkey)

    2010-10-21

    Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.

  18. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  19. Initial value formulation of higher derivative gravity

    International Nuclear Information System (INIS)

    Noakes, D.R.

    1983-01-01

    The initial value problem is considered for the conformally coupled scalar field and higher derivative gravity, by expressing the equations of each theory in harmonic coordinates. For each theory it is shown that the (vacuum) equations can take the form of a diagonal hyperbolic system with constraints on the initial data. Consequently these theories possess well-posed initial value formulations

  20. GOCE gravity field simulation based on actual mission scenario

    Science.gov (United States)

    Pail, R.; Goiginger, H.; Mayrhofer, R.; Höck, E.; Schuh, W.-D.; Brockmann, J. M.; Krasbutter, I.; Fecher, T.; Gruber, T.

    2009-04-01

    In the framework of the ESA-funded project "GOCE High-level Processing Facility", an operational hardware and software system for the scientific processing (Level 1B to Level 2) of GOCE data has been set up by the European GOCE Gravity Consortium EGG-C. One key component of this software system is the processing of a spherical harmonic Earth's gravity field model and the corresponding full variance-covariance matrix from the precise GOCE orbit and calibrated and corrected satellite gravity gradiometry (SGG) data. In the framework of the time-wise approach a combination of several processing strategies for the optimum exploitation of the information content of the GOCE data has been set up: The Quick-Look Gravity Field Analysis is applied to derive a fast diagnosis of the GOCE system performance and to monitor the quality of the input data. In the Core Solver processing a rigorous high-precision solution of the very large normal equation systems is derived by applying parallel processing techniques on a PC cluster. Before the availability of real GOCE data, by means of a realistic numerical case study, which is based on the actual GOCE orbit and mission scenario and simulation data stemming from the most recent ESA end-to-end simulation, the expected GOCE gravity field performance is evaluated. Results from this simulation as well as recently developed features of the software system are presented. Additionally some aspects on data combination with complementary data sources are addressed.

  1. Polar gravity fields from GOCE and airborne gravity

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan

    2011-01-01

    Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...

  2. An unusual cosmological solution in the context of higher-derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1988-01-01

    A general vacuum solution to the higher-derivative gravity field equations is presented in case of a model that exhibits symmetries of the Goedel-type. The solution possesses unusual properties. (author) [pt

  3. Generalised boundary terms for higher derivative theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Teimouri, Ali; Talaganis, Spyridon; Edholm, James [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Mazumdar, Anupam [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands)

    2016-08-24

    In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.

  4. Pedagogical systematic derivation of Noether point symmetries in special relativistic field theories and extended gravity cosmology

    Science.gov (United States)

    Haas, Fernando

    2016-11-01

    A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced.

  5. Pedagogical systematic derivation of Noether point symmetries in special relativistic field theories and extended gravity cosmology

    International Nuclear Information System (INIS)

    Haas, Fernando

    2016-01-01

    A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced. (paper)

  6. Evaluation of gravity field model EIGEN-6C4 by means of various functions of gravity potential, and by GNSS/levelling

    Directory of Open Access Journals (Sweden)

    Jan Kostelecký

    2015-06-01

    Full Text Available The combined gravity field model EIGEN-6C4 (Förste et al., 2014 is the latest combined global gravity field model of GFZ Potsdam and GRGS Toulouse. EIGEN-6C4 has been generated including the satellite gravity gradiometry data of the entire GOCE mission (November 2009 till October 2013 and is of maximum spherical degree and order 2190. In this study EIGEN-6C4 has been compared with EGM2008 to its maximum degree and order via gravity disturbances and Tzz part of the Marussi tensor of the second derivatives of the disturbing potential. The emphasis is put on such areas where GOCE data (complete set of gradiometry measurements after reductions in EIGEN-6C4 obviously contributes to an improvement of the gravity field description. GNSS/levelling geoid heights are independent data source for the evaluation of gravity field models. Therefore, we use the GNSS/levelling data sets over the territories of Europe, Czech Republic and Slovakia for the evaluation of EIGEN-6C4 w.r.t. EGM2008.

  7. Improvements in GRACE Gravity Fields Using Regularization

    Science.gov (United States)

    Save, H.; Bettadpur, S.; Tapley, B. D.

    2008-12-01

    The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or

  8. Monthly gravity field recovery from GRACE orbits and K-band measurements using variational equations approach

    Directory of Open Access Journals (Sweden)

    Changqing Wang

    2015-07-01

    Full Text Available The Gravity Recovery and Climate Experiment (GRACE mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field. We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements. The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution. The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics (IGG temporal gravity field models. IGG temporal gravity field models were compared with GRACE Release05 (RL05 products in following aspects: (i the trend of the mass anomaly in China and its nearby regions within 2005–2010; (ii the root mean squares of the global mass anomaly during 2005–2010; (iii time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010. The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects (i–(iii. Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG, 17.1 ± 1.3 cm for the Centre for Space Research (CSR, 16.4 ± 0.9 cm for the GeoForschungsZentrum (GFZ and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory (JPL in terms of equivalent water height (EWH, respectively. The root mean squares of the mean mass anomaly in Sahara were 1.2 cm, 0.9 cm, 0.9 cm and 1.2 cm for temporal gravity field models of IGG, CSR, GFZ and JPL, respectively. Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR, GFZ and JPL.

  9. Combination of GRACE monthly gravity field solutions from different processing strategies

    Science.gov (United States)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2018-02-01

    We combine the publicly available GRACE monthly gravity field time series to produce gravity fields with reduced systematic errors. We first compare the monthly gravity fields in the spatial domain in terms of signal and noise. Then, we combine the individual gravity fields with comparable signal content, but diverse noise characteristics. We test five different weighting schemes: equal weights, non-iterative coefficient-wise, order-wise, or field-wise weights, and iterative field-wise weights applying variance component estimation (VCE). The combined solutions are evaluated in terms of signal and noise in the spectral and spatial domains. Compared to the individual contributions, they in general show lower noise. In case the noise characteristics of the individual solutions differ significantly, the weighted means are less noisy, compared to the arithmetic mean: The non-seasonal variability over the oceans is reduced by up to 7.7% and the root mean square (RMS) of the residuals of mass change estimates within Antarctic drainage basins is reduced by 18.1% on average. The field-wise weighting schemes in general show better performance, compared to the order- or coefficient-wise weighting schemes. The combination of the full set of considered time series results in lower noise levels, compared to the combination of a subset consisting of the official GRACE Science Data System gravity fields only: The RMS of coefficient-wise anomalies is smaller by up to 22.4% and the non-seasonal variability over the oceans by 25.4%. This study was performed in the frame of the European Gravity Service for Improved Emergency Management (EGSIEM; http://www.egsiem.eu) project. The gravity fields provided by the EGSIEM scientific combination service (ftp://ftp.aiub.unibe.ch/EGSIEM/) are combined, based on the weights derived by VCE as described in this article.

  10. Higher Curvature Gravity from Entanglement in Conformal Field Theories

    Science.gov (United States)

    Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles

    2018-05-01

    By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.

  11. High resolution Slovak Bouguer gravity anomaly map and its enhanced derivative transformations: new possibilities for interpretation of anomalous gravity fields

    Science.gov (United States)

    Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav

    2017-06-01

    The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.

  12. Dual geometric-gauge field aspects of gravity

    International Nuclear Information System (INIS)

    Huei Peng; Wang, K.

    1992-01-01

    We propose that the geometric and standard gauge field aspects of gravity are equally essential for a complete description of gravity and can be reconciled. We show that this dualism of gravity resolves the dimensional Newtonian constant problem in both quantum gravity and unification schemes involving gravity (i.e., the Newtonian constant is no longer the coupling constant in the gauge aspect of gravity) and reveals the profound similarity between gravity and other fields. 23 refs., 3 tabs

  13. Gauges and functional measures in quantum gravity II: higher-derivative gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, N. [Kindai University, Department of Physics, Higashi-Osaka, Osaka (Japan); Percacci, R. [International School for Advanced Studies, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Pereira, A.D. [UERJ-Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)

    2017-09-15

    We compute the one-loop divergences in a higher-derivative theory of gravity including Ricci tensor squared and Ricci scalar squared terms, in addition to the Hilbert and cosmological terms, on an (generally off-shell) Einstein background. We work with a two-parameter family of parametrizations of the graviton field, and a two-parameter family of gauges. We find that there are some choices of gauge or parametrization that reduce the dependence on the remaining parameters. The results are invariant under a recently discovered ''duality'' that involves the replacement of the densitized metric by a densitized inverse metric as the fundamental quantum variable. (orig.)

  14. Classical gravity with higher derivatives

    International Nuclear Information System (INIS)

    Stelle, K.S.

    1978-01-01

    Inclusion of the four-derivative terms ∫Rsub(μν) Rsup(μν)(-g)sup(1/2) and ∫R 2 (-g)sup(1/2) into the gravitational action gives a class of effectively multimass models of gravity. In addition to the usual massless excitations of the field, there are now, for general amounts of the two new terms, massive spin-two and massive scalar excitations, with a total of eight degrees of freedom. The massive spin-two part of the field has negative energy. Specific ration of the two new terms give models with either the massive tensor or the massive scalar missing, with correspondingly fewer degrees of freedom. The static, linearized solutions of the field equations are combinations of Newtonian and Yukawa potentials. Owing to the Yukawa form of the corrections, observational evidence sets only very weak restrictions on the new masses. The acceptable static metric solutions in the full nonlinear theory are regular at the origin. The dynamical content of the linearized field is analyzed by reducing the fourth-order field equations to separated second-order equations, related by coupling to external sources in a fixed ratio. This analysis is carried out into the various helicity components using the transverse-traceless decomposition of the metric. (author)

  15. Correcting GRACE gravity fields for ocean tide effects

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar

    2002-01-01

    [1] The GRACE mission will be launch in early 2002 and will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more...... tide model if altimetry corrected for inverted barometer effects was used in its derivation. To study the temporal characteristics of the ocean tidal constituents when sampled by GRACE, approximate alias frequencies were derived assuming a sampling of half a sidereal day. Those results show...

  16. Second vertical derivative of potential fields using an adaptation of ...

    African Journals Online (AJOL)

    The second vertical derivative of magnetic fields is commonly used for resolution of anomalies in gravity and magnetic fields. It is also commonly used as an aid to geologic mapping i.e. for the delineation of geological discontinuities in the subsurface. Frequency domain methods for calculating second vertical derivatives ...

  17. Dirac fields in loop quantum gravity and big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Bojowald, Martin; Das, Rupam; Scherrer, Robert J.

    2008-01-01

    Big bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic fermions. Several corrections to equation of state parameters arise from classical and quantum physics, which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We use these results, along with the predictions of big bang nucleosynthesis, to place bounds on these corrections and especially the patch size of discrete quantum gravity states.

  18. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  19. Testing the master constraint programme for loop quantum gravity: V. Interacting field theories

    International Nuclear Information System (INIS)

    Dittrich, B; Thiemann, T

    2006-01-01

    This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein-Yang-Mills theory and 2 + 1 gravity. Interestingly, while Yang-Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity

  20. Gravitational field of static p -branes in linearized ghost-free gravity

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.; Zelnikov, Andrei

    2018-04-01

    We study the gravitational field of static p -branes in D -dimensional Minkowski space in the framework of linearized ghost-free (GF) gravity. The concrete models of GF gravity we consider are parametrized by the nonlocal form factors exp (-□/μ2) and exp (□2/μ4) , where μ-1 is the scale of nonlocality. We show that the singular behavior of the gravitational field of p -branes in general relativity is cured by short-range modifications introduced by the nonlocalities, and we derive exact expressions of the regularized gravitational fields, whose geometry can be written as a warped metric. For large distances compared to the scale of nonlocality, μ r →∞ , our solutions approach those found in linearized general relativity.

  1. Large N field theories, string theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)

    2002-05-15

    We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)

  2. African Plate Seismicity and Gravity Field Anomalies

    Science.gov (United States)

    Ryzhii, B. P.; Nachapkin, N. I.; Milanovsky, Svet

    The analysis of connection plate of earthquakes of the African continent with Bouguer gravity anomalies is carried out. As input dataSs were used the catalog of earthquakes and numeral map of Bouguer gravity field. The catalog contains geographical coor- dinates of epicenters and magnitudes of 8027 earthquakes recorded on continent and adjacent oceanic areas for the period from 1904 to 1988 years. The values of a gravity field preset in knots of a grid with a step 1 grade. For the analysis of plate seismicity from the catalog the parameters of 6408 earthquakes were chosen, which one have taken place in the field of restricted shore line. The earthquakes fixed in a band of a concatenation of continent with the Arabian plate were excluded from the analysis. On the basis of a numeral gravity map for everyone epicenter the value of Bouguer anomaly was calculated. The allocation of epicenters of earthquakes with magnitude M is obtained depending on value of a gravity Bouguer field. The outcomes of a sta- tistical analysis testify that practically all earthquakes are associated with the areas with negative values of Bouguer gravity field. Thus in areas with values of a field -160 mgal to -100 mgal there was 80 % of all earthquakes. It is necessary to note, that the mean value of the field for the African continent is -70 mgal. Obtained result gives us the possibility to make a conclusion about connection of plate earthquakes of Africa predominantly with structural complexes of earth crust with lower density. These out- comes are in the consent with a hypothesis of one of the authors (Ryzhii B.P.) about connection of plate earthquakes hypocenters on the territory of Russia with negative values of a gravity field and heightened silica content in the Earth crust. This work was supported with RFFI grant N 00-05-65067

  3. Simplicial quantum gravity with higher derivative terms: Formalism and numerical results in four dimensions

    International Nuclear Information System (INIS)

    Hamber, H.W.; Williams, R.M.; Cambridge Univ.

    1986-01-01

    Higher derivative terms for Regge's formulation of lattice gravity are discussed. The analytic weak-field expansion for the regular tessellation α 5 of the four-sphere is presented. Preliminary numerical results for some computations in four dimensions are also discussed. (orig.)

  4. Les Houches lectures on large N field theories and gravity

    International Nuclear Information System (INIS)

    Maldacena, J.

    2002-01-01

    We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. (authors)

  5. Study on relationship between evolution of regional gravity field and seismic hazard

    Science.gov (United States)

    Li, W.; Xu, C.; Shen, C.

    2017-12-01

    The lack of anomalous signal is a big issue for the study of geophysics using historical geodesy observations, which is a relatively new area of earth gravimetry application in seismology. Hence the use of the gravity anomaly (GA) derived from either a global geopotential model (GGM) or a regional gravity reanalysis (Ground Gravity Survey, GGS) becomes an important alternative solution. In this study, the GGS at 186 points for the period of 2010 2014 in the Sichuan-Yunnan region (SYR) stations are analyzed. To study the temporal and spatial distribution characteristics of regional gravity filed (RGF) and its evolution mechanism. Taking the geological and geophysical data as constraints. From the GGM expanded up to degree 360, GA were obtained after gravity reduction, especially removing the reference field. The dynamically evolutional characteristics of gravity field are closely relative to fault activity. The gravity changes with time about 5 years at LongMenShan fault (LMSF) have a slop of -12.83±2.9 μGal/a, indicating that LMSF has an uplift. To test the signal extraction algorithm in some geodynamic processes, GA from the SYR were inverted and it was also imposed as a priori information. Fortunately, some significant gravity variation have been detected at some stations in the thrust fault before and after four earthquakes, in which typical anomalies (earthquake precursor, EP) were positive GA variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the Lushan earthquake (Ms 7.0). The repeated observation results during about 5 years indicate that no significant gravity changes related to other geodynamical events were observed in most observation epochs. In addition, the mechanism of gravity changes at Lushan was also explored. We calculated the gravity change rates based on the model of Songpan-Ganze block (SGB) to Sichuan basin (SCB). And the changes is in good agreement with observed one, indicating

  6. Holographic entanglement entropy for the most general higher derivative gravity

    International Nuclear Information System (INIS)

    Miao, Rong-Xin; Guo, Wu-zhong

    2015-01-01

    The holographic entanglement entropy for the most general higher derivative gravity is investigated. We find a new type of Wald entropy, which appears on entangling surface without the rotational symmetry and reduces to usual Wald entropy on Killing horizon. Furthermore, we obtain a formal formula of HEE for the most general higher derivative gravity and work it out exactly for some squashed cones. As an important application, we derive HEE for gravitational action with one derivative of the curvature when the extrinsic curvature vanishes. We also study some toy models with non-zero extrinsic curvature. We prove that our formula yields the correct universal term of entanglement entropy for 4d CFTs. Furthermore, we solve the puzzle raised by Hung, Myers and Smolkin that the logarithmic term of entanglement entropy derived from Weyl anomaly of CFTs does not match the holographic result even if the extrinsic curvature vanishes. We find that such mismatch comes from the ‘anomaly of entropy’ of the derivative of curvature. After considering such contributions carefully, we resolve the puzzle successfully. In general, we need to fix the splitting problem for the conical metrics in order to derive the holographic entanglement entropy. We find that, at least for Einstein gravity, the splitting problem can be fixed by using equations of motion. How to derive the splittings for higher derivative gravity is a non-trivial and open question. For simplicity, we ignore the splitting problem in this paper and find that it does not affect our main results.

  7. Black holes in higher derivative gravity.

    Science.gov (United States)

    Lü, H; Perkins, A; Pope, C N; Stelle, K S

    2015-05-01

    Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.

  8. Gravity/Fluid Correspondence and Its Application on Bulk Gravity with U(1) Gauge Field

    International Nuclear Information System (INIS)

    Hu, Ya-Peng; Zhang, Jian-Hui

    2014-01-01

    As the long wavelength limit of the AdS/CFT correspondence, the gravity/fluid correspondence has been shown to be a useful tool for extracting properties of the fluid on the boundary dual to the gravity in the bulk. In this paper, after briefly reviewing the algorithm of gravity/fluid correspondence, we discuss the results of its application on bulk gravity with a U(1) gauge field. In the presence of a U(1) gauge field, the dual fluid possesses more interesting properties such as its charge current. Furthermore, an external field A_μ"e"x"t could affect the charge current, and the U(1) Chern-Simons term also induces extra structures to the dual current giving anomalous transport coefficients.

  9. RG flow and thermodynamics of causal horizons in higher-derivative AdS gravity

    International Nuclear Information System (INIS)

    Banerjee, Shamik; Bhattacharyya, Arpan

    2016-01-01

    In http://arxiv.org/abs/1508.01343 [hep-th], one of the authors proposed that in AdS/CFT the gravity dual of the boundary c-theorem is the second law of thermodynamics satisfied by causal horizons in AdS and this was verified for Einstein gravity in the bulk. In this paper we verify this for higher derivative theories. We pick up theories for which an entropy expression satisfying the second law exists and show that the entropy density evaluated on the causal horizon in a RG flow geometry is a holographic c-function. We also prove that given a theory of gravity described by a local covariant action in the bulk a sufficient condition to ensure holographic c-theorem is that the second law of causal horizon thermodynamics be satisfied by the theory. This allows us to explicitly construct holographic c-function in a theory where there is curvature coupling between gravity and matter and standard null energy condition cannot be defined although second law is known to hold. Based on the duality between c-theorem and the second law of causal horizon thermodynamics proposed in http://arxiv.org/abs/1508.01343 [hep-th] and the supporting calculations of this paper we conjecture that every Unitary higher derivative theory of gravity in AdS satisfies the second law of causal horizon thermodynamics. If this is not true then c-theorem will be violated in a unitary Lorentz invariant field theory.

  10. Gravity Field Interpretation for Major Fault Depth Detection in a Region Located SW- Qa’im / Iraq

    Directory of Open Access Journals (Sweden)

    Wadhah Mahmood Shakir Al-Khafaji

    2017-09-01

    Full Text Available This research deals with the qualitative and quantitative interpretation of Bouguer gravity anomaly data for a region located to the SW of Qa’im City within Anbar province by using 2D- mapping methods. The gravity residual field obtained graphically by subtracting the Regional Gravity values from the values of the total Bouguer anomaly. The residual gravity field processed in order to reduce noise by applying the gradient operator and 1st directional derivatives filtering. This was helpful in assigning the locations of sudden variation in Gravity values. Such variations may be produced by subsurface faults, fractures, cavities or subsurface facies lateral variations limits. A major fault was predicted to extend with the direction NE-SW. This fault is mentioned by previous studies as undefined subsurface fault depth within the sedimentary cover rocks. The results of this research that were obtained by gravity quantitative interpretation find that the depth to this major fault plane center is about 2.4 Km.

  11. Basement-involved faults and deep structures in the West Philippine Basin: constrains from gravity field

    Science.gov (United States)

    Wang, Gang; Jiang, Suhua; Li, Sanzhong; Zhang, Huixuan; Lei, Jianping; Gao, Song; Zhao, Feiyu

    2017-06-01

    To reveal the basement-involved faults and deep structures of the West Philippine Basin (WPB), the gravitational responses caused by these faults are observed and analyzed based on the latest spherical gravity model: WGM2012 Model. By mapping the free-air and Bouguer gravity anomalies, several main faults and some other linear structures are located and observed in the WPB. Then, by conducting a 2D discrete multi-scale wavelet decomposition, the Bouguer anomalies are decomposed into the first- to eighth-order detail and approximation fields (the first- to eighth-order Details and Approximations). The first- to third-order Details reflect detailed and localized geological information of the crust at different depths, and of which the higher-order reflects gravity field of the deeper depth. The first- to fourth-order Approximations represent the regional gravity fields at different depths of the crust, respectively. The fourth-order Approximation represents the regional gravity fluctuation caused by the density inhomogeneity of Moho interface. Therefore, taking the fourth-order Approximation as input, and adopting Parker-Oldenburg interactive inversion, We calculated the depth of Moho interface in the WPB. Results show that the Moho interface depth in the WPB ranges approximately from 8 to 12 km, indicating that there is typical oceanic crust in the basin. In the Urdaneta Plateau and the Benham Rise, the Moho interface depths are about 14 and 16 km, respectively, which provides a piece of evidence to support that the Banham Rise could be a transitional crust caused by a large igneous province. The second-order vertical derivative and the horizontal derivatives in direction 0° and 90° are computed based on the data of the third-order Detail, and most of the basement-involved faults and structures in the WPB, such as the Central Basin Fault Zone, the Gagua Ridge, the Luzon-Okinawa Fault Zone, and the Mindanao Fault Zone are interpreted by the gravity derivatives.

  12. Topological gravity from a transgression gauge field theory

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.; Valdivia, O.

    2010-01-01

    It is shown that a topological action for gravity in even dimensions can be obtained from a gravity theory whose Lagrangian is given by a transgression form invariant under the Poincare group. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  13. An improved model for the Earth's gravity field

    Science.gov (United States)

    Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.

    1989-01-01

    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.

  14. Cosmological and black hole brane-world universes in higher derivative gravity

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.; Ogushi, Sachiko

    2002-01-01

    A general model of multidimensional R 2 gravity including a Riemann tensor square term (nonzero c case) is considered. The number of brane-worlds in such a model is constructed (mainly in five dimensions) and their properties are discussed. The thermodynamics of a Schwarzschild-anti-deSitter (S-AdS) BH (with boundary) is presented when perturbation on c is used. The entropy, free energy, and energy are calculated. For a nonzero c the entropy (energy) is not proportional to the area (mass). The equation of motion of the brane in a BH background is presented as a FRW equation. Using a dual CFT description it is shown that the dual field theory is not a conformal one when c is not zero. In this case the holographic entropy does not coincide with the BH entropy (they coincide for Einstein gravity or c=0 HD gravity where the AdS/CFT description is well applied). An asymmetrically warped background (an analogue of a charged AdS BH) where Lorentz invariance violation occurs is found. The cosmological 4D dS brane connecting two dS bulk spaces is formulated in terms of the parameters of R 2 gravity. Within the proposed dS/CFT correspondence the holographic conformal anomaly from five-dimensional higher derivative gravity in a de Sitter background is evaluated

  15. On the embedding of quantum field theory on curved spacetimes into loop quantum gravity

    International Nuclear Information System (INIS)

    Stottmeister, Alexander

    2015-01-01

    The main theme of this thesis is an investigation into possible connections between loop quantum gravity and quantum field theory on curved spacetimes: On the one hand, we aim for the formulation of a general framework that allows for a derivation of quantum field theory on curved spacetimes in a semi-classical limit. On the other hand, we discuss representation-theoretical aspects of loop quantum gravity and quantum field theory on curved spacetimes as both of the latter presumably influence each other in the aforesaid semi-classical limit. Regarding the first point, we investigate the possible implementation of the Born-Oppenheimer approximation in the sense of space-adiabatic perturbation theory in models of loop quantum gravity-type. In the course of this, we argue for the need of a Weyl quantisation and an associated symbolic calculus for loop quantum gravity, which we then successfully define, at least to a certain extent. The compactness of the Lie groups, which models a la loop quantum gravity are based on, turns out to be a main obstacle to a fully satisfactory definition of a Weyl quantisation. Finally, we apply our findings to some toy models of linear scalar quantum fields on quantum cosmological spacetimes and discuss the implementation of space-adiabatic perturbation theory therein. In view of the second point, we start with a discussion of the microlocal spectrum condition for quantum fields on curved spacetimes and how it might be translated to a background-independent Hamiltonian quantum theory of gravity, like loop quantum gravity. The relevance of this lies in the fact that the microlocal spectrum condition selects a class of physically relevant states of the quantum matter fields and is, therefore, expected to play an important role in the aforesaid semi-classical limit of gravity-matter systems. Following this, we switch our perspective and analyse the representation theory of loop quantum gravity. We find some intriguing relations between the

  16. The DNSC08GRA global marine gravity field from double retracked satellite altimetry

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Berry, P.A.M.

    2010-01-01

    Satellite radar altimetry has been monitoring the earth's oceans from space for several decades. However, only the GEOSAT and ERS-1 geodetic mission data recorded more than a decade ago provide altimetry with adequate spatial coverage to derive a high-resolution marine gravity field. The original...

  17. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    Science.gov (United States)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  18. Europe's Preparation For GOCE Gravity Field Recovery

    Science.gov (United States)

    Suenkel, H.; Suenkel, H.

    2001-12-01

    The European Space Agency ESA is preparing for its first dedicated gravity field mission GOCE (Gravity Field and Steady-state Ocean Circulation Explorer) with a proposed launch in fall 2005. The mission's goal is the mapping of the Earth's static gravity field with very high resolution and utmost accuracy on a global scale. GOCE is a drag-free mission, flown in a circular and sun-synchronous orbit at an altitude between 240 and 250 km. Each of the two operational phases will last for 6 months. GOCE is based on a sensor fusion concept combining high-low satellite-to-satellite tracking (SST) and satellite gravity gradiometry (SGG). The transformation of the GOCE sensor data into a scientific product of utmost quality and reliability requires a well-coordinated effort of experts in satellite geodesy, applied mathematics and computer science. Several research groups in Europe do have this expertise and decided to form the "European GOCE Gravity Consortium (EGG-C)". The EGG-C activities are subdivided into tasks such as standard and product definition, data base and data dissemination, precise orbit determination, global gravity field model solutions and regional solutions, solution validation, communication and documentation, and the interfacing to level 3 product scientific users. The central issue of GOCE data processing is, of course, the determination of the global gravity field model using three independent mathematical-numerical techniques which had been designed and pre-developed in the course of several scientific preparatory studies of ESA: 1. The direct solution which is a least squares adjustment technique based on a pre-conditioned conjugated gradient method (PCGM). The method is capable of efficiently transforming the calibrated and validated SST and SGG observations directly or via lumped coefficients into harmonic coefficients of the gravitational potential. 2. The time-wise approach considers both SST and SGG data as a time series. For an idealized

  19. Temporal gravity field modeling based on least square collocation with short-arc approach

    Science.gov (United States)

    ran, jiangjun; Zhong, Min; Xu, Houze; Liu, Chengshu; Tangdamrongsub, Natthachet

    2014-05-01

    After the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002, several research centers have attempted to produce the finest gravity model based on different approaches. In this study, we present an alternative approach to derive the Earth's gravity field, and two main objectives are discussed. Firstly, we seek the optimal method to estimate the accelerometer parameters, and secondly, we intend to recover the monthly gravity model based on least square collocation method. The method has been paid less attention compared to the least square adjustment method because of the massive computational resource's requirement. The positions of twin satellites are treated as pseudo-observations and unknown parameters at the same time. The variance covariance matrices of the pseudo-observations and the unknown parameters are valuable information to improve the accuracy of the estimated gravity solutions. Our analyses showed that introducing a drift parameter as an additional accelerometer parameter, compared to using only a bias parameter, leads to a significant improvement of our estimated monthly gravity field. The gravity errors outside the continents are significantly reduced based on the selected set of the accelerometer parameters. We introduced the improved gravity model namely the second version of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (IGG-CAS 02). The accuracy of IGG-CAS 02 model is comparable to the gravity solutions computed from the Geoforschungszentrum (GFZ), the Center for Space Research (CSR) and the NASA Jet Propulsion Laboratory (JPL). In term of the equivalent water height, the correlation coefficients over the study regions (the Yangtze River valley, the Sahara desert, and the Amazon) among four gravity models are greater than 0.80.

  20. Mapping the earth's magnetic and gravity fields from space Current status and future prospects

    Science.gov (United States)

    Settle, M.; Taranik, J. V.

    1983-01-01

    The principal magnetic fields encountered by earth orbiting spacecraft include the main (core) field, external fields produced by electrical currents within the ionosphere and magnetosphere, and the crustal (anomaly) field generated by variations in the magnetization of the outermost portions of the earth. The first orbital field measurements which proved to be of use for global studies of crustal magnetization were obtained by a series of three satellites launched and operated from 1965 to 1971. Each of the satellites, known as a Polar Orbiting Geophysical Observatory (POGO), carried a rubidium vapor magnetometer. Attention is also given to Magsat launched in 1979, the scalar anomaly field derived from the Magsat measurements, satellite tracking studies in connection with gravity field surveys, radar altimetry, the belt of positive free air gravity anomalies situated along the edge of the Pacific Ocean basin, future technological capabilities, and information concerning data availability.

  1. Higher-derivative boson field theories and constrained second-order theories

    Energy Technology Data Exchange (ETDEWEB)

    Urries, F.J. de [Departamento de Fisica, Universidad de Alcala de Henares, Madrid (Spain) and IMAFF, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)]. E-mail: fernando.urries@uah.es; Julve, J. [IMAFF, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)]. E-mail: julve@imaff.cfmac.csic.es; Sanchez, E.J. [IMAFF, Consejo Superior de Investigaciones Cientificas, Madrid (ES) and Departamento de Matematica, Universidad Europea, Madrid (Spain)]. E-mail: ejesus.sanchez@mat.ind.uem.es

    2001-10-26

    As an alternative to the covariant Ostrogradski method, we show that higher-derivative (HD) relativistic Lagrangian field theories can be reduced to second differential order by writing them directly as covariant two-derivative theories involving Lagrange multipliers and new fields. Despite the intrinsic non-covariance of the Dirac procedure used to deal with the constraints, the explicit Lorentz invariance is recovered at the end. We develop this new setting on the basis of a simple scalar model and then its applications to generalized electrodynamics and HD gravity are worked out. For a wide class of field theories this method is better suited than Ostrogradski's for a generalization to 2n-derivative theories. (author)

  2. Quantum field theory II introductions to quantum gravity, supersymmetry and string theory

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...

  3. The Near Side : Regional Lunar Gravity Field Determination

    NARCIS (Netherlands)

    Goossens, S.

    2005-01-01

    In the past ten years the Moon has come fully back into focus, resulting in missions such as Clementine and Lunar Prospector. Data from these missions resulted in a boost in lunar gravity field modelling. Until this date, the lunar gravity field has mainly been expressed in a global representation,

  4. Group field theory and simplicial quantum gravity

    International Nuclear Information System (INIS)

    Oriti, D

    2010-01-01

    We present a new group field theory for 4D quantum gravity. It incorporates the constraints that give gravity from BF theory and has quantum amplitudes with the explicit form of simplicial path integrals for first-order gravity. The geometric interpretation of the variables and of the contributions to the quantum amplitudes is manifest. This allows a direct link with other simplicial gravity approaches, like quantum Regge calculus, in the form of the amplitudes of the model, and dynamical triangulations, which we show to correspond to a simple restriction of the same.

  5. Canonical quantum theory of gravitational field with higher derivatives, 3

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko

    1983-01-01

    A formulation which is invariant under an additional BRS transformation with nilpotency of order two is presented for the canonical theory of the renormalizable quantum gravity with higher derivatives. The canonical quantization is carried out and various equal time (anti-) commutation relations are derived. The asymptotic fields are reanalyzed. The physical particle contents are just the same as those obtained in previous papers. (author)

  6. Seasonal changes in the European gravity field from GRACE: A comparison with superconducting gravimeters and hydrology model predictions

    DEFF Research Database (Denmark)

    Hinderer, J.; Andersen, Ole Baltazar; Lemoine, F.

    2006-01-01

    This paper is devoted to the investigation of seasonal changes of the Earth's gravity field from GRACE satellites and the comparison with surface gravity measurements in Europe from the Global Geodynamics Project (GGP) sub-network, as well as with recent hydrology models for continental soil...... moisture and snow. We used gravity maps in Europe retrieved from the initial GRACE monthly solutions spanning a 21 -month duration from April 2002 to December 2003 for various truncation levels of the initial spherical harmonic decomposition of the field. The transfer function between satellite......-derived and ground gravity changes due to continental hydrology is studied and we also compute the theoretical ratio of gravity versus radial displacement (in mu Gal/mm) involved in the hydrological loading process. The 'mean' value (averaged in time and in space over Europe) from hydrologic forward modeling...

  7. Global Lunar Gravity Field Determination Using Historical and Recent Tracking Data in Preparation for SELENE

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Namiki, N.; Hanada, H.; Iwata, T.; Tsuruta, S.; Kawano, N.; Sasaki, S.

    2006-12-01

    In the near future, a number of satellite missions are planned to be launched to the Moon. These missions include initiatives by China, India, the USA, as well as the Japanese SELENE mission. These missions will gather a wealth of lunar data which will improve the knowledge of the Moon. One of the main topics to be addressed will be the lunar gravity field. Especially SELENE will contribute to improving the knowledge of the gravity field, by applying 4-way Doppler tracking between the main satellite and a relay satellite, and by applying a separate differential VLBI experiment. These will improve the determination of the global gravity field, especially over the far side and at the lower degrees (mostly for degrees lower than 30), as is shown by extensive simulations of the SELENE mission. This work focuses on the determination of the global lunar gravity field from all available tracking data to this date. In preparation for the SELENE mission, analysis using Lunar Prospector tracking data, as well as Clementine data and historical data from the Apollo and Lunar Orbiter projects is being conducted at NAOJ. Some SMART-1 tracking data are also included. The goal is to combine the good-quality data from the existing lunar missions up to this date with the tracking data from SELENE in order to derive a new lunar gravity field model. The focus therefore currently lies on processing the available data and extracting lunar gravity field information from them. It is shown that the historical tracking data contribute especially to the lower degrees of the global lunar gravity field model. Due to the large gap in tracking data coverage over the far side for the historical data, the higher degrees are almost fully determined by the a priori information in the form of a Kaula rule. The combination with SELENE data is thus expected to improve the estimate for the lower degrees even further, including coverage of the far side. Since historical tracking data are from orbits with

  8. Quantum fluctuations and thermal dissipation in higher derivative gravity

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2015-08-01

    Full Text Available In this paper, based on the AdS2/CFT1 prescription, we explore the low frequency behavior of quantum two point functions for a special class of strongly coupled CFTs in one dimension whose dual gravitational counterpart consists of extremal black hole solutions in higher derivative theories of gravity defined over an asymptotically AdS spacetime. The quantum critical points thus described are supposed to correspond to a very large value of the dynamic exponent (z→∞. In our analysis, we find that quantum fluctuations are enhanced due to the higher derivative corrections in the bulk which in turn increases the possibility of quantum phase transition near the critical point. On the field theory side, such higher derivative effects would stand for the corrections appearing due to the finite coupling in the gauge theory. Finally, we compute the coefficient of thermal diffusion at finite coupling corresponding to Gauss Bonnet corrected charged Lifshitz black holes in the bulk. We observe an important crossover corresponding to z=5 fixed point.

  9. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

    Science.gov (United States)

    Hamada, Yuta; Yamada, Masatoshi

    2017-08-01

    We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

  10. Field lines of gravity, their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline

    Directory of Open Access Journals (Sweden)

    E. W. Grafarend

    1997-06-01

    Full Text Available The length of the gravitational field lines/of the orthogonal trajectories of a family of gravity equipotential surfaces/of the plumbline between a terrestrial topographic point and a point on a reference equipotential surface like the geoid í also known as the orthometric height í plays a central role in Satellite Geodesy as well as in Physical Geodesy. As soon as we determine the geometry of the Earth pointwise by means of a satellite GPS (Global Positioning System: «global problem solver» we are left with the problem of converting ellipsoidal heights (geometric heights into orthometric heights (physical heights. For the computation of the plumbline we derive its three differential equations of first order as well as the three geodesic equations of second order. The three differential equations of second order take the form of a Newton differential equation when we introduce the parameter time via the Marussi gauge on a conformally flat three-dimensional Riemann manifold and the generalized force field, the gradient of the superpotential, namely the modulus of gravity squared and taken half. In particular, we compute curvature and torsion of the plumbline and prove their functional relationship to the second and third derivatives of the gravity potential. For a spherically symmetric gravity field, curvature and torsion of the plumbline are zero, the plumbline is straight. Finally we derive the three Lagrangean as well as the six Hamiltonian differential equations of the plumbline, in particular in their star form with respect to Marussi gauge.

  11. Combination of monthly gravity field solutions from different processing centers

    Science.gov (United States)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2015-04-01

    Currently, the official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. Combinations are well-established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI), where regular comparisons and combinations of space-geodetic products have tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. In the frame of the recently started Horizon 2020 project European Gravity Service for Improved Emergency Management (EGSIEM), a scientific combination service shall therefore be established to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community. In a first step the large variety of available monthly GRACE gravity field solutions shall be mutually compared spatially and spectrally. We assess the noise of the raw as well as filtered solutions and compare the secular and seasonal periodic variations fitted to the monthly solutions. In a second step we will explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the

  12. Exact solutions for scalar field cosmology in f(R) gravity

    Science.gov (United States)

    Maharaj, S. D.; Goswami, R.; Chervon, S. V.; Nikolaev, A. V.

    2017-09-01

    We study scalar field FLRW cosmology in the content of f(R) gravity. Our consideration is restricted to the spatially flat Friedmann universe. We derived the general evolution equations of the model, and showed that the scalar field equation is automatically satisfied for any form of the f(R) function. We also derived representations for kinetic and potential energies, as well as for the acceleration in terms of the Hubble parameter and the form of the f(R) function. Next we found the exact cosmological solutions in modified gravity without specifying the f(R) function. With negligible acceleration of the scalar curvature, we found that the de Sitter inflationary solution is always attained. Also we obtained new solutions with special restrictions on the integration constants. These solutions contain oscillating, accelerating, decelerating and even contracting universes. For further investigation, we selected special cases which can be applied with early or late inflation. We also found exact solutions for the general case for the model with negligible acceleration of the scalar curvature in terms of special Airy functions. Using initial conditions which represent the universe at the present epoch, we determined the constants of integration. This allows for the comparison of the scale factor in the new solutions with that for current stage of the universe evolution in the ΛCDM model.

  13. Finite field-dependent symmetries in perturbative quantum gravity

    International Nuclear Information System (INIS)

    Upadhyay, Sudhaker

    2014-01-01

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also

  14. Effect of External Disturbing Gravity Field on Spacecraft Guidance and Surveying Line Layout for Marine Gravity Survey

    Directory of Open Access Journals (Sweden)

    HUANG Motao

    2016-11-01

    Full Text Available Centred on the support requirement of flying track control for a long range spacecraft, a detail research is made on the computation of external disturbing gravity field, the survey accuracy of gravity anomaly on the earth' surface and the program of surveying line layout for marine gravity survey. Firstly, the solution expression of navigation error for a long range spacecraft is analyzed and modified, and the influence of the earth's gravity field on flying track of spacecraft is evaluated. Then with a given limited quota of biased error of spacecraft drop point, the accuracy requirement for calculating the external disturbing gravity field is discussed and researched. Secondly, the data truncation error and the propagated data error are studied and estimated, and the quotas of survey resolution and computation accuracy for gravity anomaly on the earth' surface are determined. Finally, based on the above quotas, a corresponding program of surveying line layout for marine gravity survey is proposed. A numerical test has been made to prove the reasonableness and validity of the suggested program.

  15. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  16. Group field theory formulation of 3D quantum gravity coupled to matter fields

    International Nuclear Information System (INIS)

    Oriti, Daniele; Ryan, James

    2006-01-01

    We present a new group field theory describing 3D Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs coloured with SU(2) algebraic data, from which one can reconstruct at once a three-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3D quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss

  17. Topological gravity with minimal matter

    International Nuclear Information System (INIS)

    Li Keke

    1991-01-01

    Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)

  18. Derivative self-interactions for a massive vector field

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán Jiménez, Jose, E-mail: jose.beltran@cpt.univ-mrs.fr [CPT, Aix Marseille Université, UMR 7332, 13288 Marseille (France); Heisenberg, Lavinia, E-mail: lavinia.heisenberg@eth-its.ethz.ch [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland)

    2016-06-10

    In this work we revisit the construction of theories for a massive vector field with derivative self-interactions such that only the 3 desired polarizations corresponding to a Proca field propagate. We start from the decoupling limit by constructing healthy interactions containing second derivatives of the Stueckelberg field with itself and also with the transverse modes. The resulting interactions can then be straightforwardly generalized beyond the decoupling limit. We then proceed to a systematic construction of the interactions by using the Levi–Civita tensors. Both approaches lead to a finite family of allowed derivative self-interactions for the Proca field. This construction allows us to show that some higher order terms recently introduced as new interactions trivialize in 4 dimensions by virtue of the Cayley–Hamilton theorem. Moreover, we discuss how the resulting derivative interactions can be written in a compact determinantal form, which can also be regarded as a generalization of the Born-Infeld lagrangian for electromagnetism. Finally, we generalize our results for a curved background and give the necessary non-minimal couplings guaranteeing that no additional polarizations propagate even in the presence of gravity.

  19. Metric-affine formalism of higher derivative scalar fields in cosmology

    International Nuclear Information System (INIS)

    Li, Mingzhe; Wang, Xiulian

    2012-01-01

    Higher derivative scalar field theories have received considerable attention for the potentially explanations of the initial state of the universe or the current cosmic acceleration which they might offer. They have also attracted many interests in the phenomenological studies of infrared modifications of gravity. These theories are mostly studied by the metric variational approach in which only the metric is the fundamental field to account for the gravitation. In this paper we study the higher derivative scalar fields with the metric-affine formalism where the affine connection is treated arbitrarily at the beginning. Because the higher derivative scalar fields couple to the connection directly in a covariant theory these two formalisms will lead to different results. These differences are suppressed by the powers of the Planck mass and are usually expected to have small effects. But in some cases they may cause non-negligible deviations. We show by a higher derivative dark energy model that the two formalisms lead to significantly different pictures of the future universe

  20. Super-Planckian spatial field variations and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Klaewer, Daniel; Palti, Eran [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany)

    2017-01-20

    We study scenarios where a scalar field has a spatially varying vacuum expectation value such that the total field variation is super-Planckian. We focus on the case where the scalar field controls the coupling of a U(1) gauge field, which allows us to apply the Weak Gravity Conjecture to such configurations. We show that this leads to evidence for a conjectured property of quantum gravity that as a scalar field variation in field space asymptotes to infinity there must exist an infinite tower of states whose mass decreases as an exponential function of the scalar field variation. We determine the rate at which the mass of the states reaches this exponential behaviour showing that it occurs quickly after the field variation passes the Planck scale.

  1. Newtonian potential and geodesic completeness in infinite derivative gravity

    Science.gov (United States)

    Edholm, James; Conroy, Aindriú

    2017-08-01

    Recent study has shown that a nonsingular oscillating potential—a feature of infinite derivative gravity theories—matches current experimental data better than the standard General Relativity potential. In this work, we show that this nonsingular oscillating potential can be given by a wider class of theories which allows the defocusing of null rays and therefore geodesic completeness. We consolidate the conditions whereby null geodesic congruences may be made past complete, via the Raychaudhuri equation, with the requirement of a nonsingular Newtonian potential in an infinite derivative gravity theory. In doing so, we examine a class of Newtonian potentials characterized by an additional degree of freedom in the scalar propagator, which returns the familiar potential of General Relativity at large distances.

  2. Horizon thermodynamics in fourth-order gravity

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2017-03-01

    Full Text Available In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE=TdS−PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called “Legendre transformation” at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.

  3. Evaluation of using digital gravity field models for zoning map creation

    Science.gov (United States)

    Loginov, Dmitry

    2018-05-01

    At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.

  4. Merging of airborne gravity and gravity derived from satellite altimetry: Test cases along the coast of greenland

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Andersen, Ole Baltazar; Tscherning, C.C.

    2002-01-01

    for the use of gravity data especially, when computing geoid models in coastal regions. The presence of reliable marine gravity data for independent control offers an opportunity to study procedures for the merging of airborne and satellite data around Greenland. Two different merging techniques, both based......The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing...... onshore gravity coverage and fill in new data in the very-near coastal area, where altimetry data may contain gross errors. The airborne surveys extend from the coastline to approximately 100 km offshore, along 6000 km of coastline. An adequate merging of these different data sources is important...

  5. Matter coupled to quantum gravity in group field theory

    International Nuclear Information System (INIS)

    Ryan, James

    2006-01-01

    We present an account of a new model incorporating 3d Riemannian quantum gravity and matter at the group field theory level. We outline how the Feynman diagram amplitudes of this model are spin foam amplitudes for gravity coupled to matter fields and discuss some features of the model. To conclude, we describe some related future work

  6. Cosmological perturbations in non-local higher-derivative gravity

    International Nuclear Information System (INIS)

    Craps, Ben; Jonckheere, Tim De; Koshelev, Alexey S.

    2014-01-01

    We study cosmological perturbations in a non-local higher-derivative model of gravity introduced by Biswas, Mazumdar and Siegel. We extend previous work, which had focused on classical scalar perturbations around a cosine hyperbolic bounce solution, in three ways. First, we point out the existence of a Starobinsky solution in this model, which is more attractive from a phenomenological point of view (even though it has no bounce). Second, we study classical vector and tensor pertuxsxrbations. Third, we show how to quantize scalar and tensor perturbations in a de Sitter phase (for choices of parameters such that the model is ghost-free). Our results show that the model is well-behaved at this level, and are very similar to corresponding results in local f(R) models. In particular, for the Starobinsky solution of non-local higher-derivative gravity, we find the same tensor-to-scalar ratio as for the conventional Starobinsky model

  7. Field equations for gravity quadratic in the curvature

    International Nuclear Information System (INIS)

    Rose, B.

    1992-01-01

    Vacuum field equations for gravity are studied having their origin in a Lagrangian quadratic in the curvature. The motivation for this choice of the Lagrangian-namely the treating of gravity in a strict analogy to gauge theories of Yang-Mills type-is criticized, especially the implied view of connections as gauge potentials with no dynamical relation to the metric. The correct field equations with respect to variation of the connections and the metric independently are given. We deduce field equations which differs from previous ones by variation of the metric, the torsion, and the nonmetricity from which the connections are built. 6 refs

  8. Characterization of the Lovelock gravity by Bianchi derivative

    Indian Academy of Sciences (India)

    Characterization of the Lovelock gravity by Bianchi derivative. NARESH DADHICH. Inter-University Centre for Astronomy & Astrophysics, Post Bag 4, Pune 411 007, India. E-mail: nkd@iucaa.ernet.in. MS received 30 November 2009; revised 15 February 2010; accepted 19 February 2010. Abstract. We prove the theorem: ...

  9. Gravity field modeling at the sea areas using satellite altimetry observations Case study: Gravity field modeling at the Coastal Fars

    International Nuclear Information System (INIS)

    Jomegi, A.

    2007-01-01

    Nowadays, satellite altimetry observations had made it possible to determine sea surface variations, in the global scale, to high degree of precision. Using satellite altimetry observations, Mean Sea Level (MSL) can be determined, which by Kowing Sea Surface Topography (SST), can be converted into high-resolution marine geoid. In this paper we are proposing a method for computation of the Earth's gravity field at the sea areas, which is different from usual methods. Indeed, our method is based on conversion of geoidal heights into gravity potential values at the reference ellipsoid 2 Ea,b , by using ellipsoidal Brun's formula, and forward application of solution of Fixed-Free Two Boundary Value Problem (FFTBVP), previously proposed by the authors for the geoid computations without application of Stokes formula. Numerical results of application of the proposed method at the test area of CoastalFars (at southern part of Iran) show the success of the method. Considering the low cost and high precision of satellite altimetry observations, the proposed method suggests an efficient substitution to shipborne gravity observations for gravity field molding at the sea areas

  10. Some aspects of reconstruction using a scalar field in f(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Soumya [Indian Institute of Technology, Centre for Theoretical Studies, Kharagpur (India); Said, Jackson Levi [University of Malta, Institute of Space Sciences and Astronomy, Msida, MSD (Malta); Farrugia, Gabriel [University of Malta, Department of Physics, Msida, MSD (Malta)

    2017-12-15

    General relativity characterizes gravity as a geometric property exhibited on spacetime by massive objects, while teleparallel gravity achieves the same results at the level of equations, by taking a torsional perspective of gravity. Similar to the f(R) theory teleparallel gravity can also be generalized to f(T), with the resulting field equations being inherently distinct from f(R) gravity in that they are second order, while in the former case they turn out to be fourth order. In the present case, a minimally coupled scalar field is investigated in the f(T) gravity context for several forms of the scalar field potential. A number of new f(T) solutions are found for these potentials. Their respective state parameters are also being examined. (orig.)

  11. Gravity Field Constraints on the Upper Mantle of Northwestern Europe

    NARCIS (Netherlands)

    Root, B.C.

    2017-01-01

    In the last decade, the gravity field of the Earth has been observed with increased coverage due to dedicated satellite missions, which resulted in higher resolution and more accurate global gravity field models than were previously available. These models make it possible to study large scale

  12. Gravity Field Parameter Estimation Using QR Factorization

    Science.gov (United States)

    Klokocnik, J.; Wagner, C. A.; McAdoo, D.; Kostelecky, J.; Bezdek, A.; Novak, P.; Gruber, C.; Marty, J.; Bruinsma, S. L.; Gratton, S.; Balmino, G.; Baboulin, M.

    2007-12-01

    This study compares the accuracy of the estimated geopotential coefficients when QR factorization is used instead of the classical method applied at our institute, namely the generation of normal equations that are solved by means of Cholesky decomposition. The objective is to evaluate the gain in numerical precision, which is obtained at considerable extra cost in terms of computer resources. Therefore, a significant increase in precision must be realized in order to justify the additional cost. Numerical simulations were done in order to examine the performance of both solution methods. Reference gravity gradients were simulated, using the EIGEN-GL04C gravity field model to degree and order 300, every 3 seconds along a near-circular, polar orbit at 250 km altitude. The simulation spanned a total of 60 days. A polar orbit was selected in this simulation in order to avoid the 'polar gap' problem, which causes inaccurate estimation of the low-order spherical harmonic coefficients. Regularization is required in that case (e.g., the GOCE mission), which is not the subject of the present study. The simulated gravity gradients, to which white noise was added, were then processed with the GINS software package, applying EIGEN-CG03 as the background gravity field model, followed either by the usual normal equation computation or using the QR approach for incremental linear least squares. The accuracy assessment of the gravity field recovery consists in computing the median error degree-variance spectra, accumulated geoid errors, geoid errors due to individual coefficients, and geoid errors calculated on a global grid. The performance, in terms of memory usage, required disk space, and CPU time, of the QR versus the normal equation approach is also evaluated.

  13. Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits

    Science.gov (United States)

    Lück, Christina; Kusche, Jürgen; Rietbroek, Roelof; Löcher, Anno

    2018-03-01

    Measuring the spatiotemporal variation of ocean mass allows for partitioning of volumetric sea level change, sampled by radar altimeters, into mass-driven and steric parts. The latter is related to ocean heat change and the current Earth's energy imbalance. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided monthly snapshots of the Earth's time-variable gravity field, from which one can derive ocean mass variability. However, GRACE has reached the end of its lifetime with data degradation and several gaps occurred during the last years, and there will be a prolonged gap until the launch of the follow-on mission GRACE-FO. Therefore, efforts focus on generating a long and consistent ocean mass time series by analyzing kinematic orbits from other low-flying satellites, i.e. extending the GRACE time series. Here we utilize data from the European Space Agency's (ESA) Swarm Earth Explorer satellites to derive and investigate ocean mass variations. For this aim, we use the integral equation approach with short arcs (Mayer-Gürr, 2006) to compute more than 500 time-variable gravity fields with different parameterizations from kinematic orbits. We investigate the potential to bridge the gap between the GRACE and the GRACE-FO mission and to substitute missing monthly solutions with Swarm results of significantly lower resolution. Our monthly Swarm solutions have a root mean square error (RMSE) of 4.0 mm with respect to GRACE, whereas directly estimating constant, trend, annual, and semiannual (CTAS) signal terms leads to an RMSE of only 1.7 mm. Concerning monthly gaps, our CTAS Swarm solution appears better than interpolating existing GRACE data in 13.5 % of all cases, when artificially removing one solution. In the case of an 18-month artificial gap, 80.0 % of all CTAS Swarm solutions were found closer to the observed GRACE data compared to interpolated GRACE data. Furthermore, we show that precise modeling of non-gravitational forces

  14. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients

    Science.gov (United States)

    Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin

    2011-05-01

    The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is

  15. The interaction of Dirac particles with non-abelian gauge fields and gravity - bound states

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix E-mail: felix.finster@mis.mpg.de; Smoller, Joel E-mail: smoller@umich.edu; Yau, S.-T. E-mail: yau@math.harvard.edu

    2000-09-18

    We consider a spherically symmetric, static system of a Dirac particle interacting with classical gravity and an SU(2) Yang-Mills field. The corresponding Einstein-Dirac-Yang-Mills equations are derived. Using numerical methods, we find different types of soliton-like solutions of these equations and discuss their properties. Some of these solutions are stable even for arbitrarily weak gravitational coupling.

  16. The interaction of Dirac particles with non-abelian gauge fields and gravity - bound states

    Science.gov (United States)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    2000-09-01

    We consider a spherically symmetric, static system of a Dirac particle interacting with classical gravity and an SU(2) Yang-Mills field. The corresponding Einstein-Dirac-Yang-Mills equations are derived. Using numerical methods, we find different types of soliton-like solutions of these equations and discuss their properties. Some of these solutions are stable even for arbitrarily weak gravitational coupling.

  17. The interaction of Dirac particles with non-abelian gauge fields and gravity - bound states

    International Nuclear Information System (INIS)

    Finster, Felix; Smoller, Joel; Yau, S.-T.

    2000-01-01

    We consider a spherically symmetric, static system of a Dirac particle interacting with classical gravity and an SU(2) Yang-Mills field. The corresponding Einstein-Dirac-Yang-Mills equations are derived. Using numerical methods, we find different types of soliton-like solutions of these equations and discuss their properties. Some of these solutions are stable even for arbitrarily weak gravitational coupling

  18. Particle production after inflation with non-minimal derivative coupling to gravity

    International Nuclear Information System (INIS)

    Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei

    2015-01-01

    We study cosmological evolution after inflation in models with non-minimal derivative coupling to gravity. The background dynamics is solved and particle production associated with rapidly oscillating Hubble parameter is studied in detail. In addition, production of gravitons through the non-minimal derivative coupling with the inflaton is studied. We also find that the sound speed squared of the scalar perturbation oscillates between positive and negative values when the non-minimal derivative coupling dominates over the minimal kinetic term. This may lead to an instability of this model. We point out that the particle production rates are the same as those in the Einstein gravity with the minimal kinetic term, if we require the sound speed squared is positive definite

  19. A Unified Field Theory of Gravity, Electromagnetism, and theA Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  20. Do massive compact objects without event horizon exist in infinite derivative gravity?

    Science.gov (United States)

    Koshelev, Alexey S.; Mazumdar, Anupam

    2017-10-01

    Einstein's general theory of relativity is plagued by cosmological and black-hole type singularities Recently, it has been shown that infinite derivative, ghost free, gravity can yield nonsingular cosmological and mini-black hole solutions. In particular, the theory possesses a mass-gap determined by the scale of new physics. This paper provides a plausible argument, not a no-go theorem, based on the Area-law of gravitational entropy that within infinite derivative, ghost free, gravity nonsingular compact objects in the static limit need not have horizons.

  1. Equations of motion for massive spin 2 field coupled to gravity

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Gitman, D.M.; Krykhtin, V.A.; Pershin, V.D.

    2000-01-01

    We investigate the problems of consistency and causality for the equations of motion describing massive spin two field in external gravitational and massless scalar dilaton fields in arbitrary spacetime dimension. From the field theoretical point of view we consider a general classical action with non-minimal couplings and find gravitational and dilaton background on which this action describes a theory consistent with the flat space limit. In the case of pure gravitational background all field components propagate causally. We show also that the massive spin two field can be consistently described in arbitrary background by means of the lagrangian representing an infinite series in the inverse mass. Within string theory we obtain equations of motion for the massive spin two field coupled to gravity from the requirement of quantum Weyl invariance of the corresponding two-dimensional sigma-model. In the lowest order in α' we demonstrate that these effective equations of motion coincide with consistent equations derived in field theory

  2. Equations of motion for massive spin 2 field coupled to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Buchbinder, I.L. E-mail: ilb@mail.tomsknet.ru; Gitman, D.M. E-mail: gitman@fma.if.usp.br; Krykhtin, V.A. E-mail: krykhtin@phys.dfe.tpu.edu.ru; Pershin, V.D. E-mail: pershin@ic.tsu.ru

    2000-09-18

    We investigate the problems of consistency and causality for the equations of motion describing massive spin two field in external gravitational and massless scalar dilaton fields in arbitrary spacetime dimension. From the field theoretical point of view we consider a general classical action with non-minimal couplings and find gravitational and dilaton background on which this action describes a theory consistent with the flat space limit. In the case of pure gravitational background all field components propagate causally. We show also that the massive spin two field can be consistently described in arbitrary background by means of the lagrangian representing an infinite series in the inverse mass. Within string theory we obtain equations of motion for the massive spin two field coupled to gravity from the requirement of quantum Weyl invariance of the corresponding two-dimensional sigma-model. In the lowest order in {alpha}' we demonstrate that these effective equations of motion coincide with consistent equations derived in field theory.

  3. Venus gravity - Analysis of Beta Regio

    Science.gov (United States)

    Esposito, P. B.; Sjogren, W. L.; Mottinger, N. A.; Bills, B. G.; Abbott, E.

    1982-01-01

    Radio tracking data acquired over Beta Regio were analyzed to obtain a surface mass distribution from which a detailed vertical gravity field was derived. In addition, a corresponding vertical gravity field was evaluated solely from the topography of the Beta region. A comparison of these two maps confirms the strong correlation between gravity and topography which was previously seen in line-of-sight gravity maps. It also demonstrates that the observed gravity is a significant fraction of that predicted from the topography alone. The effective depth of complete isostatic compensation for the Beta region is estimated to be 330 km, which is somewhat deeper than that found for other areas of Venus.

  4. Quantum Field Theoretic Derivation of the Einstein Weak Equivalence Principle Using Emqg Theory

    OpenAIRE

    Ostoma, Tom; Trushyk, Mike

    1999-01-01

    We provide a quantum field theoretic derivation of Einstein's Weak Equivalence Principle of general relativity using a new quantum gravity theory proposed by the authors called Electro-Magnetic Quantum Gravity or EMQG (ref. 1). EMQG is based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia). Quantum Inertia states that classical Newtonian Inertia is a property of matter due to the strictly local electrical force ...

  5. From quantum gravity to quantum field theory via noncommutative geometry

    International Nuclear Information System (INIS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2014-01-01

    A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)

  6. The gravity field and crustal structure of the northwestern Arabian Platform in Jordan

    Science.gov (United States)

    Batayneh, A. T.; Al-Zoubi, A. S.

    2001-01-01

    The Bouguer gravity field over the northwestern Arabian Platform in Jordan is dominated by large variations, ranging from -132 to +4 mGal. A study of the Bouguer anomaly map shows that the gravity field maintains a general north-northeasterly trend in the Wadi Araba-Dead Sea-Jordan Riff, Northern Highlands and Northeast Jordanian Limestone Area, while the remainder of the area shows north-northwesterly-trending gravity anomalies. Results of 2-D gravity modeling of the Bouguer gravity field indicate that the crustal thickness in Jordan is ˜ 38 km, which is similar to crustal thicknesses obtained from refraction data in northern Jordan and Saudi Arabia, and from gravity data in Syria.

  7. Arctic Ocean gravity, geoid and sea-ice freeboard heights from ICESat and GRACE

    DEFF Research Database (Denmark)

    Forsberg, René; Skourup, Henriette

    2005-01-01

    Gravity Project in combination with GRACE gravity field models to derive an improved Arctic geoid model. This model is then used to convert ICESat measurements to sea-ice freeboard heights with a coarse lowest-level surface method. The derived freeboard heights show a good qualitative agreement...... all major tectonic features of the Arctic Ocean, and has an accuracy of 6 mGal compared to recent airborne gravity data, illustrating the usefulness of ICESat data for gravity field determination....

  8. Time-variable gravity fields derived from GPS tracking of Swarm

    Czech Academy of Sciences Publication Activity Database

    Bezděk, Aleš; Sebera, Josef; da Encarnacao, J.T.; Klokočník, Jaroslav

    2016-01-01

    Roč. 205, č. 3 (2016), s. 1665-1669 ISSN 0956-540X R&D Projects: GA MŠk LG14026; GA ČR GA13-36843S Institutional support: RVO:67985815 Keywords : satellite geodesy * time variable gravity * global change from geodesy Subject RIV: DD - Geochemistry Impact factor: 2.414, year: 2016

  9. Characteristics of equatorial gravity waves derived from mesospheric airglow imaging observations

    Directory of Open Access Journals (Sweden)

    S. Suzuki

    2009-04-01

    Full Text Available We present the characteristics of small-scale (<100 km gravity waves in the equatorial mesopause region derived from OH airglow imaging observations at Kototabang (100.3° E, 0.2° S, Indonesia, from 2002 to 2005. We adopted a method that could automatically detect gravity waves in the airglow images using two-dimensional cross power spectra of gravity waves. The propagation directions of the waves were likely controlled by zonal filtering due to stratospheric mean winds that show a quasi-biennial oscillation (QBO and the presence of many wave sources in the troposphere.

  10. Signs and stability in higher-derivative gravity

    Science.gov (United States)

    Narain, Gaurav

    2018-02-01

    Perturbatively renormalizable higher-derivative gravity in four space-time dimensions with arbitrary signs of couplings has been considered. Systematic analysis of the action with arbitrary signs of couplings in Lorentzian flat space-time for no-tachyons, fixes the signs. Feynman + i𝜖 prescription for these signs further grants necessary convergence in path-integral, suppressing the field modes with large action. This also leads to a sensible wick rotation where quantum computation can be performed. Running couplings for these sign of parameters make the massive tensor ghost innocuous leading to a stable and ghost-free renormalizable theory in four space-time dimensions. The theory has a transition point arising from renormalization group (RG) equations, where the coefficient of R2 diverges without affecting the perturbative quantum field theory (QFT). Redefining this coefficient gives a better handle over the theory around the transition point. The flow equations push the flow of parameters across the transition point. The flow beyond the transition point is analyzed using the one-loop RG equations which shows that the regime beyond the transition point has unphysical properties: there are tachyons, the path-integral loses positive definiteness, Newton’s constant G becomes negative and large, and perturbative parameters become large. These shortcomings indicate a lack of completeness beyond the transition point and need of a nonperturbative treatment of the theory beyond the transition point.

  11. New 3D Gravity Model of the Lithosphere and new Approach of the Gravity Field Transformation in the Western Carpathian-Pannonian Region

    Science.gov (United States)

    Bielik, M.; Tasarova, Z. A.; Goetze, H.; Mikuska, J.; Pasteka, R.

    2007-12-01

    The 3-D forward modeling was performed for the Western Carpathians and the Pannonian Basin system. The density model includes 31 cross-sections, extends to depth of 220 km. By means of the combined 3-D modeling, new estimates of the density distribution of the crust and upper mantle, as well as depths of the Moho were derived. These data allowed to perform gravity stripping, which in the area of the Pannonian Basin is crucial for the signal analysis of the gravity field. In this region, namely, two pronounced features (i.e. the deep sedimentary basins and shallow Moho) with opposite gravity effects make it impossible to analyze the Bouguer anomaly by field separation or filtering. The results revealed a significantly different nature of the Western Carpathian- Pannonian region (ALACAPA and Tisza-Dacia microplates) from the European Platform lithosphere (i.e. these microplates to be much less dense than the surrounding European Platform lithosphere). The calculation of the transformed gravity maps by means of new method provided the additional information on the lithospheric structure. The use of existing elevation information represents an independent approach to the problem of transformation of gravity maps. Instead of standard separation and transformation methods both in wave-number and spatial domains, this method is based on the estimating of really existing linear trends within the values of complete Bouguer anomalies (CBA), which are understood as a function defined in 3D space. An important assumption that the points with known input values of CBA lie on a horizontal plane is therefore not required. Instead, the points with known CBA and elevation values are treated in their original positions, i.e. on the Earth surface.

  12. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-01-01

    We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.

  13. Global height datum unification: a new approach in gravity potential space

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  14. Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits

    Directory of Open Access Journals (Sweden)

    C. Lück

    2018-03-01

    Full Text Available Measuring the spatiotemporal variation of ocean mass allows for partitioning of volumetric sea level change, sampled by radar altimeters, into mass-driven and steric parts. The latter is related to ocean heat change and the current Earth's energy imbalance. Since 2002, the Gravity Recovery and Climate Experiment (GRACE mission has provided monthly snapshots of the Earth's time-variable gravity field, from which one can derive ocean mass variability. However, GRACE has reached the end of its lifetime with data degradation and several gaps occurred during the last years, and there will be a prolonged gap until the launch of the follow-on mission GRACE-FO. Therefore, efforts focus on generating a long and consistent ocean mass time series by analyzing kinematic orbits from other low-flying satellites, i.e. extending the GRACE time series. Here we utilize data from the European Space Agency's (ESA Swarm Earth Explorer satellites to derive and investigate ocean mass variations. For this aim, we use the integral equation approach with short arcs (Mayer-Gürr, 2006 to compute more than 500 time-variable gravity fields with different parameterizations from kinematic orbits. We investigate the potential to bridge the gap between the GRACE and the GRACE-FO mission and to substitute missing monthly solutions with Swarm results of significantly lower resolution. Our monthly Swarm solutions have a root mean square error (RMSE of 4.0 mm with respect to GRACE, whereas directly estimating constant, trend, annual, and semiannual (CTAS signal terms leads to an RMSE of only 1.7 mm. Concerning monthly gaps, our CTAS Swarm solution appears better than interpolating existing GRACE data in 13.5 % of all cases, when artificially removing one solution. In the case of an 18-month artificial gap, 80.0 % of all CTAS Swarm solutions were found closer to the observed GRACE data compared to interpolated GRACE data. Furthermore, we show that precise modeling of non

  15. Dynamical structure of linearized GL(4) gravities

    International Nuclear Information System (INIS)

    Aragone, C.; Restuccia, A.

    1978-01-01

    The physical content of the three more natural models of GL(4) gravity is analyzed, for the case of weak fields. It is shown that the first model is the linearized version of Yang's one-tensor-field gravity and is a scalar-tensor theory, with its scalar part contained in a symmetric tensor. The second and the third linearized models, which can both be derived from the fourth-order action postulated by Yang, are two-tensor decoupled systems. In both cases one of the tensors is the symmetric weak metric gravity tensor field. the second tensor appearing in these two models, representing the GL(4)-gauge field, is either a linearized symmetric affinity (in the second model) or a linearized but nonsymmetric affinity (for the third model). It is shown that in these last two cases the affinity contains a helicity-3 propagating field. Owing to the presence of helicity-3 fields it is shown that it is better to regard Yang's action as an action for a two-tensor system instead of trying to recover from a pure gravity (one-tensor-field) action. Finally, it is shown what is the dynamical structure of the second and third linearized two-tensor models which can be derived from Yang's action. (author)

  16. Tunable Superconducting Gravity Gradiometer for Mars Climate, Atmosphere, and Gravity Field Investigation

    Science.gov (United States)

    Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.

    2015-01-01

    We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.

  17. Towards combined global monthly gravity field solutions

    Science.gov (United States)

    Jaeggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Weigelt, Matthias; van Dam, Tonie; Mayer-Gürr, Torsten; Flury, Jakob; Flechtner, Frank; Dahle, Christoph; Lemoine, Jean-Michel; Bruinsma, Sean

    2014-05-01

    Currently, official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. This procedure seriously limits the accessibility of these valuable data. Combinations are well established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI). Regularly comparing and combining space-geodetic products has tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. Therefore, we propose in a first step to mutually compare the large variety of available monthly GRACE gravity field solutions, e.g., by assessing the signal content over selected regions, by estimating the noise over the oceans, and by performing significance tests. We make the attempt to assign different solution characteristics to different processing strategies in order to identify subsets of solutions, which are based on similar processing strategies. Using these subsets we will in a second step explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the potential benefits for the GRACE and GRACE-FO user community, but also address minimum processing

  18. Lanczos-Lovelock gravity from a thermodynamic perspective

    International Nuclear Information System (INIS)

    Chakraborty, Sumanta

    2015-01-01

    The deep connection between gravitational dynamics and horizon thermodynamics leads to several intriguing features both in general relativity and in Lanczos-Lovelock theories of gravity. Recently in http://arxiv.org/abs/1312.3253 several additional results strengthening the above connection have been established within the framework of general relativity. In this work we provide a generalization of the above setup to Lanczos-Lovelock gravity as well. To our expectation it turns out that most of the results obtained in the context of general relativity generalize to Lanczos-Lovelock gravity in a straightforward but non-trivial manner. First, we provide an alternative and more general derivation of the connection between Noether charge for a specific time evolution vector field and gravitational heat density of the boundary surface. This will lead to holographic equipartition for static spacetimes in Lanczos-Lovelock gravity as well. Taking a cue from this, we have introduced naturally defined four-momentum current associated with gravity and matter energy momentum tensor for both Lanczos-Lovelock Lagrangian and its quadratic part. Then, we consider the concepts of Noether charge for null boundaries in Lanczos-Lovelock gravity by providing a direct generalization of previous results derived in the context of general relativity. Another very interesting feature for gravity is that gravitational field equations for arbitrary static and spherically symmetric spacetimes with horizon can be written as a thermodynamic identity in the near horizon limit. This result holds in both general relativity and in Lanczos-Lovelock gravity as well. In a previous work [http://arxiv.org/abs/1505.05297] we have shown that, for an arbitrary spacetime, the gravitational field equations near any null surface generically leads to a thermodynamic identity. In this work, we have also generalized this result to Lanczos-Lovelock gravity by showing that gravitational field equations for Lanczos

  19. Characteristics of gravity fields in the Jinggu M6.6 earthquake

    Directory of Open Access Journals (Sweden)

    Sun Shaoan

    2014-11-01

    Full Text Available Based on the study of high-precision gravity data obtained from recent studies and the regional gravity network for Yunnan province, a variation in the regional gravity field was identified before the occurrence of the Yunnan Jinggu M6. 6 earthquake.

  20. Recovery of the Earth's Gravity Field Based on Spaceborne Atom-interferometry and Its Accuracy Estimation

    Directory of Open Access Journals (Sweden)

    ZHU Zhu

    2017-09-01

    Full Text Available The electrostatic gravity gradiometer has been successfully applied as a core sensor in satellite gravity gradiometric mission GOCE, and its observations are used to recover the Earth's static gravity field with a degree and order above 200. The lifetime of GOCE has been over, and the next generation satellite gravity gradiometry with higher resolution is urgently required in order to recover the global steady-state gravity field with a degree and order of 200~360. High potential precision can be obtained in space by atom-interferometry gravity gradiometer due to its long interference time, and thus the atom-interferometry-based satellite gravity gradiometry has been proposed as one of the candidate techniques for the next satellite gravity gradiometric mission. In order to achieve the science goal for high resolution gravity field measurement in the future, a feasible scheme of atom-interferometry gravity gradiometry in micro-gravity environment is given in this paper, and the gravity gradient measurement can be achieved with a noise of 0.85mE/Hz1/2. Comparison and estimation of the Earth's gravity field recovery precision for different types of satellite gravity gradiometry is discussed, and the results show that the satellite gravity gradiometry based on atom-interferometry is expected to provide the global gravity field model with an improved accuracy of 7~8cm in terms of geoid height and 3×10-5 m/s2 in terms of gravity anomaly respectively at a degree and order of 252~290.

  1. Gravity gradient preprocessing at the GOCE HPF

    Science.gov (United States)

    Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.

    2009-04-01

    One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  2. Quantum group structure and local fields in the algebraic approach to 2D gravity

    CERN Document Server

    Schnittger, Jens

    1994-01-01

    This review contains a summary of work by J.-L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables -the Liouville exponentials and the Liouville field itself - and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.

  3. Toward a gauge field theory of gravity.

    Science.gov (United States)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  4. Mercury's gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    Science.gov (United States)

    Verma, A. K.; Margot, J. L.

    2015-12-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury's gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent. The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models. Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models. We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation.

  5. Holographic metal-insulator transition in higher derivative gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China); Zhou, Zhenhua, E-mail: zhouzh@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-03-10

    We introduce a Weyl term into the Einstein–Maxwell-Axion theory in four dimensional spacetime. Up to the first order of the Weyl coupling parameter γ, we construct charged black brane solutions without translational invariance in a perturbative manner. Among all the holographic frameworks involving higher derivative gravity, we are the first to obtain metal-insulator transitions (MIT) when varying the system parameters at zero temperature. Furthermore, we study the holographic entanglement entropy (HEE) of strip geometry in this model and find that the second order derivative of HEE with respect to the axion parameter exhibits maximization behavior near quantum critical points (QCPs) of MIT. It testifies the conjecture in that HEE itself or its derivatives can be used to diagnose quantum phase transition (QPT).

  6. Monthly gravity field solutions based on GRACE observations generated with the Celestial Mechanics Approach

    Science.gov (United States)

    Meyer, Ulrich; Jäggi, Adrian; Beutler, Gerhard

    2012-09-01

    The main objective of the Gravity Recovery And Climate Experiment (GRACE) satellite mission consists of determining the temporal variations of the Earth's gravity field. These variations are captured by time series of gravity field models of limited resolution at, e.g., monthly intervals. We present a new time series of monthly models, which was computed with the so-called Celestial Mechanics Approach (CMA), developed at the Astronomical Institute of the University of Bern (AIUB). The secular and seasonal variations in the monthly models are tested for statistical significance. Calibrated errors are derived from inter-annual variations. The time-variable signal can be extracted at least up to degree 60, but the gravity field coefficients of orders above 45 are heavily contaminated by noise. This is why a series of monthly models is computed up to a maximum degree of 60, but only a maximum order of 45. Spectral analysis of the residual time-variable signal shows a distinctive peak at a period of 160 days, which shows up in particular in the C20 spherical harmonic coefficient. Basic filter- and scaling-techniques are introduced to evaluate the monthly models. For this purpose, the variability over the oceans is investigated, which serves as a measure for the noisiness of the models. The models in selected regions show the expected seasonal and secular variations, which are in good agreement with the monthly models of the Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ). The results also reveal a few small outliers, illustrating the necessity for improved data screening. Our monthly models are available at the web page of the International Centre for Global Earth Models (ICGEM).

  7. Braneworld gravity: Influence of the moduli fields

    International Nuclear Information System (INIS)

    Barcelo, Carlos; Visser, Matt

    2000-01-01

    We consider the case of a generic braneworld geometry in the presence of one or more moduli fields (e.g., the dilaton) that vary throughout the bulk spacetime. Working in an arbitrary conformal frame, using the generalized junction conditions of gr-qc/0008008 and the Gauss-Codazzi equations, we derive the effective ''induced'' on-brane gravitational equations. As usual in braneworld scenarios, these equations do not form a closed system in that the bulk can exchange both information and stress-energy with the braneworld. We work with an arbitrary number of moduli fields described by an arbitrary sigma model, with arbitrary curvature couplings, arbitrary self interactions, and arbitrary dimension for the bulk. (The braneworld is always codimension one.) Among the novelties we encounter are modifications of the on-brane stress-energy conservation law, anomalous couplings between on-brane gravity and the trace of the on-brane stress-energy tensor, and additional possibilities for modifying the on-brane effective cosmological constant. After obtaining the general stress-energy ''conservation'' law and the ''induced Einstein equations'' we particularize the discussion to two particularly attractive cases: for a (n-2)-brane in ([n-1]+1) dimensions we discuss both the effect of (1) generic variable moduli fields in the Einstein frame, and (2) the effect of a varying dilaton in the string frame. (author)

  8. Discrete gravity as a topological field theorywith light-like curvature defects

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, Wolfgang [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2017-05-29

    I present a model of discrete gravity as a topological field theory with defects. The theory has no local degrees of freedom and the gravitational field is trivial everywhere except at a number of intersecting null surfaces. At these null surfaces, the gravitational field can be singular, representing a curvature defect propagating at the speed of light. The underlying action is local and it is studied in both its Lagrangian and Hamiltonian formulation. The canonically conjugate variables on the null surfaces are a spinor and a spinor-valued two-surface density, which are coupled to a topological field theory for the Lorentz connection in the bulk. I discuss the relevance of the model for non-perturbative approaches to quantum gravity, such as loop quantum gravity, where similar variables have recently appeared as well.

  9. A family of metric gravities

    Science.gov (United States)

    Shuler, Robert

    2018-04-01

    The goal of this paper is to take a completely fresh approach to metric gravity, in which the metric principle is strictly adhered to but its properties in local space-time are derived from conservation principles, not inferred from a global field equation. The global field strength variation then gains some flexibility, but only in the regime of very strong fields (2nd-order terms) whose measurement is now being contemplated. So doing provides a family of similar gravities, differing only in strong fields, which could be developed into meaningful verification targets for strong fields after the manner in which far-field variations were used in the 20th century. General Relativity (GR) is shown to be a member of the family and this is demonstrated by deriving the Schwarzschild metric exactly from a suitable field strength assumption. The method of doing so is interesting in itself because it involves only one differential equation rather than the usual four. Exact static symmetric field solutions are also given for one pedagogical alternative based on potential, and one theoretical alternative based on inertia, and the prospects of experimentally differentiating these are analyzed. Whether the method overturns the conventional wisdom that GR is the only metric theory of gravity and that alternatives must introduce additional interactions and fields is somewhat semantical, depending on whether one views the field strength assumption as a field and whether the assumption that produces GR is considered unique in some way. It is of course possible to have other fields, and the local space-time principle can be applied to field gravities which usually are weak-field approximations having only time dilation, giving them the spatial factor and promoting them to full metric theories. Though usually pedagogical, some of them are interesting from a quantum gravity perspective. Cases are noted where mass measurement errors, or distributions of dark matter, can cause one

  10. Gravity Field Atlas of the S. Ocean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Gravity Field Atlas of the Southern Ocean from GEOSAT is MGG Report 7. In many areas of the global ocean, the depth of the seafloor is not well known because...

  11. Group field theories for all loop quantum gravity

    Science.gov (United States)

    Oriti, Daniele; Ryan, James P.; Thürigen, Johannes

    2015-02-01

    Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.

  12. Mercury’s gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    Science.gov (United States)

    Verma, Ashok Kumar; Margot, Jean-Luc

    2015-11-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury’s gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent.The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models.Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models.We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation

  13. Body Mass Changes Associated With Hyper-Gravity are Independent of Adrenal Derived Hormones

    Science.gov (United States)

    Wade, Charles E.; Moran, Megan M.; Wang, Tommy J.; Baer, Lisa A.; Yuan, Fang; Fung, Cyra K.; Stein, T. Peter; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Exposure to hyper-gravity results in a number of metabolic changes associated with increases in catecholamines and corticosterone. These changes result in a loss of body and fat mass. To assess the role of hormones derived from the adrenal gland in the changes we studied sham operated (SO) and adrenalectomized (ADX) male rats exposed to hyper-gravity of 2 G for 14 days. Control groups at 1 G were also studied. Urinary epinephrine (EPI) and corticosterone (CORT) were reduced in ADX animals. In response to 2 G there was an increase in urinary EPI and CORT in SO rats, while levels were unchanged in ADX animals. Both groups of animals had similar increases in urinary norepinephrine levels. The reductions of body mass gain in response to 2 G were the same in both groups. The decrease in relative fat mass was greater in ADX. Energy intake and expenditure were not different between groups. In response of returning to 1 G for 24 hours and reexposure to hyper-gravity there were no differences between SO and ADX in the changes of food and water intake, body mass or activity. The changes in metabolism with exposure to hyper-gravity do not appear to require hormones derived from the adrenal gland. The increase in lypolysis and alterations body and fat mass appear to be modulated by sympathetically derived norepinehrine.

  14. Quantum group structure and local fields in the algebraic approach to 2D gravity

    Science.gov (United States)

    Schnittger, J.

    1995-07-01

    This review contains a summary of the work by J.-L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables — the Liouville exponentials and the Liouville field itself — and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.

  15. Phase diagram of the mean field model of simplicial gravity

    International Nuclear Information System (INIS)

    Bialas, P.; Burda, Z.; Johnston, D.

    1999-01-01

    We discuss the phase diagram of the balls in boxes model, with a varying number of boxes. The model can be regarded as a mean-field model of simplicial gravity. We analyse in detail the case of weights of the form p(q) = q -β , which correspond to the measure term introduced in the simplicial quantum gravity simulations. The system has two phases: elongated (fluid) and crumpled. For β ε (2, ∞) the transition between these two phases is first-order, while for β ε (1, 2) it is continuous. The transition becomes softer when β approaches unity and eventually disappears at β = 1. We then generalise the discussion to an arbitrary set of weights. Finally, we show that if one introduces an additional kinematic bound on the average density of balls per box then a new condensed phase appears in the phase diagram. It bears some similarity to the crinkled phase of simplicial gravity discussed recently in models of gravity interacting with matter fields

  16. A new class of group field theories for 1st order discrete quantum gravity

    NARCIS (Netherlands)

    Oriti, D.; Tlas, T.

    2008-01-01

    Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman

  17. n  +  1 formalism of f (Lovelock) gravity

    Science.gov (United States)

    Lachaume, Xavier

    2018-06-01

    In this note we perform the n  +  1 decomposition, or Arnowitt–Deser–Misner (ADM) formulation of gravity theory. The Hamiltonian form of Lovelock gravity was known since the work of Teitelboim and Zanelli in 1987, but this result had not yet been extended to gravity. Besides, field equations of have been recently computed by Bueno et al, though without ADM decomposition. We focus on the non-degenerate case, i.e. when the Hessian of f is invertible. Using the same Legendre transform as for theories, we can identify the partial derivatives of f as scalar fields, and consider the theory as a generalised scalar‑tensor theory. We then derive the field equations, and project them along a n  +  1 decomposition. We obtain an original system of constraint equations for gravity, as well as dynamical equations. We give explicit formulas for the case.

  18. On the gravitational seesaw in higher-derivative gravity

    Energy Technology Data Exchange (ETDEWEB)

    Accioly, Antonio; Giacchini, Breno L. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil); Shapiro, Ilya L. [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2017-08-15

    Local gravitational theories with more than four derivatives are superrenormalizable. They also may be unitary in the Lee-Wick sense. Thus it is relevant to study the low-energy properties of these theories, especially to identify observables which might be useful for experimental detection of higher derivatives. Using an analogy with the neutrino physics, we explore the possibility of a gravitational seesaw mechanism in which several dimensional parameters of the same order of magnitude produce a hierarchy in the masses of propagating particles. Such a mechanism could make a relatively light degree of freedom detectable in low-energy laboratory and astrophysical observations, such as torsion-balance experiments and the bending of light. We demonstrate that such a seesaw mechanism in the six- and more-derivative theories is unable to reduce the lightest mass more than in the simplest four-derivative model. Adding more derivatives to the four-derivative action of gravity makes heavier masses even greater, while the lightest massive ghost is not strongly affected. This fact is favorable for protecting the theory from instabilities but makes the experimental detection of higher derivatives more difficult. (orig.)

  19. Noncommutative gravity and quantum field theory on noncummutative curved spacetimes

    International Nuclear Information System (INIS)

    Schenkel, Alexander

    2011-01-01

    The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the noncommutative

  20. Noncommutative gravity and quantum field theory on noncummutative curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Alexander

    2011-10-24

    The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the

  1. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    Science.gov (United States)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  2. Canonical path integral measures for Holst and Plebanski gravity: I. Reduced phase space derivation

    International Nuclear Information System (INIS)

    Engle, Jonathan; Han Muxin; Thiemann, Thomas

    2010-01-01

    An important aspect in defining a path integral quantum theory is the determination of the correct measure. For interacting theories and theories with constraints, this is non-trivial, and is normally not the heuristic 'Lebesgue measure' usually used. There have been many determinations of a measure for gravity in the literature, but none for the Palatini or Holst formulations of gravity. Furthermore, the relations between different resulting measures for different formulations of gravity are usually not discussed. In this paper we use the reduced phase technique in order to derive the path-integral measure for the Palatini and Holst formulation of gravity, which is different from the Lebesgue measure up to local measure factors which depend on the spacetime volume element and spatial volume element. From this path integral for the Holst formulation of general relativity we can also give a new derivation of the Plebanski path integral and discover a discrepancy with the result due to Buffenoir, Henneaux, Noui and Roche whose origin we resolve. This paper is the first in a series that aims at better understanding the relation between canonical loop quantum gravity and the spin-foam approach.

  3. Conformally-flat, non-singular static metric in infinite derivative gravity

    Science.gov (United States)

    Buoninfante, Luca; Koshelev, Alexey S.; Lambiase, Gaetano; Marto, João; Mazumdar, Anupam

    2018-06-01

    In Einstein's theory of general relativity the vacuum solution yields a blackhole with a curvature singularity, where there exists a point-like source with a Dirac delta distribution which is introduced as a boundary condition in the static case. It has been known for a while that ghost-free infinite derivative theory of gravity can ameliorate such a singularity at least at the level of linear perturbation around the Minkowski background. In this paper, we will show that the Schwarzschild metric does not satisfy the boundary condition at the origin within infinite derivative theory of gravity, since a Dirac delta source is smeared out by non-local gravitational interaction. We will also show that the spacetime metric becomes conformally-flat and singularity-free within the non-local region, which can be also made devoid of an event horizon. Furthermore, the scale of non-locality ought to be as large as that of the Schwarzschild radius, in such a way that the gravitational potential in any metric has to be always bounded by one, implying that gravity remains weak from the infrared all the way up to the ultraviolet regime, in concurrence with the results obtained in [arXiv:1707.00273]. The singular Schwarzschild blackhole can now be potentially replaced by a non-singular compact object, whose core is governed by the mass and the effective scale of non-locality.

  4. Novel symmetries in Weyl-invariant gravity with massive gauge field

    Energy Technology Data Exchange (ETDEWEB)

    Abhinav, K. [S.N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata (India); Shukla, A.; Panigrahi, P.K. [Indian Institute of Science Education and Research Kolkata, Mohanpur (India)

    2016-11-15

    The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stueckelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stueckelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity. (orig.)

  5. Accounting for time- and space-varying changes in the gravity field to improve the network adjustment of relative-gravity data

    Science.gov (United States)

    Kennedy, Jeffrey R.; Ferre, Ty P.A.

    2015-01-01

    The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively

  6. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    Energy Technology Data Exchange (ETDEWEB)

    Vigeesh, G.; Steiner, O. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany); Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de [New Mexico State University, Department of Astronomy, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States)

    2017-02-01

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.

  7. High-Resolution Gravity Field Modeling for Mercury to Estimate Crust and Lithospheric Properties

    Science.gov (United States)

    Goossens, S.; Mazarico, E.; Genova, A.; James, P. B.

    2018-05-01

    We estimate a gravity field model for Mercury using line-of-sight data to improve the gravity field model at short wavelengths. This can be used to infer crustal density and infer the support mechanism of the lithosphere.

  8. On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.

  9. Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.; hide

    2016-01-01

    The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 +/- 0.2) × 10(exp 6) cu km of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.

  10. Insights into the Earth System mass variability from CSR-RL05 GRACE gravity fields

    Science.gov (United States)

    Bettadpur, S.

    2012-04-01

    The next-generation Release-05 GRACE gravity field data products are the result of extensive effort applied to the improvements to the GRACE Level-1 (tracking) data products, and to improvements in the background gravity models and processing methodology. As a result, the squared-error upper-bound in RL05 fields is half or less than the squared-error upper-bound in RL04 fields. The CSR-RL05 field release consists of unconstrained gravity fields as well as a regularized gravity field time-series that can be used for several applications without any post-processing error reduction. This paper will describe the background and the nature of these improvements in the data products, and provide an error characterization. We will describe the insights these new series offer in measuring the mass flux due to diverse Hydrologic, Oceanographic and Cryospheric processes.

  11. Preprocessing of gravity gradients at the GOCE high-level processing facility

    NARCIS (Netherlands)

    Bouman, J.; Rispens, S.; Gruber, T.; Koop, R.; Schrama, E.; Visser, P.; Tscherning, C.C.; Veicherts, M.

    2008-01-01

    One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To

  12. Heat transfer to liquid sodium in a straight duct in the presence of a transverse magnetic field and a gravity field

    International Nuclear Information System (INIS)

    Majid, A.

    1998-01-01

    Heat transfer to liquid sodium in the presence of a transverse magnetic field and gravity field was analyzed in a square cross section straight duct. The duct had conducting vanadium walls. Magnetohydrodynamic equations in three dimensions and energy equation in three dimensions in cartesian coordinate system were solved. Firstly Nusselt number was calculated with no magnetic field and gravity field. Secondly the Nusselt number was calculated for the case of transverse magnetic field acting on the fluid. Thirdly Nusselt number was calculated for the case of transverse magnetic field and gravity field acting on the fluid. Only one face of the channel was heated. It was found that Nusselt number is not sensitive to application of gravity field and is slightly sensitive to application of transverse magnetic field. The sensitivity of Nusselt number to magnetic field intensity becomes almost negligible after increasing the strength of magnetic field to 0.1 Tesla. (author)

  13. Gravity field and internal structure of Mercury from MESSENGER.

    Science.gov (United States)

    Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H

    2012-04-13

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  14. Gravity Field and Internal Structure of Mercury from MESSENGER

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; hide

    2012-01-01

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  15. The International Gravity Field Service (IGFS): Present Day Activities And Future Plans

    Science.gov (United States)

    Barzaghi, R.; Vergos, G. S.

    2016-12-01

    IGFS is a unified "umbrella" IAG service that coordinates the servicing of the geodetic and geophysical community with gravity field related data, software and information. The combined data of the IGFS entities will include global geopotential models, terrestrial, airborne, satellite and marine gravity observations, Earth tide data, GPS/levelling data, digital models of terrain and bathymetry, as well as ocean gravity field and geoid from satellite altimetry. The IGFS structure is based on the Gravity Services, the "operating arms" of IGFS. These Services related to IGFS are: BGI (Bureau Gravimetrique International), Toulouse, France ISG (International Service for the Geoid), Politecnico di Milano, Milano, Italy IGETS (International Geodynamics and Earth Tides Service), EOST, Strasbourg, France ICGEM (International Center for Global Earth Models), GFZ, Potsdam, Germany IDEMS (International Digital Elevation Model Service), ESRI, Redlands, CA, USA The Central Bureau, hosted at the Aristotle Thessaloniki University, is in charge for all the interactions among the services and the other IAG bodies, particularly GGOS. In this respect, connections with the GGOS Bureaus of Products and Standards and of Networks and Observations have been recently strengthened in order to align the Gravity services to the GGOS standards. IGFS is also strongly involved in the most relevant projects related to the gravity field such as the establishment of the new Global Absolute Gravity Reference System and of the International Height Reference System. These projects, along with the organization of Geoid Schools devoted to methods for gravity and geoid estimate, will play a central role in the IGFS future actions in the framework of GGOS.

  16. Tensor Galileons and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)

    2017-03-13

    The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.

  17. Emergent Abelian Gauge Fields from Noncommutative Gravity

    Directory of Open Access Journals (Sweden)

    Allen Stern

    2010-02-01

    Full Text Available We construct exact solutions to noncommutative gravity following the formulation of Chamseddine and show that they are in general accompanied by Abelian gauge fields which are first order in the noncommutative scale. This provides a mechanism for generating cosmological electromagnetic fields in an expanding space-time background, and also leads to multipole-like fields surrounding black holes. Exact solutions to noncommutative Einstein-Maxwell theory can give rise to first order corrections to the metric tensor, as well as to the electromagnetic fields. This leads to first order shifts in the horizons of charged black holes.

  18. Quantum gravity with matter and group field theory

    International Nuclear Information System (INIS)

    Krasnov, Kirill

    2007-01-01

    A generalization of the matrix model idea to quantum gravity in three and higher dimensions is known as group field theory (GFT). In this paper we study generalized GFT models that can be used to describe 3D quantum gravity coupled to point particles. The generalization considered is that of replacing the group leading to pure quantum gravity by the twisted product of the group with its dual-the so-called Drinfeld double of the group. The Drinfeld double is a quantum group in that it is an algebra that is both non-commutative and non-cocommutative, and special care is needed to define group field theory for it. We show how this is done, and study the resulting GFT models. Of special interest is a new topological model that is the 'Ponzano-Regge' model for the Drinfeld double. However, as we show, this model does not describe point particles. Motivated by the GFT considerations, we consider a more general class of models that are defined not using GFT, but the so-called chain mail techniques. A general model of this class does not produce 3-manifold invariants, but has an interpretation in terms of point particle Feynman diagrams

  19. Zwei-Dreibein Gravity : A Two-Frame-Field Model of 3D Massive Gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; de Haan, Sjoerd; Hohm, Olaf; Merbis, Wout; Townsend, Paul K.

    2013-01-01

    We present a generally covariant and parity-invariant two-frame field ("zwei-dreibein") action for gravity in three space-time dimensions that propagates two massive spin-2 modes, unitarily, and we use Hamiltonian methods to confirm the absence of unphysical degrees of freedom. We show how

  20. Variational approach to gravity field theories from Newton to Einstein and beyond

    CERN Document Server

    Vecchiato, Alberto

    2017-01-01

    This book offers a detailed and stimulating account of the Lagrangian, or variational, approach to general relativity and beyond. The approach more usually adopted when describing general relativity is to introduce the required concepts of differential geometry and derive the field and geodesic equations from purely geometrical properties. Demonstration of the physical meaning then requires the weak field approximation of these equations to recover their Newtonian counterparts. The potential downside of this approach is that it tends to suit the mathematical mind and requires the physicist to study and work in a completely unfamiliar environment. In contrast, the approach to general relativity described in this book will be especially suited to physics students. After an introduction to field theories and the variational approach, individual sections focus on the variational approach in relation to special relativity, general relativity, and alternative theories of gravity. Throughout the text, solved exercis...

  1. Heavy fields and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Goon, Garrett [Institute of Physics, Universiteit van Amsterdam,Science Park 904, Amsterdam, 1090 GL (Netherlands)

    2017-01-11

    We study the effects of heavy fields on 4D spacetimes with flat, de Sitter and anti-de Sitter asymptotics. At low energies, matter generates specific, calculable higher derivative corrections to the GR action which perturbatively alter the Schwarzschild-(A)dS family of solutions. The effects of massive scalars, Dirac spinors and gauge fields are each considered. The six-derivative operators they produce, such as ∼R{sup 3} terms, generate the leading corrections. The induced changes to horizon radii, Hawking temperatures and entropies are found. Modifications to the energy of large AdS black holes are derived by imposing the first law. An explicit demonstration of the replica trick is provided, as it is used to derive black hole and cosmological horizon entropies. Considering entropy bounds, it’s found that scalars and fermions increase the entropy one can store inside a region bounded by a sphere of fixed size, but vectors lead to a decrease, oddly. We also demonstrate, however, that many of the corrections fall below the resolving power of the effective field theory and are therefore untrustworthy. Defining properties of black holes, such as the horizon area and Hawking temperature, prove to be remarkably robust against higher derivative gravitational corrections.

  2. The metric on field space, functional renormalization, and metric–torsion quantum gravity

    International Nuclear Information System (INIS)

    Reuter, Martin; Schollmeyer, Gregor M.

    2016-01-01

    Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modified FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.

  3. A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  4. Correspondence of f(R,∇R) Modified Gravity with Scalar Field Models

    International Nuclear Information System (INIS)

    Jawad, Abdul; Debnath, Ujjal

    2014-01-01

    This paper is devoted to study the scalar field dark energy models by taking its different aspects in the framework of f(R,∇R) gravity. We consider flat FRW universe to construct the equation of state parameter governed by f(R,∇R) gravity. The stability of the model is discussed with the help of squared speed of sound parameter. It is found that models show quintessence behavior of the universe in stable as well as unstable modes. We also develop the correspondence of f(R,∇R) model with some scalar field dark energy models like quintessence, tachyonic field, k-essence, dilaton, hessence, and DBI-essence. The nature of scalar fields and corresponding scalar potentials is being analyzed in f(R,∇R) gravity graphically which show consistency with the present day observations about accelerated phenomenon

  5. Lanczos–Lovelock models of gravity

    International Nuclear Information System (INIS)

    Padmanabhan, T.; Kothawala, D.

    2013-01-01

    Lanczos–Lovelock models of gravity represent a natural and elegant generalization of Einstein’s theory of gravity to higher dimensions. They are characterized by the fact that the field equations only contain up to second derivatives of the metric even though the action functional can be a quadratic or higher degree polynomial in the curvature tensor. Because these models share several key properties of Einstein’s theory they serve as a useful set of candidate models for testing the emergent paradigm for gravity. This review highlights several geometrical and thermodynamical aspects of Lanczos–Lovelock models which have attracted recent attention

  6. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    Science.gov (United States)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  7. Interplay between topology, gauge fields and gravity

    Science.gov (United States)

    Corichi Rodriguez Gil, Alejandro

    In this thesis we consider several physical systems that illustrate an interesting interplay between quantum theory, connections and knot theory. It can be divided into two parts. In the first one, we consider the quantization of the free Maxwell field. We show that there is an important role played by knot theory, and in particular the Gauss linking number, in the quantum theory. This manifestation is twofold. The first occurs at the level of the algebra of observables given by fluxes of electric and magnetic field across surfaces. The commutator of the operators, and thus the basic uncertainty relations, are given in terms of the linking number of the loops that bound the surfaces. Next, we consider the quantization of the Maxwell field based on self-dual connections in the loop representation. We show that the measure which determines the quantum inner product can be expressed in terms of the self linking number of thickened loops. Therefore, the linking number manifests itself at two key points of the theory: the Heisenberg uncertainty principle and the inner product. In the second part, we bring gravity into play. First we consider quantum test particles on certain stationary space-times. We demonstrate that a geometric phase exists for those space-times and focus on the example of a rotating cosmic string. The geometric phase can be explicitly computed, providing a fully relativistic gravitational Aharonov-Bohm effect. Finally, we consider 3-dimensional gravity with non-vanishing cosmological constant in the connection dynamics formulation. We restrict our attention to Lorentzian gravity with positive cosmological constant and Euclidean signature with negative cosmological constant. A complex transformation is performed in phase space that makes the constraints simple. The reduced phase space is characterized as the moduli space of flat complex connections. We construct the quantization of the theory when the initial hyper-surface is a torus. Two important

  8. Scalar field mass in generalized gravity

    International Nuclear Information System (INIS)

    Faraoni, Valerio

    2009-01-01

    The notions of mass and range of a Brans-Dicke-like scalar field in scalar-tensor and f(R) gravity are subject to an ambiguity that hides a potential trap. We spell out this ambiguity and identify a physically meaningful and practical definition for these quantities. This is relevant when giving a mass to this scalar in order to circumvent experimental limits on the PPN parameters coming from solar system experiments.

  9. Adaptive filtering of GOCE-derived gravity gradients of the disturbing potential in the context of the space-wise approach

    Science.gov (United States)

    Piretzidis, Dimitrios; Sideris, Michael G.

    2017-09-01

    Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be

  10. Scalar field collapse in Gauss-Bonnet gravity

    Science.gov (United States)

    Banerjee, Narayan; Paul, Tanmoy

    2018-02-01

    We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.

  11. Crustal structure beneath Beijing and its surrounding regions derived from gravity data

    Science.gov (United States)

    Jiang, Wenliang; Zhang, Jingfa; Lu, Xiaocui; Lu, Jing

    2011-06-01

    In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. Logarithmic power spectrum method is also used to calculate depth of gravity field source. The results show that the crustal structure is very complicated beneath Beijing and its surrounding areas. The crustal density exhibits laterally inhomogeneous. There are three large scale tectonic zones in North China, i.e., WNW-striking Zhangjiakou-Bohai tectonic zone (ZBTZ), NE-striking Taihang piedmont tectonic zone (TPTZ) and Cangxian tectonic zone (CTZ). ZBTZ and TPTZ intersect with each other beneath Beijing area and both of them cut through the lithosphere. The upper and middle crusts consist of many small-scale faults, uplifts and depressions. In the lower crust, these small-scale tectonic units disappear gradually, and they are replaced by large-scale tectonic units. In surrounding regions of Beijing, ZBTZ intersects with several other NE-striking tectonic units, such as Cangxian uplift, Jizhong depression and Shanxi Graben System (SGS). In west of Taihangshan uplift, gravity anomalies in upper and middle crusts are correlated with geological and topographic features on the surface. Compared with the crust, the structure is comparatively simple in uppermost mantle. Earthquakes mainly occurred in upper and middle crusts, especially in transitional regions between high gravity anomaly and low gravity anomaly. Occurrence of large earthquakes may be related to the upwelling of upper mantle and asthenosphere heat flow materials, such as Sanhe earthquake ( M S8.0) and Tangshan earthquake ( M S7.8).

  12. Ocean tides in GRACE monthly averaged gravity fields

    DEFF Research Database (Denmark)

    Knudsen, Per

    2003-01-01

    The GRACE mission will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more subtle climate signals which GRACE...... aims at. In this analysis the results of Knudsen and Andersen (2002) have been verified using actual post-launch orbit parameter of the GRACE mission. The current ocean tide models are not accurate enough to correct GRACE data at harmonic degrees lower than 47. The accumulated tidal errors may affect...... the GRACE data up to harmonic degree 60. A study of the revised alias frequencies confirm that the ocean tide errors will not cancel in the GRACE monthly averaged temporal gravity fields. The S-2 and the K-2 terms have alias frequencies much longer than 30 days, so they remain almost unreduced...

  13. Mars gravity field error analysis from simulated radio tracking of Mars Observer

    International Nuclear Information System (INIS)

    Smith, D.E.; Lerch, F.J.; Chan, J.C.; Chinn, D.S.; Iz, H.B.; Mallama, A.; Patel, G.B.

    1990-01-01

    The Mars Observer (MO) Mission, in a near-polar orbit at 360-410 km altitude for nearly a 2-year observing period, will greatly improve our understanding of the geophysics of Mars, including its gravity field. To assess the expected improvement of the gravity field, the authors have conducted an error analysis based upon the mission plan for the Mars Observer radio tracking data from the Deep Space Network. Their results indicate that it should be possible to obtain a high-resolution model (spherical harmonics complete to degree and order 50 corresponding to a 200-km horizontal resolution) for the gravitational field of the planet. This model, in combination with topography from MO altimetry, should provide for an improved determination of the broad scale density structure and stress state of the Martian crust and upper mantle. The mathematical model for the error analysis is based on the representation of doppler tracking data as a function of the Martian gravity field in spherical harmonics, solar radiation pressure, atmospheric drag, angular momentum desaturation residual acceleration (AMDRA) effects, tracking station biases, and the MO orbit parameters. Two approaches are employed. In the first case, the error covariance matrix of the gravity model is estimated including the effects from all the nongravitational parameters (noise-only case). In the second case, the gravity recovery error is computed as above but includes unmodelled systematic effects from atmospheric drag, AMDRA, and solar radiation pressure (biased case). The error spectrum of gravity shows an order of magnitude of improvement over current knowledge based on doppler data precision from a single station of 0.3 mm s -1 noise for 1-min integration intervals during three 60-day periods

  14. Scalar field collapse in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2018-02-15

    We consider a ''scalar-Einstein-Gauss-Bonnet'' theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon. (orig.)

  15. 3D quantum gravity and effective noncommutative quantum field theory.

    Science.gov (United States)

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  16. Horizon thermodynamics and gravitational field equations in Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Cai Ronggen; Ohta, Nobuyoshi

    2010-01-01

    We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Horava-Lifshitz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Horava-Lifshitz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at the black hole horizon.

  17. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid

    2011-01-01

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F μν F μν from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the β function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension which we find to be negative at the

  18. Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?

    International Nuclear Information System (INIS)

    Taveras, Victor; Yunes, Nicolas

    2008-01-01

    We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.

  19. Field Equations for Abelian Vector Fields in the Bianchi Type I Metric in the Framework of Teleparallel Gravity

    International Nuclear Information System (INIS)

    Triyanta; Zen, F. P.; Supardi; Wardaya, A. Y.

    2010-01-01

    Gauge theory, under the framework of quantum field theory, has successfully described three fundamental interactions: electromagnetic, weak, and strong interactions. Problems of describing the gravitational interaction in a similar manner has not been satisfied yet until now. Teleparallel gravity (TG) is one proposal describing gravitational field as a gauge field. This theory is quite new and it is equivalent to Einstein's general relativity. But as gravitational field in TG is expressed by torsion, rather than curvature, it gives an alternative framework for solving problems on gravity. This paper will present solution of the dynamical equation of abelian vector fields under the framework of TG in the Bianchi type I spacetime.

  20. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    International Nuclear Information System (INIS)

    Galanti, Eli; Kaspi, Yohai; Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano

    2017-01-01

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.

  1. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Galanti, Eli; Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot (Israel); Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano, E-mail: eli.galanti@weizmann.ac.il [Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Universita di Roma, Rome (Italy)

    2017-07-01

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.

  2. The Crust of Mercury After the MESSENGER Gravity Investigation

    Science.gov (United States)

    Mazarico, E.; Genova, A.; Goossens, S.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2018-05-01

    We present the results of an improved analysis of the entire MESSENGER radio tracking dataset to derive key geophysical parameters of Mercury such as its gravity field. In particular, we derive and interpret a new crustal thickness model.

  3. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2004-01-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction

  4. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  5. Do massive compact objects without event horizon exist in infinite derivative gravity

    NARCIS (Netherlands)

    Koshelev, Alexey S.; Mazumdar, Anupam

    2017-01-01

    Einstein’s general theory of relativity is plagued by cosmological and black-hole type singularities Recently, it has been shown that infinite derivative, ghost free, gravity can yield nonsingular cosmological and mini-black hole solutions. In particular, the theory possesses a mass-gap determined

  6. Einstein gravity with torsion induced by the scalar field

    Science.gov (United States)

    Özçelik, H. T.; Kaya, R.; Hortaçsu, M.

    2018-06-01

    We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.

  7. Two and Three Parameter Waveform Retracking of Cryosat-2 LRM Waveforms for Gravity Field Determination

    DEFF Research Database (Denmark)

    Jain, Maulik; Andersen, Ole Baltazar; Dall, Jørgen

    2013-01-01

    The project deals with sea surface height and gravity field determination in open ocean using Cryosat-2 LRM data. A three parameter model is being used to find the retracking offset for sea surface height determination. The estimates from the three parameter model are further improved upon by using...... a two parameter model. The sea surface heights thus obtained are used to develop sea surface height anomalies which are further processed to give gravity fields. Retracker performance evaluation is done using sea surface height anomaly and gravity field anomaly....

  8. Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment

    Science.gov (United States)

    van der Wal, Wouter; Kurtenbach, Enrico; Kusche, Jürgen; Vermeersen, Bert

    2011-11-01

    In areas dominated by Glacial Isostatic Adjustment (GIA), the free-air gravity anomaly rate can be converted to uplift rate to good approximation by using a simple spectral relation. We provide quantitative comparisons between gravity rates derived from monthly gravity field solutions (GFZ Potsdam, CSR Texas, IGG Bonn) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with uplift rates measured by GPS in these areas. The band-limited gravity data from the GRACE satellite mission can be brought to very good agreement with the point data from GPS by using scaling factors derived from a GIA model (the root-mean-square of differences is 0.55 mm yr-1 for a maximum uplift rate signal of 10 mm yr-1). The root-mean-square of the differences between GRACE derived uplift rates and GPS derived uplift rates decreases with increasing GRACE time period to a level below the uncertainty that is expected from GRACE observations, GPS measurements and the conversion from gravity rate to uplift rate. With the current length of time-series (more than 8 yr) applying filters and a hydrology correction to the GRACE data does not reduce the root-mean-square of differences significantly. The smallest root-mean-square was obtained with the GFZ solution in Fennoscandia and with the CSR solution in North America. With radial gravity rates in excellent agreement with GPS uplift rates, more information on the GIA process can be extracted from GRACE gravity field solutions in the form of tangential gravity rates, which are equivalent to a rate of change in the deflection of the vertical scaled by the magnitude of gravity rate vector. Tangential gravity rates derived from GRACE point towards the centre of the previously glaciated area, and are largest in a location close to the centre of the former ice sheet. Forward modelling showed that present day tangential gravity rates have maximum sensitivity between the centre and edge of the former ice sheet, while radial gravity

  9. High Performance Clocks and Gravity Field Determination

    Science.gov (United States)

    Müller, J.; Dirkx, D.; Kopeikin, S. M.; Lion, G.; Panet, I.; Petit, G.; Visser, P. N. A. M.

    2018-02-01

    Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in manufacturing high-precision atomic clocks have rapidly improved their accuracy and stability over the last decade that approached the level of 10^{-18}. This notable achievement along with the direct sensitivity of clocks to the strength of the gravitational field make them practically important for various geodetic applications that are addressed in the present paper. Based on a fully relativistic description of the background gravitational physics, we discuss the impact of those highly-precise clocks on the realization of reference frames and time scales used in geodesy. We discuss the current definitions of basic geodetic concepts and come to the conclusion that the advances in clocks and other metrological technologies will soon require the re-definition of time scales or, at least, clarification to ensure their continuity and consistent use in practice. The relative frequency shift between two clocks is directly related to the difference in the values of the gravity potential at the points of clock's localization. According to general relativity the relative accuracy of clocks in 10^{-18} is equivalent to measuring the gravitational red shift effect between two clocks with the height difference amounting to 1 cm. This makes the clocks an indispensable tool in high-precision geodesy in addition to laser ranging and space geodetic techniques. We show how clock measurements can provide geopotential numbers for the realization of gravity-field-related height systems and can resolve discrepancies in classically-determined height systems as well as between national height systems. Another application of clocks is the direct use of observed potential differences for the improved recovery of regional gravity field solutions. Finally, clock measurements for space-borne gravimetry are analyzed along with

  10. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    Science.gov (United States)

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  11. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    Science.gov (United States)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  12. Counterterms in Gravity in the Light-Front Formulation and a D=2 Conformal-like Symmetry in Gravity

    OpenAIRE

    Bengtsson, Anders K. H.; Brink, Lars; Kim, Sung-Soo

    2012-01-01

    In this paper we discuss gravity in the light-front formulation (light-cone gauge) and show how possible counterterms arise. We find that Poincare invariance is not enough to find the three-point counterterms uniquely. Higher-spin fields can intrude and mimic three-point higher derivative gravity terms. To select the correct term we have to use the remaining reparametrization invariance that exists after the gauge choice. We finally sketch how the corresponding programme for N=8 Supergravity ...

  13. Preprocessing of gravity gradients at the GOCE high-level processing facility

    Science.gov (United States)

    Bouman, Johannes; Rispens, Sietse; Gruber, Thomas; Koop, Radboud; Schrama, Ernst; Visser, Pieter; Tscherning, Carl Christian; Veicherts, Martin

    2009-07-01

    One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/ f behaviour for low frequencies. In the outlier detection, the 1/ f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/ f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this

  14. Non - minimal interaction of gravity with other physical fields: an overview

    International Nuclear Information System (INIS)

    Novello, M.; Oliveira, L.A.R. de.

    1986-01-01

    A review on some modern developments concerning the interaction of gravity with other physical fields. It is argued that a suitable context for an account of their dynamical interplay is that of the non-minimal (e.g., conformal) coupling of these fields to gravity. Some interesting features of non-minimal coupling, such as the connection with Weyl-integrable spacetime (WIST) structure, the generation of eternal Universes, the appearance of a cosmological constant and the possible induction of repulsive gravity via spontaneous symmetry breaking (SSB) mechanisms, are discussed. In particular, examines a simple case of strong interacting scalar particles (such as the well-Known elastic reaction ΠK → ΠK), in a curved background, thereby obtaining the curious result that the actual, observed value of the strong coupling constant and the minimum value allowable, in order to preclude antigravity, are related by Eddington's number 10 39 . (Author) [pt

  15. Non-nominal interaction of gravity with other physical fields: An overiview

    International Nuclear Information System (INIS)

    Novello, M.; Oliveira, L.A.R. de

    1987-01-01

    A review is presented of some modern developments concerning the interaction of gravity with other physical fields. It is argued that a suitable context for an account of their dynamical interplay is that of the non-minimal (e.g. conformal) coupling of these fields to gravity. Some interesting features of non-minimal coupling, such as the connection with Weyl-integrable spacetime (WIST) structure, the generation of eternal Universes, the appearance of a cosmological constant and the possible induction of repulsive gravity via spontaneous breaking (SSB) mechanisms, are discussed. In particular, a simple case of strong-interacting scalar particles is examined (such as the well-Known elastic reaction ΠK -> ΠK), in a curved background, thereby obtaining the curious resul that the actual, observed value of the strong coupling constant and the minimum allowable value, in order to preclude antigravity, are related by Eddington's number 10 39 . (author) [pt

  16. Enhancement of subsurface geologic structure model based on gravity, magnetotelluric, and well log data in Kamojang geothermal field

    Science.gov (United States)

    Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina

    2017-12-01

    Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.

  17. A GOCE-only global gravity field model by the space-wise approach

    DEFF Research Database (Denmark)

    Migliaccio, Frederica; Reguzzoni, Mirko; Gatti, Andrea

    2011-01-01

    The global gravity field model computed by the spacewise approach is one of three official solutions delivered by ESA from the analysis of the GOCE data. The model consists of a set of spherical harmonic coefficients and the corresponding error covariance matrix. The main idea behind this approach...... the orbit to reduce the noise variance and correlation before gridding the data. In the first release of the space-wise approach, based on a period of about two months, some prior information coming from existing gravity field models entered into the solution especially at low degrees and low orders...... degrees; the second is an internally computed GOCE-only prior model to be used in place of the official quick-look model, thus removing the dependency on EIGEN5C especially in the polar gaps. Once the procedure to obtain a GOCE-only solution has been outlined, a new global gravity field model has been...

  18. Wormholes, emergent gauge fields, and the weak gravity conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Harlow, Daniel [Center for the Fundamental Laws of Nature, Physics Department, Harvard University,Cambridge MA, 02138 (United States)

    2016-01-20

    This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the wormhole dual to the thermofield double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the “principle of completeness”, which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the “weak gravity conjecture”, which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. This contradicts to some extent the notion of “effective conformal field theory”, but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.

  19. Strings - Links between conformal field theory, gauge theory and gravity

    International Nuclear Information System (INIS)

    Troost, J.

    2009-05-01

    String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity

  20. Determination of angle of light deflection in higher-derivative gravity theories

    Science.gov (United States)

    Xu, Chenmei; Yang, Yisong

    2018-03-01

    Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.

  1. Modelling the Earth's static and time-varying gravity field using a combination of GRACE and GOCE data

    NARCIS (Netherlands)

    Farahani, H.H.

    2013-01-01

    The main focus of the thesis is modelling the static and time-varying parts of the Earth's gravity field at the global scale based on data acquired by the Gravity Recovery And Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE). In addition, a new

  2. Decoding the hologram: Scalar fields interacting with gravity

    Science.gov (United States)

    Kabat, Daniel; Lifschytz, Gilad

    2014-03-01

    We construct smeared conformal field theory (CFT) operators which represent a scalar field in anti-de Sitter (AdS) space interacting with gravity. The guiding principle is microcausality: scalar fields should commute with themselves at spacelike separation. To O(1/N) we show that a correct and convenient criterion for constructing the appropriate CFT operators is to demand microcausality in a three-point function with a boundary Weyl tensor and another boundary scalar. The resulting bulk observables transform in the correct way under AdS isometries and commute with boundary scalar operators at spacelike separation, even in the presence of metric perturbations.

  3. Approach of regional gravity field modeling from GRACE data for improvement of geoid modeling for Japan

    Science.gov (United States)

    Kuroishi, Y.; Lemoine, F. G.; Rowlands, D. D.

    2006-12-01

    The latest gravimetric geoid model for Japan, JGEOID2004, suffers from errors at long wavelengths (around 1000 km) in a range of +/- 30 cm. The model was developed by combining surface gravity data with a global marine altimetric gravity model, using EGM96 as a foundation, and the errors at long wavelength are presumably attributed to EGM96 errors. The Japanese islands and their vicinity are located in a region of plate convergence boundaries, producing substantial gravity and geoid undulations in a wide range of wavelengths. Because of the geometry of the islands and trenches, precise information on gravity in the surrounding oceans should be incorporated in detail, even if the geoid model is required to be accurate only over land. The Kuroshio Current, which runs south of Japan, causes high sea surface variability, making altimetric gravity field determination complicated. To reduce the long-wavelength errors in the geoid model, we are investigating GRACE data for regional gravity field modeling at long wavelengths in the vicinity of Japan. Our approach is based on exclusive use of inter- satellite range-rate data with calibrated accelerometer data and attitude data, for regional or global gravity field recovery. In the first step, we calibrate accelerometer data in terms of scales and biases by fitting dynamically calculated orbits to GPS-determined precise orbits. The calibration parameters of accelerometer data thus obtained are used in the second step to recover a global/regional gravity anomaly field. This approach is applied to GRACE data obtained for the year 2005 and resulting global/regional gravity models are presented and discussed.

  4. Studying the intervention of an unusual term in f(T) gravity via the Noether symmetry approach. On a new term for gravity actions

    Energy Technology Data Exchange (ETDEWEB)

    Tajahmad, Behzad [University of Tabriz, Faculty of Physics, Tabriz (Iran, Islamic Republic of)

    2017-08-15

    As has been done before, we study an unknown coupling function, i.e. F(φ), together with a function of torsion and also curvature, i.e. f(T) and f(R), generally depending upon a scalar field. In the f(R) case, it comes from quantum correlations and other sources. Now, what if beside this term in f(T) gravity context, we enhance the action through another term which depends upon both scalar field and its derivatives? In this paper, we have added such an unprecedented term in the generic common action of f(T) gravity such that in this new term, an unknown function of torsion has coupled with an unknown function of both scalar field and its derivatives. We explain in detail why we can append such a term. By the Noether symmetry approach, we consider its behavior and effect. We show that it does not produce an anomaly, but rather it works successfully, and numerical analysis of the exact solutions of field equations coincides with all most important observational data, particularly late-time-accelerated expansion. So, this new term may be added to the gravitational actions of f(T) gravity. (orig.)

  5. Warped conformal field theory as lower spin gravity

    Science.gov (United States)

    Hofman, Diego M.; Rollier, Blaise

    2015-08-01

    Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.

  6. Warped conformal field theory as lower spin gravity

    Directory of Open Access Journals (Sweden)

    Diego M. Hofman

    2015-08-01

    Full Text Available Two dimensional Warped Conformal Field Theories (WCFTs may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space–times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton–Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL(2,R×U(1 Chern–Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.

  7. Radion and holographic brane gravity

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Soda, Jiro

    2002-01-01

    The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function ω(Ψ)=3Ψ/2(1-Ψ) on the positive tension brane and ω(Φ)=-3Φ/2(1+Φ) on the negative tension brane, where Ψ and Φ are nonlinear realizations of the radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Ψ and Φ couples with the sum of the traces of the energy-momentum tensor on both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk geometry can be reconstructed from the solution of quasi-scalar-tensor gravity

  8. Isostatic Implications of Different Seismic and Gravity Derived Moho Depths for Antarctica

    Science.gov (United States)

    Ferraccioli, F.; Pappa, F.; Ebbing, J.

    2017-12-01

    Several studies with different methods have been performed to investigate the lithospheric structure of Antarctica, in particular the Moho as the crust-mantle boundary. Yet, seismological surveys are regionally limited or suffer from sparse station coverage due to the remoteness and size of the continent. On the other hand, gravity studies are inherently ambiguous and therefore not able to determine both the geometry and the density contrast of the Moho. Existing Moho depth models for Antarctica show large discrepancies, even among different seismological methods, but all the more between seismological and gravity models. As a first step towards a possible reconcilement, we perform non-linear gravity inversions with simultaneous consideration of seismological data. Depending on the seismological input data, different depths and density contrasts yield the best fit. The results, however, are not in line with the pure seismological models. Subsequently, we compute simple Airy-isostatic Moho depth models and evaluate these together with multiple Moho models from previous studies in terms of their gravitational signal, applying different values for the density contrast. The models' responses are checked against observational data: vertical gravity at 50 km altitude from the spherical harmonics expansion model GOCO05s, and the gravity gradient tensor at 225 km altitude from the GOCE gravity gradient grids. While the gravity responses from the seismological models show strong disagreements with the data, the Airy-isostatic models fit better. Yet, differences of up to 10 km in depth exist between the isostatic and the gravity-inverted Moho models. From these differences in vertical gravity, in the gravity gradients and in Moho depth, we identify regions where a simple density contrast is not sufficient to explain the observed gravitational field. We conclude that lateral and vertical density variations must be considered, which might originate from high-density lower

  9. Solar system constraints on disformal gravity theories

    International Nuclear Information System (INIS)

    Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy

    2015-01-01

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology

  10. Computing black hole entropy in loop quantum gravity from a conformal field theory perspective

    International Nuclear Information System (INIS)

    Agulló, Iván; Borja, Enrique F.; Díaz-Polo, Jacobo

    2009-01-01

    Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity

  11. The quantum cosmological wavefunction at very early times for a quadratic gravity theory

    International Nuclear Information System (INIS)

    Davis, Simon

    2003-01-01

    The quantum cosmological wavefunction for a quadratic gravity theory derived from the heterotic string effective action is obtained near the inflationary epoch and during the initial Planck era. Neglecting derivatives with respect to the scalar field, the wavefunction would satisfy a third-order differential equation near the inflationary epoch which has a solution that is singular in the scale factor limit a(t) → 0. When scalar field derivatives are included, a sixth-order differential equation is obtained for the wavefunction and the solution by Mellin transform is regular in the a → 0 limit. It follows that inclusion of the scalar field in the quadratic gravity action is necessary for consistency of the quantum cosmology of the theory at very early times

  12. Gravity, Topography, and Magnetic Field of Mercury from Messenger

    Science.gov (United States)

    Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.; hide

    2012-01-01

    On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe

  13. Even-dimensional topological gravity from Chern-Simons gravity

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.

    2009-01-01

    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  14. Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa)

    Science.gov (United States)

    Marcel, Jean; Abate Essi, Jean Marcel; Nouck, Philippe Njandjock; Sanda, Oumarou; Manguelle-Dicoum, Eliézer

    2018-03-01

    Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gradient-upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan-African Belt-Congo craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.

  15. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  16. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Astrid

    2011-09-06

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension

  17. A general framework to test gravity using galaxy clusters - I. Modelling the dynamical mass of haloes in f(R) gravity

    Science.gov (United States)

    Mitchell, Myles A.; He, Jian-hua; Arnold, Christian; Li, Baojiu

    2018-06-01

    We propose a new framework for testing gravity using cluster observations, which aims to provide an unbiased constraint on modified gravity models from Sunyaev-Zel'dovich (SZ) and X-ray cluster counts and the cluster gas fraction, among other possible observables. Focusing on a popular f(R) model of gravity, we propose a novel procedure to recalibrate mass scaling relations from Λ cold dark matter (ΛCDM) to f(R) gravity for SZ and X-ray cluster observables. We find that the complicated modified gravity effects can be simply modelled as a dependence on a combination of the background scalar field and redshift, fR(z)/(1 + z), regardless of the f(R) model parameter. By employing a large suite of N-body simulations, we demonstrate that a theoretically derived tanh fitting formula is in excellent agreement with the dynamical mass enhancement of dark matter haloes for a large range of background field parameters and redshifts. Our framework is sufficiently flexible to allow for tests of other models and inclusion of further observables, and the one-parameter description of the dynamical mass enhancement can have important implications on the theoretical modelling of observables and on practical tests of gravity.

  18. Black holes and asymptotics of 2+1 gravity coupled to a scalar field

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2002-01-01

    We consider 2+1 gravity minimally coupled to a self-interacting scalar field. The case in which the fall-off of the fields at infinity is slower than that of a localized distribution of matter is analyzed. It is found that the asymptotic symmetry group remains the same as in pure gravity (i.e., the conformal group). The generators of the asymptotic symmetries, however, acquire a contribution from the scalar field, but the algebra of the canonical generators possesses the standard central extension. In this context, new massive black hole solutions with a regular scalar field are found for a one-parameter family of potentials. These black holes are continuously connected to the standard zero mass black hole

  19. Drag-Free Motion Control of Satellite for High-Precision Gravity Field Mapping

    DEFF Research Database (Denmark)

    Ziegler, Bent Lindvig; Blanke, Mogens

    2002-01-01

    High precision mapping of the geoid and the Earth's gravity field are of importance to a wide range of ongoing studies in areas like ocean circulation, solid Earth physics and ice sheet dynamics. Using a satellite in orbit around the Earth gives the opportunity to map the Earth's gravity field in 3...... will compromise measurement accuracy, unless they are accurately compensated by on-board thrusters. The paper concerns the design of a control system to performing such delicate drag compensation. A six degrees-of-freedom model for the satellite is developed with the model including dynamics of the satellite...

  20. Field-theoretic approach to gravity in the flat space-time

    Energy Technology Data Exchange (ETDEWEB)

    Cavalleri, G [Centro Informazioni Studi Esperienze, Milan (Italy); Milan Univ. (Italy). Ist. di Fisica); Spinelli, G [Istituto di Matematica del Politecnico di Milano, Milano (Italy)

    1980-01-01

    In this paper it is discussed how the field-theoretical approach to gravity starting from the flat space-time is wider than the Einstein approach. The flat approach is able to predict the structure of the observable space as a consequence of the behaviour of the particle proper masses. The field equations are formally equal to Einstein's equations without the cosmological term.

  1. The generalized second law of thermodynamics in generalized gravity theories

    International Nuclear Information System (INIS)

    Wu Shaofeng; Yang Guohong; Wang Bin; Zhang Pengming

    2008-01-01

    We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f(R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds

  2. Can the causal pathologies of Goedel-type universes be avoided in higher-derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.; Goncalves, A.T.

    1986-10-01

    A completely causal rotating Goedel-type universe is obtained in the context of higher-derivative gravity. The solution is such that it has no similar in the framework of standard general relativity. The aforementioned solution presents the interesting feature of relating the mass of the nontachyonic spin-O particle, concerning the linearized higher-derivative theory, with the velocity of rigid rotation of matter. (Author) [pt

  3. Extensions of three-dimensional higher-derivative gravity

    NARCIS (Netherlands)

    Yin, Yihao

    2013-01-01

    Driedimensionale zwaartekrachtmodellen met hogere afgeleiden, met in het bijzonder New Massive Gravity (NMG) en Topologically Massive Gravity (TMG), zijn speelmodellen die gebruikt worden door theoretische natuurkundigen om te onderzoeken hoe Einsteins algemene relativiteitstheorie verbeterd kan

  4. Seasonal changes in the European gravity field from GRACE: A comparison with superconducting gravimeters and hydrology model predictions

    Science.gov (United States)

    Hinderer, Jacques; Andersen, Ole; Lemoine, Frank; Crossley, David; Boy, Jean-Paul

    2006-01-01

    This paper is devoted to the investigation of seasonal changes of the Earth's gravity field from GRACE satellites and the comparison with surface gravity measurements in Europe from the Global Geodynamics Project (GGP) sub-network, as well as with recent hydrology models for continental soil moisture and snow. We used gravity maps in Europe retrieved from the initial GRACE monthly solutions spanning a 21-month duration from April 2002 to December 2003 for various truncation levels of the initial spherical harmonic decomposition of the field. The transfer function between satellite-derived and ground gravity changes due to continental hydrology is studied and we also compute the theoretical ratio of gravity versus radial displacement (in μGal/mm) involved in the hydrological loading process. The 'mean' value (averaged in time and in space over Europe) from hydrologic forward modeling is found to be close to -1.0 μGal/mm and we show that this value can be explained by a strong low degree ( n = 5-6) peak in the hydrology amplitude spectrum. The dominant time-variable signal from GRACE is found to be annual with an amplitude and a phase both of which are in fair agreement with predictions in Europe from recent hydrology models. Initial results suggest that all three data sets (GRACE, hydrology and GGP) respond to annual changes in near-surface water in Europe of a few μGal (at length scales of ˜1000 km) that show a high value in winter and a summer minimum. Despite the limited time span of our analysis and the uncertainties in separating purely local effects from regional ones in superconducting gravimeter data, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.

  5. Is higher-derivative gravity a good therapy to the causal pathologies of Goedel-type universes

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1988-01-01

    The possibility of considering higher-derivative gravity as a therapy to the causal pathologies of Goedel-type universes is investigated. As a consequence an unusual cosmological solution is obtained. (author) [pt

  6. EIGEN-5C - the new GeoForschungsZentrum Potsdam / Groupe de Recherche de Geodesie Spatiale combined gravity field model

    Science.gov (United States)

    Foerste, C.; Flechtner, F.; Stubenvoll, R.; Rothacher, M.; Kusche, J.; Neumayer, H. K.; Biancale, R.; Lemoine, J.; Barthelmes, F.; Bruinsma, S.; Koenig, R.; Dahle, C.

    2008-12-01

    Global gravity field models play a fundamental role in geodesy and Earth sciences, ranging from practical purposes, like precise orbit determination, to applications in geosciences, like investigations of the density structure of the Earth's interior. In this presentation we report on the latest, recently released EIGEN-model, EIGEN-5C (EIGEN = European Improved Gravity model of the Earth by New techniques) and its associated satellite-only model EIGEN-5S. The global gravity field model EIGEN-5C is complete to degree and order 360 (corresponding to half-wavelength of 55 km) and was jointly elaborated by GFZ Potsdam and CNES/GRGS Toulouse. As its precursor EIGEN-GL04C (released in March 2006), this model is inferred from a combination of GRACE and LAGEOS satellite tracking data with surface gravity data, based on the accumulation of normal equations. However, this new model presents remarkable changes and improvements compared to its precursors. EIGEN-5C incorporates a further extended GRACE and LAGEOS data set, covering almost the entire GRACE period from mid 2002 to end of 2007, but also newly available gravity anomaly data sets for Europe and Australia. New processing features are the complete reprocessing of the GRACE and LAGEOS data using the recent RL04 standards and background models by GFZ (combined with the GRACE/LAGEOS 10-days time series derived at GRGS based on nearly identical standards and background models) and a further extension of the full normal equations (in contrast to block diagonal form) derived from terrestrial data to a maximum degree and order of 280 (which was restricted to 179 for EIGEN-GL04C). In particular, this presentation focuses on the inter-comparison of this latest EIGEN model with the recently presented EGM08 model, which was developed by the National Geospatial-Intelligence Agency (NGA) of the USA. The EIGEN-5C model and its associated satellite-only model EIGEN-5S are available for download at the ICGEM data base (International

  7. Cosmology of non-minimal derivative coupling to gravity in Palatini formalism and its chaotic inflation

    Science.gov (United States)

    Kaewkhao, Narakorn; Gumjudpai, Burin

    2018-06-01

    We consider, in Palatini formalism, a modified gravity of which the scalar field derivative couples to Einstein tensor. In this scenario, Ricci scalar, Ricci tensor and Einstein tensor are functions of connection field. As a result, the connection field gives rise to relation, hμν = fgμν between effective metric, hμν and the usual metric gμν where f = 1 - κϕ,αϕ,α / 2. In FLRW universe, NMDC coupling constant is limited in a range of - 2 /ϕ˙2 - 1 / 3. Power-law potentials of chaotic inflation are considered. For V ∝ϕ2 and V ∝ϕ4, it is possible to obtain tensor-to-scalar ratio lower than that of GR so that it satisfies r < 0 . 12 as constrained by Planck 2015 (Ade et al., 2016). The V ∝ϕ2 case yields acceptable range of spectrum index and r values. The quartic potential's spectrum index is disfavored by the Planck results. Viable range of κ for V ∝ϕ2 case lies in positive region, resulting in less blackhole's entropy, superluminal metric, more amount of inflation, avoidance of super-Planckian field initial value and stronger gravitational constant.

  8. Statistical comparisons of gravity wave features derived from OH airglow and SABER data

    Science.gov (United States)

    Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.

    2017-12-01

    The Aerospace Corporation's near-IR camera (ANI), deployed at Andes Lidar Observatory (ALO), Cerro Pachon Chile (30S,70W) since 2010, images the bright OH Meinel (4,2) airglow band. The imager provides detailed observations of gravity waves and instability dynamics, as described by Hecht et al. (2014). The camera employs a wide-angle lens that views a 73 by 73 degree region of the sky, approximately 120 km x 120 km at 85 km altitude. Image cadence of 30s allows for detailed spectral analysis of the horizontal components of wave features, including the evolution and decay of instability features. The SABER instrument on NASA's TIMED spacecraft provides remote soundings of kinetic temperature profiles from the lower stratosphere to the lower thermosphere. Horizontal and vertical filtering techniques allow SABER temperatures to be analyzed for gravity wave variances [Walterscheid and Christensen, 2016]. Here we compare the statistical characteristics of horizontal wave spectra, derived from airglow imagery, with vertical wave variances derived from SABER temperature profiles. The analysis is performed for a period of strong mountain wave activity over the Andes spanning the period between June and September 2012. Hecht, J. H., et al. (2014), The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on March 24, 2012, J. Geophys. Res. Atmos., 119, 8872-8898, doi:10.1002/2014JD021726. Walterscheid, R. L., and A. B. Christensen (2016), Low-latitude gravity wave variances in the mesosphere and lower thermosphere derived from SABER temperature observation and compared with model simulation of waves generated by deep tropical convection, J. Geophys. Res. Atmos., 121, 11,900-11,912, doi:10.1002/2016JD024843.

  9. Cold Atom Interferometers Used In Space (CAIUS) for Measuring the Earth's Gravity Field

    Science.gov (United States)

    Carraz, O.; Luca, M.; Siemes, C.; Haagmans, R.; Silvestrin, P.

    2016-12-01

    In the past decades, it has been shown that atomic quantum sensors are a newly emerging technology that can be used for measuring the Earth's gravity field. There are two ways of making use of that technology: One is a gravity gradiometer concept and the other is in a low-low satellite-to-satellite ranging concept. Whereas classical accelerometers typically suffer from high noise at low frequencies, Cold Atom Interferometers are highly accurate over the entire frequency range. We recently proposed a concept using cold atom interferometers for measuring all diagonal elements of the gravity gradient tensor and the full spacecraft angular velocity in order to achieve better performance than the GOCE gradiometer over a larger part of the spectrum, with the ultimate goals of determining the fine structures in the gravity field better than today. This concept relies on a high common mode rejection, which relaxes the drag free control compare to GOCE mission, and benefits from a long interaction time with the free falling clouds of atoms due to the micro gravity environment in space as opposed to the 1-g environment on-ground. Other concept is also being studied in the frame of NGGM, which relies on the hybridization between quantum and classical techniques to improve the performance of accelerometers. This could be achieved as it is realized in frequency measurements where quartz oscillators are phase locked on atomic or optical clocks. This technique could correct the spectrally colored noise of the electrostatic accelerometers in the lower frequencies. In both cases, estimation of the Earth gravity field model from the instruments has to be evaluated taking into account different system parameters such as attitude control, altitude of the satellite, time duration of the mission, etc. Miniaturization, lower consumptions and upgrading Technical Readiness Level are the key engineering challenges that have to be faced for these space quantum technologie.

  10. Criteria for resolving the cosmological singularity in infinite derivative gravity around expanding backgrounds

    Science.gov (United States)

    Edholm, James; Conroy, Aindriú

    2017-12-01

    We derive the conditions whereby null rays "defocus" within infinite derivative gravity for perturbations around an (A)dS background, and show that it is therefore possible to avoid singularities within this framework. This is in contrast to Einstein's theory of general relativity, where singularities are generated unless the null energy condition is violated. We further extend this to an (A)dS-Bianchi I background metric, and also give an example of a specific perturbation where defocusing is possible given certain conditions.

  11. GRIM5-C1: Combination solution of the global gravity field to degree and order 120

    Science.gov (United States)

    Gruber, Thomas; Bode, Albert; Reigber, Christoph; Schwintzer, Peter; Balmino, Georges; Biancale, Richard; Lemoine, Jean-Michel

    2000-12-01

    The new satellite Earth gravity field model GRIM5-S1 was recently prepared in a joint GFZ and GRGS effort. Based on this satellite solution and terrestrial and altimetric gravity anomalies from NIMA, a combined model GRIM5-C1, with full variance-covariance matrix up to degree and order 120, was computed. Surface gravity and altimetric gravity data are corrected for several systematic effects, such as ellipsoidal corrections and aliasing. A weighting scheme for gravity anomalies, according to their given standard deviations was developed. From each data set full normal equations were set up and finally combined with the GRIM5-S1 normals. To take into account good information from the satellite-only model a procedure was developed to identify such coefficients and appropriately weighed them in the final normal equation system. Internal error propagation and comparisons to external data sets show, that the GRIM5-C1 model represents the best state of long wavelength gravity field models.

  12. Gravity field and ocean tides modeling for precise orbit determination of doris satellites

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, P.; Bezděk, Aleš; Kostelecký, J.; Filler, V.

    2016-01-01

    Roč. 13, č. 1 (2016), s. 27-40 ISSN 1214-9705 R&D Projects: GA MŠk(CZ) LG14026 Grant - others:GA ČR(CZ) GC15-24730J Institutional support: RVO:67985815 Keywords : gravity field truncation degree * ocean tides * time variable gravity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.699, year: 2016

  13. Perturbative Gravity and Gauge Theory Relations: A Review

    Directory of Open Access Journals (Sweden)

    Thomas Søndergaard

    2012-01-01

    Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.

  14. The Geopotential Research Mission - Mapping the near earth gravity and magnetic fields

    Science.gov (United States)

    Taylor, P. T.; Keating, T.; Smith, D. E.; Langel, R. A.; Schnetzler, C. C.; Kahn, W. D.

    1983-01-01

    The Geopotential Research Mission (GRM), NASA's low-level satellite system designed to measure the gravity and magnetic fields of the earth, and its objectives are described. The GRM will consist of two, Shuttle launched, satellite systems (300 km apart) that will operate simultaneously at a 160 km circular-polar orbit for six months. Current mission goals include mapping the global geoid to 10 cm, measuring gravity-field anomalies to 2 mgal with a spatial resolution of 100 km, detecting crustal magnetic anomalies of 100 km wavelength with 1 nT accuracy, measuring the vectors components to + or - 5 arc sec and 5 nT, and computing the main dipole or core field to 5 nT with a 2 nT/year secular variation detection. Resource analysis and exploration geology are additional applications considered.

  15. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  16. Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology

    CERN Document Server

    Barvinsky, A O

    2015-01-01

    This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of $\\varLambda$ -- a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scala...

  17. General relativity and gauge gravity theories of higher order

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1998-01-01

    It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one

  18. Unimodular Einstein-Cartan gravity: Dynamics and conservation laws

    Science.gov (United States)

    Bonder, Yuri; Corral, Cristóbal

    2018-04-01

    Unimodular gravity is an interesting approach to address the cosmological constant problem, since the vacuum energy density of quantum fields does not gravitate in this framework, and the cosmological constant appears as an integration constant. These features arise as a consequence of considering a constrained volume element 4-form that breaks the diffeomorphisms invariance down to volume preserving diffeomorphisms. In this work, the first-order formulation of unimodular gravity is presented by considering the spin density of matter fields as a source of spacetime torsion. Even though the most general matter Lagrangian allowed by the symmetries is considered, dynamical restrictions arise on their functional dependence. The field equations are obtained and the conservation laws associated with the symmetries are derived. It is found that, analogous to torsion-free unimodular gravity, the field equation for the vierbein is traceless; nevertheless, torsion is algebraically related to the spin density as in standard Einstein-Cartan theory. The particular example of massless Dirac spinors is studied, and comparisons with standard Einstein-Cartan theory are shown.

  19. On unitarity in renormalisable R2sub(μν) quantum gravity

    International Nuclear Information System (INIS)

    Tomboulis, E.T.

    1987-01-01

    The paper on unitarity in renormalisable quantum gravity is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. Arguments are presented for the unitarity of the general fourth-order action (non-supersymmetric) of the renormalisable higher derivative theories of gravity directly in the continuum. Graviton propagators, propagator poles, massless matter fields and gauge theories are all discussed. (U.K.)

  20. Improved effective potential in curved spacetime and quantum matter--higher derivative gravity theory

    International Nuclear Information System (INIS)

    Elizalde, E.; Odintsov, S.D.; Romeo, A.

    1995-01-01

    We develop a general formalism to study the renormalization-group- (RG-)improved effective potential for renormalizable gauge theories, including matter-R 2 -gravity, in curved spacetime. The result is given up to quadratic terms in curvature, and one-loop effective potentials may be easily obtained from it. As an example, we consider scalar QED, where dimensional transmutation in curved space and the phase structure of the potential (in particular, curvature-induced phase transitions) are discussed. For scalar QED with higher-derivative quantum gravity (QG), we examine the influence of QG on dimensional transmutation and calculate QG corrections to the scalar-to-vector mass ratio. The phase structure of the RG-improved effective potential is also studied in this case, and the values of the induced Newton and cosmological coupling constants at the critical point are estimated. The stability of the running scalar coupling in the Yukawa theory with conformally invariant higher-derivative QG, and in the standard model with the same addition, is numerically analyzed. We show that, in these models, QG tends to make the scalar sector less unstable

  1. Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry

    NARCIS (Netherlands)

    Fuchs, M.J.; Bouman, J.; Broerse, D.B.T.; Visser, P.N.A.M.; Vermeersen, L.L.A.

    2013-01-01

    The Japan Tohoku-Oki earthquake (9.0 Mw) of 11 March 2011 has left signatures in the Earth's gravity field that are detectable by data of the Gravity field Recovery and Climate Experiment (GRACE) mission. Because the European Space Agency's (ESA) satellite gravity mission Gravity field and

  2. Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field

    Science.gov (United States)

    Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming

    2018-02-01

    An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.

  3. Gravity, antigravity and gravitational shielding in (2+1) dimensions

    Science.gov (United States)

    Accioly, Antonio; Helayël-Neto, José; Lobo, Matheus

    2009-07-01

    Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.

  4. Gravity, antigravity and gravitational shielding in (2+1) dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Accioly, Antonio; Helayel-Neto, Jose; Lobo, Matheus, E-mail: accioly@cbpf.b, E-mail: helayel@cbpf.b, E-mail: lobo@ift.unesp.b [Group of Field Theory from First Principles, Centro Brasileiro de Pesquisas FIsicas (CBPF), Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

    2009-07-07

    Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.

  5. Gravity, antigravity and gravitational shielding in (2+1) dimensions

    International Nuclear Information System (INIS)

    Accioly, Antonio; Helayel-Neto, Jose; Lobo, Matheus

    2009-01-01

    Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.

  6. Loop Quantum Gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  7. Induced gravity with Higgs potential. Elementary interactions and quantum processes

    International Nuclear Information System (INIS)

    Bezares Roder, Nils Manuel

    2010-01-01

    This work is intended to first serve as introduction in fundamental subjects of physics in order to be then able to review the mechanism of symmetry breakdown and its essential character in physics. It introduces the concept of scalar-tensor theories of gravity based on Bergmann-Wagoner models with a Higgs potential. The main physical context aimed is the problem of Dark Matter and Dark Energy. On the one hand, there is gravitation. Within this context, we have Dark Matter as an especially relevant concept. This work entails the following main contributions: - General features of Einstein's theory are introduced together with generalities of the different elementary interactions of physics from which the concepts of dark sectors and Higgs Mechanism are derived. - The concept of symmetry breaking and especially the Higgs Mechanism of mass generation are discussed in their relevance for the most different subjects of physics, especially in relation to the Standard Model of elementary particle physics with elementary Higgs fields. - Scalar-Tensor Theories are introduced in order to build in them the process of Higgs Mechanism. This is then fulfilled with a theory of induced gravity with a Higgs potential which seems renormalizable according to deWitt's power counting criterion, and with mass-generating Higgs fields which only couple gravitationally as well as with Higgs fields which act analogously to cosmon fields. - Further, the energy density of the gravitational field is derived for the specific model of induced gravity from an analogy to electrodynamics. It is shown that a nonvanishing value of pressure related to the scalar field is necessary in order to reproduce standard linear solar-relativistic dynamics. Within astrophysical considerations for flat rotation curves of galaxies, a possible dark-matter behavior is concluded within spherical symmetry. The scalar field and the dark-matter profile of total energy density are derived. An analogous relation between

  8. Induced gravity with Higgs potential. Elementary interactions and quantum processes

    Energy Technology Data Exchange (ETDEWEB)

    Bezares Roder, Nils Manuel

    2010-07-01

    This work is intended to first serve as introduction in fundamental subjects of physics in order to be then able to review the mechanism of symmetry breakdown and its essential character in physics. It introduces the concept of scalar-tensor theories of gravity based on Bergmann-Wagoner models with a Higgs potential. The main physical context aimed is the problem of Dark Matter and Dark Energy. On the one hand, there is gravitation. Within this context, we have Dark Matter as an especially relevant concept. This work entails the following main contributions: - General features of Einstein's theory are introduced together with generalities of the different elementary interactions of physics from which the concepts of dark sectors and Higgs Mechanism are derived. - The concept of symmetry breaking and especially the Higgs Mechanism of mass generation are discussed in their relevance for the most different subjects of physics, especially in relation to the Standard Model of elementary particle physics with elementary Higgs fields. - Scalar-Tensor Theories are introduced in order to build in them the process of Higgs Mechanism. This is then fulfilled with a theory of induced gravity with a Higgs potential which seems renormalizable according to deWitt's power counting criterion, and with mass-generating Higgs fields which only couple gravitationally as well as with Higgs fields which act analogously to cosmon fields. - Further, the energy density of the gravitational field is derived for the specific model of induced gravity from an analogy to electrodynamics. It is shown that a nonvanishing value of pressure related to the scalar field is necessary in order to reproduce standard linear solar-relativistic dynamics. Within astrophysical considerations for flat rotation curves of galaxies, a possible dark-matter behavior is concluded within spherical symmetry. The scalar field and the dark-matter profile of total energy density are derived. An analogous

  9. On the use of airborne gravimetry in gravity field modelling: Experiences from the AGMASCO project

    DEFF Research Database (Denmark)

    Bastos, L.; Cunha, S.; Forsberg, René

    2000-01-01

    of the vertical accelerations acting on the airborne platform from the natural gravity signal. With the advances in DGPS techniques new prospects arise for gravity field recovery which are of great importance for geodesy, geophysics oceanography and satellite navigation. Furthermore, airborne gravimetric...... and the methods validated. Recovery of the gravity values directly from measurements with the Lacoste & Romberg air/sea gravimeter and from measurements with the inertial sensors was analysed. The potential of these sensors to recover gravity and the experience gained within this project are reported here....

  10. Coupling of linearized gravity to nonrelativistic test particles: Dynamics in the general laboratory frame

    International Nuclear Information System (INIS)

    Speliotopoulos, A.D.; Chiao, Raymond Y.

    2004-01-01

    The coupling of gravity to matter is explored in the linearized gravity limit. The usual derivation of gravity-matter couplings within the quantum-field-theoretic framework is reviewed. A number of inconsistencies between this derivation of the couplings and the known results of tidal effects on test particles according to classical general relativity are pointed out. As a step towards resolving these inconsistencies, a general laboratory frame fixed on the worldline of an observer is constructed. In this frame, the dynamics of nonrelativistic test particles in the linearized gravity limit is studied, and their Hamiltonian dynamics is derived. It is shown that for stationary metrics this Hamiltonian reduces to the usual Hamiltonian for nonrelativistic particles undergoing geodesic motion. For nonstationary metrics with long-wavelength gravitational waves present (GWs), it reduces to the Hamiltonian for a nonrelativistic particle undergoing geodesic deviation motion. Arbitrary-wavelength GWs couple to the test particle through a vector-potential-like field N a , the net result of the tidal forces that the GW induces in the system, namely, a local velocity field on the system induced by tidal effects, as seen by an observer in the general laboratory frame. Effective electric and magnetic fields, which are related to the electric and magnetic parts of the Weyl tensor, are constructed from N a that obey equations of the same form as Maxwell's equations. A gedankin gravitational Aharonov-Bohm-type experiment using N a to measure the interference of quantum test particles is presented

  11. Field estimates of gravity terrain corrections and Y2K-compatible method to convert from gravity readings with multiple base stations to tide- and long-term drift-corrected observations

    Science.gov (United States)

    Plouff, Donald

    2000-01-01

    Gravity observations are directly made or are obtained from other sources by the U.S. Geological Survey in order to prepare maps of the anomalous gravity field and consequently to interpret the subsurface distribution of rock densities and associated lithologic or geologic units. Observations are made in the field with gravity meters at new locations and at reoccupations of previously established gravity "stations." This report illustrates an interactively-prompted series of steps needed to convert gravity "readings" to values that are tied to established gravity datums and includes computer programs to implement those steps. Inasmuch as individual gravity readings have small variations, gravity-meter (instrument) drift may not be smoothly variable, and acommodations may be needed for ties to previously established stations, the reduction process is iterative. Decision-making by the program user is prompted by lists of best values and graphical displays. Notes about irregularities of topography, which affect the value of observed gravity but are not shown in sufficient detail on topographic maps, must be recorded in the field. This report illustrates ways to record field notes (distances, heights, and slope angles) and includes computer programs to convert field notes to gravity terrain corrections. This report includes approaches that may serve as models for other applications, for example: portrayal of system flow; style of quality control to document and validate computer applications; lack of dependence on proprietary software except source code compilation; method of file-searching with a dwindling list; interactive prompting; computer code to write directly in the PostScript (Adobe Systems Incorporated) printer language; and high-lighting the four-digit year on the first line of time-dependent data sets for assured Y2K compatibility. Computer source codes provided are written in the Fortran scientific language. In order for the programs to operate, they first

  12. Constraining Saturn's interior density profile from precision gravity field measurement obtained during Grand Finale

    Science.gov (United States)

    Movshovitz, N.; Fortney, J. J.; Helled, R.; Hubbard, W. B.; Mankovich, C.; Thorngren, D.; Wahl, S. M.; Militzer, B.; Durante, D.

    2017-12-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properlyinterpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about theformation mechanism of the planet. Recently, very high precision measurements of the gravity coefficients for Saturn have been made by the radio science instrument on the Cassini spacecraft during its Grand Finale orbits. The resulting coefficients come with an associated uncertainty. The task of matching a given density profile to a given set of gravity coefficients is relatively straightforward, but the question of how to best account for the uncertainty is not. In essentially all prior work on matching models to gravity field data inferences about planetary structure have rested on assumptions regarding the imperfectly known H/He equation of state and the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet constrained by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also Bayesian, in that it can utilize any prior assumptions about the planet's interior, as necessary, without being overly

  13. Topics in field theory-higher spins, CFT, and gravity

    International Nuclear Information System (INIS)

    Yang, Z.

    1990-01-01

    Several topics in field theory are investigated. (1) Massive higher spin actions are obtained as gauge theories from the dimensional reduction of the corresponding massless ones. (2) The author considers a model of spin4 and spin2 interaction through the Bel-Robinson tensor of spin2 field, which in conserved at free level. The coupling is inconsistent, yet there are indications that adding still higher spin couplings would be a promising direction to achieve consistency. (3) Energy and Stability of Einstein-Gauss-Bonnet models of gravity are studied. It is shown that flat space is stable while AdS is not. (4) Gauged Wess-Zumino-Witten models are studied in detail. The equivalence to GKO construction of conformal field theory is considered. BRST quantization of the models is given. (5) Nonrenormalizability of quantum gravity is, in the binomial first order metric formulation, traced to a mismatch between the symmetries of its quadratic and cubic term. (6) The possibility that the gravitational model defined in D = 3 by an action which is the sum of Einstein and Chern-Simons terms is a viable quantum theory is investigated. It is shown that it is compatible with power-counting renormalizability. Gauge invariant regularizations, however, have not been found to exist. Detailed BRS analysis shows that there are possible anomalies

  14. Einstein gravity 3-point functions from conformal field theory

    Science.gov (United States)

    Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein

    2017-12-01

    We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.

  15. Conformal invariance from nonconformal gravity

    International Nuclear Information System (INIS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2009-01-01

    We discuss the conditions under which classically conformally invariant models in four dimensions can arise out of nonconformal (Einstein) gravity. As an 'existence proof' that this is indeed possible we show how to derive N=4 super Yang-Mills theory with any compact gauge group G from nonconformal gauged N=4 supergravity as a special flat space limit. We stress the role that the anticipated UV finiteness of the (so far unknown) underlying theory of quantum gravity would have to play in such a scheme, as well as the fact that the masses of elementary particles would have to arise via quantum gravitational effects which mimic the conformal anomalies of standard (flat space) UV divergent quantum field theory.

  16. Magnetic Field and Gravity Effects on Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2014-01-01

    Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.

  17. Research Progress of the Gravity Field Application in Earth's Geodynamics and Interior Structure

    Directory of Open Access Journals (Sweden)

    SUN Heping

    2017-10-01

    Full Text Available The exploration of deep internal structure and internal dynamics of the earth has always been a hot topic in the field of basic geoscience research.Traditional approach relies mainly on seismic technology. However, in recent decades, the innovation of modern gravity observation technology (especially the successful application of high-precision superconducting gravity technology makes it possible to detect the earth's internal dynamics and physical information. In this paper, we summarize the research progress of Chinese group in detecting the earth's free oscillation, free core nutation, inner core translational oscillation, tidal model and polar tide and the internal structure by using modern high-precision gravity technology in recent years.

  18. On pseudoparticle solutions in the Poincare gauge theory of gravity

    International Nuclear Information System (INIS)

    Mielke, E.W.

    1983-12-01

    The dynamical structure of the Poincare gauge field theory coupled to matter fields and some of its implications for a quantum theory of gravity are investigated. Essentially, the method of Belavin et al. for generating instanton solutions in Yang-Mills theory is transferred to the gravitational gauge model. The results are as follows: For configurations obeying a modified double duality Ansatz for the curvature the metrical background is determined by Einstein-type field equations coupled almost canonically to the stress-energy content of external fields. Exact electrovac solutions with non-trivial torsion are derived from the duality Ansatz. In a Euclidean space-time the corresponding pseudoparticle solutions are expected to play a dominant role in the quantization of gravity via Feynman's method of path integrals. (author)

  19. Extreme neutron stars from Extended Theories of Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I-80126 Italy (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  20. Increasing the resolution of marine gravity from CryoSat-2 using 20 and 80Hz altimetry

    DEFF Research Database (Denmark)

    Abulaitijiang, Adili; Andersen, Ole Baltazar

    Achieving a high resolution marine gravity field is essential for the derivation of bathymetry, exploring the ocean tectonics, and practically, safe navigation of ships in the poorly surveyed regions. The accuracy of marine gravity can be improved by the improved altimeter range and dense track...

  1. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.

    Directory of Open Access Journals (Sweden)

    Mei Liu

    Full Text Available BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. METHODOLOGY/PRINCIPAL FINDINGS: S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g, showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. CONCLUSION/SIGNIFICANCE: We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  2. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  3. Graviton propagator from background-independent quantum gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2006-10-13

    We study the graviton propagator in Euclidean loop quantum gravity. We use spin foam, boundary-amplitude, and group-field-theory techniques. We compute a component of the propagator to first order, under some approximations, obtaining the correct large-distance behavior. This indicates a way for deriving conventional spacetime quantities from a background-independent theory.

  4. Liouville gravity on bordered surfaces

    International Nuclear Information System (INIS)

    Jaskolski, Z.

    1991-11-01

    The functional quantization of the Liouville gravity on bordered surfaces in the conformal gauge is developed. It was shown that the geometrical interpretation of the Polyakov path integral as a sum over bordered surfaces uniquely determines the boundary conditions for the fields involved. The gravitational scaling dimensions of boundary and bulk operators and the critical exponents are derived. In particular, the boundary Hausdorff dimension is calculated. (author). 21 refs

  5. Energy, momentum and angular momentum conservations in de Sitter gravity

    International Nuclear Information System (INIS)

    Lu, Jia-An

    2016-01-01

    In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity. (paper)

  6. Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory

    International Nuclear Information System (INIS)

    Noui, Karim

    2007-01-01

    In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function

  7. Finding Horndeski theories with Einstein gravity limits

    Energy Technology Data Exchange (ETDEWEB)

    McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge, E-mail: ryanm@roe.ac.uk, E-mail: llo@roe.ac.uk, E-mail: jorpega@roe.ac.uk [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2016-11-01

    The Horndeski action is the most general scalar-tensor theory with at most second-order derivatives in the equations of motion, thus evading Ostrogradsky instabilities and making it of interest when modifying gravity at large scales. To pass local tests of gravity, these modifications predominantly rely on nonlinear screening mechanisms that recover Einstein's Theory of General Relativity in regions of high density. We derive a set of conditions on the four free functions of the Horndeski action that examine whether a specific model embedded in the action possesses an Einstein gravity limit or not. For this purpose, we develop a new and surprisingly simple scaling method that identifies dominant terms in the equations of motion by considering formal limits of the couplings that enter through the new terms in the modified action. This enables us to find regimes where nonlinear terms dominate and Einstein's field equations are recovered to leading order. Together with an efficient approximation of the scalar field profile, one can then further evaluate whether these limits can be attributed to a genuine screening effect. For illustration, we apply the analysis to both a cubic galileon and a chameleon model as well as to Brans-Dicke theory. Finally, we emphasise that the scaling method also provides a natural approach for performing post-Newtonian expansions in screened regimes.

  8. Constraining the interior density profile of a Jovian planet from precision gravity field data

    Science.gov (United States)

    Movshovitz, Naor; Fortney, Jonathan J.; Helled, Ravit; Hubbard, William B.; Thorngren, Daniel; Mankovich, Chris; Wahl, Sean; Militzer, Burkhard; Durante, Daniele

    2017-10-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properly interpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about the formation mechanism of the planet. Planetary gravity fields are usually described by the coefficients in an expansion of the gravitational potential. Recently, high precision measurements of these coefficients for Jupiter and Saturn have been made by the radio science instruments on the Juno and Cassini spacecraft, respectively.The resulting coefficients come with an associated uncertainty. And while the task of matching a given density profile with a given set of gravity coefficients is relatively straightforward, the question of how best to account for the uncertainty is not. In essentially all prior work on matching models to gravity field data, inferences about planetary structure have rested on imperfect knowledge of the H/He equation of state and on the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet, constrained only by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also bayesian, in that

  9. Infinite derivative gravity : non-singular cosmology & blackhole solutions

    NARCIS (Netherlands)

    Mazumdar, Anupam

    2017-01-01

    Both Einstein's theory of General Relativity and Newton's theory of gravity possess a short dis- tance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and

  10. A novel derivation of the boundary term for the action in Lanczos-Lovelock gravity

    Science.gov (United States)

    Chakraborty, Sumanta; Parattu, Krishnamohan; Padmanabhan, T.

    2017-09-01

    We present a novel derivation of the boundary term for the action in Lanczos-Lovelock gravity, starting from the boundary contribution in the variation of the Lanczos-Lovelock action. The derivation presented here is straightforward, i.e., one starts from the Lanczos-Lovelock action principle and the action itself dictates the boundary structure and hence the boundary term one needs to add to the action to make it well-posed. It also gives the full structure of the contribution at the boundary of the complete action, enabling us to read off the degrees of freedom to be fixed at the boundary, their corresponding conjugate momenta and the total derivative contribution on the boundary. We also provide a separate derivation of the Gauss-Bonnet case.

  11. Gauss–Bonnet cosmology with induced gravity and a non-minimally coupled scalar field on the brane

    International Nuclear Information System (INIS)

    Nozari, Kourosh; Fazlpour, Behnaz

    2008-01-01

    We construct a cosmological model with a non-minimally coupled scalar field on the brane, where Gauss–Bonnet and induced gravity effects are taken into account. This model has 5D character at both high and low energy limits but reduces to 4D gravity for intermediate scales. While induced gravity is a manifestation of the IR limit of the model, the Gauss–Bonnet term and non-minimal coupling of the scalar field and induced gravity are essentially related to the UV limit of the scenario. We study the cosmological implications of this scenario focusing on the late time behavior of the solutions. In this setup, non-minimal coupling plays the role of an additional fine-tuning parameter that controls the initial density of the predicted finite density big bang. Also, non-minimal coupling has important implications for the bouncing nature of the solutions

  12. A time-lapse gravity survey of the Coso geothermal field, China Lake Naval Air Weapons Station, California

    Science.gov (United States)

    Phelps, Geoffrey; Cronkite-Ratcliff, Collin; Blake, Kelly

    2018-04-19

    We have conducted a gravity survey of the Coso geothermal field to continue the time-lapse gravity study of the area initiated in 1991. In this report, we outline a method of processing the gravity data that minimizes the random errors and instrument bias introduced into the data by the Scintrex CG-5 relative gravimeters that were used. After processing, the standard deviation of the data was estimated to be ±13 microGals. These data reveal that the negative gravity anomaly over the Coso geothermal field, centered on gravity station CER1, is continuing to increase in magnitude over time. Preliminary modeling indicates that water-table drawdown at the location of CER1 is between 65 and 326 meters over the last two decades. We note, however, that several assumptions on which the model results depend, such as constant elevation and free-water level over the study period, still require verification.

  13. (2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model

    Science.gov (United States)

    Hoseinzadeh, S.; Rezaei-Aghdam, A.

    2018-06-01

    We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.

  14. Gravity Dual for Reggeon Field Theory and Non-linear Quantum Finance

    OpenAIRE

    Yu Nakayama

    2009-01-01

    We study scale invariant but not necessarily conformal invariant deformations of non-relativistic conformal field theories from the dual gravity viewpoint. We present the corresponding metric that solves the Einstein equation coupled with a massive vector field. We find that, within the class of metric we study, when we assume the Galilean invariance, the scale invariant deformation always preserves the non-relativistic conformal invariance. We discuss applications to scaling regime of Reggeo...

  15. Simulation of the Chang'E-5 mission contribution in lunar long wavelength gravity field improvement

    Science.gov (United States)

    Yan, Jianguo; Yang, Xuan; Ping, Jinsong; Ye, Mao; Liu, Shanhong; Jin, Weitong; Li, Fei; Barriot, Jean-Pierre

    2018-06-01

    The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang'E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ˜49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang'E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang'E-5 mission.

  16. Cap integration in spectral gravity forward modelling: near- and far-zone gravity effects via Molodensky's truncation coefficients

    Science.gov (United States)

    Bucha, Blažej; Hirt, Christian; Kuhn, Michael

    2018-04-01

    Spectral gravity forward modelling is a technique that converts a band-limited topography into its implied gravitational field. This conversion implicitly relies on global integration of topographic masses. In this paper, a modification of the spectral technique is presented that provides gravity effects induced only by the masses located inside or outside a spherical cap centred at the evaluation point. This is achieved by altitude-dependent Molodensky's truncation coefficients, for which we provide infinite series expansions and recurrence relations with a fixed number of terms. Both representations are generalized for an arbitrary integer power of the topography and arbitrary radial derivative. Because of the altitude-dependency of the truncation coefficients, a straightforward synthesis of the near- and far-zone gravity effects at dense grids on irregular surfaces (e.g. the Earth's topography) is computationally extremely demanding. However, we show that this task can be efficiently performed using an analytical continuation based on the gradient approach, provided that formulae for radial derivatives of the truncation coefficients are available. To demonstrate the new cap-modified spectral technique, we forward model the Earth's degree-360 topography, obtaining near- and far-zone effects on gravity disturbances expanded up to degree 3600. The computation is carried out on the Earth's surface and the results are validated against an independent spatial-domain Newtonian integration (1 μGal RMS agreement). The new technique is expected to assist in mitigating the spectral filter problem of residual terrain modelling and in the efficient construction of full-scale global gravity maps of highest spatial resolution.

  17. Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity

    International Nuclear Information System (INIS)

    Christiansen, Nicolai

    2015-01-01

    In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

  18. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  19. Effective Einsteinian gravity from Poincare gauge field theory

    International Nuclear Information System (INIS)

    Baekler, P.; Mielke, E.W.

    1985-10-01

    The Poincare gauge theory of gravity should apply in the microphysical domain. Here we investigate its implications for macrophysics. Weakly self double dual Riemann-Cartan curvature is assumed throughout. It is shown that the metrical background is then determined by Einstein's field equations with the Belinfante-Rosenfeld symmetrized energy-momentum current amended by spin squared terms. Moreover, the effective cosmological constant can be reconciled with the empirical data by absorbing the corresponding constant curvature part into the dynamical torsion of recently found exact solutions. Macroscopically this extra torsion remains undetectable. (author)

  20. Einstein-Cartan Gravity with Torsion Field Serving as an Origin for the Cosmological Constant or Dark Energy Density

    Science.gov (United States)

    Ivanov, A. N.; Wellenzohn, M.

    2016-09-01

    We analyse the Einstein-Cartan gravity in its standard form { R }=R+{{ K }}2, where { R } {and} R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and {{ K }}2 is the quadratic contribution of torsion in terms of the contorsion tensor { K }. We treat torsion as an external (or background) field and show that its contribution to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy-momentum tensor to a metric tensor, a covariant derivative of which vanishes owing to the metricity condition. This allows us to claim that torsion can serve as an origin for the vacuum energy density, given by the cosmological constant or dark energy density in the universe. This is a model-independent result that may explain the small value of the cosmological constant, which is a long-standing problem in cosmology. We show that the obtained result is valid also in the Poincaré gauge gravitational theory of Kibble, where the Einstein-Hilbert action can be represented in the same form: { R }=R+{{ K }}2.

  1. Dualities and emergent gravity: Gauge/gravity duality

    Science.gov (United States)

    de Haro, Sebastian

    2017-08-01

    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on

  2. A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth's gravitational field recovery

    International Nuclear Information System (INIS)

    Zheng Wei; Hsu Hou-Tse; Zhong Min; Yun Mei-Juan

    2012-01-01

    The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 ½ times higher than that measured by the three-dimensional gravity gradient V ij . Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10 −12 /s 2 , the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%–40% on average compared with that using the radial gravity gradient V zz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 −13 /s 2 −10 −15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field

  3. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  4. Terrestrial gravity data analysis for interim gravity model improvement

    Science.gov (United States)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  5. Finite action for three dimensional gravity with a minimally coupled scalar field

    International Nuclear Information System (INIS)

    Gegenberg, Jack; Martinez, Cristian; Troncoso, Ricardo

    2003-01-01

    Three-dimensional gravity with a minimally coupled self-interacting scalar is considered. The falloff of the fields at infinity is assumed to be slower than that of a localized distribution of matter in the presence of a negative cosmological constant. However, the asymptotic symmetry group remains to be the conformal group. The counterterm Lagrangian needed to render the action finite is found by demanding that the action attain an extremum for the boundary conditions implied by the above falloff of the fields at infinity. These counterterms explicitly depend on the scalar field. As a consequence, the Brown-York stress-energy tensor acquires a nontrivial contribution from the matter sector. Static circularly symmetric solutions with a regular scalar field are explored for a one-parameter family of potentials. Their masses are computed via the Brown-York quasilocal stress-energy tensor, and they coincide with the values obtained from the Hamiltonian approach. The thermal behavior, including the transition between different configurations, is analyzed, and it is found that the scalar black hole can decay into the Banados-Teitelboim-Zanelli solution irrespective of the horizon radius. It is also shown that the AdS conformal field theory correspondence yields the same central charge as for pure gravity

  6. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  7. Control of colloids with gravity, temperature gradients, and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)

    2003-01-15

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  8. Scalar-tensor theory of fourth-order gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.; Goncalves, A.T.

    1986-04-01

    A scalar-tensor theory of fourth-order gravity is considered. Some cosmological consequences, due to the presence of the scalar field, as well as of metric derivatives higher than second order, are analysed. In particular, upperbpunds are obtained for the coupling constant α and for the scale factor of the universe, respectively. The discussion is restricted to Robertson-Walker universes. (Author) [pt

  9. Power laws for gravity and topography of Solar System bodies

    Science.gov (United States)

    Ermakov, A.; Park, R. S.; Bills, B. G.

    2017-12-01

    When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the

  10. Gravity signal at Ghawar, Saudi Arabia, from the global gravitational field model EGM 2008 and similarities around

    Czech Academy of Sciences Publication Activity Database

    Klokočník, Jaroslav; Kostelecký, J.

    2015-01-01

    Roč. 8, č. 6 (2015), s. 3515-3522 ISSN 1866-7511 Institutional support: RVO:67985815 Keywords : gravity disturbance (anomaly) * Marussi tensor * invariants of the gravity field Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.224, year: 2014

  11. Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Richard A. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Grozdanov, Sašo [Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Janiszewski, Stefan [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Kaminski, Matthias [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-11-28

    We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z=1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.

  12. Black holes in pure Lovelock gravities

    International Nuclear Information System (INIS)

    Cai Ronggen; Ohta, Nobuyoshi

    2006-01-01

    Lovelock gravity is a fascinating extension of general relativity, whose action consists of dimensionally extended Euler densities. Compared to other higher order derivative gravity theories, Lovelock gravity is attractive since it has a lot of remarkable features such as the fact that there are no more than second order derivatives with respect to the metric in its equations of motion, and that the theory is free of ghosts. Recently, in the study of black strings and black branes in Lovelock gravity, a special class of Lovelock gravity is considered, which is named pure Lovelock gravity, where only one Euler density term exists. In this paper we study black hole solutions in the special class of Lovelock gravity and associated thermodynamic properties. Some interesting features are found, which are quite different from the corresponding ones in general relativity

  13. Bridging the gap between the deep Earth and lithospheric gravity field

    Science.gov (United States)

    Root, B. C.; Ebbing, J.; Martinec, Z.; van der Wal, W.

    2017-12-01

    Global gravity field data obtained by dedicated satellite missions can be used to study the density distribution of the lithosphere. The gravitational signal from the deep Earth is usually removed by high-pass filtering of the data. However, this will also remove any long-wavelength signal of the lithosphere. Furthermore, it is still unclear what value for the truncation limit is best suited. An alternative is to forward model the deep situated mass anomalies and subtract the gravitational signal from the observed data. This requires knowledge of the mantle mass anomalies, dynamic topography, and CMB topography. Global tomography provides the VS distribution in the mantle, which is related to the density distribution in the mantle. There are difficulties in constructing a density model from this data. Tomography relies on regularisation which smoothens the mantle anomalies. Also, the VS anomalies need to be converted to density anomalies with uncertain conversion factors. We study the observed reduction in magnitude of the density anomalies due to the regularisation of the global tomography models. The reduced magnitude of the anomalies cannot be recovered by increasing the conversion factor from VS-to-density transformation. The reduction of the tomographic results seems to resemble the effect of a spatial Gaussian filter. By determining the spectral difference between tomographic and gravimetric models a reverse filter can be constructed to reproduce correct density variations in the complete mantle. The long-wavelengths of the global tomography models are less affected by the regularisation and can fix the value of the conversion factor. However, the low degree gravity signals are also dominated by the D" region. Therefore, different approaches are used to determine the effect of this region on the gravity field. The density anomalies in the mantle, as well as the effect of CMB undulations, are forward modelled into their gravitational potential field, such that

  14. A high resolution gravity model for Venus - GVM-1

    Science.gov (United States)

    Nerem, R. S.; Bills, B. G.; Mcnamee, J. B.

    1993-01-01

    A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.

  15. Active Response Gravity Offload and Method

    Science.gov (United States)

    Dungan, Larry K. (Inventor); Valle, Paul S. (Inventor); Bankieris, Derek R. (Inventor); Lieberman, Asher P. (Inventor); Redden, Lee (Inventor); Shy, Cecil (Inventor)

    2015-01-01

    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.

  16. Multipole analysis in the radiation field for linearized f (R ) gravity with irreducible Cartesian tensors

    Science.gov (United States)

    Wu, Bofeng; Huang, Chao-Guang

    2018-04-01

    The 1 /r expansion in the distance to the source is applied to the linearized f (R ) gravity, and its multipole expansion in the radiation field with irreducible Cartesian tensors is presented. Then, the energy, momentum, and angular momentum in the gravitational waves are provided for linearized f (R ) gravity. All of these results have two parts, which are associated with the tensor part and the scalar part in the multipole expansion of linearized f (R ) gravity, respectively. The former is the same as that in General Relativity, and the latter, as the correction to the result in General Relativity, is caused by the massive scalar degree of freedom and plays an important role in distinguishing General Relativity and f (R ) gravity.

  17. Terrestrial Sagnac delay constraining modified gravity models

    Science.gov (United States)

    Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.

    2018-04-01

    Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

  18. Anisotropic inflation with a non-minimally coupled electromagnetic field to gravity

    Science.gov (United States)

    Adak, Muzaffer; Akarsu, Özgür; Dereli, Tekin; Sert, Özcan

    2017-11-01

    We consider the non-minimal model of gravity in Y(R) F2-form. We investigate a particular case of the model, for which the higher order derivatives are eliminated but the scalar curvature R is kept to be dynamical via the constraint YRFmnFmn =-2/κ2. The effective fluid obtained can be represented by interacting electromagnetic field and vacuum depending on Y(R), namely, the energy density of the vacuum tracks R while energy density of the conventional electromagnetic field is dynamically scaled with the factor Y(R)/2. We give exact solutions for anisotropic inflation by assuming the volume scale factor of the Universe exhibits a power-law expansion. The directional scale factors do not necessarily exhibit power-law expansion, which would give rise to a constant expansion anisotropy, but expand non-trivially and give rise to a non-monotonically evolving expansion anisotropy that eventually converges to a non-zero constant. Relying on this fact, we discuss the anisotropic e-fold during the inflation by considering observed scale invariance in CMB and demanding the Universe to undergo the same amount of e-folds in all directions. We calculate the residual expansion anisotropy at the end of inflation, though as a result of non-monotonic behaviour of expansion anisotropy all the axes of the Universe undergo the same of amount of e-folds by the end of inflation. We also discuss the generation of the modified electromagnetic field during the first few e-folds of the inflation and its persistence against to the vacuum till end of inflation.

  19. Entropy of Egypt's virtual water trade gravity field

    Science.gov (United States)

    Karakatsanis, Georgios; Bierbach, Sandra

    2016-04-01

    's 20 trading partner countries, for a time frame from 1995 to 2013. The calculations -implemented for each country and each crop- display a network that illustrates the gravity of virtual water trade. It is then possible for us to model the entropy of Egypt's virtual water trade gravity field, via the statistical examination of its spatial fragmentation or continuity for each traded crop and for each water footprint type. Hence, with the distribution's entropy we may conduct a targeted analysis on the comparative advantages of the Egyptian agriculture. Keywords: entropy, virtual water trade, gravity model, agricultural trade, water footprint, water subsidies, comparative advantage References 1. Antonelli, Marta and Martina Sartori (2014), Unfolding the potential of the Virtual Water concept. What is still under debate?, MPRA Paper No. 60501, http://mpra.ub.uni-muenchen.de/60501/ 2. Fracasso, Andrea (2014), A gravity model of virtual water trade, Ecological Economics, Vol. 108, p. 215-228 3. Fracasso, Andrea; Martina Sartori and Stefano Schiavo (2014), Determinants of virtual water flows in the Mediterranean, MPRA Paper No. 60500, https://mpra.ub.uni-muenchen.de/60500/ 4. Yang, H. et al. (2006), Virtual water trade: An assessment of water use efficiency in the international food trade, Hydrology and Earth System Sciences 10, p. 443-454

  20. Improving the Coastal Marine Gravity from CryoSat-2 Altimetry

    Science.gov (United States)

    Abulaitijiang, A.; Andersen, O. B.; Knudsen, P.

    2017-12-01

    The 7 years of CryoSat-2 satellite altimetry data can be potentially used to extract the high frequency components of the Earth gravity field beyond the Global Geopotential Models (GGMs) which corresponds to a resolution of 9.2 Km at the degree 2160. The Synthetic Aperture Radar (SAR) mode of the CryoSat-2 produced high precision along track observations and pushed the limits (qualified observations) to even closer to the coast by several kilometers. The conventional FFT method in deriving the marine gravity anomalies requires the input height anomalies to be gridded, and gridding in the irregular coastal zones (land-ocean transition zone) could introduce high frequency noise to the inversion. Therefore, Least Square Collocation (LSC) is preferred for the inversion. As part of a phd project, in this work, we will make use of the covariance function of the height anomalies in the coastal zones to derive the marine gravity anomalies. Using the conventional remove-compute-restore (only considering the GGMs) technique, the theoretical assumption of homogeneity and isotropy in the LSC algorithm is not always satisfied in the coastal regions and mountainous regions. Hence, the Topographic Correction (TC) using high resolution topographic grids is a critical step in the reduction of the gravity functionals (e.g., height anomaly and gravity anomaly), to comply with the theoretical assumption of LSC. In this work, the TC computation (both w.r.t. the height anomalies and gravity) will be conducted to test the performance of the signal reduction in several regions (patches) around Mediterranean, Chile, islands of Indonesia and Australian coast where the true gravity data is available. The derived marine gravity will be cross-validated against the ship-borne gravity observations. Earlier studies show that due to the presence of additional altimetry observations, 4 mGal accuracy can be achieved in the Greenland fjords, and equally good accuracy is expected from this work.

  1. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  2. C-metric solution for conformal gravity with a conformally coupled scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)

    2017-02-15

    The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.

  3. Light-like scattering in quantum gravity

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.; Donoghue, John F.; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre

    2016-01-01

    We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-(1/2), spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.

  4. Light-like scattering in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bjerrum-Bohr, N.E.J. [Niels Bohr International Academy & Discovery Center, Niels Bohr Institute,University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Donoghue, John F. [Department of Physics-LGRT, University of Massachusetts,Amherst, MA, 01003 (United States); Holstein, Barry R. [Department of Physics-LGRT, University of Massachusetts,Amherst, MA, 01003 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA, 93016 (United States); Planté, Ludovic; Vanhove, Pierre [CEA, DSM, Institut de Physique Théorique, IPhT, CNRS MPPU, URA2306,Saclay, Gif-sur-Yvette, F-91191 (France)

    2016-11-21

    We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-(1/2), spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.

  5. Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS)

    Science.gov (United States)

    Hauk, Markus; Schlicht, Anja; Pail, Roland; Murböck, Michael

    2017-04-01

    The study ;Geodesy and Time Reference in Space; (GETRIS), funded by European Space Agency (ESA), evaluates the potential and opportunities coming along with a global space-borne infrastructure for data transfer, clock synchronization and ranging. Gravity field recovery could be one of the first beneficiary applications of such an infrastructure. This paper analyzes and evaluates the two-way high-low satellite-to-satellite-tracking as a novel method and as a long-term perspective for the determination of the Earth's gravitational field, using it as a synergy of one-way high-low combined with low-low satellite-to-satellite-tracking, in order to generate adequate de-aliasing products. First planned as a constellation of geostationary satellites, it turned out, that an integration of European Union Global Navigation Satellite System (Galileo) satellites (equipped with inter-Galileo links) into a Geostationary Earth Orbit (GEO) constellation would extend the capability of such a mission constellation remarkably. We report about simulations of different Galileo and Low Earth Orbiter (LEO) satellite constellations, computed using time variable geophysical background models, to determine temporal changes in the Earth's gravitational field. Our work aims at an error analysis of this new satellite/instrument scenario by investigating the impact of different error sources. Compared to a low-low satellite-to-satellite-tracking mission, results show reduced temporal aliasing errors due to a more isotropic error behavior caused by an improved observation geometry, predominantly in near-radial direction within the inter-satellite-links, as well as the potential of an improved gravity recovery with higher spatial and temporal resolution. The major error contributors of temporal gravity retrieval are aliasing errors due to undersampling of high frequency signals (mainly atmosphere, ocean and ocean tides). In this context, we investigate adequate methods to reduce these errors. We

  6. Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera

    Science.gov (United States)

    Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.

    2011-01-01

    Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.

  7. Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

    Science.gov (United States)

    Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III

    2018-05-01

    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.

  8. 6D supergravity. Warped solution and gravity mediated supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luedeling, C

    2006-07-15

    We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)

  9. 6D supergravity. Warped solution and gravity mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Luedeling, C.

    2006-07-01

    We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)

  10. Cosmology of f(R) gravity in the metric variational approach

    Science.gov (United States)

    Li, Baojiu; Barrow, John D.

    2007-04-01

    We consider the cosmologies that arise in a subclass of f(R) gravity with f(R)=R+μ2n+2/(-R)n and n∈(-1,0) in the metric (as opposed to the Palatini) variational approach to deriving the gravitational field equations. The calculations of the isotropic and homogeneous cosmological models are undertaken in the Jordan frame and at both the background and the perturbation levels. For the former, we also discuss the connection to the Einstein frame in which the extra degree of freedom in the theory is associated with a scalar field sharing some of the properties of a “chameleon” field. For the latter, we derive the cosmological perturbation equations in general theories of f(R) gravity in covariant form and implement them numerically to calculate the cosmic microwave background (CMB) temperature and matter power spectra of the cosmological model. The CMB power is shown to reduce at low l’s, and the matter power spectrum is almost scale independent at small scales, thus having a similar shape to that in standard general relativity. These are in stark contrast with what was found in the Palatini f(R) gravity, where the CMB power is largely amplified at low l’s and the matter spectrum is strongly scale dependent at small scales. These features make the present model more adaptable than that arising from the Palatini f(R) field equations, and none of the data on background evolution, CMB power spectrum, or matter power spectrum currently rule it out.

  11. Gravity-matter entanglement in Regge quantum gravity

    International Nuclear Information System (INIS)

    Paunković, Nikola; Vojinović, Marko

    2016-01-01

    We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle. (paper)

  12. Baroclinic Instability in the Solar Tachocline for Continuous Vertical Profiles of Rotation, Effective Gravity, and Toroidal Field

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, Peter A., E-mail: gilman@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2017-06-20

    We present results from an MHD model for baroclinic instability in the solar tachocline that includes rotation, effective gravity, and toroidal field that vary continuously with height. We solve the perturbation equations using a shooting method. Without toroidal fields but with an effective gravity declining linearly from a maximum at the bottom to much smaller values at the top, we find instability at all latitudes except at the poles, at the equator, and where the vertical rotation gradient vanishes (32.°3) for longitude wavenumbers m from 1 to >10. High latitudes are much more unstable than low latitudes, but both have e -folding times that are much shorter than a sunspot cycle. The higher the m and the steeper the decline in effective gravity, the closer the unstable mode peak to the top boundary, where the energy available to drive instability is greatest. The effect of the toroidal field is always stabilizing, shrinking the latitude ranges of instability as the toroidal field is increased. The larger the toroidal field, the smaller the longitudinal wavenumber of the most unstable disturbance. All latitudes become stable for a toroidal field exceeding about 4 kG. The results imply that baroclinic instability should occur in the tachocline at latitudes where the toroidal field is weak or is changing sign, but not where the field is strong.

  13. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qihong [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Zunyi Normal College, School of Physics and Electronic Science, Zunyi (China); Wu, Puxun [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Peking University, Center for High Energy Physics, Beijing (China); Yu, Hongwei [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)

    2018-01-15

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity. (orig.)

  14. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    Science.gov (United States)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2018-01-01

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.

  15. Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)

    Science.gov (United States)

    Li, L.; Wu, Y.

    2017-12-01

    Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.

  16. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    International Nuclear Information System (INIS)

    Chan, H.A.; Paik, H.J.

    1987-01-01

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges

  17. Towards quantum gravity via quantum field theory. Problems and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)

    2016-07-01

    General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.

  18. The Gravity Field of Mercury After the Messenger Low-Altitude Campaign

    Science.gov (United States)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Smith, David E.; Zuber, Maria T.; Neumann, Gary A.; Solomon, Sean C.

    2015-01-01

    The final year of the MESSENGER mission was designed to take advantage of the remaining propellant onboard to provide a series of lowaltitude observation campaigns and acquire novel scientific data about the innermost planet. The lower periapsis altitude greatly enhances the sensitivity to the short-wavelength gravity field, but only when the spacecraft is in view of Earth. After more than 3 years in orbit around Mercury, the MESSENGER spacecraft was tracked for the first time below 200-km altitude on 5 May 2014 by the NASA Deep Space Network (DSN). Between August and October, periapsis passages down to 25-km altitude were routinely tracked. These periods considerably improved the quality of the data coverage. Before the end of its mission, MESSENGER will fly at very low altitudes for extended periods of time. Given the orbital geometry, however the periapses will not be visible from Earth and so no new tracking data will be available for altitudes lower than 75 km. Nevertheless, the continuous tracking of MESSENGER in the northern hemisphere will help improve the uniformity of the spatial coverage at altitudes lower than 150 km, which will further improve the overall quality of the Mercury gravity field.

  19. Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites

    Czech Academy of Sciences Publication Activity Database

    Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav; Kostelecký, J.

    2014-01-01

    Roč. 53, č. 3 (2014), s. 412-429 ISSN 0273-1177 R&D Projects: GA MŠk LH13071; GA ČR GA13-36843S Institutional support: RVO:67985815 Keywords : gravity field models * kinematic orbits * generalized least squares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.358, year: 2014

  20. Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity

    International Nuclear Information System (INIS)

    Biswas, Tirthabir; Koivisto, Tomi; Mazumdar, Anupam

    2010-01-01

    One of the greatest problems of standard cosmology is the Big Bang singularity. Previously it has been shown that non-local ghostfree higher-derivative modifications of Einstein gravity in the ultra-violet regime can admit non-singular bouncing solutions. In this paper we study in more details the dynamical properties of the equations of motion for these theories of gravity in presence of positive and negative cosmological constants and radiation. We find stable inflationary attractor solutions in the presence of a positive cosmological constant which renders inflation geodesically complete, while in the presence of a negative cosmological constant a cyclic universe emerges. We also provide an algorithm for tracking the super-Hubble perturbations during the bounce and show that the bouncing solutions are free from any perturbative instability

  1. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  2. Scaling solutions for dilaton quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Henz, T.; Pawlowski, J.M., E-mail: j.pawlowski@thphys.uni-heidelberg.de; Wetterich, C.

    2017-06-10

    Scaling solutions for the effective action in dilaton quantum gravity are investigated within the functional renormalization group approach. We find numerical solutions that connect ultraviolet and infrared fixed points as the ratio between scalar field and renormalization scale k is varied. In the Einstein frame the quantum effective action corresponding to the scaling solutions becomes independent of k. The field equations derived from this effective action can be used directly for cosmology. Scale symmetry is spontaneously broken by a non-vanishing cosmological value of the scalar field. For the cosmology corresponding to our scaling solutions, inflation arises naturally. The effective cosmological constant becomes dynamical and vanishes asymptotically as time goes to infinity.

  3. On the covariant formalism of the effective field theory of gravity and leading order corrections

    DEFF Research Database (Denmark)

    Codello, Alessandro; Jain, Rajeev Kumar

    2016-01-01

    We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well...... as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology...... on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime....

  4. Phase space of modified Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Carloni, Sante [Universidade de Lisboa-UL, Centro Multidisciplinar de Astrofisica-CENTRA, Instituto Superior Tecnico-IST, Lisbon (Portugal); Mimoso, Jose P. [Instituto de Astrofisica e Ciencias do Espaco, Universidade de Lisboa, Departamento de Fisica, Faculdade de Ciencias, Lisbon (Portugal)

    2017-08-15

    We investigate the evolution of non-vacuum Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss-Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several examples, discussing the transition from a decelerating into an acceleration universe within these theories. We also deduce from the dynamical equations some general conditions on the form of the action which guarantee the presence of specific behaviours like the emergence of accelerated expansion. As in f(R) gravity, our analysis shows that there is a set of initial conditions for which these models have a finite time singularity which can be an attractor. The presence of this instability also in the Gauss-Bonnet gravity is to be ascribed to the fourth-order derivative in the field equations, i.e., is the direct consequence of the higher order of the equations. (orig.)

  5. Self-organizing physical fields and gravity

    International Nuclear Information System (INIS)

    Pestov, I.B.

    2009-01-01

    It is shown that the Theory of Self-Organizing Physical Fields provides the adequate and consistent consideration of the gravitational phenomena. The general conclusion lies in the fact that the essence of gravidynamics is the new field concept of time and the general covariant law of energy conservation which in particular means that dark energy is simply the energy of the gravitational field. From the natural geometrical laws of gravidynamics the dynamical equations of the gravitational field are derived. Two exact solutions of these equations are obtained. One of them represents a shock gravitational wave and the other represents the Universe filled up with the gravitational energy only. These solutions are compared with the Schwarzschild and Friedmann solutions in the Einstein general theory of relativity

  6. Gravity model improvement using GEOS-3 (GEM 9 and 10)

    Science.gov (United States)

    Lerch, F. J.; Klosko, S. M.; Laubscher, R. E.; Wagner, C. A.

    1977-01-01

    The use of collocation permitted GEM 9 to be a larger field than previous derived satellite models, GEM 9 having harmonics complete to 20 x 20 with selected higher degree terms. The satellite data set has approximately 840,000 observations, of which 200,000 are laser ranges taken on 9 satellites equipped with retroreflectors. GEM 10 is complete to 22 x 22 with selected higher degree terms out to degree and order 30 amounting to a total of 592 coefficients. Comparisons with surface gravity and altimeter data indicate a substantial improvement in GEM 9 over previous satellite solutions; GEM 9 is in even closer agreement with surface data than the previously published GEM 6 solution which contained surface gravity. In particular the free air gravity anomalies calculated from GEM 9 and a surface gravity solution are in excellent agreement for the high degree terms.

  7. Quark stars in f(T, T)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Mark; Said, Jackson Levi [University of Malta, Department of Physics, Msida (Malta); University of Malta, Institute of Space Sciences and Astronomy, Msida (Malta)

    2017-02-15

    We derive a working model for the Tolman-Oppenheimer-Volkoff equation for quark star systems within the modified f(T, T)-gravity class of models. We consider f(T, T)-gravity for a static spherically symmetric space-time. In this instance the metric is built from a more fundamental tetrad vierbein from which the metric tensor can be derived. We impose a linear f(T) parameter, namely taking f = αT(r) + βT(r) + φ and investigate the behaviour of a linear energy-momentum tensor trace, T. We also outline the restrictions which modified f(T, T)-gravity imposes upon the coupling parameters. Finally we incorporate the MIT bag model in order to derive the mass-radius and mass-central density relations of the quark star within f(T, T)-gravity. (orig.)

  8. Disformal theories of gravity: from the solar system to cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Sakstein, Jeremy, E-mail: j.a.sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2014-12-01

    This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible.

  9. Disformal theories of gravity: from the solar system to cosmology

    International Nuclear Information System (INIS)

    Sakstein, Jeremy

    2014-01-01

    This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible

  10. Absence of higher derivatives in the renormalization of propagators in quantum field theories with infinitely many couplings

    International Nuclear Information System (INIS)

    Anselmi, Damiano

    2003-01-01

    I study some aspects of the renormalization of quantum field theories with infinitely many couplings in arbitrary spacetime dimensions. I prove that when the spacetime manifold admits a metric of constant curvature, the propagator is not affected by terms with higher derivatives. More generally, certain Lagrangian terms are not turned on by renormalization, if they are absent at the tree level. This restricts the form of the action of a non-renormalizable theory, and has applications to quantum gravity. The new action contains infinitely many couplings, but not all of the ones that might have been expected. In quantum gravity, the metric of constant curvature is an extremal, but not a minimum, of the complete action. Nonetheless, it appears to be the right perturbative vacuum, at least when the curvature is negative, suggesting that the quantum vacuum has a negative asymptotically constant curvature. The results of this paper give also a set of rules for a more economical use of effective quantum field theories and suggest that it might be possible to give mathematical sense to theories with infinitely many couplings at high energies, to search for physical predictions

  11. How to deal with the high condition number of the noise covariance matrix of gravity field functionals synthesised from a satellite-only global gravity field model?

    Science.gov (United States)

    Klees, R.; Slobbe, D. C.; Farahani, H. H.

    2018-03-01

    The posed question arises for instance in regional gravity field modelling using weighted least-squares techniques if the gravity field functionals are synthesised from the spherical harmonic coefficients of a satellite-only global gravity model (GGM), and are used as one of the noisy datasets. The associated noise covariance matrix, appeared to be extremely ill-conditioned with a singular value spectrum that decayed gradually to zero without any noticeable gap. We analysed three methods to deal with the ill-conditioned noise covariance matrix: Tihonov regularisation of the noise covariance matrix in combination with the standard formula for the weighted least-squares estimator, a formula of the weighted least-squares estimator, which does not involve the inverse noise covariance matrix, and an estimator based on Rao's unified theory of least-squares. Our analysis was based on a numerical experiment involving a set of height anomalies synthesised from the GGM GOCO05s, which is provided with a full noise covariance matrix. We showed that the three estimators perform similar, provided that the two regularisation parameters each method knows were chosen properly. As standard regularisation parameter choice rules do not apply here, we suggested a new parameter choice rule, and demonstrated its performance. Using this rule, we found that the differences between the three least-squares estimates were within noise. For the standard formulation of the weighted least-squares estimator with regularised noise covariance matrix, this required an exceptionally strong regularisation, much larger than one expected from the condition number of the noise covariance matrix. The preferred method is the inversion-free formulation of the weighted least-squares estimator, because of its simplicity with respect to the choice of the two regularisation parameters.

  12. Quantum gravity effect in torsion driven inflation and CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Department of Theoretical Physics, Tata Institute of Fundamental Research,Colaba, 1, Homi Bhabha Road, Mumbai 400005 (India); Pal, Barun Kumar [Inter-University Centre for Astronomy and Astrophysics,Ganeshkhind, Pune 411007 (India); Netaji Nagar College for Women,Regent Estate, Kolkata 700092 (India); Basu, Banasri; Bandyopadhyay, Pratul [Physics and Applied Mathematics Unit, Indian Statistical Institute,203 B.T. Road, Kolkata 700 108 (India)

    2015-10-28

    We have derived an effective potential for inflationary scenario from torsion and quantum gravity correction in terms of the scalar field hidden in torsion. A strict bound on the CP violating θ parameter, O(10{sup −10})<θ

  13. Quantum gravity effect in torsion driven inflation and CP violation

    International Nuclear Information System (INIS)

    Choudhury, Sayantan; Pal, Barun Kumar; Basu, Banasri; Bandyopadhyay, Pratul

    2015-01-01

    We have derived an effective potential for inflationary scenario from torsion and quantum gravity correction in terms of the scalar field hidden in torsion. A strict bound on the CP violating θ parameter, O(10"−"1"0)<θ< O(10"−"9) has been obtained, using Planck+WMAP9 best fit cosmological parameters.

  14. Local Lunar Gravity Field Analysis over the South Pole-aitken Basin from SELENE Farside Tracking Data

    Science.gov (United States)

    Goossens, Sander Johannes; Ishihara, Yoshiaki; Matsumoto, Koji; Sasaki, Sho

    2012-01-01

    We present a method with which we determined the local lunar gravity field model over the South Pole-Aitken (SPA) basin on the farside of the Moon by estimating adjustments to a global lunar gravity field model using SELENE tracking data. Our adjustments are expressed in localized functions concentrated over the SPA region in a spherical cap with a radius of 45deg centered at (191.1 deg E, 53.2 deg S), and the resolution is equivalent to a 150th degree and order spherical harmonics expansion. The new solution over SPA was used in several applications of geophysical analysis. It shows an increased correlation with high-resolution lunar topography in the frequency band l = 40-70, and admittance values are slightly different and more leveled when compared to other, global gravity field models using the same data. The adjustments expressed in free-air anomalies and differences in Bouguer anomalies between the local solution and the a priori global solution correlate with topographic surface features. The Moho structure beneath the SPA basin is slightly modified in our solution, most notably at the southern rim of the Apollo basin and around the Zeeman crater

  15. On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities

    Science.gov (United States)

    D'Urso, M. G.

    2013-03-01

    We show that the singularities which can affect the computation of the gravity effects (potential, gravity and tensor gradient fields) can be systematically addressed by invoking distribution theory and suitable formulas of differential calculus. Thus, differently from previous contributions on the subject, the use of a-posteriori corrections of the formulas derived in absence of singularities can be ruled out. The general approach presented in the paper is further specialized to the case of polyhedral bodies and detailed for a rectangular prism having a constant mass density. With reference to this last case, we derive novel expressions for the related gravitational field, as well as for its first and second derivative, at an observation point coincident with a prism vertex and show that they turn out to be more compact than the ones reported in the specialized literature.

  16. Superrenormalizable quantum gravity with complex ghosts

    Directory of Open Access Journals (Sweden)

    Leonardo Modesto

    2016-04-01

    Full Text Available We suggest and briefly review a new sort of superrenormalizable models of higher derivative quantum gravity. The higher derivative terms in the action can be introduced in such a way that all the unphysical massive states have complex poles. According to the literature on Lee–Wick quantization, in this case the theory can be formulated as unitary, since all massive ghosts-like degrees of freedom are unstable. Keywords: Quantum gravity, Higher derivatives, Complex poles

  17. Detecting small gravity change in field measurement: simulations and experiments of the superconducting gravimeter—iGrav

    International Nuclear Information System (INIS)

    Kao, Ricky; Kabirzadeh, Hojjat; Kim, Jeong Woo; Neumeyer, Juergen; Sideris, Michael G

    2014-01-01

    In order to detect small gravity changes in field measurements, such as with CO 2  storage, we designed simulations and experiments to validate the capabilities of the iGrav superconducting gravimeter. Qualified data processing was important to obtain the residual gravity from the iGrav's raw gravity signals, without the tidal components, atmosphere, polar motion and hydrological effects. Two simulations and four designed experiments are presented in this study. The first simulation detected the gravity change during CO 2  injection. The residual gravity of CO 2  leakage was targeted with the second simulation from the main storage reservoir to secondary space underground. The designed experiments monitored the situation of gravity anomalies in the iGrav's records. These tests focused on short-term gravity anomalies, such as gravity changes, step functions, repeat observations and gradient measurements from the iGrav, rather than on long-term tidal effects. The four laboratory experiments detected a decrease in gravity of −0.56 ± 0.15 µGal (10 −8  m s −2 ) with a 92.8 kg weight on the top of the iGrav. A step function occurred in the gravity signals, when the tilt control was out of balance. We also used a professional camera dolly with a track to observe repeated horizontal movements and an electric lift table for controlled vertical movements to measure the average gradient of −2.67 ± 0.01 µGal cm −1 . (paper)

  18. Black holes in quasi-topological gravity and conformal couplings

    Science.gov (United States)

    Chernicoff, Mariano; Fierro, Octavio; Giribet, Gaston; Oliva, Julio

    2017-02-01

    Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS5 analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R 3 and R 4 terms. In this paper, we investigate AdS5 black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS5 which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.

  19. Black holes in quasi-topological gravity and conformal couplings

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Fierro, Octavio; Giribet, Gaston; Oliva, Julio

    2017-01-01

    Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS 5 analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R 3 and R 4 terms. In this paper, we investigate AdS 5 black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS 5 which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.

  20. Black holes in quasi-topological gravity and conformal couplings

    Energy Technology Data Exchange (ETDEWEB)

    Chernicoff, Mariano [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México,A.P. 70-542, México D.F. 04510 (Mexico); Fierro, Octavio [Departamento de Matemática y Física Aplicadas,Universidad Católica de la Santísima Concepción,Alonso de Rivera 2850, Concepción (Chile); Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Oliva, Julio [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile)

    2017-02-02

    Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS{sub 5} analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R{sup 3} and R{sup 4} terms. In this paper, we investigate AdS{sub 5} black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS{sub 5} which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.

  1. GOCE in ocean modelling - Point mass method applied on GOCE gravity gradients

    DEFF Research Database (Denmark)

    Herceg, Matija; Knudsen, Per

    This presentation is an introduction to my Ph.D project. The main objective of the study is to improve the methodology for combining GOCE gravity field models with satellite altimetry to derive optimal dynamic ocean topography models for oceanography. Here a method for geoid determination using...

  2. f(Lovelock) theories of gravity

    Science.gov (United States)

    Bueno, Pablo; Cano, Pablo A.; Óscar Lasso, A.; Ramírez, Pedro F.

    2016-04-01

    f(Lovelock) gravities are simple generalizations of the usual f( R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.

  3. f(Lovelock) theories of gravity

    International Nuclear Information System (INIS)

    Bueno, Pablo; Cano, Pablo A.; Óscar, Lasso A.; Ramírez, Pedro F.

    2016-01-01

    f(Lovelock) gravities are simple generalizations of the usual f(R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.

  4. Seasonal Gravity Field Variations from GRACE and Hydrological Models

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Hinderer, Jacques; Lemoine, Frank G.

    2004-01-01

    . Four global hydrological models covering the same period in 2002–2003 as the GRACE observations were investigated to for their mutual consistency in estimates of annual variation in terrestrial water storage and related temporal changes in gravity field. The hydrological models differ by a maximum of 2...... µGal or nearly 5 cm equivalent water storage in selected regions. Integrated over all land masses the standard deviation among the annual signal from the four hydrological models are 0.6 µGal equivalent to around 1.4 cm in equivalent water layer thickness. The estimated accuracy of the annual...

  5. New effective coupled F((4)R, φ) modified gravity from f((5)R) gravity in five dimensions

    International Nuclear Information System (INIS)

    Madriz Aguilar, Jose Edgar

    2015-01-01

    Using some ideas of the Wesson induced matter theory, we obtain a new kind of F( (4) R, φ) modified gravity theory as an effective four-dimensional (4D) theory derived from f( (5) R) gravity in five dimensions (5D). This new theory exhibits a different matter coupling than the one in BBHL theory. We show that the field equations of the Wesson induced matter theory and of some brane-world scenarios can be obtained as maximally symmetric solutions of the same f( (5) R) theory. We found criteria for the Dolgov-Kawasaki instabilities for both the f( (5) R) and the F( (4) R, φ) theories. We demonstrate that under certain conditions imposed on the 5D geometry it is possible to interpret the F( (4) R, φ) theory as a modified gravity theory with dynamical coefficients, making this new theory a viable candidate to address the present accelerating cosmic expansion issue. Matter sources in the F( (4) R, φ) case appear induced by the 5D geometry without the necessity of the introduction of matter sources in 5D. (orig.)

  6. BOOK REVIEW: Quantum Gravity: third edition Quantum Gravity: third edition

    Science.gov (United States)

    Rovelli, Carlo

    2012-09-01

    The request by Classical and Quantum Gravity to review the third edition of Claus Kiefer's 'Quantum Gravity' puts me in a slightly awkward position. This is a remarkably good book, which every person working in quantum gravity should have on the shelf. But in my opinion quantum gravity has undergone some dramatic advances in the last few years, of which the book makes no mention. Perhaps the omission only attests to the current vitality of the field, where progress is happening fast, but it is strange for me to review a thoughtful, knowledgeable and comprehensive book on my own field of research, which ignores what I myself consider the most interesting results to date. Kiefer's book is unique as a broad introduction and a reliable overview of quantum gravity. There are numerous books in the field which (often notwithstanding titles) focus on a single approach. There are also countless conference proceedings and article collections aiming to be encyclopaedic, but offering disorganized patchworks. Kiefer's book is a careful and thoughtful presentation of all aspects of the immense problem of quantum gravity. Kiefer is very learned, and brings together three rare qualities: he is pedagogical, he is capable of simplifying matter to the bones and capturing the essential, and he offers a serious and balanced evaluation of views and ideas. In a fractured field based on a major problem that does not yet have a solution, these qualities are precious. I recommend Kiefer's book to my students entering the field: to work in quantum gravity one needs a vast amount of technical knowledge as well as a grasp of different ideas, and Kiefer's book offers this with remarkable clarity. This novel third edition simplifies and improves the presentation of several topics, but also adds very valuable new material on quantum gravity phenomenology, loop quantum cosmology, asymptotic safety, Horava-Lifshitz gravity, analogue gravity, the holographic principle, and more. This is a testament

  7. Principal facts of gravity stations with gravity and magnetic profiles from the southwest Nevada Test Site, Nye County, Nevada, as of January 1982

    International Nuclear Information System (INIS)

    Jansma, P.E.; Snyder, D.B.; Ponce, D.A.

    1983-01-01

    Three gravity profiles and principal facts of 2604 gravity stations in the southwest quadrant of the Nevada Test Site are documented in this data report. The residual gravity profiles show the gravity measurements and the smoothed curves derived from these points that were used in geophysical interpretations. The principal facts include station label, latitude, longitude, elevation, observed gravity value, and terrain correction for each station as well as the derived complete Bouguer and isostatic anomalies, reduced at 2.67 g/cm 3 . Accuracy codes, where available, further document the data

  8. Can gravity do what Higgs does?

    International Nuclear Information System (INIS)

    Pawlowski, M.

    1990-12-01

    Conformally invariant model unifying gravity with the Standard Model is proposed. It is based on the observation that the conformal factor couples to matter fields analogously as the Higgs field does so for the proper choice of coupling parameters it can cancel divergences connected with longitudinal boson exchange. The criteria of stability, renormalizability and proper Einsteinian limit suggest that higher derivative terms are necessary in the gravitational sector. This introduces one new parameter but two old parameters of the Higgs potential are redundant due to unification. The Planck mass becomes a dynamical parameter characterizing gravitational background in accordance with Mach's philosophy. Cosmological constant appears in a natural way. (author). 18 refs

  9. Global Earth Structure Recovery from State-of-the-art Models of the Earth's Gravity Field and Additional Geophysical Information

    NARCIS (Netherlands)

    Hamayun, H.

    2014-01-01

    Currently, a tremendous improvement is observed in the accuracy and spatial resolution of global Earth’s gravity field models. This improvement is achieved due to using various new data, including those from satellite gravimetry missions (CHAMP, GRACE, and GOCE); terrestrial and airborne gravity

  10. On the covariant formalism of the effective field theory of gravity and leading order corrections

    International Nuclear Information System (INIS)

    Codello, Alessandro; Jain, Rajeev Kumar

    2016-01-01

    We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime. (paper)

  11. Weak lensing in generalized gravity theories

    International Nuclear Information System (INIS)

    Acquaviva, Viviana; Baccigalupi, Carlo; Perrotta, Francesca

    2004-01-01

    We extend the theory of weak gravitational lensing to cosmologies with generalized gravity, described in the Lagrangian by a generic function depending on the Ricci scalar and a nonminimal coupled scalar field. We work out the generalized Poisson equations relating the dynamics of the fluctuating components to the two gauge-invariant scalar gravitational potentials, fixing the contributions from the modified background expansion and fluctuations. We show how the lensing equation gets modified by the cosmic expansion as well as by the presence of anisotropic stress, which is non-null at the linear level both in scalar-tensor gravity and in theories where the gravitational Lagrangian term features a nonminimal dependence on the Ricci scalar. Starting from the geodesic deviation, we derive the generalized expressions for the shear tensor and projected lensing potential, encoding the spacetime variation of the effective gravitational constant and isolating the contribution of the anisotropic stress, which introduces a correction due to the spatial correlation between the gravitational potentials. Finally, we work out the expressions of the lensing convergence power spectrum as well as the correlation between the lensing potential and the integrated Sachs-Wolfe effect affecting cosmic microwave background total intensity and polarization anisotropies. To illustrate phenomenologically the effects, we work out approximate expressions for the quantities above in extended quintessence scenarios where the scalar field coupled to gravity plays the role of the dark energy

  12. Initial value formulation of dynamical Chern-Simons gravity

    Science.gov (United States)

    Delsate, Térence; Hilditch, David; Witek, Helvi

    2015-01-01

    We derive an initial value formulation for dynamical Chern-Simons gravity, a modification of general relativity involving parity-violating higher derivative terms. We investigate the structure of the resulting system of partial differential equations thinking about linearization around arbitrary backgrounds. This type of consideration is necessary if we are to establish well-posedness of the Cauchy problem. Treating the field equations as an effective field theory we find that weak necessary conditions for hyperbolicity are satisfied. For the full field equations we find that there are states from which subsequent evolution is not determined. Generically the evolution system closes, but is not hyperbolic in any sense that requires a first order pseudodifferential reduction. In a cursory mode analysis we find that the equations of motion contain terms that may cause ill-posedness of the initial value problem.

  13. String duality transformations in f(R) gravity from Noether symmetry approach

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Gionti, Gabriele S.J. [Specola Vaticana, Vatican City, V-00120, Vatican City State (Vatican City State, Holy See); Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr [Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut d' Astrophysique de Paris, GReCO, 98bis Bd Arago, 75014 Paris (France)

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians are shown in cases where the duality transformation becomes a parity inversion.

  14. String duality transformations in f(R) gravity from Noether symmetry approach

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians are shown in cases where the duality transformation becomes a parity inversion

  15. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  16. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond.

    Science.gov (United States)

    Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2015-01-23

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.

  17. Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R. [Department of General & Theoretical Physics and Eurasian Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Odintsov, S.D. [Consejo Superior de Investigaciones Científicas, ICE/CSIC-IEEC, Campus UAB, Facultat de Ciències, Torre C5-Parell-2a pl, E-08193 Bellaterra, Barcelona (Spain); Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n 08193 Cerdanyola del Valles, Barcelona (Spain); Tomsk State Pedagogical University, 634050 Tomsk (Russian Federation); Tomsk State University of Control Systems and Radioelectronics (TUSUR) 634050 Tomsk (Russian Federation); Sebastiani, L., E-mail: lorenzo.sebastiani@unitn.it [Department of General & Theoretical Physics and Eurasian Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2016-06-15

    We study inflation for a quantum scalar electrodynamics model in curved space–time and for higher-derivative quantum gravity (QG) coupled with scalar electrodynamics. The corresponding renormalization-group (RG) improved potential is evaluated for both theories in Jordan frame where non-minimal scalar-gravitational coupling sector is explicitly kept. The role of one-loop quantum corrections is investigated by showing how these corrections enter in the expressions for the slow-roll parameters, the spectral index and the tensor-to-scalar ratio and how they influence the bound of the Hubble parameter at the beginning of the primordial acceleration. We demonstrate that the viable inflation maybe successfully realized, so that it turns out to be consistent with last Planck and BICEP2/Keck Array data.

  18. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)

    2017-03-15

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)

  19. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  20. Quantum Gravity, Dynamical Triangulation and Higer Derivative Regularization

    DEFF Research Database (Denmark)

    Ambjorn, J.; Jurkiewicz, J.; Kristjansen, C. F.

    1992-01-01

    We consider a discrete model of euclidean quantum gravity in four dimensions based on a summation over random simplicial manifolds. The action used is the Einstein-Hilbert action plus an $R^2$-term. The phase diagram as a function of the bare coupling constants is studied in the search for a sens......We consider a discrete model of euclidean quantum gravity in four dimensions based on a summation over random simplicial manifolds. The action used is the Einstein-Hilbert action plus an $R^2$-term. The phase diagram as a function of the bare coupling constants is studied in the search...

  1. Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives

    NARCIS (Netherlands)

    Salcher, B. C.; Meurers, B.; Smit, J.; Decker, K.; HöLzel, M.; Wagreich, M.

    2012-01-01

    The Vienna Basin at the transition between the Alpine and Carpathian belt hosts a number of large Pleistocene sub-basins forming along an active continental scale strike-slip fault (Vienna Basin strike-slip fault). We utilize first-order derivatives from industrial Bouguer gravity data to unravel

  2. Scalar fields nonminimally coupled to pp waves

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2005-01-01

    Here, we report pp waves configurations of three-dimensional gravity for which a scalar field nonminimally coupled to them acts as a source. In absence of self-interaction the solutions are gravitational plane waves with a profile fixed in terms of the scalar wave. In the self-interacting case, only power-law potentials parameterized by the nonminimal coupling constant are allowed by the field equations. In contrast with the free case the self-interacting scalar field does not behave like a wave since it depends only on the wave-front coordinate. We address the same problem when gravitation is governed by topologically massive gravity and the source is a free scalar field. From the pp waves derived in this case, we obtain at the zero topological mass limit, new pp waves solutions of conformal gravity for any arbitrary value of the nonminimal coupling parameter. Finally, we extend these solutions to the self-interacting case of conformal gravity

  3. Virial Theorem in Nonlocal Newtonian Gravity

    Directory of Open Access Journals (Sweden)

    Bahram Mashhoon

    2016-05-01

    Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.

  4. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  5. Three types of superpotentials for perturbations in the Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Petrov, A N

    2009-01-01

    Superpotentials (antisymmetric tensor densities) in the Einstein-Gauss-Bonnet (EGB) gravity for arbitrary types of perturbations on arbitrary curved backgrounds are constructed. As a basis, the generalized conservation laws in the framework of an arbitrary D-dimensional metric theory, where conserved currents are expressed through divergences of superpotentials, are used. Such a derivation is exact (perturbations are not infinitesimal) and is approached when a solution (dynamical) is considered as a perturbed system with respect to another solution (background). Three known prescriptions are elaborated: they are the canonical Noether theorem, the Belinfante symmetrization rule and the field-theoretical derivation. All three approaches are presented in a unique way convenient for comparisons and development. Exact expressions for the 01-component of the three types of the superpotentials are derived in the case when an arbitrary static Schwarzschild-like solution in the EGB gravity is considered as a perturbed system with respect to a background of the same type. These formulae are used for calculating the mass of the Schwarzschild-anti-de Sitter black hole in the EGB gravity. As a background, both the anti-de Sitter spacetime in arbitrary dimensions and a 'mass gap' vacuum, which has no maximal set of symmetries, in five dimensions are considered. Problems and perspectives for future development, including the Lovelock gravity, are discussed.

  6. Deriving force field parameters for coordination complexes

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter

    2001-01-01

    The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters......, and validate the final force field, Alternatives to force field derivation are discussed briefly....

  7. Scalaron from R2-gravity as a heavy field

    Science.gov (United States)

    Pi, Shi; Zhang, Ying-li; Huang, Qing-Guo; Sasaki, Misao

    2018-05-01

    We study a model of inflation in which a scalar field χ is non-minimally coupled to Starobinsky's R2 gravity. After transforming it to the Einstein frame, a new scalar field, the scalaron phi, will appear and couple to χ with a nontrivial field metric, while χ acquires a positive mass via the non-minimal coupling. Initially inflation occurs along the phi direction with χ trapped near its origin by this induced mass. After phi crosses a critical value, it starts rolling down rapidly and proceeds to damped oscillations around an effective local minimum determined by the value of χ, while inflation still continues, driven by the χ field at this second stage where the effect of the non-minimal coupling becomes negligible. The presence of the damped oscillations during the transition from the first to second stage of inflation causes enhancement and oscillation features in the power spectrum of the curvature perturbation. Assuming that the oscillations may be treated perturbatively, we calculate these features by using the δ N formalism, and discuss its observational implications to large scale CMB anomalies or primordial black hole formation, depending on the scale of the features.

  8. DBI from gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Travis; Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)

    2017-02-22

    We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.

  9. Modified teleparallel gravity: Inflation without an inflaton

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Fiorini, Franco

    2007-01-01

    The Born-Infeld strategy to smooth theories having divergent solutions is applied to the teleparallel equivalent of general relativity. Differing from other theories of modified gravity, modified teleparallelism leads to second order equations, since the teleparallel Lagrangian only contains first derivatives of the vierbein. We show that the Born-Infeld-modified teleparallelism solves the particle horizon problem in a spatially flat Friedmann-Robertson-Walker (FRW) universe by providing an initial exponential expansion without resorting to an inflaton field

  10. Characteristics of gravity and magnetic field and their relationship with uranium mineralization in northern Guangxi area

    International Nuclear Information System (INIS)

    Shu Xiaojing; Yin Zhongfan; Hao Yuhua; guan Nansheng; Li Xuexun

    1993-08-01

    The characteristics of gravity and magnetic field, deep-seated structures and their relationship with uranium mineralization in Northern Guangxi are investigated. Especially, based on geophysical investigation, the distinguishing features of uranium ore-forming are discussed, involved with the uranium source body, the heating force and mechanical force of granite magma acted on uranium mineralization, the deep-seated geological process, the hydrothermal activity, the formation environments of granite-type uranium deposit, the source of pyrite and its influence on uranium mineralization, the uranium ore-forming of Sinian-Cambrian periods and devonian period formations, and the simple model of uranium ore-forming. On the basis of the relationship of uranium mineralization with geophysical field, as well as the ore-forming geological environments inferred by gravity and magnetic field investigation, the physical-geological model is established in order to predicate uranium prospect

  11. Time Changes of the European Gravity Field from GRACE: A Comparison with Ground Measurements from Superconducting Gravimeters and with Hydrology Model Predictions

    Science.gov (United States)

    Hinderer, J.; Lemoine, Frank G.; Crossley, D.; Boy, J.-P.

    2004-01-01

    We investigate the time-variable gravity changes in Europe retrieved from the initial GRACE monthly solutions spanning a 18 month duration from April 2002 to October 2003. Gravity anomaly maps are retrieved in Central Europe from the monthly satellite solutions we compare the fields according to various truncation levels (typically between degree 10 and 20) of the initial fields (expressed in spherical harmonics to degree 120). For these different degrees, an empirical orthogonal function (EOF) decomposition of the time-variable gravity field leads us to its main spatial and temporal characteristics. We show that the dominant signal is found to be annual with an amplitude and a phase both in agreement with predictions in Europe modeled using snow and soil-moisture variations from recent hydrology models. We compare these GRACE gravity field changes to surface gravity observations from 6 superconducting gravimeters of the GGP (Global Geodynamics Project) European sub-network, with a special attention to loading corrections. Initial results suggest that all 3 data sets (GRACE, hydrology and GGP) are responding to annual changes in near-surface water in Europe of a few microGal (at length scales of approx.1000 km) that show a high value in winter and a summer minimum. We also point out that the GRACE gravity field evolution seems to indicate that there is a trend in gravity between summer 2002 and summer 2003 which can be related to the 2003 heatwave in Europe and its hydrological consequences (drought). Despite the limited time span of our analysis and the uncertainties in retrieving a regional solution from the network of gravimeters, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.

  12. And what if gravity is intrinsically quantic?

    International Nuclear Information System (INIS)

    Ziaeepour, Houri

    2009-01-01

    Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, string theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and the former is a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum mechanics (QM) and gravity. Without gravity, QM becomes ambiguous. We consider this observation as the evidence for an intrinsic relation between these fundamental laws of nature. We suggest a quantum role and definition for gravity in the context of a quantum Universe, and present a preliminary formulation for gravity in a system with a finite number of particles.

  13. Turning on gravity with the Higgs mechanism

    International Nuclear Information System (INIS)

    Alexander, Stephon; Barrow, John D; Magueijo, João

    2016-01-01

    We investigate how a Higgs mechanism could be responsible for the emergence of gravity in extensions of Einstein theory, with a suitable low energy limit. In this scenario, at high energies, symmetry restoration could ‘turn off’ gravity, with dramatic implications for cosmology and quantum gravity. The sense in which gravity is muted depends on the details of the implementation. In the most extreme case gravity’s dynamical degrees of freedom would only be unleashed after the Higgs field acquires a non-trivial vacuum expectation value, with gravity reduced to a topological field theory in the symmetric phase. We might also identify the Higgs and the Brans–Dicke fields in such a way that in the unbroken phase Newton’s constant vanishes, decoupling matter and gravity. We discuss the broad implications of these scenarios. (letter)

  14. The Lovelock gravity in the critical spacetime dimension

    International Nuclear Information System (INIS)

    Dadhich, Naresh; Ghosh, Sushant G.; Jhingan, Sanjay

    2012-01-01

    It is well known that the vacuum in the Einstein gravity, which is linear in the Riemann curvature, is trivial in the critical (2+1=3) dimension because vacuum solution is flat. It turns out that this is true in general for any odd critical d=2n+1 dimension where n is the degree of homogeneous polynomial in Riemann defining its higher order analogue whose trace is the nth order Lovelock polynomial. This is the “curvature” for nth order pure Lovelock gravity as the trace of its Bianchi derivative gives the corresponding analogue of the Einstein tensor as defined by Dadhich (2010) . Thus the vacuum in the pure Lovelock gravity is always trivial in the odd critical (2n+1) dimension which means it is pure Lovelock flat but it is not Riemann flat unless n=1 and then it describes a field of a global monopole. Further by adding Λ we obtain the Lovelock analogue of the BTZ black hole.

  15. Multi-loop correlators for rational theories of 2D gravity from the generalized Kontsevich models

    DEFF Research Database (Denmark)

    Kristjansen, C.

    1994-01-01

    functions of the susceptibilities and the eigenvalues of the external field. We furthermore use the moment technique to derive a closed expression for the genus zero multi-loop correlators for $(3,3m-1)$ and $(3,3m-2)$ rational matter fields coupled to gravity. We comment on the relation between the two-matrix...

  16. Progress in the development of the GMM-2 gravity field model for Mars

    Science.gov (United States)

    Lemoine, F. G.; Smith, D. E.; Lerch, F. J.; Zuber, M. T.; Patel, G. B.

    1994-01-01

    Last year we published the GMM-1 (Goddard Mars Model-1) gravity model for Mars. We have completely re-analyzed the Viking and Mariner 9 tracking data in the development of the new field, designated GMM-2. The model is complete to degree and order 70. Various aspects of the model are discussed.

  17. Matrix models as non-commutative field theories on R3

    International Nuclear Information System (INIS)

    Livine, Etera R

    2009-01-01

    In the context of spin foam models for quantum gravity, group field theories are a useful tool allowing on the one hand a non-perturbative formulation of the partition function and on the other hand admitting an interpretation as generalized matrix models. Focusing on 2d group field theories, we review their explicit relation to matrix models and show their link to a class of non-commutative field theories invariant under a quantum-deformed 3d Poincare symmetry. This provides a simple relation between matrix models and non-commutative geometry. Moreover, we review the derivation of effective 2d group field theories with non-trivial propagators from Boulatov's group field theory for 3d quantum gravity. Besides the fact that this gives a simple and direct derivation of non-commutative field theories for the matter dynamics coupled to (3d) quantum gravity, these effective field theories can be expressed as multi-matrix models with a non-trivial coupling between matrices of different sizes. It should be interesting to analyze this new class of theories, both from the point of view of matrix models as integrable systems and for the study of non-commutative field theories.

  18. Earth System Data Records of Mass Transport from Time-Variable Gravity Data

    Science.gov (United States)

    Zlotnicki, V.; Talpe, M.; Nerem, R. S.; Landerer, F. W.; Watkins, M. M.

    2014-12-01

    Satellite measurements of time variable gravity have revolutionized the study of Earth, by measuring the ice losses of Greenland, Antarctica and land glaciers, changes in groundwater including unsustainable losses due to extraction of groundwater, the mass and currents of the oceans and their redistribution during El Niño events, among other findings. Satellite measurements of gravity have been made primarily by four techniques: satellite tracking from land stations using either lasers or Doppler radio systems, satellite positioning by GNSS/GPS, satellite to satellite tracking over distances of a few hundred km using microwaves, and through a gravity gradiometer (radar altimeters also measure the gravity field, but over the oceans only). We discuss the challenges in the measurement of gravity by different instruments, especially time-variable gravity. A special concern is how to bridge a possible gap in time between the end of life of the current GRACE satellite pair, launched in 2002, and a future GRACE Follow-On pair to be launched in 2017. One challenge in combining data from different measurement systems consists of their different spatial and temporal resolutions and the different ways in which they alias short time scale signals. Typically satellite measurements of gravity are expressed in spherical harmonic coefficients (although expansions in terms of 'mascons', the masses of small spherical caps, has certain advantages). Taking advantage of correlations among spherical harmonic coefficients described by empirical orthogonal functions and derived from GRACE data it is possible to localize the otherwise coarse spatial resolution of the laser and Doppler derived gravity models. This presentation discusses the issues facing a climate data record of time variable mass flux using these different data sources, including its validation.

  19. First-order discrete Faddeev gravity at strongly varying fields

    Science.gov (United States)

    Khatsymovsky, V. M.

    2017-11-01

    We consider the Faddeev formulation of general relativity (GR), which can be characterized by a kind of d-dimensional tetrad (typically d = 10) and a non-Riemannian connection. This theory is invariant w.r.t. the global, but not local, rotations in the d-dimensional space. There can be configurations with a smooth or flat metric, but with the tetrad that changes abruptly at small distances, a kind of “antiferromagnetic” structure. Previously, we discussed a first-order representation for the Faddeev gravity, which uses the orthogonal connection in the d-dimensional space as an independent variable. Using the discrete form of this formulation, we considered the spectrum of (elementary) area. This spectrum turns out to be physically reasonable just on a classical background with large connection like rotations by π, that is, with such an “antiferromagnetic” structure. In the discrete first-order Faddeev gravity, we consider such a structure with periodic cells and large connection and strongly changing tetrad field inside the cell. We show that this system in the continuum limit reduces to a generalization of the Faddeev system. The action is a sum of related actions of the Faddeev type and is still reduced to the GR action.

  20. Inviscid evolution of large amplitude filaments in a uniform gravity field

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Krasheninnikov, S. I. [University of California, San Diego, La Jolla, California 92093 (United States); National Research Nuclear University “MEPhl” Kashirskoe sh., 31, 115563 Moscow (Russian Federation)

    2014-11-15

    The inviscid evolution of localized density stratifications under the influence of a uniform gravity field in a homogeneous, ambient background is studied. The fluid is assumed to be incompressible, and the stratification, or filament, is assumed to be initially isotropic and at rest. It is shown that the center of mass energy can be related to the center of mass position in a form analogous to that of a solid object in a gravity field g by introducing an effective gravity field g{sub eff}, which is less than g due to energy that goes into the background and into non-center of mass motion of the filament. During the early stages of the evolution, g{sub eff} is constant in time and can be determined from the solution of a 1D differential equation that depends on the initial, radially varying density profile of the filament. For small amplitude filaments such that ρ{sub 0} ≪ 1, where ρ{sub 0} is the relative amplitude of the filament to the background, the early stage g{sub eff} scales linearly with ρ{sub 0}, but as ρ{sub 0}→∞, g{sub eff}→g and is thus independent of ρ{sub 0}. Fully nonlinear simulations are performed for the evolution of Gaussian filaments, and it is found that the time t{sub max}, which is defined as the time for the center of mass velocity to reach its maximum value U{sub max}, occurs very soon after the constant acceleration phase and so U{sub max}≈g{sub eff}(t=0)t{sub max}. The simulation results show that U{sub max}∼1/t{sub max}∼√(ρ{sub 0}) for ρ{sub 0} ≪ 1, in agreement with theory and results from previous authors, but that U{sub max} and t{sub max} both scale approximately with √(ρ{sub 0}) for ρ{sub 0} ≫ 1. The fact that U{sub max} and t{sub max} have the same scaling with ρ{sub 0} for large amplitude filaments is in agreement with the theory presented in this paper.

  1. Scale-invariant gravity: geometrodynamics

    International Nuclear Information System (INIS)

    Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O

    2003-01-01

    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different

  2. Exorcising ghosts in induced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Narain, Gaurav [Chinese Academy of Sciences (CAS), Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Beijing (China)

    2017-10-15

    Unitarity of the scale-invariant coupled theory of higher-derivative gravity and matter is investigated. A scalar field coupled with a Dirac fermion is taken as the matter sector. Following the idea of induced gravity the Einstein-Hilbert term is generated via dynamical symmetry breaking of scale invariance. The renormalisation group flows are computed and one-loop RG improved effective potential of scalar is calculated. The scalar field develops a new minimum via the Coleman-Weinberg procedure inducing the Newton constant and masses in the matter sector. The spin-2 problematic ghost and the spin-0 mode of the metric fluctuation get a mass in the broken phase of the theory. The energy dependence of the vacuum expectation value in the RG improved scenario implies a running for the induced parameters. This sets up platform to ask whether it is possible to evade the spin-2 ghost by keeping its mass always above the running energy scale? In broken phase this question is satisfactorily answered for a large domain of coupling parameter space where the ghost is evaded. The spin-0 mode can be made physically realisable or not depending upon the choice of the initial parameters. The induced Newton constant is seen to vanish in the ultraviolet case. By properly choosing parameters it is possible to make the matter fields physically unrealisable. (orig.)

  3. Gravity model improvement investigation. [improved gravity model for determination of ocean geoid

    Science.gov (United States)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.

    1973-01-01

    This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.

  4. The gravity fields of Ganymede, Callisto and Europa: how well can JUICE do?

    Science.gov (United States)

    Parisi, Marzia; Iess, Luciano; Finocchiaro, Stefano

    2014-05-01

    With 20 flybys of Callisto, 2 of Europa and an extended orbital phase around Ganymede, ESA's JUICE mission offers an excellent opportunity to investigate the interiors of the three Galilean satellites. All of these moons can host an internal ocean, but the evidence is compelling only for Europa, where Galileo's measurements of the induced magnetic field are not marred by an intrinsic field as for Ganymede. However, both Europa's and Ganymede's appear to be differentiated (Showman and Malhotra, 1999), and probably hosting a subsurface liquid water ocean underneath the icy surface (Khurana et al., 1998; Kivelson et al., 2002). But even for Callisto, which appears as an undifferentiated body of ice and rock (Showman and Malhotra, 1999), a global or partial subsurface ocean cannot be ruled out (Khurana et al., 1998). The determination of the interior structure of the Galilean satellites, one of the main goal of the JUICE mission, can be accomplished by a combination of gravity, altimetric and magnetic measurements. Gravity measurements are addressed by the 3GM (Geodesy and Geophysics of Jupiter and the Galilean Moons) by means of highly accurate Doppler tracking of the spacecraft from ground antennas. Precise range rate measurements are enabled by a dedicated Ka-band (32-34 GHz) transponder, heritage from the Juno and BepiColombo missions. The expected range rate accuracies are around 0.01 mm/s at 60 s integration time, at nearly all solar elongation angles. A complete cancellation of the interplanetary plasma noise is indeed possible by operating simultaneously the links at X and Ka band. The current mission profile envisages two, low altitude, orbital phases around Ganymede: a circular polar, orbit at an altitude of 500 km for the first 102 days, and circular polar orbit at an altitude of 200 km for the last 30 days. The low altitude will permit the determination of Ganymede's gravity field with a relative accuracy of about 10^-5 for both J2 and C22. The 18 tidal

  5. The determination of the orbit of the Japanese satellite Ajisai and the GEM-T1 and GEM-T2 gravity field models

    Science.gov (United States)

    Sanchez, Braulio V.

    1990-01-01

    The Japanese Experimental Geodetic Satellite Ajisai was launched on August 12, 1986. In response to the TOPEX-POSEIDON mission requirements, the GSFC Space Geodesy Branch and its associates are producing improved models of the Earth's gravitational field. With the launch of Ajisai, precise laser data is now available which can be used to test many current gravity models. The testing of the various gravity field models show improvements of more than 70 percent in the orbital fits when using GEM-T1 and GEM-T2 relative to results obtained with the earlier GEM-10B model. The GEM-T2 orbital fits are at the 13-cm level (RMS). The results of the tests with the various versions of the GEM-T1 model indicate that the addition of satellite altimetry and surface gravity anomalies as additional data types should improve future gravity field models.

  6. [The gravity field of the Earth: geophysical factor of gerontology (The Vorobeichikov effect)].

    Science.gov (United States)

    Shapovalov, S N

    2016-01-01

    The results of investigations of the growth in vitro of Escherichia coli M-17, obtained in the processing of V. M. Vorobeichikov observational data during the movement of the scientific expedition ship «Akademik Fedorov» from St. Petersburg to Antarctica and back, in the period from 13.11.2002 on 26.05.2003 (48th Russian Antarctic expedition). The findings based on the growth in vitro of Escherichia coli from changes in geographical location on a planetary scale, that doesn't eliminate the dependence of other species of microorganisms from the spatial position in the gravity field of the Earth. It is established that the duration of the lag phase of Escherichia coli in the Equatorial zone close to its duration in the high-latitude zone and Antarctic, however, the duration of the lag phase at the equator and the Antarctic corresponds to the time of the lag phase at the time of the Central phase of the lunar Eclipse. The conclusion about high sensitivity in vitro of Escherichia coli to the field of gravity of the Earth, and to syzigium events.

  7. Classical geometrical interpretation of ghost fields and anomalies in Yang-Mills theory and quantum gravity

    International Nuclear Information System (INIS)

    Thierry-Mieg, J.

    1985-01-01

    The reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity

  8. Artificial gravity - The evolution of variable gravity research

    Science.gov (United States)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  9. Scales of gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory

    2002-01-01

    We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework

  10. Gravity wave vertical energy flux at 95 km

    Science.gov (United States)

    Jacob, P. G.; Jacka, F.

    1985-01-01

    A three-field photometer (3FP) located at Mt. Torrens near Adelaide, is capable of monitoring different airglow emissions from three spaced fields in the sky. A wheel containing up to six different narrow bandpass interference filters can be rotated, allowing each of the filters to be sequentially placed into each of the three fields. The airglow emission of interest is the 557.7 nm line which has an intensity maximum at 95 km. Each circular field of view is located at the apexes of an equilateral triangle centered on zenith with diameters of 5 km and field separations of 13 km when projected to the 95-km level. The sampling period was 30 seconds and typical data lengths were between 7 and 8 hours. The analysis and results from the interaction of gravity waves on the 557.7 nm emission layer are derived using an atmospheric model similar to that proposed by Hines (1960) where the atmosphere is assumed isothermal and perturbations caused by gravity waves are small and adiabatic, therefore, resulting in linearized equations of motion. In the absence of waves, the atmosphere is also considered stationary. Thirteen nights of quality data from January 1983 to October 1984, covering all seasons, are used in this analysis.

  11. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others

  12. Covariant formulation of scalar-torsion gravity

    Science.gov (United States)

    Hohmann, Manuel; Järv, Laur; Ualikhanova, Ulbossyn

    2018-05-01

    We consider a generalized teleparallel theory of gravitation, where the action contains an arbitrary function of the torsion scalar and a scalar field, f (T ,ϕ ) , thus encompassing the cases of f (T ) gravity and a nonminimally coupled scalar field as subclasses. The action is manifestly Lorentz invariant when besides the tetrad one allows for a flat but nontrivial spin connection. We derive the field equations and demonstrate how the antisymmetric part of the tetrad equations is automatically satisfied when the spin connection equation holds. The spin connection equation is a vital part of the covariant formulation, since it determines the spin connection associated with a given tetrad. We discuss how the spin connection equation can be solved in general and provide the cosmological and spherically symmetric examples. Finally, we generalize the theory to an arbitrary number of scalar fields.

  13. Experimental tests of relativistic gravity

    International Nuclear Information System (INIS)

    Damour, Thibault

    2000-01-01

    The confrontation between Einstein's gravitation theory and experimental results, notably binary pulsar data, is summarized and its significance discussed. Experiment and theory agree at the 10 -3 level or better. All the basic structures of Einstein's theory (coupling of gravity matter; propagation and self-interaction of the gravitational field, including in strong field conditions) have been verified. However, the theoretical possibility that scalar couplings be naturally driven toward zero by the cosmological expansion suggests that the present agreement between Einstein's theory and experiment might be compatible with the existence of a long-range scalar contribution to gravity (such as the dilation field, or a moduli field, of string theory). This provides a new theoretical paradigm, and new motivations for improving the experimental tests of gravity

  14. Ostrogradski Hamiltonian approach for geodetic brane gravity

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2010-01-01

    We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.

  15. Gravitational lensing in metric theories of gravity

    International Nuclear Information System (INIS)

    Sereno, Mauro

    2003-01-01

    Gravitational lensing in metric theories of gravity is discussed. I introduce a generalized approximate metric element, inclusive of both post-post-Newtonian contributions and a gravitomagnetic field. Following Fermat's principle and standard hypotheses, I derive the time delay function and deflection angle caused by an isolated mass distribution. Several astrophysical systems are considered. In most of the cases, the gravitomagnetic correction offers the best perspectives for an observational detection. Actual measurements distinguish only marginally different metric theories from each other

  16. Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy

    Science.gov (United States)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.

  17. Equation of Motion of a Mass Point in Gravitational Field and Classical Tests of Gauge Theory of Gravity

    International Nuclear Information System (INIS)

    Wu Ning; Zhang Dahua

    2007-01-01

    A systematic method is developed to study the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.

  18. Moho Depth Derived from Gravity Data in the Taiwan Strait Area

    Directory of Open Access Journals (Sweden)

    Hsien-Hsiang Hsieh

    2010-01-01

    Full Text Available We have constructed are gional Bouguer gravity anomaly map using marine and land data from Tai wan and the Chinese province of Fuchien, as well as SEASAT altimetry-de rived gravity data for the Tai wan Strait and its surrounding area. The map shows isogals trending generally in a NE-SW direction, conforming with the over all shallower geo logical strike of the strait. Removing gravity effects generated by the water layer and seafloor to pography, the regional Bouguer gravity anomaly is obtained, reflecting the subsurface structure. Moho depth is then computed by the Parker-Oldenburg iterative method from the regional Bouguer gravity data set. Over the strait area, the geometry of the Moho relief is smooth with an average depth of about 30 km, except for the Penghu up lift. Moho depth is shallower in the Taiwan Strait and thickens to ward both sides of the strait. The relatively shallower Moho depth, reaching up to 28 km, is convex up ward underneath the Penghu uplift.

  19. The gravity field of the Red Sea and East Africa

    Science.gov (United States)

    Makris, Jannis; Henke, Christian H.; Egloff, Frank; Akamaluk, Thomas

    1991-11-01

    Reevaluation of all gravity data from the Red Sea, the Gulf of Aden and East Africa permitted the compilation of a new Bouguer anomaly map. The intensity of the gravity field and its regional pattern correlate closely with the topographic features of the region. The maximum Bouguer values (> + 100 mGal) are located over the median troughs of the Red Sea and Gulf of Aden. Dense juvenile oceanic crust in these rifts and intruding magmas in stretched continental areas produce excess mass responsible for the anomaly highs. In the Red Sea the orientation of the gravity highs is NW-SE in the south, turning to NE-SW in the north, almost parallel to the Aqaba-Dead Sea strike. This pattern reveals that the present basin axis is not identical with that which formed the Tertiary coastal margins and the pre-Red Sea zones of crustal weakness. In the Gulf of Aden, new oceanic crust along the Tadjura Trench and its eastward extension is also expressed in the Bouguer anomaly map by gravity highs and a sharp bending of the isolines. A maximum of approx. +150 mGal is located over the central section of the Sheba Ridge. Bouguer gravity values over the East African and Yemen Plateaus are of the order of -180 to -240 mGal, indicating significant crustal thickening. On the Somali Plateau, the Marda Fault also has a strong gravity signature that can be traced towards Somalia. By constraining crustal thickness and structure with seismic data and density values from the velocity distribution by means of the Nafe-Drake and Birch relationships, we computed density models for the crust and upper mantle. The crustal thickness is of the order of 40 km beneath the plateaus and only 5 to 6 km at the oceanized parts in the central and southern portions of the Red Sea median trough. The flanks of the southern Red Sea and the corresponding Arabian side are underlain by 12 to 16 km thick stretched continental type crust. Oceanization offshore Sudan and Egypt is asymmetrical. The continental crust

  20. Consistent deformations of dual formulations of linearized gravity: A no-go result

    International Nuclear Information System (INIS)

    Bekaert, Xavier; Boulanger, Nicolas; Henneaux, Marc

    2003-01-01

    The consistent, local, smooth deformations of the dual formulation of linearized gravity involving a tensor field in the exotic representation of the Lorentz group with Young symmetry type (D-3,1) (one column of length D-3 and one column of length 1) are systematically investigated. The rigidity of the Abelian gauge algebra is first established. We next prove a no-go theorem for interactions involving at most two derivatives of the fields

  1. Non-commutative gauge Gravity: Second- order Correction and Scalar Particles Creation

    International Nuclear Information System (INIS)

    Zaim, S.

    2009-01-01

    A noncommutative gauge theory for a charged scalar field is constructed. The invariance of this model under local Poincare and general coordinate transformations is verified. Using the general modified field equation, a general Klein-Gordon equation up to the second order of the noncommu- tativity parameter is derived. As an application, we choose the Bianchi I universe. Using the Seiberg-Witten maps, the deformed noncommutative metric is obtained and a particle production process is studied. It is shown that the noncommutativity plays the same role as an electric field, gravity and chemical potential.

  2. Classical geometrical interpretation of ghost fields and anomalies in Yang-Mills theory and quantum gravity

    International Nuclear Information System (INIS)

    Thierry-Mieg, J.

    1985-01-01

    This paper discusses the reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity

  3. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  4. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  5. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  6. Gravity as a dynamical consequence of the strong, weak, and electromagnetic interactions

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    In this paper it is argued that Newton's gravitational constant G is calculable, and a specific calculation of G for a class of gauge theories is given. A brief review of past studies of G, especially its scale invariance, scalar fields, and the quantization of gravity, is given. A formula for G that expresses in precise terms the author's philosophy that gravity is induced as a result of quantum fluctuations, as well as a Feynam diagram representing the formula, is derived. Finally, such a calculation of G in the real world, though not yet possible, is anticipated

  7. Non-perturbative gravity at different length scales

    International Nuclear Information System (INIS)

    Folkerts, Sarah

    2013-01-01

    problem. Since the axion is the (pseudo-) Goldstone boson of a broken U(1) global symmetry, quantum gravitational global symmetry violations could reinstate the CP problem even in the presence of the axion. We show that in the presence of massless neutrinos possible conflicts with the axion solution can be resolved. Demanding a viable axion solution of the strong CP problem, we derive new bounds on neutrino masses. In addition, we investigate the QCD vacuum energy screening mechanism for light quarks. It is well-known that the θ-dependence of the QCD vacuum vanishes linearly with the lightest quark mass. By an analogy with Schwinger pair creation in a strong electric field, we consider vacuum screening by η' bubble nucleation. We find that using the standard instanton approximation for the η' potential, the linear dependence is not recovered. We take this as an indication for the non-analyticity of the QCD vacuum energy proposed by Witten. In the last part of this thesis, we are concerned with gravitational effects on cosmological scales. The recent Planck data indicate that one of the best motivated dark matter candidates, the axion, is in conflict with bounds on isocurvature perturbations. We show that the isocurvature fluctuations can be efficiently suppressed when introducing a non-minimal kinetic coupling for the axion field during inflation. Thus, the axion can be a viable dark matter candidate for a large range of parameters. We show that the same coupling allows for the Standard Model Higgs to drive inflation and the dark matter density to be produced by the axion. Gravitational effects on large scales would also be sensitive to a possible mass for the graviton. However, such a modification has been known to be plagued by inconsistencies. In light of the recent proposal of a ghost-free theory of massive gravity by de Rham, Gabadadze and Tolley, we investigate the cubic order interactions of this theory in terms of helicities of a massive spin-2

  8. Conformal field theory in conformal space

    International Nuclear Information System (INIS)

    Preitschopf, C.R.; Vasiliev, M.A.

    1999-01-01

    We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems

  9. Cosmology from group field theory formalism for quantum gravity.

    Science.gov (United States)

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2013-07-19

    We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.

  10. Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Cvetic, Mirjam; Nojiri, Shin'ichi; Odintsov, S.D.

    2002-01-01

    We investigate the charged Schwarzschild-anti-de Sitter (SAdS) BH thermodynamics in 5d Einstein-Gauss-Bonnet gravity with electromagnetic field. The Hawking-Page phase transitions between SAdS BH and pure AdS space are studied. The corresponding phase diagrams (with critical line defined by GB term coefficient and electric charge) are drawn. The possibility to account for higher derivative Maxwell terms is mentioned. In frames of proposed dS/CFT correspondence it is demonstrated that brane gravity maybe localized similarly to AdS/CFT. SdS BH thermodynamics in 5d Einstein and Einstein-Gauss-Bonnet gravity is considered. The corresponding (complicated) surface counterterms are found and used to get the conserved BH mass, free energy and entropy. The interesting feature of higher derivative gravity is the possibility for negative (or zero) SdS (or SAdS) BH entropy which depends on the parameters of higher derivative terms. We speculate that the appearance of negative entropy may indicate a new type instability where a transition between SdS (SAdS) BH with negative entropy to SAdS (SdS) BH with positive entropy would occur

  11. Gravity field and structure of the Sorong Fault Zone, eastern Indonesia

    Science.gov (United States)

    Sardjono

    Gravity surveys along coastlines of islands in the region Banggai-Sula, Eastern Sulawesi, Halmahera, Bacan and Obi were carried out as part of the Sorong Fault Zone Project. Results of the Surveys were integrated with gravity data previously acquired by other projects, including on-land gravity data from the Bird Head area Irian Jaya (Dow et al 1986), Seram Island (Milsom 1977), Buru Island (Oemar and Reminton 1993) and Central Sulawesi (Silver et al. 1983) as well as marine gravity information within and surrounding the Sorong Fault Zone (Bowin et al. 1980). Gravity expeditions of the Sorong Fault Zone Project also include measurements in Mayu Island and the island group of Talaud, situated further north in the Central Molucca Sea region. A total of one hundred and forty two gravity data were acquired in the region of Banggai-Sula islands, forty seven in eastern part of Central Sulawesi, about four hundred in Halmahera, Bacan and Obi, and seventy nine in Mayu and Talaud. Surveys in the eastern part of Central Sulawesi were carried out for the purpose of tieing the older gravity data obtained from Silver et al. (1983) and the more recent data of the Sorong Fault Zone Project. About one thousand thirty hundred and thirty gravity data were acquired as part of the Irian Jaya Geological Mapping Project (IJGMP) in the period of 1978-1983, a project commissioned by the Indonesian Geological Research and Development Centre (GRDC) and the Australian Bureau of Mineral Resources (BMR). The remoteness of the survey areas of the Sorong Fault Zone Project necessitated a careful planning for travel arrangements and provision of logistics. A wide range of magnitude of gravity field was observed in the Sorong Fault Zone, extending from values below -250 mGal recorded in the southern part of the Molucca Sea to values in excess of +320 mGal measured near to sea level in the coastal areas south of Mangole and north of Sulabesi, the two islands of the Sula Group. Steep gradients of

  12. A nonlinear scenario for development of vortex layer instability in gravity field

    International Nuclear Information System (INIS)

    Goncharov, V. P.

    2007-01-01

    A Hamiltonian version of contour dynamics is formulated for models of constant-vorticity plane flows with interfaces. The proposed approach is used as a framework for a nonlinear scenario for instability development. Localized vortex blobs are analyzed as structural elements of a strongly perturbed wall layer of a vorticity-carrying fluid with free boundary in gravity field. Gravity and vorticity effects on the geometry and velocity of vortex structures are examined. It is shown that compactly supported nonlinear solutions (compactons) are candidates for the role of particle-like vortex structures in models of flow breakdown. An analysis of the instability mechanism demonstrates the possibility of a self-similar collapse. It is found that the vortex shape stabilizes at the final stage of the collapse, while the vortex sheet strength on its boundary increases as (t 0 - t) -1 , where t 0 is the collapse time

  13. Post-Newtonian parameter γ in generalized non-local gravity

    Science.gov (United States)

    Zhang, Xue; Wu, YaBo; Yang, WeiQiang; Zhang, ChengYuan; Chen, BoHai; Zhang, Nan

    2017-10-01

    We investigate the post-Newtonian parameter γ and derive its formalism in generalized non-local (GNL) gravity, which is the modified theory of general relativity (GR) obtained by adding a term m 2 n-2 R☐-n R to the Einstein-Hilbert action. Concretely, based on parametrizing the generalized non-local action in which gravity is described by a series of dynamical scalar fields ϕ i in addition to the metric tensor g μν, the post-Newtonian limit is computed, and the effective gravitational constant as well as the post-Newtonian parameters are directly obtained from the generalized non-local gravity. Moreover, by discussing the values of the parametrized post-Newtonian parameters γ, we can compare our expressions and results with those in Hohmann and Järv et al. (2016), as well as current observational constraints on the values of γ in Will (2006). Hence, we draw restrictions on the nonminimal coupling terms F̅ around their background values.

  14. Isotropic background for interacting two fluid scenario coupled with zero mass scalar field in modified gravity

    International Nuclear Information System (INIS)

    Chirde, V.R.; Shekh, S.H.

    2016-01-01

    The modified theories of gravity have engrossed much attention in the last decade, especially f(R) gravity. In this contextual exploration, we investigate interaction between barotropic fluid and dark energy with zero-mass scalar field for the spatially homogeneous and isotropic flat FRW universe. In this universe, the field equations correspond to the particular choice of f(R) = R+bR m . The exact solutions of the field equations are obtained by applying volumetric power law and exponential law of expansion. In power and exponential law of expansion, the universe shows both matter dominated and DE era for b ≤ 0 and b ≥ 0 and remain present in dark era respectively, but power law model is fully occupying with real matter for b > 0 and for b < 0 exponential model expands with negative pressure and remain present in matter dominated phase respectively. The physical behavior of the universe has been discussed by using some physical quantities

  15. Calculation of gravity and magnetic anomalies along profiles with end corrections and inverse solutions for density and magnetization

    Science.gov (United States)

    Cady, John W.

    1977-01-01

    An equation derived for the vertical gravity field due to a body with polygonal cross section and finite strike length.  The equations consists of the 2-dimensional equation of Talwani, Worzel, and Landisman (1959), with the addition of end corrections.  Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973).  They coined the term "2 1/2-dimensional" to describe the geometry.

  16. Multi-leg one-loop gravity amplitudes from gauge theory

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.; Perelstein, M.; Rozowsky, J.S.

    1999-01-01

    By exploiting relations between gravity and gauge theories, we present two infinite sequences of one-loop n-graviton scattering amplitudes: the 'maximally helicity-violating' amplitudes in N = 8 supergravity, and the 'all-plus' helicity amplitudes in gravity with any minimally coupled massless matter content. The all-plus amplitudes correspond to self-dual field configurations and vanish in supersymmetric theories. We make use of the tree-level Kawai-Lewellen-Tye (KLT) relations between open and closed string theory amplitudes, which in the low-energy limit imply relations between gravity and gauge theory tree amplitudes. For n ≤ 6, we determine the all-plus amplitudes explicitly from their unitarity cuts. The KLT relations, applied to the cuts, allow us to extend to gravity a previously found 'dimension-shifting' relation between (the cuts of) the all-plus amplitudes in gauge theory and the maximally helicity-violating amplitudes in N = 4 super-Yang-Mills theory. The gravitational version of the relation lets us determine the n ≤ 6N = 8 supergravity amplitudes from the all-plus gravity amplitudes. We infer the two series of amplitudes for all n from their soft and collinear properties, which can also be derived from gauge theory using the KLT relations

  17. On the motion of particles in covariant Hořava-Lifshitz gravity and the meaning of the A-field

    International Nuclear Information System (INIS)

    Abdalla, Elcio; Silva, Alan M. da

    2012-01-01

    We studied the low energy motion of particles in the general covariant version of Hořava-Lifshitz gravity proposed by Hořava and Melby-Thompson. Using a scalar field coupled to gravity according to the minimal substitution recipe proposed by da Silva and taking the geometrical optics limit, we could write an effective relativistic metric for a general solution. As a result, we discovered that the equivalence principle is not in general recovered at low energies, unless the spatial Laplacian of A vanishes. Finally, we analyzed the motion on the spherical symmetric solution proposed by Hořava and Melby-Thompson, where we could find its effective line element and compute spin-0 geodesics. Using standard methods we have shown that such an effective metric cannot reproduce Newton's gravity law even in the weak gravitational field approximation.

  18. Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms.

    Science.gov (United States)

    Cady, J.W.

    1980-01-01

    An equation is derived for the vertical gravity field due to a homogeneous body with polygonal cross‐section and finite strike‐length. The equation can be separated into the two‐dimensional (2-D) terms of Talwani et al. (1959) and exact terms for the contributions of the ends of the prism. Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973), who coined the term “two‐and‐a‐half dimensional” (2 1/2-D) to describe the geometry. Magnetic intensities are expressed as a vector sum, from which the common dot product formulation can be obtained by binomial expansion.

  19. Determining the Ocean's Role on the Variable Gravity Field on Earth Rotation

    Science.gov (United States)

    Ponte, Rui M.

    1999-01-01

    A number of ocean models of different complexity have been used to study changes in the oceanic mass field and angular momentum and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability.

  20. Quantum gravity in two dimensions and the SL(2,R) current algebra

    International Nuclear Information System (INIS)

    Helayel-Neto, J.A.; Smith, A.W.; Mokhtari, S.

    1990-01-01

    Gravity coupled to a scalar field in two dimensions is studied and it is shown that in the light-cone gauge there exists a new symmetry associated with the scalar field that leads naturally to the SL(2,R) kac-Moody current algebra. This algebra is derived from the traceless part of the energy-momentum tensor whose conservation is shown to give the well-known constraint necessary to obtain the chiral SL (2,R) algebra. (orig.)

  1. Quantum gravity in two dimensions and the SL(2,R) current algebra

    Energy Technology Data Exchange (ETDEWEB)

    Helayel-Neto, J.A.; Smith, A.W. (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro Universidade Catolica de Petropolis, RJ (Brazil)); Mokhtari, S. (International Centre for Theoretical Physics, Trieste (Italy))

    1990-02-08

    Gravity coupled to a scalar field in two dimensions is studied and it is shown that in the light-cone gauge there exists a new symmetry associated with the scalar field that leads naturally to the SL(2,R) kac-Moody current algebra. This algebra is derived from the traceless part of the energy-momentum tensor whose conservation is shown to give the well-known constraint necessary to obtain the chiral SL (2,R) algebra. (orig.).

  2. Quantum gravity in two dimensions and the SL(2,R) current algebra

    International Nuclear Information System (INIS)

    Helayel Neto, J.A.; Smith, A.W.; Mokhtari, S.

    1989-12-01

    Gravity coupled to a scalar field in two dimensions is studied and it is shown that in the light-cone gauge there exists a new symmetry associated with the scalar field that leads naturally to SL(2,R)-Kac-Moody current algebra. This algebra is derived from the traceless part of the energy-momentum tensor whose conservation is shown to give the well-known constraint necessary to obtain the chiral SL(2,R) algebra. (author). 8 refs

  3. The ultraviolet behavior of quantum gravity

    Science.gov (United States)

    Anselmi, Damiano; Piva, Marco

    2018-05-01

    A theory of quantum gravity has been recently proposed by means of a novel quantization prescription, which is able to turn the poles of the free propagators that are due to the higher derivatives into fakeons. The classical Lagrangian contains the cosmological term, the Hilbert term, √{-g}{R}_{μ ν }{R}^{μ ν } and √{-g}{R}^2 . In this paper, we compute the one-loop renormalization of the theory and the absorptive part of the graviton self energy. The results illustrate the mechanism that makes renormalizability compatible with unitarity. The fakeons disentangle the real part of the self energy from the imaginary part. The former obeys a renormalizable power counting, while the latter obeys the nonrenormalizable power counting of the low energy expansion and is consistent with unitarity in the limit of vanishing cosmological constant. The value of the absorptive part is related to the central charge c of the matter fields coupled to gravity.

  4. Collection of Observed Gravity Values, Absolute Gravity Measurements, Grids and Other Derived Summary Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Geophysical Data Center (NGDC) of NOAA, in cooperation with the National Geodetic Survey of NOAA, have published a Gravity CD-ROM containing observed...

  5. On a new approach for constructing wormholes in Einstein-Born-Infeld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young [Kunsan National University, Department of Physics, Kunsan (Korea, Republic of); Park, Mu-In [Sogang University, Research Institute for Basic Science, Seoul (Korea, Republic of)

    2016-11-15

    We study a new approach for the wormhole construction in Einstein-Born-Infeld gravity, which does not require exotic matters in the Einstein equation. The Born-Infeld field equation is not modified by coordinate independent conditions of continuous metric tensor and its derivatives, even though the Born-Infeld fields have discontinuities in their derivatives at the throat in general. We study the relation of the newly introduced conditions with the usual continuity equation for the energy-momentum tensor and the gravitational Bianchi identity. We find that there is no violation of energy conditions for the Born-Infeld fields contrary to the usual approaches. The exoticity of the energy-momentum tensor is not essential for sustaining wormholes. Some open problems are discussed. (orig.)

  6. Dark Matter in Quantum Gravity

    OpenAIRE

    Calmet, Xavier; Latosh, Boris

    2018-01-01

    We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.

  7. Curved backgrounds in emergent gravity

    Science.gov (United States)

    Chaurasia, Shikha; Erlich, Joshua; Zhou, Yiyu

    2018-06-01

    Field theories that are generally covariant but nongravitational at tree level typically give rise to an emergent gravitational interaction whose strength depends on a physical regulator. We consider emergent gravity models in which scalar fields assume the role of clock and rulers, addressing the problem of time in quantum gravity. We discuss the possibility of nontrivial dynamics for clock and ruler fields, and describe some of the consequences of those dynamics for the emergent gravitational theory.

  8. And what if gravity is intrinsically quantic ?

    OpenAIRE

    Ziaeepour, Houri

    2009-01-01

    Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, sting theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and former a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum ...

  9. Renormalisation in perturbative quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rodigast, Andreas

    2012-07-02

    In this thesis, we derive the gravitational one-loop corrections to the propagators and interactions of the Standard Model field. We consider a higher dimensional brane world scenario: Here, gravitons can propagate in the whole D dimensional space-time whereas the matter fields are confined to a d dimensional sub-manifold (brane). In order to determine the divergent part of the one-loop diagrams, we develop a new regularisation scheme which is both sensitive for polynomial divergences and respects the Ward identities of the Yang-Mills theory. We calculate the gravitational contributions to the {beta} functions of non-Abelian gauge theories, the quartic scalar self-interaction and the Yukawa coupling between scalars and fermions. In the physically interesting case of a four dimensional matter brane, the gravitational contributions to the running of the Yang-Mills coupling constant vanish. The leading contributions to the other two couplings are positive. These results do not depend on the number of extra dimensions. We further compute the gravitationally induced one-loop counterterms with higher covariant derivatives for scalars, Dirac fermions and gauge bosons. In is shown that these counterterms do not coincide with the higher derivative terms in the Lee-Wick standard model. A possible connection between quantum gravity and the latter cannot be inferred.

  10. Source Parameter Inversion for Recent Great Earthquakes from a Decade-long Observation of Global Gravity Fields

    Science.gov (United States)

    Han, Shin-Chan; Riva, Ricccardo; Sauber, Jeanne; Okal, Emile

    2013-01-01

    We quantify gravity changes after great earthquakes present within the 10 year long time series of monthly Gravity Recovery and Climate Experiment (GRACE) gravity fields. Using spherical harmonic normal-mode formulation, the respective source parameters of moment tensor and double-couple were estimated. For the 2004 Sumatra-Andaman earthquake, the gravity data indicate a composite moment of 1.2x10(exp 23)Nm with a dip of 10deg, in agreement with the estimate obtained at ultralong seismic periods. For the 2010 Maule earthquake, the GRACE solutions range from 2.0 to 2.7x10(exp 22)Nm for dips of 12deg-24deg and centroid depths within the lower crust. For the 2011 Tohoku-Oki earthquake, the estimated scalar moments range from 4.1 to 6.1x10(exp 22)Nm, with dips of 9deg-19deg and centroid depths within the lower crust. For the 2012 Indian Ocean strike-slip earthquakes, the gravity data delineate a composite moment of 1.9x10(exp 22)Nm regardless of the centroid depth, comparing favorably with the total moment of the main ruptures and aftershocks. The smallest event we successfully analyzed with GRACE was the 2007 Bengkulu earthquake with M(sub 0) approx. 5.0x10(exp 21)Nm. We found that the gravity data constrain the focal mechanism with the centroid only within the upper and lower crustal layers for thrust events. Deeper sources (i.e., in the upper mantle) could not reproduce the gravity observation as the larger rigidity and bulk modulus at mantle depths inhibit the interior from changing its volume, thus reducing the negative gravity component. Focal mechanisms and seismic moments obtained in this study represent the behavior of the sources on temporal and spatial scales exceeding the seismic and geodetic spectrum.

  11. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  12. Crustal and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data

    Science.gov (United States)

    2012-09-01

    We use both free-air and Bouguer gravity anomalies derived from the global gravity model of the GRACE satellite mission. The gravity data provide...relocation analysis. We use both free-air and Bouguer gravity anomalies derived from the global gravity model of the GRACE satellite mission. The gravity...topographic relief this effect needs to be removed; thus, we converted free-air anomalies into Bouguer anomalies assuming a standard density for crustal rocks

  13. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    Science.gov (United States)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  14. Quantum Einstein gravity. Advancements of heat kernel-based renormalization group studies

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Kai

    2012-10-15

    The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory. As its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained. The constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point. Finally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement

  15. Quantum Einstein gravity. Advancements of heat kernel-based renormalization group studies

    International Nuclear Information System (INIS)

    Groh, Kai

    2012-10-01

    The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory. As its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained. The constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point. Finally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of

  16. Acoustic levitation in the presence of gravity

    Science.gov (United States)

    Collas, P.; Barmatz, M.; Shipley, C.

    1989-01-01

    The method of Gor'kov (1961) has been applied to derive general expressions for the total potential and force on a small spherical object in a resonant chamber in the presence of both acoustic and gravitational force fields. The levitation position is also determined in rectangular resonators for the simultaneous excitation of up to three acoustic modes, and the results are applied to the triple-axis acoustic levitator. The analysis is applied to rectangular, spherical, and cylindrical single-mode levitators that are arbitrarily oriented relative to the gravitational force field. Criteria are determined for isotropic force fields in rectangular and cylindrical resonators. It is demonstrated that an object will be situated within a volume of possible levitation positions at a point determined by the relative strength of the acoustic and gravitational fields and the orientation of the chamber relative to gravity.

  17. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    Science.gov (United States)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  18. Carroll versus Galilei gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2017-03-30

    We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.

  19. Determining the 3D Subsurface Density Structure of Taurus Littrow Valley Using Apollo 17 Gravity Data

    Science.gov (United States)

    Urbancic, N.; Ghent, R.; Stanley, S,; Johnson, C. L.; Carroll, K. A.; Hatch, D.; Williamson, M. C.; Garry, W. B.; Talwani, M.

    2016-01-01

    Surface gravity surveys can detect subsurface density variations that can reveal subsurface geologic features. In 1972, the Apollo 17 (A17) mission conducted the Traverse Gravimeter Experiment (TGE) using a gravimeter that measured the local gravity field near Taurus Littrow Valley (TLV), located on the south-eastern rim of the Serenitatis basin. TLV is hypothesized to be a basaltfilled radial graben resulting from the impact that formed Mare Serenitatis. It is bounded by both the North and South Massifs (NM and SM) as well as other smaller mountains to the East that are thought to be mainly composed of brecciated highland material. The TGE is the first and only successful gravity survey on the surface of the Moon. Other more recent satellite surveys, such as NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission (2011- 2012), have produced the best global gravity field to date (approx. 13km resolution). However, these satellite surveys are not sensitive enough to detect fine-scale (<1km) lunar subsurface structures. This underscores the value of the data collected at the surface by A17. In the original analysis of the data a 2D forward-modelling approach was used to derive a thickness of the subsurface basalt layer of 1.0 km by assuming a simple flat-faced rectangular geometry and using densities derived from Apollo lunar samples. We are investigating whether modern 3D modelling techniques in combination with high-resolution topographical and image datasets can reveal additional fine-scale subsurface structure in TLV.

  20. Glacier mass balance in high-arctic areas with anomalous gravity

    Science.gov (United States)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  1. Gravitino dark matter in gravity mediation

    International Nuclear Information System (INIS)

    Kersten, Joern

    2009-06-01

    We study general conditions for the gravitino to be the lightest supersymmetric particle (LSP) in models with gravity mediated supersymmetry breaking. We find that the decisive quantities are the Kaehler potential K and the gauge kinetic function f. In constrained MSSM (CMSSM) type models, the gravitino LSP occurs if the gaugino mass at the GUT scale is greater than approximately 2.5 gravitino masses. This translates into √(K'')/f'<0.2, where the derivatives are taken with respect to the dominant SUSY breaking field. This requirement can easily be satisfied in string-motivated setups. (orig.)

  2. Discussion of entanglement entropy in quantum gravity

    International Nuclear Information System (INIS)

    Ma, Chen-Te

    2018-01-01

    We study entanglement entropy in gravity theory with quantum effects. A simplest model is a two dimensional Einstein gravity theory. We use an n-sheet manifold to obtain an area term of entanglement entropy by summing over all background fields. Based on AdS/CFT correspondence, strongly coupled conformal field theory is expected to describe perturbative quantum gravity theory. An ultraviolet complete quantum gravity theory should not depend on a choice of an entangling surface. To analysis the problem explicitly, we analyze two dimensional conformal field theory. We find that a coefficient of a universal term of entanglement entropy is independent of a choice of an entangling surface in two dimensional conformal field theory for one interval to show a tentative evidence. Finally, we discuss that translational invariance in a quantum system at zero temperature, size goes to infinity and no mass scales, except for cut-off, possibly be a necessary condition in quantum gravity theory by ruing out a volume law of entanglement entropy. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. The simulation of lunar gravity field recovery from D-VLBI of Chang’E-1 and SELENE lunar orbiters

    Science.gov (United States)

    Yan, Jianguo; Ping, Jingsong; Matsumoto, K.; Li, Fei

    2008-07-01

    The lunar gravity field is a foundation to study the lunar interior structure, and to recover the evolution history of the Moon. It is still an open and key topic for lunar science. For above mentioned reasons, it becomes one of the important scientific objectives of recent lunar missions, such as KAGUYA (SELENE) the Japanese lunar mission and Chang’E-1, the Chinese lunar mission. The Chang’E-1 and the SELENE were successfully launched in 2007. It is estimated that these two missions can fly around the Moon longer than 6 months simultaneously. In these two missions, the Chinese new VLBI (Very Long Baseline Interferometry) network will be applied for precise orbit determination (POD) by using a differential VLBI (D-VLBI) method during the mission period. The same-beam D-VLBI technique will contribute to recover the lunar gravity field together with other conventional observables, i.e. R&RR (Range and Range Rate) and multi-way Doppler. Taking VLBI tracking conditions into consideration and using the GEODYNII/SOVLE software of GSFC/NASA/USA [Rowlands, D.D., Marshall, J.A., Mccarthy, J., et al. GEODYN II System Description, vols. 1 5. Contractor Report, Hughes STX Corp. Greenbelt, MD, 1997; Ullman, R.E. SOLVE program: mathematical formulation and guide to user input, Hughes/STX Contractor Report, Contract NAS5-31760. NASA Goddard Space Flight Center, Greenbelt, Maryland, 1994], we simulated the lunar gravity field recovering ability with and without D-VLBI between the Chang’E-1 and SELENE main satellite. The cases of overlapped flying and tracking period of 30 days, 60 days and 90 days have been analyzed, respectively. The results show that D-VLBI tracking between two lunar satellites can improve the gravity field recovery remarkably. The results and methods introduced in this paper will benefit the actual missions.

  4. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  5. The Gravity Field, Orientation, and Ephemeris of Mercury from MESSENGER Observations After Three Years in Orbit

    Science.gov (United States)

    Mazarico, Erwan M.; Genova, Antonio; Goossens, Sander; Lemoine, Gregory; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Solomon, Sean C.

    2014-01-01

    We have analyzed three years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to the earlier global field, and we obtained a preliminary value of the tidal Love number k(sub 2) of 0.451+/-0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06 +/- 0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 +/- 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3: 2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration.

  6. The Crustal Thickness of the Philippine Sea Plate Derived from Gravity Data

    Directory of Open Access Journals (Sweden)

    Horng-Yuan Yen

    2015-01-01

    Full Text Available We constructed a new free-air gravity anomaly map of the Philippine Sea Plate (PSP using ship-tracked gravity data from the National Geophysical Data Center (NGDC. Our results show that the isogals trend correlates well with the tectonic structures in the PSP. After removing the gravity induced by sea water from the free-air gravity data, we obtained the regional Bouguer gravity anomaly, which is later used to compute the Moho geometry in the PSP by applying the Parker-Oldenburg iterative method. Our results indicate that in the southern part of the West Philippine Basin (WPB the crustal thickness is nearly homogeneous with a value of about 5 km, which implies that the WPB is quite stable. The low-amplitude and near-zero free-air gravity anomalies clearly indicate that the whole WPB, except at trenches and island arcs, is nearly in a state of isostatic equilibrium. The average crustal thickness of the Palau Kyushu Ridge (PKR is more than 10 km. In the eastern PSP the crustal thickness gradually increases eastward. Our results also imply that a relatively thin and low density mantle exists beneath the Parece Vela Basin (PVB as a consequence of back-arc spreading and serpentinized upwells of the thin crustal thickness.

  7. The contributions of Bryce DeWitt to quantum gravity

    International Nuclear Information System (INIS)

    Isham, C.J.

    1984-01-01

    The paper reviews the work of Bryce DeWitt in the field of Quantum Gravity. Covariant commutators; R 2 lagrangians; DeWitt and Schwinger; gravity as a regulator; the full background field method; and the canonical quantization of gravity; are all discussed. (U.K.)

  8. Cosmological implications of modified gravity induced by quantum metric fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, Yat Sen School, Guangzhou (China); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Liang, Shi-Dong [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Material and Technology, Guangdong Province Key Laboratory of Display Material and Technology, School of Physics, Guangzhou (China)

    2016-08-15

    We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors. (orig.)

  9. New effective coupled F({sup (4)}R, φ) modified gravity from f({sup (5)}R) gravity in five dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Madriz Aguilar, Jose Edgar [Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Departamento de Matematicas, Guadalajara, Jalisco (Mexico)

    2015-12-15

    Using some ideas of the Wesson induced matter theory, we obtain a new kind of F({sup (4)}R, φ) modified gravity theory as an effective four-dimensional (4D) theory derived from f({sup (5)}R) gravity in five dimensions (5D). This new theory exhibits a different matter coupling than the one in BBHL theory. We show that the field equations of the Wesson induced matter theory and of some brane-world scenarios can be obtained as maximally symmetric solutions of the same f({sup (5)}R) theory. We found criteria for the Dolgov-Kawasaki instabilities for both the f({sup (5)}R) and the F({sup (4)}R, φ) theories. We demonstrate that under certain conditions imposed on the 5D geometry it is possible to interpret the F({sup (4)}R, φ) theory as a modified gravity theory with dynamical coefficients, making this new theory a viable candidate to address the present accelerating cosmic expansion issue. Matter sources in the F({sup (4)}R, φ) case appear induced by the 5D geometry without the necessity of the introduction of matter sources in 5D. (orig.)

  10. Causality and superluminal behavior in classical field theories: Applications to k-essence theories and modified-Newtonian-dynamics-like theories of gravity

    International Nuclear Information System (INIS)

    Bruneton, Jean-Philippe

    2007-01-01

    Field theories with Lorentz (or diffeomorphism invariant) action can exhibit superluminal behavior through the breaking of local Lorentz invariance. Quantum induced superluminal velocities are well-known examples of this effect. The issue of the causal behavior of such propagation is somewhat controversial in the literature and we intend to clarify it. We provide a careful analysis of the meaning of causality in classical relativistic field theories and stress the role played by the Cauchy problem and the notion of chronology. We show that, in general, superluminal behavior threatens causality only if one assumes that a prior chronology in spacetime exists. In the case where superluminal propagation occurs, however, there are at least two nonconformally related metrics in spacetime and thus two available notions of chronology. These two chronologies are on equal footing, and it would thus be misleading to choose ab initio one of them to define causality. Rather, we provide a formulation of causality in which no prior chronology is assumed. We argue that this is the only way to deal with the issue of causality in the case where some degrees of freedom propagate faster than others. In that framework, then, it is shown that superluminal propagation is not necessarily noncausal, the final answer depending on the existence of an initial data formulation. This also depends on global properties of spacetime that we discuss in detail. As an illustration of these conceptual issues, we consider two field theories, namely, k-essence scalar fields and bimetric theories of gravity, and we derive the conditions imposed by causality. We discuss various applications such as the dark energy problem, modified-Newtonian-dynamics-like theories of gravity, and varying speed of light theories

  11. Butterfly effect in 3D gravity

    Science.gov (United States)

    Qaemmaqami, Mohammad M.

    2017-11-01

    We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.

  12. Chiral W-gravities for general extended conformal algebras

    International Nuclear Information System (INIS)

    Hull, C.M.

    1991-01-01

    The gauging of any chiral extended conformal symmetry of any two-dimensional field theory is achieved by coupling to the appropriate chiral W-gravity. Only a linear coupling to the W-gravity gauge fields is needed. The gauging of algebras with central charges requires the introduction of spin-zero gauge fields corresponding to the central charges. The example of Liouville theory is discussed in detail and a new way of coupling it to gravity is obtained. (orig.)

  13. Density heterogeneity of the upper mantle beneath Siberia from satellite gravity and a new regional crustal model

    DEFF Research Database (Denmark)

    Herceg, Matija; Thybo, Hans; Artemieva, Irina

    2013-01-01

    We present a new regional model for the density structure of the upper mantle below Siberia. The residual mantle gravity anomalies are based on gravity data derived from the GOCE gravity gradients and geopotential models, with crustal correction to the gravity field being calculated from a new...... on regional and global crustal models. We analyze how uncertainties and errors in the crustal model propagate from crustal densities to mantle residual gravity anomalies and the density model of the upper mantle. The new regional density model for the Siberian craton and the West Siberian Basin complements...... regional crustal model. This newly compiled database on the crustal seismic structure, complemented by additional constraints from petrological analysis of near-surface rocks and lower crustal xenoliths, allows for a high-resolution correction of the crustal effects as compared to previous studies based...

  14. The hidden flat like universe. Starobinsky-like inflation induced by f(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    El Hanafy, W. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, El Sherouk (Egypt); Egyptian Relativity Group, Giza (Egypt); Nashed, G.G.L. [The British University in Egypt, Centre for Theoretical Physics, P.O. Box 43, El Sherouk (Egypt); Ain Shams University, Mathematics Department, Faculty of Science, Cairo (Egypt); Egyptian Relativity Group, Giza (Egypt)

    2015-06-15

    We study a single-fluid component in a flat like universe (FLU) governed by f(T) gravity theories, where T is the teleparallel torsion scalar. The FLU model, regardless of the value of the spatial curvature k, identifies a special class of f(T) gravity theories. Remarkably, FLU f(T) gravity does not reduce to teleparallel gravity theory. In large Hubble spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. The equation of state evolves similarly in all models k = 0,±1. We study the case when the torsion tensor consists of a scalar field, which enables to derive a quintessence potential from the obtained f(T) gravity theory. The potential produces Starobinsky-like model naturally without using a conformal transformation, with higher orders continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions, so that for a single value of the scalar tilt (spectral index) n{sub s} the theory can predict double tensor-to-scalar ratios r of E-mode and B-mode polarizations. (orig.)

  15. The hidden flat like universe. Starobinsky-like inflation induced by f(T) gravity

    International Nuclear Information System (INIS)

    El Hanafy, W.; Nashed, G.G.L.

    2015-01-01

    We study a single-fluid component in a flat like universe (FLU) governed by f(T) gravity theories, where T is the teleparallel torsion scalar. The FLU model, regardless of the value of the spatial curvature k, identifies a special class of f(T) gravity theories. Remarkably, FLU f(T) gravity does not reduce to teleparallel gravity theory. In large Hubble spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. The equation of state evolves similarly in all models k = 0,±1. We study the case when the torsion tensor consists of a scalar field, which enables to derive a quintessence potential from the obtained f(T) gravity theory. The potential produces Starobinsky-like model naturally without using a conformal transformation, with higher orders continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions, so that for a single value of the scalar tilt (spectral index) n s the theory can predict double tensor-to-scalar ratios r of E-mode and B-mode polarizations. (orig.)

  16. EFTofPNG: a package for high precision computation with the effective field theory of post-Newtonian gravity

    Science.gov (United States)

    Levi, Michele; Steinhoff, Jan

    2017-12-01

    We present a novel public package ‘EFTofPNG’ for high precision computation in the effective field theory of post-Newtonian (PN) gravity, including spins. We created this package in view of the timely need to publicly share automated computation tools, which integrate the various types of physics manifested in the expected increasing influx of gravitational wave (GW) data. Hence, we created a free and open source package, which is self-contained, modular, all-inclusive, and accessible to the classical gravity community. The ‘EFTofPNG’ Mathematica package also uses the power of the ‘xTensor’ package, suited for complicated tensor computation, where our coding also strategically approaches the generic generation of Feynman contractions, which is universal to all perturbation theories in physics, by efficiently treating n-point functions as tensors of rank n. The package currently contains four independent units, which serve as subsidiaries to the main one. Its final unit serves as a pipeline chain for the obtainment of the final GW templates, and provides the full computation of derivatives and physical observables of interest. The upcoming ‘EFTofPNG’ package version 1.0 should cover the point mass sector, and all the spin sectors, up to the fourth PN order, and the two-loop level. We expect and strongly encourage public development of the package to improve its efficiency, and to extend it to further PN sectors, and observables useful for the waveform modelling.

  17. Is there a quantum theory of gravity

    International Nuclear Information System (INIS)

    Strominger, A.

    1984-01-01

    The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)

  18. Anomalies and Hawking fluxes from the black holes of topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Porfyriadis, Achilleas P. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: apporfyr@mit.edu

    2009-05-11

    The anomaly cancellation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. It is found that the terms in this U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancellation method, are in complete agreement with the ones obtained from integrating the Planck distribution.

  19. Topics in string theory and quantum gravity

    CERN Document Server

    Alvarez-Gaume, Luis

    1992-01-01

    These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...

  20. Geometric constructions for repulsive gravity and quantization

    International Nuclear Information System (INIS)

    Hohmann, Manuel

    2010-11-01

    In this thesis we present two geometric theories designed to extend general relativity. It can be seen as one of the aims of such theories to model the observed accelerating expansion of the universe as a gravitational phenomenon, or to provide a mathematical structure for the formulation of quantum field theories on curved spacetimes and quantum gravity. This thesis splits into two parts: In the first part we consider multimetric gravity theories containing N>1 standard model copies which interact only gravitationally and repel each other in the Newtonian limit. The dynamics of each of the standard model copies is governed by its own metric tensor. We show that the antisymmetric case, in which the mutual repulsion between the different matter sectors is of equal strength compared to the attractive gravitational force within each sector, is prohibited by a no-go theorem for N=2. We further show that this theorem does not hold for N>2 by explicitly constructing an antisymmetric multimetric repulsive gravity theory. We then examine several properties of this theory. Most notably, we derive a simple cosmological model and show that the accelerating expansion of the late universe can indeed be explained by the mutual repulsion between the different matter sectors. We further present a simple model for structure formation and show that our model leads to the formation of filament-like structures and voids. Finally, we show that multimetric repulsive gravity is compatible with high-precision solar system data using the parametrized post-Newtonian formalism. In the second part of the thesis we propose a mathematical model of quantum spacetime as an infinite-dimensional manifold locally homeomorphic to an appropriate Schwartz space. This extends and unifies both the standard function space construction of quantum mechanics and the differentiable manifold structure of classical spacetime. In this picture we demonstrate that classical spacetime emerges as a finite

  1. Geometric constructions for repulsive gravity and quantization

    Energy Technology Data Exchange (ETDEWEB)

    Hohmann, Manuel

    2010-11-15

    In this thesis we present two geometric theories designed to extend general relativity. It can be seen as one of the aims of such theories to model the observed accelerating expansion of the universe as a gravitational phenomenon, or to provide a mathematical structure for the formulation of quantum field theories on curved spacetimes and quantum gravity. This thesis splits into two parts: In the first part we consider multimetric gravity theories containing N>1 standard model copies which interact only gravitationally and repel each other in the Newtonian limit. The dynamics of each of the standard model copies is governed by its own metric tensor. We show that the antisymmetric case, in which the mutual repulsion between the different matter sectors is of equal strength compared to the attractive gravitational force within each sector, is prohibited by a no-go theorem for N=2. We further show that this theorem does not hold for N>2 by explicitly constructing an antisymmetric multimetric repulsive gravity theory. We then examine several properties of this theory. Most notably, we derive a simple cosmological model and show that the accelerating expansion of the late universe can indeed be explained by the mutual repulsion between the different matter sectors. We further present a simple model for structure formation and show that our model leads to the formation of filament-like structures and voids. Finally, we show that multimetric repulsive gravity is compatible with high-precision solar system data using the parametrized post-Newtonian formalism. In the second part of the thesis we propose a mathematical model of quantum spacetime as an infinite-dimensional manifold locally homeomorphic to an appropriate Schwartz space. This extends and unifies both the standard function space construction of quantum mechanics and the differentiable manifold structure of classical spacetime. In this picture we demonstrate that classical spacetime emerges as a finite

  2. Renormalization and asymptotic freedom in quantum gravity

    International Nuclear Information System (INIS)

    Tomboulis, E.T.

    1984-01-01

    The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)

  3. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    International Nuclear Information System (INIS)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-01-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  4. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    Science.gov (United States)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-10-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  5. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Luz M., E-mail: luzmarinareyes@gmail.com [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Moreno, Claudia, E-mail: claudia.moreno@cucei.udg.mx [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Madriz Aguilar, Jose Edgar, E-mail: edgar.madriz@red.cucei.udg.mx [Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Universidad de Guadalajara (UdG), Av. Revolucion 1500, S.R. 44430, Guadalajara, Jalisco (Mexico); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) - Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2012-10-22

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  6. Ground track density considerations on the resolvability of gravity field harmonics in a repeat orbit

    Czech Academy of Sciences Publication Activity Database

    Klokočník, Jaroslav; Wagner, C. A.; Kostelecký, J.; Bezděk, Aleš

    2015-01-01

    Roč. 56, č. 6 (2015), 1146-1160 ISSN 0273-1177 R&D Projects: GA ČR GA13-36843S Institutional support: RVO:67985815 Keywords : gravity field of the Earth * resonant/repeat orbit missions * ground track density Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.409, year: 2015

  7. 3D Gravity Modeling of Complex Salt Features in the Southern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Mauricio Nava-Flores

    2016-01-01

    Full Text Available We present a three-dimensional (3D gravity modeling and inversion approach and its application to complex geological settings characterized by several allochthonous salt bodies embedded in terrigenous sediments. Synthetic gravity data were computed for 3D forward modeling of salt bodies interpreted from Prestack Depth Migration (PSDM seismic images. Density contrasts for the salt bodies surrounded by sedimentary units are derived from density-compaction curves for the northern Gulf of Mexico’s oil exploration surveys. By integrating results from different shape- and depth-source estimation algorithms, we built an initial model for the gravity anomaly inversion. We then applied a numerically optimized 3D simulated annealing gravity inversion method. The inverted 3D density model successfully retrieves the synthetic salt body ensemble. Results highlight the significance of integrating high-resolution potential field data for salt and subsalt imaging in oil exploration.

  8. Flow equation of quantum Einstein gravity in a higher-derivative truncation

    International Nuclear Information System (INIS)

    Lauscher, O.; Reuter, M.

    2002-01-01

    Motivated by recent evidence indicating that quantum Einstein gravity (QEG) might be nonperturbatively renormalizable, the exact renormalization group equation of QEG is evaluated in a truncation of theory space which generalizes the Einstein-Hilbert truncation by the inclusion of a higher-derivative term (R 2 ). The beta functions describing the renormalization group flow of the cosmological constant, Newton's constant, and the R 2 coupling are computed explicitly. The fixed point properties of the 3-dimensional flow are investigated, and they are confronted with those of the 2-dimensional Einstein-Hilbert flow. The non-Gaussian fixed point predicted by the latter is found to generalize to a fixed point on the enlarged theory space. In order to test the reliability of the R 2 truncation near this fixed point we analyze the residual scheme dependence of various universal quantities; it turns out to be very weak. The two truncations are compared in detail, and their numerical predictions are found to agree with a surprisingly high precision. Because of the consistency of the results it appears increasingly unlikely that the non-Gaussian fixed point is an artifact of the truncation. If it is present in the exact theory QEG is probably nonperturbatively renormalizable and ''asymptotically safe.'' We discuss how the conformal factor problem of Euclidean gravity manifests itself in the exact renormalization group approach and show that, in the R 2 truncation, the investigation of the fixed point is not afflicted with this problem. Also the Gaussian fixed point of the Einstein-Hilbert truncation is analyzed; it turns out that it does not generalize to a corresponding fixed point on the enlarged theory space

  9. Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes

    Directory of Open Access Journals (Sweden)

    V. F. Andrioli

    2013-05-01

    Full Text Available The advantages of using a composite day analysis for all-sky interferometric meteor radars when measuring mean winds and tides are widely known. On the other hand, problems arise if this technique is applied to Hocking's (2005 gravity wave analysis for all-sky meteor radars. In this paper we describe how a simple change in the procedure makes it possible to use a composite day in Hocking's analysis. Also, we explain how a modified composite day can be constructed to test its ability to measure gravity wave momentum fluxes. Test results for specified mean, tidal, and gravity wave fields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the modified composite day allows characterization of monthly mean profiles of the gravity wave momentum fluxes, with good accuracy at least at the altitudes where the meteor counts are large (from 89 to 92.5 km. In the present work we also show that the variances measured with Hocking's method are often contaminated by the tidal fields and suggest a method of empirical correction derived from a simple simulation model. The results presented here greatly increase our confidence because they show that our technique is able to remove the tide-induced false variances from Hocking's analysis.

  10. Evaluating the Wald entropy from two-derivative terms in quadratic actions

    International Nuclear Information System (INIS)

    Brustein, Ram; Gorbonos, Dan; Hadad, Merav; Medved, A. J. M.

    2011-01-01

    We evaluate the Wald Noether charge entropy for a black hole in generalized theories of gravity. Expanding the Lagrangian to second order in gravitational perturbations, we show that contributions to the entropy density originate only from the coefficients of two-derivative terms. The same considerations are extended to include matter fields and to show that arbitrary powers of matter fields and their symmetrized covariant derivatives cannot contribute to the entropy density. We also explain how to use the linearized gravitational field equation rather than quadratic actions to obtain the same results. Several explicit examples are presented that allow us to clarify subtle points in the derivation and application of our method.

  11. Gravity interpretation via EULDPH

    International Nuclear Information System (INIS)

    Ebrahimzadeh Ardestani, V.

    2003-01-01

    Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented

  12. Topological strings from Liouville gravity

    International Nuclear Information System (INIS)

    Ishibashi, N.; Li, M.

    1991-01-01

    We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)

  13. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    Science.gov (United States)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  14. Light fermions in quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Gies, Holger

    2011-01-01

    We study the impact of quantum gravity, formulated as a quantum field theory of the metric, on chiral symmetry in a fermionic matter sector. Specifically we address the question of whether metric fluctuations can induce chiral symmetry breaking and bound state formation. Our results based on the functional renormalization group indicate that chiral symmetry is left intact even at strong gravitational coupling. In particular, we found that asymptotically safe quantum gravity where the gravitational couplings approach a non-Gaußian fixed point generically admits universes with light fermions. Our results thus further support quantum gravity theories built on fluctuations of the metric field such as the asymptotic-safety scenario. A study of chiral symmetry breaking through gravitational quantum effects may also serve as a significant benchmark test for other quantum gravity scenarios, since a completely broken chiral symmetry at the Planck scale would not be in accordance with the observation of light fermions in our universe. We demonstrate that this elementary observation already imposes constraints on a generic UV completion of gravity. (paper)

  15. The Juno Gravity Science Instrument

    Science.gov (United States)

    Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo

    2017-11-01

    The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

  16. Reheating mechanism of the curvaton with nonminimal derivative coupling to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Taotao [Central China Normal University, Institute of Astrophysics, Wuhan (China); Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and College of Physical Science and Technology, Wuhan (China); Feng, Kaixi [Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China)

    2017-10-15

    In this paper, we continue our study of the curvaton model with nonminimal derivative coupling (NDC) to Einstein gravity proposed in our previous work (Feng in Phys Lett B 729:99, 2014; Feng and Qiu in Phys Rev D 90(12):123508, 2014), focusing on the reheating mechanism. We found that according to whether the curvaton has or has not dominated the background after the end of inflation, it will have two different behaviors of evolution, which should be the general property of the curvaton with nonminimal couplings. This will cause two different parts of reheating, which goes on via the parametric resonance process. The reheating temperature is estimated for both cases in which reheating completes before and after curvaton domination, and the constraints are quite loose compared to that of overproduction of gravitinos. Finally we investigated the evolution of curvature perturbation during reheating. We have shown both analytically and numerically that the curvature perturbation will not blow up during the resonance process. (orig.)

  17. Reheating mechanism of the curvaton with nonminimal derivative coupling to gravity

    International Nuclear Information System (INIS)

    Qiu, Taotao; Feng, Kaixi

    2017-01-01

    In this paper, we continue our study of the curvaton model with nonminimal derivative coupling (NDC) to Einstein gravity proposed in our previous work (Feng in Phys Lett B 729:99, 2014; Feng and Qiu in Phys Rev D 90(12):123508, 2014), focusing on the reheating mechanism. We found that according to whether the curvaton has or has not dominated the background after the end of inflation, it will have two different behaviors of evolution, which should be the general property of the curvaton with nonminimal couplings. This will cause two different parts of reheating, which goes on via the parametric resonance process. The reheating temperature is estimated for both cases in which reheating completes before and after curvaton domination, and the constraints are quite loose compared to that of overproduction of gravitinos. Finally we investigated the evolution of curvature perturbation during reheating. We have shown both analytically and numerically that the curvature perturbation will not blow up during the resonance process. (orig.)

  18. Loop-quantum-gravity vertex amplitude.

    Science.gov (United States)

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  19. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    Science.gov (United States)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness 8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that

  20. From Discrete Gravity Survey Data to a High-resolution Gravity Field Representation in the Nordic-Baltic Region

    DEFF Research Database (Denmark)

    Märdla, Silja; Ågren, Jonas; Strykowski, Gabriel

    2017-01-01

    The deduction of a regularly spaced gravity anomaly grid from scattered survey data is studied, addressing mainly two aspects: reduction of gravity to anomalies and subsequent interpolation by various methods. The problem is illustrated in a heterogeneous study area and contrasting test areas inc...

  1. Nonperturbative loop quantization of scalar-tensor theories of gravity

    International Nuclear Information System (INIS)

    Zhang Xiangdong; Ma Yongge

    2011-01-01

    The Hamiltonian formulation of scalar-tensor theories of gravity is derived from their Lagrangian formulation by Hamiltonian analysis. The Hamiltonian formalism marks off two sectors of the theories by the coupling parameter ω(φ). In the sector of ω(φ)=-(3/2), the feasible theories are restricted and a new primary constraint generating conformal transformations of spacetime is obtained, while in the other sector of ω(φ)≠-(3/2), the canonical structure and constraint algebra of the theories are similar to those of general relativity coupled with a scalar field. By canonical transformations, we further obtain the connection-dynamical formalism of the scalar-tensor theories with real su(2) connections as configuration variables in both sectors. This formalism enables us to extend the scheme of nonperturbative loop quantum gravity to the scalar-tensor theories. The quantum kinematical framework for the scalar-tensor theories is rigorously constructed. Both the Hamiltonian constraint operator and master constraint operator are well defined and proposed to represent quantum dynamics. Thus the loop quantum gravity method is also valid for general scalar-tensor theories.

  2. Deriving the mass of particles from Extended Theories of Gravity in LHC era

    CERN Document Server

    Capozziello, S; De Laurentis, M

    2011-01-01

    We derive a geometrical approach to produce the mass of particles that could be suitably tested at LHC. Starting from a 5D unification scheme, we show that all the known interactions could be suitably deduced as an induced symmetry breaking of the non-unitary GL(4)-group of diffeomorphisms. The deformations inducing such a breaking act as vector bosons that, depending on the gravitational mass states, can assume the role of interaction bosons like gluons, electroweak bosons or photon. The further gravitational degrees of freedom, emerging from the reduction mechanism in 4D, eliminate the hierarchy problem since generate a cut-off comparable with electroweak one at TeV scales. In this "economic" scheme, gravity should induce the other interactions in a non-perturbative way.

  3. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    Science.gov (United States)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  4. Black holes of dimensionally continued gravity coupled to Born-Infeld electromagnetic field

    Science.gov (United States)

    Meng, Kun; Yang, Da-Bao

    2018-05-01

    In this paper, for dimensionally continued gravity coupled to Born-Infeld electromagnetic field, we construct topological black holes in diverse dimensions and construct dyonic black holes in general even dimensions. We study thermodynamics of the black holes and obtain first laws. We study thermal phase transitions of the black holes in T-S plane and find van der Waals-like phase transitions for even-dimensional spherical black holes, such phase transitions are not found for other types of black holes constructed in this paper.

  5. Gravity data processing and research in potential evaluation of uranium resource in China

    International Nuclear Information System (INIS)

    Liu Hu; Zhao Dan; Ke Dan; Li Bihong; Han Shaoyang

    2012-01-01

    Through data processing, anomaly extraction, geologic structure deduction from gravity in 39 uranium metallogenic zones and 29 prediction areas, the predicting factors such as tectonic units, faults, scope and depth of rocks, scope of basins and strata structure were provided for the evaluation of uranium resources potential. Gravity field features of uranium metallogenic environment were summarized for hydrothermal type uranium deposits (granite, volcanic and carbonate-siliceous-argillaceous type) as regional gravity transition from high to the low field or the region near the low field, and the key metallogenic factors as granite rocks and volcanic basins in the low gravity field. It was found that Large-scale sandstone type uranium mineralization basins are located in the high regional gravity field, provenance areas are in the low field, and the edge and inner uplift areas usually located in the high field of the residual gravity. Faults related to different type uranium mineralization occur as the gradient zones, boundaries, a string of bead anomalies and striped gravity anomalies in the gravity field. (authors)

  6. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica.

    Science.gov (United States)

    Scheinert, M; Ferraccioli, F; Schwabe, J; Bell, R; Studinger, M; Damaske, D; Jokat, W; Aleshkova, N; Jordan, T; Leitchenkov, G; Blankenship, D D; Damiani, T M; Young, D; Cochran, J R; Richter, T D

    2016-01-28

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km 2 , which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

  7. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica

    Science.gov (United States)

    Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; Blankenship, D. D.; Damiani, T. M.; Young, D.; Cochran, J. R.; Richter, T. D.

    2018-01-01

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica. PMID:29326484

  8. Matter Loops Corrected Modified Gravity in Palatini Formulation

    International Nuclear Information System (INIS)

    Meng Xinhe; Wang Peng

    2008-01-01

    Recently, corrections to the standard Einstein-Hilbert action were proposed to explain the current cosmic acceleration in stead of introducing dark energy. In the Palatini formulation of those modified gravity models, there is an important observation due to Arkani-Hamed: matter loops will give rise to a correction to the modified gravity action proportional to the Ricci scalar of the metric. In the presence of such a term, we show that the current forms of modified gravity models in Palatini formulation, specifically, the 1/R gravity and ln R gravity, will have phantoms. Then we study the possible instabilities due to the presence of phantom fields. We show that the strong instability in the metric formulation of 1/R gravity indicated by Dolgov and Kawasaki will not appear and the decay timescales for the phantom fields may be long enough for the theories to make sense as effective field theory. On the other hand, if we change the sign of the modification terms to eliminate the phantoms, some other inconsistencies will arise for the various versions of the modified gravity models. Finally, we comment on the universal property of the Palatini formulation of the matter loops corrected modified gravity models and its implications

  9. Semiclassical unimodular gravity

    International Nuclear Information System (INIS)

    Fiol, Bartomeu; Garriga, Jaume

    2010-01-01

    Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately

  10. A Least Squares Collocation Approach with GOCE gravity gradients for regional Moho-estimation

    Science.gov (United States)

    Rieser, Daniel; Mayer-Guerr, Torsten

    2014-05-01

    The depth of the Moho discontinuity is commonly derived by either seismic observations, gravity measurements or combinations of both. In this study, we aim to use the gravity gradient measurements of the GOCE satellite mission in a Least Squares Collocation (LSC) approach for the estimation of the Moho depth on regional scale. Due to its mission configuration and measurement setup, GOCE is able to contribute valuable information in particular in the medium wavelengths of the gravity field spectrum, which is also of special interest for the crust-mantle boundary. In contrast to other studies we use the full information of the gradient tensor in all three dimensions. The problem outline is formulated as isostatically compensated topography according to the Airy-Heiskanen model. By using a topography model in spherical harmonics representation the topographic influences can be reduced from the gradient observations. Under the assumption of constant mantle and crustal densities, surface densities are directly derived by LSC on regional scale, which in turn are converted in Moho depths. First investigations proofed the ability of this method to resolve the gravity inversion problem already with a small amount of GOCE data and comparisons with other seismic and gravitmetric Moho models for the European region show promising results. With the recently reprocessed GOCE gradients, an improved data set shall be used for the derivation of the Moho depth. In this contribution the processing strategy will be introduced and the most recent developments and results using the currently available GOCE data shall be presented.

  11. Cosmological stability bound in massive gravity and bigravity

    International Nuclear Information System (INIS)

    Fasiello, Matteo; Tolley, Andrew J.

    2013-01-01

    We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity

  12. Canonical transformation path to gauge theories of gravity

    Science.gov (United States)

    Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.

    2017-06-01

    In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.

  13. Importance of the Decompensative Correction of the Gravity Field for Study of the Upper Crust: Application to the Arabian Plate and Surroundings

    OpenAIRE

    M. K. Kaban; Sami El Khrepy; Nassir Al-Arifi

    2017-01-01

    The isostatic correction represents one of the most useful “geological” reduction methods of the gravity field. With this correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. However, even this reduction does not show the full gravity effect of unknown anomalies in the upper crust since their impact is substantially reduced by the isostatic compensation. We analyze a so-called decompensative corre...

  14. Subduction zones seen by GOCE gravity gradients

    DEFF Research Database (Denmark)

    Švarc, Mario; Herceg, Matija; Cammarano, Fabio

    In this study, the GOCE (Gravity field and steady state Ocean Circulation Explorer) gradiometry data were used to study geologic structures and mass variations within the lithosphere in areas of known subduction zones. The advantage of gravity gradiometry over other gravity methods is that gradie...

  15. Averaging problem in general relativity, macroscopic gravity and using Einstein's equations in cosmology.

    Science.gov (United States)

    Zalaletdinov, R. M.

    1998-04-01

    The averaging problem in general relativity is briefly discussed. A new setting of the problem as that of macroscopic description of gravitation is proposed. A covariant space-time averaging procedure is described. The structure of the geometry of macroscopic space-time, which follows from averaging Cartan's structure equations, is described and the correlation tensors present in the theory are discussed. The macroscopic field equations (averaged Einstein's equations) derived in the framework of the approach are presented and their structure is analysed. The correspondence principle for macroscopic gravity is formulated and a definition of the stress-energy tensor for the macroscopic gravitational field is proposed. It is shown that the physical meaning of using Einstein's equations with a hydrodynamic stress-energy tensor in looking for cosmological models means neglecting all gravitational field correlations. The system of macroscopic gravity equations to be solved when the correlations are taken into consideration is given and described.

  16. Application of Cauchy-type integrals in developing effective methods for depth-to-basement inversion of gravity and gravity gradiometry data

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Zhdanov, Michael

    2015-01-01

    to be discretized for the calculation of gravity field. This was especially significant in the modeling and inversion of gravity data for determining the depth to the basement. Another important result was developing a novel method of inversion of gravity data to recover the depth to basement, based on the 3D...... Cauchy-type integral representation. Our numerical studies determined that the new method is much faster than conventional volume discretization method to compute the gravity response. Our synthetic model studies also showed that the developed inversion algorithm based on Cauchy-type integral is capable......One of the most important applications of gravity surveys in regional geophysical studies is determining the depth to basement. Conventional methods of solving this problem are based on the spectrum and/or Euler deconvolution analysis of the gravity field and on parameterization of the earth...

  17. GRACE, time-varying gravity, Earth system dynamics and climate change

    NARCIS (Netherlands)

    Wouters, B.; Bonin, J.A.; Chambers, D.P.; Riva, R.E.M.; Sasgen, I.; Wahr, J.

    2014-01-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity

  18. Weakening gravity on redshift-survey scales with kinetic matter mixing

    Energy Technology Data Exchange (ETDEWEB)

    D' Amico, Guido [Theoretical Physics Department, CERN, Geneva (Switzerland); Huang, Zhiqi [School of Physics and Astronomy, Sun Yat-Sen University, 135 Xingang Xi Road, 510275, Guangzhou (China); Mancarella, Michele; Vernizzi, Filippo [CEA, IPhT, CNRS, URA-2306, 91191 Gif-sur-Yvette cédex (France)

    2017-02-01

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field as well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ{sub 8} with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.

  19. Cutoff for extensions of massive gravity and bi-gravity

    International Nuclear Information System (INIS)

    Matas, Andrew

    2016-01-01

    Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware–Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity. (paper)

  20. Comparing scalar-tensor gravity and f(R)-gravity in the Newtonian limit

    International Nuclear Information System (INIS)

    Capozziello, S.; Stabile, A.; Troisi, A.

    2010-01-01

    Recently, a strong debate has been pursued about the Newtonian limit (i.e. small velocity and weak field) of fourth order gravity models. According to some authors, the Newtonian limit of f(R)-gravity is equivalent to the one of Brans-Dicke gravity with ω BD =0, so that the PPN parameters of these models turn out to be ill-defined. In this Letter, we carefully discuss this point considering that fourth order gravity models are dynamically equivalent to the O'Hanlon Lagrangian. This is a special case of scalar-tensor gravity characterized only by self-interaction potential and that, in the Newtonian limit, this implies a non-standard behavior that cannot be compared with the usual PPN limit of General Relativity. The result turns out to be completely different from the one of Brans-Dicke theory and in particular suggests that it is misleading to consider the PPN parameters of this theory with ω BD =0 in order to characterize the homologous quantities of f(R)-gravity. Finally the solutions at Newtonian level, obtained in the Jordan frame for an f(R)-gravity, reinterpreted as a scalar-tensor theory, are linked to those in the Einstein frame.