WorldWideScience

Sample records for gravity cerebellar glial

  1. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  2. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function

    Directory of Open Access Journals (Sweden)

    Chris I De Zeeuw

    2015-07-01

    Full Text Available Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the Bergmann glial cell in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum.

  3. Lack of connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Mika Tanaka

    2008-04-01

    Full Text Available Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43, a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre, which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in thier cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

  4. DNA synthesis during development and proliferation of glial cells in organotypic rat cerebellar culture

    International Nuclear Information System (INIS)

    Renkawek, K.

    1977-01-01

    DNA synthesis was investigated in glial cells in vitro with 3 H thymidine in concentration 1 μCi/ml medium. Incorporation of isotope into the glial nuclei has been found both in the explant (7-21%) and in the outgrowth (22-56%). DNA synthesis was dependent on the age of culture and due to the contact inhibition in the outgrowth. Results point out that marked DNA synthesis is a characteristic feature of glia differentiation and of reactive character of glial cells in vitro. (author)

  5. Gravity-dependent nystagmus and inner-ear dysfunction suggest anterior and posterior inferior cerebellar artery infarct.

    Science.gov (United States)

    Shaikh, Aasef G; Miller, Benjamin R; Sundararajan, Sophia; Katirji, Bashar

    2014-04-01

    Cerebellar lesions may present with gravity-dependent nystagmus, where the direction and velocity of the drifts change with alterations in head position. Two patients had acute onset of hearing loss, vertigo, oscillopsia, nausea, and vomiting. Examination revealed gravity-dependent nystagmus, unilateral hypoactive vestibulo-ocular reflex (VOR), and hearing loss ipsilateral to the VOR hypofunction. Traditionally, the hypoactive VOR and hearing loss suggest inner-ear dysfunction. Vertigo, nausea, vomiting, and nystagmus may suggest peripheral or central vestibulopathy. The gravity-dependent modulation of nystagmus, however, localizes to the posterior cerebellar vermis. Magnetic resonance imaging in our patients revealed acute cerebellar infarct affecting posterior cerebellar vermis, in the vascular distribution of the posterior inferior cerebellar artery (PICA). This lesion explains the gravity-dependent nystagmus, nausea, and vomiting. Acute onset of unilateral hearing loss and VOR hypofunction could be the manifestation of inner-ear ischemic injury secondary to the anterior inferior cerebellar artery (AICA) compromise. In cases of combined AICA and PICA infarction, the symptoms of peripheral vestibulopathy might masquerade the central vestibular syndrome and harbor a cerebellar stroke. However, the gravity-dependent nystagmus allows prompt identification of acute cerebellar infarct. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Origin, lineage and function of cerebellar glia.

    Science.gov (United States)

    Buffo, Annalisa; Rossi, Ferdinando

    2013-10-01

    The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Cerebellar Degeneration

    Science.gov (United States)

    ... FARA) National Ataxia Foundation (NAF) National Multiple Sclerosis Society See all related organizations Publications Degeneración cerebelosa Order NINDS Publications Definition Cerebellar degeneration is a process in which neurons ( ...

  8. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  9. gravity

    Indian Academy of Sciences (India)

    We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...

  10. Late Onset of Cerebellar Abiotrophy in a Boxer Dog

    Directory of Open Access Journals (Sweden)

    Sanjeev Gumber

    2010-01-01

    Full Text Available Cerebellar abiotrophy is a degenerative disorder of the central nervous system and has been reported in humans and animals. This case report documents clinical, histopathological, and immunohistochemical findings of cerebellar abiotrophy in an adult Boxer dog. A 3.5-year-old, female, tan Boxer dog presented with a six-week history of left-sided head tilt. Neurological examination and additional diagnostics during her three subsequent visits over 4.5 months revealed worsening of neurological signs including marked head pressing, severe proprioceptive deficits in all the four limbs, loss of menace response and palpebral reflex in the left eye, and a gradual seizure lasting one hour at her last visit. Based on the immunohistochemical staining for glial fibrillary acidic protein and histopathological examination of cerebellum, cerebellar cortical abiotrophy was diagnosed. This is the first reported case of cerebellar abiotrophy in a Boxer dog to our knowledge.

  11. Questioning the cerebellar doctrine

    NARCIS (Netherlands)

    Galliano, Elisa; De Zeeuw, Chris I

    2014-01-01

    The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells

  12. Endothelium in brain: Receptors, mitogenesis, and biosynthesis in glial cells

    International Nuclear Information System (INIS)

    MacCumber, M.W.; Ross, C.A.; Snyder, S.H.

    1990-01-01

    The authors have explored the cellular loci of endothelin (ET) actions and formation in the brain, using cerebellar mutant mice was well as primary and continuous cell cultures. A glial role is favored by several observations: (1) mutant mice lacking neuronal Purkinje cells display normal ET receptor binding and enhanced stimulation by ET of inositolphospholipid turnover; (ii) in weaver mice lacking neuronal granule cells, ET stimulation of inositolphospholipid turnover is not significantly diminished; (iii) C 6 glioma cells and primary cultures of cerebellar astroglia exhibit substantial ET receptor binding and ET-induced stimulation of inositolphospholipid turnover; (iv) ET promotes mitogenesis of C 6 glioma cells and primary cerebellar astroglia; and (v) primary cultures of cerebellar astroglia contain ET mRNA. ET also appears to have a neuronal role, since it stimulates inositolphospholipid turnover in primary cultures of cerebellar granule cells, and ET binding declines in granule cell-deficient mice. Thus, ET can be produced by glia and act upon both glia and neurons in a paracrine fashion

  13. Questioning the cerebellar doctrine.

    Science.gov (United States)

    Galliano, Elisa; De Zeeuw, Chris I

    2014-01-01

    The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine. © 2014 Elsevier B.V. All rights reserved.

  14. Neuronal-glial trafficking

    International Nuclear Information System (INIS)

    Bachelard, H.S.

    2001-01-01

    Full text: The name 'glia' originates from the Greek word for glue, because astro glia (or astrocytes) were thought only to provide an anatomical framework for the electrically-excitable neurones. However, awareness that astrocytes perform vital roles in protecting the neurones, which they surround, emerged from evidence that they act as neuroprotective K + -sinks, and that they remove potentially toxic extracellular glutamate from the vicinity of the neurones. The astrocytes convert the glutamate to non-toxic glutamine which is returned to the neurones and used to replenish transmitter glutamate. This 'glutamate-glutamine cycle' (established in the 1960s by Berl and his colleagues) also contributes to protecting the neurones against a build-up of toxic ammonia. Glial cells also supply the neurones with components for free-radical scavenging glutathione. Recent studies have revealed that glial cells play a more positive interactive role in furnishing the neurones with fuels. Studies using radioactive 14 C, 13 C-MRS and 15 N-GCMS have revealed that glia produce alanine, lactate and proline for consumption by neurones, with increased formation of neurotransmitter glutamate. On neuronal activation the release of NH 4 + and glutamate from the neurones stimulates glucose uptake and glycolysis in the glia to produce more alanine, which can be regarded as an 'alanine-glutamate cycle' Use of 14 C-labelled precursors provided early evidence that neurotransmitter GABA may be partly derived from glial glutamine, and this has been confirmed recently in vivo by MRS isotopomer analysis of the GABA and glutamine labelled from 13 C-acetate. Relative rates of intermediary metabolism in glia and neurones can be calculated using a combination of [1- 13 C] glucose and [1,2- 13 C] acetate. When glutamate is released by neurones there is a net neuronal loss of TCA intermediates which have to be replenished. Part of this is derived from carboxylation of pyruvate, (pyruvate carboxylase

  15. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    We studied the structures of the cerebellar cortex of young adult and old cats for age-related changes, which were statistically analysed. Nissl staining was used to visualize the cortical neurons. The immunohistochemical method was used to display glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytes and ...

  16. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine

    2013-01-01

    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  17. Glial tumors with neuronal differentiation.

    Science.gov (United States)

    Park, Chul-Kee; Phi, Ji Hoon; Park, Sung-Hye

    2015-01-01

    Immunohistochemical studies for neuronal differentiation in glial tumors revealed subsets of tumors having both characteristics of glial and neuronal lineages. Glial tumors with neuronal differentiation can be observed with diverse phenotypes and histologic grades. The rosette-forming glioneuronal tumor of the fourth ventricle and papillary glioneuronal tumor have been newly classified as distinct disease entities. There are other candidates for classification, such as the glioneuronal tumor without pseudopapillary architecture, glioneuronal tumor with neuropil-like islands, and the malignant glioneuronal tumor. The clinical significance of these previously unclassified tumors should be confirmed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cerebellar anatomy as applied to cerebellar microsurgical resections

    Directory of Open Access Journals (Sweden)

    Alejandro Ramos

    2012-06-01

    Full Text Available OBJECTIVE: To define the anatomy of dentate nucleus and cerebellar peduncles, demonstrating the surgical application of anatomic landmarks in cerebellar resections. METHODS: Twenty cerebellar hemispheres were studied. RESULTS: The majority of dentate nucleus and cerebellar peduncles had demonstrated constant relationship to other cerebellar structures, which provided landmarks for surgical approaching. The lateral border is separated from the midline by 19.5 mm in both hemispheres. The posterior border of the cortex is separated 23.3 mm from the posterior segment of the dentate nucleus; the lateral one is separated 26 mm from the lateral border of the nucleus; and the posterior segment of the dentate nucleus is separated 25.4 mm from the posterolateral angle formed by the junction of lateral and posterior borders of cerebellar hemisphere. CONCLUSIONS: Microsurgical anatomy has provided important landmarks that could be applied to cerebellar surgical resections.

  19. Immunohistochemical demonstration of glial markers in retinoblastomas

    DEFF Research Database (Denmark)

    Schrøder, H D

    1987-01-01

    Twenty retinoblastomas were studied immunohistochemically in order to visualize glial cells. In the retina, the glial cells in the ganglion cell layer and the Müller cells were GFAP positive, while only the glial cells of the ganglion cell layer expressed S-100 reactivity. In the tumours S-100/GFAP...... cells reactive for both S-100 and GFAP were demonstrated. The latter findings may represent differentiation in a glial direction in the more mature parts of retinoblastoma....

  20. Falls and cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    I. V. Damulin

    2015-01-01

    Full Text Available The paper considers the main causes of falls. Whatever their cause is, falls may lead to severe maladjustment in everyday life. In nearly 1 out of 10 cases, they are accompanied by severe injuries, including fractures (most commonly those of the proximal femur and humerus, hands, pelvic bones, and vertebrae, subdural hematoma, and severe soft tissue and head injuries. This process is emphasized to be multifactorial. Particular emphasis is laid on the involvement of the cerebellum and its associations, which may be accompanied by falls. This is clinically manifested mainly by gait disorders. Walking is a result of an interaction of three related functions (locomotion, maintenance of balance and adaptive reactions. In addition to synergies related to locomotion and balance maintenance, standing at rest and walking are influenced bythe following factors: postural and environmental information (proprioceptive, vestibular, and visual, the capacity to interpret and integrate this information, the ability of the musculoskeletal system to make movements, and the capability to optimally modulate these movements in view of the specific situation and the ability to choose and adapt synergy in terms of external factors and the capacities and purposes of an individual. The clinical signs of damage to the cerebellum and its associations are considered in detail. These structures are emphasized to be involved not only in movements, but also in cognitive functions. The major symptoms that permit cerebellar dysfunction to be diagnosed are given. Symptoms in cerebellar injuries are generally most pronounced when suddenly changing the direction of movements or attempting to start walking immediately after a dramatic rise. The magnitude of ataxia also increases in a patient who tries to decrease the step size. Falling tendencies or bending to one side (in other symptoms characteristic of cerebellar diseases suggest injury of the corresponding

  1. Cerebellar abiotrophy in a miniature schnauzer

    OpenAIRE

    Berry, Michelle L.; Blas-Machado, Uriel

    2003-01-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  2. Cerebellar abiotrophy in a miniature schnauzer.

    Science.gov (United States)

    Berry, Michelle L; Blas-Machado, Uriel

    2003-08-01

    A 3.5-month-old miniature schnauzer was presented for signs of progressive cerebellar ataxia. Necropsy revealed cerebellar abiotrophy. This is the first reported case of cerebellar abiotrophy in a purebred miniature schnauzer.

  3. 3. Impact of altered gravity on CNS development and behavior in male and female rats

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Ladd, B.; Sulkowski, V. A.; Sulkowski, Z. L.; Baxter, M. G.

    The present study examined the effect of altered gravity on CNS development. Specifically, we compared neurodevelopment, behavior, cerebellar structure and protein expression in rat neonates exposed perinatally to hypergravity. Pregnant Sprague-Dawley rats were exposed to 1.5G-1.75G hypergravity on a 24-ft centrifuge starting on gestational day (G) 10, through giving birth on G22/G23, and nursing their offspring through postnatal day (P) 21. Cerebellar mass on P6 was decreased in 1.75G-exposed male pups by 27.5 percent; in 1.75G-exposed female pups it was decreased by 22.5 percent. The observed cerebellar changes were associated with alterations in neurodevelopment and motor behavior. Exposure to hypergravity impaired performance on the following neurocognitive tests: (1) righting time on P3 was more than doubled in 1.75G-exposed rats and the effect appeared more pronounced in female pups, (2) startle response on P10 was delayed in both male and female HG pups; HG pups were one-fifth as likely to respond to a clapping noise as SC pups, and (3) performance on a rotorod on P21 was decreased in HG pups; the duration of the stay on rotorod recorded for HG pups of both sexes was one tenth of the SC pups. Furthermore, Western blot analysis of selected cerebellar proteins suggested gender-specific changes in glial and neuronal proteins. On P6, GFAP expression was decreased by 59.2 percent in HG males, while no significant decrease was observed in female cerebella. Synaptophysin expression was decreased in HG male neonates by 29.9 percent and in HG female neonates by 20.7 percent as compared to its expression in SC cerebella. The results of this experiment suggest that perinatal exposure to hypergravity affects cerebellar development and behavior differently in male and female neonates. If one accepts that hypergravity is a good paradigm to study the effect of microgravity on the CNS, and since males and females were shown to respond differently to hypergravity, it can be

  4. Toxic agents causing cerebellar ataxias.

    Science.gov (United States)

    Manto, Mario

    2012-01-01

    The cerebellum is particularly vulnerable to intoxication and poisoning, especially so the cerebellar cortex and Purkinje neurons. In humans, the most common cause of a toxic lesion to the cerebellar circuitry is alcohol related, but the cerebellum is also a main target of drug exposure (such as anticonvulsants, antineoplastics, lithium salts, calcineurin inhibitors), drug abuse and addiction (such as cocaine, heroin, phencyclidine), and environmental toxins (such as mercury, lead, manganese, toluene/benzene derivatives). Although data for the prevalence and incidence of cerebellar lesions related to intoxication and poisoning are still unknown in many cases, clinicians should keep in mind the list of agents that may cause cerebellar deficits, since toxin-induced cerebellar ataxias are not rare in daily practice. Moreover, the patient's status may require immediate therapies when the intoxication is life-threatening. 2012 Elsevier B.V. All rights reserved.

  5. Sleep disorders in cerebellar ataxias

    Directory of Open Access Journals (Sweden)

    José L. Pedroso

    2011-04-01

    Full Text Available Cerebellar ataxias comprise a wide range of etiologies leading to central nervous system-related motor and non-motor symptoms. Recently, a large body of evidence has demonstrated a high frequency of non-motor manifestations in cerebellar ataxias, specially in autosomal dominant spinocerebellar ataxias (SCA. Among these non-motor dysfunctions, sleep disorders have been recognized, although still under or even misdiagnosed. In this review, we highlight the main sleep disorders related to cerebellar ataxias focusing on REM sleep behavior disorder (RBD, restless legs syndrome (RLS, periodic limb movement in sleep (PLMS, excessive daytime sleepiness (EDS, insomnia and sleep apnea.

  6. Nasal Glial Heterotopia with Cleft Palate.

    Science.gov (United States)

    Chandna, Sudhir; Mehta, Milind A; Kulkarni, Abhishek Kishore

    2018-01-01

    Congenital midline nasal masses are rare anomalies of which nasal glial heterotopia represents an even rarer subset. We report a case of a 25-day-old male child with nasal glial heterotopia along with cleft palate suggesting embryonic fusion anomaly which was treated with excision and primary closure for nasal mass followed by palatal repair at later date.

  7. Glial heterotopia of maxilla: A clinical surprise

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Mahalik

    2011-01-01

    Full Text Available Glial heterotopia is a rare congenital mass lesion which often presents as a clinical surprise. We report a case of extranasal glial heterotopia in a neonate with unusual features. The presentation, management strategy, etiopathogenesis and histopathology of the mass lesion has been reviewed.

  8. Nasal glial heterotopia with cleft palate

    Directory of Open Access Journals (Sweden)

    Sudhir Chandna

    2018-01-01

    Full Text Available Congenital midline nasal masses are rare anomalies of which nasal glial heterotopia represents an even rarer subset. We report a case of a 25-day-old male child with nasal glial heterotopia along with cleft palate suggesting embryonic fusion anomaly which was treated with excision and primary closure for nasal mass followed by palatal repair at later date.

  9. Complex partial seizures: cerebellar metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Theodore, W.H.; Fishbein, D.; Deitz, M.; Baldwin, P.

    1987-07-01

    We used positron emission tomography (PET) with (/sup 18/F)2-deoxyglucose to study cerebellar glucose metabolism (LCMRglu) and the effect of phenytoin (PHT) in 42 patients with complex partial seizures (CPS), and 12 normal controls. Mean +/- SD patient LCMRglu was 6.9 +/- 1.8 mg glucose/100 g/min (left = right), significantly lower than control values of 8.5 +/- 1.8 (left, p less than 0.006), and 8.3 +/- 1.6 (right, p less than 0.02). Only four patients had cerebellar atrophy on CT/MRI; cerebellar LCMRglu in these was 5.5 +/- 1.5 (p = 0.054 vs. total patient sample). Patients with unilateral temporal hypometabolism or EEG foci did not have lateralized cerebellar hypometabolism. Patients receiving phenytoin (PHT) at the time of scan and patients with less than 5 years total PHT exposure had lower LCMRglu, but the differences were not significant. There were weak inverse correlations between PHT level and cerebellar LCMRglu in patients receiving PHT (r = -0.36; 0.05 less than p less than 0.1), as well as between length of illness and LCMRglu (r = -0.22; 0.05 less than p less than 0.1). Patients with complex partial seizures have cerebellar hypometabolism that is bilateral and due only in part to the effect of PHT.

  10. Pediatric Glial Heterotopia in the Medial Canthus.

    Science.gov (United States)

    Kim, Soung Min; Amponsah, Emmanuel Kofi; Eo, Mi Young; Cho, Yun Ju; Lee, Suk Keun

    2017-11-01

    Glial heterotopias are rare, benign, congenital, midline, and nonteratomatous extracranial glial tissue. They may be confused as encephalocele or dermoid cysts and are mostly present in the nose.An 8-month-old African female child presented with a slow growing paranasal mass. The mass had been present at the left upper medial canthus since birth and had slowly and progressively enlarged. There was no communication between the mass and the cranial cavity during the operational procedure. The mass was immunohistochemically positive for S-100 protein as well as for glial fibrillary acidic protein, but negative for proliferating cell nuclear antigen. This suggested that the mass was composed of benign glial tissues with many astrocytes.The purpose of this report is to demonstrate the first patient with pediatric glial heterotopic tissue in the medial canthus and to report the clinical importance of its immunohistochemical findings.

  11. [Cerebellar cognitive affective syndrome secondary to a cerebellar tumour].

    Science.gov (United States)

    Domínguez-Carral, J; Carreras-Sáez, I; García-Peñas, J J; Fournier-Del Castillo, C; Villalobos-Reales, J

    2015-01-01

    Cerebellar cognitive affective syndrome is characterized by disturbances of executive function, impaired spatial cognition, linguistic difficulties, and personality change. The case of an 11 year old boy is presented, with behavior problems, learning difficulties and social interaction problems. In the physical examination he had poor visual contact, immature behavior, reduced expressive language and global motor disability with gait dyspraxia, with no defined cerebellar motor signs. In the neuropsychological evaluation he has a full scale overall intellectual quotient of 84, with signs of cerebellar cognitive affective syndrome. A tumour affecting inferior cerebellar vermis was observed in the magnetic resonance imaging, which had not significantly grown during 5 years of follow up. The cerebellum participates in controlling cognitive and affective functions. Cerebellar pathology must be considered in the differential diagnosis of children with cognitive or learning disorder with associated behavioral and emotional components. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  12. Glial heterotopia of the oral cavity

    Directory of Open Access Journals (Sweden)

    Radhames E. Lizardo

    2015-07-01

    Full Text Available We report an unusual case of a glial heterotopia arising from the oral cavity of an African neonate. The patient presented with an external pedunculated oral mass which was connected to the anterior hard palate by a firm, rubbery stalk of mucosal tissue. While the mass appeared painless, it interfered with the infant's feeding and was disturbing to the parents. After a computed tomography scan excluded an intracranial connection, the mass was excised at its base and sent for biopsy. Histopathology examination confirmed glial heterotopia. Glial heterotopias should be included in the differential diagnosis of congenital masses in the oral region.

  13. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia

    DEFF Research Database (Denmark)

    Windrem, Martha S.; Osipovitch, Mikhail; Liu, Zhengshan

    2017-01-01

    with childhood-onset SCZ. After neonatal implantation into myelin-deficient shiverer mice, SCZ GPCs showed premature migration into the cortex, leading to reduced white matter expansion and hypomyelination relative to controls. The SCZ glial chimeras also showed delayed astrocytic differentiation and abnormal...... astrocytic morphologies. When established in myelin wild-type hosts, SCZ glial mice showed reduced prepulse inhibition and abnormal behavior, including excessive anxiety, antisocial traits, and disturbed sleep. RNA-seq of cultured SCZ human glial progenitor cells (hGPCs) revealed disrupted glial...

  14. Hypertensive cerebellar hemorrhage and cerebellar hemorrhage caused by cryptic angioma

    International Nuclear Information System (INIS)

    Yoshida, Shinichi; Sano, Keiji; Kwak, Suyong; Saito, Isamu.

    1981-01-01

    A series of 44 patients with hypertensive cerebellar hemorrhage and nine patients with cerebellar hemorrhage caused by small angiomas is described. Hypertensive hemorrhage occurred most frequently in the patients in their seventies, whereas the onset of angioma-caused hemorrhage was often seen below the age of 40. Clinical syndromes of cerebellar hemorrhages can be categorized into three basic types: the vertigo syndrome, cerebellar dysfunction syndrome and brain stem compression syndrome. Patients with small (>= 2 cm in diameter in CT scans) and medium-sized (2 cm = 3 cm) hematomas deteriorated into unresponsive conditions and developed signs of brain stem compression. Surgical mortality was 32% in the hypertensive group, while it was 0% in the angioma group. Mortality as well as morbidity in both groups was strongly influenced by the preoperative status of consciousness. Our results suggest that substantial improvement could be obtained in the overall outcome of this disease by emergency craniectomy and removal of hematomas in all patients with large hematomas regardless of the levels of consciousness and regardless of the causes of bleeding. Furthermore, when clinical information and CT findings are suggestive of a ''cryptic'' angioma as the causative lesion, posterior fossa surgery may be indicated to extirpate the lesion, even if the hematoma is small. (author)

  15. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex

    International Nuclear Information System (INIS)

    Wilkin, G.P.; Csillag, A.; Balazs, R.; Kingsbury, A.E.; Wilson, J.E.; Johnson, A.L.

    1981-01-01

    A study was made of [ 3 H ]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [ 3 H]glycine at the low concentration used. Glial cells also took up [ 3 H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [ 3 H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [ 3 H]GABA uptake (Ksub(i) over 600 μM vs the Ksub(t) of about 20 μM) and that GABA is an even weaker inhibitor of [ 3 H]glycine uptake. (Auth.)

  16. Cerebellar arteriovenous malformations in children

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, P.D. [Sheffield Univ. (United Kingdom). Acad. Dept. of Radiol.; Blaser, S.; Armstrong, D.; Chuang, S.; Harwood-Nash, D. [Division of Neuroradiology, The Hospital for Sick Children and University of Toronto, Toronto (Canada); Humphreys, R.P. [Division of Neurosurgery, The Hospital for Sick Children and University of Toronto, Toronto (Canada)

    1998-05-01

    We review the presentation, imaging findings and outcome in 18 children with cerebellar arteriovenous malformations (AVM). This group is of particular interest because of the reported poor outcome despite modern imaging and neurosurgical techniques. All children had CT and 15 underwent catheter angiography at presentation. Several of the children in the latter part of the study had MRI. Of the 18 children, 17 presented with a ruptured AVM producing intracranial haemorrhage. The remaining child presented with temporal lobe epilepsy and was shown to have temporal, vermian and cerebellar hemisphere AVM. This child had other stigmata of Osler-Weber-Rendu syndrome. Three other children had pre-existing abnormalities of possible relevance. One had a vascular malformation of the cheek and mandible, one a documented chromosomal abnormality and another a midline cleft upper lip and palate. Six of the 17 children with a ruptured cerebellar AVM died within 7 days of the ictus. Vascular pathology other than an AVM was found in 10 of the 14 children with a ruptured cerebellar AVM who had angiography: 4 intranidal aneurysms, 5 venous aneurysms and 2 cases of venous outflow obstruction (one child having both an aneurysm and obstruction). The severity of clinical presentation was directly related to the size of the acute haematoma, which was a reasonable predictor of outcome. (orig.) With 4 figs., 4 tabs., 23 refs.

  17. Language Impairment in Cerebellar Ataxia

    NARCIS (Netherlands)

    van Gaalen, Judith; de Swart, Bert J. M.; Oostveen, Judith; Knuijt, Simone; van de Warrenburg, Bart P. C.; Kremer, Berry (H. ) P. H.

    Background: Several studies have suggested that language impairment can be observed in patients with cerebellar pathology. The aim of this study was to investigate language performance in patients with spinocerebellar ataxia type 6 (SCA6). Methods: We assessed speech and language in 29 SCA6 patients

  18. Cerebellar arteriovenous malformations in children

    International Nuclear Information System (INIS)

    Griffiths, P.D.; Humphreys, R.P.

    1998-01-01

    We review the presentation, imaging findings and outcome in 18 children with cerebellar arteriovenous malformations (AVM). This group is of particular interest because of the reported poor outcome despite modern imaging and neurosurgical techniques. All children had CT and 15 underwent catheter angiography at presentation. Several of the children in the latter part of the study had MRI. Of the 18 children, 17 presented with a ruptured AVM producing intracranial haemorrhage. The remaining child presented with temporal lobe epilepsy and was shown to have temporal, vermian and cerebellar hemisphere AVM. This child had other stigmata of Osler-Weber-Rendu syndrome. Three other children had pre-existing abnormalities of possible relevance. One had a vascular malformation of the cheek and mandible, one a documented chromosomal abnormality and another a midline cleft upper lip and palate. Six of the 17 children with a ruptured cerebellar AVM died within 7 days of the ictus. Vascular pathology other than an AVM was found in 10 of the 14 children with a ruptured cerebellar AVM who had angiography: 4 intranidal aneurysms, 5 venous aneurysms and 2 cases of venous outflow obstruction (one child having both an aneurysm and obstruction). The severity of clinical presentation was directly related to the size of the acute haematoma, which was a reasonable predictor of outcome. (orig.)

  19. Speech Prosody in Cerebellar Ataxia

    Science.gov (United States)

    Casper, Maureen A.; Raphael, Lawrence J.; Harris, Katherine S.; Geibel, Jennifer M.

    2007-01-01

    Persons with cerebellar ataxia exhibit changes in physical coordination and speech and voice production. Previously, these alterations of speech and voice production were described primarily via perceptual coordinates. In this study, the spatial-temporal properties of syllable production were examined in 12 speakers, six of whom were healthy…

  20. NMDA Receptors in Glial Cells: Pending Questions.

    Science.gov (United States)

    Dzamba, David; Honsa, Pavel; Anderova, Miroslava

    2013-05-01

    Glutamate receptors of the N-methyl-D-aspartate (NMDA) type are involved in many cognitive processes, including behavior, learning and synaptic plasticity. For a long time NMDA receptors were thought to be the privileged domain of neurons; however, discoveries of the last 25 years have demonstrated their active role in glial cells as well. Despite the large number of studies in the field, there are many unresolved questions connected with NMDA receptors in glia that are still a matter of debate. The main objective of this review is to shed light on these controversies by summarizing results from all relevant works concerning astrocytes, oligodendrocytes and polydendrocytes (also known as NG2 glial cells) in experimental animals, further extended by studies performed on human glia. The results are divided according to the study approach to enable a better comparison of how findings obtained at the mRNA level correspond with protein expression or functionality. Furthermore, special attention is focused on the NMDA receptor subunits present in the particular glial cell types, which give them special characteristics different from those of neurons - for example, the absence of Mg(2+) block and decreased Ca(2+) permeability. Since glial cells are implicated in important physiological and pathophysiological roles in the central nervous system (CNS), the last part of this review provides an overview of glial NMDA receptors with respect to ischemic brain injury.

  1. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males...... and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons...

  2. Visuomotor learning in cerebellar patients.

    Science.gov (United States)

    Timmann, D; Shimansky, Y; Larson, P S; Wunderlich, D A; Stelmach, G E; Bloedel, J R

    1996-11-01

    The aim of the present study was to demonstrate that patients with pathology affecting substantial regions of the cerebellum can improve their performance in a series of two-dimensional tracing tasks, thus supporting the view that this type of motor behavior can be acquired even when the integrity of this structure is compromised. Eight patients with chronic, isolated cerebellar lesions and eight age- and sex-matched healthy controls were tested. Three patients had mild, five had moderate upper limb ataxia. The experiment was divided into two parts. In the first, subjects traced an irregularly shaped outline over 20 consecutive trials ('Trace 1' task). Next, subjects were asked to redraw the object without any underlying template as a guide ('Memory 1' task). In the second part of the study, subjects were asked to trace a different, irregularly shaped outline over 20 consecutive trials ('Trace 2' task). Next, they were required to redraw it by memory with its axis rotated 90 degrees ('Memory 2' task). In each of the memory tasks the template was placed over the drawn image after each trial and shown to the subjects. The error of performance was determined by calculating three different measurements, each focused on different aspects of the task. Based on these measurements, the cerebellar patients showed improvement in both memory tasks. In the 'Memory 1' task the calculated error decreased significantly for the patients with mild ataxia. In the 'Memory 2' task all cerebellar patients improved their performance substantially enough to reduce significantly the magnitude of all three error measurements. The experiments demonstrate that patients with cerebellar lesions are capable of improving substantially their performance of a complex motor task involving the recall of memorized shapes and the visuomotor control of a tracing movement.

  3. Glial K(+) Clearance and Cell Swelling

    DEFF Research Database (Denmark)

    Macaulay, Nanna; Zeuthen, Thomas

    2012-01-01

    An important feature of neuronal signalling is the increased concentration of K(+) in the extracellular space. The K(+) concentration is restored to its original basal level primarily by uptake into nearby glial cells. The molecular mechanisms by which K(+) is transferred from the extracellular...... space into the glial cell are debated. Although spatial buffer currents may occur, their quantitative contribution to K(+) clearance is uncertain. The concept of spatial buffering of K(+) precludes intracellular K(+) accumulation and is therefore (i) difficult to reconcile with the K(+) accumulation...

  4. Cerebellar ataxia of early onset

    International Nuclear Information System (INIS)

    Yamashita, Sumimasa; Miyake, Shota; Yamada, Michiko; Iwamoto, Hiroko; Yamada, Kazuhiko.

    1989-01-01

    Eight cases of childhood cerebellar ataxia were reported. All these cases showed chronic cerebellar ataxia with early onset, and the other diseases of cerebellum such as infections, neoplasms and storage diseases were excluded by clinical symptoms and laboratory findings including blood counts, blood chemistry, lactate, pyruvate, ceruloplasmine, urinalysis, serum immunoglobulins, amino acid analysis in blood and urine, CSF analysis, leukocyte lysosomal enzymes, MCV, EMG, EEG and brain X-CT. Two pairs of siblings were included in this study. The clinical diagnosis were cerebellar type (5), spinocerebellar type (1), one Marinesco-Sjoegren syndrome and undetermined type (1). The age of onset was 1 to 5 years. The chief complaint was motor developmental delay in 6 cases; among them 5 patients could walk alone at the ages of 2 to 3 years'. Mental retardation was observed in 7 cases and epilepsy in 2. TRH was effective in 5 cases. The MRI study revealed that the area of medial sagittal slice of the cerebellum was reduced significantly in all cases and also that of pons was reduced in 5 cases. Different from typical adult onset spinocerebellar degenerations, most of the present cases have achieved slow developmental milestones and the clinical course was not progressive. Genetic factors are suspected in the pathogenesis of this disease in some cases. (author)

  5. Cerebellar mutism--report of four cases.

    Science.gov (United States)

    Ozimek, A; Richter, S; Hein-Kropp, C; Schoch, B; Gorissen, B; Kaiser, O; Gizewski, E; Ziegler, W; Timmann, D

    2004-08-01

    The aim of the present study was to investigate the manifestations of mutism after surgery in children with cerebellar tumors. Speech impairment following cerebellar mutism in children was investigated based on standardized acoustic speech parameters and perceptual criteria. Mutistic and non-mutistic children after cerebellar surgery as well as orthopedic controls were tested pre-and postoperatively. Speech impairment was compared with the localization of cerebellar lesions (i. e. affected lobules and nuclei). Whereas both control groups showed no abnormalities in speech and behavior, the mutistic group could be divided into children with dysarthria in post mutistic phase and children with mainly behavioral disturbances. In the mutistic children involvement of dentate and fastigial nuclei tended to be more frequent and extended than in the nonmutistic cerebellar children. Cerebellar mutism is a complex phenomenon of at least two types. Dysarthric symptoms during resolution of mutism support the anarthria hypothesis, while mainly behavioral changes suggest an explanation independent from speech motor control.

  6. Massive cerebellar infarction: a neurosurgical approach

    Directory of Open Access Journals (Sweden)

    Salazar Luis Rafael Moscote

    2015-12-01

    Full Text Available Cerebellar infarction is a challenge for the neurosurgeon. The rapid recognition will crucial to avoid devastating consequences. The massive cerebellar infarction has pseudotumoral behavior, should affect at least one third of the volume of the cerebellum. The irrigation of the cerebellum presents anatomical diversity, favoring the appearance of atypical infarcts. The neurosurgical management is critical for massive cerebellar infarction. We present a review of the literature.

  7. Cerebellar defects in a mouse model of juvenile neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Weimer, Jill M; Benedict, Jared W; Getty, Amanda L; Pontikis, Charlie C; Lim, Ming J; Cooper, Jonathan D; Pearce, David A

    2009-04-17

    Juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, is a neurodegenerative disease resulting from a mutation in CLN3, which presents clinically with visual deterioration, seizures, motor impairments, cognitive decline, hallucinations, loss of circadian rhythm, and premature death in the late-twenties to early-thirties. Using a Cln3 null (Cln3(-/-)) mouse, we report here several deficits in the cerebellum in the absence of Cln3, including cell loss and early onset motor deficits. Surprisingly, early onset glial activation and selective neuronal loss within the mature fastigial pathway of the deep cerebellar nuclei (DCN), a region critical for balance and coordination, are seen in many regions of the Cln3(-/-) cerebellum. Additionally, there is a loss of Purkinje cells (PC) in regions of robust Bergmann glia activation in Cln3(-/-) mice and human JNCL post-mortem cerebellum. Moreover, the Cln3(-/-) cerebellum had a mis-regulation in granule cell proliferation and maintenance of PC dendritic arborization and spine density. Overall, this study defines a novel multi-faceted, early-onset cerebellar disruption in the Cln3 null brain, including glial activation, cell loss, and aberrant cell proliferation and differentiation. These early alterations in the maturation of the cerebellum could underlie some of the motor deficits and pathological changes seen in JNCL patients.

  8. Clinicopathological features of cerebellar lipidized medulloblastoma: a case report and review of literatures

    Directory of Open Access Journals (Sweden)

    LIU Li-yan

    2012-06-01

    Full Text Available Objective To explore the clinicopathological features of cerebellar lipidized medulloblastoma. Methods The clinical manifestations, neuroimaging, histopathological and immunohistochemical features were analysed in one case of lipidized medulloblastoma in the cerebellar vermis. Related literatures were reviewed. Results A 26-year-old man presented with intermittent headache,accompanied by dizziness, nausea and vomiting. The magnetic resonance imaging (MRI demonstrated a mass located the cerebellar vermis convex to the fourth ventricle. The tumor with well-demarcated boundary was homogeneous hypointense on T1 weighted and heterogeneous hyperintense on T2 weighted images, and enhanced brilliantly and homogenously on contrast. The patient subsequently underwent gross total mass resection. Microscopically,there was diffuse infiltration by high cellularity of tumor cells. The cytoplasm were thin eosinophilic to amphophilic. The neoplastic cells showed round to oval hyperchromatic nuclei with a delicately stippled chromatin and occasional conspicuous nucleoli and numerous mitotic figures were also present. Thin-wall vascular proliferation was detected. Lipid-laden cells were focally distributed in tumor tissue. On immunohistochemical examination, the neoplasm was reactive for CD56 and synaptophysin (Syn, focally positive for neurofilament protein (NF, weakly positive for oligodendrocyte lineage transcription factor 2 (Olig-2, and negtive for nestin, neuronal nuclei (NeuN, S-100 protein (S-100, glial fibrillary acidic protein (GFAP and epithelial membrane antigen (EMA. TP53 protein was over expressed in 10% of tumor cells. Ki-67 antigen labeling index were about 40% . Conclusion Cerebellar lipidized medulloblastoma is rare. Neuroimaging showed space occupying lesion in cerebellar vermis. Histologically, the tumor cells were consisted of monotonous, round cells with focal accumulations of lipidized cells. The differential diagnosis include

  9. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Glial fibrillary acidic protein assay... Glial fibrillary acidic protein assay. (a) Purpose. Chemical-induced injury of the nervous system, i.e... paragraph (e)(3) in this section). Assays of glial fibrillary acidic protein (GFAP), the major intermediate...

  10. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  11. Cerebellar atrophy in epileptic patients

    International Nuclear Information System (INIS)

    Taneva, N.

    1991-01-01

    52 patients with epileptic seizures of different form, frequency and duration who had received long term treatment with anticonvulsive drugs were examined on Siretom 2000, a brain scanner of II generation. 6 standard incisions were made in all patients in the area of cerebellum, side ventricules and high convexity. Additional scanning with an incision width of 5 mm was made when pathological changes were detected. There were found 3 cases of cerebellar atrophy, 3 - cerebral atrophy, 1 - combined atrophy and 4 - with other changes. It was difficult to establish any relation between the rerebellar atrophy and the type of anticonvulsant used because treatment had usually been complex. 1 fig., 1 tab., 4 refs

  12. Learning of Sensory Sequences in Cerebellar Patients

    Science.gov (United States)

    Frings, Markus; Boenisch, Raoul; Gerwig, Marcus; Diener, Hans-Christoph; Timmann, Dagmar

    2004-01-01

    A possible role of the cerebellum in detecting and recognizing event sequences has been proposed. The present study sought to determine whether patients with cerebellar lesions are impaired in the acquisition and discrimination of sequences of sensory stimuli of different modalities. A group of 26 cerebellar patients and 26 controls matched for…

  13. Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis.

    Science.gov (United States)

    Albert, Monika; Barrantes-Freer, Alonso; Lohrberg, Melanie; Antel, Jack P; Prineas, John W; Palkovits, Miklós; Wolff, Joachim R; Brück, Wolfgang; Stadelmann, Christine

    2017-11-01

    In multiple sclerosis, cerebellar symptoms are associated with clinical impairment and an increased likelihood of progressive course. Cortical atrophy and synaptic dysfunction play a prominent role in cerebellar pathology and although the dentate nucleus is a predilection site for lesion development, structural synaptic changes in this region remain largely unexplored. Moreover, the mechanisms leading to synaptic dysfunction have not yet been investigated at an ultrastructural level in multiple sclerosis. Here, we report on synaptic changes of dentate nuclei in post-mortem cerebella of 16 multiple sclerosis patients and eight controls at the histological level as well as an electron microscopy evaluation of afferent synapses of the cerebellar dentate and pontine nuclei of one multiple sclerosis patient and one control. We found a significant reduction of afferent dentate synapses in multiple sclerosis, irrespective of the presence of demyelination, and a close relationship between glial processes and dentate synapses. Ultrastructurally, we show autophagosomes containing degradation products of synaptic vesicles within dendrites, residual bodies within intact-appearing axons and free postsynaptic densities opposed to astrocytic appendages. Our study demonstrates loss of dentate afferent synapses and provides, for the first time, ultrastructural evidence pointing towards neuron-autonomous and neuroglia-mediated mechanisms of synaptic degradation in chronic multiple sclerosis. © 2016 International Society of Neuropathology.

  14. Glial-glial and glial-neuronal interfaces in radiation-induced, glia-depleted spinal cord

    International Nuclear Information System (INIS)

    Gilmore, S.A.; Sims, T.J.

    1997-01-01

    This review summarises some of the major findings derived from studies using the model of a glia-depleted environment developed and characterised in this laboratory. Glial depletion is achieved by exposure of the immature rodent spinal cord to x-radiation which markedly reduces both astrocyte and oligodendrocyte populations and severely impairs myelination. This glia-depleted, hypomylinated state presents a unique opportunity to examine aspects of spinal cord maturation in the absence of a normal glial population. An associated sequela within 2-3 wk following irradiation is the appearance of Schwann cells in the dorsal portion of the spinal cord. Characteristics of these intraspinal Schwann cells, their patterns of myelination or ensheathment, and their interrelations with the few remaining central glia have been examined. A later sequela is the development of Schwann cells in the ventral aspect of the spinal cord where they occur predominantly in the grey matter. (author)

  15. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  16. The bihemispheric posterior inferior cerebellar artery

    International Nuclear Information System (INIS)

    Cullen, Sean P.; Ozanne, Augustin; Alvarez, Hortensia; Lasjaunias, Pierre

    2005-01-01

    Rarely, a solitary posterior inferior cerebellar artery (PICA) will supply both cerebellar hemispheres. We report four cases of this variant. We present a retrospective review of clinical information and imaging of patients undergoing angiography at our institution to identify patients with a bihemispheric PICA. There were four patients: three males and one female. One patient presented with a ruptured arteriovenous malformation, and one with a ruptured aneurysm. Two patients had normal angiograms. The bihemispheric PICA was an incidental finding in all cases. The bihemispheric vessel arose from the dominant left vertebral artery, and the contralateral posterior inferior cerebellar artery was absent or hypoplastic. In all cases, contralateral cerebellar supply arose from a continuation of the ipsilateral PICA distal to the choroidal point and which crossed the midline dorsal to the vermis. We conclude that the PICA may supply both cerebellar hemispheres. This rare anatomic variant should be considered when evaluating patients with posterior fossa neurovascular disease. (orig.)

  17. White Matter Glial Pathology in Autism

    Science.gov (United States)

    2015-11-01

    AWARD NUMBER: W81XWH-12-1-0302 TITLE: White Matter Glial Pathology in Autism PRINCIPAL INVESTIGATOR: Gregory A. Ordway, Ph.D. CONTRACTING...Pathology in Autism 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0302 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory A. Ordway, Ph.D...Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Methods used to directly study the autism brain include brain

  18. Neocortical glial cell numbers in human brains.

    Science.gov (United States)

    Pelvig, D P; Pakkenberg, H; Stark, A K; Pakkenberg, B

    2008-11-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex.

  19. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar

  20. Etiology, Localization and Prognosis in Cerebellar Infarctions

    Directory of Open Access Journals (Sweden)

    Yavuz Yücel

    2006-01-01

    Full Text Available Cerebrovasculer disease are the most frequent disease of the brain. Cerebellar infarct remains % 1.5-4.2 of these diseases. Etiological factors, lesion localization, symptoms and findings and relationship with prognosis of our patients with cerebellar infarct were investigated in our study. For this purpose, 32 patients were evaluated who were admitted to the Dicle University Medical School Department of Neurology in 1995-2001 hospitalized with the diagnosis of clinically and radiological confirmed cerebellar infarction.All of patients in the study group, 21 (%65.6 were male and 11 (%34.3 female. Age of overall patients ranged between 40 and 75 years with a mean of 57.8±10.2 years. Atherothrombotic infarct was the most frequent reason at the etiologic clinical classification. The most frequently found localization was the posterior inferior cerebellar artery infarct (%50. The leading two risk factors were hypertension (%78.1 and cigarette smoking (%50. The most common sign and symptoms were vertigo (%93.7, vomiting (%75, headache (%68.7 and cerebellar dysfunction findings (%50. The mean duration of hospitalization was 16.3±7.6 days. Overall mortality rate was found to be % 6.2. Finally, the most remarkable risk factors at cerebellar infarct patients are hypertension and atherosclerosis at etiology. We are considering that, controlling of these factors will reduce the appearance frequency of cerebellar infarcts.

  1. [Memory transfer in cerebellar motor learning].

    Science.gov (United States)

    Nagao, Soichi

    2012-01-01

    Most of our motor skills are acquired through learning. Experiments of gain adaptation of ocular reflexes have consistently suggested that the memory of adaptation is initially formed in the cerebellar cortex, and is transferred to the cerebellar (vestibular) nuclei for consolidation to long-term memory after repetitions of training. We have recently developed a new system to evaluate the motor learning in human subjects using prism adaptation of hand reaching movement, by referring to the prism adaptation of dart throwing of Martin et al. (1996). In our system, the subject views the small target presented in the touch-panel screen, and touches it with his/her finger without direct visual feedback. After 15-30 trials of touching wearing prisms, an adaptation occurs in healthy subjects: they became able to touch the target correctly. Meanwhile, such an adaptation was impaired in patients of cerebellar disease. We have proposed a model of human prism adaptation that the memory of adaptation is initially encoded in the cerebellar cortex, and is later transferred to the cerebellar nuclei after repetitions of training. The memory in the cerebellar cortex may be formed and extinguished independently of the memory maintained in the cerebellar nuclei, and these two memories work cooperatively.

  2. Computed tomography in alcoholic cerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Haubek, A; Lee, K [Hvidovre Hospital Copenhagen (Denmark). Dept. of Radiology; Municipal Hospital, Copenhagen (Denmark). Dept. of Neurology)

    1979-01-01

    This is a controlled CT evaluation of the infratentorial region in 41 male alcoholics under age 35. Criteria for the presence of atrophy are outlined. Twelve patients had cerebellar atrophy. Vermian atrophy was present in all. Atrophy of the cerebellar hemispheres was demonstrated in eight patients as well. The results are statistically significant when compared to an age-matched group of 40 non-alcoholic males among whom two cases of vermian atrophy were found. There were clinical signs of alcoholic cerebellar atrophy in one patient only. The disparity between the clinical and the radiological data are discussed with reference to previous pneumoencephalographic findings. (orig.) 891 AJ/orig. 892 MKO.

  3. Acute Cerebellar Ataxia Induced by Nivolumab

    Science.gov (United States)

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy followed by the administration of decreasing doses of oral steroids. Nivolumab, an immune checkpoint inhibitor, is known to induce various neurological adverse events. However, this is the first report of acute cerebellar ataxia associated with nivolumab treatment. PMID:29249765

  4. Cerebellar injury in preterm infants.

    Science.gov (United States)

    Tam, Emily W Y

    2018-01-01

    Although preterm birth is best known to result in adverse neurodevelopmental outcomes through injury of the supratentorial structures, including intraventricular hemorrhage and periventricular leukomalacia, the cerebellum has become increasingly recognized as an important target for injury and adverse motor and cognitive outcomes. Undergoing the most dramatic growth during the preterm period, the cerebellum is vulnerable to large and small hemorrhages, as well as hypoplasia resulting from a number of potentially modifiable risk factors. These factors include contact with intraventricular blood, crossed cerebrocerebellar diaschisis, postnatal glucocorticoid exposure, pain and opioid exposure, nutrition and somatic growth, cardiorespiratory factors, and socioeconomic status. Strategies targeting these factors may result in prevention of the motor and cognitive deficits seen after cerebellar hemorrhage or hypoplasia. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. The role of glial cells in neuronal acetylcholine synthesis

    International Nuclear Information System (INIS)

    Kasa, P.

    1986-01-01

    This paper presents data on the role of glial cells in neuronal ACh synthesis. It is noted that central neurons fare better in cultures when in contact with non-neuronal cells, and especially glial cells. Since neither the fate of the Ch released from the glial cells nor the role of the contact between glial cells and neurons has yet been elucidated, the author investigates these phenomena. Glial cells from 14-day-old chickbrain were cultured for 14 days. ( 14 C) - choline incorporated into lipids, phosphocholine, betaine and ACh, as well as the free ( 14 C) -choline, were determined in the pure glial cell cultures after 24 h, and in the combined cultures after 7 days. The ( 14 C) - choline influx into the incubation medium and the uptake by the neurons were measured. Results are presented

  7. Cerebellar mutism: review of the literature

    DEFF Research Database (Denmark)

    Gudrunardottir, Thora; Sehested, Astrid; Juhler, Marianne

    2011-01-01

    Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention....

  8. Degenerative cerebellar diseases and differential diagnoses

    International Nuclear Information System (INIS)

    Reith, W.; Roumia, S.; Dietrich, P.

    2016-01-01

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions. (orig.) [de

  9. [Degenerative cerebellar diseases and differential diagnoses].

    Science.gov (United States)

    Reith, W; Roumia, S; Dietrich, P

    2016-11-01

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions.

  10. Neuroprotective effects of thymoquinone against cerebellar ...

    African Journals Online (AJOL)

    cerebellum mainly functions to coordinate motor functions and control ... development of the brain and life-long cognitive function [2]. ... and serial equidistant sections of the right cerebellar ... Cells outside of the left vertical and bottom bars ...

  11. Non-neoplastic gliotic cerebellar cysts

    International Nuclear Information System (INIS)

    Weisberg, L.A.

    1982-01-01

    The clinical and CT findings in 3 patients with non-neoplastic gliotic cerebellar cyst are described. CT does not permit accurate preoperative differentiation of these lesions from neoplastic disorders. (orig.)

  12. Cerebellar leukoencephalopathy: most likely histiocytosis-related

    NARCIS (Netherlands)

    van der Knaap, M.S.; Arts, W.F.M.; Garbern, J.Y.; Hedlund, G.; Winkler, F.; Barbosa, C.; King, M.D.; Bjornstad, A.; Hussain, N.; Beyer, M.K.; Gomez, C.; Patterson, M.C.; Grattan-Smith, P.; Timmons, M.; van der Valk, P.

    2008-01-01

    Background: Histiocytosis, both Langerhans and non-Langerhans cell type, can be associated with cerebellar white matter abnormalities, thought to be paraneoplastic. The associated clinical picture consists of ataxia, spasticity, and cognitive decline. Hormonal dysfunction is frequent. MRI shows

  13. Cerebellar medulloblastoma presenting with skeletal metastasis

    Directory of Open Access Journals (Sweden)

    Barai Sukanta

    2004-04-01

    Full Text Available Medulloblastomas are highly malignant brain tumours, but only rarely produce skeletal metastases. No case of medulloblastoma has been documented to have produced skeletal metastases prior to craniotomy or shunt surgery. A 21-year-old male presented with pain in the hip and lower back with difficulty in walking of 3 months′ duration. Signs of cerebellar dysfunction were present hence a diagnosis of cerebellar neoplasm or skeletal tuberculosis with cerebellar abscess formation was considered. MRI of brain revealed a lesion in the cerebellum suggestive of medulloblastoma. Bone scan revealed multiple sites of skeletal metastases excluding the lumbar vertebrae. MRI of lumbar spine and hip revealed metastases to all lumbar vertebrae and both hips. Computed tomography-guided biopsy was obtained from the L3 vertebra, which revealed metastatic deposits from medulloblastoma. Cerebrospinal fluid cytology showed the presence of medulloblastoma cells. A final diagnosis of cerebellar medulloblastoma with skeletal metastases was made. He underwent craniotomy and histopathology confirmed medulloblastoma.

  14. Ataxias and Cerebellar or Spinocerebellar Degeneration

    Science.gov (United States)

    ... and conducts a broad range of basic and clinical research on cerebellar and spinocerebellar degeneration, including work aimed at finding the cause(s) of ataxias and ways to ... Publications Definition Ataxia ...

  15. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  16. Cerebellar mutism: review of the literature

    DEFF Research Database (Denmark)

    Gudrunardottir, Thora; Sehested, Astrid; Juhler, Marianne

    2011-01-01

    Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention.......Cerebellar mutism is a common complication of posterior fossa surgery in children. This article reviews current status with respect to incidence, anatomical substrate, pathophysiology, risk factors, surgical considerations, treatment options, prognosis and prevention....

  17. Acute Cerebellar Ataxia Induced by Nivolumab

    OpenAIRE

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy follow...

  18. Nasopharyngeal glial heterotopia with delayed postoperative meningitis.

    Science.gov (United States)

    Maeda, Kenichi; Furuno, Kenji; Chong, Pin Fee; Morioka, Takato

    2017-06-22

    A male infant, who underwent radical resection of a large glial heterotopia at the nasopharynx at 8 days, developed delayed postoperative bacterial meningitis at 9 months. Neuroradiological examination clearly demonstrated that meningitis had occurred because of the intracranial and extracranial connections, which were scarcely seen in the perioperative period. A transsphenoidal extension of hypothalamic hamartoma is possible because the connection started from the right optic nerve, running through the transsphenoidal canal in the sphenoid bone and terminating at the recurrent mass in the nasopharyngeal region. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. [Nasal glial heterotopia: Clinical and morphological characteristics].

    Science.gov (United States)

    Bykova, V P; Bakhtin, A A; Polyakov, D P; Yunusov, A S; Daikhes, N A

    The paper describes a case of nasal glial heterotopia in a 10-month-old girl with a mixed (intranasal and subcutaneous) localization, which is accompanied by the divergence of the nasal bones. Histological examination supplemented by immunohistochemical reactions with antibodies to vimentin, S100 protein, neuron-specific enolase, as well as Ki-67 and smooth muscle actin confirmed the neural nature of the tumor. Fields of mature astrocytic glia including individual cells with neuronal differentiation were found among the fibrous and fibrovascular tissues. The paper provides a brief overview of the discussed pathology.

  20. Cerebral radiation necrosis: vascular and glial features

    Energy Technology Data Exchange (ETDEWEB)

    Husain, M M; Garcia, J H

    1976-12-21

    Glial and vascular abnormalities in brain, simulating intracranial neoplasia, are described in a patient who received radiation to the pituitary region for treatment of an adenoma, 13 months before death. In addition to the expected changes of cerebral radionecrosis, four interesting features are cited: (1) diffuse hyperplasia of capillaries in the cerebral cortex with marked endothelial hypertrophy; (2) abundant, large multipolar bizarre cells in the perivascular connective tissues; (3) focal astrocytic proliferation with many cells resembling either Alzheimer type I astrocytes or neoplastic cells, and (4) radiation changes in the non-irradiated brain.

  1. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  2. Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes.

    Science.gov (United States)

    Fang, Peng; An, Jie; Tan, Xin; Zeng, Ling-Li; Shen, Hui; Qiu, Shijun; Hu, Dewen

    2017-04-01

    Currently, 422 million adults suffer from diabetes worldwide, leading to tremendous disabilities and a great burden to families and society. Functional and structural MRIs have demonstrated that patients with type 2 diabetes mellitus (T2DM) exhibit abnormalities in brain regions in the cerebral cortex. However, the changes of cerebellar anatomical connections in diabetic patients remains unclear. In the current study, diffusion tensor imaging deterministic tractography and statistical analysis were employed to investigate abnormal cerebellar anatomical connections in diabetic patients. This is the first study to investigate the altered cerebellar anatomical connectivity in T2DM patients. Decreased anatomical connections were found in the cerebellar and cerebro-cerebellar circuits of T2DM patients, providing valuable new insights into the potential neuro-pathophysiology of diabetes-related motor and cognitive deficits. Copyright © 2017. Published by Elsevier Inc.

  3. Bilateral Cerebellar Cortical Dysplasia without Other Malformations: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Seok; Ahn Kook Jin; Kim, Jee Young; Lee, Sun Jin; Park, Jeong Mi [Catholic University Yeouido St. Mary' s Hospital, College of Medicine, Seoul (Korea, Republic of)

    2010-06-15

    Recent advances in MRI have revealed congenital brain malformations and subtle developmental abnormalities of the cerebral and cerebellar cortical architecture. Typical cerebellar cortical dysplasia as a newly categorized cerebellar malformation, has been seen in patients with Fukuyama congenital muscular dystrophy. Cerebellar cortical dysplasia occurs at the embryonic stage and is often observed in healthy newborns. It is also incidentally and initially detected in adults without symptoms. To the best of our knowledge, cerebellar dysplasia without any related disorders is very rare. We describe the MRI findings in one patient with disorganized foliation of both cerebellar hemispheres without a related disorder or syndrome

  4. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  5. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Barceló Carlos

    2005-12-01

    Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  6. Glial heterotopia in an adult: A rare orbital mass

    Directory of Open Access Journals (Sweden)

    Divya Dabir Sundaresh

    2016-01-01

    Full Text Available Heterotopic glial tissue is very rare in the orbit. Our case was an adult, which is unique since most cases reported in literature involve children. We describe a case of a 60-year-old man who presented with an orbital mass, which histopathologically revealed heterotopic glial tissue.

  7. Glial heterotopia in an adult: A rare orbital mass.

    Science.gov (United States)

    Sundaresh, Divya Dabir; Mangala Gouri, S R

    2016-11-01

    Heterotopic glial tissue is very rare in the orbit. Our case was an adult, which is unique since most cases reported in literature involve children. We describe a case of a 60-year-old man who presented with an orbital mass, which histopathologically revealed heterotopic glial tissue.

  8. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Glial Cells: The Other Cells of the Nervous System - An Introduction to Glial Cells. Medha S Rajadhyaksha Yasmin Khan. Series Article Volume 7 Issue 1 January 2002 pp 4-10 ...

  9. Quantum Gravity

    OpenAIRE

    Alvarez, Enrique

    2004-01-01

    Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...

  10. Glial heterotopia of the lip: A rare presentation.

    Science.gov (United States)

    Dadaci, Mehmet; Bayram, Fazli Cengiz; Ince, Bilsev; Bilgen, Fatma

    2016-01-01

    Glial heterotopia represents collections of normal glial tissue in an abnormal location distant to the central nervous system or spinal canal with no intracranial connectivity. Nasal gliomas are non-neoplastic midline tumours, with limited growth potential and no similarity to the central nervous system gliomas. The nose and the nasopharynx are the most common sites of location. Existence of glial heterotopia in the lip region is a rare developmental disorder. We report a case of large glial heterotopia in the upper lip region in a full-term female newborn which had intracranial extension with a fibrotic band. After the surgery, there was no recurrence in the follow-up period of 3 years. When glial heterotopia, which is a rare midline anomaly, is suspected, possible intracranial connection and properties of the mass should be evaluated by magnetic resonance imaging. By this way, lower complication rate and better aesthetic results can be achieved with early diagnosis and proper surgery.

  11. Glial heterotopia of the lip: A rare presentation

    Directory of Open Access Journals (Sweden)

    Mehmet Dadaci

    2016-01-01

    Full Text Available Glial heterotopia represents collections of normal glial tissue in an abnormal location distant to the central nervous system or spinal canal with no intracranial connectivity. Nasal gliomas are non-neoplastic midline tumours, with limited growth potential and no similarity to the central nervous system gliomas. The nose and the nasopharynx are the most common sites of location. Existence of glial heterotopia in the lip region is a rare developmental disorder. We report a case of large glial heterotopia in the upper lip region in a full-term female newborn which had intracranial extension with a fibrotic band. After the surgery, there was no recurrence in the follow-up period of 3 years. When glial heterotopia, which is a rare midline anomaly, is suspected, possible intracranial connection and properties of the mass should be evaluated by magnetic resonance imaging. By this way, lower complication rate and better aesthetic results can be achieved with early diagnosis and proper surgery.

  12. Metabolic anatomy of paraneoplastic cerebellar degeneration

    International Nuclear Information System (INIS)

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-01-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration [PCD]) were evaluated using neuropsychological tests and 18 F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis

  13. Photodynamic damage of glial cells in crayfish ventral nerve cord

    Science.gov (United States)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  14. Neurodevelopmental malformations of the cerebellar vermis in genetically engineered rats

    Science.gov (United States)

    The cerebellar vermis is particularly vulnerable to neurodevelopmental malformations in humans and rodents. Sprague-Dawley, and Long-Evans rats exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the vermis. Malformati...

  15. Gamma-radiation produces abnormal Bergmann fibers and ectopic granule cells in mouse cerebellar cortex

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Funahashi, Atsushi; Yamamura, Hideki

    1992-01-01

    Morphological changes in Bergmann glial fibers in the developing cerebellar cortex produced by exposure to gamma-rays were investigated in association with ectopic granule cells. Six-day-old mice that had been exposed to 3 Gy of gamma-radiation were killed 6 hours after exposure or at 7 through 30 days of age. Their cerebella were examined histologically and immunohistochemically for glial fibrillary acidic protein in Bergmann fibers. Extensive cell death took place in the external granular layer (EGL) of the cerebellum from 6 through 24 hours after exposure. This led to the thinning of the EGL and a decrease in the number of migrating cells in the molecular layer. The number of Bergmann cells was not decreased, but the fibers in the molecular layer were distorted; whereas, in the control these fibers were straight and perpendicular to the pial surface. The EGL began to recover 2 days after exposure, and abnormally oriented migrating cells were seen. At 17 days of age, some cell clustering was observed in the molecular layer of the irradiated cerebellum. Distortion of the Bergmann fibers was marked in regions where ectopic granule cells appeared at 30 days of age. These findings suggest that the distortion of Bergmann fibers leads to the production of ectopic granule cells after exposure to gamma-radiation. (author)

  16. [Study of cerebellar infarction with isolated vertigo].

    Science.gov (United States)

    Utsumi, Ai; Enomoto, Hiroyuki; Yamamoto, Kaoru; Kimura, Yu; Koizuka, Izumi; Tsukuda, Mamoru

    2010-07-01

    Isolated vertigo is generally attributed to labyrinthine disease, but may also signal otherwise asymptomatic cerebellar infarction. Of 309 subjects admitted between April 2004 and March 2009 for the single symptom of acute vertigo initially thought to be labyrinthine, four were found to have cerebellar infarction of the posterior inferior cerebellar artery area (PICA). All were over 60 years old and had risk factors including hypertension, diabetes mellitus, arrhythmia, and/or hyperlipidemia. Two had trunk ataxia, with magnetic resonance imaging (MRI) showing infarction within a few days. The other two could walk without apparent trunk ataxia, however, it took 4 to 7 days to find the infarction, mainly through neurological, neurootological, and MRI findings. Neurologically, astasia, dysbasia or trunk ataxia were important signs. Neurootologically, nystagmus and electronystagmographic testing involving eye tracking, saccade, and optokinetic patttens were useful.

  17. Cerebellar contribution to feedforward control of locomotion.

    Science.gov (United States)

    Pisotta, Iolanda; Molinari, Marco

    2014-01-01

    The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing-the process that allows spatial and temporal relationships between events to be recognized-has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed.

  18. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  19. Low and high dietary folic acid levels perturb postnatal cerebellar morphology in growing rats.

    Science.gov (United States)

    Partearroyo, Teresa; Pérez-Miguelsanz, Juliana; Peña-Melián, Ángel; Maestro-de-Las-Casas, Carmen; Úbeda, Natalia; Varela-Moreiras, Gregorio

    2016-06-01

    The brain is particularly sensitive to folate metabolic disturbances, because methyl groups are critical for brain functions. This study aimed to investigate the effects of different dietary levels of folic acid (FA) on postnatal cerebellar morphology, including the architecture and organisation of the various layers. A total of forty male OFA rats (a Sprague-Dawley strain), 5 weeks old, were classified into the following four dietary groups: FA deficient (0 mg/kg FA); FA supplemented (8 mg/kg FA); FA supra-supplemented (40 mg/kg FA); and control (2 mg/kg FA) (all n 10 per group). Rats were fed ad libitum for 30 d. The cerebellum was quickly removed and processed for histological and immunohistochemical analysis. Slides were immunostained for glial fibrillary acidic protein (to label Bergmann glia), calbindin (to label Purkinje cells) and NeuN (to label post-mitotic neurons). Microscopic analysis revealed two types of defect: partial disappearance of fissures and/or neuronal ectopia, primarily in supra-supplemented animals (incidence of 80 %, P≤0·01), but also in deficient and supplemented groups (incidence of 40 %, P≤0·05), compared with control animals. The primary fissure was predominantly affected, sometimes accompanied by defects in the secondary fissure. Our findings show that growing rats fed an FA-modified diet, including both deficient and supplemented diets, have an increased risk of disturbances in cerebellar corticogenesis. Defects caused by these diets may have functional consequences in later life. The present study is the first to demonstrate that cerebellar morphological defects can arise from deficient, as well as high, FA levels in the diet.

  20. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  1. CT and MR imaging of acute cerebellar ataxia

    International Nuclear Information System (INIS)

    Shoji, H.; Hirai, S.; Ishikawa, K.; Aramaki, M.; Sato, Y.; Abe, T.; Kojima, K.

    1991-01-01

    An adult female showed mild cerebellar ataxia and CSF pleocytosis following an acute infection of the upper respiratory tract, and was diagnosed as having acute cerebellar ataxia (ACA). CT and MR appearances in the acute stage revealed moderate swelling of the cerebellum and bilaterally increased signal intensity in the cerebellar cortex. (orig.)

  2. Crossed cerebellar diaschisis in ischemic stroke

    DEFF Research Database (Denmark)

    Meneghetti, G; Vorstrup, S; Mickey, B

    1984-01-01

    Seventy measurements of CBF were performed in 12 stroke patients by 133Xe inhalation and a rapidly rotating single photon emission computerized tomograph. CBF was measured every other day during the acute phase and at 2- and 6-month follow-up visits. A persistent contralateral cerebellar blood flow....... It is concluded from this serial study that crossed cerebellar diaschisis is a common finding in completed stroke. It is probably caused by disconnection of the corticopontine pathways, a disconnection that tends to persist. The phenomenon is in fact less variable than the stroke-related CBF changes...

  3. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  4. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  5. Modeling cognition and disease using human glial chimeric mice

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Nedergaard, Maiken; Windrem, Martha S.

    2015-01-01

    , oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human...... for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human...

  6. Simulating Gravity

    Science.gov (United States)

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  7. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  8. Radiation-induced cerebellar chondrosarcoma. Case report

    International Nuclear Information System (INIS)

    Bernstein, M.; Perrin, R.G.; Platts, M.E.; Simpson, W.J.

    1984-01-01

    The authors report a case of chondrosarcoma arising in the cerebellum 16 years after treatment of a cerebellar malignant astrocytoma by subtotal resection and irradiation. It is thought that the chondrosarcoma arising within the intracranial cavity was a probable consequence of previous ionizing radiation

  9. Inverse Stochastic Resonance in Cerebellar Purkinje Cells.

    Directory of Open Access Journals (Sweden)

    Anatoly Buchin

    2016-08-01

    Full Text Available Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR. While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing.

  10. Cerebellar Plasticity in Health and Disease

    NARCIS (Netherlands)

    M.P.H. Coesmans (Michiel)

    2004-01-01

    textabstractThe cerebellum helps fine-tuning movements by evaluating disparities between intention and action, in order to adjust the execution of movements ‘online’, and to keep movements calibrated in the long term. The cerebellar capacity to store information, which provides the ‘memory’ needed

  11. Cerebellar malformations alter regional cerebral development.

    Science.gov (United States)

    Bolduc, Marie-Eve; Du Plessis, Adre J; Evans, Alan; Guizard, Nicolas; Zhang, Xun; Robertson, Richard L; Limperopoulos, Catherine

    2011-12-01

    The aim of this study was to compare total and regional cerebral volumes in children with isolated cerebellar malformations (CBMs) with those in typically developing children, and to examine the extent to which cerebellar volumetric reductions are associated with total and regional cerebral volumes. This is a case-control study of children diagnosed with isolated CBMs. Each child was matched on age and sex to two typically developing children. Using advanced three-dimensional volumetric magnetic resonance imaging, the cerebrum was segmented into tissue classes and partitioned into eight regions. Analysis of variance was used to compare cerebral volumes between children with CBMs and control children, and linear regressions to examine the impact of cerebellar volume reduction on cerebral volumes. Magnetic resonance imaging was performed at a mean age of 27 months in 20 children (10 males, 10 females) with CBMs and 40 typically developing children. Children with CBMs showed significantly smaller deep grey matter nuclei (p developing children. Greater cerebellar volumetric reduction in children with CBMs was associated with decreased total cerebral volume and deep grey matter nuclei (p = 0.02), subgenual white/grey matter (p = 0.001), midtemporal white (p = 0.02) and grey matter (p = 0.01), and parieto-occipital grey matter (p = 0.004). CBMs are associated with impaired regional cerebral growth, suggesting deactivation of principal cerebello-cerebral pathways. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  12. Improving cerebellar segmentation with statistical fusion

    Science.gov (United States)

    Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.

    2016-03-01

    The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.

  13. Ultrasonically detectable cerebellar haemorrhage in preterm infants.

    LENUS (Irish Health Repository)

    McCarthy, Lisa Kenyon

    2011-07-01

    To determine the frequency and pattern of cerebellar haemorrhage (CBH) on routine cranial ultrasound (cUS) imaging in infants of ≤32 weeks gestation, and to investigate how extremely preterm infants with CBH differ from those with severe intraventricular haemorrhage (IVH).

  14. Cerebellar Hypoplasia and Dysmorphia in Neurofibromatosis Type 1.

    Science.gov (United States)

    Toelle, Sandra P; Poretti, Andrea; Weber, Peter; Seute, Tatjana; Bromberg, Jacoline E C; Scheer, Ianina; Boltshauser, Eugen

    2015-12-01

    Unidentified bright objects (UBO) and tumors are well-known cerebellar abnormalities in neurofibromatosis type 1 (NF1). Literature reports on malformative cerebellar anomalies in neurofibromatosis type 1 (NF1), however, are scant. We retrospectively studied the clinical and neuroimaging findings of 5 patients with NF1 (4 females, age 6 to 29 years at last follow-up) and cerebellar anomalies. Cerebellar symptoms on neurological examination were mild or even not evident whereas learning disabilities were more or less pronounced in four patients. Two patients had cerebellar hypoplasia (diffusely enlarged cerebellar interfoliar spaces) and three cerebellar dysmorphias involving mainly one cerebellar hemisphere. In NF1, malformative cerebellar anomalies are rare (estimated prevalence of about 1%), but most likely underestimated and easily overlooked, because physicians tend to focus on more prevalent, obvious, and well-known findings such as optic pathway gliomas, other tumors, and UBO. This kind of cerebellar anomaly in NF1 has most likely a malformative origin, but the exact pathogenesis is unknown. The individual clinical significance is difficult to determine. We suggest that cerebellar anomalies should be systematically evaluated in neuroimaging studies of NF1 patients.

  15. Glial cell biology in the Great Lakes region.

    Science.gov (United States)

    Feinstein, Douglas L; Skoff, Robert P

    2016-03-31

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  16. Complex and differential glial responses in Alzheimer's disease and ageing.

    Science.gov (United States)

    Rodríguez, José J; Butt, Arthur M; Gardenal, Emanuela; Parpura, Vladimir; Verkhratsky, Alexei

    2016-01-01

    Glial cells and their association with neurones are fundamental for brain function. The emergence of complex neurone-glial networks assures rapid information transfer, creating a sophisticated circuitry where both types of neural cells work in concert, serving different activities. All glial cells, represented by astrocytes, oligodendrocytes, microglia and NG2-glia, are essential for brain homeostasis and defence. Thus, glia are key not only for normal central nervous system (CNS) function, but also to its dysfunction, being directly associated with all forms of neuropathological processes. Therefore, the progression and outcome of neurological and neurodegenerative diseases depend on glial reactions. In this review, we provide a concise account of recent data obtained from both human material and animal models demonstrating the pathological involvement of glia in neurodegenerative processes, including Alzheimer's disease (AD), as well as physiological ageing.

  17. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    nervous system and that glial cells were a mere glue holding neurons in place, Schleich ... fact that these cells did not show any electrical activity like neurons or muscles ... membrane potential higher than that of the surrounding neu- rons.

  18. Glial heterotopia of the orbit: a rare cause of proptosis.

    Science.gov (United States)

    Bakhti, Souad; Terkmani, Fella; Tighilt, Nabila; Benmouma, Youcef; Boumehdi, Nazim; Djennas, Mohamed

    2016-11-01

    Glial heterotopia is defined as presence of normal glial tissue in an unusual location without connection with the brain. It is a very rare clinical entity occuring mostly in the head and neck region which is generally present at birth. Orbital location is very rare. We report a case of a 4-month-old girl presenting congenital proptosis with progressive increase. CT scan revealed an intraorbital mass without bony defect. The patient was operated, and resection was subtotal. Histologically, the tumor was composed of glial tissue with plexus choroid and pathologist concluded glial heterotopia. The child is under constant medical supervision because recurrences can be observed after incomplete resection; she had no new clinical signs at 18 months follow-up.

  19. Quantitation of glial fibrillary acidic protein in human brain tumours

    DEFF Research Database (Denmark)

    Rasmussen, S; Bock, E; Warecka, K

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...

  20. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    secrete growth factors that act on neurons and other glial cells. from activated microglia. .... Microglia in Alzheimer's disease: Alzheimer's disease is charac- terized by deposition of ... trigger the recruitment ofT lymphocytes into the inflammatory.

  1. Magnetic resonance imaging of cerebellar Schistosomiasis mansoni

    International Nuclear Information System (INIS)

    Braga, Bruno Perocco; Costa Junior, Leodante Batista da; Lambertucci, Jose Roberto

    2003-01-01

    A 15-year-old boy was admitted to hospital with a history of headache, dizziness, vomiting and double vision that started two weeks before. His parents denied any previous disease. During clinical examination he presented diplopia on lateral gaze to the left and horizontal nystagmus. No major neurological dysfunction was detected. He was well built, mentally responsive and perceptive. Laboratory findings revealed a leukocyte count of 10,000/mL, a normal red blood cell count and no eosinophilia. The magnetic resonance images (MRI) of the brain showed a left cerebellar lesion with mass effect compressing the surrounding tissues. Contrast-enhanced images showed a mass like structure and punctate nodules (Figures A and B: axial and coronal contrast-enhanced T1-weighted MR images showed the nodular - yellow arrows - enhancement pattern of a left cerebellar intraxial lesion). The lesion extended to the vermis and brachium pons and compressed the medulla. There was no hydrocephalus. He was taken to the operating room with the presumptive diagnosis of a neuroglial tumor, and submitted to a lateral suboccipital craniectomy. A brown, brittle tumoral mass without a clearly defined margin with the cerebellar tissue was removed. Microscopic examination revealed schistosomal granulomas in the productive phase in the cerebellum (Figure C). After surgery, treatment with praziquantel (50 mg/kg/dia, single dose) and prednisone (1 mg/kg/day) was offered and the patient improved quickly. Thirty days later he was seen again at the outpatient clinic: he was asymptomatic and with no neurological impairment. This is the eighth case of cerebellar involvement in schistosomiasis mansoni and the second report of a tumoral form of cerebellar schistosomiasis documented by magnetic resonance images. (author)

  2. Glial hemichannels and their involvement in aging and neurodegenerative diseases.

    Science.gov (United States)

    Orellana, Juan A; von Bernhardi, Rommy; Giaume, Christian; Sáez, Juan C

    2012-01-26

    During the last two decades, it became increasingly evident that glial cells accomplish a more important role in brain function than previously thought. Glial cells express pannexins and connexins, which are member subunits of two protein families that form membrane channels termed hemichannels. These channels communicate intra- and extracellular compartments and allow the release of autocrine/paracrine signaling molecules [e.g., adenosine triphosphate (ATP), glutamate, nicotinamide adenine dinucleotide, and prostaglandin E2] to the extracellular milieu, as well as the uptake of small molecules (e.g., glucose). An increasing body of evidence has situated glial hemichannels as potential regulators of the beginning and maintenance of homeostatic imbalances observed in diverse brain diseases. Here, we review and discuss the current evidence about the possible role of glial hemichannels on neurodegenerative diseases. A subthreshold pathological threatening condition leads to microglial activation, which keeps active defense and restores the normal function of the central nervous system. However, if the stimulus is deleterious, microglial cells and the endothelium become overactivated, both releasing bioactive molecules (e.g., glutamate, cytokines, prostaglandins, and ATP), which increase the activity of glial hemichannels, reducing the astroglial neuroprotective functions, and further reducing neuronal viability. Because ATP and glutamate are released via glial hemichannels in neurodegenerative conditions, it is expected that they contribute to neurotoxicity. More importantly, toxic molecules released via glial hemichannels could increase the Ca2+ entry in neurons also via neuronal hemichannels, leading to neuronal death. Therefore, blockade of hemichannels expressed by glial cells and/or neurons during neuroinflammation might prevent neurodegeneration.

  3. Quantum gravity

    International Nuclear Information System (INIS)

    Isham, C.

    1989-01-01

    Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)

  4. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  5. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  6. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction

    Science.gov (United States)

    Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  7. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.

    Science.gov (United States)

    Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L

    2016-02-27

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  8. Isolated rhomboencephalosynapsis – a rare cerebellar anomaly

    International Nuclear Information System (INIS)

    Paprocka, Justyna; Jamroz, Ewa; Ścieszka, Ewa; Kluczewska, Ewa

    2012-01-01

    Rhomboencephalosynapsis (RES, RS) is a unique entity usually recognized in infancy based on neuroimaging. Cerebellar fusion and absence of cerebellar vermis is often associated with supratentorial findings. Since now there are about 50 cases described worldwide, with approximately 36 patients diagnosed by MRI. The authors present the first in Poland case of this uncommon malformation and review the literature. The authors describe a 28-month-old-girl with microcephaly and proper psychomotor development. The family history was unrelevant. Based on MRI the congenital malformation of posterior fossa-rhombencephalosynapsis was confirmed Presented patient is a typical example of MRI usefulness especially in patients with RES. RES symptoms are mild and that is why the diagnosis is usually made only in adulthood

  9. Cerebellar interaction with the acoustic reflex.

    Science.gov (United States)

    Jastreboff, P J

    1981-01-01

    The involvement of the cerebellar vermis in the acoustic reflex was analyzed in 12 cats, decerebrated or in pentobarbital anesthesia. Anatomical data suggested the existence of a connection of lobules VIII with the ventral cochlear nucleus. Single cell recording and evoked potential techniques demonstrated the existence of the acoustic projection to lobulus VIII. Electrical stimulation of this area changed the tension of the middle ear muscle and caused evoked potential responses in the caudal part of the ventral cochlear nucleus. Electrical stimulation of the motor nucleus of the facial nerve evoked a slow wave in the recording taken from the surrounding of the cochlear round window. A hypothesis is proposed which postulates the involvement of the acoustic reflex in space localization of acoustic stimuli and the action of cerebellar vermis in order to assure the stability and plasticity of the acoustic reflex arc.

  10. Cerebellar and cerebral atrophy in trichothiodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hye-Kyung; Sargent, Michael A.; Poskitt, Kenneth J. [British Columbia Children' s Hospital, Department of Radiology, Vancouver, BC (Canada); Prendiville, Julie S. [British Columbia Children' s Hospital, Division of Paediatric Dermatology, Department of Paediatrics, Vancouver, BC (Canada)

    2005-10-01

    Trichothiodystrophy is a rare neuroectodermal disorder of autosomal recessive inheritance that is characterized by brittle hair, nail dysplasia, ichthyosis, mental retardation, and gonadal failure. We describe a female patient whose cranial MRI revealed almost total lack of myelination in the supratentorial white matter, which is similar to the previously described cases. In addition, there was progressive cerebellar and cerebral atrophy, which has not been well documented in association with trichothiodystrophy. (orig.)

  11. Computed tomography in hypertensive cerebellar hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Nose, T; Maki, Y; Ono, Y; Yoshizawa, T; Tsuboi, K [Tsukuba Univ., Sakura, Ibaraki (Japan)

    1981-11-01

    Fourteen cases of cerebellar hemorrhage were analysed from the point of CT-scan, and the following results were obtained. 1. The number of cases of cerebellar hemorrhage forms 4.4% of that of total intracranial hemorrhage. 2. Most of the cerebellar hematomas extend upward. Downward extension is rare. 3. In acute dead cases hematomas are 5 cm or more in diameter and lie over bilateral hemispheres with the extension to third or fourth ventricles in CT-scans. 4. Slowly progressive cases are detriorated by the secondary hydrocephalus. 5. In mild cases hematomas are 3cm or less in diameter on CT-scans and the hematoma evacuation is not indicated for these cases. 6. The shunt operation alone is sufficient for the life saving of the slowly progressive cases, but the hematoma evacuation is indicated in these cases if the functional prognosis is taken into consideration. 7. Immediate hematoma evacuation together with the ventricular drainage is considered to be effective for the life saving of the acute fulminant cases.

  12. Computed tomography in hypertensive cerebellar hemorrhage

    International Nuclear Information System (INIS)

    Nose, Tadao; Maki, Yutaka; Ono, Yukio; Yoshizawa, Takashi; Tsuboi, Kohji

    1981-01-01

    Fourteen cases of cerebellar hemorrhage were analysed from the point of CT-scan, and the following results were obtained. 1. The number of cases of cerebellar hemorrhage forms 4.4% of that of total intracranial hemorrhage. 2. Most of the cerebellar hematomas extend upward. Downward extension is rare. 3. In acute dead cases hematomas are 5 cm or more in diameter and lie over bilateral hemispheres with the extension to third or fourth ventricles in CT-scans. 4. Slowly progressive cases are detriorated by the secondary hydrocephalus. 5. In mild cases hematomas are 3cm or less in diameter on CT-scans and the mematoma evacuation is not indicated for these cases. 6. The shunt operation alone is sufficient for the life saving of the slowly progressive cases, but the hematoma evacuation is indicated in these cases if the functional prognosis is taken into consideration. 7. Immediate hematoma evacuation togather with the ventricular dranage is considered to be effective for the life saving of the acute fulminant cases. (author)

  13. Cerebellar transcranial static magnetic field stimulation transiently reduces cerebellar brain inhibition.

    Science.gov (United States)

    Matsugi, Akiyoshi; Okada, Y

    The aim of this study was to investigate whether transcranial static magnetic field stimulation (tSMS) delivered using a compact cylindrical NdFeB magnet over the cerebellum modulates the excitability of the cerebellum and contralateral primary motor cortex, as measured using cerebellar brain inhibition (CBI), motor evoked potentials (MEPs), and resting motor threshold (rMT). These parameters were measured before tSMS or sham stimulation and immediately, 5 minutes and 10 minutes after stimulation. There were no significant changes in CBI, MEPs or rMT over time in the sham stimulation condition, and no changes in MEPs or rMT in the tSMS condition. However, CBI was significantly decreased immediately after tSMS as compared to that before and 5 minutes after tSMS. Our results suggest that tSMS delivered to the cerebellar hemisphere transiently reduces cerebellar inhibitory output but does not affect the excitability of the contralateral motor cortex.

  14. Noncommutative gravity

    International Nuclear Information System (INIS)

    Schupp, P.

    2007-01-01

    Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)

  15. Glial Heterotopia of the orbit: A rare presentation

    Science.gov (United States)

    2011-01-01

    Background Glial heterotopias are rare, benign, congenital, midline, non-teratomatous extracranial glial tissue. They may masquerade as encephalocoele or dermoid cyst and mostly present in nose. Herein, we present an unusual case of glial heterotopia of the orbit with unilateral blindness. Case presentation A 6 year-old-boy presented with a progressive painless mass over the nose and medial aspect of the left eye noticed since birth. On examination, the globe was displaced laterally by a firm, regular, mobile, non-pulsatile and non-tender medial mass. The affected eye had profound loss of vision. Computed tomography scan showed a large hypodense mass in the extraconal space with no intracranial connectivity and bony erosion. The child underwent total surgical excision of the mass and histopathological examination confirmed glial heterotopia of the orbit. Conclusion Though the incidence of this condition is rare, the need of appropriate diagnosis and management of such mass to prevent the visual and cosmetic deterioration is warranted. To our knowledge this is the first reported case of Glial heterotopia of orbit causing unilateral blindness. PMID:22088230

  16. Glial Heterotopia of the orbit: A rare presentation

    Directory of Open Access Journals (Sweden)

    Sitaula Ranju

    2011-11-01

    Full Text Available Abstract Background Glial heterotopias are rare, benign, congenital, midline, non-teratomatous extracranial glial tissue. They may masquerade as encephalocoele or dermoid cyst and mostly present in nose. Herein, we present an unusual case of glial heterotopia of the orbit with unilateral blindness. Case presentation A 6 year-old-boy presented with a progressive painless mass over the nose and medial aspect of the left eye noticed since birth. On examination, the globe was displaced laterally by a firm, regular, mobile, non-pulsatile and non-tender medial mass. The affected eye had profound loss of vision. Computed tomography scan showed a large hypodense mass in the extraconal space with no intracranial connectivity and bony erosion. The child underwent total surgical excision of the mass and histopathological examination confirmed glial heterotopia of the orbit. Conclusion Though the incidence of this condition is rare, the need of appropriate diagnosis and management of such mass to prevent the visual and cosmetic deterioration is warranted. To our knowledge this is the first reported case of Glial heterotopia of orbit causing unilateral blindness.

  17. Identification of raw as a regulator of glial development.

    Directory of Open Access Journals (Sweden)

    Diana Luong

    Full Text Available Glial cells perform numerous functions to support neuron development and function, including axon wrapping, formation of the blood brain barrier, and enhancement of synaptic transmission. We have identified a novel gene, raw, which functions in glia of the central and peripheral nervous systems in Drosophila. Reducing Raw levels in glia results in morphological defects in the brain and ventral nerve cord, as well as defects in neuron function, as revealed by decreased locomotion in crawling assays. Examination of the number of glia along peripheral nerves reveals a reduction in glial number upon raw knockdown. The reduced number of glia along peripheral nerves occurs as a result of decreased glial proliferation. As Raw has been shown to negatively regulate Jun N-terminal kinase (JNK signaling in other developmental contexts, we examined the expression of a JNK reporter and the downstream JNK target, matrix metalloproteinase 1 (mmp1, and found that raw knockdown results in increased reporter activity and Mmp1 levels. These results are consistent with previous studies showing increased Mmp levels lead to nerve cord defects similar to those observed upon raw knockdown. In addition, knockdown of puckered, a negative feedback regulator of JNK signaling, also causes a decrease in glial number. Thus, our studies have resulted in the identification of a new regulator of gliogenesis, and demonstrate that increased JNK signaling negatively impacts glial development.

  18. The Purinergic System and Glial Cells: Emerging Costars in Nociception

    Directory of Open Access Journals (Sweden)

    Giulia Magni

    2014-01-01

    Full Text Available It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states.

  19. Cerebro-cerebellar circuits in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Anila M. D'Mello

    2015-11-01

    Full Text Available The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. In contrast, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.

  20. Cerebro-cerebellar circuits in autism spectrum disorder.

    Science.gov (United States)

    D'Mello, Anila M; Stoodley, Catherine J

    2015-01-01

    The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.

  1. Pathway analyses implicate glial cells in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Laramie E Duncan

    Full Text Available The quest to understand the neurobiology of schizophrenia and bipolar disorder is ongoing with multiple lines of evidence indicating abnormalities of glia, mitochondria, and glutamate in both disorders. Despite high heritability estimates of 81% for schizophrenia and 75% for bipolar disorder, compelling links between findings from neurobiological studies, and findings from large-scale genetic analyses, are only beginning to emerge.Ten publically available gene sets (pathways related to glia, mitochondria, and glutamate were tested for association to schizophrenia and bipolar disorder using MAGENTA as the primary analysis method. To determine the robustness of associations, secondary analyses were performed with: ALIGATOR, INRICH, and Set Screen. Data from the Psychiatric Genomics Consortium (PGC were used for all analyses. There were 1,068,286 SNP-level p-values for schizophrenia (9,394 cases/12,462 controls, and 2,088,878 SNP-level p-values for bipolar disorder (7,481 cases/9,250 controls.The Glia-Oligodendrocyte pathway was associated with schizophrenia, after correction for multiple tests, according to primary analysis (MAGENTA p = 0.0005, 75% requirement for individual gene significance and also achieved nominal levels of significance with INRICH (p = 0.0057 and ALIGATOR (p = 0.022. For bipolar disorder, Set Screen yielded nominally and method-wide significant associations to all three glial pathways, with strongest association to the Glia-Astrocyte pathway (p = 0.002.Consistent with findings of white matter abnormalities in schizophrenia by other methods of study, the Glia-Oligodendrocyte pathway was associated with schizophrenia in our genomic study. These findings suggest that the abnormalities of myelination observed in schizophrenia are at least in part due to inherited factors, contrasted with the alternative of purely environmental causes (e.g. medication effects or lifestyle. While not the primary purpose of our study

  2. Cerebro-Cerebellar Functional Connectivity is Associated with Cerebellar Excitation-Inhibition Balance in Autism Spectrum Disorder.

    Science.gov (United States)

    Hegarty, John P; Weber, Dylan J; Cirstea, Carmen M; Beversdorf, David Q

    2018-05-23

    Atypical functional connectivity (FC) and an imbalance of excitation-to-inhibition (E/I) have been previously reported in cerebro-cerebellar circuits in autism spectrum disorder (ASD). The current investigation used resting state fMRI and proton magnetic resonance spectroscopy ( 1 H-MRS) to examine the relationships between E/I (glutamate + glutamine/GABA) and FC of the dorsolateral prefrontal cortex and posterolateral cerebellar hemisphere from 14 adolescents/adults with ASD and 12 age/sex/IQ-matched controls. In this pilot sample, cerebro-cerebellar FC was positively associated with cerebellar E/I and listening comprehension abilities in individuals with ASD but not controls. Additionally, a subgroup of individuals with ASD and low FC (n = 5) exhibited reduced E/I and impaired listening comprehension. Thus, altered functional coherence of cerebro-cerebellar circuits in ASD may be related with a cerebellar E/I imbalance.

  3. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  4. Uptake and metabolism of L-[3H]glutamate and L-[3H]glutamine in adult rat cerebellar slices

    International Nuclear Information System (INIS)

    de Barry, J.; Vincendon, G.; Gombos, G.

    1983-01-01

    Using very low concentrations (1 mumol range) of L-2-3-[ 3 H]glutamate, ( 3 H-Glu) or L-2-3-[ 3 H]glutamine ( 3 H-Gln), the authors have previously shown by autoradiography that these amino acids were preferentially taken up in the molecular layer of the cerebellar cortex. Furthermore, the accumulation of 3 H-Glu was essentially glial in these conditions. Uptake and metabolism of either ( 3 H-Glu) or ( 3 H-Gln) were studied in adult rat cerebellar slices. Both amino acids were rapidly converted into other metabolic compounds: after seven minutes of incubation in the presence of exogenous 3 H-Glu, 70% of the tissue accumulated radioactivity was found to be in compounds other than glutamate. The main metabolites were Gln (42%), alpha-ketoglutarate (25%) and GABA (1,4%). In the presence of exogenous 3 H-Gln the rate of metabolism was slightly slower (50% after seven minutes of incubation) and the metabolites were also Glu (29%), alpha-ketoglutarate (15%) and GABA (5%). Using depolarizing conditions (56 mM KCl) with either exogenous 3 H-Glu or 3 H-Gln, the radioactivity was preferentially accumulated in glutamate compared to control. From these results we conclude: i) there are two cellular compartments for the neurotransmission-glutamate-glutamine cycle; one is glial, the other neuronal; ii) these two cellular compartments contain both Gln and Glu; iii) transmitter glutamate is always in equilibrium with the so-called ''metabolic'' pool of glutamate; iv) the regulation of the glutamate-glutamine cycle occurs at least at two different levels: the uptake of glutamate and the enzymatic activity of the neuronal glutaminase

  5. Glial progenitor cell-based treatment of the childhood leukodystrophies

    DEFF Research Database (Denmark)

    Osório, M. Joana; Goldman, Steven A.

    2016-01-01

    stem cell-derived human neural or glial progenitor cells may comprise a promising strategy for both structural remyelination and metabolic rescue. A broad variety of pediatric white matter disorders, including the primary hypomyelinating disorders, the lysosomal storage disorders, and the broader group...... genetic editing of pluripotent stem cells. Yet these challenges notwithstanding, the promise of glial progenitor cell-based treatment of the childhood myelin disorders offers hope to the many victims of this otherwise largely untreatable class of disease....... and astrocytes are the major affected cell populations, and are either structurally impaired or metabolically compromised through cell-intrinsic pathology, or are the victims of mis-accumulated toxic byproducts of metabolic derangement. In either case, glial cell replacement using implanted tissue or pluripotent...

  6. A Case of Nasal Glial Heterotopia in an Adult

    Directory of Open Access Journals (Sweden)

    Akira Hagiwara

    2014-01-01

    Full Text Available We report a rare case of nasal glial heterotopia in an adult. After the surgery, frontal lobe cerebral hemorrhage developed. A 58-year-old man had unilateral nasal obstruction that progressed for one year. He had been treated for hypertension, chronic heart failure, and cerebral infarction with aspirin and warfarin. A computed tomography scan showed that the tumor occupied the right nasal cavity and the sinuses with small defect in the cribriform plate. The tumor was removed totally with endoscopy. After the operation, the patient developed convulsions and frontal lobe cerebral hemorrhage. The hemorrhage site was located near a defect in the cribriform plate. Nasal glial heterotopia is a rare developmental abnormality, particularly rare in adult. Only few cases were reported. We could not find any report of adult nasal glial heterotopias that developed cerebral hemorrhage as a complication of the surgery.

  7. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  8. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  9. Giant Glial Cell: New Insight Through Mechanism-Based Modeling

    DEFF Research Database (Denmark)

    Postnov, D. E.; Ryazanova, L. S.; Brazhe, Nadezda

    2008-01-01

    The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways...... of the glial cell activation: (1) via IP3 production and Ca2+ release from the endoplasmic reticulum and (2) via increase of the extracellular potassium concentration, glia depolarization, and opening of voltage-dependent Ca2+ channels. We suggest that the second pathway is the more significant...

  10. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    Science.gov (United States)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  11. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  12. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons.

    Science.gov (United States)

    Trivedi, Niraj; Ramahi, Joseph S; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A; Solecki, David J

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. We show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. We propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  13. Mathematical models of human cerebellar development in the fetal period.

    Science.gov (United States)

    Dudek, Krzysztof; Nowakowska-Kotas, Marta; Kędzia, Alicja

    2018-04-01

    The evaluation of cerebellar growth in the fetal period forms a part of a widely used examination to identify any features of abnormalities in early stages of human development. It is well known that the development of anatomical structures, including the cerebellum, does not always follow a linear model of growth. The aim of the study was to analyse a variety of mathematical models of human cerebellar development in fetal life to determine their adequacy. The study comprised 101 fetuses (48 males and 53 females) between the 15th and 28th weeks of fetal life. The cerebellum was exposed and measurements of the vermis and hemispheres were performed, together with statistical analyses. The mathematical model parameters of fetal growth were assessed for crown-rump length (CRL) increases, transverse cerebellar diameter and ventrodorsal dimensions of the cerebellar vermis in the transverse plane, and rostrocaudal dimensions of the cerebellar vermis and hemispheres in the frontal plane. A variety of mathematical models were applied, including linear and non-linear functions. Taking into consideration the variance between models and measurements, as well as correlation parameters, the exponential and Gompertz models proved to be the most suitable for modelling cerebellar growth in the second and third trimesters of pregnancy. However, the linear model gave a satisfactory approximation of cerebellar growth, especially in older fetuses. The proposed models of fetal cerebellar growth constructed on the basis of anatomical examination and objective mathematical calculations could be useful in the estimation of fetal development. © 2018 Anatomical Society.

  14. Postural responses to multidirectional stance perturbations in cerebellar ataxia

    NARCIS (Netherlands)

    Bakker, Maaike; Allum, John H J; Visser, Jasper E; Grüneberg, Christian; van de Warrenburg, Bart P; Kremer, H P H; Bloem, Bastiaan R

    Previous studies of patients with focal cerebellar damage underscored the importance of the cerebellum for balance control. These studies were restricted to postural control in the pitch plane, and focused mainly on leg muscle responses. Here, we examined the effect of degenerative cerebellar

  15. Cerebellar transcranial direct current stimulation modulates verbal working memory.

    Science.gov (United States)

    Boehringer, Andreas; Macher, Katja; Dukart, Juergen; Villringer, Arno; Pleger, Burkhard

    2013-07-01

    Neuroimaging studies show cerebellar activations in a wide range of cognitive tasks and patients with cerebellar lesions often present cognitive deficits suggesting a cerebellar role in higher-order cognition. We used cathodal transcranial direct current stimulation (tDCS), known to inhibit neuronal excitability, over the cerebellum to investigate if cathodal tDCS impairs verbal working memory, an important higher-order cognitive faculty. We tested verbal working memory as measured by forward and backward digit spans in 40 healthy young participants before and after applying cathodal tDCS (2 mA, stimulation duration 25 min) to the right cerebellum using a randomized, sham-controlled, double-blind, cross-over design. In addition, we tested the effect of cerebellar tDCS on word reading, finger tapping and a visually cued sensorimotor task. In line with lower digit spans in patients with cerebellar lesions, cerebellar tDCS reduced forward digit spans and blocked the practice dependent increase in backward digit spans. No effects of tDCS on word reading, finger tapping or the visually cued sensorimotor task were found. Our results support the view that the cerebellum contributes to verbal working memory as measured by forward and backward digit spans. Moreover, the induction of reversible "virtual cerebellar lesions" in healthy individuals by means of tDCS may improve our understanding of the mechanistic basis of verbal working memory deficits in patients with cerebellar lesions. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Distinct Critical Cerebellar Subregions for Components of Verbal Working Memory

    Science.gov (United States)

    Cooper, Freya E.; Grube, Manon; Von Kriegstein, Katharina; Kumar, Sukhbinder; English, Philip; Kelly, Thomas P.; Chinnery, Patrick F.; Griffiths, Timothy D.

    2012-01-01

    A role for the cerebellum in cognition has been proposed based on studies suggesting a profile of cognitive deficits due to cerebellar stroke. Such studies are limited in the determination of the detailed organisation of cerebellar subregions that are critical for different aspects of cognition. In this study we examined the correlation between…

  17. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    Science.gov (United States)

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Postural responses to multidirectional stance perturbations in cerebellar ataxia

    NARCIS (Netherlands)

    Bakker, Maaike; Allum, John H J; Visser, Jasper E; Grüneberg, Christian; van de Warrenburg, Bart P; Kremer, H P H; Bloem, Bastiaan R

    2006-01-01

    Previous studies of patients with focal cerebellar damage underscored the importance of the cerebellum for balance control. These studies were restricted to postural control in the pitch plane, and focused mainly on leg muscle responses. Here, we examined the effect of degenerative cerebellar

  19. Time estimation in Parkinson's disease and degenerative cerebellar disease

    NARCIS (Netherlands)

    Beudel, Martijin; Galama, Sjoukje; Leenders, Klaus L.; de Jong, Bauke M.

    2008-01-01

    With functional MRI, we recently identified fronto-cerebellar activations in predicting time to reach a target and basal ganglia activation in velocity estimation, that is, small interval assessment. We now tested these functions in patients with Parkinson's disease (PD) and degenerative cerebellar

  20. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  1. Humor and laughter in patients with cerebellar degeneration.

    Science.gov (United States)

    Frank, B; Propson, B; Göricke, S; Jacobi, H; Wild, B; Timmann, D

    2012-06-01

    Humor is a complex behavior which includes cognitive, affective and motor responses. Based on observations of affective changes in patients with cerebellar lesions, the cerebellum may support cerebral and brainstem areas involved in understanding and appreciation of humorous stimuli and expression of laughter. The aim of the present study was to examine if humor appreciation, perception of humorous stimuli, and the succeeding facial reaction differ between patients with cerebellar degeneration and healthy controls. Twenty-three adults with pure cerebellar degeneration were compared with 23 age-, gender-, and education-matched healthy control subjects. No significant difference in humor appreciation and perception of humorous stimuli could be found between groups using the 3 Witz-Dimensionen Test, a validated test asking for funniness and aversiveness of jokes and cartoons. Furthermore, while observing jokes, humorous cartoons, and video sketches, facial expressions of subjects were videotaped and afterwards analysed using the Facial Action Coding System. Using depression as a covariate, the number, and to a lesser degree, the duration of facial expressions during laughter were reduced in cerebellar patients compared to healthy controls. In sum, appreciation of humor appears to be largely preserved in patients with chronic cerebellar degeneration. Cerebellar circuits may contribute to the expression of laughter. Findings add to the literature that non-motor disorders in patients with chronic cerebellar disease are generally mild, but do not exclude that more marked disorders may show up in acute cerebellar disease and/or in more specific tests of humor appreciation.

  2. Cerebellar involvement in metabolic disorders: a pattern-recognition approach

    International Nuclear Information System (INIS)

    Steinlin, M.; Boltshauser, E.; Blaser, S.

    1998-01-01

    Inborn errors of metabolism can affect the cerebellum during development, maturation and later during life. We have established criteria for pattern recognition of cerebellar abnormalities in metabolic disorders. The abnormalities can be divided into four major groups: cerebellar hypoplasia (CH), hyperplasia, cerebellar atrophy (CA), cerebellar white matter abnormalities (WMA) or swelling, and involvement of the dentate nuclei (DN) or cerebellar cortex. CH can be an isolated typical finding, as in adenylsuccinase deficiency, but is also occasionally seen in many other disorders. Differentiation from CH and CA is often difficult, as in carbohydrate deficient glycoprotein syndrome or 2-l-hydroxyglutaric acidaemia. In cases of atrophy the relationship of cerebellar to cerebral atrophy is important. WMA may be diffuse or patchy, frequently predominantly around the DN. Severe swelling of white matter is present during metabolic crisis in maple syrup urine disease. The DN can be affected by metabolite deposition, necrosis, calcification or demyelination. Involvement of cerebellar cortex is seen in infantile neuroaxonal dystrophy. Changes in DN and cerebellar cortex are rather typical and therefore most helpful; additional features should be sought as they are useful in narrowing down the differential diagnosis. (orig.)

  3. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions

    DEFF Research Database (Denmark)

    Sönmezoğlu, K; Sperling, B; Henriksen, T

    1993-01-01

    Four patients with clinical signs of cerebellar stroke were studied twice by SPECT using 99mTc-HMPAO as a tracer for cerebral blood flow (CBF). When first scanned 6 to 22 days after onset, all had a region of very low CBF in the symptomatic cerebellar hemisphere, and a mild to moderate CBF reduct...

  4. The Cerebellum and Language: Evidence from Patients with Cerebellar Degeneration

    Science.gov (United States)

    Stoodley, Catherine J.; Schmahmann, Jeremy D.

    2009-01-01

    Clinical and imaging studies suggest that the cerebellum is involved in language tasks, but the extent to which slowed language production in cerebellar patients contributes to their poor performance on these tasks is not clear. We explored this relationship in 18 patients with cerebellar degeneration and 16 healthy controls who completed measures…

  5. Progenitor cell-based treatment of glial disease

    DEFF Research Database (Denmark)

    Goldman, Steven A

    2017-01-01

    -based neurodegenerative conditions may now be compelling targets for cell-based therapy. As such, glial cell-based therapies may offer potential benefit to a broader range of diseases than ever before contemplated, including disorders such as Huntington's disease and the motor neuron degeneration of amyotrophic lateral...

  6. Glial Cells - The Key Elements of Alzheimer's Disease

    Czech Academy of Sciences Publication Activity Database

    Džamba, Dávid; Harantová, Lenka; Butenko, Olena; Anděrová, Miroslava

    2016-01-01

    Roč. 13, č. 8 (2016), s. 894-911 ISSN 1567-2050 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : alzheimer 's disease * astrocytes * glial cells Subject RIV: ED - Physiology Impact factor: 2.952, year: 2016

  7. A series of parapharyngeal glial heterotopia mimicking lymphatic malformation.

    Science.gov (United States)

    Haloob, Nora; Pepper, Christopher; Hartley, Benjamin

    2015-12-01

    Otolaryngologists will most frequently encounter extra-cranial glial tissue within the nasal cavity, where it is known as a 'nasal glioma', and may communicate with the dura. However, glial tissue can also present extra-nasally in the form of a neck mass with no intracranial connection. In these rare cases, they can present soon after birth as an enlarging neck mass, causing compressive symptoms with airway obstruction and feeding difficulties. In this way, it is often initially misdiagnosed as a more common lesion such as a lymphatic malformation, teratoma, branchial anomaly or vascular malformation. As with many congenital head and neck masses, offering the most the appropriate management relies heavily on radiological imaging and, where possible, histopathology from a diagnostic biopsy. Once the diagnosis of extra-nasal glial heterotopia has been confirmed, the gold standard management is complete surgical excision. We review three cases of extra-nasal glial heterotopia presenting to our institution over an eleven year period as a large neck mass, which mimicked other congenital neck lumps, and discuss them in the context of those in the literature. We highlight how their clinical and radiological features can easily be confused with lymphatic malformations, and the potential implications of misdiagnosis. Raising awareness of this diagnostic confusion will highlight the need for management of these cases within an appropriate paediatric multidisciplinary setting. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Rapid method for culturing embryonic neuron-glial cell cocultures

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Shan, Wei-Song; Colman, David R

    2003-01-01

    neurons is seen after 3 weeks (2 weeks in ascorbic acid), suggesting that basal lamina production is important even for glial ensheathment in the enteric nervous system. No overgrowth of fibroblasts or other nonneuronal cells was noted in any cultures, and myelination of the peripheral nervous system...

  9. Peripheral Glial Cells in the Development of Diabetic Neuropathy

    Science.gov (United States)

    Gonçalves, Nádia Pereira; Vægter, Christian Bjerggaard; Pallesen, Lone Tjener

    2018-01-01

    The global prevalence of diabetes is rapidly increasing, affecting more than half a billion individuals within the next few years. As diabetes negatively affects several physiological systems, this dramatic increase represents not only impaired quality of life on the individual level but also a huge socioeconomic challenge. One of the physiological consequences affecting up to half of diabetic patients is the progressive deterioration of the peripheral nervous system, resulting in spontaneous pain and eventually loss of sensory function, motor weakness, and organ dysfunctions. Despite intense research on the consequences of hyperglycemia on nerve functions, the biological mechanisms underlying diabetic neuropathy are still largely unknown, and treatment options lacking. Research has mainly focused directly on the neuronal component, presumably from the perspective that this is the functional signal-transmitting unit of the nerve. However, it is noteworthy that each single peripheral sensory neuron is intimately associated with numerous glial cells; the neuronal soma is completely enclosed by satellite glial cells and the length of the longest axons covered by at least 1,000 Schwann cells. The glial cells are vital for the neuron, but very little is still known about these cells in general and especially how they respond to diabetes in terms of altered neuronal support. We will discuss current knowledge of peripheral glial cells and argue that increased research in these cells is imperative for a better understanding of the mechanisms underlying diabetic neuropathy. PMID:29770116

  10. Understanding the NG2 glial scar after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Amber R Hackett

    2016-11-01

    Full Text Available NG2 cells, also known as oligodendrocyte progenitor cells, are located throughout the central nervous system and serve as a pool of progenitors to differentiate into oligodendrocytes. In response to spinal cord injury, NG2 cells increase their proliferation and differentiation into remyelinating oligodendrocytes. While astrocytes are typically associated with being the major cell type in the glial scar, many NG2 cells also accumulate within the glial scar but their function remains poorly understood. Similar to astrocytes, these cells hypertrophy, upregulate expression of chondroitin sulfate proteoglycans, inhibit axon regeneration, contribute to the glial-fibrotic scar border, and some even differentiate into astrocytes. Whether NG2 cells also have a role in other astrocyte functions, such as preventing the spread of infiltrating leukocytes and expression of inflammatory cytokines, is not yet known. Thus, NG2 cells are not only important for remyelination after spinal cord injury, but are also a major component of the glial scar with functions that overlap with astrocytes in this region. In this review, we describe the signaling pathways important for the proliferation and differentiation of NG2 cells, as well as the role of NG2 cells in scar formation and tissue repair.

  11. New evidence for the cerebellar involvement in personality traits

    Directory of Open Access Journals (Sweden)

    Eleonora ePicerni

    2013-10-01

    Full Text Available Following the recognition of its role in sensory-motor coordination and learning, the cerebellum has been involved in cognitive, emotional and even personality domains. This study investigated the relationships between cerebellar macro- and micro-structural variations and temperamental traits measured by Temperament and Character Inventory (TCI. High resolution T1-weighted and Diffusion Tensor Images of 100 healthy subjects aged 18-59 years were acquired by 3 Tesla Magnetic Resonance scanner. In multiple regression analyses, cerebellar Gray Matter (GM or White Matter (WM volumes, GM Mean Diffusivity (MD, and WM Fractional Anisotropy (FA were used as dependent variables, TCI scores as regressors, gender, age, and education years as covariates. Novelty Seeking scores were associated positively with the cerebellar GM volumes and FA, and negatively with MD. No significant association between Harm Avoidance, Reward Dependence or Persistence scores and cerebellar structural measures was found. The present data put toward a cerebellar involvement in the management of novelty.

  12. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    International Nuclear Information System (INIS)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S.

    2006-01-01

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  13. Brainstem and cerebellar changes after cerebrovascular accidents: magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Takase, Y.; Nomiyama, K.; Egashira, R.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan)

    2006-03-15

    We illustrate the various types of secondary degeneration in the brainstem and/or cerebellum detected on magnetic resonance (MR) images obtained after cerebrovascular accidents. The changes include: (a) ipsilateral nigral degeneration after striatal infarction; (b) Wallerian degeneration of the pyramidal tract in the brainstem after supratentorial pyramidal tract or motor cortex injury; (c) Wallerian degeneration of the corticopontine tract in the brainstem after frontal lobe infarction; (d) ipsilateral brainstem atrophy and crossed cerebellar atrophy due to an extensive supratentorial lesion; (e) ipsilateral superior cerebellar peduncle atrophy, contralateral rubral degeneration, contralateral inferior olivary degeneration and ipsilateral cerebellar atrophy after dentate nucleus hemorrhage; (f) ipsilateral inferior olivary degeneration after pontine tegmentum hemorrhage; (g) bilateral wallerian degeneration of the pontocerebellar tracts after ventromedial pontine infarction or basis pontis hemorrhage; and (h) ipsilateral cerebellar atrophy after middle cerebellar peduncle hemorrhage. (orig.)

  14. Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

    Directory of Open Access Journals (Sweden)

    Samira Abbasi

    2016-01-01

    Discussion: Therefore, inhibition of SK channel in DCN can cause cerebellar ataxia, and SK channel openers can have a therapeutic effect on cerebellar ataxia. In addition, the location of SK channels could be important in therapeutic goals. Dendritic SK channels can be a more effective target compared to somatic SK channels

  15. Disorganized foliation of unilateral cerebellar hemisphere as cerebellar cortical dysplasia in patients with recurrent seizures: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hye Jin [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-09-15

    We present a rare case of abnormal foliation for one cerebellar hemisphere on MR imaging, showing vertically-oriented folia. Foliation of contralateral cerebellar hemisphere and other structures in the posterior fossa were normal, and the patient has no neurologic deficits. This rare and unique abnormality is considered a kind of developmental error of the cerebellum.

  16. Insights into cerebellar development and medulloblastoma.

    Science.gov (United States)

    Bihannic, Laure; Ayrault, Olivier

    2016-01-01

    Cerebellar development is an extensive process that begins during early embryonic stages and persists more than one year after birth in human. Therefore, the cerebellum is susceptible to acquire various developmental abnormalities leading to numerous diseases such as medulloblastoma, the most common pediatric malignant brain tumor. One third of the patients with medulloblastoma are incurable and survivors have a poor quality of life due to the aggressiveness of the broad-spectrum treatments. Within the past few years, it has been highlighted that medulloblastoma is a heterogeneous disease that is divided in four molecular subgroups. This recent advance in the field, combined with the development of associated preclinical models for each subgroup, should enable, in the future, the discovery and use of targeted therapy in clinical treatments for each subtype of medulloblastoma. In this review, we first aim to show how deregulation of cerebellar development can lead to medulloblastoma formation and then to present the advances in the molecular subgrouping of medulloblastoma and the associated preclinical models. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  17. Remote cerebellar hemorrhage after lumbar spinal surgery

    International Nuclear Information System (INIS)

    Cevik, Belma; Kirbas, Ismail; Cakir, Banu; Akin, Kayihan; Teksam, Mehmet

    2009-01-01

    Background: Postoperative remote cerebellar hemorrhage (RCH) as a complication of lumbar spinal surgery is an increasingly recognized clinical entity. The aim of this study was to determine the incidence of RCH after lumbar spinal surgery and to describe diagnostic imaging findings of RCH. Methods: Between October 1996 and March 2007, 2444 patients who had undergone lumbar spinal surgery were included in the study. Thirty-seven of 2444 patients were scanned by CT or MRI due to neurologic symptoms within the first 7 days of postoperative period. The data of all the patients were studied with regard to the following variables: incidence of RCH after lumbar spinal surgery, gender and age, coagulation parameters, history of previous arterial hypertension, and position of lumbar spinal surgery. Results: The retrospective study led to the identification of two patients who had RCH after lumbar spinal surgery. Of 37 patients who had neurologic symptoms, 29 patients were women and 8 patients were men. CT and MRI showed subarachnoid hemorrhage in the folia of bilateral cerebellar hemispheres in both patients with RCH. The incidence of RCH was 0.08% among patients who underwent lumbar spinal surgery. Conclusion: RCH is a rare complication of lumbar spinal surgery, self-limiting phenomenon that should not be mistaken for more ominous pathologic findings such as hemorrhagic infarction. This type of bleeding is thought to occur secondary to venous infarction, but the exact pathogenetic mechanism is unknown. CT or MRI allowed immediate diagnosis of this complication and guided conservative management.

  18. Distinct types of glial cells populate the Drosophila antenna

    Directory of Open Access Journals (Sweden)

    Jhaveri Dhanisha

    2005-11-01

    Full Text Available Abstract Background The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix-loop-helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results We have used different P(Gal4 lines to drive Green Fluorescent Protein (GFP in distinct populations of cells within the Drosophila antenna. Mz317::GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional ~30 glial cells detected by GH146::GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317-glia and GH146-glia respectively. In the adult, processes of GH146-glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317-glia form a peripheral layer. Ablation of GH146-glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146-glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting

  19. The Cause of Gravity

    OpenAIRE

    Byrne, Michael

    1999-01-01

    Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...

  20. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  1. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies.

    Directory of Open Access Journals (Sweden)

    Nofar Torika

    Full Text Available The circulating renin-angiotensin system (RAS, including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker on tumor necrosis factor-α (TNF-α, interleukin 1-β (IL1-β and nitric oxide (NO release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor. Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the

  2. Heat stroke induced cerebellar dysfunction: A “forgotten syndrome”

    Science.gov (United States)

    Kosgallana, Athula D; Mallik, Shreyashee; Patel, Vishal; Beran, Roy G

    2013-01-01

    We report a case of heat stroke induced acute cerebellar dysfunction, a rare neurological disease characterized by gross cerebellar dysfunction with no acute radiographic changes, in a 61 years old ship captain presenting with slurred speech and gait ataxia. A systematic review of the literature on heat stroke induced cerebellar dysfunction was performed, with a focus on investigations, treatment and outcomes. After review of the literature and detailed patient investigation it was concluded that this patient suffered heat stroke at a temperature less than that quoted in the literature. PMID:24340279

  3. Cerebellar abiotrophy in a family of Border Collie dogs.

    Science.gov (United States)

    Sandy, J R; Slocombe, R E; Mitten, R W; Jedwab, D

    2002-11-01

    Cerebellar abiotrophies have a nonsex-linked, autosomal, recessively inherited basis in a number of species, and lesions typically reflect profound and progressive loss of Purkinje cells. In this report, an unusual form of abiotrophy is described for two sibling Border Collies. Extensive loss of the cerebellar granular cell layer was present with relative sparing of Purkinje cells of two female pups. The biochemical basis for this form of cerebellar abiotrophy is unknown, but the lack of disease in other siblings supports an autosomal recessive mode of inheritance.

  4. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  5. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    Science.gov (United States)

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.

  6. Hereditary spastic paraplegia with cerebellar ataxia

    DEFF Research Database (Denmark)

    Nielsen, J E; Johnsen, B; Koefoed, P

    2004-01-01

    Complex forms of hereditary spastic paraplegia (HSP) are rare and usually transmitted in an autosomal recessive pattern. A family of four generations with autosomal dominant hereditary spastic paraplegia (AD-HSP) and a complex phenotype with variably expressed co-existing ataxia, dysarthria......, unipolar depression, epilepsy, migraine, and cognitive impairment was investigated. Genetic linkage analysis and sequencing of the SPG4 gene was performed and electrophysiologic investigations were carried out in six individuals and positron emission tomography (PET) in one patient. The disease was linked...... in those individuals who were clinically affected by a complex phenotype consisting of HSP and cerebellar ataxia. Other features noted in this kindred including epilepsy, cognitive impairment, depression, and migraine did not segregate with the HSP phenotype or mutation, and therefore the significance...

  7. The Cerebellar-Cerebral Microstructure Is Disrupted at Multiple Sites in Very Preterm Infants with Cerebellar Haemorrhage.

    Science.gov (United States)

    Neubauer, Vera; Djurdjevic, Tanja; Griesmaier, Elke; Biermayr, Marlene; Gizewski, Elke Ruth; Kiechl-Kohlendorfer, Ursula

    2018-01-01

    Recent advances in magnetic resonance imaging (MRI) techniques have prompted reconsideration of the anatomical correlates of adverse outcomes in preterm infants. The importance of the contribution made by the cerebellum is now increasingly appreciated. The effect of cerebellar haemorrhage (CBH) on the microstructure of the cerebellar-cerebral circuit is largely unexplored. To investigate the effect of CBH on the microstructure of cerebellar-cerebral connections in preterm infants aged microstructure (fractional anisotropy [FA] and apparent diffusion coefficient) were quantified in 5 vulnerable regions (the centrum semiovale, posterior limb of the internal capsule, corpus callosum, and superior and middle cerebellar peduncles). Group differences between infants with CBH and infants without CBH were assessed. There were 267 infants included in the study. Infants with CBH (isolated and combined) had significantly lower FA values in all regions investigated. Infants with isolated CBH showed lower FA in the middle and superior cerebellar peduncles and in the posterior limb of the internal capsule. This study provides evidence that CBH causes alterations in localised and remote WM pathways in the developing brain. The disruption of the cerebellar-cerebral microstructure at multiple sites adds further support for the concept of developmental diaschisis, which is propagated as an explanation for the consequences of early cerebellar injury on cognitive and affective domains. © 2017 S. Karger AG, Basel.

  8. Sleep and immune function: glial contributions and consequences of aging.

    Science.gov (United States)

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  9. Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Alshikho, Mohamad J; Zürcher, Nicole R; Loggia, Marco L; Cernasov, Paul; Chonde, Daniel B; Izquierdo Garcia, David; Yasek, Julia E; Akeju, Oluwaseun; Catana, Ciprian; Rosen, Bruce R; Cudkowicz, Merit E; Hooker, Jacob M; Atassi, Nazem

    2016-12-13

    In this cross-sectional study, we aimed to evaluate brain structural abnormalities in relation to glial activation in the same cohort of participants. Ten individuals with amyotrophic lateral sclerosis (ALS) and 10 matched healthy controls underwent brain imaging using integrated MR/PET and the radioligand [ 11 C]-PBR28. Diagnosis history and clinical assessments including Upper Motor Neuron Burden Scale (UMNB) were obtained from patients with ALS. Diffusion tensor imaging (DTI) analyses including tract-based spatial statistics and tractography were applied. DTI metrics including fractional anisotropy (FA) and diffusivities (mean, axial, and radial) were measured in regions of interest. Cortical thickness was assessed using surface-based analysis. The locations of structural changes, measured by DTI and the areas of cortical thinning, were compared to regional glial activation measured by relative [ 11 C]-PBR28 uptake. In this cohort of individuals with ALS, reduced FA and cortical thinning colocalized with regions demonstrating higher radioligand binding. [ 11 C]-PBR28 binding in the left motor cortex was correlated with FA (r = -0.68, p < 0.05) and cortical thickness (r = -0.75, p < 0.05). UMNB was correlated with glial activation (r = +0.75, p < 0.05), FA (r = -0.77, p < 0.05), and cortical thickness (r = -0.75, p < 0.05) in the motor cortex. Increased uptake of the glial marker [ 11 C]-PBR28 colocalizes with changes in FA and cortical thinning. This suggests a link between disease mechanisms (gliosis and inflammation) and structural changes (cortical thinning and white and gray matter changes). In this multimodal neuroimaging work, we provide an in vivo model to investigate the pathogenesis of ALS. © 2016 American Academy of Neurology.

  10. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimers Disease

    Science.gov (United States)

    2017-09-01

    4: Correlate the glial and glutamate metabolic rates with additional measures obtained in the parent studies including of a) serum, CSF, and genetic...resonances as a linear combination model. Note the high SNR of glutamate and its separation from other metabolites that would overlap at 3 Tesla. 3.3... separate protocol offered to participants in the study but will not be mandatory and thus will not impact this study in any way. 3.4. Results

  11. Peripheral nerve injury induces glial activation in primary motor cortex

    OpenAIRE

    Julieta Troncoso; Julieta Troncoso; Efraín Buriticá; Efraín Buriticá

    2015-01-01

    Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to eithe...

  12. Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders.

    Science.gov (United States)

    Kaminsky, Natalie; Bihari, Ofer; Kanner, Sivan; Barzilai, Ari

    2016-06-01

    The DNA damage response (DDR) is a complex biological system activated by different types of DNA damage. Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration, premature aging, and various types of cancers. Intriguingly, malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. For many years, brain degenerative disorders were thought to result from aberrant neural death. Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells (astrocytes, microglia, and oligodendrocytes). Impairment in the functionality of glial cells results in pathological neuro-glial interactions that, in turn, generate a "hostile" environment that impairs the functionality of neuronal cells. These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  13. Nasal glial heterotopia or congenital hemangioma? A case report.

    Science.gov (United States)

    Lartizien, R; Durand, C; Blaise, S; Morand, B

    2017-10-01

    Nasal glial heterotopia (NGH) is a rare benign tumor of the median line. We describe the case of a child presenting a lateral nasal mass. The characteristics of the prenatal ultrasound and the postnatal clinical examination argued in favor of a congenital hemangioma (CH). The MRI performed at 6 weeks of life suggested glial heterotopia. This diagnosis was confirmed by the pathological analysis. Congenital hemangiomas and nasal glial heterotopies have similar clinical presentations. Prenatal ultrasound diagnosis between NGH and CH is difficult. Fetal MRI is not yet highly specific for these two lesions, but it can eliminate an intracerebral connection in cases of NGH. Postnatal exams are more specific. Flow on the Doppler exam is rapid for CH and slow for NGH. On MRI, these two lesions appear as a hypersignal on T2-weighted sequences, but less intense for NGH than for CH. Distinguishing between NGH and CH can be difficult. This does not have a direct incidence on treatment because it is surgical in both cases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Imaging of intracranial neuronal and mixed neuronal-glial tumours

    International Nuclear Information System (INIS)

    Cui Shimin; Qin Jinxi; Zhang Leili; Liu Meili; Jin Song; Yan Shixin; Liu Li; Dai Weiying; Li Tao; Gao Man

    2001-01-01

    Objective: To investigate the characteristic clinical, imaging , and pathologic findings of intracranial neuronal and mixed neuronal-glial tumours. Methods: The imaging findings of surgery and pathobiology proved intracranial neuronal and mixed neuronal-glial tumours in 14 cases (7 male and 7 female, ranging in age from 6-56 years; mean age 33.8 years) were retrospectively analyzed. Results: Eight gangliogliomas were located in the frontal lobe (4 cases), temporal lobe (1 case), front- temporal lobe (2 cases), and pons (1 case). They appeared as iso-or low density on CT, iso-or low signal intensity on T 1 WI, and high signal intensity on T 2 WI on MR imaging. Two central neurocytomas were located in the supratentorial ventricles. Four desmoplastic gangliogliomas were seen as cystic masses, appearing as low signal intensity on T 1 WI and high signal intensity on T 2 WI. Conclusion: Intracranial neuronal and mixed neuronal-glial tumours had imaging characteristics. Combined with clinical history, it was possible to make a tendency preoperative diagnosis using CT or MR

  15. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, C P; Sevcencu, C; Yoshida, K [Center for Sensory-Motor Interaction (SMI), Aalborg University, Aalborg (Denmark); Dolatshahi-Pirouz, A; Foss, M; Larsen, A Nylandsted; Besenbacher, F [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus (Denmark); Hansen, J Lundsgaard [Department of Physics and Astronomy, Aarhus University, Aarhus (Denmark); Zachar, V, E-mail: cpennisi@hst.aau.d [Laboratory for Stem Cell Research, Aalborg University (Denmark)

    2009-09-23

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  16. Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders

    Directory of Open Access Journals (Sweden)

    Natalie Kaminsky

    2016-06-01

    Full Text Available The DNA damage response (DDR is a complex biological system activated by different types of DNA damage. Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration, premature aging, and various types of cancers. Intriguingly, malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson’s, Alzheimer’s, and Huntington’s diseases. For many years, brain degenerative disorders were thought to result from aberrant neural death. Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells (astrocytes, microglia, and oligodendrocytes. Impairment in the functionality of glial cells results in pathological neuro-glial interactions that, in turn, generate a “hostile” environment that impairs the functionality of neuronal cells. These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit.

  17. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M. [Dept. of Radiology, Kumamoto University School of Medicine (Japan); Okajima, T. [Dept. of Neurology, Johnan Hospital, Maihara, Johnan-mochi (Japan); Sato, H. [Dept. of Neurology, Minamata City General Hospital and Medical Centre (Japan)

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  18. Bilateral cerebellar activation in unilaterally challenged essential tremor

    Directory of Open Access Journals (Sweden)

    Marja Broersma

    2016-01-01

    Conclusions: Our results expand on previous findings of bilateral cerebellar involvement in ET. We have identified specific areas in the bilateral somatomotor regions of the cerebellum: lobules V, VI and VIII.

  19. Anomalous cerebellar anatomy in Chinese children with dyslexia

    Directory of Open Access Journals (Sweden)

    Ying-Hui eYang

    2016-03-01

    Full Text Available The cerebellar deficit hypothesis for developmental dyslexia (DD claims that cerebellar dysfunction causes the failures in the acquisition of visuomotor skills and automatic reading and writing skills. In people with dyslexia in the alphabetic languages, the abnormal activation and structure of the right or bilateral cerebellar lobes have been identified. Using a typical implicit motor learning task, however, one neuroimaging study demonstrated the left cerebellar dysfunction in Chinese children with dyslexia. In the present study, using voxel-based morphometry, we found decreased gray matter volume in the left cerebellum in Chinese children with dyslexia relative to age-matched controls. The positive correlation between reading performance and regional gray matter volume suggests that the abnormal structure in the left cerebellum is responsible for reading disability in Chinese children with dyslexia.

  20. Cerebellar giant cell glioblastoma multiforme in an adult

    Directory of Open Access Journals (Sweden)

    Sudhansu Sekhar Mishra

    2014-01-01

    Full Text Available Cerebellar glioblastoma multiforme (GBM is a rare tumor that accounts for only 1% of all cases of GBM and its giant cell variant is even much rarely encountered in adults. A case of cerebellar giant cell GBM managed at our institution reporting its clinical presentation, radiological and histological findings, and treatment instituted is described. In conjunction, a literature review, including particular issues, clinical data, advances in imaging studies, pathological characteristics, treatment options, and the behavior of such malignant tumor is presented. It is very important for the neurosurgeon to make the differential diagnosis between the cerebellar GBM, and other diseases such as metastasis, anaplastic astrocytomas, and cerebellar infarct because their treatment modalities, prognosis, and outcome are different.

  1. Cerebellar infarct patterns: The SMART-Medea study

    Directory of Open Access Journals (Sweden)

    Laurens J.L. De Cocker, MD

    2015-01-01

    Conclusions: Small cerebellar infarcts proved to be much more common than larger infarcts, and preferentially involved the cortex. Small cortical infarcts predominantly involved the posterior lobes, showed sparing of subcortical white matter and occurred in characteristic topographic patterns.

  2. Bilateral cerebellar activation in unilaterally challenged essential tremor

    NARCIS (Netherlands)

    Broersma, Marja; van der Stouwe, Anna M. M.; Buijink, Arthur W. G.; de Jong, Bauke M.; Groot, Paul F. C.; Speelman, Johannes D.; Tijssen, Marina A. J.; van Rootselaar, Anne-Fleur; Maurits, Natasha M.

    2016-01-01

    Essential tremor (ET) is one of the most common hyperkinetic movement disorders. Previous research into the pathophysiology of ET suggested underlying cerebellar abnormalities. In this study, we added electromyography as an index of tremor intensity to functional Magnetic Resonance Imaging

  3. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    International Nuclear Information System (INIS)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M.; Okajima, T.; Sato, H.

    2001-01-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  4. [Alterations of glial fibrillary acidic protein in rat brain after gamma knife irradiation].

    Science.gov (United States)

    Ma, Z M; Jiang, B; Ma, J R

    2001-08-28

    To study glial fibrillary acidic protein (GFAP) immunoreactivity in different time and water content of the rat brain treated with gamma knife radiotherapy and to understand the alteration course of the brain lesion after a single high dose radiosurgical treatment. In the brains of the normal rats were irradiated by gamma knife with 160 Gy-high dose. The irradiated rats were then killed on the 1st day, 7th day, 14th day, and 28th day after radiotherapy, respectively. The positive cells of GFAP in brain tissue were detected by immunostaining; the water content of the brain tissue was measured by microgravimetry. The histological study of the irradiated brain tissue was performed with H.E. and examined under light microscope. The numbers of GFAP-positive astrocytes began to increase on the 1st day after gamma knife irradiation. It was enlarged markedly in the number and size of GFAP-stained astrocytes over the irradiated areas. Up to the 28th day, circumscribed necrosis foci (4 mm in diameter) was seen in the central area of the target. In the brain tissue around the necrosis, GFAP-positive astrocytes significantly increased (P gravity in the irradiated brain tissue the 14th and 28th day after irradiation. The results suggest that GFAP can be used as a marker for the radiation-induced brain injury. The brain edema and disruption of brain-blood barrier can be occurred during the acute stage after irradiation.

  5. Quantum W3 gravity

    International Nuclear Information System (INIS)

    Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY

    1991-11-01

    We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity

  6. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  7. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  8. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  9. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  10. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  11. Northern Oklahoma Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...

  12. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  13. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control

    Science.gov (United States)

    Esterman, Michael; Thai, Michelle; Okabe, Hidefusa; DeGutis, Joseph; Saad, Elyana; Laganiere, Simon E.; Halko, Mark A.

    2018-01-01

    Developing non-invasive brain stimulation interventions to improve attentional control is extremely relevant to a variety of neurologic and psychiatric populations, yet few studies have identified reliable biomarkers that can be readily modified to improve attentional control. One potential biomarker of attention is functional connectivity in the core cortical network supporting attention - the dorsal attention network (DAN). We used a network-targeted cerebellar transcranial magnetic stimulation (TMS) procedure, intended to enhance cortical functional connectivity in the DAN. Specifically, in healthy young adults we administered intermittent theta burst TMS (iTBS) to the midline cerebellar node of the DAN and, as a control, the right cerebellar node of the default mode network (DMN). These cerebellar targets were localized using individual resting-state fMRI scans. Participants completed assessments of both sustained (gradual onset continuous performance task, gradCPT) and transient attentional control (attentional blink) immediately before and after stimulation, in two sessions (cerebellar DAN and DMN). Following cerebellar DAN stimulation, participants had significantly fewer attentional lapses (lower commission error rates) on the gradCPT. In contrast, stimulation to the cerebellar DMN did not affect gradCPT performance. Further, in the DAN condition, individuals with worse baseline gradCPT performance showed the greatest enhancement in gradCPT performance. These results suggest that temporarily increasing functional connectivity in the DAN via network-targeted cerebellar stimulation can enhance sustained attention, particularly in those with poor baseline performance. With regard to transient attention, TMS stimulation improved attentional blink performance across both stimulation sites, suggesting increasing functional connectivity in both networks can enhance this aspect of attention. These findings have important implications for intervention applications

  14. Transient cerebellopontine demyelinisation revealed by MRI in acute cerebellar ataxia

    International Nuclear Information System (INIS)

    Aufricht, C.A.; Tenner, W.; Rosenmayr, F.; Stiglbauer, R.

    1990-01-01

    An eight year old boy was admitted to our ward with a history of abrupt onset of rapidly progressive gait disorder, nausea, vertigo and vomiting. The clinical as well as the laboratory findings suggested the diagnosis of acute cerebellar ataxia. Magnetic resonance imaging (MRI), however, showed marked demyelinisation in the cerebellar region and visual evoked potentials were pathologic. After immunosuppression the patient promptly improved clinically and the lesions depicted by MRI disappeared almost completely. (orig.)

  15. Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90-231 Neurotoxic Effects in Cerebellar Granule Neurons.

    Science.gov (United States)

    Thellung, Stefano; Gatta, Elena; Pellistri, Francesca; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Robello, Mauro; Florio, Tullio

    2017-10-01

    Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90-231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrP Sc ). PrP90-231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca ++ ] i increase. Indeed, while in "pure" cerebellar granule neuron cultures, PrP90-231 causes a delayed intracellular Ca ++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca ++ ] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca ++ ] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca ++ ] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE 2 release from glial cells. Thus, Ca ++ homeostasis alteration, directly induced by PrP90-231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90-231 neurotoxicity, whereas NMDA blockade by D(-)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90-231 neurotoxicity. These data indicate that amyloidogenic peptides

  16. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  17. Neuron-glial communication mediated by TNF-α and glial activation in dorsal root ganglia in visceral inflammatory hypersensitivity.

    Science.gov (United States)

    Song, Dan-dan; Li, Yong; Tang, Dong; Huang, Li-ya; Yuan, Yao-zong

    2014-05-01

    Communication between neurons and glia in the dorsal root ganglia (DRG) and the central nervous system is critical for nociception. Both glial activation and proinflammatory cytokine induction underlie this communication. We investigated whether satellite glial cell (SGC) and tumor necrosis factor-α (TNF-α) activation in DRG participates in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat model of visceral hyperalgesia. In TNBS-treated rats, TNF-α expression increased in DRG and was colocalized to SGCs enveloping a given neuron. These SGCs were activated as visualized under electron microscopy: they had more elongated processes projecting into the connective tissue space and more gap junctions. When nerves attached to DRG (L6-S1) were stimulated with a series of electrical stimulations, TNF-α were released from DRG in TNBS-treated animals compared with controls. Using a current clamp, we noted that exogenous TNF-α (2.5 ng/ml) increased DRG neuron activity, and visceral pain behavioral responses were reversed by intrathecal administration of anti-TNF-α (10 μg·kg(-1)·day(-1)). Based on our findings, TNF-α and SGC activation in neuron-glial communication are critical in inflammatory visceral hyperalgesia.

  18. Aberrant cerebellar connectivity in bipolar disorder with psychosis.

    Science.gov (United States)

    Shinn, Ann K; Roh, Youkyung S; Ravichandran, Caitlin T; Baker, Justin T; Öngür, Dost; Cohen, Bruce M

    2017-07-01

    The cerebellum, which modulates affect and cognition in addition to motor functions, may contribute substantially to the pathophysiology of mood and psychotic disorders, such as bipolar disorder. A growing literature points to cerebellar abnormalities in bipolar disorder. However, no studies have investigated the topographic representations of resting state cerebellar networks in bipolar disorder, specifically their functional connectivity to cerebral cortical networks. Using a well-defined cerebral cortical parcellation scheme as functional connectivity seeds, we compared ten cerebellar resting state networks in 49 patients with bipolar disorder and a lifetime history of psychotic features and 55 healthy control participants matched for age, sex, and image signal-to-noise ratio. Patients with psychotic bipolar disorder showed reduced cerebro-cerebellar functional connectivity in somatomotor A, ventral attention, salience, and frontoparietal control A and B networks relative to healthy control participants. These findings were not significantly correlated with current symptoms. Patients with psychotic bipolar disorder showed evidence of cerebro-cerebellar dysconnectivity in selective networks. These disease-related changes were substantial and not explained by medication exposure or substance use. Therefore, they may be mechanistically relevant to the underlying susceptibility to mood dysregulation and psychosis. Cerebellar mechanisms deserve further exploration in psychiatric conditions, and this study's findings may have value in guiding future studies on pathophysiology and treatment of mood and psychotic disorders, in particular.

  19. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions

    International Nuclear Information System (INIS)

    Soenmezoglu, K.; Sperling, B.; Lassen, N.A.; Henriksen, T.; Tfelt-Hansen, P.

    1993-01-01

    Four patients with clinical signs of cerebellar stroke were studied twice by SPECT using 99m Tc-HMPAO as a tracer for cerebral blood flow (CBF). When first scanned 6 to 22 days after onset, all had a region of very low CBF in the symptomatic cerebellar hemisphere, and a mild to moderate CBF reduction (average 10%) in contralateral hemispheric cortex. In all four cases clinical signs of unilateral cerebellar dysfunction were still present when rescanned 1 to 4 months later and the relative CBF decrease in the contralateral cortex of the forebrain also remained. The basal ganglia contralateral to the cerebellar lesion CBF showed variable alterations. A relative CBF decrease was seen in upper part of basal ganglia in all four cases, but it was not a constant phenomenon. A relative CBF increase in both early and late SPECT scans was seen at low levels of neostriatum in two cases. The remote CBF changes in cerebellar stroke seen in the forebrain are probably caused by reduced or abolished cerebellar output. The term ''Crossed Cerebral Diaschisis'' may be used to describe these CBF changes that would appear to reflect both decreased and increased neuronal activity. (au)

  20. Verbal Memory Impairments in Children after Cerebellar Tumor Resection

    Directory of Open Access Journals (Sweden)

    Matthew P. Kirschen

    2008-01-01

    Full Text Available This study was designed to investigate cerebellar lobular contributions to specific cognitive deficits observed after cerebellar tumor resection. Verbal working memory (VWM tasks were administered to children following surgical resection of cerebellar pilocytic astrocytomas and age-matched controls. Anatomical MRI scans were used to quantify the extent of cerebellar lobular damage from each patient's resection. Patients exhibited significantly reduced digit span for auditory but not visual stimuli, relative to controls, and damage to left hemispheral lobule VIII was significantly correlated with this deficit. Patients also showed reduced effects of articulatory suppression and this was correlated with damage to the vermis and hemispheral lobule IV/V bilaterally. Phonological similarity and recency effects did not differ overall between patients and controls, but outlier patients with abnormal phonological similarity effects to either auditory or visual stimuli were found to have damage to hemispheral lobule VIII/VIIB on the left and right, respectively. We postulate that damage to left hemispheral lobule VIII may interfere with encoding of auditory stimuli into the phonological store. These data corroborate neuroimaging studies showing focal cerebellar activation during VWM paradigms, and thereby allow us to predict with greater accuracy which specific neurocognitive processes will be affected by a cerebellar tumor resection.

  1. Factors associated with the misdiagnosis of cerebellar infarction.

    Science.gov (United States)

    Masuda, Yoko; Tei, Hideaki; Shimizu, Satoru; Uchiyama, Shinichiro

    2013-10-01

    Cerebellar infarction is easily misdiagnosed or underdiagnosed. In this study, we investigated factors leading to misdiagnosis of cerebellar infarction in patients with acute ischemic stroke. Data on neurological and radiological findings from 114 consecutive patients with acute cerebellar infarction were analyzed. We investigated factors associated with misdiagnosis from the data on clinical findings. Thirty-two (28%) patients were misdiagnosed on admission. Misdiagnosis was significantly more frequent in patients below 60 years of age and in patients with vertebral artery dissection, and significantly less frequent in patients with dysarthria. It tended to be more frequent in patients with the medial branch of posterior inferior cerebellar artery territory infarction, and infrequent in patients with the medial branch of the superior cerebellar artery territory infarction. Thirty out of 32 (94%) misdiagnosed patients were seen by physicians that were not neurologists at the first visit. Twenty-four of 32 (75%) misdiagnosed patients were screened only by brain CT. However, patients were not checked by brain MRI or follow-up CT until their conditions worsened. Patients below 60 years of age and patients with vertebral artery dissection are more likely to have a cerebellar infarction misdiagnosed by physicians other than neurologists. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  3. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  4. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  5. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  6. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  7. Scales of gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory

    2002-01-01

    We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework

  8. Electrophysiological mapping of novel prefrontal - cerebellar pathways

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2009-08-01

    Full Text Available Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre; they were not attenuated by local anesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency. Single-unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  9. Comparative study of muscarinic acetylcholine receptors of human and rat cortical glial cells

    International Nuclear Information System (INIS)

    Demushkin, V.P.; Burbaeva, G.S.; Dzhaliashvili, T.A.; Plyashkevich, Y.G.

    1985-01-01

    The aim of the present investigation was a comparative studyof muscarinic acetylcholine receptors in human and rat glial cells. ( 3 H)Quinuclidinyl-benzylate (( 3 H)-QB), atropine, platiphylline, decamethonium, carbamylcholine, tubocurarine, and nicotine were used. The glial cell fraction was obtained from the cerebral cortex of rats weighing 130-140 g and from the frontal pole of the postmortem brain from men aged 60-70 years. The use of the method of radioimmune binding of ( 3 H)-QB with human and rat glial cell membranes demonstrated the presence of a muscarinic acetylcholine receptor in the glial cells

  10. An in vitro clonogenic assay to assess radiation damage in rat CNS glial progenitor cells

    International Nuclear Information System (INIS)

    Maazen, R.W.M. van der; Verhagen, I.; Kogel, A.J. van der

    1990-01-01

    Normal glial progenitor cells can be isolated from the rat central nervous system (CNS) and cultured in vitro on a monolayer of type-1 astrocytes. These monolayers are able to support and stimulate explanted glial progenitor cells to proliferate. Employing these in vitro interactions of specific glial cell types, an in vivo-in vitro clonogenic assay has been developed. This method offers the possibility to study the intrinsic radiosensitivity, repair and regeneration of glial progenitor cells after in vitro or in vivo irradiation. (author)

  11. A cerebellar neuroprosthetic system: computational architecture and in vivo experiments

    Directory of Open Access Journals (Sweden)

    Ivan eHerreros Alonso

    2014-05-01

    Full Text Available Emulating the input-output functions performed by a brain structure opens the possibility for developing neuro-prosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model's inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuro-prosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step towards replacing lost functions of the central nervous system via neuro-prosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuro-prosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step towards the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term

  12. Microvascular anatomy of the cerebellar parafloccular perforating space.

    Science.gov (United States)

    Sosa, Pablo; Dujovny, Manuel; Onyekachi, Ibe; Sockwell, Noressia; Cremaschi, Fabián; Savastano, Luis E

    2016-02-01

    The cerebellopontine angle is a common site for tumor growth and vascular pathologies requiring surgical manipulations that jeopardize cranial nerve integrity and cerebellar and brainstem perfusion. To date, a detailed study of vessels perforating the cisternal surface of the middle cerebellar peduncle-namely, the paraflocculus or parafloccular perforating space-has yet to be published. In this report, the perforating vessels of the anterior inferior cerebellar artery (AICA) in the parafloccular space, or on the cisternal surface of the middle cerebellar peduncle, are described to elucidate their relevance pertaining to microsurgery and the different pathologies that occur at the cerebellopontine angle. Fourteen cadaveric cerebellopontine cisterns (CPCs) were studied. Anatomical dissections and analysis of the perforating arteries of the AICA and posterior inferior cerebellar artery at the parafloccular space were recorded using direct visualization by surgical microscope, optical histology, and scanning electron microscope. A comprehensive review of the English-language and Spanish-language literature was also performed, and findings related to anatomy, histology, physiology, neurology, neuroradiology, microsurgery, and endovascular surgery pertaining to the cerebellar flocculus or parafloccular spaces are summarized. A total of 298 perforating arteries were found in the dissected specimens, with a minimum of 15 to a maximum of 26 vessels per parafloccular perforating space. The average outer diameter of the cisternal portion of the perforating arteries was 0.11 ± 0.042 mm (mean ± SD) and the average length was 2.84 ± 1.2 mm. Detailed schematics and the surgical anatomy of the perforating vessels at the CPC and their clinical relevance are reported. The parafloccular space is a key entry point for many perforating vessels toward the middle cerebellar peduncle and lateral brainstem, and it must be respected and protected during surgical approaches to the

  13. A Cerebellar Neuroprosthetic System: Computational Architecture and in vivo Test

    International Nuclear Information System (INIS)

    Herreros, Ivan; Giovannucci, Andrea; Taub, Aryeh H.; Hogri, Roni; Magal, Ari; Bamford, Sim; Prueckl, Robert; Verschure, Paul F. M. J.

    2014-01-01

    Emulating the input–output functions performed by a brain structure opens the possibility for developing neuroprosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention, and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model’s inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuroprosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step toward replacing lost functions of the central nervous system via neuroprosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuroprosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step toward the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term, humans.

  14. A Cerebellar Neuroprosthetic System: Computational Architecture and in vivo Test

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, Ivan; Giovannucci, Andrea [Synthetic Perceptive, Emotive and Cognitive Systems group (SPECS), Universitat Pompeu Fabra, Barcelona (Spain); Taub, Aryeh H.; Hogri, Roni; Magal, Ari [Psychobiology Research Unit, Tel Aviv University, Tel Aviv (Israel); Bamford, Sim [Physics Laboratory, Istituto Superiore di Sanità, Rome (Italy); Prueckl, Robert [Guger Technologies OG, Graz (Austria); Verschure, Paul F. M. J., E-mail: paul.verschure@upf.edu [Synthetic Perceptive, Emotive and Cognitive Systems group (SPECS), Universitat Pompeu Fabra, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats, Barcelona (Spain)

    2014-05-21

    Emulating the input–output functions performed by a brain structure opens the possibility for developing neuroprosthetic systems that replace damaged neuronal circuits. Here, we demonstrate the feasibility of this approach by replacing the cerebellar circuit responsible for the acquisition and extinction of motor memories. Specifically, we show that a rat can undergo acquisition, retention, and extinction of the eye-blink reflex even though the biological circuit responsible for this task has been chemically inactivated via anesthesia. This is achieved by first developing a computational model of the cerebellar microcircuit involved in the acquisition of conditioned reflexes and training it with synthetic data generated based on physiological recordings. Secondly, the cerebellar model is interfaced with the brain of an anesthetized rat, connecting the model’s inputs and outputs to afferent and efferent cerebellar structures. As a result, we show that the anesthetized rat, equipped with our neuroprosthetic system, can be classically conditioned to the acquisition of an eye-blink response. However, non-stationarities in the recorded biological signals limit the performance of the cerebellar model. Thus, we introduce an updated cerebellar model and validate it with physiological recordings showing that learning becomes stable and reliable. The resulting system represents an important step toward replacing lost functions of the central nervous system via neuroprosthetics, obtained by integrating a synthetic circuit with the afferent and efferent pathways of a damaged brain region. These results also embody an early example of science-based medicine, where on the one hand the neuroprosthetic system directly validates a theory of cerebellar learning that informed the design of the system, and on the other one it takes a step toward the development of neuro-prostheses that could recover lost learning functions in animals and, in the longer term, humans.

  15. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain

    Directory of Open Access Journals (Sweden)

    Saldanha Colin J

    2011-07-01

    Full Text Available Abstract Background Estrogens from peripheral sources as well as central aromatization are neuroprotective in the vertebrate brain. Under normal conditions, aromatase is only expressed in neurons, however following anoxic/ischemic or mechanical brain injury; aromatase is also found in astroglia. This increased glial aromatization and the consequent estrogen synthesis is neuroprotective and may promote neuronal survival and repair. While the effects of estradiol on neuroprotection are well studied, what induces glial aromatase expression remains unknown. Methods Adult male zebra finches (Taeniopygia guttata were given a penetrating injury to the entopallium. At several timepoints later, expression of aromatase, IL-1β-like, and IL-6-like were examined using immunohisotchemistry. A second set of zebra birds were exposed to phytohemagglutinin (PHA, an inflammatory agent, directly on the dorsal surface of the telencephalon without creating a penetrating injury. Expression of aromatase, IL-1β-like, and IL-6-like were examined using both quantitative real-time polymerase chain reaction to examine mRNA expression and immunohistochemistry to determine cellular expression. Statistical significance was determined using t-test or one-way analysis of variance followed by the Tukey Kramers post hoc test. Results Following injury in the zebra finch brain, cytokine expression occurs prior to aromatase expression. This temporal pattern suggests that cytokines may induce aromatase expression in the damaged zebra finch brain. Furthermore, evoking a neuroinflammatory response characterized by an increase in cytokine expression in the uninjured brain is sufficient to induce glial aromatase expression. Conclusions These studies are among the first to examine a neuroinflammatory response in the songbird brain following mechanical brain injury and to describe a novel neuroimmune signal to initiate aromatase expression in glia.

  16. Allergic Inflammation Leads to Neuropathic Pain via Glial Cell Activation.

    Science.gov (United States)

    Yamasaki, Ryo; Fujii, Takayuki; Wang, Bing; Masaki, Katsuhisa; Kido, Mizuho A; Yoshida, Mari; Matsushita, Takuya; Kira, Jun-Ichi

    2016-11-23

    Allergic and atopic disorders have increased over the past few decades and have been associated with neuropsychiatric conditions, such as autism spectrum disorder and asthmatic amyotrophy. Myelitis presenting with neuropathic pain can occur in patients with atopic disorder; however, the relationship between allergic inflammation and neuropathic pain, and the underlying mechanism, remains to be established. We studied whether allergic inflammation affects the spinal nociceptive system. We found that mice with asthma, atopic dermatitis, or atopic diathesis had widespread and significantly more activated microglia and astroglia in the spinal cord than those without atopy, and displayed tactile allodynia. Microarray analysis of isolated microglia revealed a dysregulated phenotype showing upregulation of M1 macrophage markers and downregulation of M2 markers in atopic mice. Among the cell surface protein genes, endothelin receptor type B (EDNRB) was most upregulated. Immunohistochemical analysis revealed that EDNRB expression was enhanced in microglia and astroglia, whereas endothelin-1, an EDNRB ligand, was increased in serum, lungs, and epidermis of atopic mice. No EDNRA expression was found in the spinal cord. Expression of FBJ murine osteosarcoma viral oncogene homolog B was significantly higher in the dorsal horn neurons of asthma mice than nonatopic mice. The EDNRB antagonist BQ788 abolished glial and neural activation and allodynia. We found increased serum endothelin-1 in atopic patients with myelitis and neuropathic pain, and activation of spinal microglia and astroglia with EDNRB upregulation in an autopsied case. These results suggest that allergic inflammation induces diffuse glial activation, influencing the nociceptive system via the EDNRB pathway. The prevalence of allergic disorders has markedly increased over the past few decades. Allergic disorders are associated with neuropsychiatric conditions; however, the relationship between allergic inflammation

  17. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia.

    Science.gov (United States)

    Stokes, Jennifer A; Arbogast, Tara E; Moya, Esteban A; Fu, Zhenxing; Powell, Frank L

    2017-04-01

    Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, Pi O 2  = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly ( P minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia. NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory

  18. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  19. Distributed Cerebellar Motor Learning; a Spike-Timing-Dependent Plasticity Model

    Directory of Open Access Journals (Sweden)

    Niceto Rafael Luque

    2016-03-01

    Full Text Available Deep cerebellar nuclei neurons receive both inhibitory (GABAergic synaptic currents from Purkinje cells (within the cerebellar cortex and excitatory (glutamatergic synaptic currents from mossy fibres. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP located at different cerebellar sites (parallel fibres to Purkinje cells, mossy fibres to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibres to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP and inhibitory (i-STDP mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibres to Purkinje cells synapses and then transferred to mossy fibres to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation towards optimising its working range.

  20. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  1. Does cerebellar neuronal integrity relate to cognitive ability?

    International Nuclear Information System (INIS)

    Rae, C.; Lee, M.; Dixon, R.M.; Blamire, A.; Thompson, C.; Styles, P.; Radda, G.K.; University of Sydney, NSW; Karmiloff-Smith, A.; Grant, J.

    1998-01-01

    Full text: Magnetic resonance spectroscopy (MRS) allows the non-invasive measurement of metabolite levels in the brain. One of these is N-acetylaspartate (NA), a molecule found solely in neurones, synthesised there by mitochondria. This compound can be considered as a marker of 1) neuronal density and 2) neuronal mitochondria function. We recently completed a joint MRS and neuropsychological investigation of Williams-Beuren syndrome (WBS), a rare (1/20,000) autosomal dominant disorder caused by a deletion which includes the elastin locus and LIM-kinase. The syndrome has an associated behavioural and cognitive profile which includes hyperactivity, hyperacusis and excessive sociability. Spatial skills are severely affected, while verbal skills are left relatively intact Our investigation showed loss of NA from the cerebellum in WBS compared with normal controls, with the subject population as a whole displaying a continuum of cerebellar NA concentration. Ability at cognitive tests, including the Weschler IQ scale and various verbal and spatial tests, was shown to correlate significantly and positively with the concentration of NA in the cerebellum. This finding can be interpreted in one of two ways: 1. Our sampling of cerebellar metabolite levels represents a 'global' sampling of total brain neuronal density and, as such, is independent of cerebellar integrity. 2. Cerebellar neuronal integrity is associated with performance at cognitive tests. If the latter interpretation is shown to be the case, it will have important implications for our current understanding of cerebellar function. Copyright (1998) Australian Neuroscience Society

  2. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  3. Gravity interpretation via EULDPH

    International Nuclear Information System (INIS)

    Ebrahimzadeh Ardestani, V.

    2003-01-01

    Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented

  4. Comparison of Individual and Combined Effects of Four Endocrine Disruptors on Estrogen Receptor Beta Transcription in Cerebellar Cell Culture: The Modulatory Role of Estradiol and Triiodo-Thyronine

    Science.gov (United States)

    Jocsak, Gergely; Kiss, David Sandor; Toth, Istvan; Goszleth, Greta; Bartha, Tibor; Frenyo, Laszlo V.; Horvath, Tamas L.; Zsarnovszky, Attila

    2016-01-01

    Background: Humans and animals are continuously exposed to a number of environmental substances that act as endocrine disruptors (EDs). While a growing body of evidence is available to prove their adverse health effects, very little is known about the consequences of simultaneous exposure to a combination of such chemicals; Methods: Here, we used an in vitro model to demonstrate how exposure to bisphenol A, zearalenone, arsenic, and 4-methylbenzylidene camphor, alone or in combination, affect estrogen receptor β (ERβ) mRNA expression in primary cerebellar cell cultures. Additionally, we also show the modulatory role of intrinsic biological factors, such as estradiol (E2), triiodo-thyronine (T3), and glial cells, as potential effect modulators; Results: Results show a wide diversity in ED effects on ERβ mRNA expression, and that the magnitude of these ED effects highly depends on the presence or absence of E2, T3, and glial cells; Conclusion: The observed potency of the EDs to influence ERβ mRNA expression, and the modulatory role of E2, T3, and the glia suggests that environmental ED effects may be masked as long as the hormonal milieu is physiological, but may tend to turn additive or superadditive in case of hormone deficiency. PMID:27338438

  5. Anomalies and gravity

    International Nuclear Information System (INIS)

    Mielke, Eckehard W.

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed

  6. Cerebellar hemangioblastomas: A study of the immunoprofile of neoplastic stromal component

    Directory of Open Access Journals (Sweden)

    Tasić Desanka

    2004-01-01

    Full Text Available Background. Central nervous system hemangioblastomas (HBs are uncommon highly vascularized tumors that are predominantly found in the cerebellum. They occur sporadically or in association with von Hippel-Lindau (VHL disease. HBs are of unknown histogenesis, and the origin of stromal cells is still a subject of debate. The aim of this study was to investigate the immunoprofile of neoplastic stromal component, and to determine whether the profile of the expression of immunomarkers used can contribute to the elucidation of the histogenesis of HBs. Methods. A series of eight cerebellar HBs were histochemically examined for the detection of mast cells and immunohistochemically for the expression of factor VIII-related antigen (FVIII-RAg, CD34, vimentin, factor XIIIa (FXIIIa, S-100 protein, glial fibrillary acidic protein (GFAP, neuron-specific enolase (NSE neurofilaments (NF, synaptophysin, chromogranin, and somatostatin. Results. Mast cells were present in all hemangioblastomas, and were particularly abundant in one tumor. Immunohistochemically, intense reactivity for vimentin and NSE in the stromal cells was constantly seen. Immunoreactivity with S-100 protein and FXIIIa was variable, but generally many HBs stromal cells were negative for these markers. However, stromal cells were uniformly negative for FVIII-RAg in all HBs investigated. They were negative for CD34 GFAP, NF, synaptophysin, chromogranin, as well as somatostatin. GFAP-positivity of the occasional stromal type cells, located only peripherally, was interpreted as "pseudopositivity". Conclusion. The immunoprofile of neoplastic stromal component in this study suggested a possible origin from undifferentiated multipotential mesenchymal cells. High expression of NSE (glycolytic and hypoxia-inducible enzyme in the HBs stromal cells might be related to the loss of the VHL protein function.

  7. Polysomnographic and neurometabolic features may mark preclinical autosomal dominant cerebellar ataxia, deafness, and narcolepsy due to a mutation in the DNA (cytosine-5-)-methyltransferase gene, DNMT1.

    Science.gov (United States)

    Moghadam, Keivan Kaveh; Pizza, Fabio; Tonon, Caterina; Lodi, Raffaele; Carelli, Valerio; Poli, Francesca; Franceschini, Christian; Barboni, Piero; Seri, Marco; Ferrari, Simona; La Morgia, Chiara; Testa, Claudia; Cornelio, Ferdinando; Liguori, Rocco; Winkelmann, Juliane; Lin, Ling; Mignot, Emmanuel; Plazzi, Giuseppe

    2014-05-01

    We aimed to report the clinical picture of two asymptomatic daughters of a patient with autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCA-DN) due to a mutation in the DNA (cytosine-5-)-methyltransferase gene, DNMT1. Clinical assessment based on history, neurologic examination, sleep recordings, neurophysiologic neuroimaging, and genetic tests was performed. History and neurologic examination in both subjects were unremarkable. Genetic analysis disclosed in both the paternally-inherited heterozygous point mutation in the DNMT1 gene. Sleep recordings found sleep-onset rapid eye movement periods (SOREMPs) and proton magnetic resonance spectroscopy (MRS) revealed increased cerebellar myoinositol (mI) in both subjects. Auditory and ophthalmologic investigations as well as structural brain magnetic resonance imaging (MRI) scans revealed no abnormalities. The two asymptomatic carriers of the heterozygous DNMT1 mutation for ADCA-DN, a late-onset neurodegenerative disease, presented with SOREMPs associated with an increase of mI in the brain, a marker of glial cell activity and density characteristic of early stages of neurodegenerative diseases. Therefore, SOREMPs may precede the clinical picture of ADCA-DN as an early polysomnographic marker of central nervous system involvement detected by MRS. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. influence of gravity

    Directory of Open Access Journals (Sweden)

    Animesh Mukherjee

    1991-01-01

    Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.

  9. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  10. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  11. Olivary degeneration after cerebellar or brain stem haemorrhage: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan) Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Hasuo, K. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan)); Uchida, K. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Matsumoto, S. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan)); Tsukamoto, Y. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Ohno, M. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Masuda, K. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan))

    1993-05-01

    Magnetic resonance (MR) images of seven patients with olivary degeneration caused by cerebellar or brain stem haemorrhages were reviewed. In four patients with cerebellar haemorrhage, old haematomas were identified as being located in the dentate nucleus; the contralateral inferior olivary nuclei were hyperintense on proton-density- and T2-weighted images. In two patients with pontine haemorrhages, the old haematomas were in the tegmentum and the ipsilateral inferior olivary nuclei, which were hyperintense. In one case of midbrain haemorrhage, the inferior olivary nuclei were hyperintense bilaterally. The briefest interval from the ictus to MRI was 2 months. Hypertrophic olivary nuclei were observed only at least 4 months after the ictus. Olivary degeneration after cerebellar or brain stem haemorrhage should not be confused with ischaemic, neoplastic, or other primary pathological conditions of the medulla. (orig.)

  12. Early childhood obesity is associated with compromised cerebellar development.

    Science.gov (United States)

    Miller, Jennifer L; Couch, Jessica; Schwenk, Krista; Long, Michelle; Towler, Stephen; Theriaque, Douglas W; He, Guojun; Liu, Yijun; Driscoll, Daniel J; Leonard, Christiana M

    2009-01-01

    As part of a study investigating commonalities between Prader-Willi syndrome (PWS-a genetic imprinting disorder) and early-onset obesity of unknown etiology (EMO) we measured total cerebral and cerebellar volume on volumetric magnetic resonance imaging (MRI) images. Individuals with PWS (N = 16) and EMO (N = 12) had smaller cerebellar volumes than a control group of 15 siblings (p = .02 control vs. EMO; p = .0005 control vs. PWS), although there was no difference among the groups in cerebral volume. Individuals with PWS and EMO also had impaired cognitive function: general intellectual ability (GIA): PWS 65 +/- 25; EMO 81 +/- 19; and Controls 112 +/- 13 (p cognitive development, these results raise the possibility that early childhood obesity retards both cerebellar and cognitive development.

  13. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth.

    Directory of Open Access Journals (Sweden)

    Deidre L Brink

    Full Text Available Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ, we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ.

  14. Distal anterior inferior cerebellar artery syndrome after acoustic neuroma surgery.

    Science.gov (United States)

    Hegarty, Joseph L; Jackler, Robert K; Rigby, Peter L; Pitts, Lawrence H; Cheung, Steven W

    2002-07-01

    To define a clinicopathologic syndrome associated with persistent cerebellar dysfunction after acoustic neuroma (AN) excision. Case series derived from radiographic and clinical chart review. Tertiary referral center. In 12 patients with AN, persistent cerebellar dysfunction developed after AN removal. Each case demonstrated abnormality in the ipsilateral cerebellar peduncle on postoperative magnetic resonance imaging. Cerebellar function and ambulatory status over the first postoperative year. On magnetic resonance imaging scans, the extent of cerebellar peduncle infarcts was variable. It ranged from focal brain injury (2 cm) spanning the full thickness of the peduncle. Peduncular infarcts were associated with large tumor size (average 3.8 cm, range 2.0-5.5 cm diameter). The long-term functional outcomes (>1 yr) varied. Dysmetria was unchanged or improved in over half of the patients (6 of 11 patients). Gait recovered to normal or to preoperative levels in 5 patients. In the 6 patients with persistent impaired mobility, 2 had mild gait disturbance, 3 required regular use of a cane, and 1 has been dependent on a walker. One patient had sustained mild motor weakness. Three of 11 patients remained dependent on others for activities of daily living. Peduncle injury most likely stems from interruption of distal branches of the anterior inferior cerebellar artery (AICA). These small vessels are intimately related to the capsule of the tumor and may supply both the neoplasm and the brain parenchyma. It has long been recognized that interruption of the proximal segment of the AICA results in severe injury to the pons, with devastating neurologic sequelae. A limited AICA syndrome caused by loss of its distal ramifications seems a more plausible explanation for peduncular infarction than either venous insufficiency or direct surgical trauma.

  15. [Effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage].

    Science.gov (United States)

    Li, Xiao-Li; Jia, Tian-Ming; Luan, Bin; Liu, Tao; Yuan, Yan

    2011-04-01

    To study the effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible mechanism. One hundred and eighty 7-day-old neonatal Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group) and HIBD with and without electric stimulation (n=60 each). The HIBD model of neonatal rats was prepared by the Rice-Vennucci method. Electric stimulation at the cerebellar fastigial nucleus was given 24 hrs after the operation in the electric stimulation group once daily and lasted for 30 minutes each time. The other two groups were not subjected to electric stimulation but captured to fix in corresponding periods. Rats were sacrificed 3, 7, 14 and 21 days after stimulations to observe the glial fibrillary acidic protein (GFAP) expression by immunohistochemisty and the ultrastructural changes of astrocytes in the hippocampus under an electron microscope. Immunohistochemical analysis showed the expression of GFAP in the HIBD groups with and without electric stimulation increased significantly compared with the control group on day 3, reached the peak on day 7, and the increased expression remained till to day 21. The GFAP expression in the electric stimulation group was significantly lower than that in the untreated HIBD group at all time points. Under the electron microscope, the astrocytes in the untreated HIBD group were swollen and the amount of organelles was reduced, while the swelling of astrocytes was alleviated and the organelles remained in integrity in the electric stimulation group. The electric stimulation at the cerebellar fastigial nucleus can inhibit the excessive proliferation of astrocytes and relieve the structural damage of astrocytes in neonatal rats following HIBD.

  16. Recent Advances in Cerebellar Ischemic Stroke Syndromes Causing Vertigo and Hearing Loss.

    Science.gov (United States)

    Kim, Hyun-Ah; Yi, Hyon-Ah; Lee, Hyung

    2016-12-01

    Cerebellar ischemic stroke is one of the common causes of vascular vertigo. It usually accompanies other neurological symptoms or signs, but a small infarct in the cerebellum can present with vertigo without other localizing symptoms. Approximately 11 % of the patients with isolated cerebellar infarction simulated acute peripheral vestibulopathy, and most patients had an infarct in the territory of the medial branch of the posterior inferior cerebellar artery (PICA). A head impulse test can differentiate acute isolated vertigo associated with PICA territory cerebellar infarction from more benign disorders involving the inner ear. Acute hearing loss (AHL) of a vascular cause is mostly associated with cerebellar infarction in the territory of the anterior inferior cerebellar artery (AICA), but PICA territory cerebellar infarction rarely causes AHL. To date, at least eight subgroups of AICA territory infarction have been identified according to the pattern of neurotological presentations, among which the most common pattern of audiovestibular dysfunction is the combined loss of auditory and vestibular functions. Sometimes acute isolated audiovestibular loss can be the initial symptom of impending posterior circulation ischemic stroke (particularly within the territory of the AICA). Audiovestibular loss from cerebellar infarction has a good long-term outcome than previously thought. Approximately half of patients with superior cerebellar artery territory (SCA) cerebellar infarction experienced true vertigo, suggesting that the vertigo and nystagmus in the SCA territory cerebellar infarctions are more common than previously thought. In this article, recent findings on clinical features of vertigo and hearing loss from cerebellar ischemic stroke syndrome are summarized.

  17. A composite neurobehavioral test to evaluate acute functional deficits after cerebellar haemorrhage in rats.

    Science.gov (United States)

    McBride, Devin W; Nowrangi, Derek; Kaur, Harpreet; Wu, Guangyong; Huang, Lei; Lekic, Tim; Tang, Jiping; Zhang, John H

    2018-03-01

    Cerebellar haemorrhage accounts for 5-10% of all intracerebral haemorrhages and leads to severe, long-lasting functional deficits. Currently, there is limited research on this stroke subtype, which may be due to the lack of a suitable composite neuroscoring system specific for cerebellar injury in rodents. The purpose of this study is to develop a comprehensive composite neuroscore test for cerebellar injury using a rat model of cerebellar haemorrhage. Sixty male Sprague-Dawley rats were subjected to either sham surgery or cerebellar haemorrhage. Twenty-four hours post-injury, neurological behaviour was evaluated using 17 cost-effective and easy-to-perform tests, and a composite neuroscore was developed. The composite neuroscore was then used to assess functional recovery over seven days after cerebellar haemorrhage. Differences in the composite neuroscore deficits for the mild and moderate cerebellar haemorrhage models were observed for up to five days post-ictus. Until now, a composite neuroscore for cerebellar injury was not available for rodent studies. Herein, using mild and moderate cerebellar haemorrhage rat models a composite neuroscore for cerebellar injury was developed and used to assess functional deficits after cerebellar haemorrhage. This composite neuroscore may also be useful for other cerebellar injury models.

  18. File list: DNS.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  19. File list: Pol.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  20. File list: Pol.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  1. File list: Unc.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  2. File list: His.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  3. File list: His.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  4. File list: His.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  5. File list: Oth.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  6. File list: Pol.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Cerebellar_granule_neurons mm9 RNA polymerase Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  7. File list: Oth.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: ALL.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  9. File list: Oth.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  10. File list: Unc.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  11. File list: Unc.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Unclassified Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  12. File list: ALL.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  13. File list: His.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Histone Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  14. File list: DNS.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  15. File list: Oth.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Cerebellar_granule_neurons mm9 TFs and others Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  16. File list: ALL.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685885,SRX685878,SRX685882,SRX685877,SRX685880,SRX685883 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  17. File list: ALL.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Cerebellar_granule_neurons mm9 All antigens Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  18. File list: DNS.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  19. Surgical approach to posterior inferior cerebellar artery aneurysms.

    Science.gov (United States)

    La Pira, Biagia; Sturiale, Carmelo Lucio; Della Pepa, Giuseppe Maria; Albanese, Alessio

    2018-02-01

    The far-lateral is a standardised approach to clip aneurysms of the posterior inferior cerebellar artery (PICA). Different variants can be adopted to manage aneurysms that differ in morphology, topography, ruptured status, cerebellar swelling and surgeon preference. We distinguished five paradigmatic approaches aimed to manage aneurysms that are: proximal unruptured; proximal ruptured requiring posterior fossa decompression (PFD); proximal ruptured not requiring PFD; distal unruptured; distal ruptured. Preoperative planning in the setting of PICA aneurysm surgery is of paramount importance to perform an effective and safe procedure, to ensure an adequate PFD and optimal proximal control before aneurysm manipulation.

  20. Dyke–Davidoff–Masson syndrome with crossed cerebellar atrophy

    Directory of Open Access Journals (Sweden)

    Sanjay M. Khaladkar

    2017-09-01

    Full Text Available Dyke–Davidoff–Masson syndrome is a rare condition with classical, clinical and radiological changes – mental retardation, hemiparesis, facial asymmetry, seizures and cerebral hemiatrophy with calvarial changes. Contralateral cerebellar atrophy is rare and occurs if insult occurs after 1 month of age. We report a case of a 6-year-old female child presenting with right-sided hemiparesis, convulsions and left cerebral hemiatrophy with an old infarct in left middle cerebral artery (MCA territory, ipsilateral calvarial thickening and right (crossed cerebellar atrophy.

  1. Biliary atresia and cerebellar hypoplasia in polysplenia syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Vanderdood, Kurt; Op de Beeck, Bart; Desprechins, Brigitte; Osteaux, Michel [Department of Radiology, Free University Brussels, AZ-VUB, Laarbeeklaan 101, 1090 Brussels (Belgium)

    2003-09-01

    We report a 3.5-month-old boy with polysplenia syndrome who demonstrated hemiazygos continuation of the inferior vena cava, extrahepatic biliary atresia, multiple splenunculi, bowel malrotation, and the rare finding of brainstem and cerebellar hypoplasia. A possible pathogenesis for cerebellar hypoplasia in this syndrome is suggested after review of the literature. The importance of seeking associated anomalies in biliary atresia, which may be possible indicators of polysplenia syndrome, is stressed since these patients need appropriate management when surgery is considered. (orig.)

  2. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    International Nuclear Information System (INIS)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-01-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[ 3 H]glucose convert this glucose analogue to 2-deoxy[ 3 H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O 2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system

  3. Honeybee Retinal Glial Cells Transform Glucose and Supply the Neurons with Metabolic Substrate

    Science.gov (United States)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  4. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  5. Sox2 promotes survival of satellite glial cells in vitro

    International Nuclear Information System (INIS)

    Koike, Taro; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-01-01

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling

  6. Sox2 promotes survival of satellite glial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  7. Dyslexic Children Show Atypical Cerebellar Activation and Cerebro-Cerebellar Functional Connectivity in Orthographic and Phonological Processing.

    Science.gov (United States)

    Feng, Xiaoxia; Li, Le; Zhang, Manli; Yang, Xiujie; Tian, Mengyu; Xie, Weiyi; Lu, Yao; Liu, Li; Bélanger, Nathalie N; Meng, Xiangzhi; Ding, Guosheng

    2017-04-01

    Previous neuroimaging studies have found atypical cerebellar activation in individuals with dyslexia in either motor-related tasks or language tasks. However, studies investigating atypical cerebellar activation in individuals with dyslexia have mostly used tasks tapping phonological processing. A question that is yet unanswered is whether the cerebellum in individuals with dyslexia functions properly during orthographic processing of words, as growing evidence shows that the cerebellum is also involved in visual and spatial processing. Here, we investigated cerebellar activation and cerebro-cerebellar functional connectivity during word processing in dyslexic readers and typically developing readers using tasks that tap orthographic and phonological codes. In children with dyslexia, we observed an abnormally higher engagement of the bilateral cerebellum for the orthographic task, which was negatively correlated with literacy measures. The greater the reading impairment was for young dyslexic readers, the stronger the cerebellar activation was. This suggests a compensatory role of the cerebellum in reading for children with dyslexia. In addition, a tendency for higher cerebellar activation in dyslexic readers was found in the phonological task. Moreover, the functional connectivity was stronger for dyslexic readers relative to typically developing readers between the lobule VI of the right cerebellum and the left fusiform gyrus during the orthographic task and between the lobule VI of the left cerebellum and the left supramarginal gyrus during the phonological task. This pattern of results suggests that the cerebellum compensates for reading impairment through the connections with specific brain regions responsible for the ongoing reading task. These findings enhance our understanding of the cerebellum's involvement in reading and reading impairment.

  8. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  9. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  10. Generalized pure Lovelock gravity

    Science.gov (United States)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  11. Generalized pure Lovelock gravity

    Directory of Open Access Journals (Sweden)

    Patrick Concha

    2017-11-01

    Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  12. Extracellular matrix of cultured glial cells: Selective expression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors

    International Nuclear Information System (INIS)

    Gallo, V.; Bertolotto, A.

    1990-01-01

    We have studied the extracellular matrix composition of cultured glial cells by immunocytochemistry with different monoclonal and polyclonal antibodies. Double immunofluorescence experiments and metabolic labeling with [3H]glucosamine performed in different types of cerebellar and cortical cultures showed that bipotential progenitors for type-2 astrocytes and for oligodendrocytes synthesize chondroitin sulfate (CS) and deposit this proteoglycan in their extracellular matrix. The distribution of the various [3H]glucosamine-labeled glycosaminoglycans between the intracellular and the extracellular space was different. CS was present both within the cells and in the culture medium, although in different amounts. Bi-potential progenitors became also O4-positive during their development in vitro. At the stage of O4-positivity they were still stained with antibodies against CS. However, when the progenitor cells were maintained in serum-free medium and differentiated into Gal-C-positive oligodendrocytes, they became CS-negative. In the presence of fetal calf serum in the culture medium, the bipotential progenitors differentiated into GFAP-positive type-2 astrocytes. These cells still expressed CS: their Golgi area and their surface were stained with anti-CS antibodies. Staining with monoclonal antibodies specific for different types of CS (4-sulfate, 6-sulfate, and unsulfated) revealed that both bipotential progenitors and type-2 astrocytes synthesized only chondroitin 4-sulfate. Type-1 astrocytes were negative for both the polyclonal and the monoclonal anti-CS antibodies. Finally, type-2 astrocytes and their progenitors were weakly stained with anti-laminin antibodies and unstained with anti-fibronectin. Type-1 astrocytes were positive for both anti-laminin and anti-fibronectin antibodies and appeared to secrete fibronectin in the extracellular space

  13. How do glial cells contribute to motor control?

    DEFF Research Database (Denmark)

    Christensen, Rasmus Kordt; Petersen, Anders Victor; Perrier, Jean-Francois Marie

    2013-01-01

    that glia play an active role in several physiological functions. The discovery that a bidirectional communication takes place between astrocytes (the star shaped glial cell of the brain) and neurons, was a major breakthrough in the field of synaptic physiology. Astrocytes express receptors that get...... activated by neurotransmitters during synaptic transmission. In turn they release other transmitters - called gliotransmitters - that bind to neuronal receptors and modulate synaptic transmission. This feedback, which led to the concept of the tripartite synapse, has been reported with various transmitters...... including glutamate, ATP, GABA or serine. In the present review we will focus on astrocytes and review the evidence suggesting and demonstrating their role in motor control. Rhythmic motor behaviors such as locomotion, swimming or chewing are generated by networks of neurons termed central pattern...

  14. Regulation of radial glial survival by signals from the meninges.

    Science.gov (United States)

    Radakovits, Randor; Barros, Claudia S; Belvindrah, Richard; Patton, Bruce; Müller, Ulrich

    2009-06-17

    Radial glial cells (RGCs) in the developing cerebral cortex are progenitors for neurons and glia, and their processes serve as guideposts for migrating neurons. So far, it has remained unclear whether RGC processes also control the function of RGCs more directly. Here, we show that RGC numbers and cortical size are reduced in mice lacking beta1 integrins in RGCs. TUNEL stainings and time-lapse video recordings demonstrate that beta1-deficient RGCs processes detach from the meningeal basement membrane (BM) followed by apoptotic death of RGCs. Apoptosis is also induced by surgical removal of the meninges. Finally, mice lacking the BM components laminin alpha2 and alpha4 show defects in the attachment of RGC processes at the meninges, a reduction in cortical size, and enhanced apoptosis of RGC cells. Our findings demonstrate that attachment of RGC processes at the meninges is important for RGC survival and the control of cortical size.

  15. Glial molecular alterations with mouse brain development and aging: up-regulation of the Kir4.1 and aquaporin-4.

    Science.gov (United States)

    Gupta, Rajaneesh Kumar; Kanungo, Madhusudan

    2013-02-01

    Glial cells, besides participating as passive supporting matrix, are also proposed to be involved in the optimization of the interstitial space for synaptic transmission by tight control of ionic and water homeostasis. In adult mouse brain, inwardly rectifying K+ (Kir4.1) and aquaporin-4 (AQP4) channels localize to astroglial endfeets in contact with brain microvessels and glutamate synapses, optimizing clearance of extracellular K(+) and water from the synaptic layers. However, it is still unclear whether there is an age-dependent difference in the expressions of Kir4.1 and AQP4 channels specifically during postnatal development and aging when various marked changes occur in brain and if these changes region specific. RT-PCR and immunoblotting was conducted to compare the relative expression of Kir4.1 and AQP4 mRNA and protein in the early and mature postnatal (0-, 15-, 45-day), adult (20-week), and old age (70-week) mice cerebral and cerebellar cortices. Expressions of Kir4.1 and AQP4 mRNA and protein are very low at 0-day. A pronounced and continuous increase was observed by mature postnatal ages (15-, 45-days). However, in the 70-week-old mice, expressions are significantly up-regulated as compared to 20-week-old mice. Both genes follow the same age-related pattern in both cerebral and cerebellar cortices. The time course and expression pattern suggests that Kir4.1 and AQP4 channels may play an important role in brain K(+) and water homeostasis in early postnatal weeks after birth and during aging.

  16. CSF glial markers correlate with survival in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Süssmuth, S D; Sperfeld, A D; Hinz, A; Brettschneider, J; Endruhn, S; Ludolph, A C; Tumani, H

    2010-03-23

    In neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), CSF biomarkers are increasingly studied to evaluate their relevance for differential diagnosis, disease progression, and understanding of pathophysiologic processes. To identify a biomarker profile of neuronal and glial CSF proteins to discriminate ALS from other motor neuron diseases (MND) and to assess whether baseline levels of CSF measures in ALS are associated with the course of the disease. A total of 122 consecutive subjects with MND were included in this cross-sectional study (ALS, n = 75; lower motor neuron syndrome, n = 39; upper motor neuron diseases, n = 8). Clinical follow-up included 76 patients. We determined baseline levels of protein tau and astroglial S100beta in CSF and microglial sCD14 in CSF and serum in relation to diagnosis, duration of disease, and survival. CSF tau was significantly elevated in ALS and upper motor neuron diseases as compared to lower motor neuron diseases and controls. CSF S100beta levels were significantly lower in lower motor neuron diseases as compared to other MND. CSF concentrations of S100beta and sCD14 correlated with the survival time in patients with ALS. In motor neuron diseases, CSF tau elevation indicates the degeneration of upper motor neurons, while S100 beta and sCD14 may indicate the activation of CNS glial cells. Because S100beta and sCD14 concentrations correlate with survival in amyotrophic lateral sclerosis (ALS), we suppose that the combination of both markers may be useful to obtain prognostic information in patients with ALS.

  17. Depression as a Glial-Based Synaptic Dysfunction

    Directory of Open Access Journals (Sweden)

    Daniel eRial

    2016-01-01

    Full Text Available Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processing occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the ‘quad-partite’ synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increase microglia ‘activation’ in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, BDNF affect glia functioning, whereas antidepressant treatments (SSRIs, electroshock, deep brain stimulation recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication - such as the purinergic neuromodulation system operated by ATP and adenosine - emerge as promising candidates to re-normalize synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to manage depression.

  18. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices.

    Science.gov (United States)

    Jakoby, Patrick; Schmidt, Elke; Ruminot, Iván; Gutiérrez, Robin; Barros, L Felipe; Deitmer, Joachim W

    2014-01-01

    Glucose is the most important energy substrate for the brain, and its cellular distribution is a subject of great current interest. We have employed fluorescent glucose probes, the 2-deoxy-D-glucose derivates 6- and 2-([N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose) (2-NBDG), to measure transport and metabolism of glucose in acute slices of mouse hippocampus and cerebellum. In the hippocampus, 6-NBDG, which is not metabolized and hence indicates glucose transport, was taken up faster in astrocyte-rich layers (Stratum radiatum [S.r.], Stratum oriens [S.o.]) than in pyramidal cells. Metabolizable 2-NBDG showed larger signals in S.r. and S.o. than in Stratum pyramidale, suggesting faster glucose utilization rate in the astrocyte versus the neuronal compartment. Similarly, we found higher uptake and temperature-sensitive metabolism of 2-NBDG in Bergmann glia when compared with adjacent Purkinje neurons of cerebellar slices. A comparison between 6-NBDG transport and glucose transport in cultured cells using a fluorescence resonance energy transfer nanosensor showed that relative to glucose, 6-NBDG is transported better by neurons than by astrocytes. These results indicate that the preferential transport and metabolism of glucose by glial cells versus neurons proposed for the hippocampus and cerebellum by ourselves (in vitro) and for the barrel cortex by Chuquet et al. (in vivo) is more pronounced than anticipated.

  19. Prenatal MR imaging features of isolated cerebellar haemorrhagic lesions

    International Nuclear Information System (INIS)

    Martino, Francesca; Malova, Mariya; Ramenghi, Luca A.; Cesaretti, Claudia; Parazzini, Cecilia; Doneda, Chiara; Righini, Andrea; Rossi, Andrea

    2016-01-01

    Prenatal features of isolated cerebellar haemorrhagic lesions have not been sufficiently characterised. We aimed to better define their MR imaging characteristics, documenting the location, extension, evolution stage and anatomic sequelae, and to better understand cerebellar haemorrhage pathophysiology. We screened our foetal MR imaging database (3200 cases) for reports of haemorrhagic lesions affecting only the cerebellum (without any supratentorial bleeding or other clastic lesions), defined as one of the following: T2-weighted hypointense or mixed hypo-/hyperintense signal; rim of T2-weighted hypointense signal covering the surface of volume-reduced parenchyma; T1-weighted hyperintense signal; increased DWI signal. Seventeen cases corresponded to the selection criteria. All lesions occurred before the 26th week of gestation, with prevalent origin from the peripheral-caudal portion of the hemispheres and equal frequency of unilateral/bilateral involvement. The caudal vermis appeared affected in 2/3 of cases, not in all cases confirmed postnatally. Lesions evolved towards malformed cerebellar foliation. The aetiology and pathophysiology were unknown, although in a subset of cases intra- and extracranial venous engorgement seemed to play a key role. Onset from the peripheral and caudal portion of the hemispheres seems characteristic of prenatal cerebellar haemorrhagic lesions. Elective involvement of the peripheral germinal matrix is hypothesised. (orig.)

  20. Role of Calcium in Cerebellar Learning and Function

    NARCIS (Netherlands)

    Z. Gao (Zhenyu)

    2011-01-01

    textabstractThe cerebellum, which means little brain in Latin, occupies most of the posterior cranial fossa and connects with the dorsal brainstem (Kandel et al., 2000). The cerebellar cortex is one of the most foliated brain structures, which accounts for 10% of the total volume and over half of

  1. Cerebellar Codings for Control of Compensatory Eye Movements

    NARCIS (Netherlands)

    M. Schonewille (Martijn)

    2008-01-01

    textabstractThis thesis focuses on the control of the cerebellum on motor behaviour, and more specifically on the role of the cerebellar Purkinje cells in exerting this control. As the cerebellum is an online control system, we look at both motor performance and learning, trying to identify

  2. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia.

    NARCIS (Netherlands)

    Teo, J.T.; Warrenburg, B.P.C. van de; Schneider, S.A.; Rothwell, J.C.; Bhatia, K.P.

    2009-01-01

    Recent studies have suggested that there may be functional and structural changes in the cerebellum of patients with adult onset primary focal dystonia. The aim of this study was to establish whether there is any neurophysiological indicator of abnormal cerebellar function, using the classic

  3. Stereotactic biopsy of cerebellar lesions: straight versus oblique frame positioning.

    Science.gov (United States)

    Quick-Weller, Johanna; Brawanski, Nina; Dinc, Nazife; Behmanesh, Bedjahn; Kammerer, Sara; Dubinski, Daniel; Seifert, Volker; Marquardt, Gerhard; Weise, Lutz

    2017-10-26

    Biospies of brain lesions with unknown entity are an everyday procedure among many neurosurgical departments. Biopsies can be performed frame-guided or frameless. However, cerebellar lesions are a special entity with a more complex approach. All biopsies in this study were performed stereotactically frame guided. Therefore, only biopsies of cerebellar lesions were included in this study. We compared whether the frame was attached straight versus oblique and we focused on diagnostic yield and complication rate. We evaluated 20 patients who underwent the procedure between 2009 and 2017. Median age was 56.5 years. 12 (60%) Patients showed a left sided lesion, 6 (30%) showed a lesion in the right cerebellum and 2 (10%) patients showed a midline lesion. The stereotactic frame was mounted oblique in 12 (60%) patients and straight in 8 (40%) patients. Postoperative CT scan showed small, clinically silent blood collection in two (10%) of the patients, one (5%) patient showed haemorrhage, which caused a hydrocephalus. He received an external ventricular drain. In both patients with small haemorrhage the frame was positioned straight, while in the patient who showed a larger haemorrhage the frame was mounted oblique. In all patients a final histopathological diagnosis was established. Cerebellar lesions of unknown entity can be accessed transcerebellar either with the stereotactic frame mounted straight or oblique. Also for cerebellar lesions the procedure shows a high diagnostic yield with a low rate of severe complications, which need further treatment.

  4. Cerebellar Damage Produces Selective Deficits in Verbal Working Memory

    Science.gov (United States)

    Ravizza, Susan M.; Mccormick, Cristin A.; Schlerf, John E.; Justus, Timothy; Ivry, Richard B.; Fiez, Julie A.

    2006-01-01

    The cerebellum is often active in imaging studies of verbal working memory, consistent with a putative role in articulatory rehearsal. While patients with cerebellar damage occasionally exhibit a mild impairment on standard neuropsychological tests of working memory, these tests are not diagnostic for exploring these processes in detail. The…

  5. Cerebro-cerebellar interactions underlying temporal information processing.

    Science.gov (United States)

    Aso, Kenji; Hanakawa, Takashi; Aso, Toshihiko; Fukuyama, Hidenao

    2010-12-01

    The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.

  6. [Cerebellar Infarction After Carbon Monoxide Poisoning and Hyperbaric Oxygen Therapy].

    Science.gov (United States)

    Wick, Matthias; Schneiker, André; Bele, Sylvia; Pawlik, Michael; Meyringer, Helmut; Graf, Bernhard; Wendl, Christina; Kieninger, Martin

    2017-06-01

    We report on a patient who developed a space-occupying cerebellar infarction with occlusive hydrocephalus after a poisoning with carbon monoxide with the intention to commit suicide. A neurosurgical and intensive care therapy were needed. The patient's survival without severe neurological deficits could be secured due to the early detection of the intracerebral lesions. Georg Thieme Verlag KG Stuttgart · New York.

  7. Mutations in PTF1A cause pancreatic and cerebellar agenesis

    NARCIS (Netherlands)

    Sellick, GS; Barker, KT; Stolte-Dijkstra, [No Value; Fleischmann, C; Coleman, RJ; Garrett, C; Gloyn, AL; Edghill, EL; Hattersley, AT; Wellauer, PK; Goodwin, G; Houlston, RS

    2004-01-01

    Individuals with permanent neonatal diabetes mellitus usually present within the first three months of life and require insulin treatment(1,2). We recently identified a locus on chromosome 10p13-p12.1 involved in permanent neonatal diabetes mellitus associated with pancreatic and cerebellar agenesis

  8. The Drosophila blood-brain barrier: Development and function of a glial endothelium

    Directory of Open Access Journals (Sweden)

    Stefanie eLimmer

    2014-11-01

    Full Text Available The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  9. Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa.

    Science.gov (United States)

    Tang, C M; Strichartz, G R; Orkand, R K

    1979-11-01

    Experiments investigating both the binding of radioactively labelled saxitoxin (STX) and the electrophysiological response to drugs that increase the sodium permeability of excitable membranes were conducted in an effort to detect sodium channels in glial cells of the optic nerve of Necturus maculosa, the mudpuppy. Glial cells in nerves from chronically enucleated animals, which lack optic nerve axons, show no saturable uptake of STX whereas a saturable uptake is clearly present in normal optic nerves. The normal nerve is depolarized by aconitine, batrachotoxin, and veratridine (10(-6)-10(-5) M), whereas the all-glial preparation is only depolarized by veratridine and at concentrations greater than 10(-3) M. Unlike the depolarization caused by veratridine in normal nerves, the response in the all-glial tissue is not blocked by tetrodotoxin nor enhanced by scorpion venom (Leiurus quinquestriatus). In glial cells of the normal nerve, where axons are also present, the addition of 10(-5) M veratridine does lead to a transient depolarization; however, it is much briefer than the axonal response to veratridine in this same tissue. This glial response to veratridine could be caused by the efflux of K+ from the drug-depolarized axons, and is similar to the glial response to extracellular K+ accumulation resulting from action potentials in the axon.

  10. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    Science.gov (United States)

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  11. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    LaShardai N. Brown

    2017-12-01

    Full Text Available Hearing relies on the transmission of auditory information from sensory hair cells (HCs to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation.

  12. Cerebellar and pontine tegmental hypermetabolism in miller-fisher syndrome

    International Nuclear Information System (INIS)

    Kim, Yu Kyrong; Kim, Ji Soo; Lee, Won Woo; Kim, Sang Eun

    2007-01-01

    Miller Fisher syndrome (MFS) has been considered as a variant of Guillain-Barre syndrome (GBS), a type of acute immune neuropathies involving peripheral nerve system. Unlike GBS, presence of cerebellar type ataxia and supranuclear ophthalmioplesia in MFS suggests additional involvement of the central nervous system. To determine involvement of the central nervous system in MFS, we investigated the cerebral metabolic abnormalities in patients with MFS using FDG PET. Nine patients who were diagnosed as MFS based on acute ophthalmoplegia, ataxia, and areflexia without other identifiable causes participated in this study. In six patients, serum antibodies possibly related with symptom of MFS (anti- GQ1b or anti-GM1) were detected at the time of the study. With the interval of 25 26 days (range: 3-83 days) from the symptom on set, brain FDG PET were underwent in patients and compared with those from healthy controls. In group analysis comparing with healthy controls, FDG PET of patients revealed increased metabolism in the bilateral cerebellar hemispheres and vermis, and the thalamus. In contrast, the occipital cortex showed decreased metabolism. Individual analyses disclosed hypermetabolism in the cerebellar vermis or hemispheres in 5, and in the pontine tegmentum in 2 of the 9 patients. We also found that the cerebellar vermian hypermetabolism was inversely correlated with the interval between from the symptom on set to PET study. Moreover, follow-up PET of a patient demonstrated that cerebellar hypermetabolism decreased markedly with an improvement of the ophthalmoplegia and ataxia. These findings indicate an involvement of the central nervous system in MFS and suggest an antibody-associated acute inflammatory process as a mechanism of this disorder

  13. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  14. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  15. Adaptive filters and internal models: multilevel description of cerebellar function.

    Science.gov (United States)

    Porrill, John; Dean, Paul; Anderson, Sean R

    2013-11-01

    Cerebellar function is increasingly discussed in terms of engineering schemes for motor control and signal processing that involve internal models. To address the relation between the cerebellum and internal models, we adopt the chip metaphor that has been used to represent the combination of a homogeneous cerebellar cortical microcircuit with individual microzones having unique external connections. This metaphor indicates that identifying the function of a particular cerebellar chip requires knowledge of both the general microcircuit algorithm and the chip's individual connections. Here we use a popular candidate algorithm as embodied in the adaptive filter, which learns to decorrelate its inputs from a reference ('teaching', 'error') signal. This algorithm is computationally powerful enough to be used in a very wide variety of engineering applications. However, the crucial issue is whether the external connectivity required by such applications can be implemented biologically. We argue that some applications appear to be in principle biologically implausible: these include the Smith predictor and Kalman filter (for state estimation), and the feedback-error-learning scheme for adaptive inverse control. However, even for plausible schemes, such as forward models for noise cancellation and novelty-detection, and the recurrent architecture for adaptive inverse control, there is unlikely to be a simple mapping between microzone function and internal model structure. This initial analysis suggests that cerebellar involvement in particular behaviours is therefore unlikely to have a neat classification into categories such as 'forward model'. It is more likely that cerebellar microzones learn a task-specific adaptive-filter operation which combines a number of signal-processing roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Cerebellar and pontine tegmental hypermetabolism in miller-fisher syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyrong; Kim, Ji Soo; Lee, Won Woo; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Miller Fisher syndrome (MFS) has been considered as a variant of Guillain-Barre syndrome (GBS), a type of acute immune neuropathies involving peripheral nerve system. Unlike GBS, presence of cerebellar type ataxia and supranuclear ophthalmioplesia in MFS suggests additional involvement of the central nervous system. To determine involvement of the central nervous system in MFS, we investigated the cerebral metabolic abnormalities in patients with MFS using FDG PET. Nine patients who were diagnosed as MFS based on acute ophthalmoplegia, ataxia, and areflexia without other identifiable causes participated in this study. In six patients, serum antibodies possibly related with symptom of MFS (anti- GQ1b or anti-GM1) were detected at the time of the study. With the interval of 25 26 days (range: 3-83 days) from the symptom on set, brain FDG PET were underwent in patients and compared with those from healthy controls. In group analysis comparing with healthy controls, FDG PET of patients revealed increased metabolism in the bilateral cerebellar hemispheres and vermis, and the thalamus. In contrast, the occipital cortex showed decreased metabolism. Individual analyses disclosed hypermetabolism in the cerebellar vermis or hemispheres in 5, and in the pontine tegmentum in 2 of the 9 patients. We also found that the cerebellar vermian hypermetabolism was inversely correlated with the interval between from the symptom on set to PET study. Moreover, follow-up PET of a patient demonstrated that cerebellar hypermetabolism decreased markedly with an improvement of the ophthalmoplegia and ataxia. These findings indicate an involvement of the central nervous system in MFS and suggest an antibody-associated acute inflammatory process as a mechanism of this disorder.

  17. Cerebellar motor learning: when is cortical plasticity not enough?

    Directory of Open Access Journals (Sweden)

    John Porrill

    2007-10-01

    Full Text Available Classical Marr-Albus theories of cerebellar learning employ only cortical sites of plasticity. However, tests of these theories using adaptive calibration of the vestibulo-ocular reflex (VOR have indicated plasticity in both cerebellar cortex and the brainstem. To resolve this long-standing conflict, we attempted to identify the computational role of the brainstem site, by using an adaptive filter version of the cerebellar microcircuit to model VOR calibration for changes in the oculomotor plant. With only cortical plasticity, introducing a realistic delay in the retinal-slip error signal of 100 ms prevented learning at frequencies higher than 2.5 Hz, although the VOR itself is accurate up to at least 25 Hz. However, the introduction of an additional brainstem site of plasticity, driven by the correlation between cerebellar and vestibular inputs, overcame the 2.5 Hz limitation and allowed learning of accurate high-frequency gains. This "cortex-first" learning mechanism is consistent with a wide variety of evidence concerning the role of the flocculus in VOR calibration, and complements rather than replaces the previously proposed "brainstem-first" mechanism that operates when ocular tracking mechanisms are effective. These results (i describe a process whereby information originally learnt in one area of the brain (cerebellar cortex can be transferred and expressed in another (brainstem, and (ii indicate for the first time why a brainstem site of plasticity is actually required by Marr-Albus type models when high-frequency gains must be learned in the presence of error delay.

  18. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.

    Science.gov (United States)

    Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W

    2016-03-30

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to

  19. Diffusion Tensor Imaging of Human Cerebellar Pathways and their Interplay with Cerebral Macrostructure

    Directory of Open Access Journals (Sweden)

    Zafer eKeser

    2015-04-01

    Full Text Available Cerebellar white matter connections to the central nervous system are classified functionally into the spinocerebellar, vestibulocerebellar, and cerebrocerebellar subdivisions. The Spinocerebellar (SC pathways project from spinal cord to cerebellum, whereas the vestibulocerebellar (VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI. Ten right-handed healthy subjects (7 males and 3 females, age range 20-51 years were studied. DT-MRI data were acquired with a voxel size = 2mm x 2mm x 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC, parieto-ponto-cerebellar (PPC, temporo-ponto-cerebellar (TPC and occipito-ponto-cerebellar (OPC. The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM, cerebral white matter (WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~ 3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~ 25.8 ± 7.3 mL, or a percentage of 1.52 ± 0.43 of the total intracranial volume.

  20. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  1. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  2. The Future of Gravity

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.

  3. Scaling in quantum gravity

    Directory of Open Access Journals (Sweden)

    J. Ambjørn

    1995-07-01

    Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.

  4. Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain.

    Science.gov (United States)

    Hatten, M E

    1990-05-01

    In vitro studies from our laboratory indicate that granule neurons, purified from early postnatal mouse cerebellum, migrate on astroglial fibers by forming a 'migration junction' with the glial fiber along the length of the neuronal soma and extending a motile 'leading process' in the direction of migration. Similar dynamics are seen for hippocampal neurons migrating along hippocampal astroglial fibers in vitro. In heterotypic recombinations of neurons and glia from mouse cerebellum and rat hippocampus, neurons migrate on astroglial processes with a cytology and neuron-glia relationship identical to that of homotypic neuronal migration in vitro. In all four cases, the migrating neuron presents a stereotyped posture, speed and mode of movement, suggesting that glial fibers provide a generic pathway for neuronal migration in developing brain. Studies on the molecular basis of glial-guided migration suggest that astrotactin, a neuronal antigen that functions as a neuron-glia ligand, is likely to play a crucial role in the locomotion of the neuron along glial fibers. The navigation of neurons from glial fibers into cortical layers, in turn, is likely to involve neuron-neuron adhesion ligands.

  5. Timing tasks synchronize cerebellar and frontal ramping activity and theta oscillations: Implications for cerebellar stimulation in diseases of impaired cognition

    Directory of Open Access Journals (Sweden)

    Krystal Lynn Parker

    2016-01-01

    Full Text Available Timing is a fundamental and highly conserved mammalian capability yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time, has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. We hypothesis that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. These hypotheses could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic

  6. Gravity Data for Egypt

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (71 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received in...

  7. New massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.

    2012-01-01

    We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.

  8. DMA Antarctic Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (65,164 records) were gathered by various governmental organizations (and academia) using a variety of methods. The data base was received...

  9. Gravity Data for Minnesota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (55,907 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received...

  10. Stability in designer gravity

    International Nuclear Information System (INIS)

    Hertog, Thomas; Hollands, Stefan

    2005-01-01

    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed

  11. Carroll versus Galilei gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2017-03-30

    We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.

  12. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, Ruth M

    2006-01-01

    A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday

  13. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  14. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  15. On higher derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1987-01-01

    A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt

  16. What Is Gravity?

    Science.gov (United States)

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  17. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  18. Gravity Before Einstein and Schwinger Before Gravity

    Science.gov (United States)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  19. Extended Theories of Gravity

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; De Laurentis, Mariafelicia

    2011-01-01

    Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.

  20. Abnormality in cerebellar blood flow in solo vertigo patients

    Energy Technology Data Exchange (ETDEWEB)

    Nagahori, Takeshi [Shakaihoken Takaoka Hospital, Toyama (Japan); Nishijima, Michiharu; Endo, Shunro; Takaku, Akira

    1997-03-01

    Little is known about the blood flow of the vertebrobasilar system as a cause of vertigo and dizziness. We used Xe-CT to study cerebellar blood flow in 53 patients who ranged in age from 35 to 85 years. The patients were divided into two groups. One of them was the vertigo group that comprised 28 patients with rotatory sensation, and the other, the non-vertigo group of 25 patients with a sensation other than rotation. At the stage of severe symptoms, there was decreased cerebellar blood flow in all patients of both, the vertigo and the non-vertigo groups, and a decrease in the bilateral cerebellar hemisphere was observed in five patients and in a unilateral hemisphere in three patients of the vertigo group. By comparison, in the non-vertigo group, unilateral decrease of cerebellar blood flow was observed in only one patient, and a bilateral decrease in five. At the stage of severe symptoms, the mean regional cerebellar blood flow was 40.5{+-}8.0 ml/100 g/min (n=16 sides) in the vertigo group and 45.3{+-}9.5 ml/100 g/min (n=12 sides) in the non-vertigo group. At the stage of moderate symptoms, blood flow image was normal in four of 14 vertigo patients and in seven of 12 non-vertigo patients. The mean regional blood flow was 47.8{+-}8.6 ml/100 g/min (n=28 sides) in the vertigo group and 47.1{+-}5.1 ml/100 g/min (n=24 sides) in the non-vertigo group. At the asymptomatic stage, a high proportion of normal blood flow images (nine of 16 vertigo patients and 10 of 10 non-vertigo patients) was observed. The mean regional cerebellar blood flow was 51.6{+-}10.7 ml/100 g/min (n=32 sides) in the vertigo group and 52.8{+-}8.5 ml/100 g/min (n=20 sides) in the non-vertigo group. This study demonstrates that a unilateral or bilateral decrease in blood flow of the vertebrobasilar system may cause vertigo and dizziness. It also shows that Xe-CT of the cerebellum may be a valuable examination modality for the diagnosis and treatment of vertigo and dizziness. (author)

  1. Abnormality in cerebellar blood flow in solo vertigo patients

    International Nuclear Information System (INIS)

    Nagahori, Takeshi; Nishijima, Michiharu; Endo, Shunro; Takaku, Akira

    1997-01-01

    Little is known about the blood flow of the vertebrobasilar system as a cause of vertigo and dizziness. We used Xe-CT to study cerebellar blood flow in 53 patients who ranged in age from 35 to 85 years. The patients were divided into two groups. One of them was the vertigo group that comprised 28 patients with rotatory sensation, and the other, the non-vertigo group of 25 patients with a sensation other than rotation. At the stage of severe symptoms, there was decreased cerebellar blood flow in all patients of both, the vertigo and the non-vertigo groups, and a decrease in the bilateral cerebellar hemisphere was observed in five patients and in a unilateral hemisphere in three patients of the vertigo group. By comparison, in the non-vertigo group, unilateral decrease of cerebellar blood flow was observed in only one patient, and a bilateral decrease in five. At the stage of severe symptoms, the mean regional cerebellar blood flow was 40.5±8.0 ml/100 g/min (n=16 sides) in the vertigo group and 45.3±9.5 ml/100 g/min (n=12 sides) in the non-vertigo group. At the stage of moderate symptoms, blood flow image was normal in four of 14 vertigo patients and in seven of 12 non-vertigo patients. The mean regional blood flow was 47.8±8.6 ml/100 g/min (n=28 sides) in the vertigo group and 47.1±5.1 ml/100 g/min (n=24 sides) in the non-vertigo group. At the asymptomatic stage, a high proportion of normal blood flow images (nine of 16 vertigo patients and 10 of 10 non-vertigo patients) was observed. The mean regional cerebellar blood flow was 51.6±10.7 ml/100 g/min (n=32 sides) in the vertigo group and 52.8±8.5 ml/100 g/min (n=20 sides) in the non-vertigo group. This study demonstrates that a unilateral or bilateral decrease in blood flow of the vertebrobasilar system may cause vertigo and dizziness. It also shows that Xe-CT of the cerebellum may be a valuable examination modality for the diagnosis and treatment of vertigo and dizziness. (author)

  2. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue

    KAUST Repository

    Elsayed, Maha

    2015-12-16

    Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment.

  3. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish

    Science.gov (United States)

    Mokalled, Mayssa H.; Patra, Chinmoy; Dickson, Amy L.; Endo, Toyokazu; Stainier, Didier Y. R.; Poss, Kenneth D.

    2016-01-01

    Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration, a relatively unexplored process. Here, we performed a genome-wide profiling screen for secreted factors that are upregulated during zebrafish spinal cord regeneration. We find that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupt spinal cord repair, while transgenic ctgfa overexpression and local human CTGF recombinant protein delivery accelerate bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration. PMID:27811277

  4. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue

    KAUST Repository

    Elsayed, Maha; Magistretti, Pierre J.

    2015-01-01

    Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment.

  5. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain.

    Science.gov (United States)

    Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang

    2014-05-15

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology.

  6. Implications of glial nitric oxyde in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jose Enrique eYuste

    2015-08-01

    Full Text Available Nitric oxide (NO is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases.

  7. Proliferation of differentiated glial cells in the brain stem

    Directory of Open Access Journals (Sweden)

    P.C. Barradas

    1998-02-01

    Full Text Available Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase, that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions.

  8. Molecular genetic studies of glial tumors in children

    Directory of Open Access Journals (Sweden)

    P. S. Soltan

    2016-01-01

    Full Text Available Glioblastomas are the most frequent malignant neoplasm among primary brain tumors of childhood. Despite the advances in a multimodality treatment approach including neurosurgery, radiotherapy and chemotherapy, the overall survival of such patients remains poor and doesn’t exceed 14 months. The using of targeted agents such as gefitinib in unselected patient populations showed insufficient efficacy. Nowadays, the most perspective approach is a selection of patient populations potentially sensitive to targeted therapy based on predictive markers of response. We performed a comprehensive analysis of the mutational patterns in 30 glioblastomas of children. Data Analysis was based on the new method of mass spectrometry (OncoCarta v1.0, Sequenom that enabled us to estimate 298 mutations in 19 genes and to identify 10 mutations in 9 tumors (30 %. Mutations were found in BRAF, CDK, HRAS, EGFR, FGFR, MET and PI3K. The most mutated pathway was EGFR – in 20 % of the samples (6/30. The obtained results seem to be very promising in terms of possibilities of using new targeted agents including BRAF inhibitors for treatment of children with glial brain tumors.

  9. Endovascular treatment of the posterior inferior cerebellar artery aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Bradac, G.B.; Bergui, M. [Neuroradiology, Univ. di Torino, Turin (Italy)

    2004-12-01

    Aneurysms may arise at various locations along the course of the posterior inferior cerebellar artery. Brainstem and cranial nerves manipulation make the surgical approach to proximal aneurysms difficult, while the occlusion of the parent vessel is sometimes unavoidable in peripheral aneurysms. Endovascular treatment can be a good alternative, but also with this approach the location of the aneurysm is critical. If occlusion of the parent vessel is planned, anatomical variations and vascular territories of the brainstem should be considered. We report our experience with 18 consecutive aneurysms (12 proximal, 6 peripheral) treated by coils. Complete occlusion was achieved in 14 patients and subtotal in 4. In three patients the parent vessel had to be sacrificed. During treatment two perforations occurred; aneurysms were completely occluded without clinical consequences. Two small asymptomatic cerebellar infarctions were seen on postoperative computed tomography. Clinical outcome was good in 16 patients. (orig.)

  10. Crossed cerebellar diaschisis demonstrated by SPECT in hemiplegic children

    International Nuclear Information System (INIS)

    Hamano, Shin-ichiro; Nara, Takahiro; Nozaki, Hidetsugu; Fukushima, Kiyomi; Imai, Masayuki; Kumagai, Koumei; Maekawa, Kihei.

    1991-01-01

    Crossed cerebellar diaschisis (CCD) in twenty five children with hemiplegia were studied using single photon emission computed tomography (SPECT) with N-isopropyl-p-I-123-iodoamphetamine. Seven of twenty-five patients had cerebral palsy, and the others were impaired by acquired brain injury between ten months and fourteen years of age. CCD was demonstrated in five patients (20%), who were impaired by acquired brain injury after seven years of age. CCD could never be detected in patients with cerebral palsy. Ipsilateral cerebellar diaschisis was also demonstrated in two patients with cerebral palsy and three with early acquired brain injury before three years of age. It is suggested that diaschisis presents itself as a different form in a contralateral and ipsilateral cerebellum before three years of age from a form which presents after seven years of age. (author)

  11. High-Frequency Network Oscillations in Cerebellar Cortex

    Science.gov (United States)

    Middleton, Steven J.; Racca, Claudia; Cunningham, Mark O.; Traub, Roger D.; Monyer, Hannah; Knöpfel, Thomas; Schofield, Ian S.; Jenkins, Alistair; Whittington, Miles A.

    2016-01-01

    SUMMARY Both cerebellum and neocortex receive input from the somatosensory system. Interaction between these regions has been proposed to underpin the correct selection and execution of motor commands, but it is not clear how such interactions occur. In neocortex, inputs give rise to population rhythms, providing a spatiotemporal coding strategy for inputs and consequent outputs. Here, we show that similar patterns of rhythm generation occur in cerebellum during nicotinic receptor subtype activation. Both gamma oscillations (30–80 Hz) and very fast oscillations (VFOs, 80–160 Hz) were generated by intrinsic cerebellar cortical circuitry in the absence of functional glutamatergic connections. As in neocortex, gamma rhythms were dependent on GABAA receptor-mediated inhibition, whereas VFOs required only nonsynaptically connected intercellular networks. The ability of cerebellar cortex to generate population rhythms within the same frequency bands as neocortex suggests that they act as a common spatiotemporal code within which corticocerebellar dialog may occur. PMID:18549787

  12. Palatoglossal fusion with cleft palate and hypoplasia of cerebellar vermis

    Directory of Open Access Journals (Sweden)

    Shailesh Solanki

    2016-01-01

    Full Text Available A new-born male presented within 12 h of birth with respiratory distress. On examination and workup, he had palatoglossal fusion, cleft palate and hypoplasia of the cerebellar vermis. A 2.5 Fr endotracheal tube was inserted into the pharynx through nostril as a nasopharyngeal stent, following which his respiratory distress improved. Once child was optimised, then feeding was started by nasogastric tube and feeds were tolerated well. Elective tracheostomy and gastrostomy were done, followed by release of adhesions between the tongue and palate at a later stage. Review of literature suggests that palatoglossal fusion is uncommon and presents as an emergency. Mostly, these oral synechiae are associated with digital and/or cardiac anomaly. Other disorders associated with intra-oral synechiae include congenital alveolar synechiae, van der Woude syndrome, popliteal pterygium syndrome and oromandibular limb hypogenesis syndrome. The authors report a hitherto undescribed association of palatoglossal fusion with cleft palate and hypoplasia of the cerebellar vermis.

  13. [Atypical cerebellar neurocytoma resembling a hemangioblastoma. A case report].

    Science.gov (United States)

    Lista Martínez, Olalla; Rivas López, Luis Alfredo; Pombo Otero, Jorge Francisco; Amaro Cendón, Santiago; Bravo García, Christian; Villa Fernández, Juan Manuel

    2014-01-01

    Through August 2013, 105 cases of intracranial extraventricular neurocytoma (EVN) had been described; 6% were located in cerebellum and 22% were atypical EVN. A rare morphologic form of neurocytoma, atypical EVN has had only 24 cases reported to date. Its prognosis is poorer than the typical central neurocytoma. This case report describes an atypical cerebellar EVN, a form that has not been reported yet, hence the interest of this article. We emphasise its cystic nature and mural nodule, in an infrequent presentation. EVN are low-incidence tumours that we need to take into consideration when making the differential diagnosis of cystic cerebellar lesions with mural nodule. Given that the prognosis of atypical EVNs depends on the atypical nature and on the grade of resection, medical follow up has to be more constant, due to the greater degree of recurrence. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  14. Cerebellar Cognitive Affective Syndrome Presented as Severe Borderline Personality Disorder

    Directory of Open Access Journals (Sweden)

    Danilo Pesic

    2014-01-01

    Full Text Available An increasing number of findings confirm the significance of cerebellum in affecting regulation and early learning. Most consistent findings refer to association of congenital vermis anomalies with deficits in nonmotor functions of cerebellum. In this paper we presented a young woman who was treated since sixteen years of age for polysubstance abuse, affective instability, and self-harming who was later diagnosed with borderline personality disorder. Since the neurological and neuropsychological reports pointed to signs of cerebellar dysfunction and dysexecutive syndrome, we performed magnetic resonance imaging of brain which demonstrated partially developed vermis and rhombencephalosynapsis. These findings match the description of cerebellar cognitive affective syndrome and show an overlap with clinical manifestations of borderline personality disorder.

  15. The glia doctrine: addressing the role of glial cells in healthy brain ageing.

    Science.gov (United States)

    Nagelhus, Erlend A; Amiry-Moghaddam, Mahmood; Bergersen, Linda H; Bjaalie, Jan G; Eriksson, Jens; Gundersen, Vidar; Leergaard, Trygve B; Morth, J Preben; Storm-Mathisen, Jon; Torp, Reidun; Walhovd, Kristine B; Tønjum, Tone

    2013-10-01

    Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans. Exosomes are extracelluar membrane vesicles that facilitate communication between glia, and have significant potential for biomarker discovery and drug delivery. Polymorphisms in DNA repair genes may indirectly influence the structure and function of membrane proteins expressed in glial cells and predispose specific cell subgroups to degeneration. Physical exercise may reduce or retard age-related brain deterioration by a mechanism involving neuro-glial processes. It is most likely that additional information about the distribution, structure and function of glial cells will yield novel insight into human brain ageing. Systematic studies of glia and their functions are expected to eventually lead to earlier detection of ageing-related brain dysfunction and to interventions that could delay, reduce or prevent brain dysfunction. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat.

    Science.gov (United States)

    Sansar, Wafa; Ahboucha, Samir; Gamrani, Halima

    2011-10-01

    Lead is an environmental toxin and its effects are principally manifested in the brain. Glial and neuronal changes have been described during development following chronic or acute lead intoxication, however, little is known about the effects of chronic lead intoxication in adults. In this study we evaluated immunohistochemically the glial and dopaminergic systems in adult male Wistar rats. 0.5% (v/v) lead acetate in drinking water was administrated chronically over a 3-month period. Hypertrophic immunoreactive astrocytes were observed in the frontal cortex and other brain structures of the treated animals. Analysis of the astroglial features showed increased number of astrocyte cell bodies and processes in treated rats, an increase confirmed by Western blot. Particular distribution of glial fibrillary acidic protein immunoreactivity was observed within the blood vessel walls in which dense immunoreactive glial processes emanate from astrocytes. Glial changes in the frontal cortex were concomitant with reduced tyrosine hydroxylase immunoreactive neuronal processes, which seem to occur as a consequence of significantly reduced dopaminergic neurons within the nucleus of origin in the substantia nigra. These glial and neuronal changes following lead intoxication may affect animal behavior as evidenced by reduced locomotor activity in an open field test. These findings demonstrate that chronic lead exposure induces astroglial changes, which may compromise neuronal function and consequently animal behavior. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. Opioid-Induced Glial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward

    Directory of Open Access Journals (Sweden)

    Mark R. Hutchinson

    2007-01-01

    Full Text Available This review will introduce the concept of toll-like receptor (TLR–mediated glial activation as central to all of the following: neuropathic pain, compromised acute opioid analgesia, and unwanted opioid side effects (tolerance, dependence, and reward. Attenuation of glial activation has previously been demonstrated both to alleviate exaggerated pain states induced by experimental pain models and to reduce the development of opioid tolerance. Here we demonstrate that selective acute antagonism of TLR4 results in reversal of neuropathic pain as well as potentiation of opioid analgesia. Attenuating central nervous system glial activation was also found to reduce the development of opioid dependence, and opioid reward at a behavioral (conditioned place preference and neurochemical (nucleus accumbens microdialysis of morphine-induced elevations in dopamine level of analysis. Moreover, a novel antagonism of TLR4 by (+- and (˗-isomer opioid antagonists has now been characterized, and both antiallodynic and morphine analgesia potentiating activity shown. Opioid agonists were found to also possess TLR4 agonistic activity, predictive of glial activation. Targeting glial activation is a novel and as yet clinically unexploited method for treatment of neuropathic pain. Moreover, these data indicate that attenuation of glial activation, by general or selective TLR antagonistic mechanisms, may also be a clinical method for separating the beneficial (analgesia and unwanted (tolerance, dependence, and reward actions of opioids, thereby improving the safety and efficacy of their use.

  18. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  19. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    International Nuclear Information System (INIS)

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-01-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of 125 I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of 125 I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of 125 I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence [ 3 H] norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors

  20. Degenerative cerebellar diseases and differential diagnoses; Degenerative Kleinhirnerkrankungen und Differenzialdiagnosen

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Roumia, S.; Dietrich, P. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2016-11-15

    Cerebellar syndromes result in distinct clinical symptoms, such as ataxia, dysarthria, dysmetria, intention tremor and eye movement disorders. In addition to the medical history and clinical examination, imaging is particularly important to differentiate other diseases, such as hydrocephalus and multi-infarct dementia from degenerative cerebellar diseases. Degenerative diseases with cerebellar involvement include Parkinson's disease, multiple system atrophy as well as other diseases including spinocerebellar ataxia. In addition to magnetic resonance imaging (MRI), nuclear medicine imaging investigations are also helpful for the differentiation. Axial fluid-attenuated inversion recovery (FLAIR) and T2-weighted sequences can sometimes show a signal increase in the pons as a sign of degeneration of pontine neurons and transverse fibers in the basilar part of the pons. The imaging is particularly necessary to exclude other diseases, such as normal pressure hydrocephalus (NPH), multi-infarct dementia and cerebellar lesions. (orig.) [German] Klinisch imponieren Kleinhirnsyndrome durch Ataxie, Dysarthrie, Dysmetrie, Intentionstremor und Augenbewegungsstoerungen. Neben der Anamnese und klinischen Untersuchung ist die Bildgebung v. a. wichtig um andere Erkrankungen wie Hydrozephalus und Multiinfarktdemenz von degenerativen Kleinhirnerkrankungen zu differenzieren. Zu den degenerativen Erkrankungen mit Kleinhirnbeteiligung gehoeren der Morbus Parkinson, die Multisystematrophie sowie weitere Erkrankungen einschliesslich der spinozerebellaeren Ataxien. Neben der MRT sind auch nuklearmedizinische Untersuchungen zur Differenzierung hilfreich. Axiale Fluid-attenuated-inversion-recovery(FLAIR)- und T2-gewichtete Sequenzen koennen mitunter eine Signalsteigerung im Pons als Ausdruck einer Degeneration der pontinen Neuronen und transversalen Bahnen im Brueckenfuss zeigen. Die Bildgebung ist aber v. a. notwendig, um andere Erkrankungen wie Normaldruckhydrozephalus

  1. Cerebellar Herniation after Lumbar Puncture in Galactosemic Newborn

    Directory of Open Access Journals (Sweden)

    Salih Kalay

    2011-09-01

    Full Text Available Cerebral edema resulting in elevated intracranial pressure is a well-known complication of galactosemia. Lumbar puncture was performed for the diagnosis of clinically suspected bacterial meningitis. Herniation of cerebral tissue through the foramen magnum is not a common problem in neonatal intensive care units because of the open fontanelle in infants. We present the case of a 3-week-old infant with galactosemia who presented with signs of cerebellar herniation after lumbar puncture.

  2. Spontaneous calcium waves in granule cells in cerebellar slice cultures

    DEFF Research Database (Denmark)

    Apuschkin, Mia; Ougaard, Maria; Rekling, Jens C

    2013-01-01

    Multiple regions in the CNS display propagating correlated activity during embryonic and postnatal development. This activity can be recorded as waves of increased calcium concentrations in spiking neurons or glia cells, and have been suggested to be involved in patterning, axonal guidance and es......, that the propagating wave activity is carried through the tissue by axonal collaterals formed by neighboring granule cells, and further suggest that the correlated activity may be related to processes that ensure correct postnatal wiring of the cerebellar circuits....

  3. Imaging Spectrum of Cerebellar Pathologies: A Pictorial Essay

    International Nuclear Information System (INIS)

    Arora, Richa

    2015-01-01

    The cerebellum is a crucial structure of hindbrain which helps in maintaining motor tone, posture, gait and also coordinates skilled voluntary movements including eye movements. Cerebellar abnormalities have different spectrum, presenting symptoms and prognosis as compared to supratentorial structures and brainstem. This article intends to review the various pathological processes involving the cerebellum along with their imaging features on MR, which are must to know for all radiologists, neurologists and neurosurgeons for their prompt diagnosis and management

  4. CT evaluation of cerebellar atrophy with aging in healthy persons

    International Nuclear Information System (INIS)

    Nishimiya, Jin

    1988-01-01

    In a retrospective analysis of CT scans available from 2,102 neurologically normal persons, dilatations of the cerebellar vermis fissures (CVF), cerebellar hemispheric fissures (CHF), subarachnoid space (SAS) around the cerebellum and the fourth ventricle (FV) were examined according the age groups of persons younger than one year, one to four, five to nine, 10 to 19, 20 to 29, 30 to 39, 40 to 49, 50 to 59, 60 to 69, and 70 years and older. An dilatation of both the CVF and CHF was associated with aging, with statistically significant differences among age groups of persons older than 20 years. This was especially noted in age groups of 60 years or older. There was a significant enlargement in the SAS around the cerebellum in age groups 60 years or more compared with age groups less than 60 years. For age groups of persons 20 years or older, both the FV transverse width and the radio of the FV transverse width to the inside diameter of the posterior fossa (PF) increased with aging. This was significant in age groups 60 years or older. For age groups younger than 10 years, however, there was inverse correlation between the ratio of the FV transverse width to the PF inside diameter and aging. Plotted curve of the ratio of the FV to the PF was U-shaped with smallest value in persons in their twenties. Since changes in the FV might reflect the volume of the cerebellar medullary substance, the cerebellar medullary substance should increase up to the age of 20. (Namekawa, K.)

  5. Patterns of regional cerebellar atrophy in genetic frontotemporal dementia

    Directory of Open Access Journals (Sweden)

    Martina Bocchetta

    2016-01-01

    Conclusion: There appears to be a differential pattern of cerebellar atrophy in the major genetic forms of FTD, being relatively spared in GRN, localized to the lobule VIIa-Crus I in the superior-posterior region of the cerebellum in C9orf72, the area connected via the thalamus to the prefrontal cortex and involved in cognitive function, and localized to the vermis in MAPT, the ‘limbic cerebellum’ involved in emotional processing.

  6. Cerebellar ataxia of early onset. Clinical symptoms and MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Sumimasa; Miyake, Shota; Yamada, Michiko; Iwamoto, Hiroko (Kanagawa Children' s Medical Center, Yokohama (Japan)); Yamada, Kazuhiko

    1989-07-01

    Eight cases of childhood cerebellar ataxia were reported. All these cases showed chronic cerebellar ataxia with early onset, and the other diseases of cerebellum such as infections, neoplasms and storage diseases were excluded by clinical symptoms and laboratory findings including blood counts, blood chemistry, lactate, pyruvate, ceruloplasmine, urinalysis, serum immunoglobulins, amino acid analysis in blood and urine, CSF analysis, leukocyte lysosomal enzymes, MCV, EMG, EEG and brain X-CT. Two pairs of siblings were included in this study. The clinical diagnosis were cerebellar type (5), spinocerebellar type (1), one Marinesco-Sjoegren syndrome and undetermined type (1). The age of onset was 1 to 5 years. The chief complaint was motor developmental delay in 6 cases; among them 5 patients could walk alone at the ages of 2 to 3 years'. Mental retardation was observed in 7 cases and epilepsy in 2. TRH was effective in 5 cases. The MRI study revealed that the area of medial sagittal slice of the cerebellum was reduced significantly in all cases and also that of pons was reduced in 5 cases. Different from typical adult onset spinocerebellar degenerations, most of the present cases have achieved slow developmental milestones and the clinical course was not progressive. Genetic factors are suspected in the pathogenesis of this disease in some cases. (author).

  7. β-Catenin is critical for cerebellar foliation and lamination.

    Directory of Open Access Journals (Sweden)

    Jing Wen

    Full Text Available The cerebellum has a conserved foliation pattern and a well-organized layered structure. The process of foliation and lamination begins around birth. β-catenin is a downstream molecule of Wnt signaling pathway, which plays a critical role in tissue organization. Lack of β-catenin at early embryonic stages leads to either prenatal or neonatal death, therefore it has been difficult to resolve its role in cerebellar foliation and lamination. Here we used GFAP-Cre to ablate β-catenin in neuronal cells of the cerebellum after embryonic day 12.5, and found an unexpected role of β-catenin in determination of the foliation pattern. In the mutant mice, the positions of fissure formation were changed, and the meninges were improperly incorporated into fissures. At later stages, some lobules were formed by Purkinje cells remaining in deep regions of the cerebellum and the laminar structure was dramatically altered. Our results suggest that β-catenin is critical for cerebellar foliation and lamination. We also found a non cell-autonomous role of β-catenin in some developmental properties of major cerebellar cell types during specific stages.

  8. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI

    International Nuclear Information System (INIS)

    Tavani, F.; Zimmerman, R.A.; Gatti, R.; Bingham, P.; Berry, G.T.; Sullivan, K.

    2003-01-01

    We describe MRI of the brain in 19 patients with ataxia-telangiectasia (AT) and correlate the appearances with the degree of neurologic deficit. We examined 10 male and nine female patients; 17 were aged between 2 and 12 years (mean 8 years) but a woman and her brother were 35 and 38 years old, and had a variant of AT. Ataxia was the first recognized sign of the disease in every patient. We detected the following patterns of cerebellar atrophy: in the youngest patient, aged 2 years, the study was normal; in the five next youngest patients 3-7 years of age, the lateral cerebellum and superior vermis showed the earliest changes of atrophy; and all but one of the other patients had moderate to marked diffuse atrophy of vermis and cerebellar hemispheres. There were 12 patients aged 9 years and above; one, who was normal, was 9 years old. The five patients who at the time of examination were unable to walk all had diffuse atrophy involving both vermis and cerebellar hemispheres. (orig.)

  9. A Cerebellar Tremor in a Patient with Human Immunodeficiency Virus-1 Associated with Progressive Multifocal Leukoencephalopathy

    Directory of Open Access Journals (Sweden)

    Hee-Jin Kim

    2009-10-01

    Full Text Available Progressive multifocal leukoencephalopathy (PML is a demyelinating disease of the central nervous system (CNS caused by JC virus infection in oligodendrocytes, especially in patients with acquired immunodeficiency syndrome (AIDS. Movement disorders associated with PML are very rare. Here, we report a case of PML in an AIDS patient who presented with a cerebellar tremor, caused by lesions in the cerebellar outflow tract. A cerebellar tremor can be a rare clinical manifestation in patients with PML.

  10. A Cerebellar Tremor in a Patient with Human Immunodeficiency Virus-1 Associated with Progressive Multifocal Leukoencephalopathy

    Science.gov (United States)

    Kim, Hee-Jin; Lee, Jae-Jung; Lee, Phil Hyu

    2009-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by JC virus infection in oligodendrocytes, especially in patients with acquired immunodeficiency syndrome (AIDS). Movement disorders associated with PML are very rare. Here, we report a case of PML in an AIDS patient who presented with a cerebellar tremor, caused by lesions in the cerebellar outflow tract. A cerebellar tremor can be a rare clinical manifestation in patients with PML. PMID:24868366

  11. Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke

    OpenAIRE

    Wright, Rachel L.; Bevins, Joseph W.; Pratt, David; Sackley, Catherine M.; Wing, Alan M.

    2016-01-01

    Cerebellar stroke typically results in increased variability during walking. Previous research has suggested that auditory cueing reduces excessive variability in conditions such as Parkinson's disease and post-stroke hemiparesis. The aim of this case report was to investigate whether the use of a metronome cue during walking could reduce excessive variability in gait parameters after a cerebellar stroke. An elderly female with a history of cerebellar stroke and recurrent falling undertook th...

  12. Cerebellar Ataxia from Multiple Potential Causes: Hypothyroidism, Hashimoto's Thyroiditis, Thalamic Stimulation, and Essential Tremor

    OpenAIRE

    Shneyder, Natalya; Lyons, Mark K.; Driver-dunckley, Erika; Evidente, Virgilio Gerald H.

    2012-01-01

    Background: Both hypothyroidism and Hashimoto's thyroiditis (HT) can rarely be associated with cerebellar ataxia. Severe essential tremor (ET) as well as bilateral thalamic deep brain stimulation (DBS) may lead to subtle cerebellar signs. Case Report: We report a 74-year-old male with hypothyroidism and a 20-year history of ET who developed cerebellar ataxia after bilateral thalamic DBS. Extensive workup revealed elevated thyroid stimulating hormone and thyroperoxidase antibody titers c...

  13. Adams Oliver syndrome: Description of a new phenotype with cerebellar abnormalities in a family

    International Nuclear Information System (INIS)

    D’Amico, Alessandra; Melis, Daniela; D’Arco, Felice; Di Paolo, Nilde; Carotenuto, Barbara; D’Anna, Gennaro; Russo, Carmela; Boemio, Pasquale; Brunetti, Arturo

    2013-01-01

    To describe cerebellar abnormalities in a family composed by a father and two affected sibs with Adams Oliver syndrome (AOS) (OMIM 100300). Brain MRI and MR angiography were performed at 1.5T. The siblings presented cerebellar cortex dysplasia characterized by the presence of cysts. Abnormalities of CNS are an unusual manifestation of AOS. To our knowledge, this is the first report of cerebellar cortical dysplasia in a family with AOS

  14. Blood harmane is correlated with cerebellar metabolism in essential tremor: a pilot study.

    Science.gov (United States)

    Louis, Elan D; Zheng, Wei; Mao, Xiangling; Shungu, Dikoma C

    2007-08-07

    On proton magnetic resonance spectroscopic imaging ((1)H MRSI), there is a decrease in cerebellar N-acetylaspartate/total creatine (NAA/tCr) in essential tremor (ET), signifying cerebellar neuronal dysfunction or degeneration. Harmane, which is present in the human diet, is a potent tremor-producing neurotoxin. Blood harmane concentrations seem to be elevated in ET. To assess in patients with ET whether blood harmane concentration is correlated with cerebellar NAA/tCR, a neuroimaging measure of neuronal dysfunction or degeneration. Twelve patients with ET underwent (1)H MRSI. The major neuroanatomic structure of interest was the cerebellar cortex. Secondary regions were the central cerebellar white matter, cerebellar vermis, thalamus, and basal ganglia. Blood concentrations of harmane and another neurotoxin, lead, were also assessed. Mean +/- SD cerebellar NAA/tCR was 1.52 +/- 0.41. In a linear regression model that adjusted for age and gender, log blood harmane concentration was a predictor of cerebellar NAA/tCR (beta = -0.41, p = 0.009); every 1 g(-10)/mL unit increase in log blood harmane concentration was associated with a 0.41 unit decrease in cerebellar NAA/tCR. The association between blood harmane concentration and brain NAA/tCR only occurred in the cerebellar cortex; it was not observed in secondary brain regions of interest. Furthermore, the association was specific to harmane and not another neurotoxin, lead. This study provides additional support for the emerging link between harmane, a neurotoxin, and ET. Further studies are warranted to address whether cerebellar harmane concentrations are associated with cerebellar pathology in postmortem studies of the ET brain.

  15. Cerebellar language mapping and cerebral language dominance in pediatric epilepsy surgery patients

    Directory of Open Access Journals (Sweden)

    Jennifer N. Gelinas, MD, PhD

    2014-01-01

    Conclusions: Cerebellar language activation occurs in homologous regions of Crus I/II contralateral to cerebral language activation in patients with both right and left cerebral language dominance. Cerebellar language laterality could contribute to comprehensive pre-operative evaluation of language lateralization in pediatric epilepsy surgery patients. Our data suggest that patients with atypical cerebellar language activation are at risk for having atypical cerebral language organization.

  16. Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.

    Science.gov (United States)

    Gilmer, Jesse I; Person, Abigail L

    2017-12-13

    Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing. SIGNIFICANCE STATEMENT Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial expander, where each granule cell represents a unique combination of inputs

  17. Quantum Gravity Experiments

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2015-10-01

    Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.

  18. Gravity and strings

    CERN Document Server

    Ortín, Tomás

    2015-01-01

    Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

  19. Solitons in Newtonian gravity

    International Nuclear Information System (INIS)

    Goetz, G.

    1988-01-01

    It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)

  20. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  1. No slip gravity

    Science.gov (United States)

    Linder, Eric V.

    2018-03-01

    A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.

  2. The quantization of gravity

    CERN Document Server

    Gerhardt, Claus

    2018-01-01

    A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...

  3. Protein kinase A and Epac activation by cAMP regulates the expression of glial fibrillary acidic protein in glial cells

    Directory of Open Access Journals (Sweden)

    Sugimoto Naotoshi

    2016-01-01

    Full Text Available Cyclic adenosine monophosphate (cAMP controls differentiation in several types of cells during brain development. However, the molecular mechanism of cAMP-controlled differentiation is not fully understood. We investigated the role of protein kinase A (PKA and exchange protein directly activated by cAMP (Epac on cAMP-induced glial fibrillary acidic protein (GFAP, an astrocyte marker, in cultured glial cells. B92 glial cells were treated with cAMP-elevating drugs, an activator of adenylate cyclase, phosphodiesterase inhibitor and a ß adrenal receptor agonist. These cAMP-elevating agents induced dramatic morphological changes and expression of GFAP. A cAMP analog, 8-Br-cAMP, which activates Epac as well as PKA, induced GFAP expression and morphological changes, while another cAMP analog, 8-CPT-cAMP, which activates Epac with greater efficacy when compared to PKA, induced GFAP expression but very weak morphological changes. Most importantly, the treatment with a PKA inhibitor partially reduced cAMP-induced GFAP expression. Taken together, these results indicate that cAMP-elevating drugs lead to the induction of GFAP via PKA and/or Epac activation in B92 glial cells.

  4. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  5. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  6. Airborne Gravity: NGS' Gravity Data for AN08 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  7. Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  8. Airborne Gravity: NGS' Gravity Data for EN01 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  9. Airborne Gravity: NGS' Gravity Data for AN03 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  10. Airborne Gravity: NGS' Gravity Data for EN06 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...

  11. Airborne Gravity: NGS' Gravity Data for ES01 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...

  12. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  13. The clinical impact of cerebellar grey matter pathology in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Alfredo Damasceno

    Full Text Available BACKGROUND: The cerebellum is an important site for cortical demyelination in multiple sclerosis, but the functional significance of this finding is not fully understood. OBJECTIVE: To evaluate the clinical and cognitive impact of cerebellar grey-matter pathology in multiple sclerosis patients. METHODS: Forty-two relapsing-remitting multiple sclerosis patients and 30 controls underwent clinical assessment including the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale (EDSS and cerebellar functional system (FS score, and cognitive evaluation, including the Paced Auditory Serial Addition Test (PASAT and the Symbol-Digit Modalities Test (SDMT. Magnetic resonance imaging was performed with a 3T scanner and variables of interest were: brain white-matter and cortical lesion load, cerebellar intracortical and leukocortical lesion volumes, and brain cortical and cerebellar white-matter and grey-matter volumes. RESULTS: After multivariate analysis high burden of cerebellar intracortical lesions was the only predictor for the EDSS (p<0.001, cerebellar FS (p = 0.002, arm function (p = 0.049, and for leg function (p<0.001. Patients with high burden of cerebellar leukocortical lesions had lower PASAT scores (p = 0.013, while patients with greater volumes of cerebellar intracortical lesions had worse SDMT scores (p = 0.015. CONCLUSIONS: Cerebellar grey-matter pathology is widely present and contributes to clinical dysfunction in relapsing-remitting multiple sclerosis patients, independently of brain grey-matter damage.

  14. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia.

    Science.gov (United States)

    Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D

    2008-07-01

    Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.

  15. Increased cerebellar PET glucose metabolism corresponds to ataxia in Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Fellgiebel, Andreas; Siessmeier, Thomas; Winterer, Georg; Lüddens, Hartmut; Mann, Klaus; Schmidt, Lutz G; Bartenstein, Peter

    2004-01-01

    To investigate a possible relationship between cerebellar glucose metabolism and recovery from ataxia in the first months of acute Wernicke-Korsakoff syndrome. Two cases of alcoholic Wernicke-Korsakoff syndrome were followed up with the clinical status and cerebral glucose metabolism over a 4- and 9-month period. Initially both patients showed severe ataxia and elevated cerebellar glucose metabolism that decreased corresponding to the restitution of stance and gait. Increased cerebellar glucose metabolism at the onset of the illness may reflect the reorganization process of disturbed motor skills and may indicate cerebellar plasticity.

  16. Congenital Cerebellar Mixed Germ Cell Tumor Presenting with Hemorrhage in a Newborn

    International Nuclear Information System (INIS)

    Kim, Sung Mok; Kim, Ji Hye; Yoo, So Young; Park, Won Soon; Jang, Yun Sil; Shin, Hyung Jin; Suh, Yeon Lim

    2008-01-01

    We report here on a neonate with congenital cerebellar mixed germ cell tumor, and this initially presented as cerebellar hemorrhage. Postnatal cranial ultrasonography revealed an echogenic cerebellar mass that exhibited the signal characteristics of hemorrhage rather than tumor on MR images. The short-term follow-up images also suggested a resolving cerebellar hemorrhage. One month later, the neonate developed vomiting. A second set of MR images demonstrated an enlarged mass that exhibited changed signal intensity at the same site, which suggested a neoplasm. Histological examination after the surgical resection revealed a mixed germ cell tumor

  17. Mathematical modeling of chemotaxis and glial scarring around implanted electrodes

    International Nuclear Information System (INIS)

    Silchenko, Alexander N; Tass, Peter A

    2015-01-01

    It is well known that the implantation of electrodes for deep brain stimulation or microelectrode probes for the recording of neuronal activity is always accompanied by the response of the brain’s immune system leading to the formation of a glial scar around the implantation sites. The implantation of electrodes causes massive release of adenosine-5′-triphosphate (ATP) and different cytokines into the extracellular space and activates the microglia. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y 2,12 as well as A3A/A2A adenosine receptors. The size and density of an insulating sheath around the electrode, formed by microglial cells, are important criteria for the optimization of the signal-to-noise ratio during microelectrode recordings or parameters of electrical current delivered to the brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards implanted electrodes as well as the possible impact of an anti-inflammatory coating consisting of the interleukin-1 receptor antagonist. We present a model describing the formation of a stable aggregate around the electrode due to the joint chemo-attractive action of ATP and ADP and the mixed influence of extracellular adenosine. The bioactive coating is modeled as a source of chemo-repellent located near the electrode surface. The obtained analytical and numerical results allowed us to reveal the dependences of size and spatial location of the insulating sheath on the amount of released ATP and estimate the impact of immune suppressive coating on the scarring process. (paper)

  18. Miniaturised Gravity Sensors for Remote Gravity Surveys.

    Science.gov (United States)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.

    2016-12-01

    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  19. Surfing surface gravity waves

    Science.gov (United States)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  20. Towards a quantum gravity

    International Nuclear Information System (INIS)

    Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.

    2011-01-01

    The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)

  1. Terrestrial gravity data analysis for interim gravity model improvement

    Science.gov (United States)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  2. Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas.

    Science.gov (United States)

    Palesi, Fulvia; De Rinaldis, Andrea; Castellazzi, Gloria; Calamante, Fernando; Muhlert, Nils; Chard, Declan; Tournier, J Donald; Magenes, Giovanni; D'Angelo, Egidio; Gandini Wheeler-Kingshott, Claudia A M

    2017-10-09

    Cerebellar involvement in cognition, as well as in sensorimotor control, is increasingly recognized and is thought to depend on connections with the cerebral cortex. Anatomical investigations in animals and post-mortem humans have established that cerebro-cerebellar connections are contralateral to each other and include the cerebello-thalamo-cortical (CTC) and cortico-ponto-cerebellar (CPC) pathways. CTC and CPC characterization in humans in vivo is still challenging. Here advanced tractography was combined with quantitative indices to compare CPC to CTC pathways in healthy subjects. Differently to previous studies, our findings reveal that cerebellar cognitive areas are reached by the largest proportion of the reconstructed CPC, supporting the hypothesis that a CTC-CPC loop provides a substrate for cerebro-cerebellar communication during cognitive processing. Amongst the cerebral areas identified using in vivo tractography, in addition to the cerebral motor cortex, major portions of CPC streamlines leave the prefrontal and temporal cortices. These findings are useful since provide MRI-based indications of possible subtending connectivity and, if confirmed, they are going to be a milestone for instructing computational models of brain function. These results, together with further multi-modal investigations, are warranted to provide important cues on how the cerebro-cerebellar loops operate and on how pathologies involving cerebro-cerebellar connectivity are generated.

  3. Ghrelin is involved in the paracrine communication between neurons and glial cells.

    Science.gov (United States)

    Avau, B; De Smet, B; Thijs, T; Geuzens, A; Tack, J; Vanden Berghe, P; Depoortere, I

    2013-09-01

    Ghrelin is the only known peripherally active orexigenic hormone produced by the stomach that activates vagal afferents to stimulate food intake and to accelerate gastric emptying. Vagal sensory neurons within the nodose ganglia are surrounded by glial cells, which are able to receive and transmit chemical signals. We aimed to investigate whether ghrelin activates or influences the interaction between both types of cells. The effect of ghrelin was compared with that of leptin and cholecystokinin (CCK). Cultures of rat nodose ganglia were characterized by immunohistochemistry and the functional effects of peptides, neurotransmitters, and pharmacological blockers were measured by Ca(2+) imaging using Fluo-4-AM as an indicator. Neurons responded to KCl and were immunoreactive for PGP-9.5 whereas glial cells responded to lysophosphatidic acid and had the typical SOX-10-positive nuclear staining. Neurons were only responsive to CCK (31 ± 5%) whereas glial cells responded equally to the applied stimuli: ghrelin (27 ± 2%), leptin (21 ± 2%), and CCK (30 ± 2%). In contrast, neurons stained more intensively for the ghrelin receptor than glial cells. ATP induced [Ca(2+) ]i rises in 90% of the neurons whereas ACh and the NO donor, SIN-1, mainly induced [Ca(2+) ]i changes in glial cells (41 and 51%, respectively). The percentage of ghrelin-responsive glial cells was not affected by pretreatment with suramin, atropine, hexamethonium or 1400 W, but was reduced by l-NAME and by tetrodotoxin. Neurons were shown to be immunoreactive for neuronal NO-synthase (nNOS). Our data show that ghrelin induces Ca(2+) signaling in glial cells of the nodose ganglion via the release of NO originating from the neurons. © 2013 John Wiley & Sons Ltd.

  4. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.

    Science.gov (United States)

    Liu, He; Zhou, Bangyu; Yan, Wenjun; Lei, Zhengchang; Zhao, Xiaoliang; Zhang, Ke; Guo, Aike

    2014-09-01

    Astrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure. In this study, using in vivo calcium imaging, we found that astrocyte-like glial cells exhibited spontaneous microdomain calcium elevations. Using simultaneous manipulation of glial activity and monitoring of neuronal function, we found that the astrocyte-like glial activation, but not ensheathing glial activation, could inhibit odor-evoked responses of PNs. Ensheathing glial cells are another subtype of glia, and are of functional importance in the AL. Electrophysiological experiments indicated that astrocyte-like glial activation decreased the amplitude and slope of excitatory postsynaptic potentials evoked through electrical stimulation of the antennal nerve. These results suggest that astrocyte-like glial cells may regulate olfactory processing through negative regulation of ORN-PN synaptic strength. Beyond the antennal lobe we observed astrocyte-like glial spontaneous calcium activities in the ventromedial protocerebrum, indicating that astrocyte-like glial spontaneous calcium elevations might be general in the adult fly brain. Overall, our study demonstrates a new function for astrocyte-like glial cells in the physiological modulation of olfactory information transmission, possibly through regulating ORN-PN synapse strength. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Gravity Data for South America

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...

  6. Interior Alaska Gravity Station Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...

  7. Gravity Station Data for Spain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  8. Gravity Station Data for Portugal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  9. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  10. Colossal creations of gravity

    DEFF Research Database (Denmark)

    Skielboe, Andreas

    Gravity governs the evolution of the universe on the largest scales, and powers some of the most extreme objects at the centers of galaxies. Determining the masses and kinematics of galaxy clusters provides essential constraints on the large-scale structure of the universe, and act as direct probes...

  11. A Trick of Gravity

    Science.gov (United States)

    Newburgh, Ronald

    2010-01-01

    It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.

  12. Discrete Lorentzian quantum gravity

    NARCIS (Netherlands)

    Loll, R.

    2000-01-01

    Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated

  13. Loop quantum gravity

    International Nuclear Information System (INIS)

    Pullin, J.

    2015-01-01

    Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)

  14. A finite quantum gravity

    International Nuclear Information System (INIS)

    Meszaros, A.

    1984-05-01

    In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)

  15. Venus - Ishtar gravity anomaly

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.

    1984-01-01

    The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.

  16. Torsion induces gravity

    International Nuclear Information System (INIS)

    Aros, Rodrigo; Contreras, Mauricio

    2006-01-01

    In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively

  17. Discrete quantum gravity

    International Nuclear Information System (INIS)

    Williams, J.W.

    1992-01-01

    After a brief introduction to Regge calculus, some examples of its application is quantum gravity are described in this paper. In particular, the earliest such application, by Ponzano and Regge, is discussed in some detail and it is shown how this leads naturally to current work on invariants of three-manifolds

  18. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  19. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  20. Even-dimensional topological gravity from Chern-Simons gravity

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.

    2009-01-01

    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  1. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2014-01-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  2. The effects of centrally administered fluorocitrate via inhibiting glial cells on working memory in rats

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Although prefrontal and hippocampal neurons are critical for spatial working memory,the function of glial cells in spatial working memory remains uncertain.In this study we investigated the function of glial cells in rats’ working memory.The glial cells of rat brain were inhibited by intracerebroventricular(icv) injection of fluorocitrate(FC).The effects of FC on the glial cells were examined by using electroencephalogram(EEG) recordings and delayed spatial alternation tasks.After icv injection of 10 μL of 0.5 nmol/L or 5 nmol/L FC,the EEG power spectrum recorded from the hippocampus increased,but the power spectrum for the prefrontal cortex did not change,and working memory was unaffected.Following an icv injection of 10 μL of 20 nmol/L FC,the EEG power spectra in both the prefrontal cortex and the hippocampus increased,and working memory improved.The icv injection of 10 μL of 50 nmol/L FC,the EEG power spectra in both the prefrontal cortex and in the hippocampus decreased,and working memory was impaired.These results suggest that spatial working memory is affected by centrally administered FC,but only if there are changes in the EEG power spectrum in the prefrontal cortex.Presumably,the prefrontal glial cells relate to the working memory.

  3. Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity

    Directory of Open Access Journals (Sweden)

    Wayne Croft

    2015-01-01

    Full Text Available The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology.

  4. Neuronal-glial interactions in rats fed a ketogenic diet.

    Science.gov (United States)

    Melø, Torun Margareta; Nehlig, Astrid; Sonnewald, Ursula

    2006-01-01

    Glucose is the preferred energy substrate for the adult brain. However, during periods of fasting and consumption of a high fat, low carbohydrate (ketogenic) diet, ketone bodies become major brain fuels. The present study was conducted to investigate how the ketogenic diet influences neuronal-glial interactions in amino acid neurotransmitter metabolism. Rats were kept on a standard or ketogenic diet. After 21 days all animals received an injection of [1-(13)C]glucose plus [1,2-(13)C]acetate, the preferential substrates of neurons and astrocytes, respectively. Extracts from cerebral cortex and plasma were analyzed by (13)C and (1)H nuclear magnetic resonance spectroscopy and HPLC. Increased amounts of valine, leucine and isoleucine and a decreased amount of glutamate were found in the brains of rats receiving the ketogenic diet. Glycolysis was decreased in ketotic rats compared with controls, evidenced by the reduced amounts of [3-(13)C]alanine and [3-(13)C]lactate. Additionally, neuronal oxidative metabolism of [1-(13)C]glucose was decreased in ketotic rats compared with controls, since amounts of [4-(13)C]glutamate and [4-(13)C]glutamine were lower than those of controls. Although the amount of glutamate from [1-(13)C]glucose was decreased, this was not the case for GABA, indicating that relatively more [4-(13)C]glutamate is converted to GABA. Astrocytic metabolism was increased in response to ketosis, shown by increased amounts of [4,5-(13)C]glutamine, [4,5-(13)C]glutamate, [1,2-(13)C]GABA and [3,4-(13)C]-/[1,2-(13)C]aspartate derived from [1,2-(13)C]acetate. The pyruvate carboxylation over dehydrogenation ratio for glutamine was increased in the ketotic animals compared to controls, giving further indication of increased astrocytic metabolism. Interestingly, pyruvate recycling was higher in glutamine than in glutamate in both groups of animals. An increase in this pathway was detected in glutamate in response to ketosis. The decreased glycolysis and oxidative

  5. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons

    Directory of Open Access Journals (Sweden)

    Pontus eGeborek

    2014-10-01

    Full Text Available We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT and the dorsal spinocerebellar tract (DSCT, respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF and the ipsilateral LF (iLF at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e. that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.

  6. Spontaneous Cerebellar Hematoma: Decision Making in Conscious Adults.

    Science.gov (United States)

    Alkosha, Hazem M; Ali, Nabil Mansour

    2017-06-01

    To detect predictors of the clinical course and outcome of cerebellar hematoma in conscious patients that may help in decision making. This study entails retrospective and prospective review and collection of the demographic, clinical, and radiologic data of 92 patients with cerebellar hematoma presented conscious and initially treated conservatively. Primary outcome was deterioration lower than a Glasgow Coma Scale score of 14 and secondary outcome was Glasgow Outcome Scale score at discharge and 3 months later. Relevant data to primary outcome were used to create a prediction model and derive a risk score. The model was validated using a bootstrap technique and performance measures of the score were presented. Surgical interventions and secondary outcomes were correlated to the score to explore its use in future decision making. Demographic and clinical data showed no relevance to outcome. The relevant initial computed tomography criteria were used to build up the prediction model. A score was derived after the model proved to be valid using internal validation with bootstrapping technique. The score (0-6) had a cutoff value of ≥2, with sensitivity of 93.3% and specificity of 88.0%. It was found to have a significant negative association with the onset of neurologic deterioration, end point Glasgow Coma Scale scores and the Glasgow Outcome Scale scores at discharge. The score was positively correlated to the aggressiveness of surgical interventions and the length of hospital stay. Early definitive management is critical in conscious patients with cerebellar hematomas and can improve outcome. Our proposed score is a simple tool with high discrimination power that may help in timely decision making in those patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    Directory of Open Access Journals (Sweden)

    Ann K. Shinn

    2015-03-01

    Full Text Available Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the cognitive dysmetria and dysmetria of thought models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of

  8. Cerebellar clear cell ependymoma in a 10 year old girl

    Energy Technology Data Exchange (ETDEWEB)

    Thinzar Aye Nyein; Moon, Ah Rim; Hwang, Sun Chul; Hong, Hyun Sook; Lee, A Leum; Chang, Kee Hyun; Kim, Hee Kyung; Chin, Su Sie [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Park, Ji Sang [Soonchunhyang University Gumi Hospital, Gumi (Korea, Republic of)

    2016-01-15

    Clear cell ependymoma (CCE) is a histological rare variant (1–5%) of ependymoma, which is distinguished from other histological subtypes by the presence of fusiform cells arrayed radially around small blood vessels. These alleged perivascular pseudorosettes are significant characteristic features of ependymomas. About 95% of infratentorial ependymomas are found in the fourth ventricle and the remainder occurs as cerebellopontine angle lesions. In previous reports, the cerebellum is found to be a rare location for ependymoma. In this study we report one case of CCE originating from the cerebellar hemisphere, showing unusual morphology on 3T MRI.

  9. Crossed cerebellar atrophy in cases with cerebrovascular disease

    International Nuclear Information System (INIS)

    Yagishita, Toshiyuki; Kojima, Shigeyuki; Hirayama, Keizo; Iwabuchi, Sadamu.

    1989-01-01

    Crossed cerebellar atrophy (CCA) was investigated by X-ray CT to establish the incidence, mechanism, and the relation to cerebral lesions in 130 cases of unilateral supratentorial cerebrovascular diseases. The 130 cases consisted of 83 males and 47 females with cerebral infarction (65 cases) and cerebral hemorrhage (65 cases). The patients' average age was 57.6 years. Crossed cerebellar atrophy was demonstrated in 8 cases (6.2%), 6 of whom had massive cerebral infarction in the middle cerebral artery area (9.2% of the 65 cases of cerebral infarction. The six cases of CCA caused by cerebral infarction had lesions in the frontal and temporal lobes. Two had a cerebral hemorrhage in the putamen and in the thalamus, respectively, accounting for 3.1% of the 65 cases of cerebral hemorrhage. Of the 2 cases, one had putaminal hemorrhage, and the other had thalamic hemorrhage. Cerebrovascular stroke had occured in these patients with CCA more than 2 months previously. In 5 of the 8 cases of CCA, atrophy was present in the basis pedunculi and the basis pontis on the side of the cerebral lesion. However, neither dilation nor deformity of the fourth ventricle was present in any of the patients, suggesting that none of the CCA patients had atrophy of the dentate nucleus. The CCA patients had massive cerebral lesion in the frontal and temporal lobes or atrophy of the basis pedunculi and basis pontis, suggesting the presence of the transsynaptic degeneration of the cortico-ponto-cerebellar pathway. In the case of the thalamic hemorrhage, who had not hemorrhagic lesion in the frontal and temporal lobes, atrophy of the basis peduncli and basis pontis was not observed. Though dilation or deformity of the fourth ventricle is not observed in this case, presence of the degeneration of the dentate-rubro-thalamic pathway cannot be denied. CCA seems to be caused by both the transsynaptic degeneration of the cortico-ponto-cerebellar pathway and the dentate-rubro-thalamic pathway. (J.P.N.)

  10. Cerebellar atrophy related to chronic exposure to toluene: case report

    Directory of Open Access Journals (Sweden)

    Benito Pereira Damasceno

    1994-03-01

    Full Text Available A 31-year-old woman presented slowly progressing ataxia and neurasthenic symptoms after 14-year occupational exposure to low concentration toluene vapour. Examination disclosed only cerebellar signs. Cognitive functions were normal except moderate visuo-spatial and constructive deficit CT imaging showed severe pancerebellar atrophy without pathological signs in other brain structures. Two years after she was removed from workplace, CT imaging and ataxia showed no worsening, while visuo-constructive function improved. The authors warn against possible neurotoxic risk associated with this kind of exposure.

  11. A comprehensive gaze stabilization controller based on cerebellar internal models

    DEFF Research Database (Denmark)

    Vannucci, Lorenzo; Falotico, Egidio; Tolu, Silvia

    2017-01-01

    . The VOR works in conjunction with the opto-kinetic reflex (OKR), which is a visual feedback mechanism that allows to move the eye at the same speed as the observed scene. Together they keep the image stationary on the retina. In this work we implement on a humanoid robot a model of gaze stabilization...... based on the coordination of VCR and VOR and OKR. The model, inspired by neuroscientific cerebellar theories, is provided with learning and adaptation capabilities based on internal models. We present the results for the gaze stabilization model on three sets of experiments conducted on the SABIAN robot...

  12. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  13. Surgical Treatment of A Dissecting Aneurysm of the Superior Cerebellar Artery: Case Report

    Directory of Open Access Journals (Sweden)

    Stefanescu Florin

    2014-10-01

    Full Text Available Dissecting aneurysm located in the peripheral region of the superior cerebellar artery is very rare. There is little experience regarding their surgical or endovascular treatment. We present the case of a peripheral dissecting superior cerebellar artery aneurysm treated by surgical clipping.

  14. Parvovirus associated cerebellar hypoplasia and hydrocephalus in day-old broiler chickens

    Science.gov (United States)

    Cerebellar hypoplasia and hydrocephalus were detected in day-old broiler chickens. Brains of chickens evaluated at necropsy appeared to be abnormal; some were disfigured and cerebellae appeared to be smaller than normal. Histopathologic examination of brains revealed cerebellar folia that were sho...

  15. The Cerebellar Deficit Hypothesis and Dyslexic Tendencies in a Non-Clinical Sample

    Science.gov (United States)

    Brookes, Rebecca L.; Stirling, John

    2005-01-01

    In order to assess the relationship between cerebellar deficits and dyslexic tendencies in a non-clinical sample, 27 primary school children aged 8-9 completed a cerebellar soft signs battery and were additionally assessed for reading age, sequential memory, picture arrangement and knowledge of common sequences. An average measure of the soft…

  16. Cerebellar arteries originating from the internal carotid artery: angiographic evaluation and embryologic explanations

    International Nuclear Information System (INIS)

    Lee, Jae Young; Han, Moon Hee; Yu, In Gyu; Chang, Ki Hyun; Kim, Eui Jong; Kim, Dae Ho

    1997-01-01

    To find and describe the cerebellar arteries arising from the internal carotid artery, explain them embryologically, and evaluate their clinical implication. To determine the point in the internal carotid artery from which the cereballar artery arose anomalously, consecutive angiographic studies performed in the last three years were reviewed. The distribution of such anomalous cerebellar arteries, the point in the internal carotid artery from which the anomalous vessels originated, and associated findings were analyzed. Five anomalous origins of cerebellar arteries arising arising directly from the internal carotid artery were found in five patients. Three anterior inferior cerebellar arteries (AICA) and one common trunk of an AICA and a posterior inferior cerebellar artery (PICA) were found to originate from the internal carotid artery at a point close to the origin of the primitive trigeminal artery. A PICA arose from an artery presenting a course similar to the proatlantal intersegmental artery. Intracranial aneurysms in two patients, Moyamoya disease in one, and facial arteriovenous malformation in one. In our series, AICAs supplied from the arteries considered to be persistent trigeminal artery variants were the most common type. A correlation between type of anomalous cerebellar artery and type of carotid-vertebrobasilar anastomosis may exist. Cerebellar arteries originating anomalously from the internal carotid artery seem to occur as a result of the persistence of carotid-vertebrobasilar anastomoses associated with incomplete fusion of the longitudinal neural arteries. An understanding of these anomalous cerebellar arteries may help prevent accidents during therapeutic embolization and surgical treatment, as well as misinterpretation

  17. Quantum gravity from noncommutative spacetime

    International Nuclear Information System (INIS)

    Lee, Jungjai; Yang, Hyunseok

    2014-01-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  18. Quantum gravity from noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2014-12-15

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  19. The soft mechanical signature of glial scars in the central nervous system

    Science.gov (United States)

    Moeendarbary, Emad; Weber, Isabell P.; Sheridan, Graham K.; Koser, David E.; Soleman, Sara; Haenzi, Barbara; Bradbury, Elizabeth J.; Fawcett, James; Franze, Kristian

    2017-03-01

    Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.

  20. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells.

    Science.gov (United States)

    Chen, Xing-Shu; Huang, Nanxin; Michael, Namaka; Xiao, Lan

    2015-01-01

    Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.

  1. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells

    Directory of Open Access Journals (Sweden)

    Xin-Shu eChen

    2015-12-01

    Full Text Available Schizophrenia (SZ)is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.

  2. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    International Nuclear Information System (INIS)

    Stiene-Martin, A.; Hauser, K.F.

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 μM met-enkephalin, 1 μM met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined [ 3 H]-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in [ 3 H]-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture

  3. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    Energy Technology Data Exchange (ETDEWEB)

    Stiene-Martin, A.; Hauser, K.F. (Univ. of Kentucky, Lexington (USA))

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 {mu}M met-enkephalin, 1 {mu}M met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined ({sup 3}H)-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in ({sup 3}H)-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture.

  4. The gravity field and GGOS

    DEFF Research Database (Denmark)

    Forsberg, René; Sideris, M.G.; Shum, C.K.

    2005-01-01

    The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...

  5. Cerebellar Ataxia from Multiple Potential Causes: Hypothyroidism, Hashimoto's Thyroiditis, Thalamic Stimulation, and Essential Tremor

    Directory of Open Access Journals (Sweden)

    Natalya V. Shneyder

    2012-04-01

    Full Text Available Background: Both hypothyroidism and Hashimoto's thyroiditis (HT can rarely be associated with cerebellar ataxia. Severe essential tremor (ET as well as bilateral thalamic deep brain stimulation (DBS may lead to subtle cerebellar signs. Case Report: We report a 74-year-old male with hypothyroidism and a 20-year history of ET who developed cerebellar ataxia after bilateral thalamic DBS. Extensive workup revealed elevated thyroid stimulating hormone and thyroperoxidase antibody titers confirming the diagnosis of HT. Discussion: Our case demonstrates multiple possible causes of cerebellar ataxia in a patient, including hypothyroidism, HT, chronic ET, and bilateral thalamic DBS. Counseling of patients may be appropriate when multiple risk factors for cerebellar ataxia coexist in one individual.

  6. File list: InP.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  7. File list: InP.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: NoD.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  9. File list: InP.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  10. File list: NoD.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  11. File list: NoD.Neu.05.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Cerebellar_granule_neurons mm9 No description Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Cerebellar_granule_neurons.bed ...

  12. File list: InP.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Cerebellar_granule_neurons mm9 Input control Neural Cerebellar granule neurons... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  13. Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region.

    Science.gov (United States)

    Xu, Guangjin; Wang, Wei; Zhou, Min

    2014-04-01

    Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ∼178, 364 μm(3) . The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and postrecording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. Copyright © 2013 Wiley Periodicals, Inc.

  14. Cosmological Tests of Gravity

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.

  15. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  16. Antimatter gravity experiment

    International Nuclear Information System (INIS)

    Brown, R.E.; Camp, J.B.; Darling, T.W.

    1990-01-01

    An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development

  17. Lectures on Quantum Gravity

    CERN Document Server

    Gomberoff, Andres

    2006-01-01

    The 2002 Pan-American Advanced Studies Institute School on Quantum Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile, January 4-14, 2002. The school featured lectures by ten speakers, and was attended by nearly 70 students from over 14 countries. A primary goal was to foster interaction and communication between participants from different cultures, both in the layman’s sense of the term and in terms of approaches to quantum gravity. We hope that the links formed by students and the school will persist throughout their professional lives, continuing to promote interaction and the essential exchange of ideas that drives research forward. This volume contains improved and updated versions of the lectures given at the School. It has been prepared both as a reminder for the participants, and so that these pedagogical introductions can be made available to others who were unable to attend. We expect them to serve students of all ages well.

  18. Topics in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lamon, Raphael

    2010-06-29

    Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem

  19. Tensor Galileons and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)

    2017-03-13

    The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.

  20. Topics in quantum gravity

    International Nuclear Information System (INIS)

    Lamon, Raphael

    2010-01-01

    Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem. Furthermore, we

  1. Simplicial quantum gravity

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1985-01-01

    Simplicial approximation and the ideas associated with the Regge calculus provide a concrete way of implementing a sum over histories formulation of quantum gravity. A simplicial geometry is made up of flat simplices joined together in a prescribed way together with an assignment of lengths to their edges. A sum over simplicial geometries is a sum over the different ways the simplices can be joined together with an integral over their edge lengths. The construction of the simplicial Euclidean action for this approach to quantum general relativity is illustrated. The recovery of the diffeomorphism group in the continuum limit is discussed. Some possible classes of simplicial complexes with which to define a sum over topologies are described. In two dimensional quantum gravity it is argued that a reasonable class is the class of pseudomanifolds

  2. Spinal level of myelomeningocele lesion as a contributing factor in posterior fossa volume, intracranial cerebellar volume, and cerebellar ectopia.

    LENUS (Irish Health Repository)

    Sweeney, Kieron J

    2013-02-01

    McLone and Knepper\\'s unified theory of Chiari malformation Type II (CM-II) describes how the loss of CSF via the open posterior neuropore fails to create adequate distending pressure for the developing rhomboencephalic vesicle. The authors of the present article describe the relationship between the posterior fossa volume and intracranial cerebellar volume as being related to the distance from the obex of the fourth ventricle to the myelomeningocele lesion using a common mathematical model, the Hagen-Poiseuille law.

  3. Differential distribution patterns in cerebellar irrigation. A study with autopsy material

    Directory of Open Access Journals (Sweden)

    Hernando Yesid Estupiñan

    2018-02-01

    Full Text Available Aim: The aim of this investigation was characterize morphologically the cerebellar artery and its branches in a specimen of autopsy material. Methods: This descriptive cross-sectional study evaluated the anatomical characteristics of the cerebellar arteries and their branches in 93 brain stem and cerebellum blocks obtained from fresh cadavers. The specimens were perfused bilaterally channeling the proximal segments of the internal carotid and vertebral arteries with a semi-synthetic resin (Palatal GP40L 85%; styrene 15% impregnated with mineral red dye. We evaluated the distribution patterns of the cerebellar artery and its branches. Results: The calibers of the superior cerebellar artery (SCA, anterior inferior cerebellar artery (AICA and posterior inferior cerebellar artery (PICA were 1.46 ± 0.2 mm, 1.02 ± 0.35 mm and 1.45 ± 0.37 mm, respectively. Agenesis of the SCA was observed in six specimens (3.2%, AICA in 30 (16.1%, and PICA in 14 (7.5% specimens. Usual irrigation was observed in 44 (47.3% cerebellar blocks, whereas 49 (52.7% specimens showed irrigation variants, 23 (46.9% of which appeared bilaterally. The dominant distribution of the cerebellar arteries corresponded to SCA in 9 (12.5% cases, AICA in 46 (63.9% and PICA in 7 (9.7% specimens; shared dominance was found in 10 (13.9% specimens. Conclusion: The high variability of the cerebellar arteries observed in the present study is consistent with previous reports. The diverse anatomic expressions of the cerebellar arteries were typified in relation to their dominance and territories irrigated, useful for the diagnosis and clinical-surgical management of the cerebellum blood supply.

  4. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke

    Directory of Open Access Journals (Sweden)

    Catherine J. Stoodley

    2016-01-01

    Full Text Available Cerebellar lesions can cause motor deficits and/or the cerebellar cognitive affective syndrome (CCAS; Schmahmann's syndrome. We used voxel-based lesion-symptom mapping to test the hypothesis that the cerebellar motor syndrome results from anterior lobe damage whereas lesions in the posterolateral cerebellum produce the CCAS. Eighteen patients with isolated cerebellar stroke (13 males, 5 females; 20–66 years old were evaluated using measures of ataxia and neurocognitive ability. Patients showed a wide range of motor and cognitive performance, from normal to severely impaired; individual deficits varied according to lesion location within the cerebellum. Patients with damage to cerebellar lobules III–VI had worse ataxia scores: as predicted, the cerebellar motor syndrome resulted from lesions involving the anterior cerebellum. Poorer performance on fine motor tasks was associated primarily with strokes affecting the anterior lobe extending into lobule VI, with right-handed finger tapping and peg-placement associated with damage to the right cerebellum, and left-handed finger tapping associated with left cerebellar damage. Patients with the CCAS in the absence of cerebellar motor syndrome had damage to posterior lobe regions, with lesions leading to significantly poorer scores on language (e.g. right Crus I and II extending through IX, spatial (bilateral Crus I, Crus II, and right lobule VIII, and executive function measures (lobules VII–VIII. These data reveal clinically significant functional regions underpinning movement and cognition in the cerebellum, with a broad anterior-posterior distinction. Motor and cognitive outcomes following cerebellar damage appear to reflect the disruption of different cerebro-cerebellar motor and cognitive loops.

  5. Glial modulation by N-acylethanolamides in brain injury and neurodegeneration

    Directory of Open Access Journals (Sweden)

    María Inés Herrera

    2016-04-01

    Full Text Available Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs, naturally occurring amides, are known for their pro-homeostatic effects. An increase of NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells.

  6. Instantons and gravity

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1996-01-01

    The problems of application of nonperturbative quantization methods in the theories of the gauge fields and gravity are discussed. Unification of interactions is considered in the framework of the geometrical gauge fields theory. Vacuum conception in the unified theory of interactions and instantons role in the vacuum structure are analyzed. The role of vacuum solutions of Einstein equations in definition of the gauge field vacuum is demonstrated

  7. Gravity, Time, and Lagrangians

    Science.gov (United States)

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  8. Spontaneously generated gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1981-01-01

    We show, following a recent suggestion of Adler, that gravity may arise as a consequence of dynamical symmetry breaking in a scale- and gauge-invariant world. Our calculation is not tied to any specific scheme of dynamical symmetry breaking. A representation for Newton's coupling constant in terms of flat-space quantities is derived. The sign of Newton's coupling constant appears to depend on infrared details of the symmetry-breaking mechanism

  9. Loop Quantum Gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  10. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  11. Semiclassical unimodular gravity

    International Nuclear Information System (INIS)

    Fiol, Bartomeu; Garriga, Jaume

    2010-01-01

    Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately

  12. Autoimmune neurological syndromes associated limbic encephalitis and paraneoplastic cerebellar degeneration.

    Science.gov (United States)

    Ayas, Zeynep Özözen; Kotan, Dilcan; Aras, Yeşim Güzey

    2016-10-06

    Autoimmune neurological syndrome is a group of disorders caused by cancer affecting nervous system by different immunological mechanisms. In this study, we aim to study the clinical symptoms, cerebrospinal fluid (CSF) findings, autoantibody tests, computed tomography (CT), magnetic resonance imaging (MRI) signs and treatment outcome of patients with autoimmune syndromes. In this study, 7 patients (4 male, 3 female) diagnosed with autoimmune neurological syndrome were retrospectively examined. Five of patients were diagnosed with limbic encephalitis, two of them were paraneoplastic cerebellar degeneration. Confusion and seizure were the most seen symptoms. Two patients had psychiatric disturbances (28,5%) followed by seizure. Headache was seen in 2 patients (% 28,5), disartria in 1 patient (% 14,2), and gait disorder in 2 patients (28,5%). The duration of symptoms was 46 (3-150) days on average. CSF abnormalities were detected in 2 patients. CT and MRI of the brain was available in all patients. Five patients had involvement of mesiotemporal region, two patients had diffuse cerebellar atrophy. One of patients had anti-GABAR B1 positivity. Tumors were detected in 2 patients while investigation for paraneoplasia screening. Remission is only possible with the detection and treatment of the malignancy. Early diagnosis and treatment are of paramount importance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Bilateral Cerebellar Medulloblastoma in Adults: Report of Two Cases

    International Nuclear Information System (INIS)

    Cerquera Cabrera, Fredy Martin; Patino Mendez, Ricardo; Mantilla Mantilla, Maria Isabel

    2011-01-01

    Medulloblastoma is considered to be part of the group of primitive neuroectodermal tumors. It is well known that medulloblastoma is the most common malignancy of the central nervous system in the pediatric population, and the most common primary tumor of the posterior fossa in children. In contrast, it has a very low prevalence in adults. Imaging signs of medulloblastoma have been described in children, consisting of mid-line masses, usually well defined and typically hyperdense on non-contrast CT images, but that show intense homogeneous enhancement with contrast medium. in adults, these characteristics vary, usually with poorly defined cerebellar hemispheric masses showing cystic degeneration or necrosis, and minor enhancement with contrast medium, when compared to the pediatric population. Both children and adults share a variable appearance on MRI, as well as secondary leptomeningeal involvement and distant metastases. This paper describes two confirmed cases of bilateral hemispheric cerebellar medulloblastomas in adult patients with an unusual and interesting imaging presentation not yet reported in the literature.

  14. Coordinated scaling of cortical and cerebellar numbers of neurons

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    2010-03-01

    Full Text Available While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of 4 different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora, Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.

  15. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  16. Venus gravity fields

    Science.gov (United States)

    Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.

    1981-01-01

    Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.

  17. DMPD: Multifunctional effects of bradykinin on glial cells in relation to potentialanti-inflammatory effects. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17669557 Multifunctional effects of bradykinin on glial cells in relation to potent... Epub 2007 Jun 27. (.png) (.svg) (.html) (.csml) Show Multifunctional effects of bradykinin on glial cells i...n relation to potentialanti-inflammatory effects. PubmedID 17669557 Title Multifunction

  18. Polar gravity fields from GOCE and airborne gravity

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan

    2011-01-01

    Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...

  19. Gravity signatures of terrane accretion

    Science.gov (United States)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  20. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    Science.gov (United States)

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Direct and indirect spino-cerebellar pathways: shared ideas but different functions in motor control

    Directory of Open Access Journals (Sweden)

    Juan eJiang

    2015-07-01

    Full Text Available The impressive precision of mammalian limb movements relies on internal feedback pathways that convey information about ongoing motor output to cerebellar circuits. The spino-cerebellar tracts (SCT in the cervical, thoracic and lumbar spinal cord have long been considered canonical neural substrates for the conveyance of internal feedback signals. Here we consider the distinct features of an indirect spino-cerebellar route, via the brainstem lateral reticular nucleus (LRN, and the implications of this pre-cerebellar ‘detour’ for the execution and evolution of limb motor control. Both direct and indirect spino-cerebellar pathways signal spinal interneuronal activity to the cerebellum during movements, but evidence suggests that direct SCT neurons are mainly modulated by rhythmic activity, whereas the LRN also receives information from systems active during postural adjustment, reaching and grasping. Thus, while direct and indirect spino-cerebellar circuits can both be regarded as internal copy pathways, it seems likely that the direct system is principally dedicated to rhythmic motor acts like locomotion, while the indirect system also provides a means of pre-cerebellar integration relevant to the execution and coordination of de

  2. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Watanabe, Yousuke; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO + oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68 + microglia, MT + astrocytes, and TUNEL + apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO + oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression profiling was performed. • CPZ

  3. Evidence that stress activates glial lactate formation in vivo assessed with rat hippocampus lactography

    NARCIS (Netherlands)

    Elekes, O; Venema, K; Postema, F; Dringen, R; Hamprecht, B; Korf, J

    1996-01-01

    Extracellular lactate of the rat hippocampus is inter alia increased by immobilization stress. The origin of lactate is, however, not well established, so it is not known whether it is mainly derived form neurons or glial cells. Dialysates were collected shortly (1 or 2 days) or with a delay (14 or

  4. Electron microscopy of glial cells of the central nervous system in the crab Ucides cordatus

    Directory of Open Access Journals (Sweden)

    Allodi S.

    1999-01-01

    Full Text Available Invertebrate glial cells show a variety of morphologies depending on species and location. They have been classified according to relatively general morphological or functional criteria and also to their location. The present study was carried out to characterize the organization of glial cells and their processes in the zona fasciculata and in the protocerebral tract of the crab Ucides cordatus. We performed routine and cytochemical procedures for electron microscopy analysis. Semithin sections were observed at the light microscope. The Thiéry procedure indicated the presence of carbohydrates, particularly glycogen, in tissue and in cells. To better visualize the axonal ensheathment at the ultrastructural level, we employed a method to enhance the unsaturated fatty acids present in membranes. Our results showed that there are at least two types of glial cells in these nervous structures, a light one and a dark one. Most of the dark cell processes have been mentioned in the literature as extracellular matrix, but since they presented an enveloping membrane, glycogen and mitochondria - intact and with different degrees of disruption - they were considered to be glial cells in the present study. We assume that they correspond to the perineurial cells on the basis of their location. The light cells must correspond to the periaxonal cells. Some characteristics of the axons such as their organization, ensheathment and subcellular structures are also described.

  5. Involvement of glial cells in the neurotoxicity of parathion and chlorpyrifos

    International Nuclear Information System (INIS)

    Zurich, M.-G.; Honegger, P.; Schilter, B.; Costa, L.G.; Monnet-Tschudi, F.

    2004-01-01

    An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to investigate the influence of glial cells on the neurotoxicity of two organophosphorus pesticides (OPs), chlorpyrifos and parathion. Mixed-cell aggregate cultures were treated continuously for 10 days between DIV 5 and 15. Parathion induced astrogliosis at concentration at which MAP-2 immunostaining, found here to be more sensitive than neuron-specific enzyme activities, was not affected. In contrast, chlorpyrifos induced a comparatively weak gliotic reaction, and only at concentrations at which neurons were already affected. After similar treatments, increased neurotoxicity of parathion and chlorpyrifos was found in aggregate cultures deprived of glial cells. These results suggest that glial cells provide neuroprotection against OPs toxicity. To address the question of the difference in toxicity between parathion and chlorpyrifos, the toxic effects of their leaving groups, p-nitrophenol and trichloropyridinol, were studied in mixed-cell aggregates. General cytotoxicity was more pronounced for trichloropyridinol and both compounds had similar toxic effects on neuron-specific enzyme activities. In contrast, trichloropyridinol induced a much stronger decrease in glutamine synthetase activity, the enzymatic marker of astrocytes. Trichloropyridinol may exert a toxic effect on astrocytes, compromising their neuroprotective function, thus exacerbating the neurotoxicity of chlorpyrifos. This is in line with the suggestion that glial cells may contribute to OPs neurotoxicity, and with the view that OPs may exert their neurotoxic effects through different mechanisms

  6. Flavonoids Modulate the Proliferation of Neospora caninum in Glial Cell Primary Cultures

    Science.gov (United States)

    Barbosa de Matos, Rosan; Braga-de-Souza, Suzana; Pena Seara Pitanga, Bruno; Amaral da Silva, Victor Diógenes; Viana de Jesus, Erica Etelvina; Morales Pinheiro, Alexandre; Dias Costa, Maria de Fátima; dos Santos El-Bacha, Ramon; de Oliveira Ribeiro, Cátia Suse

    2014-01-01

    Neospora caninum (Apicomplexa; Sarcocystidae) is a protozoan that causes abortion in cattle, horses, sheep, and dogs as well as neurological and dermatological diseases in dogs. In the central nervous system of dogs infected with N. caninum, cysts were detected that exhibited gliosis and meningitis. Flavonoids are polyphenolic compounds that exhibit antibacterial, antiparasitic, antifungal, and antiviral properties. In this study, we investigated the effects of flavonoids in a well-established in vitro model of N. caninum infection in glial cell cultures. Glial cells were treated individually with 10 different flavonoids, and a subset of cultures was also infected with the NC-1 strain of N. caninum. All of the flavonoids tested induced an increase in the metabolism of glial cells and many of them increased nitrite levels in cultures infected with NC-1 compared to controls and uninfected cultures. Among the flavonoids tested, 3',4'-dihydroxyflavone, 3',4',5,7-tetrahydroxyflavone (luteolin), and 3,3',4',5,6-pentahydroxyflavone (quercetin), also inhibited parasitophorous vacuole formation. Taken together, our findings show that flavonoids modulate glial cell responses, increase NO secretion, and interfere with N. caninum infection and proliferation. PMID:25548412

  7. Dampak Hipoksia Sistemik terhadap Malondialdehida, Glial Fibrillary Acidic Protein dan Aktivitas Asetilkolin Esterase Otak Tikus

    OpenAIRE

    Andriani Andriani; Ani Retno Prijanti; Ninik Mudjihartini; Sri Widia A. Jusman

    2016-01-01

    Hipoksia sistemik menyebabkan berkurangnya oksigen dan energi di otak sehingga memicupenglepasan neurotransmiter asetilkolin, meningkatkan radikal bebas dan glial fibrillary acidic protein (GFAP)yang berfungsi menjaga kekuatan membran. Tujuan penelitian untuk melihat gambaran adaptasi otak padahipoksia sistemik terhadap fungsi asetilkolin esterase, kerusakan membran sel neuron dan astrosit. Penelitiandilakukan di Laboratorium Biokimia & Biologi Molekuler FK Universitas Indonesia, pada ta...

  8. Controlled adhesion and growth of long term glial and neuronal cultures on Parylene-C.

    Directory of Open Access Journals (Sweden)

    Evangelos Delivopoulos

    Full Text Available This paper explores the long term development of networks of glia and neurons on patterns of Parylene-C on a SiO(2 substrate. We harvested glia and neurons from the Sprague-Dawley (P1-P7 rat hippocampus and utilized an established cell patterning technique in order to investigate cellular migration, over the course of 3 weeks. This work demonstrates that uncontrolled glial mitosis gradually disrupts cellular patterns that are established early during culture. This effect is not attributed to a loss of protein from the Parylene-C surface, as nitrogen levels on the substrate remain stable over 3 weeks. The inclusion of the anti-mitotic cytarabine (Ara-C in the culture medium moderates glial division and thus, adequately preserves initial glial and neuronal conformity to underlying patterns. Neuronal apoptosis, often associated with the use of Ara-C, is mitigated by the addition of brain derived neurotrophic factor (BDNF. We believe that with the right combination of glial inhibitors and neuronal promoters, the Parylene-C based cell patterning method can generate structured, active neural networks that can be sustained and investigated over extended periods of time. To our knowledge this is the first report on the concurrent application of Ara-C and BDNF on patterned cell cultures.

  9. Glial Cells: The Other Cells of the Nervous System-Microglia–The ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 10. Glial Cells: The Other Cells of the Nervous System - Microglia – The Guardians of the CNS. Medha S Rajadhyaksha Daya Manghani. Series Article Volume 7 Issue 10 October 2002 pp 23-29 ...

  10. Gemfibrozil, a Lipid-lowering Drug, Induces Suppressor of Cytokine Signaling 3 in Glial Cells

    Science.gov (United States)

    Ghosh, Arunava; Pahan, Kalipada

    2012-01-01

    Glial inflammation is an important feature of several neurodegenerative disorders. Suppressor of cytokine signaling (SOCS) proteins play a crucial role in inhibiting cytokine signaling and inflammatory gene expression in various cell types, including glial cells. However, mechanisms by which SOCS genes could be up-regulated are poorly understood. This study underlines the importance of gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, in up-regulating the expression of SOCS3 in glial cells. Gemfibrozil increased the expression of Socs3 mRNA and protein in mouse astroglia and microglia in both a time- and dose-dependent manner. Interestingly, gemfibrozil induced the activation of type IA phosphatidylinositol (PI) 3-kinase and AKT. Accordingly, inhibition of PI 3-kinase and AKT by chemical inhibitors abrogated gemfibrozil-mediated up-regulation of SOCS3. Furthermore, we demonstrated that gemfibrozil induced the activation of Krüppel-like factor 4 (KLF4) via the PI 3-kinase-AKT pathway and that siRNA knockdown of KLF4 abrogated gemfibrozil-mediated up-regulation of SOCS3. Gemfibrozil also induced the recruitment of KLF4 to the distal, but not proximal, KLF4-binding site of the Socs3 promoter. This study delineates a novel property of gemfibrozil in up-regulating SOCS3 in glial cells via PI 3-kinase-AKT-mediated activation of KLF4 and suggests that gemfibrozil may find therapeutic application in neuroinflammatory and neurodegenerative disorders. PMID:22685291

  11. Multiscale Vision Model Highlights Spontaneous Glial Calcium Waves Recorded by 2-Photon Imaging in Brain Tissue

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Mathiesen, Claus; Lauritzen, Martin

    2013-01-01

    Intercellular glial calcium waves constitute a signaling pathway which can be visualized by fluorescence imaging of cytosolic Ca2+ changes. However, there is a lack of procedures for sensitive and reliable detection of calcium waves in noisy multiphoton imaging data. Here we extend multiscale...

  12. Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke

    DEFF Research Database (Denmark)

    Lie, Maria E K; Al-Khawaja, Anas; Damgaard, Maria

    2017-01-01

    is to provide an overview of glial GATs in regulating tonic inhibition, especially in epilepsy and stroke. This entails a comprehensive summary of changes known to occur in GAT expression levels and signalling following epileptic and ischemic insults. Further, we discuss the accumulating pharmacological...

  13. Axon Guidance of Sympathetic Neurons to Cardiomyocytes by Glial Cell Line-Derived Neurotrophic Factor (GDNF)

    NARCIS (Netherlands)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal

  14. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Kuziel, William A; Rivest, Serge

    2003-01-01

    Innate responses in the CNS are critical to first line defense against infection and injury. Leukocytes migrate to inflammatory sites in response to chemokines. We studied leukocyte migration and glial chemokine expression within the denervated hippocampus in response to axonal injury caused by e...

  15. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  16. Cerebellar abnormalities contribute to disability including cognitive impairment in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Katrin Weier

    Full Text Available The cerebellum is known to be involved not only in motor but also cognitive and affective processes. Structural changes in the cerebellum in relation to cognitive dysfunction are an emerging topic in the field of neuro-psychiatric disorders. In Multiple Sclerosis (MS cerebellar motor and cognitive dysfunction occur in parallel, early in the onset of the disease, and the cerebellum is one of the predilection sites of atrophy. This study is aimed at determining the relationship between cerebellar volumes, clinical cerebellar signs, cognitive functioning and fatigue in MS. Cerebellar volumetry was conducted using T1-weighted MPRAGE magnetic resonance imaging of 172 MS patients. All patients underwent a clinical and brief neuropsychological assessment (information processing speed, working memory, including fatigue testing. Patients with and without cerebellar signs differed significantly regarding normalized cerebellar total volume (nTCV, normalized brain volume (nBV and whole brain T2 lesion volume (LV. Patients with cerebellar dysfunction likewise performed worse in cognitive tests. A regression analysis indicated that age and nTCV explained 26.3% of the variance in SDMT (symbol digit modalities test performance. However, only age, T2 LV and nBV remained predictors in the full model (r(2 = 0.36. The full model for the prediction of PASAT (Paced Auditory Serial Addition Test scores (r(2 = 0.23 included age, cerebellar and T2 LV. In the case of fatigue, only age and nBV (r(2 = 0.17 emerged as significant predictors. These data support the view that cerebellar abnormalities contribute to disability, including cognitive impairment in MS. However, this contribution does not seem to be independent of, and may even be dominated by wider spread MS pathology as reflected by nBV and T2 LV.

  17. Bringing Gravity to Space

    Science.gov (United States)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  18. Is Gravity an Entropic Force?

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2011-04-01

    Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

  19. Active Response Gravity Offload System

    Science.gov (United States)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  20. Teleparallel equivalent of Lovelock gravity

    Science.gov (United States)

    González, P. A.; Vásquez, Yerko

    2015-12-01

    There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.