WorldWideScience

Sample records for gravity fed system

  1. Prospects for Improving Gravity-Fed Surface Irrigation Systems in Mediterranean European Contexts

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-01-01

    Full Text Available Traditionally, most irrigation practices in Southern Europe have been based on gravity-fed surface irrigation systems. Currently, these systems remain a relevant typology in the European Union (EU member states of the Mediterranean areas, where it is often the only sustainable method for farmers due to the small size of agricultural holdings, their reduced capacity and readiness to invest and the low ratio between yield profits and irrigation costs. In the last several years, in response to European and national directives, surface irrigation has garnered increasing attention at the political and bureaucratic levels due to frequent criticisms of its postulated low efficiency and high water wastage. However, these systems commonly provide a number of ecosystem services and nature-based solutions that increase the positive externalities in different rural socio-ecological contexts and often have the potential to extend these services and provide solutions that are compatible with economical sustainability. This study aims to discuss the prospects for new practices and for the rehabilitation and modernization of the gravity-fed surface irrigation systems in EU Mediterranean areas to enhance water efficiency, thus gaining both economic advantages and environmental benefits. The difficulties, stimuli for improvements and peculiarities of the irrigation water management of four rural environments located in Italy, Spain and Portugal were analyzed and compared to the current state of the gravity-fed surface irrigation systems with hypothetical future improvements achievable by innovative technologies and practices. In these different case studies, the current gravity-fed surface irrigation systems have an obsolete regulatory structure; water-use efficiency is not a driving criterion for the management of the conveyance and distribution canal network, and farmers are not yet adequately encouraged to adopt more efficient gravity-fed irrigation practices

  2. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  3. Effect of IOP based infusion system with and without balanced phaco tip on cumulative dissipated energy and estimated fluid usage in comparison to gravity fed infusion in torsional phacoemulsification.

    Science.gov (United States)

    Malik, Praveen K; Dewan, Taru; Patidar, Arun Kr; Sain, Ekta

    2017-01-01

    To evaluate the effect of three different combinations of tip designs and infusion systems in torsional phacoemulsification (INFINITI and CENTURION) in patients with cataract. According to the manufacturer, two unique improvements in the Centurion are: active fluid dynamic management system and use of an intrepid balanced tip. The study specifically aimed to evaluate the beneficial effects, if any, of change in tip design and infusion system individually and in combination on both per-operative parameters as well as endothelial health over 6 months. One hundred and twenty six consenting patients of grade 4.0-6.9 senile cataract were randomized into three groups for phacoemulsification: Group A ( n  = 42): Gravity fed infusion system and 45 0 Kelman miniflared ABS phaco tip; Group B ( n  = 42): intraocular pressure (IOP) based infusion system and 45 0 Kelman miniflared ABS phaco tip; Group C ( n  = 42): IOP based infusion system and 45 0 Intrepid balanced phaco tip. The cumulative dissipated energy (CDE), estimated fluid usage (EFU) and total aspiration time (TAT) were compared peroperatively. The endothelial parameters were followed up postoperatively for six months. The three arms were matched for age ( p  = 0.525), gender ( p  = 0.96) and grade of cataract ( p  = 0.177). Group C was associated with significant reductions in CDE ( p  = 0.001), EFU ( p  < 0.0005) as well as TAT ( p  = 0.001) in comparison to the other groups. All three groups had comparable baseline endothelial cell density ( p  = 0.876) and central corneal thickness ( p  = 0.561). On post-operative evaluation, although all groups were comparable till 3 months, by 6 months, the percentage losses in endothelial cell density were significantly lower in group C as compared to the other groups. Use of an IOP based phacoemulsification system in association with use of the Intrepid balanced tip reduces the CDE, EFU and TAT in comparison to a gravity fed system with a mini flared

  4. Active Response Gravity Offload System

    Science.gov (United States)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  5. Mathematical and physical model of gravity-fed infusion outflow: application to soft-bag-packed solutions.

    Science.gov (United States)

    Simon, N; Décaudin, B; Lannoy, D; Barthélémy, C; Lemdani, M; Odou, P

    2011-12-01

    Gravity-fed infusion (GFI) systems are acknowledged as being unable to keep their flow-rate constant. This may affect drug plasma levels such as aminoglycosides. Numerous factors have previously been cited, but their relative importance has never been quantified so far. The objective of this work is to identify the main factors that influence GFI in vitro outflow and to propose a mathematical model of flow-rate evolution as a function of time. In this model, pressure loss and infusion device creep have been considered as the main variation factors. Concomitantly, two experiments were undertaken. Firstly, the flow-rate evolution of an in vitro infusion of 250 mL of dextrose 5% was assessed. Secondly, the creep occurring on an infusion device was measured through a stress relaxation experiment. The experimental infusion flow-rate decreased by as much as 28.5% over 1 h. Simulated and experimental data are well correlated (r = 0.987; P model should help to explain the differences observed in drug plasma levels with gravity-fed devices.

  6. Ecological patterns, diversity and core taxa of microbial communities in groundwater-fed rapid gravity filters

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    2016-01-01

    Here, we document microbial communities in rapid gravity filtration units, specifically serial rapid sand filters (RSFs), termed prefilters (PFs) and after- filters (AFs), fed with anoxic groundwaters low in organic carbon to prepare potable waters. A comprehensive 16S rRNA-based amplicon...... sequencing survey revealed a core RSF microbiome comprising few bacterial taxa (29–30 genera) dominated by Nitrospirae, Proteobacteria and Acidobacteria, with a strikingly high abundance (75–87±18%) across five examined waterworks in Denmark. Lineages within the Nitrospira genus consistently comprised...... the second most and most abundant fraction in PFs (27±23%) and AFs (45.2±23%), respectively, and were far more abundant than typical proteobacterial ammonium-oxidizing bacteria, suggesting a physiology beyond nitrite oxidation for Nitrospira. Within the core taxa, sequences closely related to types...

  7. Vertebrate gravity sensors as dynamic systems

    Science.gov (United States)

    Ross, M. D.

    1985-01-01

    This paper considers verterbrate gravity receptors as dynamic sensors. That is, it is hypothesized that gravity is a constant force to which an acceleration-sensing system would readily adapt. Premises are considered in light of the presence of kinocilia on hair cells of vertebrate gravity sensors; differences in loading of the sensors among species; and of possible reduction in loading by inclusion of much organic material in otoconia. Moreover, organic-inorganic interfaces may confer a piezoelectric property upon otoconia, which increase the sensitivity of the sensory system to small accelerations. Comparisons with man-made accelerometers are briefly taken up.

  8. FEDS

    DEFF Research Database (Denmark)

    Venable, John; Pries-Heje, Jan; Baskerville, Richard

    2016-01-01

    Evaluation of design artefacts and design theories is a key activity in Design Science Research (DSR), as it provides feedback for further development and (if done correctly) assures the rigour of the research. However, the extant DSR literature provides insufficient guidance on evaluation...... to enable Design Science Researchers to effectively design and incorporate evaluation activities into a DSR project that can achieve DSR goals and objectives. To address this research gap, this research paper develops, explicates, and provides evidence for the utility of a Framework for Evaluation in Design...... Science (FEDS) together with a process to guide design science researchers in developing a strategy for evaluating the artefacts they develop within a DSR project. A FEDS strategy considers why, when, how, and what to evaluate. FEDS includes a two-dimensional characterisation of DSR evaluation episodes...

  9. gravity

    Indian Academy of Sciences (India)

    We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...

  10. Solar system constraints on disformal gravity theories

    International Nuclear Information System (INIS)

    Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy

    2015-01-01

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology

  11. Gravity-darkening in the Algol system

    International Nuclear Information System (INIS)

    Kopal, Z.

    1979-01-01

    Infrared observations of the secondary minimum of the eclipsing system of Algol, secured recently by Nadeau et al. (1978) with the 200 in and 60 in reflectors of Mount Wilson and Palomar Observatories at the effective wavelength of 10 μm, show its light curve to be distinctly dish-shaped i.e. the light diminishes relatively fast in the early stages of the eclipse, and its rate of decline slows down in advanced partial phases. This fact indicates convincingly that the light distribution over the apparent disc of Algol's late-type (contact) component is akin to that produced by the phenomenon of 'gravity-darkening' to a very pronounced degree. An analysis of Algol's infrared light curve during the secondary minimum (when its contact component undergoes eclipse by its nearly spherical mate) observed at an effective wavelength of 10μm, discloses now that the (monochromatic) coefficient of the linear law of gravity-darkening, characterizing the distribution of brightness over the apparent disc of the contact star, comes out again at least twice as large as one which would correspond to a purely radiative energy transfer of total light in the far interior of this star. No physical theory can be advanced to explain this fact - except, possibly, a hypothesis that the observed enhancement of the monochromatic coefficient tau of gravity-darkening over that appropriate for total radiation may be caused by a very wide departure of the outer layer of the respective stars from thermodynamic equilibrium. (Auth.)

  12. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  13. Proposal of a novel gravity-fed, particle-filled solar receiver

    Science.gov (United States)

    Johnson, Evan; Baker, Derek; Tari, Ilker

    2017-06-01

    Solar Thermal Electricity power plants utilizing solid particles as heat transfer and storage media have been proposed by several research groups, with studies citing benefits of increased thermal efficiency and lower cost. Several types of solid particle receivers have been proposed, with leading designs consisting of particles falling or suspended in air. A new solid particle receiver is proposed here, consisting of a receiver fully packed with particles flowing downward with gravity. Particle flow rate is regulated with an outlet valve. This Particle-Filled receiver concept is compared to other receiver designs, and initial cold and hot experiments are conducted. Mass flux values of up to 379 kg m-2 s-1 are demonstrated, and heat transfer coefficients between 136 and 251 W m-2 K-1 are found.

  14. Stator insulation systems for medium voltage PWM drives fed motors

    International Nuclear Information System (INIS)

    Gao, G.; Chen, W.

    2005-01-01

    This paper presents the partial results of a research project that studied the impact of medium voltage PWM ASD (adjustable speed drives) on motor stator insulation system. The findings from this study/ investigation have aided designers to improve the robustness of the insulation system used for ASD-fed motors, based on accelerated laboratory tests. (author)

  15. Gravity Probe B data system description

    International Nuclear Information System (INIS)

    Bennett, Norman R

    2015-01-01

    The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles and Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed. (paper)

  16. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  17. Production performance of pigs reared in different systems and fed ...

    African Journals Online (AJOL)

    The experimental material comprised 90 growing-finishing pigs, divided into six groups of 15 animals that were diverse in terms of rearing (with or without free access to outdoor runs) and feeding systems (fed increased metabolizable energy (ME) content diets with or without green alfalfa). Different feeding regimes and ...

  18. Choice of compressed air fed system of a uranium mine

    International Nuclear Information System (INIS)

    Li Congkui; Lei Zeyong

    2006-01-01

    The selection of compressed air fed system in a uranium mine is discussed. The research indicates that the movable air compressor is better than the fixed one in energy saving, once capital cost and operational cost when it is applied in an underground uranium mine. (authors)

  19. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    Science.gov (United States)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  20. Systems and Methods for Gravity-Independent Gripping and Drilling

    Science.gov (United States)

    Parness, Aaron (Inventor); Frost, Matthew A. (Inventor); Thatte, Nitish (Inventor); King, Jonathan P. (Inventor)

    2016-01-01

    Systems and methods for gravity independent gripping and drilling are described. The gripping device can also comprise a drill or sampling devices for drilling and/or sampling in microgravity environments, or on vertical or inverted surfaces in environments where gravity is present. A robotic system can be connected with the gripping and drilling devices via an ankle interface adapted to distribute the forces realized from the robotic system.

  1. Crowbar System in Doubly Fed Induction Wind Generators

    Directory of Open Access Journals (Sweden)

    Maurício B. C. Salles

    2010-04-01

    Full Text Available In the last 15 years, the use of doubly fed induction machines in modern variable-speed wind turbines has increased rapidly. This development has been driven by the cost reduction as well as the low-loss generation of Insulated Gate Bipolar Transistors (IGBT. According to new grid code requirements, wind turbines must remain connected to the grid during grid disturbances. Moreover, they must also contribute to voltage support during and after grid faults. The crowbar system is essential to avoid the disconnection of the doubly fed induction wind generators from the network during faults. The insertion of the crowbar in the rotor circuits for a short period of time enables a more efficient terminal voltage control. As a general rule, the activation and the deactivation of the crowbar system is based only on the DC-link voltage level of the back-to-back converters. In this context, the authors discuss the critical rotor speed to analyze the instability of doubly fed induction generators during grid faults.

  2. Gravity gradiometer system for Earth Exploration

    NARCIS (Netherlands)

    Cuperus, R.; Flokstra, F.F.; Droogendijk, H.; Wiegerink, Remco J.; Flokstra, Jakob; Flokstra, Jan

    2009-01-01

    We develop a gravity gradiometer (GG) for use on planetary missions to planets like Mars and Jupiter. With some modifications this development is extended to include (airborne) applications for the Dutch exploratory industry. We adapt key technology of the space based GG for the use in an

  3. Temperature control system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process

  4. Effects of artificial gravity on the cardiovascular system: Computational approach

    Science.gov (United States)

    Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.

    2016-09-01

    Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected

  5. Brane solutions of gravity-dilaton-axion systems

    NARCIS (Netherlands)

    Bergshoeff, E; Collinucci, A; Gran, U; Roest, D; Vandoren, S; Lukierski, J; Sorokin, D

    2005-01-01

    We consider general properties of brane solutions of gravity-dilaton-axion systems. We focus on the case of 7-branes and instantons. In both cases we show that besides the standard solutions there are new deformed solutions whose charges take value in any of the three conjugacy classes of SL(2, R).

  6. One-loop renormalization of a gravity-scalar system

    Energy Technology Data Exchange (ETDEWEB)

    Park, I.Y. [Philander Smith College, Department of Applied Mathematics, Little Rock, AR (United States)

    2017-05-15

    Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)

  7. One-loop renormalization of a gravity-scalar system

    International Nuclear Information System (INIS)

    Park, I.Y.

    2017-01-01

    Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)

  8. One-loop renormalization of a gravity-scalar system

    Science.gov (United States)

    Park, I. Y.

    2017-05-01

    Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the "mass" term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information.

  9. Melter viewing system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Brenden, B.B.

    1988-01-01

    Melter viewing systems are an integral component of the monitoring and control systems for liquid-fed ceramic melters. The Pacific Northwest Laboratory (PNL) has designed cameras for use with glass melters at PNL, the Hanford Waste Vitrification Plant (HWVP), and West Valley Demonstration Project (WVDP). This report is a compilation of these designs. Operating experiences with one camera designed for the PNL melter are discussed. A camera has been fabricated and tested on the High-Bay Ceramic Melter (HBCM) and the Pilot-Scale Ceramic Melter (PSCM) at PNL. The camera proved to be an effective tool for monitoring the cold cap formed as the feed pool developed on the molten glass surface and for observing the physical condition of the melter. Originally, the camera was built to operate using the visible light spectrum in the melter. It was later modified to operate using the infrared (ir) spectrum. In either configuration, the picture quality decreases as the size of the cold cap increases. Large cold caps cover the molten glass, reducing the amount of visible light and reducing the plenum temperatures below 600 0 C. This temperature corresponds to the lowest level of blackbody radiation to which the video tube is sensitive. The camera has been tested in melter environments for about 1900 h. The camera has withstood mechanical shocks and vibrations. The cooling system in the camera has proved effective in maintaining the optical and electronic components within acceptable temperature ranges. 10 refs., 15 figs

  10. Classification system for rain fed wheat grain cultivars using artificial ...

    African Journals Online (AJOL)

    Artificial neural network (ANN) models have found wide applications, including ... of grains is essential for various applications as wheat grain industry and cultivation. In order to classify the rain fed wheat cultivars using artificial neural network ...

  11. On the robustness of entanglement in analogue gravity systems

    International Nuclear Information System (INIS)

    Bruschi, D E; Friis, N; Fuentes, I; Weinfurtner, S

    2013-01-01

    We investigate the possibility of generating quantum-correlated quasi-particles utilizing analogue gravity systems. The quantumness of these correlations is a key aspect of analogue gravity effects and their presence allows for a clear separation between classical and quantum analogue gravity effects. However, experiments in analogue systems, such as Bose–Einstein condensates (BECs) and shallow water waves, are always conducted at non-ideal conditions, in particular, one is dealing with dispersive media at non-zero temperatures. We analyse the influence of the initial temperature on the entanglement generation in analogue gravity phenomena. We lay out all the necessary steps to calculate the entanglement generated between quasi-particle modes and we analytically derive an upper bound on the maximal temperature at which given modes can still be entangled. We further investigate a mechanism to enhance the quantum correlations. As a particular example, we analyse the robustness of the entanglement creation against thermal noise in a sudden quench of an ideally homogeneous BEC, taking into account the super-sonic dispersion relations. (paper)

  12. Solar System constraints to general f(R) gravity

    International Nuclear Information System (INIS)

    Chiba, Takeshi; Smith, Tristan L.; Erickcek, Adrienne L.

    2007-01-01

    It has been proposed that cosmic acceleration or inflation can be driven by replacing the Einstein-Hilbert action of general relativity with a function f(R) of the Ricci scalar R. Such f(R) gravity theories have been shown to be equivalent to scalar-tensor theories of gravity that are incompatible with Solar System tests of general relativity, as long as the scalar field propagates over Solar System scales. Specifically, the parameterized post-Newtonian (PPN) parameter in the equivalent scalar-tensor theory is γ=1/2, which is far outside the range allowed by observations. In response to a flurry of papers that questioned the equivalence of f(R) theory to scalar-tensor theories, it was recently shown explicitly, without resorting to the scalar-tensor equivalence, that the vacuum field equations for 1/R gravity around a spherically symmetric mass also yield γ=1/2. Here we generalize this analysis to f(R) gravity and enumerate the conditions that, when satisfied by the function f(R), lead to the prediction that γ=1/2

  13. Scalar material reference systems and loop quantum gravity

    International Nuclear Information System (INIS)

    Giesel, K; Thiemann, T

    2015-01-01

    In the past, the possibility to employ (scalar) material reference systems in order to describe classical and quantum gravity directly in terms of gauge invariant (Dirac) observables has been emphasized frequently. This idea has been picked up more recently in loop quantum gravity with the aim to perform a reduced phase space quantization of the theory, thus possibly avoiding problems with the (Dirac) operator constraint quantization method for a constrained system. In this work, we review the models that have been studied on the classical and/or the quantum level and parametrize the space of theories considered so far. We then describe the quantum theory of a model that, to the best of our knowledge, has only been considered classically so far. This model could arguably be called the optimal one in this class of models considered as it displays the simplest possible true Hamiltonian, while at the same time reducing all constraints of general relativity. (paper)

  14. Fed-batch production of green coconut hydrolysates for high-gravity second-generation bioethanol fermentation with cellulosic yeast.

    Science.gov (United States)

    Soares, Jimmy; Demeke, Mekonnen M; Van de Velde, Miet; Foulquié-Moreno, Maria R; Kerstens, Dorien; Sels, Bert F; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2017-11-01

    The residual biomass obtained from the production of Cocos nucifera L. (coconut) is a potential source of feedstock for bioethanol production. Even though coconut hydrolysates for ethanol production have previously been obtained, high-solid loads to obtain high sugar and ethanol levels remain a challenge. We investigated the use of a fed-batch regime in the production of sugar-rich hydrolysates from the green coconut fruit and its mesocarp. Fermentation of the hydrolysates obtained from green coconut or its mesocarp, containing 8.4 and 9.7% (w/v) sugar, resulted in 3.8 and 4.3% (v/v) ethanol, respectively. However, green coconut hydrolysate showed a prolonged fermentation lag phase. The inhibitor profile suggested that fatty acids and acetic acid were the main fermentation inhibitors. Therefore, a fed-batch regime with mild alkaline pretreatment followed by saccharification, is presented as a strategy for fermentation of such challenging biomass hydrolysates, even though further improvement of yeast inhibitor tolerance is also needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Science.gov (United States)

    2010-04-01

    ... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion...

  16. Transcendental Political Systems and the Gravity Model

    Science.gov (United States)

    Lock, Connor

    2012-01-01

    This summer I have been working on an Army Deep Futures Model project named Themis. Themis is a JPL based modeling framework that anticipates possible future states for the world within the next 25 years. The goal of this framework is to determine the likelihood that the US Army will need to intervene on behalf of the US strategic interests. Key elements that are modeled within this tool include the world structure and major decisions that are made by key actors. Each actor makes decisions based on their goals and within the constraints of the structure of the system in which they are located. In my research I have focused primarily on the effects of structures upon the decision-making processes of the actors within them. This research is a natural extension of my major program at Georgetown University, where I am studying the International Political Economy and the structures that make it up. My basic goal for this summer project was to be a helpful asset to the Themis modeling team, with any research done or processes learned constituting a bonus.

  17. Four-dimensional gravity as an almost-Poisson system

    Science.gov (United States)

    Ita, Eyo Eyo

    2015-04-01

    In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.

  18. Moving base Gravity Gradiometer Survey System (GGSS) program

    Science.gov (United States)

    Pfohl, Louis; Rusnak, Walter; Jircitano, Albert; Grierson, Andrew

    1988-04-01

    The GGSS program began in early 1983 with the objective of delivering a landmobile and airborne system capable of fast, accurate, and economical gravity gradient surveys of large areas anywhere in the world. The objective included the development and use of post-mission data reduction software to process the survey data into solutions for the gravity disturbance vector components (north, east and vertical). This document describes the GGSS equipment hardware and software, integration and lab test procedures and results, and airborne and land survey procedures and results. Included are discussions on test strategies, post-mission data reduction algorithms, and the data reduction processing experience. Perspectives and conclusions are drawn from the results.

  19. Disformal theories of gravity: from the solar system to cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Sakstein, Jeremy, E-mail: j.a.sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2014-12-01

    This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible.

  20. Disformal theories of gravity: from the solar system to cosmology

    International Nuclear Information System (INIS)

    Sakstein, Jeremy

    2014-01-01

    This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible

  1. Thermal stress analysis of gravity support system for ITER based on ANSYS

    International Nuclear Information System (INIS)

    Liang Shangming; Yan Xijiang; Huang Yufeng; Wang Xianzhou; Hou Binglin; Li Pengyuan; Jian Guangde; Liu Dequan; Zhou Caipin

    2009-01-01

    A method for building the finite element model of the gravity support system for International Thermonuclear Experimental Reactor (ITER) was proposed according to the characteristics of the gravity support system with the cyclic symmetry. A mesh dividing method, which has high precision and an acceptable calculating scale, was used, and a three dimensional finite element model for the toroidal 20 degree sector of the gravity support system was built by using ANSYS. Meantime, the steady-state thermal analysis and thermal-structural coupling analysis of the gravity support system were performed. The thermal stress distributions and the maximal thermal stress values of all parts of the gravity support system were obtained, and the stress intensity of parts of the gravity support system was analyzed. The results of thermal stress analysis lay the solid foundation for design and improvement for gravity supports system for ITER. (authors)

  2. A study on multi-point gravity compensation of mirror bending system

    International Nuclear Information System (INIS)

    Sun Fuquan; Fu Yuan; Zhu Wanqian; Xue Song

    2011-01-01

    The sag of mirror due to gravity induces unacceptable slope errors in beamline mirror-bending system of a synchrotron radiation facility, and approaches must be found to eliminate the unwanted gravity effect. According to the beam bending theory, the multi-point gravity compensation method is applicable. Taking an example of the bent collimating mirror for the XAFS beam-line (BL14W) at Shanghai Synchrotron Radiation Facility (SSRF), the best position and value of the equilibrant were calculated through minimizing the gravity effect. With two, three and four points gravity compensation, slope errors were 0.179, 0.067 and 0.032 μrad,respectively, i.e.the multi-point gravity compensation is better than the two-point gravity compensation, which is used for the Phase I beamlines of SSRF. The four-point gravity compensation method reduces more slope error and stress due to four support points. (authors)

  3. Modeling of wind turbines with doubly fed generator system

    CERN Document Server

    Fortmann, Jens

    2014-01-01

    Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requ

  4. Strong gravity effects in accreting black-hole systems

    International Nuclear Information System (INIS)

    Niedzwiecki, A.

    2006-01-01

    I briefly review current status of studying effects of strong gravity in X-ray astronomy. Matter accreting onto a black hole probes the relativistic region of space-time and the high-energy radiation it produces should contain signatures of strong gravity effects. Current X-ray observations provide the evidence that the observed emission originates, in some cases, at a distance of a few gravitational radii from a black hole. Moreover, certain observations invoke interpretations favouring rapid rotation of the black hole. Some observational properties of black hole systems are supposed to result from the lack of a material surface in these objects. I consider further effects, specific for the black hole environment, which can be studied in X-ray data. Bulk motion Comptonization, which would directly reveal converging flow of matter plunging into a black hole, is unlikely to be important in formation of X-ray spectra. Similarly, Penrose processes are unlikely to give observational effects, although this issue has not been thoroughly studied so far for all plausible radiative mechanisms. (author)

  5. Direct fed microbial supplementation repartitions host energy to the immune system.

    Science.gov (United States)

    Qiu, R; Croom, J; Ali, R A; Ballou, A L; Smith, C D; Ashwell, C M; Hassan, H M; Chiang, C-C; Koci, M D

    2012-08-01

    Direct fed microbials and probiotics are used to promote health in livestock and poultry; however, their mechanism of action is still poorly understood. We previously reported that direct fed microbial supplementation in young broilers reduced ileal respiration without changing whole-body energy expenditure. The current studies were conducted to further investigate the effects of a direct fed microbial on energy metabolism in different tissues of broilers. One hundred ninety-two 1-d-old broiler chicks (16 chicks/pen) were randomly assigned to 2 dietary groups: standard control starter diet (CSD) and CSD plus direct fed microbial (DFMD; 0.3%) with 6 pens/treatment. Body weight, feed consumption, whole-body energy expenditure, organ mass, tissue respiration rates, and peripheral blood mononuclear cell (PBMC) ATP concentrations were measured to estimate changes in energy metabolism. No differences in whole body energy expenditure or BW gain were observed; however, decreased ileal O(2) respiration (P energy consumption by PBMC corresponded with an altered immune response, broilers were immunized with sheep red blood cells (SRBC) and assayed for differences in their humoral response. The DFMD-fed broilers had a faster rate of antigen specific IgG production (P direct fed microbial used in this study resulted in energy re-partitioning to the immune system and an increase in antibody production independent of changes in whole body metabolism or growth performance.

  6. Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines

    International Nuclear Information System (INIS)

    Derafshian, Mehdi; Amjady, Nima

    2015-01-01

    This paper presents an evolutionary algorithm-based approach for optimal design of power system stabilizer (PSS) for multi-machine power systems that include doubly fed induction generator wind turbines. The proposed evolutionary algorithm is an improved particle swarm optimization named chaotic particle swarm optimization with passive congregation (CPSO-PC) applied for finding the optimal settings of PSS parameters. Two different eigenvalue-based objectives are combined as the objective function for the optimization problem of tuning PSS parameters. The first objective function comprises the damping factor of lightly damped electro-mechanical modes and the second one includes the damping ratio of these modes. The effectiveness of the proposed method to design PSS for the power systems including DFIG (Doubly Fed Induction Generator) is extensively demonstrated through eigenvalue analysis and time-domain simulations and also by comparing its simulation results with the results of other heuristic optimization approaches. - Highlights: • A new optimization model for design of PSS in power systems including DFIG is proposed. • A detailed and realistic modeling of DFIG is presented. • A new evolutionary algorithm is suggested for solving the optimization problem of designing PSS

  7. Physiological targets of artificial gravity: the sensory-motor system

    NARCIS (Netherlands)

    Groen, E.L.; Clarke, A.; Bles, W.; Wuyts, F.; Paloski, W.; Clément, G.

    2007-01-01

    This chapter describes the pros and cons of artificial gravity applications in relation to human sensory-motor functioning in space. Spaceflight creates a challenge for sensory-motor functions that depend on gravity, which include postural balance, locomotion, eye-hand coordination, and spatial

  8. A comparison of sewer reticulation system design standards gravity ...

    African Journals Online (AJOL)

    Thirdly Botswana being a dry country does not always have the water supply available and only some households have a house connection which provides enough water to flush a gravity sewer. Coupled to this is the low housing density and generally flat landscape in rural Botswana that means the conventional gravity ...

  9. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    DR OKE

    proposed method of water pumping system also provides the cost effective and highly ... in the proposed system because of its similar operational characteristics compared to SPV generator. .... (CCM) regardless of the atmospheric conditions.

  10. Constraining f(R) gravity in solar system, cosmology and binary pulsar systems

    Science.gov (United States)

    Liu, Tan; Zhang, Xing; Zhao, Wen

    2018-02-01

    The f (R) gravity can be cast into the form of a scalar-tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f (R) gravity, using a scalar-tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f (R) gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f (R) models (Hu-Sawicki model, Tsujikawa model and Starobinsky model) and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  11. Constraining f(R gravity in solar system, cosmology and binary pulsar systems

    Directory of Open Access Journals (Sweden)

    Tan Liu

    2018-02-01

    Full Text Available The f(R gravity can be cast into the form of a scalar–tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f(R gravity, using a scalar–tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f(R gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f(R models (Hu–Sawicki model, Tsujikawa model and Starobinsky model and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  12. MODELING AND DESIGN OF INNOVATIVE SMALL DIAMETER GRAVITY SEWERAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Tadeusz Nawrot

    2017-05-01

    Full Text Available The article presents modern methods of hydraulic design of an innovative small diameter gravity sewerage system. In this system, domestic wastewater is preliminary treated in septic tanks equipped with outlet filters, thus the effluent features are similar to those of clear water. Innovative non-return valves at the outlets eliminate introduction of air to the system and thus the flows can be treated as one-phase ones. Computer codes EPANET 2 and SWMM 5.0 were applied and compared. Two flow schemes typical for the sewerage system were implemented in EPANET 2, and the third - in a slightly modified SWMM 5.0. Simulation results were validated on empirical data obtained on a laboratory physical model, consisting of four tanks of minimum volumes 600 dm3 each, connecting PE pipelines of diameters 25 mm and 36 mm and relevant sanitary fittings. Water inflows, typical for domestic wastewater outflows from single homesteads, were provided by a pump. Water flows were measured using water meters with pulse outputs, and water levels in tanks by pressure transducers. Hydraulic characteristics of filters and non-return valves were provided. Simulation results showed good agreement with the empirical data. Ranges of values of design parameters, needed for successful application of both codes, were established and discussed.

  13. Power laws for gravity and topography of Solar System bodies

    Science.gov (United States)

    Ermakov, A.; Park, R. S.; Bills, B. G.

    2017-12-01

    When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the

  14. Design of double-fed control system for J-TEXT 100 MVA pulse generator unit

    International Nuclear Information System (INIS)

    Fang, Jianming; Yu, Kexun; Zhang, Ming; Zhuang, Ge; Xiao, Zhiguo; Jiang, Guozhong; Yang, Cheng; Xu, Jiayu

    2013-01-01

    Highlights: ► A double-fed control system is designed for J-TEXT 100 MVA pulse generator unit. ► The double-fed system can control the motor speed and reactive power individually. ► Experiment on a prototype motor shows a good control result. -- Abstract: The 100 MVA pulse generator unit is the main power supply of J-TEXT. This unit supplies energy for the toroidal coil, the ohmic heat coil and the divertor coil, with the maximum stored energy 185 MJ. For the difference of grid frequency between China and USA, the rotational speed and stored energy of this unit are less than the designed value. A double-fed control system for the unit is designed to raise them. This double-fed system has applied a control method using a rotational reference frame oriented by stator flux. With this control system, the speed and reactive power of motor could be controlled individually. Experiments on a prototype motor show a good control result

  15. Solar pv fed stand-alone excitation system of a synchronous machine for reactive power generation

    Science.gov (United States)

    Sudhakar, N.; Jain, Siddhartha; Jyotheeswara Reddy, K.

    2017-11-01

    This paper presents a model of a stand-alone solar energy conversion system based on synchronous machine working as a synchronous condenser in overexcited state. The proposed model consists of a Synchronous Condenser, a DC/DC boost converter whose output is fed to the field of the SC. The boost converter is supplied by the modelled solar panel and a day time variable irradiance is fed to the panel during the simulation time. The model also has one alternate source of rechargeable batteries for the time when irradiance falls below a threshold value. Also the excess power produced when there is ample irradiance is divided in two parts and one is fed to the boost converter while other is utilized to recharge the batteries. A simulation is done in MATLAB-SIMULINK and the obtained results show the utility of such modelling for supplying reactive power is feasible.

  16. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame...

  17. Hopf bifurcation and eigenvalue sensitivity analysis of doubly fed induction generator wind turbine system

    DEFF Research Database (Denmark)

    Yang, Li Hui; Xu, Zhao; Østergaard, Jacob

    2010-01-01

    This paper first presents the Hopf bifurcation analysis for a vector-controlled doubly fed induction generator (DFIG) which is widely used in wind power conversion systems. Using three-phase back-to-back pulse-width-modulated (PWM) converters, DFIG can keep stator frequency constant under variabl...

  18. Overload control of artificial gravity facility using spinning tether system for high eccentricity transfer orbits

    Science.gov (United States)

    Gou, Xing-wang; Li, Ai-jun; Tian, Hao-chang; Wang, Chang-qing; Lu, Hong-shi

    2018-06-01

    As the major part of space life supporting systems, artificial gravity requires further study before it becomes mature. Spinning tether system is a good alternative solution to provide artificial gravity for the whole spacecraft other than additional devices, and its longer tether length could significantly reduce spinning velocity and thus enhance comfortability. An approximated overload-based feedback method is proposed to provide estimated spinning velocity signals for controller, so that gravity level could be accurately controlled without complicated GPS modules. System behavior in high eccentricity transfer orbits is also studied to give a complete knowledge of the spinning stabilities. The application range of the proposed method is studied in various orbit cases and spinning velocities, indicating that it is accurate and reliable for most of the mission phases especially for the final constant gravity level phase. In order to provide stable gravity level for transfer orbit missions, a sliding mode controller based on estimated angular signals is designed for closed-loop control. Numerical results indicate that the combination of overload-based feedback and sliding mode controller could satisfy most of the long-term artificial gravity missions. It is capable of forming flexible gravity environment in relatively good accuracy even in the lowest possible orbital radiuses and high eccentricity orbits of crewed space missions. The proposed scheme provides an effective tether solution for the artificial gravity construction in interstellar travel.

  19. Modelling and properties of a nonlinear autonomous switching system in fed-batch culture of glycerol

    Science.gov (United States)

    Wang, Juan; Sun, Qingying; Feng, Enmin

    2012-11-01

    A nonlinear autonomous switching system is proposed to describe the coupled fed-batch fermentation with the pH as the feedback parameter. We prove the non-Zeno behaviors of the switching system and some basic properties of its solution, including the existence, uniqueness, boundedness and regularity. Numerical simulation is also carried out, which reveals that the proposed system can describe the factual fermentation process properly.

  20. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  1. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties

    International Nuclear Information System (INIS)

    Gao Caixia; Li Kezan; Feng Enmin; Xiu Zhilong

    2006-01-01

    In this study, the nonlinear dynamical system of fed-batch fermentation is investigated in the process of bio-dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae. Considering the abrupt increase of glycerol in fed-batch culture, this paper proposes a nonlinear impulsive system of the culture process, which is fit for formulating the factual fermentation better than the continuous models in being. We study the questions of existence and properties of mild solutions for the system and the continuous dependence of solutions on initial values and the controllable variable. Finally, the numerical simulations show that the errors between experimental and computational values using the impulsive system are less than those using the previous continuous system

  2. Improved upper bounds on Kaluza-Klein gravity with current Solar System experiments and observations

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xue-Mei [Chinese Academy of Sciences, Purple Mountain Observatory, Nanjing (China); Xie, Yi [Nanjing University, School of Astronomy and Space Science, Nanjing (China); Shanghai Key Laboratory of Space Navigation and Position Techniques, Shanghai (China); Nanjing University, Ministry of Education, Key Laboratory of Modern Astronomy and Astrophysics, Nanjing (China)

    2015-11-15

    As an extension of previous works on classical tests of Kaluza-Klein (KK) gravity and as an attempt to find more stringent constraints on this theory, its effects on physical experiments and astronomical observations conducted in the Solar System are studied. We investigate the gravitational time delay at inferior conjunction caused by KK gravity, and use new Solar System ephemerides and the observation of Cassini to strengthen constraints on KK gravity by up to two orders of magnitude. These improved upper bounds mean that the fifth-dimensional space in the soliton case is a very flat extra dimension in the Solar System, even in the vicinity of the Sun. (orig.)

  3. Systemic distribution and speciation of diphenylarsinic acid fed to rats

    International Nuclear Information System (INIS)

    Naranmandura, Hua; Suzuki, Noriyuki; Takano, Juniti; McKnight-Whitford, Tony; Ogra, Yasumitsu; Suzuki, Kazuo T.; Le, X. Chris

    2009-01-01

    Diphenylarsinic acid (DPAA) is an environmental degradation product of diphenylarsine chloride or diphenylarsine cyanide, which were chemical warfare agents produced by Japan during the World War II. DPAA is now considered a dangerous environmental pollutant in Kamisu, Japan, where it is suspected of inducing health effects that include articulation disorders (cerebellar ataxia of the extremities and trunk), involuntary movements (myoclonus and tremor), and sleep disorders. In order to elucidate the toxic mechanism of DPAA, we focused on the distribution and metabolism of DPAA in rats. Systemic distribution of DPAA was determined by administering DPAA orally to rats at a single dose of 5.0 mg As/kg body weight, followed by speciation analysis of selected organs and body fluids. Most of the total arsenic burden was recovered in the urine (23% of the dose) and feces (27%), with the distribution in most other organs/tissues being less than 1%. However, compared with the typical distribution of inorganic dietary arsenic, DPAA administration resulted in elevated levels in the brain, testes and pancreas. In contrast to urine, in which DPAA was found mostly in its unmodified form, the tissues and organs contained arsenic that was mostly bound to non-soluble and soluble high molecular weight proteins. These bound arsenic species could be converted back to DPAA after oxidation with H 2 O 2 , suggesting that the DPAA bound to proteins had been reduced within the body and was in a trivalent oxidation state. Furthermore, we also detected two unknown arsenic metabolites in rat urine, which were assumed to be hydroxylated arsenic metabolites.

  4. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    Science.gov (United States)

    Ravex, Alain; Flachbart, Robin; Holt, Barney

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. TVS performance testing demonstrated that the spray bar was effective in providing tank pressure control within a 6

  5. Effect of the Earth's inner structure on the gravity in definitions of height systems

    Science.gov (United States)

    Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal

    2017-04-01

    In context of the vertical datum unification, the geoid-to-quasi-geoid separation has been of significant interest in recent years, because most of existing local vertical datums are realized in the system of either normal or orthometric heights. Nevertheless, the normal-orthometric heights are still used in many other countries where the normal gravity values along leveling lines were adopted instead of the observed gravity. Whereas the conversion between the orthometric and normal heights is defined by means of the mean gravity disturbances (i.e. differences between the mean values of the actual and normal gravity) along the plumbline within the topography, differences between the normal and normal-orthometric heights can be described by means of the surface gravity disturbances. Since the normal gravity field does not reflect the topographic masses and actual mass density distribution inside the Earth, the definition of gravity represents a principal aspect for a realization of particular vertical datum. To address this issue in this study, we investigate effects of the Earth's inner density structure on the surface and mean gravity disturbances, and discuss their impact on the vertical datum realization. These two gravity field quantities are computed globally with a spectral resolution complete to a spherical harmonic degree 2160 using the global gravity, terrain, ice-thickness, inland bathymetry and crustal structure models. Our results reveal that both, the surface and mean gravity disturbances mostly comprise the gravitational signal of topography and masses distributed below the geoid surface. Moreover, in polar areas, a significant contribution comes from large glaciers. In contrast, the contributions of anomalous density distribution within the topography attributed to major lakes, sediments and bedrock density variations are much less pronounced. We also demonstrate that the mean gravity disturbances within the topography are significantly modified

  6. Thermal hydraulics of the impurity control system for FED/INTOR

    International Nuclear Information System (INIS)

    Cha, Y.S.; Mattas, R.F.; Abdou, M.A.; Haines, J.R.

    1983-01-01

    This paper addresses two important aspects of thermal hydraulics related to the design of the impurity control system (limiter and divertor) of the Fusion Engineering Device (FED) and the International Tokamak Reactor (INTOR). The first part of the paper is devoted to the determination of temperature distributions in various combinations of the coating/structural materials proposed for the limiter/divertor of FED and INTOR. The second part of the paper describes the analysis of the tangential motion of the melt layer under the influence of magnetic force during plasma disruption. The results of both analysis provide inputs to the determination of the life time of the limiter (or divertor) which is the most critical problem for the impurity control system as far as engineering and materials consideration is concerned

  7. Context-Aware Based Efficient Training System Using Augmented Reality and Gravity Sensor for Healthcare Services

    Science.gov (United States)

    Kim, Seoksoo; Jung, Sungmo; Song, Jae-Gu; Kang, Byong-Ho

    As augmented reality and a gravity sensor is of growing interest, siginificant developement is being made on related technology, which allows application of the technology in a variety of areas with greater expectations. In applying Context-aware to augmented reality, it can make useful programs. A traning system suggested in this study helps a user to understand an effcienct training method using augmented reality and make sure if his exercise is being done propery based on the data collected by a gravity sensor. Therefore, this research aims to suggest an efficient training environment that can enhance previous training methods by applying augmented reality and a gravity sensor.

  8. Continuous fed-batch vacuum fermentation system for glycerol from molasses by the sulfite process

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, G.P.; Naik, S.C.

    1985-01-01

    A continuous fed-batch vacuum fermentation system has been described for the production of glycerol from cane molasses (and juice) by a conventional sulfite process. A glycerol concentration of 80 g/l was achieved with a productivity of 30 g/l/day at a dilution rate of 0.4/day which is twice that from a vacuum batch process (15 g/l/day) or four times that obtained without vacuum (8 g/l/day). 8 references.

  9. Thermoelectric characterization of an intermediate temperature solid oxide fuel cell system directly fed by dry biogas

    International Nuclear Information System (INIS)

    De Lorenzo, G.; Corigliano, O.; Lo Faro, M.; Frontera, P.; Antonucci, P.; Zignani, S.C.; Trocino, S.; Mirandola, F.A.; Aricò, A.S.; Fragiacomo, P.

    2016-01-01

    Highlights: • Numerical Model (NM) of SOFC Cogenerative System (SCS) fed by dry biogas is set up. • NM simulates new Ni-Fe/CGO protective layer for direct CH_4 consumption at the anode. • NM simulates the anode carbonation phenomenon and is experimentally validated. • The performance parameters trends of SCS fed by three types of dry biogas are shown. • SEM images after 40 h of operation show that there is no anode carbon deposition. - Abstract: A properly manufactured intermediate temperature Solid Oxide Fuel Cell (SOFC) can be directly fed by dry biogas, considering also the electrochemical partial and total oxidation reactions of methane in the biogas at the anode. In this way the methane in the biogas is electrochemically consumed directly at the fuel cell without the need to mix the biogas with any reforming gas (steam, oxygen or carbon dioxide). In this article, a numerical model of an SOFC system with Ni-Fe/CGO electrocatalyst anode protective layer directly fed by dry biogas, in cogenerative arrangement and with anode exhaust gas recirculation is formulated. The influences of biogas composition, of fuel cell operating current density and of percentage of recirculated anode exhaust gas on the SOFC system performances were evaluated by calculation code. An SOFC test bench was set up to validate the calculation code results experimentally. Furthermore, the numerical model also considers the anode carbonation and evaluates the amount of carbon that can be formed in the anode at chemical equilibrium and quasi-equilibrium conditions associated with the specific anode protective layer used.

  10. Constraining f(T) gravity in the Solar System

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo [Ministero dell' Istruzione dell' Università e della Ricerca (M.I.U.R), Viale Unità di Italia 68, 70125 Bari (Italy); Radicella, Ninfa [Dipartimento di Fisica E.R. Caianiello, Università di Salerno, Via Giovanni Paolo II 132, Fisciano (Italy); Ruggiero, Matteo Luca, E-mail: lorenzo.iorio@libero.it, E-mail: ninfa.radicella@sa.infn.it, E-mail: matteo.ruggiero@polito.it [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino (Italy)

    2015-08-01

    In the framework of f(T) theories of gravity, we solve the field equations for f(T)=T+α T{sup n} in the weak-field approximation and for spherical symmetry spacetime. Since f(T)=T corresponds to Teleparallel Gravity, which is equivalent to General Relativity, the non linearity of the Lagrangian are expected to produce perturbations of the general relativistic solutions, parameterized by α. Hence, we use the f(T) solutions to model the gravitational field of the Sun and exploit data from accurate radio-tracking of spacecrafts orbiting Mercury and Saturn to infer preliminary bounds on the model parameter α and on the cosmological constant Λ.

  11. The AFGL (Air Force Geophysics Laboratory) Absolute Gravity System’s Error Budget Revisted.

    Science.gov (United States)

    1985-05-08

    also be induced by equipment not associated with the system. A systematic bias of 68 pgal was observed by the Istituto di Metrologia "G. Colonnetti...Laboratory Astrophysics, Univ. of Colo., Boulder, Colo. IMGC: Istituto di Metrologia "G. Colonnetti", Torino, Italy Table 1. Absolute Gravity Values...measurements were made with three Model D and three Model G La Coste-Romberg gravity meters. These instruments were operated by the following agencies

  12. A new nordic structure evaluation system for diets fed to dairy cows

    DEFF Research Database (Denmark)

    Nørgaard, Peder; Nadeau, E.; Volden, H.

    2008-01-01

    on eating, ruminating and total chewing time by cattle fed mainly high forage diets. The EI is proportional with the neutral detergent fibre (NDF) content and a particle size factor (Size_E) of the feed. The RI is proportional with the NDF content, a particle size factor (Size_R) and a hardness factor...... per kg of total DMI is considered to ensure a sufficient intake of physically effective fibre in order to ensure good ruminal fibre digestion and to prevent a low rumen pH, digestive disorders and a low milk fat content in high-yielding dairy cows.......The objective of the Norfor structure system was to establish a model for prediction of eating- (EI), ruminating- (RI) and total chewing index (CI) for feeds and total rations fed to dairy cows. The model was predicted from a Meta analysis of more than 100 published experiments including results...

  13. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    Science.gov (United States)

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun

    2015-10-10

    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    Ruonan Wu

    2016-12-01

    Full Text Available The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV. Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008, namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.

  15. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.

    Science.gov (United States)

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-12-18

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.

  16. BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory

    Science.gov (United States)

    Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid

    It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.

  17. Doubly fed induction generator based wind turbine systems subject to recurring grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2014-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the Doubly Fed Induction Generator wind turbine system under recurring grid faults is analyzed. The stator natural flux produced by the voltage recovery after the first grid fault...... may be superposed on the stator natural flux produced by the second grid fault, and it may result in large current and voltage transient. The damping of the stator natural flux can be accelerated with a rotor natural current in its opposite direction after voltage recovery, but larger torque....... The performance of DFIG under recurring grid faults is verified by the simulation and experiments....

  18. Earth System Data Records of Mass Transport from Time-Variable Gravity Data

    Science.gov (United States)

    Zlotnicki, V.; Talpe, M.; Nerem, R. S.; Landerer, F. W.; Watkins, M. M.

    2014-12-01

    Satellite measurements of time variable gravity have revolutionized the study of Earth, by measuring the ice losses of Greenland, Antarctica and land glaciers, changes in groundwater including unsustainable losses due to extraction of groundwater, the mass and currents of the oceans and their redistribution during El Niño events, among other findings. Satellite measurements of gravity have been made primarily by four techniques: satellite tracking from land stations using either lasers or Doppler radio systems, satellite positioning by GNSS/GPS, satellite to satellite tracking over distances of a few hundred km using microwaves, and through a gravity gradiometer (radar altimeters also measure the gravity field, but over the oceans only). We discuss the challenges in the measurement of gravity by different instruments, especially time-variable gravity. A special concern is how to bridge a possible gap in time between the end of life of the current GRACE satellite pair, launched in 2002, and a future GRACE Follow-On pair to be launched in 2017. One challenge in combining data from different measurement systems consists of their different spatial and temporal resolutions and the different ways in which they alias short time scale signals. Typically satellite measurements of gravity are expressed in spherical harmonic coefficients (although expansions in terms of 'mascons', the masses of small spherical caps, has certain advantages). Taking advantage of correlations among spherical harmonic coefficients described by empirical orthogonal functions and derived from GRACE data it is possible to localize the otherwise coarse spatial resolution of the laser and Doppler derived gravity models. This presentation discusses the issues facing a climate data record of time variable mass flux using these different data sources, including its validation.

  19. Gravity-assist heat pipes for thermal control systems

    International Nuclear Information System (INIS)

    Deverall, J.E.; Keddy, E.S.; Kemme, J.E.; Phillips, J.R.

    1975-06-01

    Sodium heat pipes, operating in the gravity-assist mode, have been incorporated into irradiation capsules to provide a means for establishing and controlling a desired specimen temperature. Investigations were made of new wick structures for potassium heat pipes to operate at lower temperatures and higher heat transfer rates, and a helical trough wick structure was developed with an improved heat transfer capability in the temperature range of interest. Test results of these heat pipes led to the study of a new heat pipe limit which had not previously been considered. (12 references) (U.S.)

  20. Maximum Wind Power Tracking of Doubly Fed Wind Turbine System Based on Adaptive Gain Second-Order Sliding Mode

    Directory of Open Access Journals (Sweden)

    Hongchang Sun

    2018-01-01

    Full Text Available This paper proposes an adaptive gain second-order sliding mode control strategy to track optimal electromagnetic torque and regulate reactive power of doubly fed wind turbine system. Firstly, wind turbine aerodynamic characteristics and doubly fed induction generator (DFIG modeling are presented. Then, electromagnetic torque error and reactive power error are chosen as sliding variables, and fixed gain super-twisting sliding mode control scheme is designed. Considering that uncertainty upper bound is unknown and is hard to be estimated in actual doubly fed wind turbine system, a gain scheduled law is proposed to compel control parameters variation according to uncertainty upper bound real-time. Adaptive gain second-order sliding mode rotor voltage control method is constructed in detail and finite time stability of doubly fed wind turbine control system is strictly proved. The superiority and robustness of the proposed control scheme are finally evaluated on a 1.5 MW DFIG wind turbine system.

  1. Model for Investigation of Operational Wind Power Plant Regimes with Doubly–Fed Asynchronous Machine in Power System

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2012-01-01

    Full Text Available The paper presents methodology for mathematical modeling of power system (its part when jointly operated with wind power plants (stations that contain asynchronous doubly-fed machines used as generators. The essence and advantage of the methodology is that it allows efficiently to mate equations of doubly-fed asynchronous machines, written in the axes that rotate with the machine rotor speed with the equations of external electric power system, written in synchronously rotating axes.

  2. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    Science.gov (United States)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  3. Power system stabilization by SMES using current-fed pwm power conditioner

    International Nuclear Information System (INIS)

    Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.

    1988-01-01

    A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization

  4. Modern control strategies of doubly-fed induction generator based wind turbine system

    DEFF Research Database (Denmark)

    Zhou, Dao; Song, Yipeng; Blaabjerg, Frede

    2016-01-01

    A doubly-fed induction generator (DFIG) based configuration is still preferred by wind turbine manufactures due to the cost-effective power converter and independent control of the active power and reactive power. To cope with stricter grid codes (e.g. reactive power compensation, low voltage ride......, with the control targets of the smooth active and reactive power or the balances and sinusoidal current of the rotor-side converter and the grid-side converter. Finally, a bandwidth based repetitive controller is evaluated to improve the DFIG system's robustness against grid frequency deviation....

  5. Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2017-01-01

    An innovative study on anode recirculation in solid oxide fuel cell systems with alternative fuels is carried out and investigated. Alternative fuels under study are ammonia, pure hydrogen, methanol, ethanol, DME and biogas from biomass gasification. It is shown that the amount of anode off......%. Furthermore, it is founded that for the case with methanol, ethanol and DME then at high utilization factors, low anode recirculation is recommended while at low utilization factors, high anode recirculation is recommended. If the plant is fed by biogas from biomass gasification then for each utilization...

  6. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Indu Dhar

    Full Text Available The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs. Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs. HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH, proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.

  7. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats.

    Science.gov (United States)

    Dhar, Indu; Dhar, Arti; Wu, Lingyun; Desai, Kaushik M

    2013-01-01

    The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs). Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories) for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs). HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH), proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE) and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.

  8. Equivalent model of a dually-fed machine for electric drive control systems

    Science.gov (United States)

    Ostrovlyanchik, I. Yu; Popolzin, I. Yu

    2018-05-01

    The article shows that the mathematical model of a dually-fed machine is complicated because of the presence of a controlled voltage source in the rotor circuit. As a method of obtaining a mathematical model, the method of a generalized two-phase electric machine is applied and a rotating orthogonal coordinate system is chosen that is associated with the representing vector of a stator current. In the chosen coordinate system in the operator form the differential equations of electric equilibrium for the windings of the generalized machine (the Kirchhoff equation) are written together with the expression for the moment, which determines the electromechanical energy transformation in the machine. Equations are transformed so that they connect the currents of the windings, that determine the moment of the machine, and the voltages on these windings. The structural diagram of the machine is assigned to the written equations. Based on the written equations and accepted assumptions, expressions were obtained for the balancing the EMF of windings, and on the basis of these expressions an equivalent mathematical model of a dually-fed machine is proposed, convenient for use in electric drive control systems.

  9. Actin-based gravity-sensing mechanisms in unicellular plant model systems

    Science.gov (United States)

    Braun, Markus; Limbach, Christoph

    2005-08-01

    Considerable progress has been made in the understanding of the molecular and cellular mechanisms underlying gravity sensing and gravity-oriented polarized growth in single-celled rhizoids and protonemata of the characean algae. It is well known that the actin cytoskeleton plays a key role in these processes. Numerous actin-binding proteins control apical actin polymerization and the dynamic remodeling of the actin arrangement. An actomyosin-based system mediates the delivery and incorporation of secretory vesicles at the growing tip and coordinates the tip-high gradient of cytoplasmic free calcium which is required for local exocytosis. Additionally, the actomyosin system precisely controls the position of statoliths and, upon a change in orientation relative to the gravity vector, directs sedimenting statoliths to the confined graviperception sites of the plasma membrane where gravitropic signalling is initiated. The upward growth response of protonemata is preceded by an actin-dependent relocalization of the Ca2+-gradient to the upper flank. The downward growth response of rhizoids, however, is caused by differential growth of the opposite flankes due to a local reduction of cytoplasmic free calcium limited to the plasma membrane area where statoliths are sedimented. Thus, constant actin polymerization in the growing tip and the spatiotemporal control of actin remodeling are essential for gravity sensing and gravity-oriented polarized growth of characean rhizoids and protonemata.

  10. The development of vestibular system and related function in mammals: Impact of gravity

    Directory of Open Access Journals (Sweden)

    Marc eJamon

    2014-02-01

    Full Text Available This chapter reviews the knowledge about the adaptation to Earth gravity during the development of mammals. The impact of early exposure to altered gravity is evaluated at the level of the functions related to the vestibular system, including postural control, homeostatic regulation, and spatial memory. The hypothesis of critical periods in the adaptation to gravity is discussed. Demonstrating a critical period requires removing the gravity stimulus during delimited time windows, what is impossible to do on Earth surface. The Surgical destruction of the vestibular apparatus, and the use of mice strains with defective graviceptors have provided useful information on the consequences of missing gravity perception, and the possible compensatory mechanisms, but transitory suppression of the stimulus can only be operated during spatial flight. The rare studies on rat pups housed on board of space shuttle significantly contributed to this problem, but the use of hypergravity environment, produced by means of chronic centrifugation, is the only available tool when repeated experiments must be carried out on Earth. Even though hypergravity is sometimes considered as a mirror situation to microgravity, the two situations cannot be confused because a gravitational force is still present. The theoretical considerations that validate the paradigm of hypergravity to evaluate critical periods are discussed. The question of adaption of graviceptor is questioned from an evolutionary point of view. It is possible that graviception is hardwired, because life on Earth has evolved under the constant pressure of gravity. The rapid acquisition of motor programming by precocial mammals in minutes after birth is consistent with this hypothesis, but the slow development of motor skills in altricial species and the plasticity of vestibular perception in adults suggest that gravity experience is required for the tuning of graviceptors. The possible reasons for this

  11. Renormalization group fixed points of foliated gravity-matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Biemans, Jorn [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Platania, Alessia [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Department of Physics and Astronomy, University of Catania,Via S. Sofia 63, 95123 Catania (Italy); INFN, Catania section,Via S. Sofia 64, 95123, Catania (Italy); INAF, Catania Astrophysical Observatory,Via S. Sofia 78, 95123, Catania (Italy); Saueressig, Frank [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2017-05-17

    We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) “time”-direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton’s constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d{sub g}, d{sub λ}. We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.

  12. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    Science.gov (United States)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  13. A Short-Current Control Method for Constant Frequency Current-Fed Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Yanling Li

    2017-04-01

    Full Text Available Frequency drift is a serious problem in Current-Fed Wireless Power Transfer (WPT systems. When the operating frequency is drifting from the inherent Zero Voltage Switching (ZVS frequency of resonant network, large short currents will appear and damage the switches. In this paper, an inductance-dampening method is proposed to inhibit short currents and achieve constant-frequency operation. By adding a small auxiliary series inductance in the primary resonant network, short currents are greatly attenuated to a safe level. The operation principle and steady-state analysis of the system are provided. An overlapping time self-regulating circuit is designed to guarantee ZVS running. The range of auxiliary inductances is discussed and its critical value is calculated exactly. The design methodology is described and a design example is presented. Finally, a prototype is built and the experimental results verify the proposed method.

  14. Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity

    Science.gov (United States)

    Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam

    2018-06-01

    In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.

  15. Gravity signals from the lithosphere in the Central European Basin System

    Science.gov (United States)

    Yegorova, T.; Bayer, U.; Thybo, H.; Maystrenko, Y.; Scheck-Wenderoth, M.; Lyngsie, S. B.

    2007-01-01

    We study the gravity signals from different depth levels in the lithosphere of the Central European Basin System (CEBS). The major elements of the CEBS are the Northern and Southern Permian Basins which include the Norwegian-Danish Basin (NDB), the North-German Basin (NGB) and the Polish Trough (PT). An up to 10 km thick sedimentary cover of Mesozoic-Cenozoic sediments, hides the gravity signal from below the basin and masks the heterogeneous structure of the consolidated crust, which is assumed to be composed of domains that were accreted during the Paleozoic amalgamation of Europe. We performed a three-dimensional (3D) gravity backstripping to investigate the structure of the lithosphere below the CEBS. Residual anomalies are derived by removing the effect of sediments down to the base of Permian from the observed field. In order to correct for the influence of large salt structures, lateral density variations are incorporated. These sediment-free anomalies are interpreted to reflect Moho relief and density heterogeneities in the crystalline crust and uppermost mantle. The gravity effect of the Moho relief compensates to a large extent the effect of the sediments in the CEBS and in the North Sea. Removal of the effects of large-scale crustal inhomogeneities shows a clear expression of the Variscan arc system at the southern part of the study area and the old crust of Baltica further north-east. The remaining residual anomalies (after stripping off the effects of sediments, Moho topography and large-scale crustal heterogeneities) reveal long wavelength anomalies, which are caused mainly by density variations in the upper mantle, though gravity influence from the lower crust cannot be ruled out. They indicate that the three main subbasins of the CEBS originated on different lithospheric domains. The PT originated on a thick, strong and dense lithosphere of the Baltica type. The NDB was formed on a weakened Baltica low-density lithosphere formed during the Sveco

  16. Control of suspended low-gravity simulation system based on self-adaptive fuzzy PID

    Science.gov (United States)

    Chen, Zhigang; Qu, Jiangang

    2017-09-01

    In this paper, an active suspended low-gravity simulation system is proposed to follow the vertical motion of the spacecraft. Firstly, working principle and mathematical model of the low-gravity simulation system are shown. In order to establish the balance process and suppress the strong position interference of the system, the idea of self-adaptive fuzzy PID control strategy is proposed. It combines the PID controller with a fuzzy controll strategy, the control system can be automatically adjusted by changing the proportional parameter, integral parameter and differential parameter of the controller in real-time. At last, we use the Simulink tools to verify the performance of the controller. The results show that the system can reach balanced state quickly without overshoot and oscillation by the method of the self-adaptive fuzzy PID, and follow the speed of 3m/s, while simulation degree of accuracy of system can reach to 95.9% or more.

  17. Prospects for Probing Strong Gravity with a Pulsar-Black Hole System

    Science.gov (United States)

    Wex, N.; Liu, K.; Eatough, R. P.; Kramer, M.; Cordes, J. M.; Lazio, T. J. W.

    2012-01-01

    The discovery of a pulsar (PSR) in orbit around a black hole (BH) is expected to provide a superb new probe of relativistic gravity and BH properties. Apart from a precise mass measurement for the BH, one could expect a clean verification of the dragging of space-time caused by the BH spin. In order to measure the quadrupole moment of the BH for testing the no-hair theorem of general relativity (GR), one has to hope for a sufficiently massive BH. In this respect, a PSR orbiting the super-massive BH in the center of our Galaxy would be the ultimate laboratory for gravity tests with PSRs. But even for gravity theories that predict the same properties for BHs as GR, a PSR-BH system would constitute an excellent test system, due to the high grade of asymmetry in the strong field properties of these two components. Here we highlight some of the potential gravity tests that one could expect from different PSR-BH systems.

  18. Petroleum system of Northwest Java basin based on gravity data analysis

    Science.gov (United States)

    Widianto, E.

    2018-01-01

    Energy management in the upstream oil and gas sector becomes very important for the country’s energy security. The renewal of energy resources and reserves becomes necessary and is a must. In the oil and gas industry, gravity data is usually used only for regional surveys, but with the development of instrumentation technology and gravity software development, this method can be used for assessing oil and gas survey stages from exploration to production. This study was conducted to evaluate aspects of petroleum system and exploration play concept in the part of Northwest Java Basin, covering source rock deposition regions (source kitchen area, migration direction), development of reservoirs, structural and stratigraphic trap, based on gravity data. This study uses data from Bouguer gravity anomaly map by filtering process to produce a residual map depicting sedimentation basin configuration. The mapping generated 20 sedimentary basins in Java Island with the total hydrocarbon resources of 113 BBOE (Billion Barrel of Oil Equivalent). The petroleum system analysis was conducted in the Northwest Basin section. The final map produced illustrates the condition of petroleum system and play concept that can be used as exploration direction, expectedly reducing the risk of drilling failure.

  19. Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop

    Science.gov (United States)

    Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.

    2016-08-01

    Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.

  20. New design and facilities for the International Database for Absolute Gravity Measurements (AGrav): A support for the Establishment of a new Global Absolute Gravity Reference System

    Science.gov (United States)

    Wziontek, Hartmut; Falk, Reinhard; Bonvalot, Sylvain; Rülke, Axel

    2017-04-01

    After about 10 years of successful joint operation by BGI and BKG, the International Database for Absolute Gravity Measurements "AGrav" (see references hereafter) was under a major revision. The outdated web interface was replaced by a responsive, high level web application framework based on Python and built on top of Pyramid. Functionality was added, like interactive time series plots or a report generator and the interactive map-based station overview was updated completely, comprising now clustering and the classification of stations. Furthermore, the database backend was migrated to PostgreSQL for better support of the application framework and long-term availability. As comparisons of absolute gravimeters (AG) become essential to realize a precise and uniform gravity standard, the database was extended to document the results on international and regional level, including those performed at monitoring stations equipped with SGs. By this it will be possible to link different AGs and to trace their equivalence back to the key comparisons under the auspices of International Committee for Weights and Measures (CIPM) as the best metrological realization of the absolute gravity standard. In this way the new AGrav database accommodates the demands of the new Global Absolute Gravity Reference System as recommended by the IAG Resolution No. 2 adopted in Prague 2015. The new database will be presented with focus on the new user interface and new functionality, calling all institutions involved in absolute gravimetry to participate and contribute with their information to built up a most complete picture of high precision absolute gravimetry and improve its visibility. A Digital Object Identifier (DOI) will be provided by BGI to contributors to give a better traceability and facilitate the referencing of their gravity surveys. Links and references: BGI mirror site : http://bgi.obs-mip.fr/data-products/Gravity-Databases/Absolute-Gravity-data/ BKG mirror site: http

  1. A joint FED watermarking system using spatial fusion for verifying the security issues of teleradiology.

    Science.gov (United States)

    Viswanathan, P; Krishna, P Venkata

    2014-05-01

    Teleradiology allows transmission of medical images for clinical data interpretation to provide improved e-health care access, delivery, and standards. The remote transmission raises various ethical and legal issues like image retention, fraud, privacy, malpractice liability, etc. A joint FED watermarking system means a joint fingerprint/encryption/dual watermarking system is proposed for addressing these issues. The system combines a region based substitution dual watermarking algorithm using spatial fusion, stream cipher algorithm using symmetric key, and fingerprint verification algorithm using invariants. This paper aims to give access to the outcomes of medical images with confidentiality, availability, integrity, and its origin. The watermarking, encryption, and fingerprint enrollment are conducted jointly in protection stage such that the extraction, decryption, and verification can be applied independently. The dual watermarking system, introducing two different embedding schemes, one used for patient data and other for fingerprint features, reduces the difficulty in maintenance of multiple documents like authentication data, personnel and diagnosis data, and medical images. The spatial fusion algorithm, which determines the region of embedding using threshold from the image to embed the encrypted patient data, follows the exact rules of fusion resulting in better quality than other fusion techniques. The four step stream cipher algorithm using symmetric key for encrypting the patient data with fingerprint verification system using algebraic invariants improves the robustness of the medical information. The experiment result of proposed scheme is evaluated for security and quality analysis in DICOM medical images resulted well in terms of attacks, quality index, and imperceptibility.

  2. Design features of the radioactive Liquid-Fed Ceramic Melter system

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.

    1985-06-01

    During 1983, the Pacific Northwest Laboratory (PNL), at the request of the Department of Energy (DOE), undertook a program with the principal objective of testing the Liquid-Fed Ceramic Melter (LFCM) process in actual radioactive operations. This activity, termed the Radioactive LFCM (RLFCM) Operations is being conducted in existing shielded hot-cell facilities in B-Cell of the 324 Building, 300 Area, located at Hanford, Washington. This report summarizes the design features of the RLFCM system. These features include: a waste preparation and feed system which uses pulse-agitated waste preparation tanks for waste slurry agitation and an air displacement slurry pump for transferring waste slurries to the LFCM; a waste vitrification system (LFCM) - the design features, design approach, and reasoning for the design of the LFCM are described; a canister-handling turntable for positioning canisters underneath the RLFCM discharge port; a gamma source positioning and detection system for monitoring the glass fill level of the product canisters; and a primary off-gas treatment system for removing the majority of the radionuclide contamination from the RLFCM off gas. 8 refs., 48 figs., 6 tabs

  3. Effects of Food Based Yeast on Oxidant-Antioxidant Systems in Rats fed by High Cholesterol Diet

    OpenAIRE

    Savaş, Hasan Basri; Yüksel, Özlem; Şanlıdere Aloğlu, Hatice; Öner, Zübeyde; Demir Özer, Ezgi; Gültekin, Fatih

    2013-01-01

    In living organisms, oxidant and antioxidant systems are in a balance. In the present study, our aim was to study the effects of Cryptococcus humicola, which is a food based yeast whose cholesterol lowering activity is under investigation, on oxidant and antioxidant systems.31 adult male, Wistar albino rats weighing 200-250 gr were included in the study. Rats were divided into four groups based on their diets. Group 1(Control Group) was fed a normal diet, Group 2 was fed a high cholesterol di...

  4. Loading effects on rat craniomandibular morphology: a system for gravity studies

    Science.gov (United States)

    Singh, Ranbir; Carvalho, Thais; Gerstner, Geoffrey E.

    2005-02-01

    Gravity effects on muscle and bone are a major impediment to long-term space travel. We introduce a model for studying these effects, the craniomandibular system. Some advantages of this system include: (1) craniomandibular morphology is determined by epigenetic factors including gravity, (2) relatively light forces can significantly alter its morphology, and (3) soft diet and tooth loss produce effects that are similar to those produced in lower limbs by weightlessness. In the study, implants made either of gold (experimental group) or lightweight acrylic (controls) were attached to adult rats' mandibles. After 13 weeks, the animals' skulls and mandibles were dissected. Pair-wise comparisons indicated that the experimental animals showed significantly shortened and narrowed cranial bases, and significant changes in the posterior zygomatic arch region. These results indicate that simulated macrogravity influences bone remodeling in the adult craniomandibular system.

  5. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north-oriented frame

    Science.gov (United States)

    Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue

    2018-04-01

    In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.

  6. Simulation and Study of Multilevel Inverter System Fed By Photovoltaic Source

    Directory of Open Access Journals (Sweden)

    Ali Abdulrazzak Jasim

    2018-01-01

    Full Text Available This paper proposes a simulation of Photovoltaic energy used to supply an induction motor with acomparison of two types of inverters.In general, the greater number of motorswhich"are used incommercial and industrial applicationsare"induction motors. To use PV source to run the induction motor, an interface circuits are used which are a dc-dc"converter and an inverter, the PV cell has nonlinear behavior,"adc-dc converter is used along with Maximum Power Point Tracker controllerto improve theefficiency by boosting the output voltage of the PV module and to match the load demand."The dc output voltage of PV modulethen"converted to AC, two types of inverter are presented, A conventional Voltage Source Inverter system and multilevel inverter system which employselective harmonic eliminationmethod fed three phase induction motor, these two types of inverters are simulated using Matlab/Simulink and their results are presented. The FFT spectrum is presented of the output currents to analyze the harmonics reduction, which shows that the"multilevel inverter is better than VSI system"according to harmonics reduction and increment in output voltage and power.

  7. A Condensed Introduction to the Doubly Fed Induction Generator Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Julius Mwaniki

    2017-01-01

    Full Text Available The increase in wind power penetration, at 456 GW as of June 2016, has resulted in more stringent grid codes which specify that the wind energy conversion systems (WECS must remain connected to the system during and after a grid fault and, furthermore, must offer grid support by providing reactive currents. The doubly fed induction generator (DFIG WECS is a well-proven technology, having been in use in wind power generation for many years and having a large world market share due to its many merits. Newer technologies such as the direct drive gearless permanent magnet synchronous generator have come up to challenge its market share, but the large number of installed machines ensures that it remains of interest in the wind industry. This paper presents a concise introduction of the DFIG WECS covering its construction, operation, merits, demerits, modelling, control types, levels and strategies, faults and their proposed solutions, and, finally, simulation. Qualities for the optimal control strategy are then proposed. The paper is intended to cover major issues related to the DFIG WECS that are a must for an overview of the system and hence serve as an introduction especially for new entrants into this area of study.

  8. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  9. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system.

    Science.gov (United States)

    Kördikanlıoğlu, Burcu; Şimşek, Ömer; Saris, Per E J

    2015-01-01

    In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed-batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed-batch fermentation system with high fidelity (R(2) 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L(-1) h(-1) , 3 μg mL(-1) and 40%, respectively. While 1711 IU mL(-1) nisin was produced by L. lactis N8 in control fed-batch fermentation, 5410 IU mL(-1) nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed-batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed-batch fermentation. © 2015 American Institute of Chemical Engineers.

  10. Unigrace - A Project For The Unification of Gravity Systems In Central Europe

    Science.gov (United States)

    Richter, B.; Falk, R.; Erker, E.; Ruess, D.; Mäkinen, J.; Hinderer, J.; Marson, I.; Sledzinski, J.

    Because of the present trends of political and economical unification in Europe for- merly classified gravimetric data in Central Europe are becoming available. The dif- ferences, however, between gravity systems in this area are so large that they strongly affect the geoid, vertical datum definitions and height systems. It is therefore manda- tory to study system differences and to unify them. The project UNIGRACE aims at solving this problem by carrying out absolute grav- ity measurements with the most advanced technology at 17 selected sites in the coun- tries concerned. In a joint effort five European groups from Austria, Finland, France, Germany, Italy and Poland using their absolute gravimeters and partners from Bul- garia, Croatia, Czech Republic, Hungary, Romania, Slovakia and Slovenia cooperate in selecting and/or establishing the sites and performing the measurements as well as in connecting the absolute sites to the national gravimetric networks. As a result, a unique gravity system in Central Europe will be available. The project started on Jan. 1, 1998 and till the end of 2000 all selected gravity sites have been observed twice by absolute gravimeters. From these repeated measurements the final results for this project will be presented which was granted by the European Commission.

  11. A Novel Dual-input Isolated Current-Fed DC-DC Converter for Renewable Energy System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    In this paper, a novel isolated current-fed DC-DC converter (boost-type) with two input power sources based on multi-transformer structure, which is suitable for fuel cells and super-capacitors hybrid energy system, is proposed and designed. With particular transformer windings connection strategy...

  12. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2010-01-01

    A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described...

  13. A Concise Presentation of Doubly Fed Induction Generator Wind Energy Conversion Systems Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Julius Mwaniki

    2017-01-01

    Full Text Available There is increased worldwide wind power generation, a large percentage of which is grid connected. The doubly fed induction generator (DFIG wind energy conversion system (WECS has many merits and, as a result, large numbers have been installed to date. The DFIG WECS operation, under both steady state and fault conditions, is of great interest since it impacts on grid performance. This review paper presents a condensed look at the various applied solutions to the challenges of the DFIG WECS including maximum power point tracking, common mode voltages, subsynchronous resonance, losses, modulation, power quality, and faults both internal and from the grid. It also looks at approaches used to meet the increasingly stringent grid codes requirements for the DFIG WECS to not only ride through faults but also provide voltage support. These are aspects of the DFIG WECS that are critical for system operators and prospective investors and can also serve as an introduction for new entrants into this area of study.

  14. Gauge/gravity duality applied to condensed matter systems

    International Nuclear Information System (INIS)

    Ammon, Martin Matthias

    2010-01-01

    DE024486693In the present thesis by means of the AdS/CFT correspondence phenomena of strongly coupled quantum critical systems are studied. Hereby the assumption developed 1997 by Maldacena puts four-dimensional N=4 supersymmetric Yang-Mills theory and type IIB supergravity in the five-dimensional anti-de Sitter space in relation. This assumption can be generalized in different ways. So on the gauge-theory side states with finite temperature and density can be considered or degrees of freedom added, which transform in the fundamental representation of the gauge group, the so-called flavor degrees of freedom. These deformations of the correspondence are applied in the present thesis in order to understand better strongly coupled systems in the neighbourhood of quantum-critical points. We approximate hereby the field theory at the quantum-critical point by N=4 supersymmetric Yang-Mills theory. The charge carriers of the system are introduced by supersymmetric flavor fields. For instance in the present thesis in the case of two flavor fields, which have the same mass, a chemical potential for the isospin is considered and the phase diagram studied. The isospin-chemical potential breaks hereby the non-Abelian part of the flavor symmetry SU(2) to U(1). If a critical value of the isospin-chemical potential is exceeded, so shows our calculation, that the strongly coupled system becomes unstable against fluctuations. A new thermodynamically favorized state is formed. This state breaks the residual U(1) flavor symmetry spontaneously and can therefore be considered as a superfluid. If U(1) is gauged, by this way a superconductor is obtained. The AC conductivity goes in the superconducting phase for small frequencies to zero. The DC conductivity however is infinite. Furthermore we calculate the Fermi surface in the superconducting phase. Furthermore a holographic method for the calculation of the DC conductivity in arbitrarily constant electric and magnetic fields is further

  15. Gauge/gravity duality applied to condensed matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Martin Matthias

    2010-07-07

    DE024486693In the present thesis by means of the AdS/CFT correspondence phenomena of strongly coupled quantum critical systems are studied. Hereby the assumption developed 1997 by Maldacena puts four-dimensional N=4 supersymmetric Yang-Mills theory and type IIB supergravity in the five-dimensional anti-de Sitter space in relation. This assumption can be generalized in different ways. So on the gauge-theory side states with finite temperature and density can be considered or degrees of freedom added, which transform in the fundamental representation of the gauge group, the so-called flavor degrees of freedom. These deformations of the correspondence are applied in the present thesis in order to understand better strongly coupled systems in the neighbourhood of quantum-critical points. We approximate hereby the field theory at the quantum-critical point by N=4 supersymmetric Yang-Mills theory. The charge carriers of the system are introduced by supersymmetric flavor fields. For instance in the present thesis in the case of two flavor fields, which have the same mass, a chemical potential for the isospin is considered and the phase diagram studied. The isospin-chemical potential breaks hereby the non-Abelian part of the flavor symmetry SU(2) to U(1). If a critical value of the isospin-chemical potential is exceeded, so shows our calculation, that the strongly coupled system becomes unstable against fluctuations. A new thermodynamically favorized state is formed. This state breaks the residual U(1) flavor symmetry spontaneously and can therefore be considered as a superfluid. If U(1) is gauged, by this way a superconductor is obtained. The AC conductivity goes in the superconducting phase for small frequencies to zero. The DC conductivity however is infinite. Furthermore we calculate the Fermi surface in the superconducting phase. Furthermore a holographic method for the calculation of the DC conductivity in arbitrarily constant electric and magnetic fields is further

  16. In Vivo Dissolution and Systemic Absorption of Immediate Release Ibuprofen in Human Gastrointestinal Tract under Fed and Fasted Conditions.

    Science.gov (United States)

    Koenigsknecht, Mark J; Baker, Jason R; Wen, Bo; Frances, Ann; Zhang, Huixia; Yu, Alex; Zhao, Ting; Tsume, Yasuhiro; Pai, Manjunath P; Bleske, Barry E; Zhang, Xinyuan; Lionberger, Robert; Lee, Allen; Amidon, Gordon L; Hasler, William L; Sun, Duxin

    2017-12-04

    In vivo drug dissolution in the gastrointestinal (GI) tract is largely unmeasured. The purpose of this clinical study was to evaluate the in vivo drug dissolution and systemic absorption of the BCS class IIa drug ibuprofen under fed and fasted conditions by direct sampling of stomach and small intestinal luminal content. Expanding current knowledge of drug dissolution in vivo will help to establish physiologically relevant in vitro models predictive of drug dissolution. A multilumen GI catheter was orally inserted into the GI tract of healthy human subjects. Subjects received a single oral dose of ibuprofen (800 mg tablet) with 250 mL of water under fasting and fed conditions. The GI catheter facilitated collection of GI fluid from the stomach, duodenum, and jejunum. Ibuprofen concentration in GI fluid supernatant and plasma was determined by LC-MS/MS. A total of 23 subjects completed the study, with 11 subjects returning for an additional study visit (a total of 34 completed study visits). The subjects were primarily white (61%) and male (65%) with an average age of 30 years. The subjects had a median [min, max] weight of 79 [52, 123] kg and body mass index of 25.7 [19.4, 37.7] kg/m 2 . Ibuprofen plasma levels were higher under fasted conditions and remained detectable for 28 h under both conditions. The AUC 0-24 and C max were lower in fed subjects vs fasted subjects, and T max was delayed in fed subjects vs fasted subjects. Ibuprofen was detected immediately after ingestion in the stomach under fasting and fed conditions until 7 h after dosing. Higher levels of ibuprofen were detected in the small intestine soon after dosing in fasted subjects compared to fed. In contrast to plasma drug concentration, overall gastric concentrations remained higher under fed conditions due to increased gastric pH vs fasting condition. The gastric pH increased to near neutrality after feedingbefore decreasing to acidic levels after 7 h. Induction of the fed state reduced systemic

  17. Microelectromechanical system gravimeters as a new tool for gravity imaging

    Science.gov (United States)

    Middlemiss, Richard P.; Bramsiepe, Steven G.; Douglas, Rebecca; Hild, Stefan; Hough, James; Paul, Douglas J.; Samarelli, Antonio; Rowan, Sheila; Hammond, Giles D.

    2018-05-01

    A microelectromechanical system (MEMS) gravimeter has been manufactured with a sensitivity of 40 ppb in an integration time of 1 s. This sensor has been used to measure the Earth tides: the elastic deformation of the globe due to tidal forces. No such measurement has been demonstrated before now with a MEMS gravimeter. Since this measurement, the gravimeter has been miniaturized and tested in the field. Measurements of the free-air and Bouguer effects have been demonstrated by monitoring the change in gravitational acceleration measured while going up and down a lift shaft of 20.7 m, and up and down a local hill of 275 m. These tests demonstrate that the device has the potential to be a useful field-portable instrument. The development of an even smaller device is underway, with a total package size similar to that of a smartphone. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  18. Pump-Fed, Compact, High Performance Green Propulsion System for Secondary Payloads, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its micropump-fed propulsion technology to the development of a low cost, compact, low tank pressure, high performance LPM-103S...

  19. Detailed Transients Simulation of a Doubly Fed Induction Generator Wind Turbine System with the EMTP-Type OVNI Simulator

    OpenAIRE

    Lukić Armstrong, Mažana; R. Martí, José; Kundur, Prabha

    2017-01-01

    Doubly fed induction generator wind turbines are increasingly used in new wind turbine installations all over the world. Growing concerns about the impact of a large number of these generators on transient and voltage stability of power system networks has led engineers to revisit modelling and simulation practices used for system stability analyses. In this paper, the latest advancements in design of the general purpose power system simulator OVNI developed at the University o...

  20. Microelectromechanical system gravimeters as a new tool for gravity imaging.

    Science.gov (United States)

    Middlemiss, Richard P; Bramsiepe, Steven G; Douglas, Rebecca; Hild, Stefan; Hough, James; Paul, Douglas J; Samarelli, Antonio; Rowan, Sheila; Hammond, Giles D

    2018-05-28

    A microelectromechanical system (MEMS) gravimeter has been manufactured with a sensitivity of 40 ppb in an integration time of 1 s. This sensor has been used to measure the Earth tides: the elastic deformation of the globe due to tidal forces. No such measurement has been demonstrated before now with a MEMS gravimeter. Since this measurement, the gravimeter has been miniaturized and tested in the field. Measurements of the free-air and Bouguer effects have been demonstrated by monitoring the change in gravitational acceleration measured while going up and down a lift shaft of 20.7 m, and up and down a local hill of 275 m. These tests demonstrate that the device has the potential to be a useful field-portable instrument. The development of an even smaller device is underway, with a total package size similar to that of a smartphone.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  1. Harmonic Instability Assessment Using State-Space Modeling and Participation Analysis in Inverter-Fed Power Systems

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    parameters on the harmonic instability of the power system. Moreover, the harmonic-frequency oscillation modes are identified, where participation analysis is presented to evaluate the contributions of different states to these modes and to further reveal how the system gives rise to harmonic instability......This paper presents a harmonic instability analysis method using state-space modeling and participation analysis in the inverter-fed ac power systems. A full-order state-space model for the droop-controlled Distributed Generation (DG) inverter is built first, including the time delay of the digital...... control system, inner current and voltage control loops, and outer droop-based power control loop. Based on the DG inverter model, an overall state-space model of a two-inverter-fed system is established. The eigenvalue-based stability analysis is then presented to assess the influence of controller...

  2. A Multiband Proximity-Coupled-Fed Flexible Microstrip Antenna for Wireless Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Andrea Casula

    2016-01-01

    Full Text Available A multiband printed microstrip antenna for wireless communications is presented. The antenna is fed by a proximity-coupled microstrip line, and it is printed on a flexible substrate. The antenna has been designed using a general-purpose 3D computer-aided design software (CAD, CST Microwave Studio, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications for WLAN systems, covering both the WLAN S-band (2.45 GHz and C-band (5.2 GHz, and the Wi-Max 3.5 GHz band, with satisfactory input matching and broadside radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents a discrete out-of-band rejection, without requiring the use of stop-band filters. The proposed structure can be used also as a conformal antenna, and its frequency response and radiated field are satisfactory for curvatures up to 65°.

  3. A new nordic structure evaluation system for diets fed to dairy cows

    DEFF Research Database (Denmark)

    Nørgaard, Peder; Nadeau, E.; Randby, Å.T.

    2010-01-01

    , and with studies as random effect for ruminating time. The mRTf value per kg forage NDF decreased at increased BW and DNFIf/BW. The mETf value increased at increasing BW and at decreasing DM contents of grass silage. Intake of NDF from rolled barley stimulated ruminating time by 3/4 of the stimuli from DNFIf......The overall aim was to establish a model for predicting chewing index (CI) values for ranking the fibrousnesses of feeds fed to dairy cows within the Nordic Chewing index system. The CI values are predicted as the sum of the eating (EI) and ruminating time index (RI) values. The EI values...... are assumed to be proportional with the NDF content and a particle size factor through the porportionality factor kEI. The RI values are assumed to be proportional with the NDF content, a particle size factor and a hardness factor through the proportionality factor kRI. The kEI, kRI values and the k...

  4. Modification of the gravity model and application to the metropolitan Seoul subway system.

    Science.gov (United States)

    Goh, Segun; Lee, Keumsook; Park, Jong Soo; Choi, M Y

    2012-08-01

    The Metropolitan Seoul Subway system is examined through the use of the gravity model. Exponents describing the power-law dependence on the time distance between stations are obtained, which reveals a universality for subway lines of the same topology. In the short (time) distance regime the number of passengers between stations does not grow with the decrease in the distance, thus deviating from the power-law behavior. It is found that such reduction in passengers is well described by the Hill function. Further, temporal fluctuations in the passenger flow data, fitted to the gravity model modified by the Hill function, are analyzed to reveal the Yule-type nature inherent in the structure of Seoul.

  5. Simple prescription for computing the interparticle potential energy for D-dimensional gravity systems

    International Nuclear Information System (INIS)

    Accioly, Antonio; Helayël-Neto, José; Barone, F E; Herdy, Wallace

    2015-01-01

    A straightforward prescription for computing the D-dimensional potential energy of gravitational models, which is strongly based on the Feynman path integral, is built up. Using this method, the static potential energy for the interaction of two masses is found in the context of D-dimensional higher-derivative gravity models, and its behavior is analyzed afterwards in both ultraviolet and infrared regimes. As a consequence, two new gravity systems in which the potential energy is finite at the origin, respectively, in D = 5 and D = 6, are found. Since the aforementioned prescription is equivalent to that based on the marriage between quantum mechanics (to leading order, i.e., in the first Born approximation) and the nonrelativistic limit of quantum field theory, and bearing in mind that the latter relies basically on the calculation of the nonrelativistic Feynman amplitude (M NR ), a trivial expression for computing M NR is obtained from our prescription as an added bonus. (paper)

  6. Analysis of Spring Development and Gravity Flow System to Capture Water for Local Communities

    Directory of Open Access Journals (Sweden)

    Adiningrum Cita

    2017-01-01

    Full Text Available Springs as water sources are relatively inexpensive but highly susceptible to contamination since they are fed by shallow groundwater. Proper spring development helps protect the water from contamination. This study presents an analysis and design of spring development including the type of broncaptering/collecting wall, the dimension for the spring box and the conduction line. In addition, a guideline on “Springwater Construction” published by the Ministry of Public Works has been used in this design. A concentrated spring in Wates, Magelang, Central Java is used as a case study. The design calls for the collection of water from a spring using sets of broncaptering and a spring box, then piping it by gravity a distance of 5.1 kilometers to Van Lith Senior High School. Analysis was done using a manual calculation, which is subsequently compared to the result of HYDROFLO 3 software. Results show that the spring with a flow rate of 0.12 litre/s (manual and 0.17 litre/s (software will be collected into a 5 m3 volume of spring box. The spring box with a +543 m water surface elevation is being supplied to Van Lith +384 m ground elevation using a uniform PVC pipelines with a ¾ inch of diameter.

  7. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  8. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    Science.gov (United States)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  9. GRACE, time-varying gravity, Earth system dynamics and climate change

    Science.gov (United States)

    Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.

    2014-11-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

  10. GRACE, time-varying gravity, Earth system dynamics and climate change

    International Nuclear Information System (INIS)

    Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J

    2014-01-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography. (review article)

  11. Effects of voltage unbalance and system harmonics on the performance of doubly fed induction wind generators

    Science.gov (United States)

    Kiani, Morgan Mozhgan

    Inherent difficulties in management of electric power in the presence of an increasing demand for more energy, non-conventional loads such as digital appliances, and non-sustainable imported fossil fuels has initiated a multi-folded effort by many countries to restructure the way electric energy is generated, dispatched, and consumed. Smart power grid is the manifestation of many technologies that would eventually transforms the existing power grid into a more flexible, fault resilient, and intelligent system. Integration of distributed renewable energy sources plays a central role in successful implementation of this transformation. Among the renewable options, wind energy harvesting offers superior engineering and economical incentives with minimal environmental impacts. Doubly fed induction generators (DFIG) have turned into a serious contender for wind energy generators due to their flexibility in control of active and reactive power with minimal silicon loss. Significant presence of voltage unbalance and system harmonics in finite inertia transmission lines can potentially undermine the reliability of these wind generators. The present dissertation has investigated the impacts of system unbalances and harmonics on the performance of the DFIG. Our investigation indicates that these effects can result in an undesirable undulation in the rotor shaft which can potentially invoke mechanical resonance, thereby causing catastrophic damages to the installations and the power grid. In order to remedy the above issue, a control solution for real time monitoring of the system unbalance and optimal excitation of the three phase rotor currents in a DFIG is offered. The optimal rotor currents will create appropriate components of the magneto-motive force in the airgap that will actively compensate the undesirable magnetic field originated by the stator windings. Due to the iterative nature of the optimization procedure, field reconstruction method has been incorporated

  12. The Auto control System Based on InTouch Configuration software for High-gravity Oil Railway Tank Feeding

    Directory of Open Access Journals (Sweden)

    Xu De-Kai

    2015-01-01

    Full Text Available This paper provides automatic design for high-gravity oil railway tank feeding system of some refinery uses distributive control system. The system adopts the automatic system of Modicon TSX Quantum or PLC as monitor and control level and uses a PC-based plat form as principal computer running on the Microsoft Windows2000. An automatic control system is developed in the environment of InTouch configuration software. This system implements automatic high-gravity oil tank feeding with pump controlling function. And it combines automatic oil feeding controlling, pump controlling and tank monitoring function to implement the automation of oil feeding with rations and automatic control.

  13. Analysis of an innovative solar water desalination system using gravity induced vacuum

    International Nuclear Information System (INIS)

    Ayhan, T.; Al-Madani, H.

    2007-01-01

    This study presents the theoretical analysis, design and appropriate models of a new desalination system using gravity induced vacuum. The system utilizes natural means (gravity and atmospheric pressure) to create a vacuum under which water can be rapidly evaporated at much lower temperatures with less energy than conventional techniques. This technique is developed to overcome water storage, in the areas where good solar radiation (or waste heat sources) and sea water (or waste water sources). The developed system consists of an evaporator connected to condenser by means of a vacuum tank. The vapour produced in the evaporator is driven to condenser through the vacuum tank, where it condenses and collected as a product. Vacuum equivalent to 7 kPa (abs) or less can be created depending on ambient temperature of Bahrain climatic conditions. The effect of various operating conditions, namely water levels in condensation and evaporating columns on the system performance were studied. The theoretical analysis and preliminary experimental results show that the performance of this system depends on the condensation temperature

  14. Contents and risks of potentially toxic elements in wastewater-fed food production systems in Southeast Asia

    DEFF Research Database (Denmark)

    Marcussen, Helle

    , fish, soil and sediment from wastewater-fed production systems in Hanoi and Phnom Penh. Another aim was to assess the food safety risks of water spinach and fish with respect to PTEs. The third aim was to assess PTE retention capacity of river sediment in Hanoi and the governing retention mechanisms...... the concentration range observed for water spinach grown at agricultural soil not exposed to wastewater in Malaysia. Water spinach grown at sites of high and low wastewater exposure did not show a significantly higher accumulation of PTEs compared to sites without wastewater exposure. In Phnom Penh, water spinach...... than 11% of the tolerable intake for each element. The PTE content of water spinach in Hanoi and Cheung Ek Lake in Phnom Penh constituted low food safety risks for consumers. Arsenic, Cd and Pb concentrations in muscle, skin and liver of fish grown in wastewater-fed systems in Hanoi and Phnom were low...

  15. Bidirectional DC-DC converter fed drive for electric vehicle system ...

    African Journals Online (AJOL)

    Batteries are the primary energy-storage devices in ground vehicles. Now days battery fed electric drives are commonly being used for electric vehicles applications, due to various advantages, such as: nearly zero emission, guaranteed load leveling, good transient operation and energy recovery during braking operation.

  16. Thermal Behavior of Doubly-Fed Induction Generator Wind Turbine System during Balanced Grid Fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2014-01-01

    Ride-through capabilities of the doubly-fed induction generator (DFIG) during grid fault have been studied a lot. However, the thermal performance of the power device during this transient period is seldom investigated. In this paper, the dynamic model for the DFIG and the influence of the rotor...

  17. Degradation of chlorophenol mixtures in a fed-batch system by two ...

    African Journals Online (AJOL)

    2010-12-16

    Dec 16, 2010 ... water is fed to the biological treatment unit either intermittently or ... the same culture in a binary mixture and in ternary mixture of 2,4,6TCP; 2,3,5 .... Solving the balance equation (Eq. (2)) with the initial condi- tions of the ...

  18. Carbon and Nitrogen Sources for Shrimp Postlarvae Fed Natural Diets from a Tropical Mangrove System

    Science.gov (United States)

    Dittel, A. I.; Epifanio, C. E.; Cifuentes, L. A.; Kirchman, D. L.

    1997-11-01

    Postlarvae ofPenaeus vannameiwere fed various diets in order to examine the importance of detritus and other possible prey items in supporting postlarval growth. Stable isotopes (C and N) were used to determine the carbon and nitrogen source of the prey in the various diets. The zooplankton diet contained mostly copepods. The subtidal detritus treatment consisted mostly of plant material whereas the diets from both intertidal sites contained a mixture of plant detritus and associated meiofauna. Postlarvae reared on zooplankton and detritus plus meiofauna diets more than tripled their weight during a 6-day period. In contrast, postlarvae fed the detritus diet barely doubled their weight. Based on isotopic composition, postlarvae appear to obtain their carbon and nitrogen from various food sources. Postlarvae were enriched by 0·4‰ in13C and 2·7‰ in15N relative to the zooplankton diet, which is consistent with isotopic fractionation between successive trophic levels. In turn, the isotopic signal of the zooplankton was consistent with phytoplankton being the initial source of organic matter. In contrast, mean δ13C values of the shrimp fed detritus plus meiofauna were significantly different from their respective diets. Isotopic ratios of the postlarvae fed the mixed diet from Chomes were two trophic levels above benthic algae suggesting that the shrimp preyed on organisms that derived their carbon and nitrogen from benthic algae and/or phytoplankton.

  19. Is the Grass Always Greener? Comparing the Environmental Impact of Conventional, Natural and Grass-Fed Beef Production Systems

    Directory of Open Access Journals (Sweden)

    Judith L. Capper

    2012-04-01

    Full Text Available This study compared the environmental impact of conventional, natural and grass-fed beef production systems. A deterministic model based on the metabolism and nutrient requirements of the beef population was used to quantify resource inputs and waste outputs per 1.0 × 109 kg of hot carcass weight beef in conventional (CON, natural (NAT and grass-fed (GFD production systems. Production systems were modeled using characteristic management practices, population dynamics and production data from U.S. beef production systems. Increased productivity (slaughter weight and growth rate in the CON system reduced the cattle population size required to produce 1.0 × 109 kg of beef compared to the NAT or GFD system. The CON system required 56.3% of the animals, 24.8% of the water, 55.3% of the land and 71.4% of the fossil fuel energy required to produce 1.0 × 109 kg of beef compared to the GFD system. The carbon footprint per 1.0 × 109 kg of beef was lowest in the CON system (15,989 × 103 t, intermediate in the NAT system (18,772 × 103 t and highest in the GFD system (26,785 × 103 t. The challenge to the U.S beef industry is to communicate differences in system environmental impacts to facilitate informed dietary choice.

  20. Trade-FDI Linkages in a System of Gravity Equations for German Regional Data

    DEFF Research Database (Denmark)

    Mitze, Timo; Alecke, Björn; Untiedt, Gerhard

    We analyse the nature of German trade-FDI linkages within the EU27 based on a simultaneous equation gravity approach for imports, exports, in- and outward FDI stocks.We adopt both a Hausman-Taylor (1981) IV approach (3SLS-GMM) and rival non-IV estimation (the system extension to the Fixed Effects...... substitutive links between trade flows and outward FDI in line with earlier empirical evidence for Germany. Building upon German state level data we are also able to analyse the sensitivity of the results for regional sub-samples. The latter disaggregation hints at structural differences among the trade...

  1. Design and dynamic simulation of a novel polygeneration system fed by vegetable oil and by solar energy

    International Nuclear Information System (INIS)

    Calise, Francesco; Palombo, Adolfo; Vanoli, Laura

    2012-01-01

    Highlights: ► A novel polygeneration system based on engines (RE) fed by rapeseed oil is investigated. ► RE are integrated with high temperature solar heating and cooling systems. ► The polygeneration system is dynamically investigated for a Mediterranean Climate. ► System performance is excellent from the energetic point of view. ► The system is economically profitable only in case of feed-in tariffs. - Abstract: In this paper the integration of vegetable oil-fed reciprocating engines with solar thermal collector is investigated, seeking to design a novel polygeneration system producing: electricity, space heating and cooling and domestic hot water, for a university building located in Naples (Italy), assumed as case study. The polygeneration system is based on the following main components: concentrating parabolic trough solar collector, double-stage LiBr–H 2 O absorption chiller and a reciprocating engine fed by vegetable oil. The engine operates at full load producing electrical energy which is in part consumed by the building lights and equipments, in part used by the system passive loads and the rest is eventually sold to the grid. In fact, the engine is grid connected in order to perform a convenient net metering. The system was designed and then simulated by means of a zero-dimensional transient simulation model, developed using the TRNSYS software. The simulation tool developed by the authors allows one to analyze the results for different time basis (minutes, days, weeks, months and years), from both energetic and economic points of view. The economic results show that the system under investigation is profitable, especially if properly funded.

  2. FEM static analysis for the ITER gravity support system under the combined action of the dead weight and seismic loads

    International Nuclear Information System (INIS)

    Liang Shangming; Yan Xijiang; Mo Chunhua; Hou Binglin; Li Pengyuan; Jian Guangde; Liu Dequan; Zhou Caipin

    2010-01-01

    According to the characteristics of the gravity support system of ITER, a finite element static analysis method of the system was proposed. ANSYS was applied to built the three dimensional model of the system. A mesh dividing method,which has high precision and an acceptable calculating scale, was used. After the mesh of the model had been divided, the contact elements were defined on interfaces between volumes. The finite element static analysis of the gravity support system under the dead weight and seismic loads was performed. The stress distributions and the maximal stress values of all parts of the gravity support system were obtained, and the stress strength of the parts was analyzed. The results showed that the maximum stresses of the TF leg, the flexible-plate, the ring support and the support column occur respectively on the joint of TF leg and equivalent toroidal shell, at the corner of the weld joint of the flexible-plate and its lower flange, on the joint of the upper transverse plane and internal stiffening rib of the ring support, and on the support column's upper transverse plane. These maximum stresses are smaller than their respective allowable stress limits. All parts of the gravity support system have enough mechanical strength according to the ASME See. III-NF Code. The results of static analysis lay the solid foundation for the design and improvement of the gravity supports system of ITER. (authors)

  3. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation

    Science.gov (United States)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim

    2003-01-01

    A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain

  4. A bridge between unified cosmic history by f( R)-gravity and BIonic system

    Science.gov (United States)

    Sepehri, Alireza; Capozziello, Salvatore; Setare, Mohammad Reza

    2016-04-01

    Recently, the cosmological deceleration-acceleration transition redshift in f( R) gravity has been considered in order to address consistently the problem of cosmic evolution. It is possible to show that the deceleration parameter changes sign at a given redshift according to observational data. Furthermore, a f( R) gravity cosmological model can be constructed in brane-antibrane system starting from the very early universe and accounting for the cosmological redshift at all phases of cosmic history, from inflation to late time acceleration. Here we propose a f( R) model where transition redshifts correspond to inflation-deceleration and deceleration-late time acceleration transitions starting froma BIon system. At the point where the universe was born, due to the transition of k black fundamental strings to the BIon configuration, the redshift is approximately infinity and decreases with reducing temperature (z˜ T2). The BIon is a configuration in flat space of a universe-brane and a parallel anti-universe-brane connected by a wormhole. This wormhole is a channel for flowing energy from extra dimensions into our universe, occurring at inflation and decreasing with redshift as z˜ T^{4+1/7}. Dynamics consists with the fact that the wormhole misses its energy and vanishes as soon as inflation ends and deceleration begins. Approaching two universe branes together, a tachyon is originated, it grows up and causes the formation of a wormhole. We show that, in the framework of f( R) gravity, the cosmological redshift depends on the tachyonic potential and has a significant decrease at deceleration-late time acceleration transition point (z˜ T^{2/3}). As soon as today acceleration approaches, the redshift tends to zero and the cosmological model reduces to the standard Λ CDM cosmology.

  5. GRACE, time-varying gravity, Earth system dynamics and climate change

    NARCIS (Netherlands)

    Wouters, B.; Bonin, J.A.; Chambers, D.P.; Riva, R.E.M.; Sasgen, I.; Wahr, J.

    2014-01-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity

  6. Plant Performance of Solid Oxide Fuel Cell Systems Fed by Alternative Fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Different plant design for several fuel types such as natural gas, methanol, ethanol, DME, ammonia and pure hydrogen are presented and analysed. Anode recirculation which is an important issue in SOFC plants are also explored and studied. It is shown that depending on type of the fuel whether fuel...... recycle increases plant efficiency only if fuel utilization factor is low. Other important issues such as why plant efficiency is lower when it is fed with hydrogen or biogas compared to when it is fed by other fuels such as methanol, ethanol, DME and ammonia will also be discussed and explained....... For example, plant efficiency of 45%, 54% and 50.5% can be achieved if the hydrogen, ethanol and methanol are used respectively....

  7. CONVERSION OF PINEAPPLE JUICE WASTE INTO LACTIC ACID IN BATCH AND FED – BATCH FERMENTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Abdullah Mochamad Busairi

    2012-01-01

    Full Text Available Pineapple juice waste contains valuable components, which are mainly sucrose, glucose, and fructose. Recently, lactic acid has been considered to be an important raw material for the production of biodegradable lactide polymer. The fermentation experiments were carried out in a 3 litres fermentor (Biostat B Model under anaerobic condition with stirring speed of 50 rpm, temperature at 40oC, and pH of 6.00. Effect of feed concentration on lactic acid production, bacterial growth, substrate utilisation and productivity was studied. The results obtained from fed- batch culture fermentation showed that the maximum lactic acid productivity was 0.44 g/L.h for feed concentration of 90 g/L at 48 hours. Whereas the lactic acid productivity obtained from fed-batch culture was twice and half fold higher than that of batch culture productivity.  Buangan jus nanas mengandung komponen yang berharga terutama sukrosa, glukosa, dan fruktosa. Asam laktat adalah bahan baku yang terbaru dan penting untuk dibuat sebagai polimer laktat yang dapat terdegradasi oleh lingkungan. Percobaan dilakukan pada fermentor 3 liter (Model Biostat B di bawah kondisi anaerob dengan kecepatan pengadukan 50 rpm, temperatur 40oC, dan pH 6,00. Pengaruh konsentrasi umpan terhadap produksi asam laktat, pertumbuhan mikroba, pengggunaan substrat dan produktivitas telah dipelajari. Hasil yang didapatkan pada fermentasi dengan menggunakan sistem fed-batch menunjukkan bahwa produktivitas asam laktat maksimum adalah 0.44 g/L,jam dengan konsentrasi umpan, 90 g/L pada waktu 48 jam. Bahkan produktivitas asam laktat yang didapat pada kultur fed-batch lebih tinggi 2,5 kali dari pada proses menggunakan sistem batch

  8. Degradation of chlorophenol mixtures in a fed-batch system by two ...

    African Journals Online (AJOL)

    This work was undertaken to investigate the effect of variations of the feed rate on a fed-batch set-up used to degrade xenobiotics. The mixture of substrates was composed of PCP, 2,4,6 TCP and 2,3,5,6 TeCP (pentachlorophenol, 2,4,6 trichlorophenol and 2,3,5,6 tetrachlorophenol respectively). Two acclimated bacteria ...

  9. A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control

    Directory of Open Access Journals (Sweden)

    Thai-Thanh Nguyen

    2015-06-01

    Full Text Available Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one.

  10. Structural interpretation of El Hierro (Canary Islands) rifts system from gravity inversion modelling

    Science.gov (United States)

    Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.

    2017-08-01

    Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.

  11. Connected magma plumbing system between Cerro Negro and El Hoyo Complex, Nicaragua revealed by gravity survey

    Science.gov (United States)

    MacQueen, Patricia; Zurek, Jeffrey; Williams-Jones, Glyn

    2016-11-01

    Cerro Negro, near León, Nicaragua is a young, relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan. Multiple explosive eruptions have deposited significant amounts of ash on León and the surrounding rural communities. While a number of studies investigate the geochemistry and stress regime of the volcano, subsurface structures have only been studied by diffuse soil gas surveys. These studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring volcanic features. To address these questions, we collected 119 gravity measurements around Cerro Negro volcano in an attempt to delineate deep structures at the volcano. The resulting complete Bouguer anomaly map revealed local positive gravity anomalies (wavelength 0.5 to 2 km, magnitude +4 mGal) and regional positive (10 km wavelength, magnitudes +10 and +8 mGal) and negative (12 and 6 km wavelength, magnitudes -18 and -13 mGal) Bouguer anomalies. Further analysis of these gravity data through inversion has revealed both local and regional density anomalies that we interpret as intrusive complexes at Cerro Negro and in the Nicaraguan Volcanic Arc. The local density anomalies at Cerro Negro have a density of 2700 kg m-3 (basalt) and are located between -250 and -2000 m above sea level. The distribution of recovered density anomalies suggests that eruptions at Cerro Negro may be tapping an interconnected magma plumbing system beneath El Hoyo, Cerro La Mula, and Cerro Negro, and more than seven other proximal volcanic features, implying that Cerro Negro should be considered the newest cone of a Cerro Negro-El Hoyo volcanic complex.

  12. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats.

    Science.gov (United States)

    Frantz, Eliete Dalla Corte; Medeiros, Renata Frauches; Giori, Isabele Gomes; Lima, Juliana Bittencourt Silveira; Bento-Bernardes, Thais; Gaique, Thaiane Gadioli; Fernandes-Santos, Caroline; Fernandes, Tiago; Oliveira, Edilamar Menezes; Vieira, Carla Paulo; Conte-Junior, Carlos Adam; Oliveira, Karen Jesus; Nobrega, Antonio Claudio Lucas

    2017-09-01

    What is the central question of this study? What are the effects of exercise training on the hepatic renin-angiotensin system and their contribution to damage resulting from fructose overload in rats? What is the main finding and its importance? Exercise training attenuated the deleterious actions of the angiotensin-converting enzyme/angiotensin II/angiotensin II type 1 receptor axis and increased expression of the counter-regulatory (angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor) axis in the liver. Therefore, our study provides evidence that exercise training modulates the hepatic renin-angiotensin system, which contributes to reducing the progression of metabolic dysfunction and non-alcoholic fatty liver disease in fructose-fed rats. The renin-angiotensin system (RAS) has been implicated in the development of metabolic syndrome. We investigated whether the hepatic RAS is modulated by exercise training and whether this modulation improves the deleterious effects of fructose overload in rats. Male Wistar rats were divided into (n = 8 each) control (CT), exercise control (CT-Ex), high-fructose (HFr) and exercise high-fructose (HFr-Ex) groups. Fructose-drinking rats received d-fructose (100 g l -1 ). After 2 weeks, CT-Ex and HFr-Ex rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min day -1 , 4 days per week). We assessed body mass, glucose and lipid metabolism, hepatic histopathology, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity, the angiotensin concentration and the expression profile of proteins affecting the hepatic RAS, gluconeogenesis and inflammation. Neither fructose overload nor exercise training influenced body mass gain and serum ACE and ACE2 activity. The HFr group showed hyperinsulinaemia, but exercise training normalized this parameter. Exercise training was effective in preventing hepatic steatosis and in preventing triacylglycerol and

  13. Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol

    Directory of Open Access Journals (Sweden)

    Fotini Tzorbatzoglou

    2012-10-01

    Full Text Available In the present work, an ethanol fed Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT system has been parametrically analyzed in terms of exergy and compared with a single SOFC system. The solid oxide fuel cell was fed with hydrogen produced from ethanol steam reforming. The hydrogen utilization factor values were kept between 0.7 and 1. The SOFC’s Current-Volt performance was considered in the range of 0.1–3 A/cm2 at 0.9–0.3 V, respectively, and at the intermediate operating temperatures of 550 and 600 °C, respectively. The curves used represent experimental results obtained from the available bibliography. Results indicated that for low current density values the single SOFC system prevails over the SOFC-GT hybrid system in terms of exergy efficiency, while at higher current density values the latter is more efficient. It was found that as the value of the utilization factor increases the SOFC system becomes more efficient than the SOFC-GT system over a wider range of current density values. It was also revealed that at high current density values the increase of SOFC operation temperature leads in both cases to higher system efficiency values.

  14. DataFed: A Federated Data System for Visualization and Analysis of Spatio-Temporal Air Quality Data

    Science.gov (United States)

    Husar, R. B.; Hoijarvi, K.

    2017-12-01

    DataFed is a distributed web-services-based computing environment for accessing, processing, and visualizing atmospheric data in support of air quality science and management. The flexible, adaptive environment facilitates the access and flow of atmospheric data from provider to users by enabling the creation of user-driven data processing/visualization applications. DataFed `wrapper' components, non-intrusively wrap heterogeneous, distributed datasets for access by standards-based GIS web services. The mediator components (also web services) map the heterogeneous data into a spatio-temporal data model. Chained web services provide homogeneous data views (e.g., geospatial, time views) using a global multi-dimensional data model. In addition to data access and rendering, the data processing component services can be programmed for filtering, aggregation, and fusion of multidimensional data. A complete application software is written in a custom made data flow language. Currently, the federated data pool consists of over 50 datasets originating from globally distributed data providers delivering surface-based air quality measurements, satellite observations, emissions data as well as regional and global-scale air quality models. The web browser-based user interface allows point and click navigation and browsing the XYZT multi-dimensional data space. The key applications of DataFed are for exploring spatial pattern of pollutants, seasonal, weekly, diurnal cycles and frequency distributions for exploratory air quality research. Since 2008, DataFed has been used to support EPA in the implementation of the Exceptional Event Rule. The data system is also used at universities in the US, Europe and Asia.

  15. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  16. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran; Fortunato, Luca; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  17. Application of the spherical harmonic gravity model in high precision inertial navigation systems

    International Nuclear Information System (INIS)

    Wang, Jing; Yang, Gongliu; Zhou, Xiao; Li, Xiangyun

    2016-01-01

    The spherical harmonic gravity model (SHM) may, in general, be considered as a suitable alternative to the normal gravity model (NGM), because it represents the Earth’s gravitational field more accurately. However, the high-resolution SHM has never been used in current inertial navigation systems (INSs) due to its extremely complex expression. In this paper, the feasibility and accuracy of a truncated SHM are discussed for application in a real-time free-INS with a precision demand better than 0.8 nm h −1 . In particular, the time and space complexity are analyzed mathematically to verify the feasibility of the SHM. Also, a test on a typical navigation computer shows a storable range of cut-off degrees. To further evaluate the appropriate degree and accuracy of the truncated SHM, analyses of covariance and truncation error are proposed. Finally, a SHM of degree 12 is demonstrated to be the appropriate model for routine INSs in the precision range of 0.4–0.75 nm h −1 . Flight simulations and road tests show its outstanding performance over the traditional NGM. (paper)

  18. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran

    2017-04-21

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  19. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    Science.gov (United States)

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  20. Simulation of double-fed speed regulation system for 125 MVA motor-generator set

    International Nuclear Information System (INIS)

    Wang Fen; Wang Shujing; Li Huajun

    2007-01-01

    A simulation modeling of double-fed motor speed regulation for 125 MVA AC pulsed M-G set of HL-2A is built using Matlab. Some parameters of the project are obtained by the pre-simulation, and the process of start-up is analyzed. In the Matlab simulation the motor model in Simulink can not be connected directly to the cycloconverter model. This problem is solved by adding an ideal transformer model between them, and the satisfactory result is obtained. A new method of control switching two cycloconverter without circulating current has been introduced. (authors)

  1. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    Science.gov (United States)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  2. PWM Regulation of Grid-Tied PV System on the Base of Photovoltaic-Fed Diode-Clamped Inverters

    Directory of Open Access Journals (Sweden)

    Oleschuk V.I.

    2015-12-01

    Full Text Available Investigation of grid-tied photovoltaic system on the base of two diode-clamped inverters, controlled by specific algorithms of pulse-width modulation (PWM, has been done. This system includes two strings of photovoltaic panels feeding two diode-clamped inverters. The outputs of inverters are connected with the corresponding windings on the primary side of three-phase transformer, connected with a grid. In order to reduce phase voltage distortion and to increase efficiency of operation of the system, special scheme of control and modulation of inverters has been used, providing minimization of common-mode voltages and voltage waveforms symmetries under different operating conditions. Detailed simulation of processes in this photovoltaic-fed power conversion system has been executed. The results of simulations verify good performance of photovoltaic system regulated in accordance with specific strategy of control and modulation.

  3. Dynamics of axial symmetric system in self-interacting Brans-Dicke gravity

    International Nuclear Information System (INIS)

    Sharif, M.; Manzoor, Rubab

    2016-01-01

    This paper investigates the dynamics of an axial reflection symmetric model in self-interacting Brans-Dicke gravity for anisotropic fluid. We formulate hydrodynamical equations and discuss oscillations using a time-dependent perturbation for both spin-dependent and spin-independent cases. The expressions of the frequency, the total energy density, and the equation of motion of the oscillating model are obtained. We study the instability of the oscillating models in weak approximations. It is found that the oscillations and stability of the model depend upon the dark energy source along with anisotropy and reflection effects. We conclude that the axial reflection system remains stable for stiffness parameter Γ = 1, collapses for Γ > 1, and becomes unstable for 0 < Γ < 1. (orig.)

  4. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    Science.gov (United States)

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  5. Dynamics of axial symmetric system in self-interacting Brans-Dicke gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Manzoor, Rubab [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)

    2016-06-15

    This paper investigates the dynamics of an axial reflection symmetric model in self-interacting Brans-Dicke gravity for anisotropic fluid. We formulate hydrodynamical equations and discuss oscillations using a time-dependent perturbation for both spin-dependent and spin-independent cases. The expressions of the frequency, the total energy density, and the equation of motion of the oscillating model are obtained. We study the instability of the oscillating models in weak approximations. It is found that the oscillations and stability of the model depend upon the dark energy source along with anisotropy and reflection effects. We conclude that the axial reflection system remains stable for stiffness parameter Γ = 1, collapses for Γ > 1, and becomes unstable for 0 < Γ < 1. (orig.)

  6. Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite

    Science.gov (United States)

    Nerem, R. S.; Lerch, F. J.; Williamson, R. G.; Klosko, S. M.; Robbins, J. W.; Patel, G. B.

    1994-01-01

    A high-precision radiometric satellite tracking system, Doppler Orbitography and Radio-positioning Integrated by Satellite system (DORIS), has recently been developed by the French space agency, Centre National d'Etudes Spatiales (CNES). DORIS was designed to provide tracking support for missions such as the joint United States/French TOPEX/Poseidon. As part of the flight testing process, a DORIS package was flown on the French SPOT 2 satellite. A substantial quantity of geodetic quality tracking data was obtained on SPOT 2 from an extensive international DORIS tracking network. These data were analyzed to assess their accuracy and to evaluate the gravitational modeling enhancements provided by these data in combination with the Goddard Earth Model-T3 (GEM-T3) gravitational model. These observations have noise levels of 0.4 to 0.5 mm/s, with few residual systematic effects. Although the SPOT 2 satellite experiences high atmospheric drag forces, the precision and global coverage of the DORIS tracking data have enabled more extensive orbit parameterization to mitigate these effects. As a result, the SPOT 2 orbital errors have been reduced to an estimated radial accuracy in the 10-20 cm RMS range. The addition of these data, which encompass many regions heretofore lacking in precision satellite tracking, has significantly improved GEM-T3 and allowed greatly improved orbit accuracies for Sun-synchronous satellites like SPOT 2 (such as ERS 1 and EOS). Comparison of the ensuing gravity model with other contemporary fields (GRIM-4C2, TEG2B, and OSU91A) provides a means to assess the current state of knowledge of the Earth's gravity field. Thus, the DORIS experiment on SPOT 2 has provided a strong basis for evaluating this new orbit tracking technology and has demonstrated the important contribution of the DORIS network to the success of the TOPEX/Poseidon mission.

  7. Interdisciplinary semantic model for managing the design of a steam-assisted gravity drainage tooling system

    Directory of Open Access Journals (Sweden)

    Michael Leitch

    2018-01-01

    Full Text Available Complex engineering systems often require extensive coordination between different expert areas in order to avoid costly design iterations and rework. Cyber-physics system (CPS engineering methods could provide valuable insights to help model these interactions and optimize the design of such systems. In this work, steam assisted gravity drainage (SAGD, a complex oil extraction process that requires deep understanding of several physical-chemical phenomena, is examined whereby the complexities and interdependencies of the system are explored. Based on an established unified feature modeling scheme, a software modeling framework is proposed to manage the design process of the production tools used for SAGD oil extraction. Applying CPS methods to unify complex phenomenon and engineering models, the proposed CPS model combines effective simulation with embedded knowledge of completion tooling design in order to optimize reservoir performance. The system design is expressed using graphical diagrams of the unified modelling language (UML convention. To demonstrate the capability of this system, a distributed research group is described, and their activities coordinated using the described CPS model.

  8. Optimal controller design of a doubly fed induction generator wind turbine system for small signal stability enhancement

    DEFF Research Database (Denmark)

    Yang, Lihui; Yang, Guang-Ya; Xu, Zhao

    2010-01-01

    Multi-objective optimal controller design of a doubly-fed induction generator (DFIG) wind turbine system using differential evolution (DE) is presented. A detailed mathematical model of DFIG wind turbine with a closed-loop vector control system is developed. Based on this, objective functions...... and the constraint with DE, respectively. Eigenvalue analysis and time-domain simulations are performed on a single machine infinite bus system as well as a nine-bus multi-machine system with two DFIG wind turbines to illustrate the control performance of the DFIG wind turbine with the optimised controller...... addressing the steady-state stability and dynamic performance at different operating conditions are implemented to optimise the controller parameters of both the rotor and grid-side converters. A superior 1-constraint method and method of adaptive penalties are applied to handle the multi-objective problem...

  9. Towards systems biology of the gravity response of higher plants -multiscale analysis of Arabidopsis thaliana root growth

    Science.gov (United States)

    Palme, Klaus; Aubry, D.; Bensch, M.; Schmidt, T.; Ronneberger, O.; Neu, C.; Li, X.; Wang, H.; Santos, F.; Wang, B.; Paponov, I.; Ditengou, F. A.; Teale, W. T.; Volkmann, D.; Baluska, F.; Nonis, A.; Trevisan, S.; Ruperti, B.; Dovzhenko, A.

    Gravity plays a fundamental role in plant growth and development. Up to now, little is known about the molecular organisation of the signal transduction cascades and networks which co-ordinate gravity perception and response. By using an integrated systems biological approach, a systems analysis of gravity perception and the subsequent tightly-regulated growth response is planned in the model plant Arabidopsis thaliana. This approach will address questions such as: (i) what are the components of gravity signal transduction pathways? (ii) what are the dynamics of these components? (iii) what is their spatio-temporal regulation in different tis-sues? Using Arabidopsis thaliana as a model-we use root growth to obtain insights in the gravity response. New techniques enable identification of the individual genes affected by grav-ity and further integration of transcriptomics and proteomics data into interaction networks and cell communication events that operate during gravitropic curvature. Using systematic multiscale analysis we have identified regulatory networks consisting of transcription factors, the protein degradation machinery, vesicle trafficking and cellular signalling during the gravire-sponse. We developed approach allowing to incorporate key features of the root system across all relevant spatial and temporal scales to describe gene-expression patterns and correlate them with individual gene and protein functions. Combination of high-resolution microscopy and novel computational tools resulted in development of the root 3D model in which quantitative descriptions of cellular network properties and of multicellular interactions important in root growth and gravitropism can be integrated for the first time.

  10. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  11. Pre-conceptual design requirements and system description for FED frame seal welder and cutter

    International Nuclear Information System (INIS)

    Masson, L.S.; Longhurst, G.R.; Watts, K.D.; Williams, S.A.

    1981-03-01

    The Fusion Engineering Device (FED) is being designed in a torus shape using ten removable segments to form the torus geometry. The torus consists of a frame and ten shield assemblies which fit into the frame and are held in place structurally using electrically insulated backing plates. It is then necessary to seal the shield segment to the frame for the assembly to sustain an internal vacuum of 10 -7 torr. This task is intended to be accomplished by welding a frame seal between the frame and the shield segment. An example of this concept is shown. This document covers the equipment requirements and pre-conceptual design description for installing and removing the frame seal

  12. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  13. Gravity-Based Precise Cell Manipulation System Enhanced by In-Phase Mechanism

    Directory of Open Access Journals (Sweden)

    Koji Mizoue

    2016-07-01

    Full Text Available This paper proposes a gravity-based system capable of generating high-resolution pressure for precise cell manipulation or evaluation in a microfluidic channel. While the pressure resolution of conventional pumps for microfluidic applications is usually about hundreds of pascals as the resolution of their feedback sensors, precise cell manipulation at the pascal level cannot be done. The proposed system successfully achieves a resolution of 100 millipascals using water head pressure with an in-phase noise cancelation mechanism. The in-phase mechanism aims to suppress the noises from ambient vibrations to the system. The proposed pressure system is tested with a microfluidic platform for pressure validation. The experimental results show that the in-phase mechanism effectively reduces the pressure turbulence, and the pressure-driven cell movement matches the theoretical simulations. Preliminary experiments on deformability evaluation with red blood cells under incremental pressures of one pascal are successfully performed. Different deformation patterns are observed from cell to cell under precise pressure control.

  14. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  15. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  16. Irradiated mice lose the capacity to 'process' fed antigen for systemic tolerance of delayed-type hypersensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, M G; Strobel, S; Hanson, D G; Ferguson, A

    1987-12-01

    'Intestinal antigen processing' is a function of the gastro-intestinal tract whereby shortly after an animal has been fed an immunogenic protein antigen, such as ovabumin (OVA), a tolerogenic form of the protein is generated and can be detected in the circulation. The effect of damage to the intestinal epithelium on the processing of OVA has been examined in lethally irradiated mice. Irradiated animals were fed 25 mg OVA and their serum collected 1 h later. When this serum was transferred intraperitoneally into naive recipient mice, this did not induce the typical suppression of systemic delayed-type hypersensitivity. Results were similar when the serum donors were at 2 days after irradiation, with crypt hypoplasia, and at 5 days after irradiation when there was reactive crypt hyperplasia. However reconstitution of donors with normal spleen cells immediately after irradiation restored their capacity to generate a tolerogenic form of the antigen. Immunoreactive OVA was detected by ELISA in both tolerizing and non-tolerizing sera, and the immunological properties of these sera were not related to serum levels of OVA after feeding. The results suggest that lymphoid cells may be involved in the phenomenon of antigen processing.

  17. An object-oriented model of the cardiopulmonary system with emphasis on the gravity effect.

    Science.gov (United States)

    Chuong Ngo; Herranz, Silvia Briones; Misgeld, Berno; Vollmer, Thomas; Leonhardt, Steffen

    2016-08-01

    We introduce a novel comprehensive model of the cardiopulmonary system with emphasis on perfusion and ventilation distribution along the vertical thorax axis under the gravity effect. By using an object-oriented environment, the complex physiological system can be represented by a network of electrical, lumped-element compartments. The lungs are divided into three zones: upper, middle, and lower zone. Blood flow increases with the distance from the apex to the base of the lungs. The upper zone is characterized by a complete collapse of the pulmonary capillary vasculature; thus, there is no flow in this zone. The second zone has a "waterfall effect" where the blood flow is determined by the difference between the pulmonary-arterial and alveolar pressures. At resting position, the upper lobes of the lungs are more expanded than the middle and lower lobes. However, during spontaneous breathing, ventilation is nonuniform with more air entering the lower lobes than the middle and upper lobes. A simulative model of the complete system is developed which shows results in good agreement with the literature.

  18. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    Science.gov (United States)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  19. Reduced Cost of Reactive Power in Doubly Fed Induction Generator Wind Turbine System with Optimized Grid Filter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2014-01-01

    The modern grid requirement has caused that the wind power system behaves more like conventional rotating generators and it is able to support certain amount of the reactive power. For a typical doubly-fed induction generator wind turbine system, the reactive power can be supported either through...... for the generator and the wind power converter in terms of the reactive power done by the rotor-side converter or the grid-side converter with various grid filters. Afterwards, the annual energy loss is also estimated based on yearly wind profile. Finally, experimental results of the loss distribution are performed...... the rotor-side converter or the grid-side converter. This paper firstly compares the current ripples and supportive reactive power ranges between the conventional L and optimized LCL filter, if the reactive power is injected from the grid-side converter. Then, the loss distribution is evaluated both...

  20. Reduced Cost of Reactive Power in Doubly Fed Induction Generator Wind Turbine System With Optimized Grid Filter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2015-01-01

    The modern grid requirement has caused that the wind power system behaves more like conventional rotating generators, and it is able to support certain amount of the reactive power. For a typical doubly fed induction generator (DFIG) wind turbine system, the reactive power can be supported either...... for the generator and the wind power converter in terms of the reactive power done by the rotor-side converter or the grid-side converter with various grid filters. Afterward, the annual energy loss is also estimated based on yearly wind profile. Finally, experimental results of the loss distribution are performed...... through the rotor-side converter or the grid-side converter. This paper first compares the current ripples and supportive reactive power ranges between the conventional L and optimized LCL filter, if the reactive power is injected from the grid-side converter. Then, the loss distribution is evaluated both...

  1. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  2. PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity

    OpenAIRE

    Capozziello, S.; Troisi, A.

    2005-01-01

    Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.

  3. Synergistic action of gravity and temperature on the motor system within the lifespan: a "Baby Astronaut" hypothesis.

    Science.gov (United States)

    Meigal, Alexander Yu

    2013-03-01

    Here we describe GATO (gravity, age, thermoregulation, and oxygenation) hypothesis (or a "Baby Astronaut" hypothesis) which we suggest to explain synergistic effect of these factors on the motor system. Taken separately, microgravity (in spaceflight, G~0), the early age, heat and hypoxia exert identical effect on the motor system. We posit that synergy of these factors originate from their synchronicity during intrauterine immersion (analog microgravity) of the fetus in warm hypoxic condition. We further postulate three successive motor adaptive strategies, driven lifelong by gravity as the key factor. The first by age, fetal/microgravity (FM)-strategy, induced by the intrauterine immersion of the fetus, is based on domination of fast type muscle fibers. After birth, thought to be analog for landing from orbit, newborn is subjected to combined influence of cooler ambient temperature, normoxia, and 1G Earth gravity, which cooperatively form a slower GE-strategy. Eventually, healthy ageing results in further domination of slow type muscle fibers that forms the slowest (SL)-strategy. Our hypothesis implies that specific sensory conditions may substitute for each other owing to their synergistic action on the motor system. According to GATO hypothesis heating and hypoxia may be considered as "pro-microgravity" factors, while cold and hyperoxia - as "pro-gravity" ones. As such, cold may act as a partial "surrogate" for gravity, estimated as ~0.2G. That may have potential to elaborate countermeasures for muscle atrophy in astronauts either on-board in long-term spaceflight or for post-flight rehabilitation. Based on GATO hypothesis, predictions on muscle remodeling caused by illumination, sound/noise, and gravidity are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Near-surface gravity actuated pipe (GAP{sup TM}) system for Brazilian deepwater fluid transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fromage, Lionel; Brown, Paul A. [SBM Offshore (Monaco)

    2009-12-19

    The recent discovery of new deep water and ultra-deep water oil and gas fields offshore Brazil, including pre-salt reservoirs, has become a focal point for field development Operators and Contractors. The aggressive nature of fluids (sour, high density) in combination with deeper waters implies potential flow assurance issues. These issues challenge riser and pipeline technology to find cost effective solutions for hydrocarbon fluid transfer in field development scenarios involving phased tied-back. The near-surface GAP{sup TM}, system (Gravity Actuated Pipe{sup TM}), which has been in operation for more than two years on the Kikeh field offshore Malaysia in 1325 m of water between a Dry Tree Unit (SPAR) and a turret-moored FPSO, is considered to meet these challenges since such a product is quasi independent of water depth and takes advantage of being near surface to optimize flow assurance. Furthermore the GAP{sup TM} has undergone technical upgrades when compared to the Kikeh project in order to make it suitable for the more hostile met ocean conditions offshore Brazil. This paper presents the design features, the construction and assembly plans in Brazil and the offshore installation of a GAP fluid transfer system for operation in Brazilian deep waters. (author)

  5. Optimum Design of Gravity Retaining Walls Using Charged System Search Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2012-01-01

    Full Text Available This study focuses on the optimum design retaining walls, as one of the familiar types of the retaining walls which may be constructed of stone masonry, unreinforced concrete, or reinforced concrete. The material cost is one of the major factors in the construction of gravity retaining walls therefore, minimizing the weight or volume of these systems can reduce the cost. To obtain an optimal seismic design of such structures, this paper proposes a method based on a novel meta-heuristic algorithm. The algorithm is inspired by the Coulomb's and Gauss’s laws of electrostatics in physics, and it is called charged system search (CSS. In order to evaluate the efficiency of this algorithm, an example is utilized. Comparing the results of the retaining wall designs obtained by the other methods illustrates a good performance of the CSS. In this paper, we used the Mononobe-Okabe method which is one of the pseudostatic approaches to determine the dynamic earth pressure.

  6. Timing system design and tests for the Gravity Probe B relativity mission

    International Nuclear Information System (INIS)

    Li, J; Keiser, G M; Ohshima, Y; Shestople, P; Lockhart, J M

    2015-01-01

    In this paper, we discuss the timing system design and tests for the NASA/Stanford Gravity Probe B (GP-B) relativity mission. The primary clock of GP-B, called the 16f o clock, was an oven-controlled crystal oscillator that produced a 16.368 MHz master frequency 3 . The 16f o clock and the 10 Hz data strobe, which was divided down from the 16f o clock, provided clock signals to all GP-B components and synchronized the data collection, transmission, and processing. The sampled data of science signals were stamped with the vehicle time, a counter of the 10 Hz data strobe. The time latency between the time of data sampling and the stamped vehicle time was compensated in the ground data processing. Two redundant global positioning system receivers onboard the GP-B satellite supplied an external reference for time transfer between the vehicle time and coordinated universal time (UTC), and the time conversion was established in the ground preprocessing of the telemetry timing data. The space flight operation showed that the error of time conversion between the vehicle time and UTC was less than 2 μs. Considering that the constant timing offsets were compensated in the ground processing of the GP-B science data, the time latency between the effective sampling time of GP-B science signals and the stamped vehicle time was verified to within 1 ms in the ground tests. (paper)

  7. Estimating thermal maturity in the Eagle Ford Shale petroleum system using gas gravity data

    Science.gov (United States)

    Birdwell, Justin E.; Kinney, Scott A.

    2017-01-01

    Basin-wide datasets that provide information on the geochemical properties of petroleum systems, such as source rock quality, product composition, and thermal maturity, are often difficult to come by or assemble from publically available data. When published studies are available and include these kinds of properties, they generally have few sampling locations and limited numbers and types of analyses. Therefore, production-related data and engineering parameters can provide useful proxies for geochemical properties that are often widely available across a play and in some states are reported in publically available or commercial databases. Gas-oil ratios (GOR) can be calculated from instantaneous or cumulative production data and can be related to the source rock geochemical properties like kerogen type (Lewan and Henry, 1999) and thermal maturity (Tian et al., 2013; U.S. Energy Information Administration [EIA], 2014). Oil density or specific gravity (SG), often reported in American Petroleum Institute units (°API = 141.5 /SG – 131.5), can also provide information on source rock thermal maturity, particularly when combined with GOR values in unconventional petroleum systems (Nesheim, 2017).

  8. The AFGL (Air Force Geophysics Laboratory) Absolute Gravity Measuring System. A Final Report and Operating/Maintenance Manual.

    Science.gov (United States)

    1983-10-28

    Acceleration of Gravit , Ph. D. Thesis, Princeton University, Prion, NJ 12,"% %% %. LA -T of the reflectors is dropped and the number of optical fringes is...system which, as described in Reference 9, is a Chamber -Within -A -Chamber direct free-fall system; and the Istituto de Metrologia "G. Colonnetti" (IMGC...Report, AD No. 783313, Martin Marietta Aerospace, Orlando, la 4. Faller, J. E. (1967) The precision measurement of the acceleration of gravity, Science

  9. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  10. Multi-Sensor Calibration of Low-Cost Magnetic, Angular Rate and Gravity Systems

    Directory of Open Access Journals (Sweden)

    Markus Lüken

    2015-10-01

    Full Text Available We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF magnetic, angular rate and gravity (MARG sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN. The 9DOF MARG sensor is part of our recently-developed “Integrated Posture and Activity Network by Medit Aachen” (IPANEMA BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°.

  11. Multi-sensor calibration of low-cost magnetic, angular rate and gravity systems.

    Science.gov (United States)

    Lüken, Markus; Misgeld, Berno J E; Rüschen, Daniel; Leonhardt, Steffen

    2015-10-13

    We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF) magnetic, angular rate and gravity (MARG) sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN). The 9DOF MARG sensor is part of our recently-developed "Integrated Posture and Activity Network by Medit Aachen" (IPANEMA) BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°.

  12. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

    Science.gov (United States)

    Hamada, Yuta; Yamada, Masatoshi

    2017-08-01

    We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

  13. Insights into the Earth System mass variability from CSR-RL05 GRACE gravity fields

    Science.gov (United States)

    Bettadpur, S.

    2012-04-01

    The next-generation Release-05 GRACE gravity field data products are the result of extensive effort applied to the improvements to the GRACE Level-1 (tracking) data products, and to improvements in the background gravity models and processing methodology. As a result, the squared-error upper-bound in RL05 fields is half or less than the squared-error upper-bound in RL04 fields. The CSR-RL05 field release consists of unconstrained gravity fields as well as a regularized gravity field time-series that can be used for several applications without any post-processing error reduction. This paper will describe the background and the nature of these improvements in the data products, and provide an error characterization. We will describe the insights these new series offer in measuring the mass flux due to diverse Hydrologic, Oceanographic and Cryospheric processes.

  14. Gravity Before Einstein and Schwinger Before Gravity

    Science.gov (United States)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  15. Location Accuracy of INS/Gravity-Integrated Navigation System on the Basis of Ocean Experiment and Simulation.

    Science.gov (United States)

    Wang, Hubiao; Wu, Lin; Chai, Hua; Bao, Lifeng; Wang, Yong

    2017-12-20

    An experiment comparing the location accuracy of gravity matching-aided navigation in the ocean and simulation is very important to evaluate the feasibility and the performance of an INS/gravity-integrated navigation system (IGNS) in underwater navigation. Based on a 1' × 1' marine gravity anomaly reference map and multi-model adaptive Kalman filtering algorithm, a matching location experiment of IGNS was conducted using data obtained using marine gravimeter. The location accuracy under actual ocean conditions was 2.83 nautical miles (n miles). Several groups of simulated data of marine gravity anomalies were obtained by establishing normally distributed random error N ( u , σ 2 ) with varying mean u and noise variance σ 2 . Thereafter, the matching location of IGNS was simulated. The results show that the changes in u had little effect on the location accuracy. However, an increase in σ 2 resulted in a significant decrease in the location accuracy. A comparison between the actual ocean experiment and the simulation along the same route demonstrated the effectiveness of the proposed simulation method and quantitative analysis results. In addition, given the gravimeter (1-2 mGal accuracy) and the reference map (resolution 1' × 1'; accuracy 3-8 mGal), location accuracy of IGNS was up to reach ~1.0-3.0 n miles in the South China Sea.

  16. Optimizing Winter Wheat Resilience to Climate Change in Rain Fed Crop Systems of Turkey and Iran

    Directory of Open Access Journals (Sweden)

    Marta S. Lopes

    2018-05-01

    Full Text Available Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years and by defining a probabilistic range of trait variations [phenology and plant height (PH] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions. Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading. Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots was tested against monoculture (if only a single genotype grown in the same area and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny

  17. Nutrient retention capabilities of Nile tilapia ( Oreochromis niloticus) fed bio-regenerative life support system (BLSS) waste residues

    Science.gov (United States)

    Gonzales, John M.; Brown, Paul B.

    Nile tilapia were evaluated as a bio-regenerative sub-process for reducing solid waste potentially encountered in bio-regenerative life support systems. Ten juvenile Nile tilapia (mean weight = 2.05 g) were stocked into triplicate aquaria and fed one of seven experimental diets consisting of vegetable, bacterial, or food waste for a period of seven weeks. Weight gain (g), specific growth rate (mg/d), and daily consumption (g) was significantly higher ( p diet (37.99 and 68.54, respectively) followed by fish fed the wheat bran/wheat germ diet (23.19 and 63.67, respectively). Nitrogen, sulfur, and crude protein retention was significantly higher ( p diet (23.68, 21.89, and 23.68, respectively). A general loss of minerals was observed among all groups. Strong associations were observed between crude lipid retention and sulfur retention ( r2 = 0.94), crude lipid retention and carbon retention ( r2 = 0.92), WG and fiber content of dietary treatments ( r2 = 0.92), WG and carbon retention and ( r2 = 0.88), WG and lysine content of waste residues ( r2 = 0.86), crude protein retention and carbon retention ( r2 = 0.84), sulfur retention and crude protein retention ( r2 = 0.84), and total sulfur amino acid (TSAA) content of residues and WG ( r2 = 0.81). Weaker associations existed between WG and crude lipid retention ( r2 = 0.77), crude fiber content and carbon retention ( r2 = 0.76), and WG and methionine content of waste residues ( r2 = 0.75). Additional research is needed to improve the nutritional quality of fibrous residues as a means to improve tilapia's ability to utilize these residues as a food source in bio-regenerative support systems.

  18. Design of a Solar Motor Drive System Fed by a Direct-Connected Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    AYDOGMUS, O.

    2012-08-01

    Full Text Available A solar motor pump drive system is modeled and simulated. The proposed drive system does not require any kind of energy storage system and dc-dc converter. The system is connected directly to a photovoltaic (PV array. Thus, a low cost solar system can be achieved. A vector controlled Permanent Magnet Synchronous Motor (PMSM is used as a solar motor to increase the efficiency of system. The motor is designed for a low rated voltage level about 24V. The hill climbing MPPT method is used for balanced the motor power and PV power to obtain a high efficiency. The results are performed by using MATLAB/SimPowerSystem blocks. In addition, the PV array is modeled to allow for the possibility of running as on-line adjustable in simulation environment without using lookup table. The performances of motor, MPPT and drive system are analyzed in different conditions as temperature and irradiation of PV array.

  19. A Universal Velocity Dispersion Profile for Pressure Supported Systems: Evidence for MONDian Gravity across Seven Orders of Magnitude in Mass

    Energy Technology Data Exchange (ETDEWEB)

    Durazo, R.; Hernandez, X.; Sánchez, S. F. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264 C.P. 04510 México D.F., México (Mexico); Sodi, B. Cervantes [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-03-10

    For any MONDian extended theory of gravity where the rotation curves of spiral galaxies are explained through a change in physics rather than the hypothesis of dark matter, a generic dynamical behavior is expected for pressure supported systems: an outer flattening of the velocity dispersion profile occurring at a characteristic radius, where both the amplitude of this flat velocity dispersion and the radius at which it appears are predicted to show distinct scalings with the total mass of the system. By carefully analyzing the dynamics of globular clusters and elliptical galaxies, we are able to significantly extend the astronomical diversity of objects in which MONDian gravity has been tested, from spiral galaxies to the much larger mass range covered by pressure supported systems. We show that a universal projected velocity dispersion profile accurately describes various classes of pressure supported systems, and further, that the expectations of extended gravity are met across seven orders of magnitude in mass. These observed scalings are not expected under dark matter cosmology, and would require particular explanations tuned at the scales of each distinct astrophysical system.

  20. Recent progress in mesospheric gravity wave studies using nightglow imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael J.; Pendleton Junior, William R.; Pautet, Pierre-Dominique; Zhao, Yucheng; Olsen, Chris; Babu, Hema Karnam Surendra [Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah (United States); Medeiros, Amauri F. [Universidade Federal de Campina Grande, Centro de Ciencias e Tecnologia, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Takahashi, Hisao, E-mail: mtaylor@cc.usu.edu, E-mail: wpen@cc.usu.edu, E-mail: dominiquepautet@gmail.com, E-mail: yucheng@cc.usu.edu, E-mail: cmellob@gmail.com, E-mail: hema_sb@rediffmail.com, E-mail: afragoso@df.ufcg.edu.br, E-mail: hisaotak@laser.inpe.br [INPE, Sao Jose dos Campos, SP (Brazil)

    2007-07-01

    A variety of optical remote sensing techniques have now revealed a rich spectrum of wave activity in the upper atmosphere. Many of these perturbations, with periodicities ranging from {approx} 5 min to many hours and horizontal scales of a few tens of km to several thousands km, are due to freely propagating atmospheric gravity waves and forced tidal oscillations. Passive optical observations of the spatial and temporal characteristics of these waves in the mesosphere and lower thermosphere (MLT) region ( {approx} 80-100 km) are facilitated by several naturally occurring, vertically distinct nightglow layers. This paper describes the use of state-of-the-art ground-based CCD imaging techniques to detect these waves in intensity and temperature. All-sky (180 deg ) image measurements are used to illustrate the characteristics of small-scale, short period ( < 1 hour) waves and to investigate their seasonal propagation and momentum impact on the MLT region. These results are then contrasted with measurements of mesospheric temperature made using a new temperature mapping imaging system capable of determining induced temperature amplitudes of a large range of wave motions and investigating night-to-night and seasonal variability in mesospheric temperature. (author)

  1. Inertia–gravity wave radiation from the elliptical vortex in the f -plane shallow water system

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Research and Education Center for Natural Sciences, Department of Physics, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)

    2017-04-15

    Inertia–gravity wave (IGW) radiation from the elliptical vortex is investigated in the f -plane shallow water system. The far field of IGW is analytically derived for the case of an almost circular Kirchhoff vortex with a small aspect ratio. Cyclone–anticyclone asymmetry appears at finite values of the Rossby number (Ro) caused by the source originating in the Coriolis acceleration. While the intensity of IGWs from the cyclone monotonically decreases as f increases, that from the anticyclone increases as f increases for relatively smaller f and has a local maximum at intermediate f . A numerical experiment is conducted on a model using a spectral method in an unbounded domain. The numerical results agree quite well with the analytical ones for elliptical vortices with small aspect ratios, implying that the derived analytical forms are useful for the verification of the numerical model. For elliptical vortices with larger aspect ratios, however, significant deviation from the analytical estimates appears. The intensity of IGWs radiated in the numerical simulation is larger than that estimated analytically. The reason is that the source of IGWs is amplified during the time evolution because the shape of the vortex changes from ideal ellipse to elongated with filaments. Nevertheless, cyclone–anticyclone asymmetry similar to the analytical estimate appears in all the range of aspect ratios, suggesting that this asymmetry is a robust feature. (paper)

  2. High-resolution simulations of unstable cylindrical gravity currents undergoing wandering and splitting motions in a rotating system

    Science.gov (United States)

    Dai, Albert; Wu, Ching-Sen

    2018-02-01

    High-resolution simulations of unstable cylindrical gravity currents when wandering and splitting motions occur in a rotating system are reported. In this study, our attention is focused on the situation of unstable rotating cylindrical gravity currents when the ratio of Coriolis to inertia forces is larger, namely, 0.5 ≤ C ≤ 2.0, in comparison to the stable ones when C ≤ 0.3 as investigated previously by the authors. The simulations reproduce the major features of the unstable rotating cylindrical gravity currents observed in the laboratory, i.e., vortex-wandering or vortex-splitting following the contraction-relaxation motion, and good agreement is found when compared with the experimental results on the outrush radius of the advancing front and on the number of bulges. Furthermore, the simulations provide energy budget information which could not be attained in the laboratory. After the heavy fluid is released, the heavy fluid collapses and a contraction-relaxation motion is at work for approximately 2-3 revolutions of the system. During the contraction-relaxation motion of the heavy fluid, the unstable rotating cylindrical gravity currents behave similar to the stable ones. Towards the end of the contraction-relaxation motion, the dissipation rate in the system reaches a local minimum and a quasi-geostrophic equilibrium state is reached. After the quasi-geostrophic equilibrium state, vortex-wandering or vortex-splitting may occur depending on the ratio of Coriolis to inertia forces. The vortex-splitting process begins with non-axisymmetric bulges and, as the bulges grow, the kinetic energy increases at the expense of decreasing potential energy in the system. The completion of vortex-splitting is accompanied by a local maximum of dissipation rate and a local maximum of kinetic energy in the system. A striking feature of the unstable rotating cylindrical gravity currents is the persistent upwelling and downwelling motions, which are observed for both the

  3. Doubly Fed Induction Generator System Resonance Active Damping through Stator Virtual Impedance

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    (positive capacitor or negative inductor) into the stator branch through stator current feedforward control. The effectiveness of the DFIG system active damping control is verified by a 7.5 kW experimental down-scaled DFIG system, and simulation results of a commercial 2 MW DFIG system is provided as well....... converters/loads. This paper analyzes and explains first the HFR phenomenon between the DFIG system and a parallel compensated weak network (series RL + shunt C). Then on the basis of the DFIG system impedance modeling, an active damping control strategy is introduced by inserting a virtual impedance...... Frequency Resonance (HFR) due to the impedance interaction between the DFIG system and the weak grid network whose impedance is comparative large. Thus, it is important to implement an active damping for the HFR in order to ensure a safe and reliable operation of both the DFIG system and the grid connected...

  4. Integrating Unified Gravity Wave Physics into the NOAA Next Generation Global Prediction System

    Science.gov (United States)

    Alpert, J. C.; Yudin, V.; Fuller-Rowell, T. J.; Akmaev, R. A.

    2017-12-01

    The Unified Gravity Wave Physics (UGWP) project for the Next Generation Global Prediction System (NGGPS) is a NOAA collaborative effort between the National Centers for Environmental Prediction (NCEP), Environemntal Modeling Center (EMC) and the University of Colorado, Cooperative Institute for Research in Environmental Sciences (CU-CIRES) to support upgrades and improvements of GW dynamics (resolved scales) and physics (sub-grid scales) in the NOAA Environmental Modeling System (NEMS)†. As envisioned the global climate, weather and space weather models of NEMS will substantially improve their predictions and forecasts with the resolution-sensitive (scale-aware) formulations planned under the UGWP framework for both orographic and non-stationary waves. In particular, the planned improvements for the Global Forecast System (GFS) model of NEMS are: calibration of model physics for higher vertical and horizontal resolution and an extended vertical range of simulations, upgrades to GW schemes, including the turbulent heating and eddy mixing due to wave dissipation and breaking, and representation of the internally-generated QBO. The main priority of the UGWP project is unified parameterization of orographic and non-orographic GW effects including momentum deposition in the middle atmosphere and turbulent heating and eddies due to wave dissipation and breaking. The latter effects are not currently represented in NOAA atmosphere models. The team has tested and evaluated four candidate GW solvers integrating the selected GW schemes into the NGGPS model. Our current work and planned activity is to implement the UGWP schemes in the first available GFS/FV3 (open FV3) configuration including adapted GFDL modification for sub-grid orography in GFS. Initial global model results will be shown for the operational and research GFS configuration for spectral and FV3 dynamical cores. †http://www.emc.ncep.noaa.gov/index.php?branch=NEMS

  5. DC electrostatic gyro suspension system for the Gravity Probe B experiment

    Science.gov (United States)

    Wu, Chang-Huei

    1994-12-01

    The Gravity Probe B experiment is a satellite-based experiment primarily designed to test two aspects of Einstein's General Theory of Relativity by observing the spin axis drift of near-perfect gyroscopes in a 650-km circular polar orbit. The goal of this experiment is to measure the drift angles to an accuracy of 0.3 milli-arcsec after one year in orbit. As a result, electrostatically suspended free-spinning gyroscopes operating at a very low temperature became the final choice for their ultra-low Newtonian torque-induced drift rate. The Conventional AC current-driven suspension system faces two fundamental difficulties for ground gyro testing. Field emission causes rotor charging and arcing with an imperfect electrode or rotor surfaces because the electric field intensity needed to support a solid rotor in the 1-g field is more than 107 V/m. The system not only becomes unstable at a high rotor charge, which can be more than 500 volts, but may also lose control in case of arcing. Both the high voltage AC suspension signal and the high frequency (1 MHz) signal for rotor position sensing interfere with the superconducting SQUID magnetometer for spin axis readout through inductive coupling. These problems were resolved by using DC voltage to generate a suspension force and a low frequency position sensor. In addition to the Input/Output linearization algorithm developed to remove the system nonlinearity for global stability and dynamic performance, we also minimized the electric field intensity to reduce rotor charging. Experimental results verified the desired global stability and satisfactory dynamic performance. The problem of rotor charging is virtually eliminated. More importantly, the DC system is compatible with the SQUID readout system in the Science Mission configuration. Consequently, experiments in low magnetic field at a sub-micro-gauss level for SQUID design verification and trapped flux distribution study were finally realizable in ground environment

  6. Mechanical properties of electron beam welds of 316LN austenitic steels at low temperature for ITER gravity support system

    International Nuclear Information System (INIS)

    Lee, P.Y.; Huo, B.L.; Kuai, K.W.

    2007-01-01

    The gravity support system in ITER not only sustains magnet system, the vacuum vessel and in-vessel components, but also endures several large forces, such as electromagnetic force, thermal load and seismic loads. Based on the ITER design report, the maximum displacement of the gravity support system is estimated to be 32 mm in radial direction at the top flange of the flexible plates during the TF coil cool down from room temperature to 80 k. Welds are located in the peak stress region and subject to cyclic loads in the top flange is a potential problem. Therefore, the mechanical properties of the welds are extremely important for this system. 316LN austenitic stainless steel has been selected as the gravity support structure materials. However, there is still lack of the related mechanical data of the welding components of 316LN stainless steel at present. In this study, we are systematically investigated the mechanical properties of the welding components at low temperature. (authors)

  7. Farmers’ knowledge, use and preferences of parasitic weed management strategies in rain-fed rice production systems

    NARCIS (Netherlands)

    Tippe, Dennis E.; Rodenburg, Jonne; Schut, Marc; Ast, van Aad; Kayeke, Juma; Bastiaans, Lammert

    2017-01-01

    Rain-fed rice production in sub-Saharan Africa is often hampered by parasitic weeds. This study assessed farmers’ awareness, use, preference and adoption criteria of parasitic weed management practices in rain-fed rice production environments in Tanzania. Surveys and workshops were organized in

  8. The Concept of Autonomous Power Supply System Fed with Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Waldemar Fedak

    2017-12-01

    Full Text Available Sustainable economic development requires the use of renewable energy sources in a rational and thoughtful way. In Polish conditions the use of several types of renewable energy sources on a single setup is a new issue. In particular, hybrid devices in conjunction with intelligent energy systems, such as lighting systems are generally not used. Therefore, the Polish energy production still relies on the burning of coal. Despite their advantages, renewable energy sources are characterized by seasonality and considerable instability. Access to renewable energy varies daily and seasonally, hence activities promoting the use of autonomous, hybrid power systems must be intensified. The presented research aims at the development of the Autonomous Power Supply (APS system based on the so-called energy mix. Such a system works in an isolated arrangement and serves to reliably supply electricity from renewable sources for small residential or public utility devices in an urban area. Systems with up to 3 kW power consist of modules, whose modular design allows the combination of various power configurations and types of renewable energy used. The basic system consists of a primary power source, additional power source, emergency power source, energy storage device, weather station and controller. The energy mix depends on the geographical location of the system. The emergency source can be implemented as an on-grid connector or fuel power generator with the participation of 100% until the primary or accessory power source failure is removed. The energy storage system consists of batteries or supercapacitors. The proposed system can be combined to create a local network that automatically responds to energy shortages in various network nodes by adjusting the supply of electricity within the network depending on its needs. For Poland realistic solutions in this article are the new and modern answer to these requirements.

  9. Dynamical Studies of N-Body Gravity and Tidal Dissipation in the TRAPPIST-1 Star System

    Science.gov (United States)

    Nayak, Michael; Kuettel, Donald H.; Stebler, Shane T.; Udrea, Bogdan

    2018-01-01

    To date, we have discovered a total of 2,729 planetary systems that contain more than 3,639 known exoplanets [1]. A majority of these are defined as compact systems, containing multiple exoplanets within 0.25 AU of the central star. It has been shown that tightly packed exoplanets avoid colliding due to long-term resonance-induced orbit stability [2]. However, due to extreme proximity, these planets experience intense gravitational forces from each other that are unprecedented within our own solar system, which makes the existence of exomoons doubtful. We present the results of an initial study evaluating dynamical stability of potential exomoons within such highly compact systems.This work is baselined around TRAPPIST-1, an ultra-cool dwarf star that hosts seven temperate terrestrial planets, three of which are in the habitable zone, orbiting within 0.06 AU [3]. N-body simulations place a grid of test particles varying semi-major axis, eccentricity, and inclination around the three habitable zone planets. We find that most exomoons with semi-major axes less than half the Hill sphere of their respective planet are stable over 10 kyrs, with several stable over 300 kyrs.However, in compact systems, tidal influences from other planets can compete with tidal effects from the primary planet, resulting in possible instabilities and massive amounts of tidal dissipation. We investigate these effects with a large grid search that incorporates exomoon radius, tidal quality factor and a range of planet rigidities. Results of simulations that combine n-body gravity effects with both planetary and satellite tides are presented and contrasted with n-body results. Finally, we examine long-term stability (> 1Myrs) of the stable subset of test particles from the n-body simulation with the addition of tidal dissipation, to determine if exomoons can survive around planets e, f, and g in the TRAPPIST-1 system.[1] Schneider (2017). The Extrasolar Planets Encyclopedia. http

  10. Whole-milk feeding duration, calf growth, and profitability of group-fed calves in an organic production system.

    Science.gov (United States)

    Bjorklund, E A; Heins, B J; Chester-Jones, H

    2013-01-01

    The objective of this study was to evaluate the effect of early-life feeding duration on growth and economics of group-fed organic dairy calves. Heifer calves born during the spring of 2011 (n = 67) and the spring of 2012 (n = 57) were used to evaluate the effect of weaning age, growth, and profitability of group-fed calves fed once per day in an organic dairy production system. Calves were assigned to replicate feeding groups of 10 in super hutches by birth order, and were born at the University of Minnesota West Central Research and Outreach Center, Morris organic dairy. Breed groups were Holsteins (n = 15) selected for high production, Holsteins (n = 23) maintained at 1964 breed-average level, crossbreds (n = 54) including combinations of Holstein, Montbéliarde, and Swedish Red, and crossbreds (n = 32) including combinations of Holstein, New Zealand Friesian, Jersey, and Swedish Red. Groups of calves were weaned at 30 (EW, early weaning), 60 (MW, mid weaning), or 90 (LW, late weaning) d of age, and groups were fed 1.5% of birth weight of 13% total solids organic whole milk once daily and weaned when the group of 10 calves consumed an average of 0.91 kg of organic calf starter per calf per day for 4 consecutive days. Body measurements were recorded at birth, weekly during the preweaning period, at weaning, and monthly thereafter. Profitability was estimated as a function of the total cost for organic milk and organic calf starter for weaning groups to weaning and to the first 90 d of age. Preweaning group performance was weaning age, EW: 47.6d, MW: 64.5d, LW: 93.7d; weaning weight, EW: 61.8 kg, MW: 79.2 kg, LW: 108.1 kg; and gain per day, EW: 0.51 kg/d, MW: 0.63 kg/d, LW: 0.75 kg/d. Body weight (BW) did not differ among weaning groups at 90 d of age; however, MW calves had lower 120-d BW than did LW calves. The EW calves did not differ from either MW or LW calves for 120-d BW. Total feed costs to weaning for groups were $1,092.97 for EW calves, $1,871.24 for MW

  11. Development and Optimization of a Tridyne Pressurization System for Pressure Fed Launch Vehicles

    National Research Council Canada - National Science Library

    Chakroborty, Shyama; Wollen, Mark; Malany, Lee

    2006-01-01

    Over the recent years, Microcosm has been pursuing the development of a Tridyne-based pressurization system and its implementation in the Scorpius family of launch vehicles to obtain substantial gain in payload to orbit...

  12. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  13. Boost Converter Fed High Performance BLDC Drive for Solar PV Array Powered Air Cooling System

    Directory of Open Access Journals (Sweden)

    Shobha Rani Depuru

    2017-01-01

    Full Text Available This paper proposes the utilization of a DC-DC boost converter as a mediator between a Solar Photovoltaic (SPV array and the Voltage Source Inverters (VSI in an SPV array powered air cooling system to attain maximum efficiency. The boost converter, over the various common DC-DC converters, offers many advantages in SPV based applications. Further, two Brushless DC (BLDC motors are employed in the proposed air cooling system: one to run the centrifugal water pump and the other to run a fan-blower. Employing a BLDC motor is found to be the best option because of its top efficiency, supreme reliability and better performance over a wide range of speeds. The air cooling system is developed and simulated using the MATLAB/Simulink environment considering the steady state variation in the solar irradiance. Further, the efficiency of BLDC drive system is compared with a conventional Permanent Magnet DC (PMDC motor drive system and from the simulated results it is found that the proposed system performs better.

  14. Doubly Fed Induction Generator Wind Turbine Systems Subject to Recurring Symmetrical Grid Faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2016-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the doubly Ffed induction generator (DFIG) wind turbine system under recurring symmetrical grid faults is analyzed. The mathematical model of the DFIG under recurring symmetrical...... grid faults is established. The analysis is based on the DFIG wind turbine system with the typical low-voltage ride-through strategy-with rotor-side crowbar. The stator natural flux produced by the voltage recovery after the first grid fault may be superposed on the stator natural flux produced...... by the second grid fault, so that the transient rotor and stator current and torque fluctuations under the second grid fault may be influenced by the characteristic of the first grid fault, including the voltage dips level and the grid fault angle, as well as the duration between two faults. The mathematical...

  15. Modeling and analysis of doubly fed induction generator wind energy systems

    CERN Document Server

    Fan, Lingling

    2015-01-01

    Wind Energy Systems: Modeling, Analysis and Control with DFIG provides key information on machine/converter modelling strategies based on space vectors, complex vector, and further frequency-domain variables. It includes applications that focus on wind energy grid integration, with analysis and control explanations with examples. For those working in the field of wind energy integration examining the potential risk of stability is key, this edition looks at how wind energy is modelled, what kind of control systems are adopted, how it interacts with the grid, as well as suitable study

  16. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    Science.gov (United States)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  17. Small-Signal Stability Analysis of Inverter-Fed Power Systems Using Component Connection Method

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    The small time constants of power electronics devices lead to dynamic couplings with the electromagnetic transients of power networks, and thus complicate the modeling and stability analysis of power-electronics-based power systems. This paper presents a computationally-efficient approach to asse...

  18. Strategies for improving water use efficiency of livestock production in rain-fed systems.

    Science.gov (United States)

    Kebebe, E G; Oosting, S J; Haileslassie, A; Duncan, A J; de Boer, I J M

    2015-05-01

    Livestock production is a major consumer of fresh water, and the influence of livestock production on global fresh water resources is increasing because of the growing demand for livestock products. Increasing water use efficiency of livestock production, therefore, can contribute to the overall water use efficiency of agriculture. Previous studies have reported significant variation in livestock water productivity (LWP) within and among farming systems. Underlying causes of this variation in LWP require further investigation. The objective of this paper was to identify the factors that explain the variation in LWP within and among farming systems in Ethiopia. We quantified LWP for various farms in mixed-crop livestock systems and explored the effect of household demographic characteristics and farm assets on LWP using ANOVA and multilevel mixed-effect linear regression. We focused on water used to cultivate feeds on privately owned agricultural lands. There was a difference in LWP among farming systems and wealth categories. Better-off households followed by medium households had the highest LWP, whereas poor households had the lowest LWP. The variation in LWP among wealth categories could be explained by the differences in the ownership of livestock and availability of family labor. Regression results showed that the age of the household head, the size of the livestock holding and availability of family labor affected LWP positively. The results suggest that water use efficiency could be improved by alleviating resource constraints such as access to farm labor and livestock assets, oxen in particular.

  19. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  20. Mechanistic Models for Process Development and Optimization of Fed-batch Fermentation Systems

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads O.

    2016-01-01

    This work discusses the application of mechanistic models to pilot scale filamentous fungal fermentation systems operated at Novozymes A/S. For on-line applications, a state estimator model is developed based on a stoichiometric balance in order to predict the biomass and product concentration....... This is based on on-line gas measurements and ammonia addition flow rate measurements. Additionally, a mechanistic model is applied offline as a tool for batch planning, based on definition of the process back pressure, aeration rate and stirrer speed. This allows the batch starting fill to be planned, taking...... into account the oxygen transfer conditions, as well as the evaporation rates of the system. Mechanistic models are valuable tools which are applicable for both process development and optimization. The state estimator described will be a valuable tool for future work as part of control strategy development...

  1. Stellar systems fed by outside stars: the evolution of model galactic nuclei

    International Nuclear Information System (INIS)

    Dokuchaev, V.I.; Ozernoi, L.M.

    1985-01-01

    Through relaxation mechanisms, a dense central core surrounded by an extended, rarefied stellar system in a nonisothermal galactic nuclear region can be kept supplied with energy and mass conveyed by incoming stars. These factors may significantly influence the secular evolution of the core, competing with the conventional star-evaporation process. Under certain circumstances the outside environment will in fact dominate the core evolution, causing not collapse but expansion

  2. High Efficiency Power Converter for a Doubly-fed SOEC/SOFC System

    DEFF Research Database (Denmark)

    Tomas Manez, Kevin; Anthon, Alexander; Zhang, Zhe

    2016-01-01

    Regenerative fuel cells (RFC) have become an attractive technology for energy storage systems due to their high energy density and lower end-of-life disposal concerns. However, high efficiency design of power conditioning unit (PCU) for RFC becomes challenging due to their asymmetrical currentpow...... operating range of the RFC as well as the utilization of the same control strategy design for the two RFC operating modes....

  3. Off-gas system data summary for the ninth run of the large slurry fed melter

    International Nuclear Information System (INIS)

    Colven, W.P.

    1983-01-01

    The ninth melter campaign successfully demonstrated extended operation of both melter and off-gas systems. Two critical problem areas associated with the handling of melter off-gases were resolved leading to firm definition of the DWPF Off-Gas Treatment System. These two concerns, wet scrubber decontamination efficiency and the reduction of solids deposition at the off-gas line entrance, were the primary focus of off-gas system studies during the 63-day run (LSFM-9). The Hydro-Sonic Scrubber was confirmed to be the superior candidate for wet scrubbing by outperforming all other scrubbers tested at the Equipment Test Facility (ETF). The two stage, steam-driven scrubber achieved consistent decontamination factors for cesium exceeding the required DWPF flowsheet DF of 50. As a result, the device was selected as the reference wet scrubber for the DWPF. The Off-Gas Film Cooling device continued to show promising results for reducing three accumulation of solid deposits at the entrance to the off-gas line. In addition, a rotating wire brush cleaning device provided easy and efficient removal of deposits which had accumulated. The combination of the two has adequately resolved the deposit accumulation problem and both devices have been incorporated in the DWPF design

  4. Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil.

    Science.gov (United States)

    Oliveira, Helena M B; Santos, Cledir; Paterson, R Russell M; Gusmão, Norma B; Lima, Nelson

    2016-03-09

    Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife-Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens.

  5. Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil

    Directory of Open Access Journals (Sweden)

    Helena M.B. Oliveira

    2016-03-01

    Full Text Available Filamentous fungi in drinking water distribution systems are known to (a block water pipes; (b cause organoleptic biodeterioration; (c act as pathogens or allergens and (d cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife—Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively, followed by Trichoderma and Fusarium (9% each, Curvularia (5% and finally the species Pestalotiopsis karstenii (2%. Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens.

  6. Cirlularly Polarized Proximity- Fed Microstrip Array Antenna for LAPAN TUBSAT Micro Satellite System

    Directory of Open Access Journals (Sweden)

    Endra Wijaya

    2013-11-01

    Full Text Available The design microstrip of array antenna circular polarization characteristic developed for support LAPAN TUBSAT micro satellite system. The antenna on the micro satellite systems transmit data to ground stations operating at S band frequencies.The antenna is designed for impedance matching at frequencies of 2:25 GHz.The four elements of the square patch antenna array composed using linear methods, where the design of the transmission lines used by federal corporate structure model network consisting of three elements of the quarter wave transformer of a power divider. The feeding techniques for antenna designed using proximity coupling method, which for the type of substrate material used is similar. Circularly polarized antenna characteristics are influenced by the truncated corner pieces on the patch. To design the overall antenna used simulated method of moments in microwave office software applications. The results of measurements and simulations obtained antenna parameters, such as: bandwidth of return loss under 10 dB is 200 MHz (shifted 35%, bandwidth of axial ratio under 3dB is 1.7% and maximum gain directivity is 9 dB. Overall results obtained antenna parameters to meet the specifications of LAPAN TUBSAT micro satellite system.

  7. Fillet quality and processing attributes of postsmolt Atlantic salmon, Salmo salar, fed a fishmeal-free diet and a fishmeal-based diet in recirculation aquaculture systems

    Science.gov (United States)

    Many studies have evaluated the adequacy of alternate ingredient diets for Atlantic salmon, Salmo salar, mainly with focus on fish performance and health; however, comprehensive analysis of fillet quality is lacking, particularly for salmon fed these diets in recirculation aquaculture systems (RAS)....

  8. New control strategy of stand-alone brushless doubly-fed induction generator for supplying unbalanced loads in ship shaft power generation system

    DEFF Research Database (Denmark)

    Liu, Yi; Xu, Wei; Xiong, Fei

    2017-01-01

    The ship shaft power generation system based on a stand-alone brushless doubly-fed induction generator (BDFIG) have demonstrated excellent saving-energy performance. This paper presents a new control scheme of the stand-alone BDFIG for supplying unbalanced loads in the ship shaft power generation...

  9. LFCM [liquid-fed eramic melter] emission and off-gas system performance for feed component cesium

    International Nuclear Information System (INIS)

    Goles, R.W.; Andersen, C.M.

    1986-09-01

    Except for volatile off-gas effluents, overall adequacy of the liquid-fed ceramic melter (LFCM) system depends most upon its effectiveness in dealing with cesium. However, the mechanism responsible for melter cesium losses has proved insensitive to many LFCM operating and processing conditions. As a result, variations in inleakage, plenum temperature, feeding rate and waste loading do not significantly influence melter cesium performance. Feed composition, specifically halogen content, is the only processing variable that has had a significant effect. Due to the submicron nature of LFCM-generated aerosols, melter disengagement design features are not expected to be particularly effective in reducing cesium emission rates. For the same reason, the cesium performance of conventional quench scrubbers is quite low, being dependent only upon the magnitude of melter entrainment losses. Although a deep bed washable filter has been effective in removing submicron aerosols from the process exhaust, high performance has only been achieved under dry operating conditions. The melter's idling state does not appear to place additional demands upon the off-gas treatment system

  10. Study of LCL filter performance for inverter fed grid connected system

    Science.gov (United States)

    Thamizh Thentral, T. M.; Geetha, A.; Subramani, C.

    2018-04-01

    The abandoned use of power electronic converters in the application of grid connected system paves a way for critical injected harmonics. Hence the use of filter becomes a significant play among the present scenario. Higher order passive filter is mostly preferred in this application because of its reduced cost and size. This paper focuses on the design of LCL filter for the reduction of injected harmonics. The reason behind choosing LCL filter is inductor sizing and good ripple component attenuation over the other conventional filters. This work is simulated in MATLAB platform and the results are prominent to the objectives mentioned above. Also, the simulation results are verified with the implemented hardware model.

  11. Using a Gravity Model to Predict Circulation in a Public Library System.

    Science.gov (United States)

    Ottensmann, John R.

    1995-01-01

    Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…

  12. Hungry in hospital, well-fed in prison? A comparative analysis of food service systems.

    Science.gov (United States)

    Johns, Nick; Edwards, John S A; Hartwell, Heather J

    2013-09-01

    Meals served in prisons and hospitals are produced in similar ways and have similar characteristics, yet hospital patients are often at risk of being undernourished, while prisoners typically are not. This article examines field notes collected during nutritional studies of prison and hospital food service, which confirmed the difference in nutrient intake claimed by other authors. A comparison of food service processes and systems showed that the production of meals and the quality leaving the kitchen was similar in both types of institution. However, the delivery and service system was found to be much less coherent in hospital than in prison. Transport and service of hospital food were subject to delays and disruptions from a number of sources, including poor communication and the demands of medical professionals. These meant that meals reached hospital patients in a poorer, less appetising condition than those received by prisoners. The findings are discussed in the light of previous work and in terms of hospital food service practice. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  14. The evolution of Brown-York quasilocal energy as due to evolution of Lovelock gravity in a system of M0-branes

    Science.gov (United States)

    Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh

    Recently, it has been suggested in [S. Chakraborty and N. Dadhich, Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons, J. High Energ. Phys. 12 (2015) 003.] that the Brown-York mechanism can be used to measure the quasilocal energy in Lovelock gravity. We have used this method in a system of M0-branes and show that the Brown-York energy evolves in the process of birth and growth of Lovelock gravity. This can help us to predict phenomenological events which are emerged as due to dynamical structure of Lovelock gravity in our universe. In this model, first, M0-branes join each other and form an M3-brane and an anti-M3-branes connected by an M2-brane. This system is named BIon. Universes and anti-universes live on M3-branes and M2 plays the role of wormhole between them. By passing time, M2 dissolves in M3’s and nonlinear massive gravities like Lovelock massive gravity emerges and grows. By closing M3-branes, BIon evolves and wormhole between branes makes a transition to black hole. During this stage, Brown-York energy increases and shrinks to large values at the colliding points of branes. By approaching M3-branes towards each other, the square energy of their system becomes negative and some tachyonic states are produced. To remove these states, M3-branes compact, the sign of compacted gravity changes, anti-gravity is created which leads to getting away of branes from each other. Also, the Lovelock gravity disappears and its energy forms a new M2 between M3-branes. By getting away of branes from each other, Brown-York energy decreases and shrinks to zero.

  15. The gravity field and GGOS

    DEFF Research Database (Denmark)

    Forsberg, René; Sideris, M.G.; Shum, C.K.

    2005-01-01

    The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...

  16. Sensitivity of the Gravity Recovery and Climate Experiment (GRACE) to the complexity of aquifer systems for monitoring of groundwater

    Science.gov (United States)

    Katpatal, Yashwant B.; Rishma, C.; Singh, Chandan K.

    2018-05-01

    The Gravity Recovery and Climate Experiment (GRACE) satellite mission is aimed at assessment of groundwater storage under different terrestrial conditions. The main objective of the presented study is to highlight the significance of aquifer complexity to improve the performance of GRACE in monitoring groundwater. Vidarbha region of Maharashtra, central India, was selected as the study area for analysis, since the region comprises a simple aquifer system in the western region and a complex aquifer system in the eastern region. Groundwater-level-trend analyses of the different aquifer systems and spatial and temporal variation of the terrestrial water storage anomaly were studied to understand the groundwater scenario. GRACE and its field application involve selecting four pixels from the GRACE output with different aquifer systems, where each GRACE pixel encompasses 50-90 monitoring wells. Groundwater storage anomalies (GWSA) are derived for each pixel for the period 2002 to 2015 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models (GWSAGRACE) as well as the actual field data (GWSAActual). Correlation analysis between GWSAGRACE and GWSAActual was performed using linear regression. The Pearson and Spearman methods show that the performance of GRACE is good in the region with simple aquifers; however, performance is poorer in the region with multiple aquifer systems. The study highlights the importance of incorporating the sensitivity of GRACE in estimation of groundwater storage in complex aquifer systems in future studies.

  17. Influence of housing system, grain type, and particle size on Salmonella colonization and shedding of broilers fed triticale or corn-soybean meal diets.

    Science.gov (United States)

    Santos, F B O; Sheldon, B W; Santos, A A; Ferket, P R

    2008-03-01

    Salmonella colonization in poultry may be influenced by grain type and particle size. Broilers reared either in nonlitter cage-based housing or in a conventionally floored litter house from 0 to 42 d were assigned to 1 of 4 dietary treatments: 1) ground corn-soybean meal (C, 560 microm), 2) coarsely ground corn-soybean meal (CC, >1,700 microm), 3) ground triticale-soybean meal (T, 560 microm), or 4) whole triticale-soybean meal (WT). A 4-strain cocktail of Salmonella enterica was orally gavaged into each chick at placement. Growth performance, cecal and fecal Salmonella populations, gizzard and proventriculus pH, intestinal size, jejunum histomorphometry, and carcass yields were measured. Broilers responded differently to the dietary treatments according to the housing system used. At 42 d, birds reared on litter and fed ground grain had greater BW than those fed coarse grain (2.87 vs. 2.71 kg), whereas cage-reared broilers fed ground triticale were heavier than those fed corn (2.75 vs. 2.64 kg). Broilers raised on litter had a better feed conversion ratio than those raised in cages (1.71 vs. 1.81 g/g). Independent of the housing system, relative eviscerated carcass weights of birds fed T and C were heavier than those of CC- and WT-fed broilers (762 vs. 752 g/kg). Generally, the jejunum villus area and mucosal depth were larger, whereas the small intestine was lighter and shorter in broilers raised on litter. Relative gizzard weights of broilers raised on litter and fed the coarser diets were heavier than those of broilers reared in cages and fed finely ground diets. Feeding whole or coarsely ground grains decreased cecal Salmonella populations in 42-d-old broilers (3.8, 3.9, 4.4, and 4.4 log most probable number/g for CC, WT, C, and T, respectively). Additionally, 42-d-old broilers reared on litter had lower cecal Salmonella populations than those in cages (3.8 vs. 4.4 log most probable number/g). In conclusion, as a feed ingredient, triticale is a good

  18. Hydrological behavior of a Vertisol under different soil management systems in a rain-fed olive orchard

    Science.gov (United States)

    Cabezas, Jose Manuel; Gómez, Jose Alfonso; Auxiliadora Soriano, María

    2016-04-01

    Soil water availability is a major subject in Mediterranean agricultural systems, mainly due to the limited and highly variable annual rainfall, high evaporative demand, and soil hydrological characteristics. The recent expansion of olive cultivation in the rolling-plains of the Guadalquivir valley, due to the higher profitability of new intensive olive orchards, expanded the presence of olive orchards on Vertisols, soils traditionally used for annual rain-fed crops. These soils have a high content of smectitic clays, which give them a high water storage capacity, and are characterized by vertical and deep shrinkage cracks in the dry season, associated to low soil moisture. Farmers make several tillage passes in these olive groves during the summer, in order to cover the cracks and thus reduce soil water loss by evaporation, which will impact especially in rain-fed in the next olive yield. This tillage practice involves removal of plant residues from the soil surface, as well as burying seeds produced by the plants, so this will remain bared at the beginning of the rainy season, when in the Mediterranean climate is frequent occurrence of high-intensity rainfall, which are ideal conditions for soil loss by water erosion, one of the most serious problems for the sustainability of olive cultivation in Andalusia. Although there are some studies showing that water loss by evaporation from deep horizons of a vertic soil might be elevated (eg. Ritchie and Adams, 1974), the presence of plant residues on the soil surface drastically reduced soil water loss (eg Adams et al., 1969). Thus the aim of this study was to assess of soil moisture dynamics in a rain-fed olive orchard growing on a Vertisol under different soil management practices, in Andalusia (southern Spain). Four different soil management treatments were applied, which combined a cover crop (Bromus rubens L.) or bare soil throughout the year by applying herbicides, with tillage in summer to cover the cracks or non

  19. Depletion of norepinephrine of the central nervous system Down-regulates the blood glucose level in d-glucose-fed and restraint stress models.

    Science.gov (United States)

    Park, Soo-Hyun; Kim, Sung-Su; Lee, Jae-Ryeong; Sharma, Naveen; Suh, Hong-Won

    2016-05-04

    DSP-4[N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] is a neurotoxin that depletes norepinephrine. The catecholaminergic system has been implicated in the regulation of blood glucose level. In the present study, the effect of DSP-4 administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on blood glucose level was examined in d-glucose-fed and restraint stress mice models. Mice were pretreated once i.c.v. or i.t. with DSP-4 (10-40μg) for 3days, and d-glucose (2g/kg) was fed orally. Blood glucose level was measured 0 (prior to glucose feeding or restraint stress), 30, 60, and 120min after d-glucose feeding or restraint stress. The i.c.v. or i.t. pretreatment with DSP-4 attenuated blood glucose level in the d-glucose-fed model. Plasma corticosterone level was downregulated in the d-glucose-fed model, whereas plasma insulin level increased in the d-glucose-fed group. The i.c.v. or i.t. pretreatment with DSP-4 reversed the downregulation of plasma corticosterone induced by feeding d-glucose. In addition, the d-glucose-induced increase in plasma insulin was attenuated by the DSP-4 pretreatment. Furthermore, i.c.v. or i.t. pretreatment with DSP-4 reduced restraint stress-induced increases in blood glucose levels. Restraint stress increased plasma corticosterone and insulin levels. The i.c.v. pretreatment with DSP-4 attenuated restraint stress-induced plasma corticosterone and insulin levels. Our results suggest that depleting norepinephrine at the supraspinal and spinal levels appears to be responsible for downregulating blood glucose levels in both d-glucose-fed and restraint stress models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Using Gravity Assists in the Earth-moon System as a Gateway to the Solar System

    Science.gov (United States)

    McElrath, Tim; Lantoine, Gregory; Landau, Damon; Grebow, Dan; Strange, Nathan; Wilson, Roby; Sims, Jon

    2012-01-01

    For spacecraft departing the Earth - Moon system, lunar flybys can significantly increase the hype rbolic escape energy (C3, in km 2 /sec 2 ) for a modest increase in flight time. Within 2 months, lunar flybys can produce a C3 of 2. Over 4 - 6 months, lunar flybys alone can increase the C3 to 4.5, or they can provide for additional periapsis burns to increase the C3 from 2 -3 to 10 or more, suitable for planetary missions. A lunar flyby departure can be followed by additional ? -V (such as that efficiently provided by a low thrust system, eg. Solar Electric Propulsion (SEP)) to raise the Earth - relative velocity (at a ratio of more than 2:1) before a subsequent Earth flyby, which redirects that velocity to a more di stant target, all within not much more than a year. This paper describes the applicability of lunar flybys for different flight times and propulsi on systems, and illustrates this with instances of past usage and future possibilities. Examples discussed i nclude ISEE - 3, Nozomi, STEREO, 2018 Mars studies (which showed an 8% payload increase), and missions to Near Earth Objects (NEOs). In addition, the options for the achieving the initial lunar flyby are systematically discussed, with a view towards their p ractical use with in a compact launch period. In particular, we show that launches to geosynchronous transfer orbit (GTO) as a secondary payload provide a feasible means of obtaining a lunar flyby for an acceptable cost, even for SEP systems that cannot ea sily deliver large ? - Vs at periapsis. Taken together, these results comprise a myriad of options for increasing the mission performance, by the efficient use of lunar flybys within an acceptable extension of the flight time.

  1. Development of new experimental platform 'MARS'-Multiple Artificial-gravity Research System-to elucidate the impacts of micro/partial gravity on mice.

    Science.gov (United States)

    Shiba, Dai; Mizuno, Hiroyasu; Yumoto, Akane; Shimomura, Michihiko; Kobayashi, Hiroe; Morita, Hironobu; Shimbo, Miki; Hamada, Michito; Kudo, Takashi; Shinohara, Masahiro; Asahara, Hiroshi; Shirakawa, Masaki; Takahashi, Satoru

    2017-09-07

    This Japan Aerospace Exploration Agency project focused on elucidating the impacts of partial gravity (partial g) and microgravity (μg) on mice using newly developed mouse habitat cage units (HCU) that can be installed in the Centrifuge-equipped Biological Experiment Facility in the International Space Station. In the first mission, 12 C57BL/6 J male mice were housed under μg or artificial earth-gravity (1 g). Mouse activity was monitored daily via downlinked videos; μg mice floated inside the HCU, whereas artificial 1 g mice were on their feet on the floor. After 35 days of habitation, all mice were returned to the Earth and processed. Significant decreases were evident in femur bone density and the soleus/gastrocnemius muscle weights of μg mice, whereas artificial 1 g mice maintained the same bone density and muscle weight as mice in the ground control experiment, in which housing conditions in the flight experiment were replicated. These data indicate that these changes were particularly because of gravity. They also present the first evidence that the addition of gravity can prevent decreases in bone density and muscle mass, and that the new platform 'MARS' may provide novel insights on the molecular-mechanisms regulating biological processes controlled by partial g/μg.

  2. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  3. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Barceló Carlos

    2005-12-01

    Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  4. Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents

    Science.gov (United States)

    Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg

    2015-09-01

    In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.

  5. Quantum Gravity

    OpenAIRE

    Alvarez, Enrique

    2004-01-01

    Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...

  6. Comparison of cumulative dissipated energy delivered by active-fluidic pressure control phacoemulsification system versus gravity-fluidics.

    Science.gov (United States)

    Gonzalez-Salinas, Roberto; Garza-Leon, Manuel; Saenz-de-Viteri, Manuel; Solis-S, Juan C; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo

    2017-08-22

    To compare the cumulative dissipated energy (CDE), aspiration time and estimated aspiration fluid utilized during phacoemulsification cataract surgery using two phacoemulsification systems . A total of 164 consecutive eyes of 164 patients undergoing cataract surgery, 82 in the active-fluidics group and 82 in the gravity-fluidics group were enrolled in this study. Cataracts graded NII to NIII using LOCS II were included. Each subject was randomly assigned to one of the two platforms with a specific configuration: the active-fluidics Centurion ® phacoemulsification system or the gravity-fluidics Infiniti ® Vision System. CDE, aspiration time (AT) and the mean estimated aspiration fluid (EAF) were registered and compared. A mean age of 68.3 ± 9.8 years was found (range 57-92 years), and no significant difference was evident between both groups. A positive correlation between the CDE values obtained by both platforms was verified (r = 0.271, R 2  = 0.073, P = 0.013). Similarly, a significant correlation was evidenced for the EAF (r = 0.334, R 2  = 0.112, P = 0.046) and AT values (r = 0.156, R 2  = 0.024, P = 0.161). A statistically significantly lower CDE count, aspiration time and estimated fluid were obtained using the active-fluidics configuration when compared to the gravity-fluidics configuration by 19.29, 12.10 and 9.29%, respectively (P = 0.001, P Infiniti ® IP system for NII and NIII cataracts.

  7. Gravity Search Algorithm hybridized Recursive Least Square method for power system harmonic estimation

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Singh

    2017-06-01

    Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.

  8. VLP seismicity from resonant modes of acoustic-gravity waves in a conduit-crack system filled with multiphase magma

    Science.gov (United States)

    Liang, C.; Prochnow, B. N.; OReilly, O. J.; Dunham, E. M.; Karlstrom, L.

    2016-12-01

    Oscillation of magma in volcanic conduits connected to cracks (dikes and sills) has been suggested as an explanation for very long period (VLP) seismic signals recorded at active basaltic volcanoes such as. Kilauea, Hawaii, and Erebus, Antarctica. We investigate the VLP seismicity using a linearized model for waves in and associated eigenmodes of a coupled conduit-crack system filled with multiphase magma, an extension of the Karlstrom and Dunham (2016) model for acoustic-gravity waves in volcanic conduits. We find that the long period surface displacement (as recorded on broadband seismometers) is dominated by opening/closing of the crack rather than the deformation of the conduit conduit walls. While the fundamental eigenmode is sensitive to the fluid properties and the geometry of the magma plumbing system, a closer scrutiny of various resonant modes reveals that the surface displacement is often more sensitive to higher modes. Here we present a systematic analysis of various long period acoustic-gravity wave resonant modes of a coupled conduit-crack system that the surface displacement is most sensitive to. We extend our previous work on a quasi-one-dimensional conduit model with inviscid magma to a more general axisymmetric conduit model that properly accounts for viscous boundary layers near the conduit walls, based on the numerical method developed by Prochnow et al. (submitted to Computers and Fluids, 2016). The surface displacement is dominated by either the fundamental or higher eigenmodes, depending on magma properties and the geometry of conduit and crack. An examination of the energetics of these modes reveals the complex interplay of different restoring forces (magma compressibility in the conduit, gravity, and elasticity of the crack) driving the VLP oscillations. Both nonequilibrium bubble growth and resorption and viscosity contribute to the damping of VLP signals. Our models thus provide a means to infer properties of open-vent basaltic volcanoes

  9. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    Science.gov (United States)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  10. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets.

    Science.gov (United States)

    Götz, Alexander A; Rozman, Jan; Rödel, Heiko G; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Klingenspor, Martin; Stoeger, Tobias

    2011-09-27

    Obesity can be linked to disease risks such as diabetes and cardiovascular disorders, but recently, the adipose tissue (AT) macrophage also emerges as actively participating in inflammation and immune function, producing pro- and anti-inflammatory factors. Connections between the AT and chronic lung diseases, like emphysema and asthma and a protective role of adipocyte-derived proteins against acute lung injury were suggested.In this study we addressed the question, whether a diet challenge increases the inflammatory response in the alveolar and the blood compartment in response to carbon nanoparticles (CNP), as a surrogate for ambient/urban particulate air pollutants. Mice were fed a high caloric carbohydrate-rich (CA) or a fat-rich (HF) diet for six weeks and were compared to mice kept on a purified low fat (LF) diet, respectively. Bronchoalveolar lavage (BAL) and blood samples were taken 24 h after intratracheal CNP instillation and checked for cellular and molecular markers of inflammation. The high caloric diets resulted in distinct effects when compared with LF mice, respectively: CA resulted in increased body and fat mass without affecting blood cellular immunity. Conversely, HF activated the blood system, increasing lymphocyte and neutrophil counts, and resulted in slightly increased body fat content. In contrast to higher pro-inflammatory BAL Leptin in CA and HF mice, on a cellular level, both diets did not lead to an increased pro-inflammatory basal status in the alveolar compartment per se, nor did result in differences in the particle-triggered response. However both diets resulted in a disturbance of the alveolar capillary barrier as indicated by enhanced BAL protein and lactate-dehydrogenase concentrations. Systemically, reduced serum Adiponectin in HF mice might be related to the observed white blood cell increase. The increase in BAL pro-inflammatory factors in high caloric groups and reductions in serum concentrations of anti-inflammatory factors

  11. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets

    Directory of Open Access Journals (Sweden)

    Hrabě de Angelis Martin

    2011-09-01

    Full Text Available Abstract Background Obesity can be linked to disease risks such as diabetes and cardiovascular disorders, but recently, the adipose tissue (AT macrophage also emerges as actively participating in inflammation and immune function, producing pro- and anti-inflammatory factors. Connections between the AT and chronic lung diseases, like emphysema and asthma and a protective role of adipocyte-derived proteins against acute lung injury were suggested. In this study we addressed the question, whether a diet challenge increases the inflammatory response in the alveolar and the blood compartment in response to carbon nanoparticles (CNP, as a surrogate for ambient/urban particulate air pollutants. Methods Mice were fed a high caloric carbohydrate-rich (CA or a fat-rich (HF diet for six weeks and were compared to mice kept on a purified low fat (LF diet, respectively. Bronchoalveolar lavage (BAL and blood samples were taken 24 h after intratracheal CNP instillation and checked for cellular and molecular markers of inflammation. Results and discussion The high caloric diets resulted in distinct effects when compared with LF mice, respectively: CA resulted in increased body and fat mass without affecting blood cellular immunity. Conversely, HF activated the blood system, increasing lymphocyte and neutrophil counts, and resulted in slightly increased body fat content. In contrast to higher pro-inflammatory BAL Leptin in CA and HF mice, on a cellular level, both diets did not lead to an increased pro-inflammatory basal status in the alveolar compartment per se, nor did result in differences in the particle-triggered response. However both diets resulted in a disturbance of the alveolar capillary barrier as indicated by enhanced BAL protein and lactate-dehydrogenase concentrations. Systemically, reduced serum Adiponectin in HF mice might be related to the observed white blood cell increase. Conclusion The increase in BAL pro-inflammatory factors in high caloric

  12. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    Science.gov (United States)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  13. A Small-Satellite Demonstrator for Generating Artificial Gravity in Space via a Tethered System

    OpenAIRE

    Mazzoleni, Andre; Hoffman, John

    2002-01-01

    It is well-known that prolonged exposure in humans to a microgravity environment leads to significant loss of bone and muscle mass; this presents a formidable obstacle to human exploration of space, particularly for missions requiring travel times of several months or more, such as a 6 to 9mon th trip to Mars. Artificial gravity may be produced by spinning a spacecraft about its center of mass, but since the g– force generated by rotation is equal to “omega-squared times r” (where omega is it...

  14. Solitons in Newtonian gravity

    International Nuclear Information System (INIS)

    Goetz, G.

    1988-01-01

    It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)

  15. A class of flux observers for doubly-fed induction generators used in small power wind generation systems

    DEFF Research Database (Denmark)

    Lascu, C.; Boldea, I.; Blaabjerg, Frede

    2013-01-01

    This paper investigates a family of stator and rotor flux observers for sensorless operation of doubly-fed induction generators (DFIG). Four stator flux observer topologies are described and compared. All proposed schemes use the voltage and current models connected in parallel or in series...

  16. Integration of micro-gravity and geodetic data to constrain shallow system mass changes at Krafla Volcano, N Iceland

    Science.gov (United States)

    de Zeeuw-van Dalfsen, Elske; Rymer, Hazel; Williams-Jones, Glyn; Sturkell, Erik; Sigmundsson, Freysteinn

    2006-04-01

    New and previously published micro-gravity data are combined with InSAR data, precise levelling and GPS measurements to produce a model for the processes operating at Krafla volcano, 20 years after its most recent eruption. The data have been divided into two periods: from 1990 to 1995 and from 1996 to 2003 and show that the rate of deflation at Krafla is decaying exponentially. The net micro-gravity change at the centre of the caldera is shown, using the measured free air gradient, to be -85 μGal for the first and -100 μGal for the second period. After consideration of the effects of water extraction by the geothermal power station within the caldera, the net gravity decreases are -73±17 μGal for the first and -65±17 μGal for the second period. These decreases are interpreted in terms of magma drainage. Following a Mogi point source model, we calculate the mass decrease to be ˜2×1010 kg/year reflecting a drainage rate of ˜0.23 m3/s, similar to the ˜0.13 m3/s drainage rate previously found at Askja volcano, N. Iceland. Based on the evidence for deeper magma reservoirs and the similarity between the two volcanic systems, we suggest a pressure-link between Askja and Krafla at deeper levels (at the lower crust or the crust-mantle boundary). After the Krafla fires, co-rifting pressure decrease of a deep source at Krafla stimulated the subsequent inflow of magma, eventually affecting conditions along the plate boundary in N. Iceland, as far away as Askja. We anticipate that the pressure of the deeper reservoir at Krafla will reach a critical value and eventually magma will rise from there to the shallow magma chamber, possibly initiating a new rifting episode. We have demonstrated that by examining micro-gravity and geodetic data, our knowledge of active volcanic systems can be significantly improved.

  17. Control of frequency converters for wind power systems with doubly fed asynchronous generators; Regelung von Frequenzumrichtern fuer Windenergieanlagen mit doppelt gespeistem Asynchrongenerator

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Stephan [Woodward SEG GmbH und Co. KG, Kempen (Germany)

    2007-07-01

    Modern wind energy systems are characterized by an extensive use of power electronics. Using complex converter systems is technically and commercially very attractive as it allows an optimized operation of the wind turbine in regard to efficiency, reduced stress to the drive train due to variable speed and feeding wind power with high quality into the grid. For some years wind energy systems with frequency converter and doubly fed asynchronous generator have the biggest market share. The main requirements from grid codes regarding fault ride through operation will be summarized and enhanced control algorithms for this special type of system will be presented. (orig.)

  18. Wuhan University Deep-space Orbit Determination and Gravity Recovery System(WUDOGS and Its Application Analysis

    Directory of Open Access Journals (Sweden)

    YE Mao

    2017-03-01

    Full Text Available WUDOGS(Wuhan University deep-space orbit determination and gravity recovery system is a software system designed for deep spacecraft precise orbit determination and planetary gravity recovery, developed independently at Wuhan University. WUDOGS now has the function for Lunar and Mars spacecraft precision orbit determination. Its design pattern and main function are briefly introduced. The cross verification test(CVT between WUDOGS and state of the art planetary precise orbit determination software GEODYN-Ⅱ are elaborated. The results show that:①for orbit propagation, with all the same forces and other configuration, the predicted orbit difference in R,T,N directions are less than 0.3 mm for one month arc, 5×10-3 mm for 2 days arc, compared with GEODYN-Ⅱ;②the difference RMS of computed values of observables for two-way range and two-way range rate is at levels of 0.06 mm and 0.002 mm/s respectively;③for Chinese Chang'E-1 POD, the reconstructed orbit difference between WUDOGS and GEODYN-Ⅱ is at 2 cm level, for ESA MEX POD, the reconstructed orbit difference between WUDOGS and ESA is at 25 m level. Current developing situation of WUDOGS and comparison with international research level show that WUDOGS has a good application prospect, which will be important for meeting the demand of Chinese future planetary exploration and the development of deep space spacecraft POD software.

  19. Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2009-11-01

    Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θc versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θc~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.

  20. Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2009-11-01

    Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θc versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θc~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.

  1. Petrophilic, Fe(III Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2018-03-01

    Full Text Available Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h. Current generation and biodegradation capabilities of strain KVM11 were examined using an

  2. Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems

    Science.gov (United States)

    Venkidusamy, Krishnaveni; Hari, Ananda Rao; Megharaj, Mallavarapu

    2018-01-01

    Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III) reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III) supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density) of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h). Current generation and biodegradation capabilities of strain KVM11 were examined using an initial

  3. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    International Nuclear Information System (INIS)

    Sugimoto, Norihiko

    2015-01-01

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves

  4. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Department of Physics, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)

    2015-12-15

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.

  5. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  6. Gravity and Magnetic Anomaly Interpretations and 2.5D Cross-Section Models over the Border Ranges Fault System and Aleutian Subduction Zone, Alaska

    Science.gov (United States)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G.; Jones, S.; Eslick, B. E.; Budhathoki, P.

    2011-12-01

    Quaternary glacial covers and lack of dense geophysical data on the Kenai Peninsula cause a location and geometry of the Border Ranges fault system (BRFS) within a recent forearc-accretionary boundary of Aleutian subduction zone in southern Alaska are unclear. Using new ~1,300 gravity collections within the Anchorage and Kenai Peninsula regions complied with prior 1997 gravity and aeromagnetic data help us better imaging these fault and the subduction structures. Cook Inlet forearc basin is corresponded by deep gravity anomaly lows; basin boundaries are characterized by a strong gravity gradient, where are considered to be traces of Border Ranges fault system on the east and Castle Mountain and Bruin Bay fault system on the west and northwest of the forearc basin respectively. Gravity anomaly highs over accreted rocks generally increase southeastward to the Aleutian trench, but show a gravity depression over the Kenai Mountains region. The lineament between gravity high and low in the same terrenes over the Kenai Peninsula is may be another evidence to determine the Southern Edge of the Yakutat Microplate (SEY) as inferred by Eberhart-Phillips et al. (2006). Our 2.5-D models illustrate the main fault of the BRFS dips steeply toward the west with a downslip displacement. Gravity and Magnetic anomaly highs, on the east of the BRFS, probably present a slice of the ultramafic complex emplaced by faults along the boundary of the forearc basin and accretionary wedge terranes. Another magnetic high beneath the basin in the southern forearc basin support a serpentiznied body inferred by Saltus et al. (2001), with a decreasing size toward the north. Regional density-gravity models show the Pacific subducting slab beneath the foreacre-arc teranes with a gentle and flatted dip where the subducting plate is located in north of SEY and dips more steeply where it is located on the south of SEY. The gravity depression over the accreted terrene can be explained by a density low

  7. Simulating Gravity

    Science.gov (United States)

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  8. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  9. 3D gravity modeling of the Corrientes province (NE Argentina) and its importance to the Guarani Aquifer System

    Science.gov (United States)

    Mira, Andrés; Gómez Dacal, María Laura; Tocho, Claudia; Vives, Luis

    2013-11-01

    This paper presents a geological model of Corrientes province (Argentina) based on Bouguer gravity anomaly data, obtained in 2073 measurement points. To build the model, the IGMAS + interactive program was used. Two areas of approximately 135,000 km2 were modeled in this study. The selection of these areas was based on the sectors where the largest number of gravity anomaly measurements was made and other type of data was available to perform the parameterization (i.e, lithology profiles in boreholes, seismic profiles and audio-magnetotelluric AMT soundings). The initial geological configuration proposed was composed by four layers: basement, sediments (Paleozoic-Lower Cretaceous), basalts (Serra Geral Group, Lower Cretaceous) and post-basaltic sediments. The result shows a basement compartmentalized in structural blocks separated by large faults. The connection of Asunción and Río Grande Arches is confirmed along a structural high that crosses Corrientes province from SE to NW. The basaltic layer shows lateral changes in its thickness, due to faulting, almost disappearing on the NW of Corrientes. This structural configuration has a special hydrogeological importance because it produces the rise of the Guaraní Aquifer System sedimentary series near the surface and the intense fracture network makes this area prone to local recharge and regional discharge.

  10. Longitudinal zonation of macroinvertebrates in an Ecuadorian glacier-fed stream: do tropical glacial systems fit the temperate model?

    DEFF Research Database (Denmark)

    Jacobsen, D.; Dangles, O.; Andino, P.

    2010-01-01

    P>1. The ecology of glacier-fed streams at temperate latitudes has been intensely studied in recent years, leading to the development of a well-validated conceptual model on the longitudinal distribution of macroinvertebrate communities downstream of the glacier margin (Freshwater Biology, 2001a...... of the equator in the Ecuadorian Andes. Our goal was to study the longitudinal distribution of the fauna in relation to environmental factors and to compare this with the conceptual model based on temperate-arctic glacier-fed streams. 3. Total density of invertebrates differed considerably at the two highest...... was numerous at the highest sites but became much less important further downstream. The Orthocladiinae were important both in numbers and species at all sites, while Diamesinae were numerous only in the middle of the reach studied and were completely absent from the upper three sites. The limited importance...

  11. Sizing of the thermal and electrical systems for an FED bundle divertor design with MgO insulation

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1981-01-01

    The high-order dependence of toroidal ripple from a bundle divertor on the magnet shield thickness increases the desirability of a magnet technology with minimal shielding requirements. A jacketed conductor with MgO powder insulation has been used successfully in highly irradiated environments. Its properties and limitations are described. A thermal and electrical sizing code has been developed for magnet design with this technology. Two design examples for ETF and FED missions show reduced recirculating power from previously reported designs

  12. Is Gravity an Entropic Force?

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2011-04-01

    Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

  13. Effect of FYM, potassium and zinc on phenology and grain yield of wheat in rain fed cropping systems

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah; Arif, M.; Shah, P.; Khan, M.A.; Khan, K.

    2011-01-01

    Little work has been done on potassium (K) and zinc (Zn) in combination with farm yard manure (FYM) under rain fed conditions of NWFP. This study was designed to examine the effects of un-irrigated cropping patterns and organic and in-organic fertilizers on wheat crop. Field experiments were conducted to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on phenology and grain yield of wheat under rain fed (barani or un-irrigated) conditions at Agricultural Research Station, Serai Naurang Bannu for two years during 2001-02 and 2002-03. The experiment was designed in RCB design with split arrangements. Two factors were studied in the experiment. Effects of five cropping patterns i.e., fallow-wheat, groundnut-wheat, mungbean-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers on subsequent wheat crop were observed. Data revealed that both the cropping patterns and manures/fertilizers had non-significant effect on days to anthesis, seed fill duration and days to maturity of wheat. Highest grain yield (3194 kg ha/sup -1/ wheat following mungbean produced more yield and wheat following groundnut produced less yield under dry land conditions. The present findings revealed that pigeon pea-wheat cropping pattern seems to be more sustainable in terms of yield under rain fed conditions and use of FYM, K and Zn should be included in integrated crop management approaches for sustainable crop production. (Author)

  14. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field

    Science.gov (United States)

    Anderson, David; Yunes, Nicolás

    2017-09-01

    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  15. Quantum gravity

    International Nuclear Information System (INIS)

    Isham, C.

    1989-01-01

    Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)

  16. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  17. A mathematical model to optimize the drain phase in gravity-based peritoneal dialysis systems.

    Science.gov (United States)

    Akonur, Alp; Lo, Ying-Cheng; Cizman, Borut

    2010-01-01

    Use of patient-specific drain-phase parameters has previously been suggested to improve peritoneal dialysis (PD) adequacy. Improving management of the drain period may also help to minimize intraperitoneal volume (IPV). A typical gravity-based drain profile consists of a relatively constant initial fast-flow period, followed by a transition period and a decaying slow-flow period. That profile was modeled using the equation VD(t) = (V(D0) - Q(MAX) x t) xphi + (V(D0) x e(-alphat)) x (1 - phi), where V(D)(t) is the time-dependent dialysate volume; V(D0), the dialysate volume at the start of the drain; Q(MAX), the maximum drain flow rate; alpha, the exponential drain constant; and phi, the unit step function with respect to the flow transition. We simulated the effects of the assumed patient-specific maximum drain flow (Q(MAX)) and transition volume (psi), and the peritoneal volume percentage when transition occurs,for fixed device-specific drain parameters. Average patient transport parameters were assumed during 5-exchange therapy with 10 L of PD solution. Changes in therapy performance strongly depended on the drain parameters. Comparing 400 mL/85% with 200 mL/65% (Q(MAX/psi), drain time (7.5 min vs. 13.5 min) and IPV (2769 mL vs. 2355 mL) increased when the initial drain flow was low and the transition quick. Ultrafiltration and solute clearances remained relatively similar. Such differences were augmented up to a drain time of 22 minutes and an IPV of more than 3 L when Q(MAX) was 100 mL/min. The ability to model individual drain conditions together with water and solute transport may help to prevent patient discomfort with gravity-based PD. However, it is essential to note that practical difficulties such as displaced catheters and obstructed flow paths cause variability in drain characteristics even for the same patient, limiting the clinical applicability of this model.

  18. Pressure-Fed LOX/LCH4 Reaction Control System for Spacecraft: Transient Modeling and Thermal Vacuum Hotfire Test Results

    Science.gov (United States)

    Atwell, Matthew J.; Hurlbert, Eric A.; Melcher, J. C.; Morehead, Robert L.

    2017-01-01

    An integrated cryogenic liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA), a pressure-fed LOX/LCH4 propulsion system composed of a single 2,800 lbf main engine, two 28 lbf RCS engines, and two 7 lbf RCS engines. Propellants are stored in four 48 inch diameter 5083 aluminum tanks that feed both the main engine and RCS engines in parallel. Helium stored cryogenically in a composite overwrapped pressure vessel (COPV) flows through a heat exchanger on the main engine before being used to pressurize the propellant tanks to a design operating pressure of 325 psi. The ICPTA is capable of simultaneous main engine and RCS operation. The RCS engines utilize a coil-on-plug (COP) ignition system designed for operation in a vacuum environment, eliminating corona discharge issues associated with a high voltage lead. There are two RCS pods on the ICPTA, with two engines on each pod. One of these two engines is a heritage flight engine from Project Morpheus. Its sea level nozzle was removed and replaced by an 85:1 nozzle machined using Inconel 718, resulting in a maximum thrust of 28 lbf under altitude conditions. The other engine is a scaled down version of the 28 lbf engine, designed to match the core and overall mixture ratios as well as other injector characteristics. This engine can produce a maximum thrust of 7 lbf with an 85:1 nozzle that was additively manufactured using Inconel 718. Both engines are film-cooled and capable of limited duration gas-gas and gas-liquid operation, as well as steady-state liquid-liquid operation. Each pod contains one of each version, such that two engines of the same thrust level can be fired as a couple on opposite pods. The RCS feed system is composed of symmetrical 3/8 inch lines

  19. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  20. Consumer acceptance of eggs from Hy-Line Brown layers fed soybean or soybean-free diets using cage or free-range rearing systems.

    Science.gov (United States)

    Al-Ajeeli, M N; Miller, R K; Leyva, H; Hashim, M M; Abdaljaleel, R A; Jameel, Y; Bailey, C A

    2018-05-01

    Consumers have begun to awaken to the food on their plates with respect to human health and the environment, as well as animal welfare. They have become more demanding about what they buy or prefer in their food, such as soy-free, gluten-free, or organic products. The objective of this study was to evaluate consumer acceptance of eggs from hens fed soybean meal or soybean-free diets utilizing cottonseed meal and distillers' dried grains, using cage or free-range rearing systems. All eggs were stored at the sensory lab at Texas A&M University (TAMU) for a d prior to each test at 4°C. A panel of consumers (n = 60) made up of TAMU students, faculty, and staff, ages 18 to 50, were recruited to evaluate consumer acceptance based on 2 tests using scrambled and hard cooked eggs. Samples were placed in separate weigh boats labeled with 3-digit codes to avoid visual bias. Sensory ballots were based on overall like or dislike of flavor, texture, odor, and color using the 9-point hedonic scales. For scrambled eggs, flavor did not differ (P > 0.05), but texture liking was higher (P = 0.064) for scrambled eggs from the soybean-free diet (7.08) vs. scrambled eggs from the soybean meal diet (6.65). With respect to the hard cooked eggs, the consumer panel preferred the flavor of the eggs from the caged rearing system (7.11) vs. eggs from the free-range system (6.60; P = 0.014). Consumers liked the texture (P = 0.018) for eggs collected from hens fed soybean meal (6.91) vs. eggs from hens fed the soybean-free diet (6.30).

  1. Improvement of small-signal stability of power system by controlling doubly fed induction generators of a large-capacity wind farm

    Directory of Open Access Journals (Sweden)

    Tomohiro Adachi

    2016-01-01

    Full Text Available Many wind turbine generations have been installed into power systems around the world, where in recent years doubly fed induction generator (DFIG attracts a lot of attentions because of its efficiency and controllability. However, the DFIG is connected to the power system through inverters and originally does not have an ability to release the kinetic energy of the rotor or resorb the surplus power of the power system as the kinetic energy. Therefore, it has not been made clear how the DFIGs have an influence on small-signal stability in power systems. In this paper, we propose a control scheme of the DFIG and analyse its effect on the small-signal stability of the power system by eigenvalue calculations and time-domain simulations.

  2. A multivariate mixed model system for wood specific gravity and moisture content of planted loblolly pine stands in the southern United States

    Science.gov (United States)

    Finto Antony; Laurence R. Schimleck; Alex Clark; Richard F. Daniels

    2012-01-01

    Specific gravity (SG) and moisture content (MC) both have a strong influence on the quantity and quality of wood fiber. We proposed a multivariate mixed model system to model the two properties simultaneously. Disk SG and MC at different height levels were measured from 3 trees in 135 stands across the natural range of loblolly pine and the stand level values were used...

  3. Effect of operation parameters on the flux stabilization of gravity-driven membrane (GDM) filtration system for decentralized water supply.

    Science.gov (United States)

    Tang, Xiaobin; Ding, An; Qu, Fangshu; Jia, Ruibao; Chang, Haiqing; Cheng, Xiaoxiang; Liu, Bin; Li, Guibai; Liang, Heng

    2016-08-01

    A pilot-scale gravity-driven membrane (GDM) filtration system under low gravitational pressure without any pre-treatment, backwash, flushing, or chemical cleaning was carried out to investigate the effect of operation parameters (including operation pressure, aeration mode, and intermittent filtration) on the effluent quality and permeability development. The results revealed that GDM system exhibited an efficient performance for the removal of suspended substances and organic compounds. The stabilization of flux occurred and the average values of stable flux were 6.6, 8.1, and 8.6 Lm(-2) h(-1) for pressures of 65, 120, and 200 mbar, respectively. In contrast, flux stabilization was not observed under continuous and intermittent aeration conditions. However, aeration (especially continuous aeration) was effective to improve flux and alleviate membrane fouling during 1-month operation. Moreover, intermittent filtration would influence the stabilization of permeate flux, resulting in a higher stable flux (ranging from 6 to 13 Lm(-2) h(-1)). The stable flux significantly improved with the increase of intermittent period. Additionally, GDM systems exhibited an efficient recovery of flux after simple physical cleaning and the analyses of resistance reversibility demonstrated that most of the total resistance was hydraulic reversible resistance (50-75 %). Therefore, it is expected that the results of this study can develop strategies to increase membrane permeability and reduce energy consumption in GDM systems for decentralized water supply.

  4. Noncommutative gravity

    International Nuclear Information System (INIS)

    Schupp, P.

    2007-01-01

    Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)

  5. Ethanol production from Sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems

    DEFF Research Database (Denmark)

    Mehmood, Sajid; Gulfraz, M.; Rana, N. F.

    2009-01-01

    The objective of this work was to find the best combination of different experimental conditions during pre-treatment, enzymatic saccharification, detoxification of inhibitors and fermentation of Sorghum bicolor straw for ethanol production. The optimization of pre-treatment using different...... were used in order to increase the monomeric sugar during enzymatic hydrolysis and it has been observed that the addition of these surfactants contributed significantly in cellulosic conversion but no effect was shown on hemicellulosic hydrolysis. Fermentability of hydrolyzate was tested using...... Saccharomyces cerevisiae Ethanol Red (TM) and it was observed that simultaneous saccharification and fermentation ( SSF) with both batch and fed batch resulted in better ethanol yield as compared to separate hydrolysis and fermentation ( SHF). Detoxification of furan during SHF facilitated reduction...

  6. TRACG prediction of gravity-driven cooling system response in the SBWR/GIST facility LOCA tests

    International Nuclear Information System (INIS)

    Alamgir, M.; Andersen, J.G.M.; Yang, A.I.; Shiralkar, B.S.

    1990-01-01

    General Electric (BE) Nuclear Energy has initiated work on technology programs in support of the advanced light water reactor (ALWR) plants under contract to the U.S. Department of Energy (DOE). Work has been performed under the advanced boiling water reactor (ABWT) design verification program and the simplified boiling water reactor (SBWR) program. The objective of the SBWR program is to develop the key features of a simplified reactor design. The gravity-driven cooling system (GDCS) is an important feature of the SBWR design. The main objectives of the GDCS test program at GE were to demonstrate the technical feasibility of the GDCS concept by performing a section-scaled integrated systems test of the SBWR design and to provide a data base to qualify the TRACG computer code for use in SBWR accident analysis. This paper describes the qualification of TRACG for GDCS applications. The calculational capability and analytical models of TRACG are tested by performing assessment analysis for five loss-of-coolant-accident (LOCA) tests in the GDCS Integrated Systems Test (GIST) facility. The results of the qualification comparisons are presented and TRACG application ranges are discussed

  7. And what if gravity is intrinsically quantic?

    International Nuclear Information System (INIS)

    Ziaeepour, Houri

    2009-01-01

    Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, string theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and the former is a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum mechanics (QM) and gravity. Without gravity, QM becomes ambiguous. We consider this observation as the evidence for an intrinsic relation between these fundamental laws of nature. We suggest a quantum role and definition for gravity in the context of a quantum Universe, and present a preliminary formulation for gravity in a system with a finite number of particles.

  8. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  9. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  10. Concept Design of a Gravity Core Cooling Tank as a Passive Residual Heat Removal System for a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Kwonyeong; Chi, Daeyoung; Kim, Seong Hoon; Seo, Kyoungwoo; Yoon, Juhyeon

    2014-01-01

    A core downward flow is considered to use a plate type fuel because it is benefit to install the fuel in the core. If a flow inversion from a downward to upward flow in the core by a natural circulation is introduced within a high heat flux region of residual heat, the fuel fails instantly due to zero flow. Therefore, the core downward flow should be sufficiently maintained until the residual heat is in a low heat flux region. In a small power research reactor, inertia generated by a flywheel of the PCP can maintain a downward flow shortly and resolve the problem of a flow inversion. However, a high power research reactor more than 10 MW should have an additional method to have a longer downward flow until a low heat flux. Usually, other research reactors have selected an active residual heat removal system as a safety class. But, an active safety system is difficult to design and expensive to construct. A Gravity Core Cooling Tank (GCCT) beside the reactor pool with a Residual Heat Removal Pipe connecting two pools was developed and designed preliminarily as a passive residual heat removal system for an open-pool type research reactor. It is very simple to design and cheap to construct. Additionally, a non-safety, but active residual heat removal system is applied with the GCCT. It is a Pool Water Cooling and Purification System. It can improve the usability of the research reactor by removing the thermal waves, and purify the reactor pool, the Primary Cooling System, and the GCCT. Moreover, it can reduce the pool top radiation level

  11. Comparison of three different fat graft preparation methods: gravity separation, centrifugation, and simultaneous washing with filtration in a closed system.

    Science.gov (United States)

    Zhu, Min; Cohen, Steven R; Hicok, Kevin C; Shanahan, Rob K; Strem, Brian M; Yu, Johnson C; Arm, Douglas M; Fraser, John K

    2013-04-01

    Successful long-term volume retention of an autologous fat graft is problematic. The presence of contaminating cells, tumescent fluid, and free lipid in the graft contributes to disparate outcomes. Better preparation methods for the fat graft before transplantation may significantly improve results. Subcutaneous fat from 22 donors was divided and processed using various graft preparation methods: (1) no manipulation control, (2) gravity separation, (3) Coleman centrifugation, and (4) simultaneous washing with filtration using a commercially available system (Puregraft; Cytori Therapeutics, Inc., San Diego, Calif.). Fat grafts from various preparation methods were examined for free lipid, aqueous liquid, viable tissue, and blood cell content. Adipose tissue viability was determined by measuring glycerol release after agonist induction of lipolysis. All test graft preparation methods exhibited significantly less aqueous fluid and blood cell content compared with the control. Grafts prepared by washing with filtration exhibited significantly reduced blood cell and free lipid content, with significantly greater adipose tissue viability than other methods. Washing with filtration within a closed system produces a fat graft with higher tissue viability and lower presence of contaminants compared with grafts prepared by alternate methods.

  12. Force characteristic analysis of a magnetic gravity compensator with annular magnet array for magnetic levitation positioning system

    Science.gov (United States)

    Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao

    2018-05-01

    Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.

  13. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2014-01-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  14. Feed intake, gastrointestinal system and body composition in reindeer calves fed early harvested first cut timothy silage (Phleum pratense

    Directory of Open Access Journals (Sweden)

    Harri J. Norberg

    1998-02-01

    Full Text Available Early harvested first cut (EFC timothy silage was fed to five reindeer calves (Rangifer tarandus tarandus L. taken from their natural summer pasture and brought to Tromsø for feeding trial. The calves were housed indoors in metabolism cages and fed EFC timothy silage ad lib. during the trial, which lasted from late November 1994 until the end of February 1995, when animals subsequently were slaughtered. Daily feed intake, gastrointestinal (GI anatomy, body weight and body composition of the animals were examined. Timothy silage {Phleum praténse was harvested 21 June, 1994 in Tromsø, prewilted and stored as round bales containing 97% leaves. The EFC silage contained 42.1% dry matter (DM, and 18.1% crude protein, 20.7% cellulose, 16.9% hemicellulose and 28.0% water soluble carbohydrates (WSC of DM. Mean feed intake (DM 24 hours after the trial started (day 1 was 9-4 g/kg body mass (BM (S.D.+ 3-9, while the mean daily DM intake during days 15-74 comprised 24.2 g/kg BM (S.D.+ 6.1. All animals except one gained body weight during the trial. The median (range BM at start and at slaughter was 48.5 kg (34.5¬58.0 kg and 50.0 kg (42.0-53.5 kg, respectively. Median (range carcass weight % of BM was 58.0% (51.2-58.7% and muscle index value 0.0132 (0.0106-0.0176. The median reticulo-rumen (RR content wet weight (WW was 4601 g (range 2697-5000 g comprising 9.3% of the BM, and 85.1% of the total gastrointestinal wet weight content. The median (range gastrointestinal tract weight was 14.1% of BM (10.7-16.4%. Based on feed intake during the trial and body composition at slaughtet we conclude that first cut timothy silage is suitable as emergency feed to reindeer, as long as it is harvested in early growth stage with high proportion of leaves.

  15. Zero-gravity movement studies

    Science.gov (United States)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  16. A Microstrip Patch-Fed Short Backfire Antenna for the Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) Array

    Science.gov (United States)

    Nessel, James A.; Kory, Carol L.; Lambert, Kevin M.; Acosta, Roberto J.

    2006-01-01

    Short Backfire Antennas (SBAs) are widely utilized for mobile satellite communications, tracking, telemetry, and wireless local area network (WLAN) applications due to their compact structure and excellent radiation characteristics [1-3]. Typically, these SBA s consist of an excitation element (i.e., a half-wavelength dipole), a reflective bottom plane, a planar sub-reflector located above the "exciter", and an outer circular rim. This configuration is capable of achieving gains on the order of 13-15 dBi, but with relatively narrow bandwidths (approx.3%-5%), making it incompatible with the requirements of the next generation enhanced Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) array [1]. Several attempts have been made to enhance the bandwidth performance of the common dipole-fed SBA by employing various other feeding mechanisms (e.g., waveguide, slot) with moderate success [4-5]. In this paper, a novel method of using a microstrip patch is employed for the first time to excite an SBA. The patch element is fed via two H-shaped slots electromagnetically coupled to a broadband hybrid coupler to maintain a wide bandwidth, as well as provide for dual circular polarization capabilities.

  17. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  18. Development of a laboratory prototype water quality monitoring system suitable for use in zero gravity

    Science.gov (United States)

    Misselhorn, J. E.; Witz, S.; Hartung, W. H.

    1973-01-01

    The development of a laboratory prototype water quality monitoring system for use in the evaluation of candidate water recovery systems and for study of techniques for measuring potability parameters is reported. Sensing techniques for monitoring of the most desirable parameters are reviewed in terms of their sensitivities and complexities, and their recommendations for sensing techniques are presented. Rationale for selection of those parameters to be monitored (pH, specific conductivity, Cr(+6), I2, total carbon, and bacteria) in a next generation water monitor is presented along with an estimate of flight system specifications. A master water monitor development schedule is included.

  19. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  20. Biotic diversity of benthic macroinvertebrates at contrasting glacier-fed systems in Patagonia Mountains: The role of environmental heterogeneity facing global warming.

    Science.gov (United States)

    Miserendino, María Laura; Brand, Cecilia; Epele, Luis B; Di Prinzio, Cecilia Y; Omad, Guillermo H; Archangelsky, Miguel; Martínez, Oscar; Kutschker, Adriana M

    2018-05-01

    Patagonia is by far the largest glacierized area in South America. However, little is known about ecology, functioning and biodiversity of glacier-fed streams facing global warming. We investigated changes in environmental features and macroinvertebrate communities along a longitudinal gradient of glacier influence of two Patagonian systems that differ in glacier cover magnitude and the spatial sequence of lotic and lentic phases. Both glaciers, Torrecillas (~5.5km 2 , Torrecillas system) and Cónico (~0.44km 2 , Baggilt system), are retreating. Longitudinal distribution of benthic invertebrates partially fitted to predictions for glacierized temperate systems, with Diamesinae spp. dominating at closest sites to the Cónico, and Orthocladiinae increasing downstream, but patterns were unclear at Torrecillas. Generalized Linear Model identified chlorophyll a and conductivity as having significant effect on richness and density respectively at Torrecillas; detritus biomass and gravel influenced species richness, and boulder percentage and water temperature affected density, at Baggilt. Canonical Correspondence Analyses integrating benthic biota and environmental variables revealed that a higher environmental heterogeneity at Baggilt, related with spatial dimension (unshaded/shaded reaches, wetland reaches), local resources (detritus, bryophytes) and temperature, probably explained the unexpected high richness in benthic assemblages (67 taxa). Environmental conditions imposed by the lake outlet (proglacial) at Torrecillas resulted in a less diverse community (31 taxa). Finally our results suggest that these isolated, small glacier-fed streams typical of the Patagonian landscape appear highly vulnerable to global warming. Endemic elements could disappear at upper segments being replaced by other species common at rhithral environments, which might increase local diversity (alfa diversity) but decrease regional diversity (gamma diversity). From an ecosystem perspective

  1. Dual-Input Soft-Switched DC-DC Converter with Isolated Current-Fed Half-Bridge and Voltage-Fed Full-Bridge for Fuel Cell or Photovoltaic Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    integrate a current-fed boost half-bridge (BHB) and a full-bridge (FB) into one equivalent circuit configuration which has dual-input ability and additionally it can reduce the number of the power devices. With the phase-shift control, it can achieve zero-voltage switching turn-on of active switches...... power rating are built up and tested to demonstrate the effectiveness of the proposed converter topology....

  2. Life History Responses and Feeding Behavior of Microcrustacea in Altered Gravity - Applicability in Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Fischer, Jessica; Schoppmann, Kathrin; Laforsch, Christian

    2017-06-01

    Manned space missions, as for example to the planet Mars, are a current objective in space exploration. During such long-lasting missions, aquatic bioregenerative life support systems (BLSS) could facilitate independence of resupply from Earth by regenerating the atmosphere, purifying water, producing food and processing waste. In such BLSS, microcrustaceans could, according to their natural role in aquatic ecosystems, link oxygen liberating, autotrophic algae and higher trophic levels, such as fish. However, organisms employed in BLSS will be exposed to high acceleration (hyper- g) during launch of spacecrafts as well as to microgravity (μ g) during space travel. It is thus essential that these organisms survive, perform and reproduce under altered gravity conditions. In this study we present the first data in this regard for the microcrustaceas Daphnia magna and Heterocypris incongruens. We found that after hyper- g exposure (centrifugation) approximately one third of the D. magna population died within one week (generally indicating that possible belated effects have to be considered when conducting and interpreting experiments during which hyper- g occurs). However, suchlike and even higher losses could be countervailed by the surviving daphnids' unaltered high reproductive capacity. Furthermore, we can show that foraging and feeding behavior of D. magna (drop tower) and H. incongruens (parabolic flights) are rarely altered in μ g. Our results thus indicate that both species are suitable candidates for BLSS utilized in space.

  3. Holography, Gravity and Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics

    2017-12-20

    Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in the final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum

  4. Gravity insensitive inventory control device for a two-phase flow system

    International Nuclear Information System (INIS)

    Bland, T.J.

    1987-01-01

    A liquid inventory control device is described for a flow system where the liquid changes phase to a vapor and back and a pitot pump separates vapor from liquid and pumps the liquid to a component of the flow system comprising: a liquid storage device for storing liquid under pressure, a tube positioned within the pitot pump and in open communication with the liquid storage device, and the tube having an opening positioned within the pitot pump at a location to establish a desired liquid level in the pitot pump and at which level the pressure at the pitot tube inlet will equal the liquid pressure at the liquid storage device

  5. Fouling in gravity driven Point-of-Use drinking water treatment systems

    NARCIS (Netherlands)

    Chawla, Charu; Zwijnenburg, A.; Kemperman, Antonius J.B.; Nijmeijer, Dorothea C.

    2017-01-01

    This paper describes fouling in simulated Point-of-Use (PoU) systems based on low pressure hollow fiber ultrafiltration membranes. Various operational configurations such as recirculation of feed, discontinuous vs. continuous filtration, and inside/out vs. outside/in were compared to study their

  6. Tensor Galileons and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)

    2017-03-13

    The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.

  7. Uniform discretizations: a quantization procedure for totally constrained systems including gravity

    Energy Technology Data Exchange (ETDEWEB)

    Campiglia, Miguel [Instituto de Fisica, Facultad de Ciencias, Igua 4225, esq. Mataojo, Montevideo (Uruguay); Di Bartolo, Cayetano [Departamento de Fisica, Universidad Simon BolIvar, Aptdo. 89000, Caracas 1080-A (Venezuela); Gambini, Rodolfo [Instituto de Fisica, Facultad de Ciencias, Igua 4225, esq. Mataojo, Montevideo (Uruguay); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2007-05-15

    We present a new method for the quantization of totally constrained systems including general relativity. The method consists in constructing discretized theories that have a well defined and controlled continuum limit. The discrete theories are constraint-free and can be readily quantized. This provides a framework where one can introduce a relational notion of time and that nevertheless approximates in a well defined fashion the theory of interest. The method is equivalent to the group averaging procedure for many systems where the latter makes sense and provides a generalization otherwise. In the continuum limit it can be shown to contain, under certain assumptions, the 'master constraint' of the 'Phoenix project'. It also provides a correspondence principle with the classical theory that does not require to consider the semiclassical limit.

  8. Cosmological evolution and Solar System consistency of massive scalar-tensor gravity

    Science.gov (United States)

    de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás

    2017-09-01

    The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.

  9. Hardware Design for a Fixed-Wing Airborne Gravity Measurement System

    Science.gov (United States)

    1986-12-22

    worldwide navigation system currently available that is sufficiently accurate for deter- mining Eotvos correction in airborne gravimetry is the Global...better in defining the strength of precipitation . The radar display is compact enough to be mounted on the cockpit, thus giving the pilots better...of the proposed AGMS version 3 MISCELLANEOUS AIRCRAFT CONSIDERATIONS Autopilot One of the most important considerations in airborne gravimetry is

  10. Optical Mass Gauging System for Measuring Liquid Levels in a Reduced Gravity Environment

    Science.gov (United States)

    Sullenberger, Ryan M.; Munoz, Wesley M.; Lyon, Matt P.; Vogel, Kenny; Yalin, Azer P.; Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    A compact and rugged fiber-coupled liquid volume sensor designed for flight on a sounding rocket platform is presented. The sensor consists of a Mach-Zehnder interferometer capable of measuring the amount of liquid contained in a tank under any gravitational conditions, including a microgravity environment, by detecting small changes in the index of refraction of the gas contained within a sensing region. By monitoring changes in the interference fringe pattern as the system undergoes a small compression provided by a piston, the ullage volume of a tank can be directly measured allowing for a determination of the liquid volume. To demonstrate the technique, data are acquired using two tanks containing different volumes of liquid, which are representative of the levels of liquid in a tank at different time periods during a mission. The two tanks are independently exposed to the measurement apparatus, allowing for a determination of the liquid level in each. In a controlled, laboratory test of the unit, the system demonstrated a capability of measuring a liquid level in an individual tank of 10.53 mL with a 2% error. The overall random uncertainty for the flight system is higher than that one test, at +/- 1.5 mL.

  11. Optimal Design of Gravity Pipeline Systems Using Genetic Algorithm and Mathematical Optimization

    Directory of Open Access Journals (Sweden)

    maryam rohani

    2015-03-01

    Full Text Available In recent years, the optimal design of pipeline systems has become increasingly important in the water industry. In this study, the two methods of genetic algorithm and mathematical optimization were employed for the optimal design of pipeline systems with the objective of avoiding the water hammer effect caused by valve closure. The problem of optimal design of a pipeline system is a constrained one which should be converted to an unconstrained optimization problem using an external penalty function approach in the mathematical programming method. The quality of the optimal solution greatly depends on the value of the penalty factor that is calculated by the iterative method during the optimization procedure such that the computational effort is simultaneously minimized. The results obtained were used to compare the GA and mathematical optimization methods employed to determine their efficiency and capabilities for the problem under consideration. It was found that the mathematical optimization method exhibited a slightly better performance compared to the GA method.

  12. Quantum gravity and quantum cosmology

    CERN Document Server

    Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos

    2013-01-01

    Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe.   While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.   ...

  13. Topological gravity with minimal matter

    International Nuclear Information System (INIS)

    Li Keke

    1991-01-01

    Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)

  14. A method for separating Antarctic postglacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment, and GPS satellite data

    OpenAIRE

    Velicogna, Isabella; Wahr, John

    2002-01-01

    Measurements of ice elevation from the Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud, and Land Elevation Satellite can be combined with time-variable geoid measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to learn about ongoing changes in polar ice mass and viscoelastic rebound of the lithosphere under the ice sheet. We estimate the accuracy in recovering the spatially varying ice mass trend and postglacial rebound signals for Antarctica...

  15. On High-Frequency Topography-Implied Gravity Signals for a Height System Unification Using GOCE-Based Global Geopotential Models

    Science.gov (United States)

    Grombein, Thomas; Seitz, Kurt; Heck, Bernhard

    2017-03-01

    National height reference systems have conventionally been linked to the local mean sea level, observed at individual tide gauges. Due to variations in the sea surface topography, the reference levels of these systems are inconsistent, causing height datum offsets of up to ±1-2 m. For the unification of height systems, a satellite-based method is presented that utilizes global geopotential models (GGMs) derived from ESA's satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context, height datum offsets are estimated within a least squares adjustment by comparing the GGM information with measured GNSS/leveling data. While the GNSS/leveling data comprises the full spectral information, GOCE GGMs are restricted to long wavelengths according to the maximum degree of their spherical harmonic representation. To provide accurate height datum offsets, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. Therefore, a combination of the GOCE information with the high-resolution Earth Gravitational Model 2008 (EGM2008) is performed. The main contribution of this paper is to analyze the benefit, when high-frequency topography-implied gravity signals are additionally used to reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new method is proposed that does not rely on an assumed spectral consistency of topographic heights and implied gravity as is the case for the residual terrain modeling (RTM) technique. In the first step of this new approach, gravity forward modeling based on tesseroid mass bodies is performed according to the Rock-Water-Ice (RWI) approach. In a second step, the resulting full spectral RWI-based topographic potential values are reduced by the effect of the topographic gravity field model RWI_TOPO_2015, thus, removing the long to medium wavelengths. By using the latest GOCE GGMs, the impact of topography

  16. Theoretical analysis of a biogas-fed PEMFC system with different hydrogen purifications: Conventional and membrane-based water gas shift processes

    International Nuclear Information System (INIS)

    Authayanun, Suthida; Aunsup, Pounyaporn; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2014-01-01

    Highlights: • Thermodynamic analysis of the biogas-fed PEMFC system is performed. • Conventional and membrane-based WGS processes for H 2 purification are studied. • A flowsheet model of the PEMFC system is developed. • Effect of key parameters on yields of H 2 and carbon in the biogas reformer is shown. • Performance of PEMFC systems with different H 2 purification processes is analyzed. - Abstract: This study presents a thermodynamic analysis of biogas reforming and proton electrolyte membrane fuel cell (PEMFC) integrated process with different hydrogen purifications: conventional and membrane-based water gas shift processes. The aim is to determine the optimal reforming process for hydrogen production from biogas in the PEMFC system. The formation of carbon is concerned in the hydrogen production. The simulation results show that increases in the steam-to-methane ratio and reformer temperature can improve the hydrogen yield and reduce the carbon formation. From the performance analysis, it is found that when the PEMFC is operated at high temperature and fuel utilization, the overall system efficiency enhances. The performance of the PEMFC system with the installation of a water gas shift membrane unit in the hydrogen purification step is slightly increased, compared with a conventional process

  17. Solar system and equivalence principle constraints on f(R) gravity by the chameleon approach

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; Tsujikawa, Shinji

    2008-01-01

    We study constraints on f(R) dark energy models from solar system experiments combined with experiments on the violation of the equivalence principle. When the mass of an equivalent scalar field degree of freedom is heavy in a region with high density, a spherically symmetric body has a thin shell so that an effective coupling of the fifth force is suppressed through a chameleon mechanism. We place experimental bounds on the cosmologically viable models recently proposed in the literature that have an asymptotic form f(R)=R-λR c [1-(R c /R) 2n ] in the regime R>>R c . From the solar system constraints on the post-Newtonian parameter γ, we derive the bound n>0.5, whereas the constraints from the violations of the weak and strong equivalence principles give the bound n>0.9. This allows a possibility to find the deviation from the Λ-cold dark matter (ΛCDM) cosmological model. For the model f(R)=R-λR c (R/R c ) p with 0 -10 , which shows that this model is hardly distinguishable from the ΛCDM cosmology

  18. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol.

    Science.gov (United States)

    Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2012-09-01

    The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.

  19. An approach to hydrogeological modeling of a large system of groundwater-fed lakes and wetlands in the Nebraska Sand Hills, USA

    Science.gov (United States)

    Rossman, Nathan R.; Zlotnik, Vitaly A.; Rowe, Clinton M.

    2018-05-01

    The feasibility of a hydrogeological modeling approach to simulate several thousand shallow groundwater-fed lakes and wetlands without explicitly considering their connection with groundwater is investigated at the regional scale ( 40,000 km2) through an application in the semi-arid Nebraska Sand Hills (NSH), USA. Hydraulic heads are compared to local land-surface elevations from a digital elevation model (DEM) within a geographic information system to assess locations of lakes and wetlands. The water bodies are inferred where hydraulic heads exceed, or are above a certain depth below, the land surface. Numbers of lakes and/or wetlands are determined via image cluster analysis applied to the same 30-m grid as the DEM after interpolating both simulated and estimated heads. The regional water-table map was used for groundwater model calibration, considering MODIS-based net groundwater recharge data. Resulting values of simulated total baseflow to interior streams are within 1% of observed values. Locations, areas, and numbers of simulated lakes and wetlands are compared with Landsat 2005 survey data and with areas of lakes from a 1979-1980 Landsat survey and the National Hydrography Dataset. This simplified process-based modeling approach avoids the need for field-based morphology or water-budget data from individual lakes or wetlands, or determination of lake-groundwater exchanges, yet it reproduces observed lake-wetland characteristics at regional groundwater management scales. A better understanding of the NSH hydrogeology is attained, and the approach shows promise for use in simulations of groundwater-fed lake and wetland characteristics in other large groundwater systems.

  20. Miniaturised Gravity Sensors for Remote Gravity Surveys.

    Science.gov (United States)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.

    2016-12-01

    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  1. A gravity independent biological grey water treatment system for space applications

    Science.gov (United States)

    Nashashibi, Majda'midhat

    2002-09-01

    Biological treatment of grey water in space presents serious challenges, stemming mainly from microgravity conditions. The major concerns are phase separation and mass transfer limitations. To overcome solid-liquid phase separation, novel immobilized cell packed bed (ICPB) bioreactors have been developed to treat synthetic grey water. Packed bed bioreactors provide a unique environment for attached microbial growth resulting in high biomass concentrations, which greatly enhance process efficiency with substantial reductions in treatment time and reactor volume. To overcome the gas-liquid phase separation and mass transfer limitations, an oxygenation module equipped with tubular membranes has been developed to deliver bubble-less oxygen under pressure. The selected silicone membranes are hydrophobic, non-porous and oxygen selective. Oxygen dissolves in the walls of the membranes and then diffuses into the water without forming bubbles. Elevated pressures maintain all gaseous by-products in solution and provide high dissolved oxygen concentrations within the system. The packing media are lightweight, inexpensive polyethylene terephthalate (PET) flakes that have large specific surface area, act as a filter for solids and yield highly tortuous flow paths thereby increasing the contact time between the biomass and contaminants. Tests on both pressurized and ambient pressure ICPB bioreactors revealed organic carbon removal efficiencies over 90%. Despite the high ammonia level in the influent, nitrification occured in both the ambient pressure and pressurized nitrification bioreactors at efficiencies of 80% and 60%, respectively. Biomass yield was approximately 0.20 g volatile suspended solids per gram of grey water-COD processed in the pressurized bioreactor. The biomass yield of such novel aerobic ICPB systems is comparable to that of anaerobic processes. These efficient systems produce minimal amounts of biomass compared to other aerobic processes, making them less

  2. The Planck Constant, the International System of Units, and the 2012 North American Watt Balance Absolute Gravity Comparison

    Science.gov (United States)

    Newell, D. B.

    2012-12-01

    As outlined in Resolution 1 of the 24th Meeting of the General Conference on Weights and Measures (CGPM) on the future revision of the International System of Units (SI) [1], the current four SI base units the kilogram, the ampere, the kelvin and the mole, will be redefined in terms of invariants of nature. The new definitions will be based on fixed numerical values of the Planck constant (h), the elementary charge (e), the Boltzmann constant (k), and the Avogadro constant (NA), respectively. While significant progress has been made towards providing the necessary experimental results for the redefinition, some disagreement among the relevant data remain. Among the set of discrepant data towards the redefinition of the SI are the determinations of the Planck constant from the National Institute of Standards and Technology (NIST) watt balance [2] and the recent result from the National Research Council Canada (NRC) watt balance [3], with the discrepancy of roughly 2.5 parts in 107 being significantly outside the reported uncertainties. Of major concern is that the watt balance experiment is seen as a key component of a mise en pratique for the new kilogram definition, once such a redefinition takes place. The basic operational principle of a watt balance relates the Planck constant to mass, length, and time through h = mgvC, where m is the mass of an artifact mass standard, g is the local acceleration of gravity, v is a velocity, and C is a combination of frequencies and scalar constants. With the total uncertainty goal for the watt balance on the order of a few parts in 108, g needs to be determined at the location of the mass standard to parts in 109 such that its uncertainty is negligible in the final watt balance result. NIST and NRC have formed a collaborative effort to reconcile the relevant discrepant data and provide further progress towards preparing and testing a mise en pratique for the new kilogram definition. As an initial step, direct comparisons of

  3. The Cause of Gravity

    OpenAIRE

    Byrne, Michael

    1999-01-01

    Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...

  4. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  5. Active Response Gravity Offload and Method

    Science.gov (United States)

    Dungan, Larry K. (Inventor); Valle, Paul S. (Inventor); Bankieris, Derek R. (Inventor); Lieberman, Asher P. (Inventor); Redden, Lee (Inventor); Shy, Cecil (Inventor)

    2015-01-01

    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.

  6. An estimation of the height system bias parameter N (0) using least squares collocation from observed gravity and GPS-levelling data

    DEFF Research Database (Denmark)

    Sadiq, Muhammad; Tscherning, Carl C.; Ahmad, Zulfiqar

    2009-01-01

    This paper deals with the analysis of gravity anomaly and precise levelling in conjunction with GPS-Levelling data for the computation of a gravimetric geoid and an estimate of the height system bias parameter N-o for the vertical datum in Pakistan by means of least squares collocation technique...... covariance parameters has facilitated to achieve gravimetric height anomalies in a global geocentric datum. Residual terrain modeling (RTM) technique has been used in combination with the EGM96 for the reduction and smoothing of the gravity data. A value for the bias parameter N-o has been estimated...... with reference to the local GPS-Levelling datum that appears to be 0.705 m with 0.07 m mean square error. The gravimetric height anomalies were compared with height anomalies obtained from GPS-Levelling stations using least square collocation with and without bias adjustment. The bias adjustment minimizes...

  7. Comparison of the Effect of Horizontal Vibrations on Interfacial Waves in a Two-Layer System of Inviscid Liquids to Effective Gravity Inversion

    Science.gov (United States)

    Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.

    2018-02-01

    We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.

  8. In Vitro Growth of Curcuma longa L. in Response to Five Mineral Elements and Plant Density in Fed-Batch Culture Systems

    Science.gov (United States)

    El-Hawaz, Rabia F.; Bridges, William C.; Adelberg, Jeffrey W.

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments’ macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes. PMID:25830292

  9. In vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems.

    Science.gov (United States)

    El-Hawaz, Rabia F; Bridges, William C; Adelberg, Jeffrey W

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments' macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes.

  10. Radion and holographic brane gravity

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Soda, Jiro

    2002-01-01

    The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function ω(Ψ)=3Ψ/2(1-Ψ) on the positive tension brane and ω(Φ)=-3Φ/2(1+Φ) on the negative tension brane, where Ψ and Φ are nonlinear realizations of the radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Ψ and Φ couples with the sum of the traces of the energy-momentum tensor on both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk geometry can be reconstructed from the solution of quasi-scalar-tensor gravity

  11. Early Effects of Altered Gravity Environments on Plant Cell Growth and Cell Proliferation: Characterization of Morphofunctional Nucleolar Types in an Arabidopsis Cell Culture System

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, Ana I.; Herranz, Raúl; Manzano, Aránzazu [Centro de Investigaciones Biológicas (CSIC), Madrid (Spain); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, Dutch Experiment Support Center, VU University Medical Center, Amsterdam (Netherlands); Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); ESA-ESTEC, TEC-MMG, Noordwijk (Netherlands); Medina, F. Javier, E-mail: fjmedina@cib.csic.es [Centro de Investigaciones Biológicas (CSIC), Madrid (Spain)

    2016-02-05

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR, and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  12. Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives

    NARCIS (Netherlands)

    Salcher, B. C.; Meurers, B.; Smit, J.; Decker, K.; HöLzel, M.; Wagreich, M.

    2012-01-01

    The Vienna Basin at the transition between the Alpine and Carpathian belt hosts a number of large Pleistocene sub-basins forming along an active continental scale strike-slip fault (Vienna Basin strike-slip fault). We utilize first-order derivatives from industrial Bouguer gravity data to unravel

  13. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  14. Using the Multiplicative Schwarz Alternating Algorithm (MSAA) for Solving the Large Linear System of Equations Related to Global Gravity Field Recovery up to Degree and Order 120

    Science.gov (United States)

    Safari, A.; Sharifi, M. A.; Amjadiparvar, B.

    2010-05-01

    The GRACE mission has substantiated the low-low satellite-to-satellite tracking (LL-SST) concept. The LL-SST configuration can be combined with the previously realized high-low SST concept in the CHAMP mission to provide a much higher accuracy. The line of sight (LOS) acceleration difference between the GRACE satellite pair is the mostly used observable for mapping the global gravity field of the Earth in terms of spherical harmonic coefficients. In this paper, mathematical formulae for LOS acceleration difference observations have been derived and the corresponding linear system of equations has been set up for spherical harmonic up to degree and order 120. The total number of unknowns is 14641. Such a linear equation system can be solved with iterative solvers or direct solvers. However, the runtime of direct methods or that of iterative solvers without a suitable preconditioner increases tremendously. This is the reason why we need a more sophisticated method to solve the linear system of problems with a large number of unknowns. Multiplicative variant of the Schwarz alternating algorithm is a domain decomposition method, which allows it to split the normal matrix of the system into several smaller overlaped submatrices. In each iteration step the multiplicative variant of the Schwarz alternating algorithm solves linear systems with the matrices obtained from the splitting successively. It reduces both runtime and memory requirements drastically. In this paper we propose the Multiplicative Schwarz Alternating Algorithm (MSAA) for solving the large linear system of gravity field recovery. The proposed algorithm has been tested on the International Association of Geodesy (IAG)-simulated data of the GRACE mission. The achieved results indicate the validity and efficiency of the proposed algorithm in solving the linear system of equations from accuracy and runtime points of view. Keywords: Gravity field recovery, Multiplicative Schwarz Alternating Algorithm, Low

  15. Cosmological acceleration. Dark energy or modified gravity?

    International Nuclear Information System (INIS)

    Bludman, S.

    2006-05-01

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  16. Cosmological acceleration. Dark energy or modified gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Bludman, S

    2006-05-15

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  17. Tritium transport and control in the FED

    International Nuclear Information System (INIS)

    Rogers, M.L.

    1981-01-01

    The tritium systems for the FED have three primary purposes. The first is to provide tritium and deuterium fuel for the reactor. This fuel can be new tritium or deuterium delivered to the plant site, or recycled DT from the reactor that must be processed before it can be recycled. The second purpose of the FED tritium systems is to provide state-of-the-art tritium handling to limit worker radiation exposure and to minimize tritium losses to the environment. The final major objective of the FED tritium systems is to provide an integrated system test of the tritium handling technology necessary to support the fusion reactor program. Every effort is being made to incorporate available information from the Tritium System Test Assembly (TSTA) at Los Alamos National Laboratory, the Tokamak Fusion Test Reactor (TFTR) tritium systems, and the tritium handling information generated within DOE for the past 20 years

  18. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  19. Optimal Operation of Photovoltaic System with a DC-DC Boost Converter FED SAF Using ICosφ Algorithm

    Directory of Open Access Journals (Sweden)

    G.Vijayakumar

    2014-07-01

    Full Text Available This paper presents an optimal utilization of Photovoltaic (PV solar system based Shunt Active Filter (PV-SAF for harmonic mitigation, real and reactive power compensation at the point of common coupling (PCC throughout the day. This PV system operated SAF reduces the energy consumption by disconnecting the utility grid from the load through semiconductor switches, when the PV system generates excessive or equal real power to the required load demand. However, the reduction of energy consumption is always desirable for the reduction of panel tariff and global warming gasses. The PV module is connected to the DC side of SAF through the DC-DC converter with fuzzy based Perturb & Observe (P&O Maximum Power Point Tracking (MPPT algorithm to eliminate the drawback of the conventional PV system by tracking maximum power point of the PV array is presented. The reference currents extract by the Fuzzy logic controller based ICosΦ control strategy. This proposed PV-SAF, if connected at the terminals of a small industry or a home or a small enlightening institution can avoid interruptible power supply, use of individual stabilizer and potential panel tariff over a 12 hour period. A MATLAB simulink is presented to validate the advantage of the proposed system.

  20. Production characteristics and body composition of juvenile cobia fed three different commercial diets in recirculating aquaculture systems

    Science.gov (United States)

    The effect of feeding three commercial diets on production characteristics and body composition of juvenile cobia Rachycentron canadum reared using recirculating aquaculture systems (RAS) was evaluated in a 56 d growth trial. Juvenile cobia (29.2 +/= 0.7 g, mean weight +/= SE) were stocked into thr...

  1. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  2. The gravity apple tree

    International Nuclear Information System (INIS)

    Aldama, Mariana Espinosa

    2015-01-01

    The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion. (paper)

  3. Flow Boiling Critical Heat Flux in Reduced Gravity

    Science.gov (United States)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  4. Influence of genetic diversity on cause and effect relationships in lens culinaris germplasm under rain-fed eco-agricultural system

    International Nuclear Information System (INIS)

    Ilyas, M.; Arshad, M.; Ghafoor, A.

    2014-01-01

    Due to emerging demands of organic foods, lentil, one of the most primitive legumes was investigated for genetic diversity including cause and effect relationships among various clusters under eco-agricultural system. The 73 lentil genotypes were investigated for qualitative and quantitative traits to identify the potential lines under rain-fed conditions for organic farming using no chemical fertilizers for crop production. Variation existed for all the qualitative traits including orange cotyledon colour in 27 genotypes which is a preferred trait by Asian consumers including Pakistan. Five clusters revealed that average intra-clusters distances were more or less similar, whereas inter-cluster distance indicated higher level of genetic diversity. First three PCs contributed more than 3/4 of the variability and the results were in coordination with clustering pattern amongst 73 genotypes. The populations contributing the first PC were late in maturity possessed higher number of branches, pods, better biomass and grain yield. The PC/sub 2/ was more contributed by seeds pod-1 and seed diameter, whereas pod length and harvest index contributed 13% variability. The cause and effect relationships indicated differential response for selection of lentil genotypes suitable for eco-agricultural system within each cluster. (author)

  5. Phase 3 of a Brushless Doubly-Fed Machine System Development Program : Final Technical Report for Period January 1, 1992-June 30, 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Gerald C.; Spee, Rene; Wallace, Alan K.

    1993-12-31

    Since the inception of the BDFM development program in 1989, the value of BDFM technology has become apparent. The BDFM provides for adjustable speed, synchronous operation while keeping costs associated with the required power conversion equipment lower than in competing technologies. This provides for an advantage in initial as well as maintenance expenses over conventional drive system. Thus, the BDFM enables energy efficient, adjustable speed process control for applications where established drive technology has not been able to deliver satisfactory returns on investment. At the same time, the BDFM challenges conventional drive technologies in established markets by providing for improved performance at lower cost. BDFM converter rating is kept at a minimum, which significantly improves power quality at the utility interface over competing power conversion equipment. In summary, BDFM technology can be expected to provide significant benefits to utilities as well as their customers. This report discusses technical research and development activities related to Phase 3 of the Brushless Doubly-Fed Machine System Development Program, including work made possible by supplemental funds for laboratory improvement and prototype construction. Market research for the BDFM was provided by the College of Business at Oregon State University; market study results will be discussed in a separate report.

  6. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    International Nuclear Information System (INIS)

    Condon, Laura E; Maxwell, Reed M

    2014-01-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater–surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity. (paper)

  7. Selecting optimal feast-to-famine ratio for a new polyhydroxyalkanoate (PHA) production system fed by valerate-dominant sludge hydrolysate.

    Science.gov (United States)

    Hao, Jiuxiao; Wang, Hui; Wang, Xiujin

    2018-04-01

    The feast-to-famine ratio (F/F) represents the extent of selective pressure during polyhydroxyalkanoate (PHA) culture selection. This study evaluated the effects of F/F on a new PHA production system by an enriched culture with valerate-dominant sludge hydrolysate and selected the optimal F/F. After the original F/F 1/3 was modified to 1/1, 1/2, 1/4, and 1/5, F/F did not affect their lengths of feast phase, but affected their biomass growth behaviors during the famine phase and PHA-producing abilities. The optimal F/F was 1/2, and compared with 1/3, it increased the maximal PHA content and the fraction of 3-hydroxyvalerate (3HV) and 3-hydroxy-2-methylvalerate (3H2MV) monomers, with higher productivity and better polymer properties. Although F/F 1/2 impaired the advantage of the dominant genus Delftia, it improved the PHA production rate while decreased biomass growth rate, meanwhile enhancing the utilization and conversion of valerate. These findings indicate that in contrast to previous studies using acetate-dominant substrate for PHA production, the new system fed by valerate-dominant substrate can adopt a higher F/F.

  8. Born–Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2016-07-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born–Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge

  9. Born–Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    International Nuclear Information System (INIS)

    Sepehri, Alireza

    2016-01-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born–Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between

  10. Born-Infeld extension of Lovelock brane gravity in the system of M0-branes and its application for the emergence of Pauli exclusion principle in BIonic superconductors

    Science.gov (United States)

    Sepehri, Alireza

    2016-07-01

    Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born-Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between

  11. Quantum W3 gravity

    International Nuclear Information System (INIS)

    Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY

    1991-11-01

    We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity

  12. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  13. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  14. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  15. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  16. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  17. Northern Oklahoma Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...

  18. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  19. Growth and yield of rain fed wheat as affected by different tillage system integrated with glyphosate herbicide

    International Nuclear Information System (INIS)

    Ali, S.; Malik, M.A.; Khan, M.A.

    2016-01-01

    In rainfed areas, tillage is primarily done for moisture conservation and weed control. However, excessive tilling not only harms the soil health but also increases the cost of production. To find out the sustainable and economical tillage combination, response of wheat was studied under different tillage systems integrated with glyphosate herbicide through field experiments conducted at University Research Farm of Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan during 2012-2014 for two consecutive seasons. Principal component analysis proved that the plant height, biological yield, grain yield and harvest index of wheat were highest in treatment where one moldboard plowing was done followed by eight cultivations without using glyphosate in fallow period, which might be due to vigorous growth of wheat in this tillage system having enhanced root proliferation and moisture conservation, thus allowing plants to extract more nutrients and water from the deeper soil layers; whereas, the number of tillers per square meter, number of spikelets per spike, 1000 grain weight and number of grains per spike of wheat were maximum where one moldboard plowing was done followed by two applications of glyphosate herbicide in fallow period, which might be due to vigorous growth of wheat in this tillage system during 1st year of experiment when unexpected high rainfall was occurred during crop growth stage. Cluster analysis also categorized these two treatments into same category on the base of all agronomic parameters studied. The highest yield (3.5132 t ha-1) and (3.1242 t ha-1) was obtained from where one moldboard plowing was done following eight cultivations without using glyphosate followed by the treatment where one moldboard plowing was done following four cultivations without using glyphosate, respectively and were statistically at par with each other. Therefore one moldboard plowing following four cultivations is recommended for taking higher and

  20. Bringing Gravity to Space

    Science.gov (United States)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  1. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  2. Effect of Short-Circuit Faults in the Back-to-Back Power Electronic Converter and Rotor Terminals on the Operational Behavior of the Doubly-Fed Induction Generator Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Dimitrios G. Giaourakis

    2015-02-01

    Full Text Available This paper deals with the operational behavior of the Doubly-Fed Induction Generator Wind Energy Conversion System under power electronic converter and rotor terminals faulty conditions. More specifically, the effect of the short-circuit fault both in one IGBT of the back-to-back power electronic converter and in rotor phases on the overall system behavior has been investigated via simulation using a system of 2 MW. Finally, the consequences of these faults have been evaluated.

  3. Venus gravity anomalies and their correlations with topography

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  4. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  5. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  6. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  7. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  8. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  9. Improving a maximum horizontal gradient algorithm to determine geological body boundaries and fault systems based on gravity data

    Science.gov (United States)

    Van Kha, Tran; Van Vuong, Hoang; Thanh, Do Duc; Hung, Duong Quoc; Anh, Le Duc

    2018-05-01

    The maximum horizontal gradient method was first proposed by Blakely and Simpson (1986) for determining the boundaries between geological bodies with different densities. The method involves the comparison of a center point with its eight nearest neighbors in four directions within each 3 × 3 calculation grid. The horizontal location and magnitude of the maximum values are found by interpolating a second-order polynomial through the trio of points provided that the magnitude of the middle point is greater than its two nearest neighbors in one direction. In theoretical models of multiple sources, however, the above condition does not allow the maximum horizontal locations to be fully located, and it could be difficult to correlate the edges of complicated sources. In this paper, the authors propose an additional condition to identify more maximum horizontal locations within the calculation grid. This additional condition will improve the method algorithm for interpreting the boundaries of magnetic and/or gravity sources. The improved algorithm was tested on gravity models and applied to gravity data for the Phu Khanh basin on the continental shelf of the East Vietnam Sea. The results show that the additional locations of the maximum horizontal gradient could be helpful for connecting the edges of complicated source bodies.

  10. Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG-Based Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Aman Abdulla Tanvir

    2015-09-01

    Full Text Available This paper presents the modeling, rapid control prototyping, and hardware-in-the-loop testing for real-time simulation and control of a grid-connected doubly fed induction generator (DFIG in a laboratory-size wind turbine emulator for wind energy conversation systems. The generator is modeled using the direct-quadrature rotating reference frame circuit along with the aligned stator flux, and the field-oriented control approach is applied for independent control of the active and reactive power and the DC-link voltage at the grid side. The control of the active, reactive power and the DC-link voltage are performed using a back-to-back converter at sub- and super-synchronous as well as at variable speeds. The control strategy is experimentally validated on an emulated wind turbine driven by the Opal-RT real-time simulator (OP5600 for simultaneous control of the DC-link voltage, active and reactive power.

  11. Scale-invariant gravity: geometrodynamics

    International Nuclear Information System (INIS)

    Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O

    2003-01-01

    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different

  12. Humanized HLA-DR4 mice fed with the protozoan pathogen of oysters Perkinsus marinus (Dermo do not develop noticeable pathology but elicit systemic immunity.

    Directory of Open Access Journals (Sweden)

    Wathsala Wijayalath

    Full Text Available Perkinsus marinus (Phylum Perkinsozoa is a marine protozoan parasite responsible for "Dermo" disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1-2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA(0 in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA(0 mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA(0 mice had antibodies (IgM and IgG reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA(0 mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents.

  13. [A study on the relation between stomatognathic system and the systemic condition, concerning the influence of experimental occlusal interference on upright posture, particularly on gravity fluctuation and the antigravity muscles].

    Science.gov (United States)

    Miyata, T

    1990-06-01

    The purpose of this study is to reveal the relation between stomatognathic system and the systemic condition. In the present study, experimental occlusal interference was given to the first molar on main mastication side of 6 healthy subjects and the influence on the upright posture was evaluated through simultaneous measurements of changes in activity of antigravity muscles via electromyography, other than the measurement of loci of the gravity fluctuation for stabilograph before and after the interference was provided. The following results were obtained, 1. Loci of gravity fluctuation 1) All parameters tended increase 24 hours after the interference was provided. 2) The decreasing trend was noted 24 hours after the interference was removed. 3) At one week after the interference was removed all analysis items tended to restore to the normal range. 2. Activity of antigravity muscles In some of the subjects, the muscular activity showed the same trend as the changes of analysis items of gravity fluctuation. 3. The above results suggest that the evaluation of the loci of the gravity fluctuation may be helpful to assess the therapeutic effect of malocclusion.

  14. Scales of gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory

    2002-01-01

    We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework

  15. Gravity Defied From Potato Asteroids to Magnetised Neutron Stars

    Indian Academy of Sciences (India)

    Left to itself, gravity wouldpull everything together, and the Universe would be nothingbut a gigantic black hole. Nature throws almost every bit ofphysics – rotation, magnetic field, heat, quantum effects andso on, at gravity to escape such a fate. In this series of articles,we shall explore systems where the eternal pull of gravity ...

  16. On physical states in 2d (topological) gravity

    International Nuclear Information System (INIS)

    Bouwknegt, P.; McCarthy, J.; Pilch, K.

    1993-01-01

    We review the BRST computation of physical states in various 2d gravity theories. First we discuss the cohomology relevant for 2d gravity coupled to c ≤ 1 conformal matter. We then use these results to compute the cohomology of a c=26 βγ-system, i.e. restricted 2d topological gravity. We also comment on the cohomology for the complete 2d topological gravity. (author). 39 refs

  17. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  18. Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas.

    Science.gov (United States)

    Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J J; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine

    2017-01-01

    The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer's motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex.

  19. Methods for removal of unwanted signals from gravity time-series: Comparison using linear techniques complemented with analysis of system dynamics

    Science.gov (United States)

    Valencio, Arthur; Grebogi, Celso; Baptista, Murilo S.

    2017-10-01

    The presence of undesirable dominating signals in geophysical experimental data is a challenge in many subfields. One remarkable example is surface gravimetry, where frequencies from Earth tides correspond to time-series fluctuations up to a thousand times larger than the phenomena of major interest, such as hydrological gravity effects or co-seismic gravity changes. This work discusses general methods for the removal of unwanted dominating signals by applying them to 8 long-period gravity time-series of the International Geodynamics and Earth Tides Service, equivalent to the acquisition from 8 instruments in 5 locations representative of the network. We compare three different conceptual approaches for tide removal: frequency filtering, physical modelling, and data-based modelling. Each approach reveals a different limitation to be considered depending on the intended application. Vestiges of tides remain in the residues for the modelling procedures, whereas the signal was distorted in different ways by the filtering and data-based procedures. The linear techniques employed were power spectral density, spectrogram, cross-correlation, and classical harmonics decomposition, while the system dynamics was analysed by state-space reconstruction and estimation of the largest Lyapunov exponent. Although the tides could not be completely eliminated, they were sufficiently reduced to allow observation of geophysical events of interest above the 10 nm s-2 level, exemplified by a hydrology-related event of 60 nm s-2. The implementations adopted for each conceptual approach are general, so that their principles could be applied to other kinds of data affected by undesired signals composed mainly by periodic or quasi-periodic components.

  20. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    Science.gov (United States)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  1. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  2. Gravity interpretation via EULDPH

    International Nuclear Information System (INIS)

    Ebrahimzadeh Ardestani, V.

    2003-01-01

    Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented

  3. Anomalies and gravity

    International Nuclear Information System (INIS)

    Mielke, Eckehard W.

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed

  4. Harmonic Distortion Performance of Multi Three-Phase SCR-Fed Drive Systems with Controlled DC-Link Current under Unbalanced Grid

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Blaabjerg, Frede

    2017-01-01

    . In this paper, the main aim is to analyze the effects of the grid unbalanced voltage on the multi-unit three-phase ASDs with the Silicon-Controlled Rectifier (SCR)-fed front-end rectifiers, where the DC-link current is controlled utilizing an Electronic Inductor (EI) technique. In this respect, the main...

  5. Consequences of energy conservation violation: late time solutions of Λ(T)CDM subclass of f(R,T) gravity using dynamical system approach

    Energy Technology Data Exchange (ETDEWEB)

    Shabani, Hamid [University of Sistan and Baluchestan, Physics Department, Faculty of Sciences, Zahedan (Iran, Islamic Republic of); Ziaie, Amir Hadi [Islamic Azad University, Department of Physics, Kahnooj Branch, Kerman (Iran, Islamic Republic of)

    2017-05-15

    Very recently, Josset and Perez (Phys. Rev. Lett. 118:021102, 2017) have shown that a violation of the energy-momentum tensor (EMT) could result in an accelerated expansion state via the appearance of an effective cosmological constant, in the context of unimodular gravity. Inspired by this outcome, in this paper we investigate cosmological consequences of a violation of the EMT conservation in a particular class of f(R,T) gravity when only the pressure-less fluid is present. In this respect, we focus on the late time solutions of models of the type f(R,T) = R + βΛ(-T). As the first task, we study the solutions when the conservation of EMT is respected, and then we proceed with those in which violation occurs. We have found, provided that the EMT conservation is violated, that there generally exist two accelerated expansion solutions of which the stability properties depend on the underlying model. More exactly, we obtain a dark energy solution for which the effective equation of state depends on the model parameters and a de Sitter solution. We present a method to parametrize the Λ(-T) function, which is useful in a dynamical system approach and has been employed in the model. Also, we discuss the cosmological solutions for models with Λ(-T) = 8πG(-T){sup α} in the presence of ultra-relativistic matter. (orig.)

  6. influence of gravity

    Directory of Open Access Journals (Sweden)

    Animesh Mukherjee

    1991-01-01

    Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.

  7. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  8. A self-tuning exact solution and the non-existence of horizons in 5d gravity-scalar system

    International Nuclear Information System (INIS)

    Zhu Chuan-Jie; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-05-01

    We present an exact thick domain wall solution with naked singularities to five dimensional gravity coupled with a scalar field with exponential potential. In our solution we found exactly the special coefficient of the exponent as coming from compactification of string theory with cosmological constant. We show that this solution is self-tuning when a 3-brane is included. In searching for a solution with horizon we found a similar exact solution with fine-tuned exponent coefficient with an integration constant. Failing to find a solution with horizon we prove the non-existence of horizons. These naked singularities actually can't be resolved by horizon. We also comment on the physical relevance of this solution. (author)

  9. FUZZY SLIDING MODE CONTROLLER FOR DOUBLY FED ...

    African Journals Online (AJOL)

    2010-12-31

    Dec 31, 2010 ... against internal and external perturbations, but the FSMC is superior to ... controller, doubly fed induction motor, fuzzy logic control. 1. ... capabilities in accounting for modeling imprecision and bounded disturbances. It ..... To show the effect of the parameters uncertainties, we have simulated the system with.

  10. Evaluation of the performance of Hy-Line Brown laying hens fed soybean or soybean-free diets using cage or free-range rearing systems.

    Science.gov (United States)

    Al-Ajeeli, M N; Leyva-Jimenez, H; Abdaljaleel, R A; Jameel, Y; Hashim, M M; Archer, G; Bailey, C A

    2018-03-01

    This study evaluated egg production and quality variables of caged and free-range Hy-Line Brown laying hens fed soybean meal (SBM) and soybean-meal-free (SBMF) diets. Hens were randomly assigned to the same 2 dietary treatments within 3 location blocks. SBM and SBMF diets with equivalent calculated nutrient content were prepared based on Hy-Line Brown rearing guidelines. The SBMF diets utilized cottonseed meal, corn distillers dried grains with solubles, corn gluten meal, and wheat middlings in place of dehulled soybean meal. The experiment was conducted between August 2015 and January of 2016 within the TAMU Poultry Research Center and data analyzed over 6 consecutive 28-day periods. Data were analyzed as a split-plot with rearing systems designated whole plots and diets designated as subplots. Hens reared in the free-range rearing system peaked a couple of wk later than those hens within the more conventional indoor caged system, and cumulative production data were considerably more variable for hens raised in the free-range environment. Cumulative egg production, feed per dozen eggs and feed conversion ratio (g feed/g egg) were 92 ± 1.23 and 86 ± 1.84%, 1.45 ± 0.02 and 1.89 ± 0.05 kg, and 2.14 ± 0.04 and 2.77 ± 0.08 (P free-range rearing systems. Cumulative egg weight, feed per dozen eggs, and feed conversion ratio were 59.9 ± 0.59 and 56.5 ± 0.60 g, 1.57 ± 0.04 and 1.77 ± 0.05 kg, and 2.24 ± 0.06 and 2.67 ± 0.08 kg (P  0.05). With respect to egg quality, there were no differences in cumulative albumen height, Haugh unit, or breaking strength, but there was a significant rearing system by diet interaction for shell thickness, with the free-range hens averaging 40.77 ± 0.19 and 39.86 ± 0.31 μm (P free-range production is more variable than traditional closed-house cage systems based on standard errors, and SBMF diets containing cottonseed meal can be used in both caged and free-range production systems without

  11. Electrostatic analogy for symmetron gravity

    Science.gov (United States)

    Ogden, Lillie; Brown, Katherine; Mathur, Harsh; Rovelli, Kevin

    2017-12-01

    The symmetron model is a scalar-tensor theory of gravity with a screening mechanism that suppresses the effect of the symmetron field at high densities characteristic of the Solar System and laboratory scales but allows it to act with gravitational strength at low density on the cosmological scale. We elucidate the screening mechanism by showing that in the quasistatic Newtonian limit there are precise analogies between symmetron gravity and electrostatics for both strong and weak screening. For strong screening we find that large dense bodies behave in a manner analogous to perfect conductors in electrostatics. Based on this analogy we find that the symmetron field exhibits a lightning rod effect wherein the field gradients are enhanced near the ends of pointed or elongated objects. An ellipsoid placed in a uniform symmetron gradient is shown to experience a torque. By symmetry there is no gravitational torque in this case. Hence this effect unmasks the symmetron and might serve as the basis for future laboratory experiments. The symmetron force between a point mass and a large dense body includes a component corresponding to the interaction of the point mass with its image in the larger body. None of these effects have counterparts in the Newtonian limit of Einstein gravity. We discuss the similarities between symmetron gravity and the chameleon model as well as the differences between the two.

  12. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  13. Generalized pure Lovelock gravity

    Science.gov (United States)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  14. Generalized pure Lovelock gravity

    Directory of Open Access Journals (Sweden)

    Patrick Concha

    2017-11-01

    Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  15. Tests of chameleon gravity

    Science.gov (United States)

    Burrage, Clare; Sakstein, Jeremy

    2018-03-01

    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.

  16. Gravity Probe B Inspection

    Science.gov (United States)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  17. Anomaly freedom in perturbative loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Hossain, Golam Mortuza; Kagan, Mikhail; Shankaranarayanan, S.

    2008-01-01

    A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The underlying constraints present a consistent deformation of the classical system, which shows that the discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the correct implementation of constraint operators can be gained. The procedures of this article thus provide a clear link between fundamental quantum gravity and phenomenology.

  18. Critical behaviors of gravity under quantum perturbations

    Directory of Open Access Journals (Sweden)

    ZHANG Hongsheng

    2014-02-01

    Full Text Available Phase transition and critical phenomenon is a very interesting topic in thermodynamics and statistical mechanics. Gravity is believed to have deep and inherent relation to thermodynamics. Near the critical point,the perturbation becomes significant. Thus for ordinary matter (governed by interactions besides gravity the critical behavior will become very different if we ignore the perturbations around the critical point,such as mean field theory. We find that the critical exponents for RN-AdS spacetime keep the same values even when we consider the full quantum perturbations. This indicates a key difference between gravity and ordinary thermodynamic system.

  19. And what if gravity is intrinsically quantic ?

    OpenAIRE

    Ziaeepour, Houri

    2009-01-01

    Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, sting theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and former a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum ...

  20. Gauge Gravity and Space-Time

    OpenAIRE

    Wu, Ning

    2012-01-01

    When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machin...

  1. BRS invariant stochastic quantization of Einstein gravity

    International Nuclear Information System (INIS)

    Nakazawa, Naohito.

    1989-11-01

    We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in the sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space of the first-class constrained systems. The phase space is spanned by the dynamical variables, their canonical conjugate momentum variables, Faddeev-Popov ghost and anti-ghost. We apply the general BRS invariant formulation to stochastic quantization of gravity which is described as a second-class constrained system in terms of a pair of Langevin equations coupled with white noises. It is shown that the stochastic action of gravity includes explicitly the De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)

  2. Human Performance in Simulated Reduced Gravity Environments

    Science.gov (United States)

    Cowley, Matthew; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. Our current understanding of human performance in reduced gravity in a planetary environment (the moon or Mars) is limited to lunar observations, studies from the Apollo program, and recent suit tests conducted at JSC using reduced gravity simulators. This study will look at our most recent reduced gravity simulations performed on the new Active Response Gravity Offload System (ARGOS) compared to the C-9 reduced gravity plane. Methods: Subjects ambulated in reduced gravity analogs to obtain a baseline for human performance. Subjects were tested in lunar gravity (1.6 m/sq s) and Earth gravity (9.8 m/sq s) in shirt-sleeves. Subjects ambulated over ground at prescribed speeds on the ARGOS, but ambulated at a self-selected speed on the C-9 due to time limitations. Subjects on the ARGOS were given over 3 minutes to acclimate to the different conditions before data was collected. Nine healthy subjects were tested in the ARGOS (6 males, 3 females, 79.5 +/- 15.7 kg), while six subjects were tested on the C-9 (6 males, 78.8 +/- 11.2 kg). Data was collected with an optical motion capture system (Vicon, Oxford, UK) and was analyzed using customized analysis scripts in BodyBuilder (Vicon, Oxford, UK) and MATLAB (MathWorks, Natick, MA, USA). Results: In all offloaded conditions, variation between subjects increased compared to 1-g. Kinematics in the ARGOS at lunar gravity resembled earth gravity ambulation more closely than the C-9 ambulation. Toe-off occurred 10% earlier in both reduced gravity environments compared to earth gravity, shortening the stance phase. Likewise, ankle, knee, and hip angles remained consistently flexed and had reduced peaks compared to earth gravity. Ground reaction forces in lunar gravity (normalized to Earth body weight) were 0.4 +/- 0.2 on

  3. Simultaneous Robust Coordinated Damping Control of Power System Stabilizers (PSSs, Static Var Compensator (SVC and Doubly-Fed Induction Generator Power Oscillation Dampers (DFIG PODs in Multimachine Power Systems

    Directory of Open Access Journals (Sweden)

    Jian Zuo

    2017-04-01

    Full Text Available The potential of utilizing doubly-fed induction generator (DFIG-based wind farms to improve power system damping performance and to enhance small signal stability has been proposed by many researchers. However, the simultaneous coordinated tuning of a DFIG power oscillation damper (POD with other damping controllers is rarely involved. A simultaneous robust coordinated multiple damping controller design strategy for a power system incorporating power system stabilizer (PSS, static var compensator (SVC POD and DFIG POD is presented in this paper. This coordinated damping control design strategy is addressed as an eigenvalue-based optimization problem to increase the damping ratios of oscillation modes. Both local and inter-area electromechanical oscillation modes are intended in the optimization design process. Wide-area phasor measurement unit (PMU signals, selected by the joint modal controllability/ observability index, are utilized as SVC and DFIG POD feedback modulation signals to suppress inter-area oscillation modes. The robustness of the proposed coordinated design strategy is achieved by simultaneously considering multiple power flow situations and operating conditions. The recently proposed Grey Wolf optimizer (GWO algorithm is adopted to efficiently optimize the parameter values of multiple damping controllers. The feasibility and effectiveness of the proposed coordinated design strategy are demonstrated through frequency-domain eigenvalue analysis and nonlinear time-domain simulation studies in two modified benchmark test systems. Moreover, the dynamic response simulation results also validate the robustness of the recommended coordinated multiple damping controllers under various system operating conditions.

  4. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  5. The Future of Gravity

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.

  6. Scaling in quantum gravity

    Directory of Open Access Journals (Sweden)

    J. Ambjørn

    1995-07-01

    Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.

  7. FED, Geometry Input Generator for Program TRUMP

    International Nuclear Information System (INIS)

    Schauer, D.A.; Elrod, D.C.

    1996-01-01

    1 - Description of program or function: FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP (NESC 771). TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, or three dimensions. 2 - Method of solution: The region of interest must first be divided into areas which may consist of a common material. The boundaries of these areas are the required FED input. Each area is subdivided into volume nodes, and the geometrical properties are calculated. Finally, FED connects the adjacent nodes to one another, using the proper surface area, interface distance, and, if specified, radiation form factor and interface conductance. 3 - Restrictions on the complexity of the problem: Rectangular bodies can only be approximated by using a very large radius of revolution compared to the total radial thickness and by considering only a small angular segment in the circumferential direction

  8. Measurement analysis and quantum gravity

    International Nuclear Information System (INIS)

    Albers, Mark; Kiefer, Claus; Reginatto, Marcel

    2008-01-01

    We consider the question of whether consistency arguments based on measurement theory show that the gravitational field must be quantized. Motivated by the argument of Eppley and Hannah, we apply a DeWitt-type measurement analysis to a coupled system that consists of a gravitational wave interacting with a mass cube. We also review the arguments of Eppley and Hannah and of DeWitt, and investigate a second model in which a gravitational wave interacts with a quantized scalar field. We argue that one cannot conclude from the existing gedanken experiments that gravity has to be quantized. Despite the many physical arguments which speak in favor of a quantum theory of gravity, it appears that the justification for such a theory must be based on empirical tests and does not follow from logical arguments alone.

  9. On Spectral Triples in Quantum Gravity I

    DEFF Research Database (Denmark)

    Aastrup, Johannes; M. Grimstrup, Jesper; Nest, Ryszard

    2009-01-01

    This paper establishes a link between Noncommutative Geometry and canonical quantum gravity. A semi-finite spectral triple over a space of connections is presented. The triple involves an algebra of holonomy loops and a Dirac type operator which resembles a global functional derivation operator....... The interaction between the Dirac operator and the algebra reproduces the Poisson structure of General Relativity. Moreover, the associated Hilbert space corresponds, up to a discrete symmetry group, to the Hilbert space of diffeomorphism invariant states known from Loop Quantum Gravity. Correspondingly......, the square of the Dirac operator has, in terms of canonical quantum gravity, the form of a global area-squared operator. Furthermore, the spectral action resembles a partition function of Quantum Gravity. The construction is background independent and is based on an inductive system of triangulations...

  10. Gravity Data for Egypt

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (71 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received in...

  11. New massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.

    2012-01-01

    We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.

  12. DMA Antarctic Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (65,164 records) were gathered by various governmental organizations (and academia) using a variety of methods. The data base was received...

  13. Gravity Data for Minnesota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (55,907 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received...

  14. Stability in designer gravity

    International Nuclear Information System (INIS)

    Hertog, Thomas; Hollands, Stefan

    2005-01-01

    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed

  15. Carroll versus Galilei gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2017-03-30

    We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.

  16. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, Ruth M

    2006-01-01

    A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday

  17. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  18. Towards the map of quantum gravity

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2018-06-01

    In this paper we point out some possible links between different approaches to quantum gravity and theories of the Planck scale physics. In particular, connections between loop quantum gravity, causal dynamical triangulations, Hořava-Lifshitz gravity, asymptotic safety scenario, Quantum Graphity, deformations of relativistic symmetries and nonlinear phase space models are discussed. The main focus is on quantum deformations of the Hypersurface Deformations Algebra and Poincaré algebra, nonlinear structure of phase space, the running dimension of spacetime and nontrivial phase diagram of quantum gravity. We present an attempt to arrange the observed relations in the form of a graph, highlighting different aspects of quantum gravity. The analysis is performed in the spirit of a mind map, which represents the architectural approach to the studied theory, being a natural way to describe the properties of a complex system. We hope that the constructed graphs (maps) will turn out to be helpful in uncovering the global picture of quantum gravity as a particular complex system and serve as a useful guide for the researchers.

  19. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  20. On higher derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1987-01-01

    A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt

  1. What Is Gravity?

    Science.gov (United States)

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  2. Gravity study of the Central African Rift system: a model of continental disruption 2. The Darfur domal uplift and associated Cainozoic volcanism

    Science.gov (United States)

    Bermingham, P. M.; Fairhead, J. D.; Stuart, G. W.

    1983-05-01

    Gravity studies of the Darfur uplift, Western Sudan, show it to be associated with a circular negative Bouguer anomaly, 50 mGal in amplitude and 700 km across. A three-dimensional model interpretation of the Darfur anomaly, using constraints deduced from geophysical studies of similar but more evolved Kenya and Ethiopia domes, suggests either a low-density laccolithic body at mid-lithospheric depth (~ 60 km) or a thinned lithosphere with emplacement at high level of low-density asthenospheric material. The regional setting of the Darfur uplift is described in terms of it being an integral part of the Central African Rift System which is shown to be broadly equivalent to the early to middle Miocene stage in the development of the Afro-Arabian Rift System. Comparisons between these rift systems suggest that extensional tectonics and passive rifting, resulting in the subsiding sedimentary rift basins associated with the Ngaoundere, Abu Gabra, Red Sea and Gulf of Aden rifts, are more typical of the early stage development of passive continental margins than the active domal uplift and development of rifted features associated with the Darfur, Kenya and Ethiopia domes.

  3. Cellular muscle growth and molecular cloning and expression of growth-related gene of Malaysian Mahseer Tor tambroides larvae fed with live and formulated feeds in indoor nursery rearing system

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2017-02-01

    Full Text Available The influences of live and formulated feeds on growth performances, muscle fibers morphometry and muscle growth-related gene expression of Malaysian mahseer, Tor tambroides larvae were evaluated in indoor nursery rearing system. Quadruplicate groups of T. tambroides larvae (0.07 ± 0.01 g, mean ± SE were stocked in sixteen aquaria (60 × 30 × 30 cm, randomly arranged in four dietary treatments viz. larvae fed artemia (LA, moina (LM, daphnia (LD and formulated feed (FF with stocking density of 34 larvae per aquarium. The larvae were fed to visually near satiation in two equal feedings per day, seven days per week for 75 days. The growth-related parameters (mean weight gain and specific growth rate were significantly highest in treatment FF, followed by treatment LA and the lowest in treatment LD or LM. Histological observation and muscle morphometric analysis revealed that mosaic hyperplasia was observed after 50 days of the feeding trial. Hypertrophic (diameter class 50 = 40 > d ≤ 50 μm and class 60 = d > 50 μm, but not hyperplastic (diameter class ≤10 μm, muscle fibers frequencies were significantly highest in larvae fed FF compared to those fed live feeds. The entire open reading frame cDNA sequences of two important growth-related genes, myogenin and MyoD, were successfully amplified and cloned from T. tambroides larvae. The nucleotide sequences alignment using CLUSTAL W in BioEdit program of both MyoD and myogenin genes showed the sign of existence of isoforms and highly conserved with other cyprinid fishes. Real-time PCR data demonstrated that myogenin and MyoD gene expressions were significantly upregulated in larvae fed FF. The results of the present experiment concluded that the nursery rearing of T. tambroides larvae with formulated feed showed augmented muscle growth and upregulated growth-related gene expression than feeding live feeds.

  4. Extended Theories of Gravity

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; De Laurentis, Mariafelicia

    2011-01-01

    Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.

  5. FedScope Employment Cubes

    Data.gov (United States)

    Office of Personnel Management — This raw data set provides Federal civilian employee population data. The scope of this raw data set includes all data elements used in the creation of the FedScope...

  6. Gravity Probe B Encapsulated

    Science.gov (United States)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  7. Entropy and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Bernard S. Kay

    2015-12-01

    Full Text Available We give a review, in the style of an essay, of the author’s 1998 matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. It also involves a radically different from usual description of black hole equilibrium states in which the total state of a black hole in a box together with its atmosphere is a pure state—entangled in just such a way that the reduced state of the black hole and of its atmosphere are each separately approximately thermal. We also briefly recall some recent work of the author which involves a reworking of the string-theory understanding of black hole entropy consistent with this alternative description of black hole equilibrium states and point out that this is free from some unsatisfactory features of the usual string theory understanding. We also recall the author’s recent arguments based on this alternative description which suggest that the Anti de Sitter space (AdS/conformal field theory (CFT correspondence is a bijection between the boundary CFT and just the matter degrees of freedom of the bulk theory.

  8. On the entropy variation in the scenario of entropic gravity

    Science.gov (United States)

    Xiao, Yong; Bai, Shi-Yang

    2018-05-01

    In the scenario of entropic gravity, entropy varies as a function of the location of the matter, while the tendency to increase entropy appears as gravity. We concentrate on studying the entropy variation of a typical gravitational system with different relative positions between the mass and the gravitational source. The result is that the entropy of the system doesn't increase when the mass is displaced closer to the gravitational source. In this way it disproves the proposal of entropic gravity from thermodynamic entropy. It doesn't exclude the possibility that gravity originates from non-thermodynamic entropy like entanglement entropy.

  9. The covariant formulation of f ( T ) gravity

    International Nuclear Information System (INIS)

    Krššák, Martin; Saridakis, Emmanuel N

    2016-01-01

    We show that the well-known problem of frame dependence and violation of local Lorentz invariance in the usual formulation of f ( T ) gravity is a consequence of neglecting the role of spin connection. We re-formulate f ( T ) gravity starting from, instead of the ‘pure tetrad’ teleparallel gravity, the covariant teleparallel gravity, using both the tetrad and the spin connection as dynamical variables, resulting in a fully covariant, consistent, and frame-independent version of f ( T ) gravity, which does not suffer from the notorious problems of the usual, pure tetrad, f ( T ) theory. We present the method to extract solutions for the most physically important cases, such as the Minkowski, the Friedmann–Robertson–Walker (FRW) and the spherically symmetric ones. We show that in covariant f ( T ) gravity we are allowed to use an arbitrary tetrad in an arbitrary coordinate system along with the corresponding spin connection, resulting always in the same physically relevant field equations. (paper)

  10. Dynamics and entanglement in spherically symmetric quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Terno, Daniel R.

    2010-01-01

    The gravity-scalar field system in spherical symmetry provides a natural setting for exploring gravitational collapse and its aftermath in quantum gravity. In a canonical approach, we give constructions of the Hamiltonian operator, and of semiclassical states peaked on constraint-free data. Such states provide explicit examples of physical states. We also show that matter-gravity entanglement is an inherent feature of physical states, whether or not there is a black hole.

  11. Pharmacokinetics of Acetaminophen in Hind Limbs Unloaded Mice: A Model System Simulating the Effects of Low Gravity on Astronauts in Space

    Science.gov (United States)

    Peterson, Amanda; Risin, Semyon A.; Ramesh, Govindarajan T.; Dasgupta, Amitava; Risin, Diana

    2008-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in Space. Low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration in astronauts. Acquiring of such knowledge has inherent difficulties due to limited opportunities for experimenting in Space. One of the approaches is to use model systems that simulate some of the Space conditions on Earth. In this study we used hind limbs unloaded mice (HLU) to investigate the possible changes in PK of acetaminophen, a widely used analgesic with high probability of use by astronauts. The HLU is recognized as an appropriate model for simulating the effects of low gravity on hemodynamic parameters. Mice were tail suspended (n = 24) for 24-96 hours prior to introduction of acetaminophen (150 - 300 mg/kg). The drug (in aqueous solution containing 10% ethyl alcohol by volume) was given orally by a gavage procedure and after the administration of acetaminophen mice were additionally suspended for 30 min, 1 and 2 hours. Control mice (n = 24) received the same dose of acetaminophen and were kept freely all the time. Blood specimens were obtained either from retroorbital venous sinuses or from heart. Acetaminophen concentration was measured in plasma by the fluorescent polarization immunoassay and the AxSYM analyzer (Abbott Laboratories). In control mice peak acetaminophen concentration was achieved at 30 min. By 1 hour the concentration decreased to less than 50% of the peak level and at 2 hours the drug was almost undetectable in the serum. HLU for 24 hours significantly altered the acetaminophen pharmacokinetic: at 30 min the acetaminophen concentrations were significantly (both statistically and medically significant) lower than in control mice. The concentrations also reduced less

  12. Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis.

    Science.gov (United States)

    Dos Santos, Maísa Pavani; Batistela, Emanuele; Pereira, Mayara Peron; Paula-Gomes, Silvia; Zanon, Neusa Maria; Kettelhut, Isis do Carmo; Karatzaferi, Christina; Andrade, Claudia Marlise Balbinotti; de França, Suélem Aparecida; Baviera, Amanda Martins; Kawashita, Nair Honda

    2016-08-01

    Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Quantum Gravity Experiments

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2015-10-01

    Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.

  14. Gravity and strings

    CERN Document Server

    Ortín, Tomás

    2015-01-01

    Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

  15. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  16. No slip gravity

    Science.gov (United States)

    Linder, Eric V.

    2018-03-01

    A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.

  17. The quantization of gravity

    CERN Document Server

    Gerhardt, Claus

    2018-01-01

    A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...

  18. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2004-01-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction

  19. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  20. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  1. Airborne Gravity: NGS' Gravity Data for AN08 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  2. Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  3. Airborne Gravity: NGS' Gravity Data for EN01 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  4. Airborne Gravity: NGS' Gravity Data for AN03 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  5. Airborne Gravity: NGS' Gravity Data for EN06 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...

  6. Airborne Gravity: NGS' Gravity Data for ES01 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...

  7. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  8. Gravity Compensation Technique Uses Small dc Motor

    Science.gov (United States)

    Hollow, Richard

    1988-01-01

    Small dc servomotor powered by simple constant-current source and with suitable gearing used to cancel effect of gravity upon load. Lead-screw positioning system has load counterbalanced by small supplementary motor powered by constant current source. Motor lighter and more compact alternative to counterbalance. Used in variety of mechanical systems where load positioned or accelerated in vertical plane.

  9. Improving Realism in Reduced Gravity Simulators

    Science.gov (United States)

    Cowley, Matthew; Harvil, Lauren; Clowers, Kurt; Clark, Timothy; Rajulu, Sudhakar

    2010-01-01

    Since man was first determined to walk on the moon, simulating the lunar environment became a priority. Providing an accurate reduced gravity environment is crucial for astronaut training and hardware testing. This presentation will follow the development of reduced gravity simulators to a final comparison of environments between the currently used systems. During the Apollo program era, multiple systems were built and tested, with several NASA centers having their own unique device. These systems ranged from marionette-like suspension devices where the subject laid on his side, to pneumatically driven offloading harnesses, to parabolic flights. However, only token comparisons, if any, were made between systems. Parabolic flight allows the entire body to fall at the same rate, giving an excellent simulation of reduced gravity as far as the biomechanics and physical perceptions are concerned. While the effects are accurate, there is limited workspace, limited time, and high cost associated with these tests. With all mechanical offload systems only the parts of the body that are actively offloaded feel any reduced gravity effects. The rest of the body still feels the full effect of gravity. The Partial Gravity System (Pogo) is the current ground-based offload system used to training and testing at the NASA Johnson Space Center. The Pogo is a pneumatic type system that allows for offloaded motion in the z-axis and free movement in the x-axis, but has limited motion in the y-axis. The pneumatic system itself is limited by cylinder stroke length and response time. The Active Response Gravity Offload System (ARGOS) is a next generation groundbased offload system, currently in development, that is based on modern robotic manufacturing lines. This system is projected to provide more z-axis travel and full freedom in both the x and y-axes. Current characterization tests are underway to determine how the ground-based offloading systems perform, how they compare to parabolic

  10. Review of lattice supersymmetry and gauge-gravity duality

    International Nuclear Information System (INIS)

    Joseph, Anosh

    2015-12-01

    We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that non-perturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.

  11. Surfing surface gravity waves

    Science.gov (United States)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  12. Towards a quantum gravity

    International Nuclear Information System (INIS)

    Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.

    2011-01-01

    The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)

  13. Terrestrial gravity data analysis for interim gravity model improvement

    Science.gov (United States)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  14. Fractal universe and quantum gravity.

    Science.gov (United States)

    Calcagni, Gianluca

    2010-06-25

    We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.

  15. Studying Antimatter Gravity with Muonium

    Directory of Open Access Journals (Sweden)

    Aldo Antognini

    2018-04-01

    Full Text Available The gravitational acceleration of antimatter, g ¯ , has yet to be directly measured; an unexpected outcome of its measurement could change our understanding of gravity, the universe, and the possibility of a fifth force. Three avenues are apparent for such a measurement: antihydrogen, positronium, and muonium, the last requiring a precision atom interferometer and novel muonium beam under development. The interferometer and its few-picometer alignment and calibration systems appear feasible. With 100 nm grating pitch, measurements of g ¯ to 10%, 1%, or better can be envisioned. These could constitute the first gravitational measurements of leptonic matter, of 2nd-generation matter, and possibly, of antimatter.

  16. Gravity Probe B Assembled

    Science.gov (United States)

    2000-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  17. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  18. FED pumped limiter configuration issues

    International Nuclear Information System (INIS)

    Haines, J.R.; Fuller, G.M.

    1983-01-01

    Impurity control in the Fusion Engineering Device (FED) is provided by a toroidal belt pumped limiter. Limiter design issues addressed in this paper are (1) poloidal location of the limiter belt, (2) shape of the limiter surface facing the plasma, and (3) whether the belt is pumped from one or both sides. The criteria used for evaluation of limiter configuration features were sensitivity to plasma-edge conditions and ease of maintenance and fabrication. The evaluation resulted in the selection of a baseline FED limiter that is located at the bottom of the device and has a flat surface with a single leading edge

  19. FED pumped limiter configuration issues

    International Nuclear Information System (INIS)

    Haines, J.R.; Fuller, G.M.

    1983-01-01

    Impurity control in the Fusion Engineering Device (FED) is provided by a toroidal belt pumped limiter. Limiter design issues addressed in this paper are (1) poloidal location of the limiter belt, (2) shape of the limiter surface facing the plasma, and (3) whether the belt is pumped from one or both sides. The criteria used for evaluation of limiter configuration features were sensitivity to plasma edge conditions and ease of maintenance and fabrication. The evaluation resulted in the selection of a baseline FED limiter that is located at the bottom of the device and has a flat surface with a single leading edge

  20. Gravity Data for South America

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...

  1. Interior Alaska Gravity Station Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...

  2. Gravity Station Data for Spain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  3. Gravity Station Data for Portugal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  4. Gravity mediated supersymmetry breaking in six dimensions

    International Nuclear Information System (INIS)

    Falkowski, A.; Lee, H.M.; Luedeling, C.

    2005-04-01

    We study gravity mediated supersymmetry breaking in four-dimensional effective theories derived from six-dimensional brane-world supergravities. Using the Noether method we construct a locally supersymmetric action for a bulk-brane system consisting of the minimal six-dimensional supergravity coupled to vector and chiral multiplets located at four-dimensional branes. We compactify this system on T 2 /Z 2 and derive the four-dimensional effective supergravity. Most interestingly, sequestering of the matter living on different branes is not explicit in the tree-level Kaehler potential (but of course the action obtained from this Kaehler potential is consistent with higher dimensional locality). As a consequence, the features of gravity mediation are different than in five-dimensional models. We identify one scenario of moduli stabilization that yields positive gravity mediated soft scalar masses squared. (orig.)

  5. ADDITION POLYUNSATURATED FATTY ACIDS IN THE DIET INCREASES THE NUMBER AND SIZE OF FOLLICLES IN COWS FED UNDER TROPICAL GRAZING SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Cansino-Arroyo

    2014-08-01

    Full Text Available The objective was determined the effect of polyunsaturated fatty acids (PUFAS on the number and follicular size in cows fed under tropical grazing during the dry season and rainy season. Using a group of cows PUFAS (GA, dry: n=9 and rain: n=13 maintained under grazing continuo, which received a nutritional supplement, with the addition of 5 % of PUFAS in the supplement. A second control group (GT; dry: n=13 and rain: n=9, kept in the same conditions as the previous group, without PUFAS. The number of follicles was greater during the rainy season than during dry (P=0.0001. Cows GT nutritional supplement did not improve the number of follicles between 2 times (P ≥ 0.7. However, the addition of PUFAS to supplement increases the number of follicles during the rainy season (P=0.002. Otherwise, when the cows were ovulation hormonally stimulated are not noted an increase in the number of follicles in cows with or without PUFAS in the supplement. With these results, we can conclude that the number of follicles is affected by perceived conditions, besides that addition of PUFAS increases the number of follicles during the rainy season in tropical grazing cows.

  6. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  7. Colossal creations of gravity

    DEFF Research Database (Denmark)

    Skielboe, Andreas

    Gravity governs the evolution of the universe on the largest scales, and powers some of the most extreme objects at the centers of galaxies. Determining the masses and kinematics of galaxy clusters provides essential constraints on the large-scale structure of the universe, and act as direct probes...

  8. A Trick of Gravity

    Science.gov (United States)

    Newburgh, Ronald

    2010-01-01

    It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.

  9. Discrete Lorentzian quantum gravity

    NARCIS (Netherlands)

    Loll, R.

    2000-01-01

    Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated

  10. Loop quantum gravity

    International Nuclear Information System (INIS)

    Pullin, J.

    2015-01-01

    Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)

  11. A finite quantum gravity

    International Nuclear Information System (INIS)

    Meszaros, A.

    1984-05-01

    In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)

  12. Venus - Ishtar gravity anomaly

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.

    1984-01-01

    The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.

  13. Torsion induces gravity

    International Nuclear Information System (INIS)

    Aros, Rodrigo; Contreras, Mauricio

    2006-01-01

    In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively

  14. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, J.W.

    1992-01-01

    After a brief introduction to Regge calculus, some examples of its application is quantum gravity are described in this paper. In particular, the earliest such application, by Ponzano and Regge, is discussed in some detail and it is shown how this leads naturally to current work on invariants of three-manifolds

  15. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  16. Verification of f(R-gravity in binary pulsars

    Directory of Open Access Journals (Sweden)

    Dyadina Polina

    2016-01-01

    Full Text Available We develop the parameterized post-Keplerian approach for class of analytic f (R-gravity models. Using the double binary pulsar system PSR J0737-3039 data we obtain restrictions on the parameters of this class of f (R-models and show that f (R-gravity is not ruled out by the observations in strong field regime.

  17. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  18. Even-dimensional topological gravity from Chern-Simons gravity

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.

    2009-01-01

    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  19. New standards for reducing gravity data: The North American gravity database

    Science.gov (United States)

    Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.

    2005-01-01

    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  20. Seasonal gravity change at Yellowstone caldera

    Science.gov (United States)

    Poland, M. P.; de Zeeuw-van Dalfsen, E.

    2017-12-01

    The driving forces behind Yellowstone's dynamic deformation, vigorous hydrothermal system, and abundant seismicity are usually ascribed to "magmatic fluids," which could refer to magma, water, volatiles, or some combination. Deformation data alone cannot distinguish the relative importance of these fluids. Gravity measurements, however, provide an indication of mass change over time and, when combined with surface displacements, can constrain the density of subsurface fluids. Unfortunately, several decades of gravity surveys at Yellowstone have yielded ambiguous results. We suspect that the difficulty in interpreting Yellowstone gravity data is due to seasonal variations in environmental conditions—especially surface and ground water. Yellowstone gravity surveys are usually carried out at the same time of year (generally late summer) to minimize the impact of seasonality. Nevertheless, surface and subsurface water levels are not likely to be constant from year to year, given annual differences in precipitation. To assess the overall magnitude of seasonal gravity changes, we conducted gravity surveys of benchmarks in and around Yellowstone caldera in May, July, August, and October 2017. Our goal was to characterize seasonal variations due to snow melt/accumulation, changes in river and lake levels, changes in groundwater levels, and changes in hydrothermal activity. We also hope to identify sites that show little variation in gravity over the course of the 2017 surveys, as these locations may be less prone to seasonal changes and more likely to detect small variations due to magmatic processes. Preliminary examination of data collected in May and July 2017 emphasizes the importance of site location relative to sources of water. For example, a site on the banks of the Yellowstone River showed a gravity increase of several hundred microgals associated with a 50 cm increase in the river level. A high-altitude site far from rivers and lakes, in contrast, showed a

  1. Influential aspects of glacial resource for establishing Kuhl system (gravity flow irrigation) in the Hindu Kush, Karakoram and Himalaya ranges.

    Science.gov (United States)

    Ashraf, Arshad; Iqbal, Ayesha

    2018-04-27

    The meltwater components play an important role in the hydrological regime of the Hindu Kush, Karakorum and Himalaya (HKH) region, in terms of high demand of water for food and fiber from snow and glacial resource. The communities of Himalayan mountains are facing challenges of food security owing to lack of the resource information for meeting their water requirements. In this study, suitability index approach was adopted to assess glacier resource potential for establishing kuhl irrigation system in HKH ranges of Pakistan. The basis of indexing is glacier accessibility and water yield potential of the glacial resource for irrigation estimated in terms of number and ice reserve of the glaciers. The suitability index was found good for about 1.4% glaciers constituting about 80% of the total ice reserves of the HKH region. Medium suitability constitutes about 36.1% glaciers with 12.6% of the total ice reserves, while low suitability was assessed for about 60% glaciers containing 1.5% ice reserves only. Maximum unit glacial reserve was estimated for Shigar basin, i.e., 1.44 km 3 , and among HKH ranges, 0.46 km 3 for the Karakoram range. A regular monitoring of the glacial resource would prove helpful in assessing vulnerability of this resource to climate change in the high Himalayan region in future. Copyright © 2018. Published by Elsevier B.V.

  2. Estudio comparativo de cuatro sistemas de propagación de levadura cervecera por lote alimentado Comparative study of four fed-batch propagation systems of beer yeast

    Directory of Open Access Journals (Sweden)

    Hoyos H.

    1998-06-01

    Full Text Available

    Se realizó la propagación por lotes de levadura cervecera y con base en estos resultados se ajustó un modelo matemático. Se llevaron a cabo cuatro fermentaciones con diferentes técnicas de alimentación y se confrontaron los resultados mediante simulación. Las técnicas estudiadas fueron alimentación puntual, alimentación continua-puntual y de alta densidad. La mayor concentración celular y factor de propagación se presentó con el cultivo de alta densidad. La simulación demostró que la alimentación continua o puntual afecta el comportamiento celular, ya sea sobre la velocidad específica y/o el factor estequiométrico Yx/s . Se encontró que la técnica de alta densidad aumenta el factor estequiométrico Yx/s.

    Beer yeast was propagated using batch culture, and a mathematical model was fitted to the resulting data. Intermittent, continuousintermittent, and high-density fed-batch techniques were used. The highest cell yield was found using the high density technique. Simulation also unveiled an effect of the feeding technique on cellular growth rate and yield. The high density technique increased the stoichiometric factor Yx/s.

  3. Decoherence in quantum gravity: issues and critiques

    Energy Technology Data Exchange (ETDEWEB)

    Anastopoulos, C [Department of Physics, University of Patras, 26500 Patras (Greece); Hu, B L [Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (United States)

    2007-05-15

    An increasing number of papers have appeared in recent years on decoherence in quantum gravity at the Planck energy. We discuss the meaning of decoherence in quantum gravity starting from the common notion that quantum gravity is a theory for the microscopic structures of spacetime, and invoking some generic features of quantum decoherence from the open systems viewpoint. We dwell on a range of issues bearing on this process including the relation between statistical and quantum, noise from effective field theory, the meaning of stochasticity, the origin of non-unitarity and the nature of nonlocality in this and related contexts. To expound these issues we critique on two representative theories: One claims that decoherence in quantum gravity scale leads to the violation of CPT symmetry at sub-Planckian energy which is used to explain today's particle phenomenology. The other uses this process in place with the Brownian motion model to prove that spacetime foam behaves like a thermal bath. A companion paper will deal with intrinsic and fundamental decoherence which also bear on issues in classical and quantum gravity.

  4. Decoherence in quantum gravity: issues and critiques

    International Nuclear Information System (INIS)

    Anastopoulos, C; Hu, B L

    2007-01-01

    An increasing number of papers have appeared in recent years on decoherence in quantum gravity at the Planck energy. We discuss the meaning of decoherence in quantum gravity starting from the common notion that quantum gravity is a theory for the microscopic structures of spacetime, and invoking some generic features of quantum decoherence from the open systems viewpoint. We dwell on a range of issues bearing on this process including the relation between statistical and quantum, noise from effective field theory, the meaning of stochasticity, the origin of non-unitarity and the nature of nonlocality in this and related contexts. To expound these issues we critique on two representative theories: One claims that decoherence in quantum gravity scale leads to the violation of CPT symmetry at sub-Planckian energy which is used to explain today's particle phenomenology. The other uses this process in place with the Brownian motion model to prove that spacetime foam behaves like a thermal bath. A companion paper will deal with intrinsic and fundamental decoherence which also bear on issues in classical and quantum gravity

  5. Discussion of entanglement entropy in quantum gravity

    International Nuclear Information System (INIS)

    Ma, Chen-Te

    2018-01-01

    We study entanglement entropy in gravity theory with quantum effects. A simplest model is a two dimensional Einstein gravity theory. We use an n-sheet manifold to obtain an area term of entanglement entropy by summing over all background fields. Based on AdS/CFT correspondence, strongly coupled conformal field theory is expected to describe perturbative quantum gravity theory. An ultraviolet complete quantum gravity theory should not depend on a choice of an entangling surface. To analysis the problem explicitly, we analyze two dimensional conformal field theory. We find that a coefficient of a universal term of entanglement entropy is independent of a choice of an entangling surface in two dimensional conformal field theory for one interval to show a tentative evidence. Finally, we discuss that translational invariance in a quantum system at zero temperature, size goes to infinity and no mass scales, except for cut-off, possibly be a necessary condition in quantum gravity theory by ruing out a volume law of entanglement entropy. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  7. A Phase Space Diagram for Gravity

    Directory of Open Access Journals (Sweden)

    Xavier Hernandez

    2012-05-01

    Full Text Available In modified theories of gravity including a critical acceleration scale a0, a critical length scale rM = (GM/a01/2 will naturally arise with the transition from the Newtonian to the dark matter mimicking regime occurring for systems larger than rM. This adds a second critical scale to gravity, in addition to the one introduced by the criterion v < c of the Schwarzschild radius, rS = 2GM/c2. The distinct dependencies of the two above length scales give rise to non-trivial phenomenology in the (mass, length plane for astrophysical structures, which we explore here. Surprisingly, extrapolation to atomic scales suggests gravity should be at the dark matter mimicking regime there.

  8. Entropic force, noncommutative gravity, and ungravity

    International Nuclear Information System (INIS)

    Nicolini, Piero

    2010-01-01

    After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.

  9. Quantum gravity from noncommutative spacetime

    International Nuclear Information System (INIS)

    Lee, Jungjai; Yang, Hyunseok

    2014-01-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  10. Quantum gravity from noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2014-12-15

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  11. Circulation-based Modeling of Gravity Currents

    Science.gov (United States)

    Meiburg, E. H.; Borden, Z.

    2013-05-01

    Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related

  12. Characteristics of a water pump system fed on photovoltaic panel connected to a battery group; Caracteristicas de um sistema de bombeamento d'agua alimentado por paineis fotovoltaicos ligado a um banco de baterias

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Roger N.; Gnoato, Estor; Santos, Jose A.A. dos; Oyama, Paulo T.; Pasa, Leandro A.; Fischborn, Marcos; Mayer, Giovano; Halmemann, Maria C. [Universidade Tecnologica Federal do Parana (UTFPR-MD), Medianeira, PR (Brazil)], Emails: gnoatto@utfpr.edu.br, airton@utfpr.edu.br, oyama@utfpr.edu.br, pasa@utfpr.edu.br, fisch@utfpr.edu.br, giovano@utfpr.edu.br, cristhal@fca.unesp.br

    2009-07-01

    The photovoltaic solar energy started to be explored intensively in the 80's when researches related to this technology received great investments because it is a clean, renewable and greatly available energy. To improve the efficiency in this form of electric energy generation it is necessary to know its characteristics in order to reach a coherent sizing and foresee in which equipment they can be installed. This project analyzes the characteristics of a water pump system fed on two batteries connected to two photovoltaic modules, with variation of the geometric height of pressure. With the increase of the geometric height of pressure, occurs the reduction of the voltage (not only in the pump but also in the battery) and of the outflow and the increase of the electric current and power. (author)

  13. Initial value formulation of higher derivative gravity

    International Nuclear Information System (INIS)

    Noakes, D.R.

    1983-01-01

    The initial value problem is considered for the conformally coupled scalar field and higher derivative gravity, by expressing the equations of each theory in harmonic coordinates. For each theory it is shown that the (vacuum) equations can take the form of a diagonal hyperbolic system with constraints on the initial data. Consequently these theories possess well-posed initial value formulations

  14. Optimal neutral beam heating scenario for FED

    International Nuclear Information System (INIS)

    Hively, L.M.; Houlberg, W.A.; Attenberger, S.E.

    1981-01-01

    Optimal neutral beam heating scenarios are determined for FED based on a 1/one-half/-D transport analysis. Tradeoffs are examined between neutral beam energy, power, and species mix for positive ion systems. A ramped density startup is found to provide the most economical heating. The resulting plasma power requirements are reduced by 10-30% from a constant density startup. For beam energies between 100 and 200 keV, the power needed to heat the plasma does not decrease significantly as beam energy is increased. This is due to reduced ion heating, more power in the fractional energy components, and rising power supply requirements as beam energy increases

  15. Cosmological Tests of Gravity

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.

  16. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  17. Antimatter gravity experiment

    International Nuclear Information System (INIS)

    Brown, R.E.; Camp, J.B.; Darling, T.W.

    1990-01-01

    An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development

  18. Lectures on Quantum Gravity

    CERN Document Server

    Gomberoff, Andres

    2006-01-01

    The 2002 Pan-American Advanced Studies Institute School on Quantum Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile, January 4-14, 2002. The school featured lectures by ten speakers, and was attended by nearly 70 students from over 14 countries. A primary goal was to foster interaction and communication between participants from different cultures, both in the layman’s sense of the term and in terms of approaches to quantum gravity. We hope that the links formed by students and the school will persist throughout their professional lives, continuing to promote interaction and the essential exchange of ideas that drives research forward. This volume contains improved and updated versions of the lectures given at the School. It has been prepared both as a reminder for the participants, and so that these pedagogical introductions can be made available to others who were unable to attend. We expect them to serve students of all ages well.

  19. Topics in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lamon, Raphael

    2010-06-29

    Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem

  20. Topics in quantum gravity

    International Nuclear Information System (INIS)

    Lamon, Raphael

    2010-01-01

    Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem. Furthermore, we